WO2019205501A1 - 一种多稳态电响应智能窗及其制备方法 - Google Patents

一种多稳态电响应智能窗及其制备方法 Download PDF

Info

Publication number
WO2019205501A1
WO2019205501A1 PCT/CN2018/109635 CN2018109635W WO2019205501A1 WO 2019205501 A1 WO2019205501 A1 WO 2019205501A1 CN 2018109635 W CN2018109635 W CN 2018109635W WO 2019205501 A1 WO2019205501 A1 WO 2019205501A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
positive
cholesteric liquid
crystal layer
conductive substrate
Prior art date
Application number
PCT/CN2018/109635
Other languages
English (en)
French (fr)
Inventor
周国富
胡小文
赵威
孙海涛
Original Assignee
华南师范大学
深圳市国华光电科技有限公司
深圳市国华光电研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南师范大学, 深圳市国华光电科技有限公司, 深圳市国华光电研究院 filed Critical 华南师范大学
Priority to US16/498,755 priority Critical patent/US11067866B2/en
Publication of WO2019205501A1 publication Critical patent/WO2019205501A1/zh
Priority to US17/304,135 priority patent/US11209711B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Definitions

  • the invention relates to the field of building home life, in particular to a multi-stable electrical response smart window and a preparation method thereof.
  • the privacy protection window based on liquid crystal material can adjust the reflection, scattering and transmission of light according to people's needs, thus balancing the protection of privacy and lighting requirements, and can obtain rich colors by doping dyes and the like, and doping colors with dyes.
  • smart windows control the realignment of dye molecules by controlling the rotation of liquid crystal molecules by external voltage to achieve the transmission, scattering or absorption of sunlight to meet people's needs.
  • the dye molecules will undergo fading changes under the action of ultraviolet light, which affects the stability of the dye-doped smart window. Since the dye molecules cannot reach the ideal orientation state, the dye-doped smart window still has absorption in the transparent state. Behavior, so that the smart window can not reach the state of colorless and transparent.
  • the technical problem to be solved by the present invention is to provide a multi-stable electrical response smart window and a preparation method thereof.
  • the invention provides a multi-stable electrical response intelligent window, comprising a transparent conductive substrate arranged in sequence, a parallel alignment layer, a positive polymer stable cholesteric liquid crystal layer, a positive cholesteric liquid crystal layer and a light transmission layer.
  • Conductive substrate two.
  • the polymer exists in the form of a polymer network structure in the liquid crystal, which can greatly reduce the interaction between the polymer and the liquid crystal, wherein the liquid crystal is divided into a positive liquid crystal and a negative liquid crystal.
  • the polymer-stabilized cholesteric liquid crystal using positive liquid crystal in the present invention is named as a positive polymer-stabilized cholesteric liquid crystal.
  • the positive cholesteric liquid crystal in the present invention refers to a cholesteric liquid crystal formed of a positive liquid crystal.
  • the positive liquid crystal used in the positive cholesteric liquid crystal layer is the same as the positive liquid crystal used in the positive polymer stabilizing cholesteric liquid crystal layer.
  • the use of the same positive liquid crystal can prevent the substances in the two-layer structure from affecting the performance of the smart window due to mutual mixing.
  • the chiral dopant used in the positive cholesteric liquid crystal layer is the same as the chiral dopant used in the positive polymer stabilizing cholesteric liquid crystal layer.
  • the use of the same chiral dopant can avoid the influence of the substances in the two-layer structure on the performance of the smart window due to the mutual mixing and chiral cancellation.
  • the positive polymer stabilizes the cholesteric liquid crystal layer from 2% to 10% of the polymerized monomer, 0.1% to 2% of the photoinitiator, 8% to 20% of the chiral dopant, 68
  • the raw materials of % to 89.9% of positive liquid crystals are obtained by photocuring.
  • the positive cholesteric liquid crystal layer comprises 8% to 20% of a chiral dopant and 80% to 92% of a positive liquid crystal.
  • the polymerizable monomer may be HCM008, HCM009 or the like; the photoinitiator may be Irgacure-651, Irgacure-819, etc.; the chiral dopant may be S1011, R811, etc.; and the positive liquid crystal may be HTW138200-100, E7 or the like.
  • the positive polymer stabilizes the cholesteric liquid crystal layer to have a thickness of 5 to 50 ⁇ m.
  • the positive cholesteric liquid crystal layer has a thickness of 5 to 50 ⁇ m.
  • the power transmission component is further disposed, and the transparent conductive substrate 1 and the transparent conductive substrate 2 are electrically connected to the two poles of the power component.
  • the invention also provides a preparation method of the above multi-stable electrical response intelligent window, comprising the following steps:
  • the light-transmissive substrate is prepared with a positive polymer-stabilized cholesteric liquid crystal layer on one side and opposite to the light-transmitting conductive substrate to prepare a liquid crystal cell;
  • the liquid crystal cell is filled with a positive cholesteric liquid crystal to form a positive cholesteric liquid crystal layer.
  • the invention provides a multi-stable electrical response intelligent window.
  • the positive polymer stabilizes the liquid crystal molecules of the cholesteric liquid crystal layer and the positive cholesteric liquid crystal layer in parallel with the cholesteric of the transparent conductive substrate.
  • the phase arrangement is that the smart window is in a colored transparent state; when the voltage is applied, the liquid crystal molecules of the positive cholesteric liquid crystal layer are rearranged into a focal conic state, and the positive polymer stabilizes the liquid crystal in the cholesteric liquid crystal layer. The molecules remain in the original orientation due to the limitation of the polymer network.
  • the smart window is colored and blurred; when the access voltage is further increased, the positive polymer stabilizes the cholesteric liquid crystal layer and the positive cholesteric liquid crystal layer.
  • the liquid crystal molecules are in a focal conic state arrangement.
  • the smart window is in a colorless fuzzy state.
  • the positive polymer stabilizes the liquid crystal molecules of the cholesteric liquid crystal layer and the positive cholesteric liquid crystal layer.
  • the light-emitting conductive substrate is arranged, and the smart window is in a colorless transparent state.
  • the technical solution of the present invention can obtain a stable scattering state when no power is applied without using a dual-frequency liquid crystal and
  • the multi-stable electrical response smart window of the present invention has a variety of light transmission states, can meet various needs in people's work and life, is simple to make, rich in modes, energy-saving and environmentally friendly, in the window Glass, home glass windows, glass curtain walls and other fields have a good application prospect.
  • FIG. 1 is a schematic cross-sectional view of a multi-stable electrical response smart window of the present invention
  • FIG. 2 is a schematic diagram of a multi-stable electrical response smart window of the present invention when no voltage is applied;
  • the embodiment provides a multi-stable electrical response smart window, which comprises a light-transmissive conductive substrate 10, a parallel alignment layer 2, a positive polymer stabilized cholesteric liquid crystal layer 3, and a positive polarity.
  • the cholesteric liquid crystal layer 4 and the light-transmitting conductive substrate 211, the transparent conductive substrate 10 and the transparent conductive substrate 211 are packaged into a liquid crystal cell by UV glue doped with spacers 5, and are electrically connected to the power source respectively.
  • the liquid crystal molecules of the positive polymer stabilizing cholesteric liquid crystal layer 3 and the positive cholesteric liquid crystal layer 4 are arranged parallel to the cholesteric phase of the transparent conductive substrate.
  • the smart window can only reflect a part of visible light, and has no effect on the light of other bands, and it is colored and transparent.
  • the liquid crystal molecules of the positive cholesteric liquid crystal layer 4 are changed from the orientation parallel to the transparent conductive substrate to the focal conic state orientation, and the positive polymer stabilizes the cholesteric phase.
  • the liquid crystal molecules in the liquid crystal layer 3 are still arranged parallel to the cholesteric phase of the light-transmitting conductive substrate due to the presence of the polymer network 6, and the smart window is colored and blurred, and the smart window can be kept in the colored state after the external voltage is turned off. Fuzzy state.
  • the positive polymer stabilizes the liquid crystal molecules in the cholesteric liquid crystal layer 3 into a focal conic phase arrangement, and the smart window is present. Color blur state.
  • the access voltage is 130V
  • the liquid crystal molecules of the positive polymer stabilized cholesteric liquid crystal layer 3 and the positive cholesteric liquid crystal layer 4 are aligned perpendicular to the transparent conductive substrate.
  • the smart window can pass through the visible light, it shows a colorless transparent state, and after the external voltage is turned off, the smart window can return to the colored transparent state.
  • the embodiment further provides a method for preparing the multi-stable electrical response smart window, which comprises the following steps:
  • HTW138200-100 was placed in a brown bottle, and after adding 1 mL of dichloromethane to a brown bottle, it was stirred at normal temperature for 30 min, and then heated at 60 ° C for 8 h to completely evaporate dichloromethane to prepare a mixture A;
  • the left-handed chiral dopant S1011, 91.1 parts by mass of the positive liquid crystal HTW138200-100 was placed in a brown bottle, and 1 mL of dichloromethane was added to the brown bottle, and then stirred at normal temperature for 30 min, and then heated at 60 ° C for 8 h.
  • the dichloromethane was completely evaporated to make a mixture B.
  • a light-transmissive conductive substrate such as IT0 conductive glass
  • the mixture A, the drawdown bar and the light-transmissive conductive substrate to which the parallel alignment layer is attached are heated to 45 ° C, and the mixture is coated on the light-transmissive conductive substrate with a side of the parallel alignment layer by a doctor blade.
  • the stripped mixture A had a thickness of 8 ⁇ m and was then cured by a 200 W power ultraviolet light source for 10 min to form a polymer-stabilized cholesteric liquid crystal layer.
  • Another clean light-transmissive conductive substrate (such as ITO conductive glass) is oxidized by ozone, and is coated with a UV-adhesive doped with a 20 ⁇ m diameter spacer and the above-mentioned substrate with a polymer network stabilized cholesteric liquid crystal layer.
  • a liquid crystal cell in which a polymer network stabilizes the cholesteric liquid crystal layer between the two substrates and the mixture B is filled into the above liquid crystal cell on a hot stage at 90 ° C, and naturally cools to room temperature to make a more stable electricity. Respond to a color smart window.
  • HTW138200-100 is a mixed liquid crystal (purchased from Jiangsu Hecheng Display Technology Co., Ltd.), a left-handed chiral dopant S1011 (purchased from Beijing 800 million Time Air Liquid Crystal Technology Co., Ltd.), and its chemical structural formula is:
  • Polymerizable achiral liquid crystal monomer HCM009 purchasedd from Jiangsu Hecheng Display Technology Co., Ltd.
  • the photoinitiator Irgacure-651 (purchased from Seanstone) has a chemical structural formula of:
  • Right-handed chiral dopant R811 80 parts by mass of positive liquid crystal E7 was placed in a brown bottle, 1 mL of dichloromethane was added to the brown bottle, stirred at room temperature for 30 min, then heated at 60 ° C for 8 h, Methyl chloride was completely evaporated to make a mixture B.
  • a light-transmissive conductive substrate (such as ITO conductive glass) is taken, washed, ozone-oxidized, spin-coated, and rubbed to form a light-transmissive conductive substrate to which a parallel alignment layer is attached.
  • the mixture A, the drawdown bar and the light-transmissive conductive substrate to which the parallel alignment layer is attached are heated to 45 ° C, and the mixture is coated on the light-transmissive conductive substrate with a side of the parallel alignment layer by a doctor blade.
  • the thickness of the bladed mixture A was 50 ⁇ rn, and then cured by a UV light source of 200 W for 10 min to form a polymer-stabilized cholesteric liquid crystal layer.
  • Another clean light-transmissive conductive substrate (such as ITO conductive glass) is oxidized by ozone, and is coated with a UV-adhesive doped with a 60 ⁇ m diameter spacer and the above-mentioned substrate with a polymer network stabilized cholesteric liquid crystal layer.
  • a liquid crystal cell in which a polymer network stabilizes the cholesteric liquid crystal layer between the two substrates and the mixture B is filled into the above liquid crystal cell on a hot stage at 90 ° C, and naturally cools to room temperature to make a more stable electricity. Respond to a color smart window.
  • a light-transmissive conductive substrate (such as ITO conductive glass) is taken, washed, ozone-oxidized, spin-coated, and rubbed to form a light-transmissive conductive substrate to which a parallel alignment layer is attached.
  • the mixture A, the drawdown bar and the light-transmissive conductive substrate to which the parallel alignment layer is attached are heated to 45 ° C, and the mixture is coated on the light-transmissive conductive substrate with a side of the parallel alignment layer by a doctor blade.
  • the thickness of the bladed mixture A was 30 ⁇ m, and then cured by a UV light source of 200 W for 10 min to form a polymer-stabilized cholesteric liquid crystal layer.
  • Another clean light-transmissive conductive substrate (such as ITO conductive glass) is oxidized by ozone, and is coated with a UV-adhesive doped with a 50 ⁇ m diameter spacer and the above-mentioned substrate with a polymer network stabilized cholesteric liquid crystal layer.
  • a liquid crystal cell in which a polymer network stabilizes the cholesteric liquid crystal layer between the two substrates and the mixture B is filled into the above liquid crystal cell on a hot stage at 90 ° C, and naturally cools to room temperature to make a more stable electricity. Respond to a color smart window.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Liquid Crystal (AREA)

Abstract

一种多稳态电响应智能窗及其制备方法,多稳态电响应智能窗包括依次层叠设置的透光导电基板一(10)、平行取向层(2)、正性聚合物稳定胆甾相液晶层(3)、正性胆甾相液晶层(4)和透光导电基板二(11)。多稳态电响应智能窗通过改变接入电压的大小实现有色透明、有色模糊、无色模糊和无色透明状态等多样化的透光状态,从而满足人们工作生活中的各种需求,具有制作简单,模式丰富,节能环保的特点,在车窗玻璃,家居玻璃窗,玻璃幕墙等领域有着较好的应用前景。

Description

一种多稳态电响应智能窗及其制备方法 技术领域
本发明涉及建筑家居生活领域,尤其是涉及一种多稳态电响应智能窗及其制备方法。
背景技术
基于液晶材料的隐私保护智能窗可以根据人们的需要调节光的反射,散射和透射,从而平衡保护隐私和采光的需求,且可以通过掺杂染料等物质获得较丰富的色彩,以染料掺杂彩色智能窗为例,通过外接电压控制液晶分子的转动来带动染料分子的重新排列,实现对阳光的透过、散射或吸收,来满足人们的需求。
但染料分子在紫外光的作用下会产生褪色等变化,影响染料掺杂智能窗的稳定性;由于染料分子无法达到理想的取向状态,因此染料掺杂智能窗在透明状态时染料分子仍然存在吸收行为,使智能窗无法达到无色透明的状态。
发明内容
针对现有技术的不足,本发明所要解决的技术问题是提供一种多稳态电响应智能窗及其制备方法。
本发明所采取的技术方案是:
本发明提供了一种多稳态电响应智能窗,包括依次层叠设置的透光导电基板一、平行取向层、正性聚合物稳定胆甾相液晶层、正性胆甾相液晶层和透光导电基板二。
聚合物稳定胆甾相液晶(PolymerStabilized CholestericTexture,PSCT)中聚合物在液晶中以聚合物网络结构的形式存在,能够大大降低聚合物和液晶之间的相互作用,其中液晶分为正性液晶和负性液晶两大类,本发明中使用正性液晶的聚合物稳定胆甾相液晶命名为正性聚合物稳定胆甾相液晶。
本发明中正性胆甾相液晶指的是由正性液晶形成的胆甾相液晶。
优选地,所述正性胆甾相液晶层使用的正性液晶与正性聚合物稳定胆甾相液晶层使用的正性液晶相同。使用相同的正性液晶能够避免两层结构中的物质由于相互混合而对智能窗的性能造成影响。
优选地,所述正性胆甾相液晶层使用的手性掺杂剂与正性聚合物稳定胆甾相液晶层使用的手性掺杂剂手性相同。使用手性相同的掺杂剂能够避免两层结构中的物质由于相互混合产生手性相消而对智能窗的性能造成影响。
优选地,所述正性聚合物稳定胆甾相液晶层由包括2%~10%的聚合单体、0.1%~2%的光引发剂、8%~20%的手性掺杂剂、68%~89.9%的正性液晶的原料经光固化制得。
优选地,所述正性胆甾相液晶层包括8%~20%的手性掺杂剂和80%~92%的正性液晶。
其中,聚合单体可以是HCM008、HCM009等;光引发剂可以是Irgacure-651、Irgacure-819等;手性掺杂剂可以是S1011、R811等;正性液晶可以是HTW138200-100、E7等。
优选地,所述正性聚合物稳定胆甾相液晶层的厚度为5~50μm。
优选地,所述正性胆甾相液晶层的厚度为5~50μm。
优选地,还包括电源组件,所述透光导电基板一和所述透光导电基板二分别与所述电源组件的两极电性连接。
本发明还提供一种上述的多稳态电响应智能窗的制备方法,包括以下步骤:
取或制备透光导电基板一,在所述透光导电基板一的表面制备正性聚合物稳定胆甾相液晶层;
将透光基板一制备有正性聚合物稳定胆甾相液晶层的一侧与透光导电基板二相对设置,制备成液晶盒;
在所述液晶盒中填充正性胆甾相液晶,以形成正性胆甾相液晶层。
本发明的有益效果是:
本发明提供一种多稳态电响应智能窗,在未接入电压时,正性聚合物稳定胆甾相液晶层和正性胆甾相液晶层的液晶分子呈平行于透光导电基板的胆甾相排列,此时智能窗为有色透明状态;当接入电压时,正性胆甾相液晶层的液晶分子会重新排列为焦锥态,而正性聚合物稳定胆甾相液晶层中的液晶分子由于受到聚合物网络的限制仍然保持原取向排列,此时智能窗为有色模糊状态;当进一步增大接入电压时,正性聚合物稳定胆甾相液晶层和正性胆甾相液晶层的液晶分子均呈现焦锥态排列,此时智能窗为无色模糊状态;当接入的电压足够大时,正性聚合物稳定胆甾相液晶层和正性胆甾相液晶层的液晶分子均垂直于透光导电基板排列,此时智能窗为无色透明状态。相较于单独使用胆甾相液晶层和单独使用聚合物稳定胆甾相液晶层的技术方 案,本发明的技术方案能够在不使用双频液晶的情况下获得不加电时稳定的散射状态并且可以回复到初始状态,其次本发明的多稳态电响应智能窗具有多样化的透光状态,能够满足人们工作生活中的各种需求,制作简单,模式丰富,节能环保的特点,在车窗玻璃,家居玻璃窗,玻璃幕墙等领域有着较好的应用前景。
附图说明
图1为本发明的多稳态电响应智能窗的截面示意图;
图2为未接入电压时,本发明的多稳态电响应智能窗的示意图;
图3为接入电压U=22v时本发明的多稳态电响应智能窗的示意图;
图4为接入电压U=30v时本发明的多稳态电响应智能窗的示意图;
图5为接入电压U=130v时本发明的多稳态电响应智能窗的示意图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
参见图1,本实施例提供了一种多稳态电响应智能窗,包括依次层叠设置的透光导电基板一10、平行取向层2、正性聚合物稳定胆甾相液晶层3、正性胆甾相液晶层4和透光导电基板二11,透光导电基板一10和透光导电基板二11通过掺杂有间隔子5的UV胶封装成液 晶盒,并分别与电源电性连接。
参见图2,在接入电压U=0V时,正性聚合物稳定胆甾相液晶层3和正性胆甾相液晶层4的液晶分子呈平行于透光导电基板的胆甾相排列,此时智能窗只能反射一部分可见光,对其他波段的光无影响,呈有色透明状态。
参见图2,在接入电压U=22v时,正性胆甾相液晶层4的液晶分子由原来平行于透光导电基板的取向转变为焦锥态取向,而正性聚合物稳定胆甾相液晶层3中的液晶分子由于聚合物网络6的存在仍然维持平行于透光导电基板的胆甾相排列,此时智能窗呈有色模糊状态,并且关闭外接电压后,该智能窗能够保持在有色模糊状态。
参见图3,在接入电压U=30V时,随着接入电压的增大,正性聚合物稳定胆甾相液晶层3中的液晶分子转变成焦锥相排列,此时智能窗呈无色模糊状态。
参见图4,当进一步加大加入电压,接入电压=130V时,正性聚合物稳定胆甾相液晶层3和正性胆甾相液晶层4的液晶分子均垂直于透光导电基板排列,此时智能窗能够透过可见光,呈现无色透明状态,并且关闭外接电压后,智能窗能够回复至有色透明状态。
本实施例还提供一种上述多稳态电响应智能窗的制备方法,包括以下步骤:
在黄光环境下,取4.5质量份的非手性可聚合单体HCM009,8.48质量份的左旋手性掺杂剂S1011,0.2质量份的光引发剂Irgacure-651,86.82质量份的正性液晶HTW138200-100置于棕色瓶中,向棕色瓶中 加入1mL二氯甲烷后,在常温下搅拌30min,然后在60℃下加热8h,将二氯甲烷完全蒸发,制成混合物A;取8.9质量份的左旋手性掺杂剂S1011,91.1质量份的正性液晶HTW138200-100置于棕色瓶中,向棕色瓶中加入1mL二氯甲烷后,在常温下搅拌30min,然后在60℃下加热8h,将二氯甲烷完全蒸发,制成混合物B。
取一块透光导电基板(如IT0导电玻璃),经过清洗,臭氧氧化,旋涂,摩擦后制成附着有平行取向层的透光导电基板待用。在黄光环境下,取混合物A,刮涂棒和附着有平行取向层的透光导电基板加热到45℃,利用刮涂棒在透光导电基板上覆有平行取向层的一面刮涂混合物A,刮涂的混合物A的厚度为8μm,然后利用200W功率的紫外光光源固化10min形成聚合物稳定胆甾相液晶层。另取一块干净的透光导电基板(如ITO导电玻璃),经臭氧氧化后,利用掺杂有20μm直径间隔子的UV胶与上述带有聚合物网络稳定胆甾相液晶层的基板粘合封装制成液晶盒,其中聚合物网络稳定胆甾相液晶层在两块基板之间,在90℃的热台上将混合物B填充到上述液晶盒中,自然降温到室温,制得多稳态电响应彩色智能窗。
上述化合物中,HTW138200-100为混合液晶(购于江苏和成显示科技股份有限公司),左旋手性掺杂剂S1011(购于北京八亿时空液晶科技股份有限公司),其化学结构式为:
Figure PCTCN2018109635-appb-000001
可聚合非手性液晶单体HCM009(购于江苏和成显示科技股份有限公司),其化学结构式为:
Figure PCTCN2018109635-appb-000002
光引发剂Irgacure-651(购于希恩思),其化学结构式为:
Figure PCTCN2018109635-appb-000003
实施例2
在黄光环境下,取10质量份的非手性可聚合单体HCM009,20质量份的右旋手性掺杂剂R811,2质量份的光引发剂Irgacure-819,68质量份的正性液晶E7置于棕色瓶中,向棕色瓶中加入1mL二氯甲烷后,在常温下搅拌30min,然后在60℃下加热8h,将二氯甲烷完全蒸发,制成混合物A;取20质量份的右旋手性掺杂剂R811,80质量份的正性液晶E7置于棕色瓶中,向棕色瓶中加入1mL二氯甲烷后,在常温下搅拌30min,然后在60℃下加热8h,将二氯甲烷完全蒸发,制成混合物B。
取一块透光导电基板(如ITO导电玻璃),经过清洗,臭氧氧化,旋涂,摩擦后制成附着有平行取向层的透光导电基板待用。在黄光环境下,取混合物A,刮涂棒和附着有平行取向层的透光导电基板加热到45℃,利用刮涂棒在透光导电基板上覆有平行取向层的一面刮涂混合物A,刮涂的混合物A的厚度为50μrn,然后利用200W功率的紫外光光源固化10min形成聚合物稳定胆甾相液晶层。另取一块干净的透光导电基板(如ITO导电玻璃),经臭氧氧化后,利用掺杂有60μm直径间隔子的UV胶与上述带有聚合物网络稳定胆甾相液晶层的基板粘合封装制成液晶盒,其中聚合物网络稳定胆甾相液晶层在两块基板之间,在90℃的热台上将混合物B填充到上述液晶盒中,自然降温到室温,制得多稳态电响应彩色智能窗。
实施例3
在黄光环境下,取2质量份的非手性可聚合单体HCM009,8质量份的右旋手性掺杂剂R811,1质量份的光引发剂Irgacure-819,89质量份的正性液晶E7置于棕色瓶中,向棕色瓶中加入1mL二氯甲烷后,在常温下搅拌30min,然后在60℃下加热8h,将二氯甲烷完全蒸发,制成混合物A;取8质量份的右旋手性掺杂剂R811,92质量份的正性液晶E7置于棕色瓶中,向棕色瓶中加入1mL二氯甲烷后,在常温下搅拌30min,然后在60℃下加热8h,将二氯甲烷完全蒸发,制成混合物B。
取一块透光导电基板(如ITO导电玻璃),经过清洗,臭氧氧化,旋涂,摩擦后制成附着有平行取向层的透光导电基板待用。在黄光环 境下,取混合物A,刮涂棒和附着有平行取向层的透光导电基板加热到45℃,利用刮涂棒在透光导电基板上覆有平行取向层的一面刮涂混合物A,刮涂的混合物A的厚度为30μm,然后利用200W功率的紫外光光源固化10min形成聚合物稳定胆甾相液晶层。另取一块干净的透光导电基板(如ITO导电玻璃),经臭氧氧化后,利用掺杂有50μm直径间隔子的UV胶与上述带有聚合物网络稳定胆甾相液晶层的基板粘合封装制成液晶盒,其中聚合物网络稳定胆甾相液晶层在两块基板之间,在90℃的热台上将混合物B填充到上述液晶盒中,自然降温到室温,制得多稳态电响应彩色智能窗。

Claims (9)

  1. 一种多稳态电响应智能窗,其特征在于,包括依次层叠设置的透光导电基板一、平行取向层、正性聚合物稳定胆甾相液晶层、正性胆甾相液晶层和透光导电基板二。
  2. 根据权利要求1所述的多稳态电响应智能窗,其特征在于,所述正性胆甾相液晶层使用的正性液晶与正性聚合物稳定胆甾相液晶层使用的正性液晶相同。
  3. 根据权利要求1所述的多稳态电响应智能窗,其特征在于,所述正性胆甾相液晶层使用的手性掺杂剂与正性聚合物稳定胆甾相液晶层使用的手性掺杂剂手性相同。
  4. 根据权利要求1-3任一项所述的多稳态电响应智能窗,其特征在于,所述正性聚合物稳定胆甾相液晶层由包括2%~10%的聚合单体、0.1%~2%的光引发剂、8%~20%的手性掺杂剂、68%~89.9%的正性液晶的原料经光固化制得。
  5. 根据权利要求1-3任一项所述的多稳态电响应智能窗,其特征在于,所述正性胆甾相液晶层包括8%~20%的手性掺杂剂和80%~92%的正性液晶。
  6. 根据权利要求1所述的多稳态电响应智能窗,其特征在于,所述正性聚合物稳定胆甾相液晶层的厚度为5~50μm。
  7. 根据权利要求1所述的多稳态电响应智能窗,其特征在于,所述正性胆甾相液晶层的厚度为5~50μm。
  8. 根据权利要求1所述的多稳态电响应智能窗,其特征在于,还包 括电源组件,所述透光导电基板一和所述透光导电基板二分别与所述电源组件的两极电性连接。
  9. 权利要求1-8任一项所述的多稳态电响应智能窗的制备方法,其特征在于,包括以下步骤:
    取或制备透光导电基板一,在所述透光导电基板一的表面制备正性聚合物稳定胆甾相液晶层;
    将透光基板一制备有正性聚合物稳定胆甾相液晶层的一侧与透光导电基板二相对设置,制备成液晶盒;
    在所述液晶盒中填充正性胆甾相液晶,以形成正性胆甾相液晶层。
PCT/CN2018/109635 2018-04-28 2018-10-10 一种多稳态电响应智能窗及其制备方法 WO2019205501A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/498,755 US11067866B2 (en) 2018-04-28 2018-10-10 Multi-stable electroresponsive smart window and preparation method thereof
US17/304,135 US11209711B2 (en) 2018-04-28 2021-06-15 Method for preparing multi-stable electroresponsive smart window

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810399895.9 2018-04-28
CN201810399895.9A CN108415204B (zh) 2018-04-28 2018-04-28 一种多稳态电响应智能窗及其制备方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/498,755 A-371-Of-International US11067866B2 (en) 2018-04-28 2018-10-10 Multi-stable electroresponsive smart window and preparation method thereof
US17/304,135 Continuation US11209711B2 (en) 2018-04-28 2021-06-15 Method for preparing multi-stable electroresponsive smart window

Publications (1)

Publication Number Publication Date
WO2019205501A1 true WO2019205501A1 (zh) 2019-10-31

Family

ID=63137201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109635 WO2019205501A1 (zh) 2018-04-28 2018-10-10 一种多稳态电响应智能窗及其制备方法

Country Status (3)

Country Link
US (2) US11067866B2 (zh)
CN (1) CN108415204B (zh)
WO (1) WO2019205501A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415204B (zh) * 2018-04-28 2024-02-13 华南师范大学 一种多稳态电响应智能窗及其制备方法
US20220107522A1 (en) * 2019-01-22 2022-04-07 Nitto Denko Corporation Polymer networked liquid crystal smart window device and methods of making the same
CN109917594B (zh) * 2019-03-19 2022-06-10 华南师范大学 一种隐私保护红外反射智能窗及其制备方法
CN110082936B (zh) * 2019-05-08 2020-04-21 浙江晶鲸科技有限公司 基于液晶光阀的可调节防窥显示系统
CN112015018A (zh) * 2019-05-28 2020-12-01 江苏集萃智能液晶科技有限公司 一种调光器件及其制备方法
CN111880326B (zh) * 2020-08-17 2023-06-27 京东方科技集团股份有限公司 一种防窥显示装置及其制备方法、显示装置
CN113917729B (zh) * 2021-10-21 2022-08-16 北京大学 一种基于电响应的反式调光玻璃及制备方法
CN115327831B (zh) * 2022-10-14 2023-02-17 江苏集萃智能液晶科技有限公司 一种多色调光器件及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049047A1 (en) * 2002-11-25 2004-06-10 Spdi A light valve for cut-off and controllability of light transmittance and a manufacturing method thereof
US20080094551A1 (en) * 2006-10-19 2008-04-24 Fujifilm Corporation Light modulating material
CN101341528A (zh) * 2006-01-06 2009-01-07 财团法人工业技术研究院 用于降压显示器的公共透明电极
CN202372728U (zh) * 2011-12-16 2012-08-08 京东方科技集团股份有限公司 一种彩色pdlc显示装置
CN103676365A (zh) * 2014-01-07 2014-03-26 华映视讯(吴江)有限公司 透明显示器及其制造方法
CN105319757A (zh) * 2014-05-29 2016-02-10 乐金显示有限公司 遮光装置及其制造方法以及包括遮光装置的透明显示装置
WO2017002121A2 (en) * 2015-06-30 2017-01-05 Gauzy Ltd Multiple and single layers liquid crystal dispersion devices for common and direct glazing applications and methods thereof
CN108415204A (zh) * 2018-04-28 2018-08-17 华南师范大学 一种多稳态电响应智能窗及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053417B (zh) * 2010-12-09 2012-05-09 宁波大学 一种聚合物分散液晶三稳态膜及其制备方法
TWI480652B (zh) * 2012-12-12 2015-04-11 Ind Tech Res Inst 液晶顯示器
EP2983040B1 (en) * 2014-07-25 2019-05-22 LG Display Co., Ltd. Transparent display based on a guest-host cholesteric liquid crystal device
CN105334656B (zh) * 2015-11-24 2018-08-31 南方科技大学 一种液晶窗及其控制方法
CN107346084B (zh) * 2017-07-21 2020-10-16 华南师范大学 一种全反射红外反射器件及其制备方法
CN209028381U (zh) * 2018-04-28 2019-06-25 华南师范大学 一种多稳态电响应智能窗

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049047A1 (en) * 2002-11-25 2004-06-10 Spdi A light valve for cut-off and controllability of light transmittance and a manufacturing method thereof
CN101341528A (zh) * 2006-01-06 2009-01-07 财团法人工业技术研究院 用于降压显示器的公共透明电极
US20080094551A1 (en) * 2006-10-19 2008-04-24 Fujifilm Corporation Light modulating material
CN202372728U (zh) * 2011-12-16 2012-08-08 京东方科技集团股份有限公司 一种彩色pdlc显示装置
CN103676365A (zh) * 2014-01-07 2014-03-26 华映视讯(吴江)有限公司 透明显示器及其制造方法
CN105319757A (zh) * 2014-05-29 2016-02-10 乐金显示有限公司 遮光装置及其制造方法以及包括遮光装置的透明显示装置
WO2017002121A2 (en) * 2015-06-30 2017-01-05 Gauzy Ltd Multiple and single layers liquid crystal dispersion devices for common and direct glazing applications and methods thereof
CN108415204A (zh) * 2018-04-28 2018-08-17 华南师范大学 一种多稳态电响应智能窗及其制备方法

Also Published As

Publication number Publication date
US11209711B2 (en) 2021-12-28
CN108415204B (zh) 2024-02-13
US11067866B2 (en) 2021-07-20
CN108415204A (zh) 2018-08-17
US20210302776A1 (en) 2021-09-30
US20200326580A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2019205501A1 (zh) 一种多稳态电响应智能窗及其制备方法
CN105334656B (zh) 一种液晶窗及其控制方法
CN102508378B (zh) 基于近晶-胆甾相转变改善胆甾相液晶平面取向的方法
CN110780503B (zh) 一种可变色智能窗
WO2019200851A1 (zh) 一种电响应的液晶调光器件
CN102053417B (zh) 一种聚合物分散液晶三稳态膜及其制备方法
CN103275736A (zh) 一种具有宽波反射的聚合物稳定液晶薄膜材料的制备方法
CN109917594B (zh) 一种隐私保护红外反射智能窗及其制备方法
CN104178180A (zh) 一种具有大双折射率的向列相液晶材料及其应用
US20200133036A1 (en) Color-changing light-adjusting liquid crystal device and light adjusting method thereof
CN101634790A (zh) 一种全固态电致变色显示器
CN105158958A (zh) 一种电响应调光玻璃
TW201930562A (zh) 一種微膠囊液晶顯示器件及其應用
CN207440490U (zh) 一种基于pdlc的多色彩电致变色器件
CN104090323A (zh) 一种电控散射偏光片的构造和应用
CN110703470A (zh) 一种双响应调光器件及其制备方法、调光方法和光学装置
TWI556029B (zh) 液晶元件的製造方法
CN111694197A (zh) 一种彩色双稳态调光器件
CN210776089U (zh) 一种双响应调光器件和光学装置
CN105669043B (zh) La3+掺杂TiO2电致变色薄膜及其制备方法
CN108957800B (zh) 一种红外反射器件及其制备方法
Baratta et al. Electrochromic reverse-mode PDLCs as smart windows
CN112433403A (zh) 一种光调制装置
CN113589573B (zh) 一种感知环境光线变化的智能液晶调光膜
CN108072986A (zh) 一种微胶囊液晶显示器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915805

Country of ref document: EP

Kind code of ref document: A1