WO2019205495A1 - 光伏电池及其制备方法 - Google Patents

光伏电池及其制备方法 Download PDF

Info

Publication number
WO2019205495A1
WO2019205495A1 PCT/CN2018/108549 CN2018108549W WO2019205495A1 WO 2019205495 A1 WO2019205495 A1 WO 2019205495A1 CN 2018108549 W CN2018108549 W CN 2018108549W WO 2019205495 A1 WO2019205495 A1 WO 2019205495A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
photovoltaic cell
electrode
inorganic
Prior art date
Application number
PCT/CN2018/108549
Other languages
English (en)
French (fr)
Inventor
霍艳寅
代凤玉
王运方
曹志峰
Original Assignee
北京铂阳顶荣光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京铂阳顶荣光伏科技有限公司 filed Critical 北京铂阳顶荣光伏科技有限公司
Publication of WO2019205495A1 publication Critical patent/WO2019205495A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of solar power generation, and in particular relates to a photovoltaic cell and a preparation method thereof.
  • the flexible thin film battery is a relatively fast developing photovoltaic cell.
  • the copper selenide thin film solar cell (CIGS) has strong light absorption capability, good power generation stability, high conversion efficiency and broad development prospects.
  • a water-blocking functional layer with a thickness of 0.3-0.5 mm is attached to the outside of the electrode. To prevent the influence of external water vapor on the structure and performance of the battery.
  • the price of the existing water blocking functional layer is relatively high, which increases the manufacturing cost of the thin film solar cell, and the packaging process is complicated.
  • the main object of the present invention is to provide a new photovoltaic cell structure in which a barrier layer having a water blocking function is attached to a power generating unit, and the barrier layer is in direct contact with the protected power generating component, thereby improving the waterproof effect and, in turn, blocking water
  • the functional barrier layer is directly attached to the window layer or the anti-reflection layer of the layer structure, which improves the bonding effect between the water blocking layer and the window layer, and is not easily cracked between the layers, thereby improving the service life of the battery.
  • the photovoltaic cell provided by the invention has the waterproof function, does not need to carry out the packaging of the subsequent waterproof functional layer, simplifies the preparation process of the thin film solar cell, and reduces the preparation cost.
  • a photovoltaic cell comprises: a substrate; a back electrode; a power generating unit; a barrier layer attached to the power generating unit; and an electrode electrically connected to the power generating unit.
  • the barrier layer comprises one or more transparent inorganic barrier layers, and/or one or more layers of transparent organic-inorganic hybrid barrier layers.
  • the aforementioned photovoltaic cell wherein the electrode is a patterned electrode.
  • the barrier layer has a thickness of 30-100 nm.
  • the inorganic barrier layer is an inorganic oxide film layer; or the organic-inorganic hybrid barrier layer is a hybrid film layer of an inorganic oxide and an organic compound.
  • the inorganic oxide comprises one or a combination of two or more of silicon oxide, aluminum oxide, and titanium oxide; or the organic compound includes polymethyl methacrylate. , and / or, propylene polymer.
  • the organic-inorganic hybrid barrier layer has a molar ratio of inorganic oxide to organic compound of 1:3 to 3:1.
  • the power generating unit includes an absorbing layer, a buffer layer and a window layer in sequence, wherein the barrier layer is attached to the window layer.
  • the power generating unit comprises an absorbing layer, a buffer layer, a window layer and a functional layer in sequence, and the barrier layer is attached on the functional layer.
  • the foregoing photovoltaic cell wherein the functional layer comprises one or more of an anti-reflection layer, an antistatic coating, a flame retardant layer, an antifouling coating, a polarizing coating, and an anti-fouling material layer.
  • the functional layer comprises one or more of an anti-reflection layer, an antistatic coating, a flame retardant layer, an antifouling coating, a polarizing coating, and an anti-fouling material layer.
  • a method of fabricating a photovoltaic cell according to the present invention includes covering a barrier layer on a power generating unit, preparing an electrode on the barrier layer, and electrically connecting the electrode to the power generating unit.
  • the method for preparing a photovoltaic cell wherein the photovoltaic cell is any one of the foregoing.
  • the photovoltaic cell and the preparation method thereof provided by the invention have at least the following advantages:
  • the invention provides a photovoltaic cell with water blocking function, which does not need to carry out subsequent water-blocking sealing on the electrode side, which simplifies the preparation process of the photovoltaic cell.
  • the invention attaches a transparent barrier layer with water blocking function on the power generating unit or the anti-reflection layer, and obtains a photovoltaic cell with water blocking function, which does not need to carry out packaging of the subsequent water blocking functional layer, and simplifies the preparation process of the photovoltaic cell.
  • the packaging process of the existing photovoltaic cell is very cumbersome, and the sealing film is required to adhere the water blocking function layer to the outside of the electrode, and the water blocking function layer needs to be attached to the outside of the electrode.
  • the internal structure of the battery, especially the patterned electrode The structure reduces the flatness of the outer surface of the electrode side, affects the adhesion of the water blocking functional layer, and, after pasting, the edge of the photovoltaic cell is prone to cracking between layers, which affects the waterproof effect.
  • the novel structure of the photovoltaic cell provided by the invention has a waterproof layer-containing barrier layer attached to a layered structure such as a window layer or an anti-reflection layer, and the adhesion process is simple, and the barrier layer and the window layer or the barrier layer and the anti-reflection layer are provided.
  • the fit is tight, and the layer is not easily cracked between layers, which improves the waterproof effect of the barrier layer.
  • the water vapor transmission rate can be controlled to be 10 -4 g/m 2 /d -10 -1 g/m 2 /d.
  • the electrical connection between the electrode and the power generating unit further improves the tightness of the barrier layer to the window layer or the anti-reflection layer.
  • the invention is easier to prepare a large-area photovoltaic cell, and expands the applicable range of the photovoltaic cell.
  • the packaging process of the water blocking functional layer of the existing thin film photovoltaic cell is complicated, and due to the influence of the flatness of the outer surface of the electrode side of the battery and the demand for the packaging effect, it is difficult to prepare a large-area photovoltaic with good waterproof effect at one time. battery.
  • the invention attaches a barrier layer having a waterproof function to a window layer having a layered structure, and the barrier layer can directly cover the window layer by a method such as magnetron sputtering or pulsed laser deposition, and the bonding effect with the window layer Well, there is no need to encapsulate the film, and it is not affected by the area of the power generation unit, and it is easier to prepare a large-area photovoltaic cell, which expands the application range of the photovoltaic cell.
  • the photovoltaic cell provided by the invention has high light transmittance and improves the photovoltaic effect of the photovoltaic cell.
  • the thickness of the water blocking layer is generally 0.3-0.5 mm, and usually needs to be packaged with a POE film or an EVA film, and the thickness of the sealing film is generally 0.5 mm.
  • the invention attaches a barrier layer outside the window layer or the anti-reflection layer, and can exert a better waterproof effect when the thickness of the barrier layer is 30-100 nm, and does not require a sealing film for sealing, thereby improving light penetration.
  • the over-rate which in turn increases the photovoltaic effect of photovoltaic cells.
  • FIG. 1 is a schematic diagram of a photovoltaic cell provided by an embodiment of the present invention.
  • the present invention provides a photovoltaic cell comprising: a substrate; a back electrode; a power generating unit; a barrier layer attached to the power generating unit; and an electrode electrically connected to the power generating unit.
  • the invention has a transparent barrier layer attached to the power generating unit.
  • the barrier layer has a water blocking function, which can effectively prevent water vapor from entering the battery assembly and causing damage to the battery.
  • the water blocking effect is as follows: water vapor transmission rate It is 10 -4 g/m 2 /d -10 -1 g/m 2 /d.
  • “attachment” herein merely indicates the positional relationship between the power generating unit and the barrier layer, and does not impose any limitation on the method of attaching the barrier layer.
  • the barrier layer is in direct contact with the protected power generation unit, making it easier to exert a water blocking effect.
  • the material and thickness of the barrier layer are not particularly limited, and the film layer having the above water blocking effect can be obtained.
  • the photovoltaic cell with the structure of the invention does not need to enclose the battery with the subsequent water blocking function film layer, which simplifies the preparation process of the photovoltaic cell.
  • the present invention does not specifically limit the area of the photovoltaic cell. Moreover, the photovoltaic cell structure of the present invention makes it easier to obtain a large-area photovoltaic cell and expand the use range of the photovoltaic cell.
  • a power generation unit that is, a unit that converts light energy into electrical energy, including a P-type semiconductor, an N-type semiconductor, and a PN junction.
  • the material of the P-type semiconductor and the N-type semiconductor in the power generating unit is not specifically limited in the present invention. It is preferably a film type power generation unit.
  • the photovoltaic cell is a CIGS battery.
  • the number of layers of the barrier layer in the present invention may be one layer or multiple layers, and the number of layers of the barrier layer in the present invention is not limited.
  • the barrier layer may be one or more transparent inorganic barrier layers, and the material of the inorganic barrier layer herein is further preferably an inorganic oxide, including one of silicon oxide, aluminum oxide, and titanium oxide. Combination of two or more.
  • the thickness of the barrier layer of the inorganic oxide material is not more than 100 nm, and the maximum thickness of the inorganic oxide film layer is more preferably 90 nm or 80 nm. 70nm.
  • the thickness of the barrier layer is not preferably less than 30 nm, and the minimum value of the thickness of the inorganic oxide film layer is further preferably 40 nm or 50 nm.
  • the barrier layer is a multi-layer inorganic barrier layer.
  • the barrier layer is a composite film layer formed by the first inorganic barrier layer and the second inorganic barrier layer, and the first inorganic barrier layer is attached to the power generating unit, and the second inorganic barrier layer is attached to the first inorganic barrier layer.
  • the material of the first inorganic barrier layer is different from the material of the second inorganic barrier layer.
  • the material of the first inorganic barrier layer is silicon oxide
  • the material of the second inorganic barrier layer is alumina. It should be noted that the thickness of the first inorganic barrier layer and the second inorganic barrier layer may be the same or different.
  • the barrier layer is further preferably one or more transparent organic-inorganic hybrid barrier layers. That is, a film layer containing an organic compound and an inorganic oxide, wherein the organic compound is preferably polymethyl methacrylate, and/or a propylene polymer, and the inorganic compound is preferably one of silicon oxide, aluminum oxide, and iron oxide.
  • the combination of two or more kinds is further preferably a polymethyl methacrylate-silica hybrid barrier layer.
  • the thickness of the barrier layer is not preferably less than 40 nm, and the minimum thickness of the organic-inorganic hybrid barrier layer is further preferably 50 nm, and the maximum thickness of the organic-inorganic hybrid barrier layer is preferably 100nm.
  • the molar ratio of the inorganic oxide to the organic compound in the organic-inorganic hybrid barrier layer The ratio is 1:3 to 3:1.
  • the barrier layer is a multilayer organic-inorganic hybrid barrier layer.
  • the barrier layer is a composite film layer formed by the first organic-inorganic hybrid barrier layer and the second organic-inorganic hybrid barrier layer, and the first organic-inorganic hybrid barrier layer is defined to be attached to the power generation unit, and the second organic-inorganic impurity is The barrier layer is attached to the first inorganic barrier layer.
  • the type, ratio, and the like of the organic compound and the inorganic oxide in the first organic-inorganic hybrid barrier layer herein are different from those of the second organic-inorganic hybrid barrier layer.
  • the first organic-inorganic hybrid barrier layer is a polymethyl methacrylate-silicon oxide hybrid film layer
  • the second organic-inorganic hybrid barrier layer is a polymethyl methacrylate-titanium oxide hybrid film layer. It should be noted that the thickness of the first organic-inorganic hybrid barrier layer and the second organic-inorganic hybrid barrier layer may be the same or different.
  • the barrier layer is a composite film layer formed by the inorganic barrier layer and the organic-inorganic hybrid barrier layer, that is, the barrier layer comprises at least one inorganic barrier layer and at least one organic-inorganic hybrid barrier layer.
  • the inorganic barrier layer herein is attached to the power generating unit, and the organic-inorganic hybrid barrier layer is attached to the inorganic barrier layer. It should be noted that the thickness of the inorganic barrier layer and the organic-inorganic hybrid barrier layer may be the same or different.
  • the electrode provided by the present invention is a patterned electrode, and the specific shape of the electrode is not limited herein.
  • the patterned electrode is further preferably a grid electrode such as a paper clip electrode or the like.
  • An imaged electrode power generating unit such as a grid electrode is electrically connected to each other to function as an electrode. It should be noted that the patterned electrode may deform the barrier layer during the preparation process, and the present invention does not limit the flatness of the surface of the barrier layer.
  • the photovoltaic cell provided by the present invention comprises an electrode 1, a barrier layer 2, a window layer 3, a buffer layer 4, an absorbing layer 5, a back electrode 6, and a substrate 7.
  • the window layer is preferably an indium tin oxide (ITO) window layer or an aluminum-doped zinc oxide (AZO) window layer;
  • the buffer layer is preferably a Csd buffer layer;
  • the absorption layer is preferably a CIGS absorber layer;
  • the back electrode is preferably high in crystallinity and surface
  • the substrate is preferably a stainless steel substrate or a glass substrate.
  • the photovoltaic cell provided by the invention is provided with an anti-reflection layer between the barrier layer 2 and the window layer 3 to further improve the efficiency of the photovoltaic cell.
  • the anti-reflection layer is MgFz.
  • the photovoltaic cell provided by the present invention may also incorporate or select other functional layers or coatings to improve the physical or chemical properties of the photovoltaic cell, for example, an antistatic coating, a flame retardant, an antifouling coating, a polarizing coating. , anti-scaling materials, etc.
  • the invention further provides a method for preparing a photovoltaic cell, comprising: covering a barrier layer on a power generating unit or an anti-reflection layer, preparing an electrode on the barrier layer, electrically connecting the electrode to the power generating unit, and obtaining a photovoltaic cell,
  • the photovoltaic cell is as described in any of the foregoing.
  • the present invention does not limit the manufacturing method of each component or each film layer, the back electrode and the substrate in the power generating unit, and the present invention does not limit the connection method of the power generating unit, the back electrode and the substrate. It can be carried out by referring to existing preparation and joining methods, for example, electrochemical deposition, spray pyrolysis, screen printing, co-evaporation, magnetron sputtering, selenization, and the like.
  • the preparation method of the photovoltaic cell provided by the invention firstly covers the barrier layer of the water blocking function on the power generation unit (here, the window layer of the power generation unit) or the anti-reflection layer, so that the barrier layer is in direct contact with the protected power generation unit, and is attached.
  • the joint height is high, and the waterproof effect of the barrier layer is improved.
  • An electrode is further prepared on the barrier layer to electrically connect the electrode to the window layer to obtain a photovoltaic cell.
  • the preparation method of the electrode is not specifically limited in the present invention.
  • the electrode can be prepared by pattern printing, masking, etc. on the upper surface of the barrier layer to obtain a patterned conductive plasma, and after sintering, a patterned conductive electrode is obtained. To achieve electrical connection between the window layer and the electrodes.
  • the barrier layer is an inorganic oxide film layer, and the barrier layer of the inorganic oxide material may be prepared on the window layer or the anti-reflection layer by evaporation, magnetron sputtering or chemical vapor deposition.
  • the barrier layer may further preferably be
  • the organic-inorganic hybrid barrier layer can be prepared by a sol-gel method to obtain an organic-inorganic hybrid powder, and the organic-inorganic hybrid powder is pressed into a target by magnetron sputtering or pulsed laser deposition (PLD).
  • PLD pulsed laser deposition
  • An organic-inorganic hybrid barrier layer deposited on the window layer (or anti-reflective layer) is obtained.
  • a powder having a different ratio of an organic compound to an inorganic oxide can be obtained by a sol-gel method, thereby obtaining an organic-inorganic hybrid barrier layer having a different degree of hybridization between the organic compound and the inorganic oxide.
  • the barrier layer includes a first surface layer and a second surface layer, a first surface layer defining a barrier layer in contact with the window layer or the anti-reflection layer, and a second surface layer on the other layer.
  • the electrode is prepared by pattern printing, masking or the like on the second surface layer of the barrier layer to obtain a patterned conductive film of a predetermined pattern, and after sintering, a patterned conductive electrode having a predetermined pattern is obtained, and at this time, the graphic is obtained.
  • the conductive electrode penetrates the barrier layer (or the barrier layer and the anti-reflection layer) and contacts the window layer of the power generating unit to realize electrical connection between the window layer and the electrode.
  • the patterned electrode here is preferably a grid electrode, and more preferably a metal grid electrode.
  • the material of the electrode is not specifically limited in the present invention.
  • the components of the apparatus in the embodiments can be adaptively changed and placed in one or more devices different from the embodiment.
  • the components of the embodiment can be combined into one component and, in addition, they can be divided into a plurality of sub-components.
  • all of the features disclosed in the specification, including the accompanying claims, the abstract and the drawings, and all components of any device so disclosed may be combined in any combination.
  • Each feature disclosed in this specification may be replaced by alternative features that provide the same, equivalent or similar purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明是关于一种光伏电池及其制备方法,其中,光伏电池包括,衬底;背电极;发电单元;附着在所述发电单元上的阻隔层;以及,电极,所述电极与所述发电单元电连接。本发明提供的光伏电池在窗口层或减反层上附着具有阻水功能的阻隔层,阻隔层与被保护的发电元件直接接触,提高了防水效果,且,将阻水功能的阻隔层直接附着在层状结构的窗口层上,提高了组水层与窗口层的贴合效果,层与层之间不宜开裂,提高电池的使用寿命。本发明提供的光伏电池具备防水功能,不必进行后续的防水功能层的封装,简化了薄膜太阳能电池的制备过程,降低了制备成本。

Description

光伏电池及其制备方法
本申请基于申请号为201810398271.5、申请日为2018年04月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于太阳能发电领域,特别是涉及一种光伏电池及其制备方法。
背景技术
柔性的薄膜电池是目前发展较快的光伏电池,其中,硒化铜铟镓薄膜太阳能电池(CIGS),光吸收能力强,发电稳定性好,转化效率高,具有广阔的发展前景。
由于CIGS电池的窗口层具有很强的吸水性,水汽会破坏电池的PN结结构,影响电池的性能,因此,通常情况下,在电极外粘贴一层厚度为0.3-0.5mm的阻水功能层,以防止外界水汽对电池结构和性能的影响。然而,现有的阻水功能层的价格较高,提升了薄膜太阳能电池的制备成本,且封装过程复杂。
发明内容
本发明的主要目的在于,提供一种新的光伏电池结构,在发电单元上附着具有阻水功能的阻隔层,阻隔层与被保护的发电元件直接接触,提高了防水效果,且,将阻水功能的阻隔层直接附着在层状结构的窗口层或减反射层上,提高了阻水层与窗口层的贴合效果,层与层之间不易开裂,进而提高了电池的使用寿命。本发明提供的光伏电池具备防水功能,不必进行后续的防水功能层的封装,简化了薄膜太阳能电池的制备过程,降低了制备成本。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。
依据本发明提出的一种光伏电池,包括,衬底;背电极;发电单元;附着在所述发电单元上的阻隔层;以及,电极,所述电极与所述发电单元电连接。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
可选的,前述的光伏电池,其中所述的阻隔层包括一层或多层透明无机阻 隔层,和/或,一层或多层透明有机无机杂化阻隔层。
可选的,前述的光伏电池,其中所述的电极为图形化电极。
可选的,前述的光伏电池,其中所述的阻隔层的厚度为30-100nm。
可选的,前述的光伏电池,其中所述的无机阻隔层为无机氧化物膜层;或者,所述有机无机杂化阻隔层为无机氧化物与有机化合物的杂化膜层。
可选的,前述的光伏电池,其中所述的无机氧化物包括氧化硅、氧化铝、氧化钛中的一种或两种以上的组合;或者,所述的有机化合物包括聚甲基丙烯酸甲酯,和/或,丙烯聚合物。
可选的,前述的光伏电池,其中所述的有机无机杂化阻隔层中无机氧化物与有机化合物的摩尔比为1∶3-3∶1。
可选的,前述的光伏电池,其中所述的发电单元依次包括吸收层、缓冲层、窗口层,其中,所述阻隔层附着在所述窗口层上。
可选的,前述的光伏电池,其中所述的发电单元依次包括吸收层、缓冲层、窗口层和功能层,所述阻隔层附着在所述功能层上。
可选的,前述的光伏电池,其中所述的功能层包括减反射层、防静电涂层、阻燃剂层、防污涂层、偏振涂层、防垢材料层中的一种或多种的组合。
本发明的目的及解决其技术问题还采用以下的技术方案来实现。
依据本发明提出的光伏电池的制备方法,包括,在发电单元上覆盖阻隔层,在阻隔层上制备电极,使所述电极与发电单元电连接。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
可选的,前述的光伏电池的制备方法,其中所述的光伏电池为前述中任一项所述。
借由上述技术方案,本发明提供的光伏电池及其制备方法,至少具有下列优点:
1、本发明提供了一种具有阻水功能的光伏电池,不必进行后续的电极侧的阻水封装,简化了光伏电池的制备过程。
本发明在发电单元或减反射层上附着具有阻水功能的透明阻隔层,得到具有阻水功能的光伏电池,不必进行后续的阻水功能层的封装,简化了光伏电池的制备过程。
现有的光伏电池的封装过程十分繁琐,需采用封装胶膜将阻水功能层粘附 在电极外侧,阻水功能层需贴合在电极外侧,然而,电池的内部结构,尤其是图形化电极等结构降低了电极侧外表面的平整度,影响了阻水功能层的粘贴,且,粘贴后,光伏电池的边缘容易发生层与层之间的开裂,影响防水效果。本发明提供的新的结构的光伏电池,将具备防水功能的阻隔层附着在窗口层或减反射层等层状结构上,附着过程简单,且,阻隔层与窗口层或阻隔层与减反射层的贴合紧密,层与层之间不易开裂,提高了阻隔层的防水效果。进一步的,通过控制阻隔层的厚度,可把水汽的透过率控制在10 -4g/m 2/d-10 -1g/m 2/d。同时,电极与发电单元的电连接,进一步提高了阻隔层与窗口层或减反射层贴合的紧密性。
2、本发明更易制备得到大面积的光伏电池,扩大了光伏电池的适用范围。
现有的薄膜光伏电池的阻水功能层的封装过程比较复杂,且,由于电池的电极侧外表面平整度的影响,以及对封装效果的需求,不易一次性制备得到防水效果好的大面积光伏电池。
本发明将具有防水功能的阻隔层附着在具有层状结构的窗口层上,阻隔层可采用磁控溅射法或脉冲激光沉积法等方法直接覆盖在窗口层上,与窗口层的贴合效果好,不需要封装胶膜,且,不受发电单元面积的影响,更加容易制备得到大面积的光伏电池,扩大了光伏电池的适用范围。
3、本发明提供的光伏电池,光的透过率高,提高了光伏电池的光伏效应。
现有技术中,为了提高防水效果,阻水层的厚度一般为0.3-0.5mm,且通常需要用POE胶膜或EVA胶膜进行封装,封装胶膜的厚度一般为0.5mm。
本发明在窗口层或减反射层外附着阻隔层,在阻隔层的厚度为30-100nm的情况下即可发挥较好的防水效果,且,不需要封装胶膜进行密封,提高了光的透过率,进而提高了光伏电池的光伏效应。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明实施例提供的光伏电池的示意图。
其中,1电极,2阻隔层,3窗口层,4缓冲层,5吸收层,6背电极,7衬底。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的光伏电池及其制备方法,其具体实施方式、结构、特征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构或特点可由任何合适形式组合。
本发明提供了一种光伏电池,包括,衬底;背电极;发电单元;附着在所述发电单元上的阻隔层;以及,电极,所述电极与所述发电单元电连接。
本发明在发电单元上附着透明阻隔层,可选的,所述阻隔层具有阻水功能,可有效防止水蒸气进入电池组件内部,对电池造成破坏,阻水效果表现为:水汽的透过率为10 -4g/m 2/d-10 -1g/m 2/d。需要说明的是,此处的“附着”仅表示发电单元与阻隔层的位置关系,并不对阻隔层的附着方法做任何限制。阻隔层与被保护的发电单元直接接触,更容易发挥阻水效果。此处对阻隔层的材质和厚度不作具体限定,达到上述阻水效果的膜层即可。采用本发明结构的光伏电池,无需对电池进行后续的阻水功能膜层的封装,简化了光伏电池的制备过程。
需要说明的是,本发明对光伏电池的面积不作具体限定。且,本发明的光伏电池结构更容易得到大面积的光伏电池,扩大光伏电池的使用范围。
发电单元,即可以将光能转化为电能的单元,包括P型半导体、N型半导体和PN结。本发明对发电单元中P型半导体与N型半导体的材质不作具体限定。优选为薄膜型发电单元。进一步的,所述光伏电池为CIGS电池。
需要说明的是,本发明所述的阻隔层的膜层层数可以为一层,也可以为多层,本发明对阻隔层的膜层层数不作限定。
可选的,所述的阻隔层可以为一层或多层透明无机阻隔层,此处的无机阻隔层的材质进一步优选为无机氧化物,包括氧化硅、氧化铝、氧化钛中的一种或两种以上的组合。进一步的,为了提高了阻隔层的光透过率和膜层的柔性,无机氧化物材质的阻隔层的厚度不宜超过100nm,该无机氧化物膜层的厚度的最大值进一步优选为90nm、80nm、70nm。为了保证无机氧化膜层的阻水效果,该阻隔层的厚度不宜低于30nm,该无机氧化物膜层的厚度的最小值进一步优选为40nm、50nm。
可选的,所述阻隔层为多层无机阻隔层。例如,所述阻隔层为第一无机阻隔层和第二无机阻隔层形成的复合膜层,定义第一无机阻隔层附着在发电单元 上,第二无机阻隔层附着在第一无机阻隔层上。第一无机阻隔层的材质与第二无机阻隔层的材质不同,例如,第一无机阻隔层的材质为氧化硅,第二无机阻隔层的材质为氧化铝。需要说明的是,第一无机阻隔层与第二无机阻隔层的厚度可以相同也可以不同。
可选的,为了保证阻隔层的透光率、防水效果、柔性,以及,阻隔层与窗口层的贴合效果,所述阻隔层进一步优选为一层或多层透明有机无机杂化阻隔层,即包含有有机化合物和无机氧化物的膜层,此处的有机化合物优选为聚甲基丙烯酸甲酯,和/或,丙烯聚合物,无机化合物优选为氧化硅、氧化铝、氧化铁中的一种或两种以上的组合,进一步优选为聚甲基丙烯酸甲酯-氧化硅杂化阻隔层。为保证有机无机杂化阻隔层的防水效果,阻隔层的厚度不宜低于40nm,有机无机杂化阻隔层的厚度的最小值进一步优选为50nm,有机无机杂化阻隔层的厚度的最大值优选为100nm。为进一步提高有机无机杂化阻隔层的防水效果、柔性、透光性、以及与窗口层或减反射层的贴合度的综合效果,有机无机杂化阻隔层中无机氧化物与有机化合物的摩尔比为1∶3-3∶1。
可选的,所述阻隔层为多层有机无机杂化阻隔层。例如,所述阻隔层为第一有机无机杂化阻隔层和第二有机无机杂化阻隔层形成的复合膜层,定义第一有机无机杂化阻隔层附着在发电单元上,第二有机无机杂化阻隔层附着在第一无机阻隔层上。此处的第一有机无机杂化阻隔层中有机化合物与无机氧化物的种类、比例等与第二有机无机杂化阻隔层不同。例如,第一有机无机杂化阻隔层为聚甲基丙烯酸甲酯-氧化硅杂化膜层,第二有机无机杂化阻隔层为聚甲基丙烯酸甲酯-氧化钛杂化膜层。需要说明的是,第一有机无机杂化阻隔层与第二有机无机杂化阻隔层的厚度可以相同也可以不同。
可选的,所述阻隔层为无机阻隔层与有机无机杂化阻隔层形成的复合膜层,即,阻隔层包括至少一层无机阻隔层和至少一层有机无机杂化阻隔层。进一步的,此处的无机阻隔层附着在发电单元上,有机无机杂化阻隔层附着在所述无机阻隔层上。需要说明的是,无机阻隔层与有机无机杂化阻隔层的厚度可以相同也可以不同。
本发明提供的电极为图形化电极,此处并不对电极的具体形状作出限定。图形化电极进一步优选为栅状电极,例如回形针状电极等。栅状电极等图像化电极发电单元形成电连接,发挥电极功能。需要说明的是,图形化电极在制备过程中,可能会使阻隔层变形,本发明并不对阻隔层表面的平整度作出限定。
进一步的,如图1所示,本发明提供的光伏电池包括电极1,阻隔层2,窗口层3,缓冲层4,吸收层5,背电极6,衬底7。需要说明的是,本发明对窗口层、缓冲层和吸收层的材质与厚度不作具体限定。窗口层优选为氧化铟锡(ITO)窗口层或铝掺杂的氧化锌(AZO)窗口层;缓冲层优选为Csd缓冲层;吸收层优选为CIGS吸收层;背电极优选为结晶度高和表面电阻低的Mo电极,衬底优选为不锈钢衬底或玻璃衬底。
可选的,为了提高光的透过率,本发明提供的光伏电池在阻隔层2与窗口层3之间设置有减反射层,进一步提高光伏电池的效率。可选的,所述的减反射层为MgFz。类似的,本发明提供的光伏电池还可加入或选用其它功能层或涂层,以提高光伏电池的物理或化学性质,例如,防静电涂层、阻燃剂、防污涂层、偏振涂层、防垢材料等。
本发明进一步提供了一种光伏电池的制备方法,包括,在发电单元或减反射层上覆盖阻隔层,在阻隔层上制备电极,使所述电极与发电单元电连接,得到光伏电池,所述光伏电池为前述中任一项所述。
需要说明的是,本发明并不对发电单元中各部件或各膜层、背电极和衬底的的制备方法作出限定,同时,本发明并不对发电单元、背电极与衬底的连接方法作出限定,可参照现有的制备和连接方法进行,例如,电化学沉积法、喷涂热解法、丝网印刷法、共蒸发法、磁控溅射法、硒化法等。
本发明提供的光伏电池的制备方法,先在发电单元(此处指发电单元的窗口层)或减反层上覆盖阻水功能的阻隔层,使阻隔层与被保护的发电单元直接接触,贴合度高,提高阻隔层的防水效果。再在阻隔层上制备电极,使电极与窗口层实现电连接,得到光伏电池。需要说明的是,本发明对电极的制备方式不作具体限定,例如,电极可以通过丝网印刷、掩膜等方法在阻隔层上表面制备得到图形化导电电浆,烧结后,得到图形化导电电极,实现窗口层与电极的电气连接。
可选的,阻隔层为无机氧化物膜层,可采用蒸镀、磁控溅射或化学气相沉积方法在窗口层或减反射层上制备无机氧化物材质的阻隔层,阻隔层可进一步优选为有机无机杂化阻隔层,可采用溶胶-凝胶法制备得到有机无机杂化粉体,将有机无机杂化粉体压制成靶材,采用磁控溅射法或脉冲激光沉积法(PLD),得到沉积在窗口层(或减反射层)上的有机无机杂化阻隔层。可采用溶胶-凝胶法制备得到有机化合物与无机氧化物比例不同的粉体,进而得到有机化合物与 无机氧化物不同杂化程度的有机无机杂化阻隔层。
阻隔层包括第一表面层与第二表面层,定义与窗口层或减反射层接触的一层为阻隔层的第一表面层,则另一层为第二表面层。将电极通过丝网印刷、掩膜等方法在阻隔层的第二表面层上制备得到预设图形的图形化导电电浆,烧结后,得到具有预设图形的图形化导电电极,此时,图形化导电电极穿透阻隔层(或阻隔层与减反射层),与发电单元的窗口层接触,实现窗口层与电极的电气连接。此处的图形化电极优选为栅状电极,进一步优选为金属栅状电极。本发明对电极的材质不作具体限定。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
可以理解的是,上述装置中的相关特征可以相互参考。另外,上述实施例中的“第一”、“第二”等是用于区分各实施例,而并不代表各实施例的优劣。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的装置解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的装置中的部件进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个装置中。可以把实施例中的部件组合成一个部件,以及此外可以把它们分成多个子部件。除了这样的特征中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何装置的所有部件进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。本发明的各个部件实施例可以以硬件实现,或者以它们的组合实现。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或组件。位于部件或组件之前的单词“一”或“一个”不排除存在多个这样的部件或组件。本发明可以借助于包括有若干不同部件的装置来实现。在列举了若干部件的权利要求中,这些部件中的若干个可以是通过同一个部件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
本发明中所述的数值范围包括此范围内所有的数值,并且包括此范围内任意两个数值组成的范围值。例如,“阻隔层的厚度为30-100nm”,此数值范围包括30-100之间所有的数值,并且包括此范围内任意两个数值(例如:40、50)组成的范围值(40-50);本发明所有实施例中出现的同一指标的不同数值,可以任意组合,组成范围值。
本发明权利要求和/或说明书中的技术特征可以进行组合,其组合方式不限于权利要求中通过引用关系得到的组合。通过权利要求和/或说明书中的技术特征进行组合得到的技术方案,也是本发明的保护范围。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (11)

  1. 一种光伏电池,其特征在于:包括,
    衬底;
    背电极;
    发电单元;
    附着在所述发电单元上的阻隔层;以及,
    电极,所述电极与所述发电单元电连接。
  2. 根据权利要求1所述的光伏电池,其特征在于:
    所述阻隔层包括一层或多层透明无机阻隔层,
    和/或,
    一层或多层透明有机无机杂化阻隔层。
  3. 根据权利要求1所述的光伏电池,其特征在于:
    所述的电极为图形化电极。
  4. 根据权利要求1所述的光伏电池,其特征在于:
    所述阻隔层的厚度为30-100nm。
  5. 根据权利要求2所述的光伏电池,其特征在于:
    所述无机阻隔层为无机氧化物膜层;
    或者,
    所述有机无机杂化阻隔层为无机氧化物与有机化合物的杂化膜层。
  6. 根据权利要求5所述的光伏电池,其特征在于:
    所述的无机氧化物包括氧化硅、氧化铝、氧化钛中的一种或两种以上的组合;
    或者,
    所述的有机化合物包括聚甲基丙烯酸甲酯,和/或,丙烯聚合物。
  7. 根据权利要求5所述的光伏电池,其特征在于:
    所述的有机无机杂化阻隔层中无机氧化物与有机化合物的摩尔比为1∶3-3∶1。
  8. 根据权利要求1所述的光伏电池,其特征在于:
    所述的发电单元依次包括吸收层、缓冲层、窗口层,
    其中,所述阻隔层附着在所述窗口层上。
  9. 根据权利要求1所述的光伏电池,其特征在于:
    所述的发电单元依次包括吸收层、缓冲层、窗口层和功能层,所述阻隔层附着在所述功能层上。
  10. 根据权利要求9所述的光伏电池,其特征在于:
    所述功能层包括减反射层、防静电涂层、阻燃剂层、防污涂层、偏振涂层、防垢材料层中的一种或多种的组合。
  11. 一种光伏电池的制备方法,其特征在于:包括,
    在发电单元上覆盖阻隔层,
    在阻隔层上制备电极,使所述电极与发电单元电连接;所述光伏电池为权利要求1-10中任一项所述。
PCT/CN2018/108549 2018-04-27 2018-09-29 光伏电池及其制备方法 WO2019205495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810398271.5 2018-04-27
CN201810398271.5A CN110429141A (zh) 2018-04-27 2018-04-27 光伏电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2019205495A1 true WO2019205495A1 (zh) 2019-10-31

Family

ID=68293715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108549 WO2019205495A1 (zh) 2018-04-27 2018-09-29 光伏电池及其制备方法

Country Status (2)

Country Link
CN (1) CN110429141A (zh)
WO (1) WO2019205495A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204558501U (zh) * 2014-12-22 2015-08-12 泉州市博泰半导体科技有限公司 一种hit太阳能电池
CN107230519A (zh) * 2016-03-23 2017-10-03 张家港康得新光电材料有限公司 柔性导电膜及其制备方法
KR20170119893A (ko) * 2016-04-20 2017-10-30 건국대학교 산학협력단 다층 필름, 이를 포함하는 소자, 상기 다층 필름의 제조방법 및 제조장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882495B (zh) * 2015-05-07 2017-01-11 厦门神科太阳能有限公司 一种用于太阳能电池的透明导电窗口层及cigs基薄膜太阳能电池
CN208570621U (zh) * 2018-04-27 2019-03-01 北京铂阳顶荣光伏科技有限公司 光伏电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204558501U (zh) * 2014-12-22 2015-08-12 泉州市博泰半导体科技有限公司 一种hit太阳能电池
CN107230519A (zh) * 2016-03-23 2017-10-03 张家港康得新光电材料有限公司 柔性导电膜及其制备方法
KR20170119893A (ko) * 2016-04-20 2017-10-30 건국대학교 산학협력단 다층 필름, 이를 포함하는 소자, 상기 다층 필름의 제조방법 및 제조장치

Also Published As

Publication number Publication date
CN110429141A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
US11431282B2 (en) Glass cover with optical-filtering coating for managing color of a solar roof tile
JP2010534929A (ja) 太陽電池の前面基板と太陽電池の前面基板の使用方法
JP6917990B2 (ja) 太陽電池及びその製造方法、並びに太陽電池モジュール
CN102931267B (zh) 一种硅基异质结太阳能电池及其制备方法
TW201349529A (zh) 背接觸型太陽能電池模組
JP6688230B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
TW201115762A (en) Solar cell and method for fabricating the same
JP6072586B2 (ja) 遮断熱機能を有する太陽光発電フィルム
CN111916523A (zh) 异质结太阳能电池及其组件、制备方法
TW201517291A (zh) 透明蓋、太陽能模組、與太陽能電池的製作方法
TWI459572B (zh) Light power device and its manufacturing method
CN103493215A (zh) 织构化玻璃上的多结构型薄膜硅太阳能电池
WO2017065251A1 (ja) 有機光電変換素子及び有機薄膜太陽電池モジュール
CN104600136A (zh) 一种异质结太阳能电池的制造方法及异质结太阳能电池
JP2000243989A (ja) 透明フィルム型太陽電池モジュール
US20120103407A1 (en) Solar cell and method for manufacturing the solar cell
JP2013532907A (ja) 太陽光発電装置及びその製造方法
WO2019205495A1 (zh) 光伏电池及其制备方法
CN208570621U (zh) 光伏电池
JP2004311845A (ja) 発電機能を有する可視光透過構造体
CN103180964B (zh) 光电动势装置及其制造方法
CN108365025B (zh) 一种双面perc电池及其制备方法
JP2008277422A (ja) 積層型光電変換装置
TWI435462B (zh) 多色彩畫作型太陽能電池的製造方法
TWI463680B (zh) Transparent thin film solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916624

Country of ref document: EP

Kind code of ref document: A1