WO2019205636A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2019205636A1
WO2019205636A1 PCT/CN2018/118904 CN2018118904W WO2019205636A1 WO 2019205636 A1 WO2019205636 A1 WO 2019205636A1 CN 2018118904 W CN2018118904 W CN 2018118904W WO 2019205636 A1 WO2019205636 A1 WO 2019205636A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
display panel
display
fresnel lens
Prior art date
Application number
PCT/CN2018/118904
Other languages
English (en)
French (fr)
Inventor
王品凡
谢明哲
陈彦均
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/472,620 priority Critical patent/US11018207B2/en
Publication of WO2019205636A1 publication Critical patent/WO2019205636A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B29/00Combinations of cameras, projectors or photographic printing apparatus with non-photographic non-optical apparatus, e.g. clocks or weapons; Cameras having the shape of other objects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present disclosure relates to the field of display, and in particular to a display device having an imaging function.
  • an embodiment of the present disclosure provides a display device, including:
  • the display panel including a display surface and a first surface opposite the display surface;
  • An optical module configurable to converge light passing through the display panel, the optical module being located on a side of the first surface away from the display surface;
  • An imaging component configured to receive light concentrated by the optical module, the imaging component being located on a side of the optical module away from the first surface and spaced apart from the optical module, the imaging The component has a light incident surface that receives the light;
  • the orthographic projection area of the optical module on the display panel is larger than the area of the light incident surface of the imaging assembly.
  • the optical module comprises a concentrating element.
  • the concentrating element is a Fresnel lens.
  • the light incident surface of the camera assembly is parallel to the Fresnel lens.
  • a surface of the Fresnel lens adjacent to one side of the display panel is a plane, and a light incident surface of the camera assembly is parallel to the plane.
  • the distance between the light incident surface of the imaging component and the optical center of the Fresnel lens is such that substantially all of the light emitted by the light exit surface of the Fresnel lens is incident on the image capturing device.
  • the light entry surface of the component is such that substantially all of the light emitted by the light exit surface of the Fresnel lens is incident on the image capturing device.
  • the focal length of the Fresnel lens is R
  • the distance between the light incident surface of the camera assembly and the optical center of the Fresnel lens is R ⁇ 10%R.
  • a projection of each of the optical module and the camera assembly in a direction perpendicular to a first face of the display panel falls into a display area of the display panel.
  • the optical module further includes: a refractive component, the refractive component being located between the display panel and the concentrating element.
  • the refractive assembly comprises a prism or a group of mirrors.
  • an orthographic projection area of the refractive component on the display panel is larger than an area of the light incident surface of the imaging assembly.
  • the light incident surface of the camera assembly is not parallel to the first surface of the display panel.
  • the concentrating element is a Fresnel lens
  • the focal length of the Fresnel lens is R
  • a light incident surface of the camera assembly and an optical center of the Fresnel lens are perpendicular to The distance in the direction of the first face of the display panel is less than R.
  • a distance between a light incident surface of the camera assembly and an optical center of the Fresnel lens in a direction perpendicular to a first surface of the display panel is less than 0.9R.
  • the projection of the camera assembly in a direction perpendicular to the first face of the display panel does not overlap the projection of the optical module in a direction perpendicular to the first face of the display panel.
  • FIG. 1 is a schematic structural view of a display device having an imaging function in the related art
  • FIG. 2 shows a schematic structural view of a display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural view of a display device according to an embodiment of the present disclosure.
  • FIG. 4 shows a partial structural schematic view of a display device according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic structural view of a display device according to an embodiment of the present disclosure
  • Fig. 6 shows an exploded schematic view of the display device shown in Fig. 5.
  • the mobile terminal needs to be truly full-screen design, and how the space occupied by the front camera is handled becomes the key.
  • the display device with the camera function is still located in the non-display area of the display module.
  • part of the mobile terminal is designed to move the position of the front camera from the upper part to the lower corner of the device. This increases the screen ratio of the upper half of the display, but the camera still occupies a certain amount of space on the display, and a true full screen design cannot be achieved.
  • the inventors have found through research that the display device having the imaging function in the related art mainly uses the following three methods to set the camera module.
  • the first way is to set the camera module in the non-display area of the display screen, for example, to set the front camera at the upper frame of the display screen.
  • the second way is to set the camera module in the display area of the display screen.
  • the transmittance of the display screen in the current display device is poor, resulting in low light intensity reaching the camera module through the display screen, resulting in The image received by the camera module behind the display has low resolution and poor quality.
  • the third way is to set the camera module in the display area of the display screen, and design the opening of the display screen, and set a gap between adjacent sub-pixels of the display area, so that the camera module is located in the gap. Specifically, no other structure is provided at the gap, and only the protective cover, the substrate, and the like are retained, and the light transmittance of the entire display screen is increased. Although this method solves the problem of poor image quality by increasing the light transmittance of the display screen, this method reduces the pixel density, resulting in a decrease in the resolution of the display screen, resulting in poor picture quality during display.
  • the inventors have conducted intensive research and a large number of experiments and found that the display device with the camera function in the related art has problems such as the inability to achieve true full screen, poor image quality of the received image, and resolution of the display screen.
  • the display device includes a display panel 10 and an image pickup unit 30 that can receive light transmitted through the display panel 10.
  • the display panel 10 includes a display surface 11 and a first surface 12 opposite to the display surface 11, and the camera assembly 30 is disposed behind the display panel 10, that is, on a side of the first surface 12 away from the display surface 11.
  • the image pickup unit 30 can receive only light that is incident on the light incident surface 31 through a portion of the display panel 10 that is opposite to the light incident surface 31 of the image pickup unit, that is, the light receiving area on the display panel 100 is equal to The area of the light incident surface 310 of the camera assembly. Since the light transmittance of the display panel 10 is not high, the overall receiving amount of light is small, and the received light is weak, so that the image received by the camera module disposed behind the display screen has low definition and poor quality.
  • the display device includes: a display panel 100, an optical module 200 that can converge light passing through the display panel (such as the arrow shown in FIG. 2), and can perform light collected by the optical module.
  • the display panel 100 includes a display surface 110 and a first side 120 opposite the display surface 110.
  • the display surface 110 may be a side of the display panel 100 for displaying information such as text, images, etc., that is, a side facing the user in use
  • the first side 120 may be the back side of the display panel 100, that is, facing away from the user when in use. Side.
  • the optical module 200 is disposed on a side of the first surface 120 away from the display surface 110.
  • the imaging assembly 300 is spaced apart from the side of the optical module 200 away from the first surface 120, that is, the imaging assembly 300 is spaced apart from the optical module 200.
  • the orthographic projection area of the optical module 200 on the display panel 100 is greater than the area of the light incident surface 310 of the imaging assembly 300. Therefore, the display device can realize the imaging function while ensuring the normal display; the optical module in the display device can increase the light receiving area, and after the light is concentrated, the light received by the camera assembly is significantly improved. The amount of light and the intensity of the light enhance the clarity and quality of the image obtained by the camera assembly while preserving the resolution of the display device.
  • the projections of the optical module 200 and the camera assembly 300 in a direction perpendicular to the first face 120 of the display panel 100 all fall into the display area of the display panel 100.
  • the camera module can be integrated into the position corresponding to the display area of the display device, and the camera module can receive the image through the display screen, and simultaneously realize the image capturing function of the display device while ensuring the normal display of the display device, without
  • the camera component occupying the display space can be set to realize a comprehensive screen design in a true sense.
  • the screen assembly ratio of the display panel 100 can be significantly improved without opening the display panel 100 and additionally mounting the front camera.
  • the image capturing component 300 can receive images through the display panel 100, and can ensure the normal display of the display device and realize the image capturing function of the display device.
  • the display device facilitates a true full screen design when applied to a mobile terminal.
  • an optical module 200 is added behind the display panel 100.
  • the orthographic projection area of the optical module 200 on the display panel 100 is larger than the area of the light incident surface of the imaging assembly 300, and the imaging assembly
  • the projection of the 300 in a direction perpendicular to the first face 120 of the display panel 100 falls within a projection of the optical module 200 in a direction perpendicular to the first face 120 of the display panel 100, and the optical module 200 can pass through the display panel 100.
  • the light is concentrated, and the light incident surface 310 of the camera assembly can completely receive the concentrated light.
  • the light receiving area of the optical module 300 in the display device according to the embodiment of the present disclosure is much larger than that in the related art (shown in FIG. 1).
  • the light receiving area of the optical module 30 in the display device, and the optical module 200 converge the light can significantly increase the amount of light and light intensity of the light received by the camera assembly 300, thereby improving the camera assembly 300.
  • the clarity and quality of the resulting image the display device according to the embodiment of the present disclosure does not need to increase the light transmittance of the display panel 100 while improving the light receiving area of the light receiving unit 300, the light receiving amount, and the light receiving intensity, thereby avoiding the display panel 100 from transmitting light.
  • the increase in the rate results in a decrease in the resolution of the display device and does not affect the display performance of the display device.
  • the display device having the above structure can not only integrate the camera module, but also realize the screen-down imaging, that is, the component having the camera function can be located at the center of the screen. Therefore, on the one hand, the screen ratio can be increased.
  • the mode of the screen can improve the viewing angle of the camera module, for example, the image or the user's human eye can directly face the camera module, thereby providing better images. user experience.
  • the type of the display panel 100 is not particularly limited, and those skilled in the art can select according to actual needs.
  • the display panel 100 may include an organic light emitting display (OLED) or a liquid crystal display (LCD).
  • OLED organic light emitting display
  • LCD liquid crystal display
  • the display panel 100 can be an OLED, whereby the transmittance of the display panel is good, and the display device is thinner and thinner without separately providing a backlight module.
  • the light transmittance of the display panel 100 is not particularly limited.
  • the light transmittance of the display panel 100 may be 5% to 70%.
  • the performance of the display device can be further improved.
  • the optical module 200 is disposed in the display device, and is suitable for the display panel 100 with a light transmittance of 5%-70%.
  • the imaging function can be realized at the same time, without performing the display panel.
  • Special design enhances the clarity and quality of the image obtained by the camera assembly while ensuring the display resolution.
  • the optical module includes a concentrating element 210.
  • the light can be focused by the concentrating element 210 to concentrate the light to the camera assembly 300, which increases the light receiving area of the camera assembly 300, increases the amount of light received by the light and the intensity of the light, and improves the imaging. The sharpness and quality of the image obtained by assembly 300.
  • the specific type of the concentrating element 210 is not particularly limited as long as it is sufficient to converge the light transmitted through the display panel.
  • the concentrating element 210 may include a convex lens or a Fresnel lens.
  • the specific type of the camera assembly 300 is not particularly limited, and those skilled in the art can select according to actual needs.
  • the camera assembly 300 can include a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the optical module 200 in the display device may further include a refractive component 220, that is, the optical module 200 of the display device may include: a refractive component 220 and a concentrating component 210.
  • the optical module 200 in the display device may include a concentrating element 210.
  • the specific type of the concentrating element 210 is not particularly limited, and only needs to be able to converge the light transmitted through the display panel 100.
  • the concentrating element 210 may include a convex lens or a Fresnel lens.
  • the concentrating element will be described in detail as a Fresnel lens.
  • the concentrating element may be a Fresnel lens 211.
  • Fresnel lens has the advantages of large area, small volume, light weight, compact structure and low price, and it has good concentrating performance and imaging performance, and the transmitted light has high brightness.
  • the Fresnel lens is a glossy surface and can be bonded to the display panel to further reduce the thickness of the display device.
  • the surface of the Fresnel lens 211 near the side of the display panel (the left surface in FIG. 4) is a plane, which facilitates its bonding with the display panel. As shown in FIG.
  • the Fresnel lens 211 can be used to converge light from a relatively large area (the left surface in FIG. 4) to a relatively smaller area (the right surface in FIG. 4), thereby
  • the light concentrated by the Fresnel lens can increase the area of light received by the camera assembly, the amount of light and the intensity of the light, improve the sharpness and quality of the image obtained by the camera assembly, and the light concentrated by the Fresnel lens can maintain the image.
  • the brightness is uniform throughout, which improves the uniformity of the overall brightness and further improves the quality of the image obtained by the camera unit.
  • the imaging assembly 300 has a light incident surface 310, and the light incident surface 310 of the imaging assembly is parallel to the Fresnel lens 211, specifically, the light incident surface 310 of the imaging assembly and the Fresnel lens.
  • the surface of the 211 near the side of the display panel is parallel.
  • the distance between the light incident surface 310 of the camera assembly and the optical center of the Fresnel lens (such as the optical center O shown in FIG. 4) (the distance A shown in FIG. 4) is satisfied.
  • the light emitted from the light exit surface 10 of the Neel lens is substantially entirely incident on the light incident surface 310 of the image pickup unit 300.
  • the Fresnel lens is considered.
  • the distribution of the emitted light is complicated, and considering the process error of the actual processing, the light emitted from the exit surface of the Fresnel lens may not be incident on the light incident surface of the camera assembly 100%. It should be understood that these factors are excluded.
  • the interference, the light emitted from the light exit surface of the Fresnel lens is substantially 100% incident on the light incident surface of the image pickup unit.
  • the image pickup unit 300 can substantially completely receive the light condensed by the Fresnel lens 211, thereby increasing the amount of light and the light intensity of the received light, and obtaining an image with more excellent definition and quality.
  • the concentrating element is a Fresnel lens
  • the area of the Fresnel lens on the display panel is larger than the area of the light incident surface of the imaging unit, and the light transmitted through the display panel can be performed.
  • the camera component can receive the concentrated light, and the receiving area of the light is far greater than the case where the Fresnel lens is not provided, thereby significantly increasing the amount of light and the light intensity of the light received by the camera assembly, thereby improving the camera assembly.
  • the clarity and quality of the image is a Fresnel lens
  • the interval between the camera assembly 300 and the optical module 200 includes that the camera assembly 300 is spaced apart from the optical module 200 by a predetermined distance.
  • the focal length of the Fresnel lens 211 is R, the optical axis of the imaging assembly and the Fresnel lens (as shown in FIG. 4)
  • the distance between the optical centers O) is R ⁇ 10% R, specifically, the light incident surface 310 of the imaging assembly and the optical center of the Fresnel lens (see FIG. 4).
  • the distance between the optical centers O) shown in Fig. 4 (distance A as shown in Fig.
  • the thickness of the Fresnel lens 211 is not particularly limited, and those skilled in the art can select according to actual needs.
  • the Fresnel lens has a thickness of 0.05 to 2 mm.
  • the Fresnel lens 211 has a thickness of 0.5 to 0.9 mm.
  • the Fresnel lens has a small thickness, which further reduces the thickness of the display device and improves the performance of the display device.
  • the light transmittance of the Fresnel lens 211 is not particularly limited, and those skilled in the art can select according to actual needs.
  • the Fresnel lens 211 has a light transmittance of ⁇ 80%. Thereby, the brightness of the light transmitted through the Fresnel lens is high, and the performance of the display device can be further improved.
  • the refractive index of the Fresnel lens 211 is not particularly limited, and those skilled in the art can select according to actual needs.
  • the Fresnel lens 211 has a refractive index of 1.2-1.6. Thereby, the performance of the display device can be further improved.
  • the material forming the Fresnel lens 211 is not particularly limited, and those skilled in the art can select according to actual needs.
  • the Fresnel lens 211 can be fabricated using polyvinyl chloride (PVC).
  • the optical module 200 in the display device may include a refractive component and a concentrating element.
  • the refractive component 220 when the optical module 200 includes the refractive component 220 and the concentrating element 210, the refractive component 220 is disposed on the display panel 100 and condensed along the direction of propagation of light transmitted through the display panel 100. Between elements 210. The inventors have found that the refraction component 220 can deflect the received light, change the direction of the light, and then focus the deflected light through the concentrating element 210, thereby concentrating the light to the imaging assembly 300, thereby reducing the display device. thickness.
  • the distance between the imaging element and the optical center of the Fresnel lens (distance A as shown in FIG. 4) satisfies R ⁇ 10% R, which is guaranteed to be substantially all Light concentrated by the Fresnel lens is received by the camera assembly 300. That is to say, at this time, it is necessary to reserve a certain distance between the imaging unit and the concentrating element, resulting in an increase in the thickness of the display device.
  • the propagation path of the light can be changed, so that the emitted light passing through the optical module 200 is no longer propagated in a direction perpendicular to the display panel 100. Referring to FIG.
  • the light incident surface 310 of the camera assembly is no longer parallel to the display panel 100, but has an angle.
  • the distance between the camera assembly and the concentrating element that needs to be reserved is obviously smaller than the vertical ray.
  • the distance required for the display panel 100 to propagate can further reduce the thickness of the display device.
  • the optical module 200 includes a refracting component 220 and a concentrating component 210.
  • the concentrating component 210 may be the concentrating component 210 described above. Specifically, it may be a convex lens or a Fresnel as described above.
  • the lens 211 thus, may have all of the features and advantages described above, and will not be further described herein.
  • the optical module 200 of the display device includes a Fresnel lens 211 and a refractive component 220. Thereby, the performance of the display device can be further improved.
  • the optical module 200 includes a refractive component 220 and a Fresnel lens 211 as an example for detailed description.
  • the area of the orthographic projection of the refractive component 220 on the display panel 100 is greater than the area of the light incident surface 310 of the imaging assembly.
  • the optical module 200 when the optical module 200 includes the refractive component 220 and the Fresnel lens 211, a refractive component and a Fresnel lens, a refractive component, and a Fresnel lens are added behind the display panel of the same light transmittance.
  • the orthographic projection area on the display panel is independently larger than the area of the light incident surface of the imaging component, and the refractive component can deflect the received light to change the direction of the light, and then focus the deflected light through the Fresnel lens.
  • the camera assembly can substantially completely receive the concentrated light, and the light receiving area is far under the premise of the same light transmittance display panel. It is much larger than the case where the Fresnel lens is not provided, and the Fresnel lens converges the light, which significantly increases the amount of light and light intensity of the light received by the camera assembly, and improves the sharpness and quality of the image obtained by the camera assembly. .
  • the specific type of the refractive component 220 is not particularly limited.
  • the refractive assembly 220 includes a prism or a group of mirrors.
  • the performance of the display device can be further improved.
  • the inventors have found that the prism or mirror group can deflect the received light, change the direction of the light, and then focus the deflected light through the concentrating element to concentrate the light onto the camera assembly.
  • the light incident surface 310 of the image pickup assembly and the first surface 120 of the display panel 100 may not be parallel. That is, the set position of the image pickup unit 300 can be placed at any position that does not affect the display and can substantially completely receive the light emitted by the light exit surface 10 of the Fresnel lens 211.
  • projection of camera assembly 300 in a direction perpendicular to first face 120 of display panel 100 does not overlap projection of optical module 200 in a direction perpendicular to first face 120 of display panel 100, in the illustrated embodiment.
  • the setting of the refractive component allows the imaging assembly 300 to be disposed on the upper side of the display device.
  • the light incident surface 310 of the camera assembly may not be parallel to the display panel 100, but has an angle.
  • the light incident surface 310 of the camera assembly is approximately 90 with the first surface 120 of the display panel 100. ° angle.
  • the distance between the imaging assembly 300 and the optical center O of the Fresnel lens 211 in the direction perpendicular to the display panel 100 (such as the distance B shown in FIG. 6) ) can be less than R, and can even be less than R-10%R. That is to say, the respective components in the display device can be set more compact, so that the thickness of the display device can be further reduced.
  • the arrangement position and the deflection angle of the optical elements in the optical module shown in the drawings are merely exemplary descriptions, and should not be construed as limiting the disclosure, and only the light can be achieved by the refractive component 220. After the deflection, the deflected light is focused by the concentrating element, and the light is concentrated to the imaging unit 300.
  • the display device can realize the camera function while ensuring normal display.
  • the optical module in the display device can increase the light receiving area, and after concentrating the light, significantly increase the amount of light and light intensity of the light received by the camera assembly, and improve the resolution of the display device.
  • the under-screen camera module technology can ensure the normal display of the display device and realize the imaging function of the display device, and at the same time without sacrificing the display resolution. High-quality images are obtained through the camera module under the screen, which greatly enhances the product competitiveness of the display device with camera function.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置,包括:显示面板(100),显示面板(100)包含显示面(110)和与显示面(110)相背的第一面(120),可被配置为对透过显示面板(100)的光进行汇聚的光学模组(200),光学模组(200)设置在第一面(120)远离显示面(110)的一侧;和可被配置为接收经过光学模组(200)汇聚的光的摄像组件(300),摄像组件(300)设置在光学模组(200)远离第一面(120)的一侧并且与光学模组(200)间隔设置,摄像组件(300)具有接收光的入光面(310);其中,光学模组(200)在显示面板(100)上的正投影面积大于摄像组件(300)的入光面(310)的面积。

Description

显示装置
相关申请的交叉引用
本申请要求于2018年4月28日递交中国专利局的、申请号为201820640331.5的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本公开涉及显示领域,具体地,涉及具有摄像功能的显示装置。
背景技术
目前,具有摄像功能的显示装置成为研究的热点。
发明内容
在一个方面,本公开的实施例提供一种显示装置,包括:
显示面板,所述显示面板包含显示面和与所述显示面相背的第一面;
可被配置为对透过所述显示面板的光进行汇聚的光学模组,所述光学模组位于所述第一面远离所述显示面的一侧;和
可被配置为接收经过所述光学模组汇聚的光的摄像组件,所述摄像组件位于所述光学模组远离所述第一面的一侧并且与所述光学模组间隔设置,所述摄像组件具有接收所述光的入光面;
其中,所述光学模组在所述显示面板上的正投影面积大于所述摄像组件的入光面的面积。
可选地,所述光学模组包括聚光元件。
可选地,所述聚光元件为菲涅尔透镜。
可选地,所述摄像组件的入光面和所述菲涅尔透镜平行。
可选地,所述菲涅尔透镜靠近所述显示面板一侧的面为平面,所述摄像组件的入光面和所述平面平行。
可选地,所述摄像组件的入光面与所述菲涅尔透镜的光心之间的距离,使得由所述菲涅尔透镜的出光面射出的光,基本上全部入射至所述摄像组件的入光面上。
可选地,所述菲涅尔透镜的焦距为R,所述摄像组件的入光面与所述菲涅尔透镜的光心之间的距离为R±10%R。
可选地,所述光学模组和所述摄像组件中每一个沿垂直于所述显示面板的第一面的方向的投影落入所述显示面板的显示区中。
可选地,所述光学模组进一步包括:折光组件,所述折光组件位于所述显示面板与所述聚光元件之间。
可选地,所述折光组件包括棱镜或反射镜组。
可选地,所述折光组件在所述显示面板上的正投影面积大于所述摄像组件的入光面的面积。
可选地,所述摄像组件的入光面与所述显示面板的第一面不平行。
可选地,所述聚光元件为菲涅尔透镜,所述菲涅尔透镜的焦距为R,所述摄像组件的入光面与所述菲涅尔透镜的光心之间在垂直于所述显示面板的第一面的方向上的距离小于R。
可选地,所述摄像组件的入光面与所述菲涅尔透镜的光心之间在垂直于所述显示面板的第一面的方向上的距离小于0.9R。
可选地,所述摄像组件沿垂直于所述显示面板的第一面的方向的投影与所述光学模组沿垂直于所述显示面板的第一面的方向的投影不重叠。
附图说明
图1显示了相关技术中具有摄像功能的显示装置的结构示意图;
图2显示了根据本公开一个实施例的显示装置的结构示意图;
图3显示了根据本公开一个实施例的显示装置的结构示意图;
图4显示了根据本公开一个实施例的显示装置的部分结构示意图;
图5显示了根据本公开一个实施例的显示装置的结构示意图;以及
图6显示了图5中示出的显示装置的分解示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
移动终端要做到真正的全面屏设计,前置摄像头所占据的空间如何处理成为关键。在相关技术中,带有摄像功能的显示装置,摄像模组仍旧位于显示模组的非显示区,例如,部分移动终端的设计是将前置摄像头的位置由装置的上部移动到下角配置,由此增加了显示屏的上半部分的屏占比,但摄像头依然会占据显示屏一定的空间,无法实现真正的全面屏的设计。
发明人经研究发现,相关技术中的具有摄像功能的显示装置主要采用以下3种方式来设置摄像模组。第1种方式是将摄像模组设置在显示屏的非显示区中,例如,将前置摄像头设置在显示屏的上边框处。然而,在这种方式中,无法实现真正的全面屏设计。第2种方式是将摄像模组设置在显示屏的显示区中,然而,目前的显示装置中显示屏的透光率差,导致透过显示屏到达摄像模组的光线强度低,造成设置在显示屏后的摄像模组所接收的影像清晰度低、品质不佳。第3种方式是将摄像模组设置在显示屏的显示区中,并且对显示屏进行开孔设计,在显示区的相邻的子像素之间设置间隙,使摄像模组位于该间隙中。具体地,在该间隙处不设置其他结构,只保留保护盖板、衬底等,增加整个显示屏的透光率。虽然这种方式通过提升显示屏的透光率来解决接收的影像品质不佳的问题,但是,该方式降低了像素密度,导致显示屏的分辨率降低,造成显示时的画质差。
也就是说,发明人经过深入研究以及大量实验发现,相关技术中的具有摄像功能的显示装置存在着无法实现真正的全面屏、接收的影像品质不佳和显示屏分辨率等问题。
参考图1,示出了相关技术中的具有摄像功能的显示装置的示意图。该显示装置包括:显示面板10以及可接收透过显示面板10的光的摄像组件30。显示面板10包含显示面11和与显示面11相背的第一面12,摄像组件30设置在显示面板10后面,即,设置在第一面12远离显示面11的一侧。在该显示装置中,摄像组件30仅能接收透过显示面板10的与摄像组件的入光面31相对的部分而入射至入光面31的光,即在显示面板100上光的接收面积等于摄像组件的入光面310的面积。由于显示面板10透光率不高,导致光的整体接收量小,接收的光较弱,造成设置在显示屏后的摄像模组所接收的影像清晰度低、品质不佳。
在本公开的一个方面,本公开的实施例提出了一种显示装置。参考图2,该显示装置包括:显示面板100、可对透过显示面板的光(如图2中所示出的箭头)进行汇 聚的光学模组200、可对经过光学模组汇聚的光进行接收的摄像组件300。在根据本公开的实施例中,显示面板100包含显示面110和与显示面110相背的第一面120。例如,显示面110可以是显示面板100用来显示例如文字、图像等信息的一面,即在使用时朝向用户的一面,第一面120可以是显示面板100的背面,即在使用时背向用户的一面。光学模组200设置在第一面120远离显示面110的一侧,摄像组件300间隔设置在光学模组200远离第一面120的一侧,即,摄像组件300与光学模组200间隔设置。在根据本公开的实施例中,光学模组200在显示面板100上的正投影面积大于摄像组件300的入光面310的面积。由此,该显示装置在保证正常显示的情况下,同时可以实现摄像功能;该显示装置中的光学模组可以增大光接收面积,并且对光进行汇聚后,显著提升摄像组件所接收的光的光线量和光线强度,在保证显示装置的分辨率的前提下,提升了摄像组件所得到的影像的清晰度和品质。
如图2所示,光学模组200和摄像组件300沿垂直于显示面板100的第一面120的方向的投影均落入显示面板100的显示区中。也就是说,可以将摄像模组整合至显示装置的显示区所对应的位置,摄像模组透过显示屏接受影像,在保证显示装置正常显示的情况下,同时实现显示装置的摄像功能,无需另外设置占据显示屏空间的摄像组件,可实现真正意义上的全面屏设计。
为了便于理解,下面对该显示装置实现上述技术效果的原理进行详细说明。
该显示装置将摄像组件300设置在显示面板100后,无需对显示面板100进行开孔设计并另外安装前置摄像头,可以显著提升显示面板100的屏占比。而且,摄像组件300可以透过显示面板100接收影像,既能保证显示装置的正常显示,又能实现显示装置的摄像功能。例如,该显示装置在运用于移动终端时,有利于实现真正的全面屏设计。进一步地,在本公开的实施例中,在显示面板100后面增加了光学模组200,光学模组200在显示面板100上的正投影面积大于摄像组件300的入光面的面积,并且摄像组件300沿垂直于显示面板100的第一面120的方向的投影落入光学模组200沿垂直于显示面板100的第一面120的方向的投影内,光学模组200可对透过显示面板100的光进行汇聚,摄像组件的入光面310可以完全接收被汇聚的光线。在相同透光率的显示面板100的前提下,根据本公开实施例(图2所示)的显示装置中的光学模组300的光的接收面积远远大于相关技术(图1所示)中的显示装置中的光学模组30的光的接收面积,并且光学模组200对光进行汇聚后,能够显著提升摄像组件300 所接受的光的光线量和光线强度,从而提升了摄像组件300所得到的影像的清晰度和品质。此外,根据本公开实施例的显示装置在提升摄像组件300对光的接收面积、光的接收量和光的接收强度的同时,无需提高显示面板100的透光率,避免了显示面板100因为透光率的提高而导致显示装置的分辨率的降低,不影响显示装置的显示性能。
此外,具有上述结构的显示装置,不仅可以集成摄像模组,还可以实现屏下摄像,即具有摄像头功能的组件可以位于屏幕的中央位置。因此,一方面可以增大屏占比,另一方面,屏下摄像的方式可以改善摄像模组的视角,例如可以使得图像或是用户的人眼直接正对摄像模组,从而提供更好的用户体验。
下面对根据本公开实施例的显示装置中的各个组件进行详细说明。
在根据本公开的实施例中,显示面板100的类型不受特别限制,本领域技术人员可以根据实际需求进行选择。例如,显示面板100可以包括有机发光显示器(organic light emitting display,OLED)或者液晶显示器(Liquid Crystal Display,LCD)。
在一些实施例中,显示面板100可以为OLED,由此,显示面板的透光率好,且无需另外设置背光模组,显示装置更加轻薄。
根据本公开的实施例,显示面板100的透光率不受特别限制。例如,显示面板100的透光率可以为5%-70%。由此,可以进一步提升该显示装置的性能。发明人发现,该显示装置中设置有光学模组200,适用于透光率为5%-70%的显示面板100,在保证正常显示的情况下,同时可以实现摄像功能,无需对显示面板进行特殊设计;在保证显示分辨率的前提下,提升了摄像组件所得到的影像的清晰度和品质。
在一些实施例中,参考图3,光学模组包括聚光元件210。由此,通过聚光元件210可以将光线进行聚焦,以便将光线汇聚到摄像组件300,增大了摄像组件300的光接收面积,提升了所接收的光的光线量和光线强度,提升了摄像组件300所得到的影像的清晰度和品质。
根据本公开的实施例,聚光元件210的具体类型不受特别限制,只需满足能够对透过显示面板的光进行汇聚即可。例如,聚光元件210可以包括凸透镜或者菲涅尔透镜。
根据本公开的实施例,摄像组件300的具体类型不受特别限制,本领域技术人员可以根据实际需求进行选择。例如,摄像组件300可以包括电荷耦合元件(CCD)或者互补金属氧化物半导体(CMOS)。
在一些实施例中,为了进一步提升该显示装置的性能,该显示装置中的光学模组200可以进一步包括折光组件220,即该显示装置的光学模组200可以包括:折光组件220和聚光元件210。
例如,该显示装置中的光学模组200可以包括聚光元件210。如前所述,聚光元件210的具体类型不受特别限制,只需满足能够对透过显示面板100的光进行汇聚即可。例如,根据本公开的实施例,聚光元件210可以包括凸透镜或者菲涅尔透镜。
下面以聚光元件为菲涅尔透镜进行详细说明。
根据本公开的具体实施例,参考图4,聚光元件可以为菲涅尔透镜211。发明人发现,菲涅尔透镜具有面积大、体积小、重量轻、结构紧凑、价格低等优点,同时它拥有良好的聚光性能和成像性能,透过的光线亮度高。并且,菲涅尔透镜一面为光面,可以与显示面板贴合,进一步使显示装置轻薄化。具体地,菲涅尔透镜211靠近显示面板一侧的表面(图4中的左表面)为平面,有利于它与显示面板贴合。如图4所示,可以利用菲涅尔透镜211,将光线从相对较大的区域面积(图4中的左表面)汇聚到相对更小的面积(图4中的右表面)上,由此,通过菲涅尔透镜汇聚的光线能够提升摄像组件所接收的光的面积、光线量和光线强度,提升摄像组件所得到的影像的清晰度和品质,并且菲涅尔透镜汇聚的光线能够保持图像各处亮度的一致,提高整体亮度的均匀性,进一步提升摄像组件所得到的影像的品质。
根据本公开的实施例,参考图4,摄像组件300具有入光面310,摄像组件的入光面310和菲涅尔透镜211平行,具体地,摄像组件的入光面310和菲涅尔透镜211的靠近显示面板一侧的表面平行。摄像组件的入光面310与菲涅尔透镜的光心(如图4中所示出的光心O)之间的距离(如图4中所示出的距离A),满足可令由菲涅尔透镜的出光面10射出的光,基本上全部入射至摄像组件300的入光面310上。需要说明的是,此处的“基本上全部”意图表示:虽然理论上菲涅尔透镜的出光面射出的光都可以全部入射至摄像组件的入光面上,但是,考虑到菲涅尔透镜出射光的分布较复杂,而且考虑到实际加工的工艺误差等因素,菲涅尔透镜的出光面射出的光可能并不是100%地入射至摄像组件的入光面,应该理解,排除这些因素的干扰,菲涅尔透镜的出光面射出的光基本上100%地入射至摄像组件的入光面。由此,摄像组件300可以基本上完全接收由菲涅尔透镜211所汇聚的光线,提升了所接收的光的光线量和光线强度,得到清晰度和品质更加优异的影像。
根据本公开的实施例,当聚光元件为菲涅尔透镜时,菲涅尔透镜在显示面板上的正投影面积大于摄像组件的入光面的面积,并可对透过显示面板的光进行汇聚,摄像组件可以接收被汇聚的光线,进而光的接收面积远远大于没有设置菲涅尔透镜的情况,从而显著提升摄像组件所接收的光的光线量和光线强度,提升了摄像组件所得到的影像的清晰度和品质。也即是说,无需对显示面板100的结构进行改进(例如刻蚀子像素之间的结构形成间隙以增大透光率),进而可以在保证像素密度和显示屏的分辨率的同时,实现屏下摄像。
例如,摄像组件300与光学模组200间隔设置包括摄像组件300与光学模组200间隔预定的距离。例如,为了进一步提升该显示装置的性能,根据本公开的实施例,参考图4,菲涅尔透镜211的焦距为R,摄像组件与菲涅尔透镜的光心(如图4中所示出的光心O)之间的距离(如图4中所示出的距离A)为R±10%R,具体地,摄像组件的入光面310与菲涅尔透镜的光心(如图4中所示出的光心O)之间的距离(如图4中所示出的距离A)为R±10%R。发明人发现,通过设计摄像组件的设置位置,即设计摄像组件与菲涅尔透镜的光心之间的设置距离,透过显示面板的光线经过菲涅尔透镜汇聚后,基本上全部聚焦在摄像组件的入光面上并被摄像组件完全接收,接收光线的面积更大,接收的光线量和光线强度显著提升,并且只需较小的摄像组件或较小面积的摄像组件的入光面,便可使更大面积的光线被接收,大大减小了摄像组件的尺寸并节约了成本。
根据本公开的实施例,菲涅尔透镜211的厚度不受特别限制,本领域技术人员可以根据实际需求进行选择。例如,根据本公开的实施例,菲涅尔透镜的厚度为0.05-2毫米。例如,根据本公开的具体实施例,菲涅尔透镜211的厚度为0.5-0.9毫米。由此,菲涅尔透镜的厚度薄,进一步使显示装置轻薄化,提升该显示装置的性能。根据本公开的实施例,菲涅尔透镜211的透光率不受特别限制,本领域技术人员可以根据实际需求进行选择。例如,根据本公开的实施例,菲涅尔透镜211的透光率≥80%。由此,透过菲涅尔透镜的光线亮度高,可以进一步提升该显示装置的性能。根据本公开的实施例,菲涅尔透镜211的折射率不受特别限制,本领域技术人员可以根据实际需求进行选择。例如,根据本公开的实施例,菲涅尔透镜211的折射率为1.2-1.6。由此,可以进一步提升该显示装置的性能。根据本公开的实施例,形成菲涅尔透镜211的材料 不受特别限制,本领域技术人员可以根据实际需求进行选择。例如,根据本公开的实施例,可以利用聚氯乙烯(PVC)制作得到菲涅尔透镜211。
例如,该显示装置中的光学模组200可以包括折光组件和聚光元件。根据本公开的实施例,参考图5,光学模组200包括折光组件220和聚光元件210时,沿着透过显示面板100的光的传播方向,折光组件220设置在显示面板100以及聚光元件210之间。发明人发现,折光组件220可以将接收的光进行偏折,改变光的方向,再通过聚光元件210将偏折的光进行聚焦,进而使光汇聚到摄像组件300,从而可以减少显示装置的厚度。
如前所述,在不设置折光组件时,摄像组件与菲涅尔透镜的光心之间的距离(如图4中所示出的距离A)满足R±10%R,可保证基本上全部经过菲涅尔透镜汇聚的光被摄像组件300接收。也即是说,此时需要令摄像组件与聚光元件之间预留出一定距离,导致显示装置的厚度增加。通过加设折光组件220,可以改变光线的传播路径,令经过光学模组200的出射光,不再沿着垂直于显示面板100的方向传播。参考图5,摄像组件的入光面310不再平行于显示面板100,而是具有一定角度,在该实施例中,需要预留的摄像组件与聚光元件之间的距离显然小于光线沿垂直于显示面板100传播时所需的距离,进而可以减少显示装置的厚度。
根据本公开的实施例,光学模组200包括折光组件220和聚光元件210,聚光元件210可以为前面所述的聚光元件210,具体的,可以为前面所述的凸透镜或者菲涅尔透镜211,由此,可以具有前面描述的全部特征以及优点,在此不再赘述。更具体的,该显示装置中光学模组200包括菲涅尔透镜211和折光组件220。由此,可以进一步提升该显示装置的性能。
下面以光学模组200包括折光组件220和菲涅尔透镜211为例进行详细说明。
根据本公开的实施例,折光组件220在显示面板100上的正投影的面积大于摄像组件的入光面310的面积。由此,可以提升摄像组件所接收的光的光线量和光线强度,提升了摄像组件所得到的影像的清晰度和品质。
根据本公开的实施例,当光学模组200包括折光组件220和菲涅尔透镜211时,在相同透光率的显示面板后面增加了折光组件和菲涅尔透镜,折光组件和菲涅尔透镜在显示面板上的正投影面积分别独立的大于摄像组件的入光面的面积,折光组件可以将接收的光进行偏折,改变光的方向,再通过菲涅尔透镜将偏折的光进行聚焦,进而 使光汇聚到摄像组件并可对透过显示面板的光进行汇聚,摄像组件可以基本上完全接收被汇聚的光线,进而在相同透光率的显示面板的前提下,光的接收面积远远大于没有设置菲涅尔透镜的情况,并且菲涅尔透镜对光进行汇聚后,显著提升摄像组件所接受的光的光线量和光线强度,提升了摄像组件所得到的影像的清晰度和品质。
根据本公开的实施例,折光组件220的具体类型不受特别限制。例如,根据本公开的实施例,折光组件220包括棱镜或者反射镜组。由此,可以进一步提升该显示装置的性能。发明人发现,棱镜或者反射镜组可以将接收的光进行偏折,改变光的方向,再通过聚光元件将偏折的光进行聚焦,进而使光汇聚到摄像组件。
根据本公开的实施例,摄像组件的入光面310与显示面板100的第一面120可以不平行。即摄像组件300的设置位置可以放到不影响显示且可以基本上全部接收由菲涅尔透镜211的出光面10射出的光的任何位置。例如,摄像组件300沿垂直于显示面板100的第一面120的方向的投影与光学模组200沿垂直于显示面板100的第一面120的方向的投影不重叠,在图示的实施例中,折光组件的设置可以使摄像组件300设置在显示装置的上侧。摄像组件的入光面310可以不平行于显示面板100,而是具有一定角度,例如,在图示的实施例中,摄像组件的入光面310与显示面板100的第一面120成约90°的角度。
如图6所示,通过设置折光组件220,在垂直于显示面板100的方向上,摄像组件300与菲涅尔透镜211的光心O之间的距离(如图6中所示出的距离B)可以小于R,甚至可以小于R-10%R。也就是说,显示装置中的各个组件可以设置得更加紧凑,从而可以进一步减少显示装置的厚度。
需要说明的是,附图中所示出的光学模组中的光学元件的设置位置以及偏转角度仅为示例性的描述,不应理解为对本公开的限制,只需实现光线能够被折光组件220偏折,再通过聚光元件将偏折的光进行聚焦,进而使光汇聚到摄像组件300即可。
综上所述,该显示装置在保证正常显示的情况下,同时可以实现摄像功能。该显示装置中的光学模组可以增大光接收面积,并且对光进行汇聚后,显著提升摄像组件所接收的光的光线量和光线强度,在保证显示装置的分辨率的前提下,提升了摄像组件所得到的影像的清晰度和品质。在根据本公开上述实施例的显示装置中,运用屏下摄像模组技术,既能保证显示装置的正常显示,又能实现显示装置的摄像功能,同时 在不牺牲显示分辨率的前提下,能够通过屏下摄像模组得到高品质的影像,大大提升了具有摄像功能的显示装置的产品竞争力。
以上详细描述了本公开的实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的隔离范围。另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。
在本公开的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种显示装置,包括:
    显示面板,所述显示面板包含显示面和与所述显示面相背的第一面;
    被配置为对透过所述显示面板的光进行汇聚的光学模组,所述光学模组位于所述第一面远离所述显示面的一侧;和
    被配置为接收经过所述光学模组汇聚的光的摄像组件,所述摄像组件位于所述光学模组远离所述第一面的一侧并且与所述光学模组间隔设置,所述摄像组件具有接收所述光的入光面;
    其中,所述光学模组在所述显示面板上的正投影面积大于所述摄像组件的入光面的面积。
  2. 根据权利要求1所述的显示装置,其中,所述光学模组包括聚光元件。
  3. 根据权利要求2所述的显示装置,其中,所述聚光元件为菲涅尔透镜。
  4. 根据权利要求3所述的显示装置,其中,所述摄像组件的入光面和所述菲涅尔透镜平行。
  5. 根据权利要求4所述的显示装置,其中,所述菲涅尔透镜靠近所述显示面板一侧的面为平面,所述摄像组件的入光面和所述平面平行。
  6. 根据权利要求3-5中任一项所述的显示装置,其中,所述摄像组件的入光面与所述菲涅尔透镜的光心之间的距离,使得由所述菲涅尔透镜的出光面射出的光,基本上全部入射至所述摄像组件的入光面上。
  7. 根据权利要求3-6中任一项所述的显示装置,其中,所述菲涅尔透镜的焦距为R,所述摄像组件的入光面与所述菲涅尔透镜的光心之间的距离为R±10%R。
  8. 根据权利要求1-7中任一项所述的显示装置,其中,所述光学模组和所述摄像组件中每一个沿垂直于所述显示面板的第一面的方向的投影落入所述显示面板的显示区中。
  9. 根据权利要求1-8中任一项所述的显示装置,其中,所述摄像组件沿垂直于所述显示面板的第一面的方向的投影落入所述光学模组沿垂直于所述显示面板的第一面的方向的投影内。
  10. 根据权利要求2-7中任一项所述的显示装置,其中,所述光学模组进一步包括:
    折光组件,所述折光组件位于所述显示面板与所述聚光元件之间。
  11. 根据权利要求10所述的显示装置,其中,所述折光组件包括棱镜或反射镜组。
  12. 根据权利要求10或11所述的显示装置,其中,所述折光组件在所述显示面板上的正投影面积大于所述摄像组件的入光面的面积。
  13. 根据权利要求10-12中任一项所述的显示装置,其中,所述摄像组件的入光面与所述显示面板的第一面不平行。
  14. 根据权利要求10-13中任一项所述的显示装置,其中,所述聚光元件为菲涅尔透镜,所述菲涅尔透镜的焦距为R,所述摄像组件的入光面与所述菲涅尔透镜的光心之间在垂直于所述显示面板的第一面的方向上的距离小于R。
  15. 根据权利要求14所述的显示装置,其中,所述摄像组件的入光面与所述菲涅尔透镜的光心之间在垂直于所述显示面板的第一面的方向上的距离小于0.9R。
  16. 根据权利要求10-15中任一项所述的显示装置,其中,所述摄像组件沿垂直于所述显示面板的第一面的方向的投影与所述光学模组沿垂直于所述显示面板的第一面的方向的投影不重叠。
PCT/CN2018/118904 2018-04-28 2018-12-03 显示装置 WO2019205636A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/472,620 US11018207B2 (en) 2018-04-28 2018-12-03 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820640331.5U CN208027665U (zh) 2018-04-28 2018-04-28 显示装置
CN201820640331.5 2018-04-28

Publications (1)

Publication Number Publication Date
WO2019205636A1 true WO2019205636A1 (zh) 2019-10-31

Family

ID=63910598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118904 WO2019205636A1 (zh) 2018-04-28 2018-12-03 显示装置

Country Status (3)

Country Link
US (1) US11018207B2 (zh)
CN (1) CN208027665U (zh)
WO (1) WO2019205636A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208027665U (zh) 2018-04-28 2018-10-30 京东方科技集团股份有限公司 显示装置
CN109545099B (zh) * 2018-11-22 2020-06-16 武汉华星光电技术有限公司 一种液晶显示面板及其终端装置
US11030938B2 (en) * 2018-12-28 2021-06-08 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and display device
CN111508993B (zh) * 2019-01-31 2022-10-04 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其制作方法
CN109951619A (zh) * 2019-02-26 2019-06-28 武汉华星光电半导体显示技术有限公司 显示装置
CN110610966B (zh) * 2019-08-26 2022-03-29 武汉华星光电半导体显示技术有限公司 显示装置
CN111787137B (zh) * 2020-05-28 2021-07-23 厦门天马微电子有限公司 显示装置
CN112002240A (zh) * 2020-09-11 2020-11-27 昆山工研院新型平板显示技术中心有限公司 一种显示面板
CN112767832B (zh) * 2020-12-22 2023-01-10 武汉天马微电子有限公司 一种显示装置
CN112786809A (zh) * 2021-01-12 2021-05-11 武汉华星光电半导体显示技术有限公司 显示装置及显示装置的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230797A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 表示装置、および電子機器
CN102136225A (zh) * 2010-01-22 2011-07-27 索尼公司 具有摄像装置的图像显示装置
CN106094990A (zh) * 2016-06-12 2016-11-09 张帆 屏占比最大化的电子设备及其使用方法
CN107395809A (zh) * 2017-08-15 2017-11-24 维沃移动通信有限公司 一种光线传输装置和移动终端
CN107515435A (zh) * 2017-09-11 2017-12-26 京东方科技集团股份有限公司 显示面板和显示装置
CN107592444A (zh) * 2017-10-30 2018-01-16 北京京东方显示技术有限公司 一种显示面板和显示装置
CN107743198A (zh) * 2017-10-27 2018-02-27 努比亚技术有限公司 一种拍照方法、终端及存储介质
CN208027665U (zh) * 2018-04-28 2018-10-30 京东方科技集团股份有限公司 显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW510131B (en) * 2000-05-24 2002-11-11 Chi Mei Electronic Corp Image input/output device
KR102245771B1 (ko) 2014-07-29 2021-04-28 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102435391B1 (ko) 2015-09-25 2022-08-23 삼성디스플레이 주식회사 표시 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230797A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 表示装置、および電子機器
CN102136225A (zh) * 2010-01-22 2011-07-27 索尼公司 具有摄像装置的图像显示装置
CN106094990A (zh) * 2016-06-12 2016-11-09 张帆 屏占比最大化的电子设备及其使用方法
CN107395809A (zh) * 2017-08-15 2017-11-24 维沃移动通信有限公司 一种光线传输装置和移动终端
CN107515435A (zh) * 2017-09-11 2017-12-26 京东方科技集团股份有限公司 显示面板和显示装置
CN107743198A (zh) * 2017-10-27 2018-02-27 努比亚技术有限公司 一种拍照方法、终端及存储介质
CN107592444A (zh) * 2017-10-30 2018-01-16 北京京东方显示技术有限公司 一种显示面板和显示装置
CN208027665U (zh) * 2018-04-28 2018-10-30 京东方科技集团股份有限公司 显示装置

Also Published As

Publication number Publication date
US20200321410A1 (en) 2020-10-08
CN208027665U (zh) 2018-10-30
US11018207B2 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2019205636A1 (zh) 显示装置
JP4728793B2 (ja) ディスプレイ装置およびその制御方法
CN111726502B (zh) 电子设备及显示装置
WO2019201090A1 (zh) 显示屏和智能设备
US11624947B2 (en) Electronic device and control method thereof
WO2011108139A1 (ja) テレビ会議システム
CN1573531A (zh) 带摄像装置的显示装置
JP7375157B2 (ja) レンズアセンブリ、カメラ及び電子装置
US11249340B2 (en) Display substrate, display panel and display device
WO2018161563A1 (zh) 显示面板、显示装置及其获取图像的方法
WO2019028970A1 (zh) 光学系统、放大影像装置、虚拟现实眼镜及增强现实眼镜
US10133117B2 (en) Display device and manufacturing method thereof
WO2021052190A1 (zh) 电子设备
EP3816727A1 (en) Screen module and electronic device
WO2015184714A1 (zh) 高清裸眼便携式立体影视播放器光路布局结构及光路线路
US11546495B2 (en) Camera module with a reflector mounted in a display device
JPH1070713A (ja) 透過型撮像装置および透過型撮像装置一体型表示装置
WO2022143682A1 (zh) 电子设备及其摄像模组
WO2021258921A1 (zh) 一种显示屏下摄像装置
CN114401331A (zh) 显示模组及电子设备
CN112839117B (zh) 电子设备
WO2017088205A1 (zh) 一种彩膜基板以及宽视角透反式液晶显示装置
US20110299159A1 (en) Shutter eyeglasses
RU2790958C1 (ru) Узел объектива, камера и электронное устройство
TWI750093B (zh) 顯示設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916825

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18916825

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916825

Country of ref document: EP

Kind code of ref document: A1