WO2019205289A1 - 太阳能组件接线盒、太阳能系统及太阳能组件控制方法 - Google Patents

太阳能组件接线盒、太阳能系统及太阳能组件控制方法 Download PDF

Info

Publication number
WO2019205289A1
WO2019205289A1 PCT/CN2018/094313 CN2018094313W WO2019205289A1 WO 2019205289 A1 WO2019205289 A1 WO 2019205289A1 CN 2018094313 W CN2018094313 W CN 2018094313W WO 2019205289 A1 WO2019205289 A1 WO 2019205289A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
data
controller
module
control signal
Prior art date
Application number
PCT/CN2018/094313
Other languages
English (en)
French (fr)
Inventor
刘安
李洪杰
徐冬
Original Assignee
北京汉能光伏投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810402227.7A external-priority patent/CN110417348A/zh
Priority claimed from CN201820639106.XU external-priority patent/CN208424310U/zh
Application filed by 北京汉能光伏投资有限公司 filed Critical 北京汉能光伏投资有限公司
Publication of WO2019205289A1 publication Critical patent/WO2019205289A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present application relates to, but is not limited to, a solar module junction box, a solar energy system, and a solar module control method.
  • the present application provides a solar module junction box, a solar energy system, and a solar module control method capable of achieving safe shutdown of a solar module to ensure personnel safety.
  • a solar module junction box comprising:
  • the state detecting module is connected to the controller, and the controller is connected to the power module;
  • the state detecting module is configured to detect a state of the solar component and transmit state detection data to the controller, the controller configured to acquire the state detection data, and generate a shutdown when the state detection data is abnormal
  • the control signal is sent to the power module, and the power module is configured to adjust the output voltage to be within a preset low voltage range after receiving the turn-off control signal.
  • the controller is configured to compare a size between the state detection data and a preset state threshold after acquiring the state detection data, if the state detection data is greater than a preset state threshold , then generate a shutdown control signal.
  • the solar module junction box may further include: a wireless communication module
  • the wireless communication module is connected to the controller;
  • the controller is configured to generate the shutdown control signal and send the power to the power module after receiving the remote shutdown control command by the wireless communication module.
  • the state detecting module may include one or more of a temperature detecting circuit, a voltage detecting circuit, and a current detecting circuit;
  • the temperature detecting circuit is configured to detect a temperature of the solar module and transmit the detected temperature data to the controller, the controller configured to acquire the temperature data, and generate a shutdown control when the temperature data is abnormal Sending a signal to the power module;
  • the voltage detecting circuit is configured to detect a voltage output by the solar module and transmit the detected voltage data to the controller, the controller configured to acquire the voltage data, and generate a shutdown when the voltage data is abnormal Controlling a signal and transmitting the signal to the power module;
  • the current detecting circuit is configured to detect a current output by the solar module and transmit the detected current data to the controller, the controller configured to acquire the current data, and generate a shutdown when the current data is abnormal
  • the control signal is sent to the power module.
  • the controller is configured to compare a size between the temperature data and a preset temperature threshold after acquiring the temperature data, if the temperature data is greater than the preset temperature threshold, Generating a shutdown control signal;
  • the controller is configured to compare a magnitude between the voltage data and a preset voltage threshold after acquiring the voltage data, and generate a shutdown control signal if the voltage data is greater than the preset voltage threshold;
  • the controller is configured to compare a magnitude between the current data and a preset current threshold after acquiring the current data, and generate a shutdown control signal if the current data is greater than the preset current threshold.
  • the solar module junction box may further include: a power supply module
  • the power supply module is configured to acquire electrical energy output by the solar module and to supply power to the controller.
  • the low voltage range may be 0V to 24V.
  • a solar energy system comprising:
  • At least one solar controller and a plurality of solar module junction boxes according to the first aspect, the solar module junction box being correspondingly connected to the solar module;
  • the solar module junction box is connected to the solar controller by wire, and the number of the solar module junction boxes connected to each solar controller does not exceed a preset number corresponding to the wired mode;
  • the solar module junction box is connected to the solar controller in a wireless manner, and the number of the solar module junction boxes connected to each solar controller does not exceed a preset number corresponding to the wireless mode.
  • a solar energy system comprising:
  • At least one solar controller and a plurality of gateways each of the gateways being connected to the solar controller by wire and/or wirelessly;
  • Each of the gateways is connected by wire to a plurality of solar module junction boxes as described in the first aspect, the solar module junction boxes are correspondingly connected to the solar modules, and the solar module junction boxes of each of the gateways are connected The number does not exceed the wired connection capacity of the gateway; and/or
  • Each of the gateways wirelessly connects a plurality of solar module junction boxes as described in the first aspect, the solar module junction boxes are correspondingly connected to the solar modules, and the solar module junction boxes of each of the gateways are connected The number does not exceed the wireless connection capacity of the gateway.
  • a solar module control method including:
  • the method may further include:
  • a shutdown control signal is generated.
  • the method may further include:
  • the shutdown control signal is generated upon wireless receipt of the remote shutdown control command.
  • the step of generating a shutdown control signal may include:
  • the state detection data is temperature data, and when the temperature data is abnormal, a shutdown control signal is generated;
  • the state detection data is voltage data output by the solar module, and generates a shutdown control signal when the voltage data is abnormal;
  • the state detection data is current data output by the solar module, and generates a shutdown control signal when the current data is abnormal.
  • the step of comparing the size between the state detection data and the preset state threshold and the step of generating the shutdown control signal may include:
  • the state detection data is temperature data, and compares a size between the temperature data and a preset temperature threshold; if the temperature data is greater than the preset temperature threshold, generating a shutdown control signal;
  • the state detection data is voltage data output by the solar module, and compares a magnitude between the voltage data and a preset voltage threshold; if the voltage data is greater than the preset voltage threshold, generating a shutdown control signal;
  • the state detection data is current data output by the solar module, and compares a magnitude between the current data and a preset current threshold; if the current data is greater than the preset current threshold, generating a shutdown control signal.
  • the low voltage range may be 0V to 24V.
  • FIG. 1 is a schematic structural view showing an exemplary solar energy system
  • FIG. 2 is a block diagram showing the structure of an exemplary solar module junction box of the present application
  • FIG. 3 is a block diagram showing the structure of another exemplary solar module junction box of the present application.
  • FIG. 4 is a block diagram showing the structure of another exemplary solar module junction box of the present application.
  • FIG. 5 is a schematic structural view showing an exemplary solar energy system of the present application.
  • FIG. 6 is a schematic structural view showing another exemplary solar energy system of the present application.
  • FIG. 7 is a schematic structural view showing still another exemplary solar energy system of the present application.
  • FIG. 8 is a flow chart showing an exemplary solar module control method of the present application.
  • FIG. 9 is a flow chart showing another exemplary solar module control method of the present application.
  • FIG. 10 is a flow chart showing still another solar module control method of an exemplary implementation of the present application.
  • Figure 1 shows a solar system.
  • the communication of the solar system is divided into four levels: junction box layer, gateway layer, solar controller layer and server layer.
  • the junction box communicates wirelessly with the gateway through the 2.4G band.
  • a gateway can Access to hundreds of junction boxes, the distance between the gateway and the junction box is within 20 to 30 meters.
  • the 433M frequency band is used for wireless communication between the gateway and the solar controller, and one gateway can access at least 10 relays with a communication distance of less than one kilometer.
  • the solar controller communicates with the solar server via Ethernet, and can also communicate using wireless communication methods such as 4G.
  • the solar system shown in Figure 1 can group tens of thousands of solar modules into a single solar server.
  • the present disclosure provides a solar module junction box for connecting the solar module 5 and outputting electrical energy, and the solar module 5 includes a thin film assembly applied to a BIPV occasion, and the solar component wiring
  • the cartridge may include: a mounting case 1, a state detecting module 2, a controller 3, and a power module 4.
  • the state detecting module 2, the controller 3, and the power module 4 are all mounted in the mounting case 1;
  • the mounting case 1 has two input ends and two output ends; two inputs of the mounting case 1 Connecting the two output ends of the solar module 5;
  • the two output ends of the mounting shell 1 are connected to the two output ends of the power module 4, the two output ends of the mounting shell 1 are for outputting electric energy;
  • the state detecting module 2 is connected to the controller 3,
  • the controller 3 is connected to the power module 4.
  • the power module 4 is, for example, a DC/DC power module.
  • the two outputs of the mounting housing 1 can be connected to the inverter 6, which in turn causes the inverter 6 to output an alternating current.
  • the state detecting module 2 detects the state of the solar module 5, and transmits the state detection data to the controller 3.
  • the controller 3 acquires the state detection data, and generates a shutdown control signal when the state detection data is abnormal and transmits the power to the power module 4, the power source. After receiving the shutdown control signal, module 4 adjusts the output voltage to a preset low voltage range.
  • the state of the solar module junction box is specifically a state related to the operation of the solar module junction box, including temperature, current, and/or voltage, and the like.
  • state detection module 2 detects the state of solar component 5, which includes temperature, current, and/or voltage, and the like.
  • the solar module junction box can be mounted on the back of the solar module 5.
  • the controller 3 determines whether the state detection data is abnormal, and determines the manner, for example, the size between the state detection data and the preset state threshold, if the state detection data is greater than the preset state threshold. Then, it is determined that the state detection data is abnormal.
  • the comparison function can be implemented by a comparison circuit.
  • the preset state threshold is a threshold corresponding to the normal operation of the solar component 5, and the state detection data exceeding the threshold indicates that the state detection data is abnormal.
  • the controller 3 can determine whether the state detection data is abnormal by comparing the preset state thresholds, and the comparison function can be implemented by using a comparison circuit, that is, the controller 3 is provided with a comparison circuit and a comparison circuit. It is a mature technology, and will not be described in detail in this embodiment.
  • the controller 3 After the controller 3 acquires the state detection data, if it is determined that the state detection data is abnormal, the solar component 5 is in an abnormal environment, such as a fire, a natural disaster, or other environment that damages the solar module 5, The controller 3 generates a shutdown control signal for turning off the solar module 5.
  • the controller 3 generates a shutdown control signal, and the shutdown control signal can control the power module 4 to adjust its own output voltage to be within a preset low voltage range, that is, the power module 4 receives the shutdown control signal. After that, adjust its own output voltage to a preset low voltage range.
  • the shutdown control signal is, for example, a PWM (Pulse Width Modulation) duty cycle configuration signal
  • the PWM duty cycle configuration signal can control the power module 4 to adjust the PWM duty cycle, thereby controlling itself.
  • the output voltage is at a preset low voltage range.
  • the preset low voltage range is, for example, 0V to 24V, which belongs to the human body safety voltage
  • the PWM duty ratio configured by the PWM duty ratio configuration signal is in the PWM account corresponding to the preset low voltage range. Empty ratio range.
  • the duty cycle configured by the PWM duty cycle configuration signal is a PWM duty cycle corresponding to 0V.
  • the state of the solar module 5 is detected by the state detecting module 2, and the controller 3 can determine whether it is necessary to turn off the solar module 5 according to the state, and determine that the solar module needs to be turned off.
  • the power supply module 4 sends a shutdown control signal, and the control power module 4 adjusts the output voltage to be in a low voltage range, and since the output end of the power module 4 is connected to the output end of the solar module junction box, the output voltage of the solar component junction box In the low voltage range, the safety of the solar modules is safely shut down to ensure the safety of personnel.
  • FIG. 3 is a block diagram showing the structure of a solar module junction box of an exemplary embodiment of the present application.
  • the solar module junction box shown in FIG. 3 may further include a wireless communication module 7 as compared with the solar module junction box shown in FIG. 2.
  • the wireless communication module 7 is mounted within the mounting housing 1 and is coupled to the controller 3.
  • the controller 3 after receiving the remote shutdown control command by the wireless communication module 7, the controller 3 generates a shutdown control signal and sends it to the power module 4, and after the power module 4 receives the shutdown control signal, adjusts the output voltage. At the preset low voltage range.
  • the controller 3 can be wirelessly connected to the solar controller through the wireless communication module 7, so that the controller 3 can wirelessly receive the remote shutdown control command sent by the solar controller through the wireless communication module 7, the remote switch
  • the break control command is issued by a professional operating solar controller.
  • the controller 3 can also be wirelessly connected to a user equipment (UE) through a wireless communication module 7, such as a smart phone, so that the controller 3 can wirelessly receive the UE through the wireless communication module 7. Remote shutdown control command.
  • UE user equipment
  • a wireless communication module 7 such as a smart phone
  • the controller 3 generates a shutdown control signal upon receiving a remote shutdown control command or acquiring state detection data and detecting an abnormality in the state.
  • Each state detecting circuit included in the state detecting module 2 in FIG. 2 is specifically described as follows:
  • the state detecting module 2 includes a temperature detecting circuit 21; the temperature detecting circuit 21 detects the temperature in the solar module junction box, and transmits the detected temperature data to the controller 3, and the controller 3 acquires the temperature data, and When the temperature data is abnormal, a shutdown control signal is generated, and the shutdown control signal is sent to the power supply module 4.
  • state detection module 2 may include voltage detection circuit 22.
  • the voltage detecting circuit 22 detects the voltage between the two input terminals of the mounting case 1 (corresponding to detecting the voltage output from the solar module 5), and transmits the detected voltage data to the controller 3, and the controller 3 acquires the voltage data, and When the voltage data is abnormal, a shutdown control signal is generated, and the shutdown control signal is transmitted to the power module 4.
  • the state detecting module 2 may include a current detecting circuit 23.
  • the current detecting circuit 23 detects the current of any input terminal of the mounting case 1 (corresponding to detecting the current output from the solar module 5), and transmits the detected current data to the controller 3, and the controller 3 acquires the current data, and the current data is abnormal.
  • the shutdown control signal is generated, the shutdown control signal is sent to the power module 4.
  • the controller 3 determines whether the temperature data is abnormal.
  • the determining manner is, for example, comparing the magnitude between the temperature data and the preset temperature threshold. If the temperature data is greater than the preset temperature threshold, determining the temperature. The data is abnormal.
  • the comparison function can be implemented by a comparison circuit.
  • the controller 3 determines whether the voltage data is abnormal.
  • the determining manner is, for example, comparing the magnitude between the voltage data and the preset voltage threshold. If the voltage data is greater than the preset voltage threshold, determining the voltage. The data is abnormal.
  • the comparison function can be implemented by a comparison circuit.
  • the controller 3 determines whether the current data is abnormal.
  • the determining manner is, for example, comparing the magnitude between the current data and the preset current threshold. If the current data is greater than the preset current threshold, determining the current. The data is abnormal.
  • the comparison function can be implemented by a comparison circuit.
  • the state detecting module 2 may include any one of a temperature detecting circuit 21, a voltage detecting circuit 22, and a current detecting circuit 23, and the combination thereof, and the controller 3 receives abnormal temperature data and abnormal voltage. Any one or combination of data or abnormal current data generates a shutdown control signal.
  • the preset temperature threshold, the preset voltage threshold, and the preset current threshold are all threshold values corresponding to the normal operation of the solar module 5, and exceeding the threshold indicates that the solar module 5 is abnormal, and the preset temperature threshold is
  • the specific values of the preset voltage threshold and the preset current threshold are determined according to the performance of the solar module 5, and the specific value is not limited in this embodiment.
  • the temperature detecting circuit 21 can also be disposed on the back surface of the solar module 5 to directly detect the temperature of the solar module 5, and the temperature detecting circuit 21 can also be disposed within a preset range around the solar module 5 to detect the solar module 5. The ambient temperature at the place.
  • FIG. 4 is a block diagram showing the structure of a solar module junction box of an exemplary embodiment of the present application.
  • the solar module junction box shown in FIG. 4 may further include a power supply module 8 as compared with the solar module junction box shown in FIG. 2.
  • the power supply module 8 is mounted within the mounting housing 1 and the power supply module 8 is used to obtain electrical energy output by the solar energy component 5 and to power the controller 3.
  • the power supply module 8 can also supply power to each of the state detection circuits included in the state detection module 2.
  • the present disclosure further provides a solar energy system, which may include:
  • the solar system is a two-layer structure, the lower layer is a solar module junction box, and the upper layer is a solar controller.
  • the solar module junction box is wired to the solar controller, and the number of solar module junction boxes connected to each solar controller does not exceed a preset number corresponding to the wired mode.
  • the solar module junction box is wirelessly connected to the solar controller, and the number of solar module junction boxes connected to each solar controller does not exceed a preset number corresponding to the wireless mode.
  • the function of the solar controller can follow the functions of the existing solar controller, and details are not described herein.
  • the solar energy system has a limit on the number of solar module junction boxes depending on the type of connection. Specifically, when the solar component junction box is connected to the solar controller by wire, the number of solar component junction boxes connected by each solar controller does not exceed a preset number corresponding to the wired mode; when the solar component junction box is wirelessly When the solar controller is connected, the number of solar component junction boxes connected to each solar controller does not exceed the preset number corresponding to the wireless mode.
  • the preset number of different wired modes is different, and the preset number of different wireless modes is different.
  • the preset number corresponding to the RS485 mode is, for example, any one of 60 to 80 ranges, and the specific value of the preset number corresponding to the RS485 mode. Limited by the communication capability of RS485 mode communication, the preset number corresponding to RS485 mode can be determined according to the actual situation.
  • the preset number corresponding to the power carrier mode is, for example, any one of 20 to 50 ranges, and the preset number of power carrier modes is corresponding.
  • the specific value is limited by the power line layout, the number of junction boxes in which the power line can be connected in series, and the capacity of the inverter, wherein the capacity of the inverter is the number of solar module junction boxes connected by the inverter.
  • the number of presets corresponding to the wireless mode is, for example, 500, and the preset number corresponding to the wireless mode is limited by the coverage range corresponding to different wireless modes and the number of wireless accesses.
  • the present disclosure also provides a solar energy system, which may include: at least one solar controller and a plurality of gateways; each gateway is connected to the solar controller by wire and/or wirelessly.
  • the solar system is a three-layer structure
  • the lower layer is a solar module junction box
  • the middle layer is a gateway
  • the upper layer is a solar controller
  • each gateway connects a plurality of solar component junction boxes as described in the first exemplary embodiment by wire, different solar component junction boxes are connected to different solar modules, and each gateway is connected
  • the number of solar module junction boxes does not exceed the wired connection capacity of the gateway; the wired connection capacity of the gateway is also the maximum number of solar module junction boxes that the gateway connects by wire.
  • each gateway wirelessly connects a plurality of solar component junction boxes as described in the first exemplary embodiment, different solar component junction boxes connect different solar components, and each gateway is connected
  • the number of solar module junction boxes does not exceed the wireless connection capacity of the gateway; the wireless connection capacity of the gateway is also the maximum number of solar module junction boxes that the gateway connects wirelessly.
  • the wired mode is the power carrier mode
  • all the solar component junction boxes connected to the same inverter 6 are connected to the same gateway by a power carrier mode (for example, a power line).
  • the solar energy system will be specifically described below with reference to FIGS. 5 to 7.
  • the solar energy system can be divided into a two-layer structure and a three-layer structure according to the number of solar module junction boxes.
  • the two-layer wired structure as described in the second exemplary embodiment is adopted, for example, the solar component junction box is wired through RS485 or a power carrier. Solar controller communication.
  • the two-layer wireless structure as described in the second exemplary embodiment is adopted, for example, the solar component junction box is wirelessly connected to the solar energy via ZigBee or Bluetooth. Controller communication.
  • the three-layer structure and the three-layer structure solar system are adopted as described in the third exemplary embodiment. It includes three typical communication architecture solutions: wired solution, wireless solution and wired and wireless hybrid solution.
  • Cable scheme RS485 or power carrier mode is adopted. Specifically, as shown in Figure 5, each hundred or so solar module junction box is connected to a gateway through RS485, and a gateway-connected solar component junction box can also be adjusted according to the actual site environment. Quantity. When using power carrier communication, the number of gateways can be configured according to the number of inverters. All solar module junction boxes connected to one inverter can use one gateway, and the gateway is connected to the solar controller through wired means such as RS485. Realize the communication connection of the entire solar system.
  • the solar module junction box is composed of tens to 100 units to form a ZigBee network, and each ZigBee network is provided with a gateway.
  • the gateway is composed of a LoRa module and a ZigBee communication module, and the LoRa module and the ZigBee communication module are connected through a serial port, wherein the ZigBee communication module can be a cc2530 chip or a cc2538 chip.
  • the gateway is responsible for wireless communication with the various solar module junction boxes.
  • LoRaWAN is a typical star topology.
  • the solar controller is a transparent relay that connects the LoRa module and the solar server.
  • the solar server is not shown in the figure.
  • the solar server is also the server layer in Figure 1.
  • the solar controller included, the solar controller and the solar server are connected by standard IP (Internet Protocol), and the solar controller and the LoRa module are connected in a star network.
  • IP Internet Protocol
  • the solar controller can realize multi-channel parallel reception and simultaneously process multiple Road signals, all LoRa modules and solar controllers are two-way communication, increasing network capacity.
  • the second method uses peer-to-peer polling to form a network, but the efficiency of point-to-point polling is much lower than that of a star network.
  • the advantage of peer-to-peer polling is that it is easy to implement in terms of communication protocols and systems, and the cost of R&D and engineering is relatively high. Low, it is more suitable for projects with a small number of solar module junction boxes. Generally, in less than 500 junction box projects, solar controllers and gateways can be used for point-to-point polling.
  • NB-IoT is an emerging technology in the Internet of Things that supports low-power devices in the WAN cellular data connection, also known as low-power wide area network (LPWAN).
  • LPWAN low-power wide area network
  • NB-IoT is built on a cellular network and can be deployed directly on a GSM network, a UMTS network or an LTE network.
  • the NB-IoT module can directly replace the functions of the LoRa module and the solar controller in the wireless solution, so the data communication between the solar module junction box and the server can be realized through the two-layer wireless network.
  • the wired and wireless hybrid solution that is, the combination of RS485 and ZigBee, or the combination of power carrier and LoRa, specifically, as shown in FIG. 7, the communication architecture of RS485 plus ZigBee communication module, wherein the ZigBee communication module can be The cc2530 chip or the cc2538 chip, the gateway shown in FIG. 7 also includes a serial port to RS485 interface not shown in FIG. 7, which facilitates the connection between the RS485 and the ZigBee communication module.
  • the wired and wireless hybrid solution has the advantages of combining the reliability of the wired mode with the convenience of the wireless mode to achieve optimal design of the entire network performance.
  • ZigBee wireless communication scheme is adopted.
  • the construction is convenient, no additional cable is needed, and the combination scheme can be selected according to the actual situation of the project.
  • Some projects separate the solar component junction box from the solar component for aesthetic reasons. It is convenient to hide the solar module junction box in the metal frame of the solar module. This installation method will shield the wireless signal, so it is necessary to adopt the wired scheme of RS485 or power carrier, and the cable is placed in the frame without affecting the appearance and realizing. Reliable communication.
  • the CAN bus can be used to replace the wired scheme of RS485 or power carrier.
  • the CAN bus scheme mentioned in the networking scale and distance range mentioned in the embodiment can realize the above communication function, and the main difficulty lies in the software. Implementation and hardware costs are slightly inferior to RS485.
  • a Bluetooth mesh network can be used instead of the ZigBee networking solution.
  • This networking scheme is not worse than the ZigBee networking solution without a power amplifier in terms of the number of networks and the distance.
  • 433MHz wireless communication technology can be used in the wireless communication between the gateway and the central controller.
  • the communication distance can reach several hundred meters, and the transmission rate is generally not lower than the transmission rate of LORA and NB-IoT.
  • the disadvantage is mainly in power consumption.
  • the aspect is higher than the two wireless communication technologies.
  • the present application provides a solar module control method
  • the execution body of the method is the solar module junction box according to the first exemplary embodiment
  • the method may include step 801 Go to step 803:
  • step 802 includes:
  • the state detection data is temperature data, and when the temperature data is abnormal, a shutdown control signal is generated;
  • the state detection data is voltage data output by the solar module, and generates a shutdown control signal when the voltage data is abnormal;
  • the state detection data is current data output by the solar module, and generates a shutdown control signal when the current data is abnormal.
  • a shutdown control signal is generated whenever any of the temperature data, the voltage data, and the current data is abnormal.
  • the present disclosure provides another solar module control method, which is an execution unit of the solar module junction box according to the first exemplary embodiment, and the method may include steps 901 to 904:
  • the present disclosure provides still another solar energy component control method.
  • the method includes steps 1001 and 904, as shown in FIG. 9, and steps 1001 and 1002:
  • the shutdown control signal is generated.
  • step 904 is performed.
  • the power module receives any of the shutdown control signals generated in steps 1002 and 903, and adjusts the output voltage to be in the low voltage range.
  • the size between the state detection data and the preset state threshold is compared in step 902; and in step 903, after the state detection data is greater than the preset state threshold, a shutdown control signal is generated,
  • the specific implementation is as follows:
  • the state detection data is temperature data, and compares a size between the temperature data and a preset temperature threshold; if the temperature data is greater than the preset temperature threshold, generating a shutdown control signal;
  • the state detection data is voltage data output by the solar module, and compares a magnitude between the voltage data and a preset voltage threshold; if the voltage data is greater than the preset voltage threshold, generating a shutdown control signal;
  • the state detection data is current data output by the solar module, and compares a magnitude between the current data and a preset current threshold; if the current data is greater than the preset current threshold, generating a shutdown control signal.
  • the low voltage range is from 0V to 24V.
  • the solar module control method disclosed in the above exemplary embodiment is performed by the solar module junction box according to the first exemplary embodiment. To avoid repetition, the specific description and effects are referred to the first exemplary embodiment, and details are not described herein again.
  • the state of the solar module junction box is detected by the state detecting module, and the controller may determine whether the solar module needs to be turned off according to the state, and send a shutdown to the power module when it is determined that the solar module needs to be turned off
  • the control signal controls the power module to adjust the output voltage to be in a low voltage range, so that the output voltage of the solar module junction box is in a low voltage range, thereby achieving safe shutdown of the solar module and ensuring personnel safety.

Abstract

本公开涉及一种太阳能组件接线盒、太阳能系统及太阳能组件控制方法,太阳能组件接线盒包括:状态检测模块、控制器及电源模块;状态检测模块连接控制器,控制器连接电源模块;状态检测模块构造为检测太阳能组件的状态,并将状态检测数据发送给控制器,控制器构造为获取状态检测数据,并在状态检测数据异常时生成关断控制信号并发送给电源模块,电源模块接构造为收到关断控制信号后,调整输出电压处于预设的低电压范围。

Description

太阳能组件接线盒、太阳能系统及太阳能组件控制方法 技术领域
本申请涉及但不限于一种太阳能组件接线盒、太阳能系统及太阳能组件控制方法。
背景技术
随着分布式发电系统的发展,其在户用以及太阳能建筑一体化(Building Integrated PV,BIPV)等方面的应用增多,因此,对分布式发电系统的安全性和可靠性的要求越来越高。但是,现有的太阳能组件接线盒在火灾和自然灾害等异常环境中无法实现安全关断,造成安全隐患。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种能够实现太阳能组件的安全关断以保证人员的安全的太阳能组件接线盒、太阳能系统及太阳能组件控制方法。
根据本申请的第一方面,提供一种太阳能组件接线盒,包括:
状态检测模块、控制器以及电源模块;
所述状态检测模块连接所述控制器,所述控制器连接所述电源模块;
所述状态检测模块构造为检测太阳能组件的状态,并将状态检 测数据发送给所述控制器,所述控制器构造为获取所述状态检测数据,并在所述状态检测数据异常时生成关断控制信号并发送给所述电源模块,所述电源模块构造为接收到所述关断控制信号后,调整输出电压处于预设的低电压范围。
在一示例性实施例中,所述控制器构造为在获取所述状态检测数据后,比较所述状态检测数据与预设状态阈值之间的大小,如果所述状态检测数据大于预设状态阈值,则生成关断控制信号。
在一示例性实施例中,所述太阳能组件接线盒还可以包括:无线通信模块;
所述无线通信模块连接所述控制器;
所述控制器构造为通过所述无线通信模块接收远程关断控制指令后,生成所述关断控制信号并发送给所述电源模块。
在一示例性实施例中,所述状态检测模块可以包括温度检测电路、电压检测电路、电流检测电路中的一个或多个;
所述温度检测电路构造为检测太阳能组件的温度,并将检测的温度数据发送给所述控制器,所述控制器构造为获取所述温度数据,并在所述温度数据异常时生成关断控制信号并发送给所述电源模块;
所述电压检测电路构造为检测太阳能组件输出的电压,并将检测的电压数据发送给所述控制器,所述控制器构造为获取所述电压数据,并在所述电压数据异常时生成关断控制信号并发送给所述电源模块;
所述电流检测电路构造为检测太阳能组件输出的电流,并将检测的电流数据发送给所述控制器,所述控制器构造为获取所述电流数据,并在所述电流数据异常时生成关断控制信号并发送给所述电源模块。
在一示例性实施例中,所述控制器构造为在获取所述温度数据后,比较所述温度数据与预设温度阈值之间的大小,如果所述温度 数据大于所述预设温度阈值,则生成关断控制信号;
所述控制器构造为在获取所述电压数据后,比较所述电压数据与预设电压阈值之间的大小,如果所述电压数据大于所述预设电压阈值,则生成关断控制信号;
所述控制器构造为在获取所述电流数据后,比较所述电流数据与预设电流阈值之间的大小,如果所述电流数据大于所述预设电流阈值,则生成关断控制信号。
在一示例性实施例中,所述太阳能组件接线盒还可以包括:供电模块;
所述供电模块构造为获取太阳能组件输出的电能,并向所述控制器供电。
在一示例性实施例中,所述低电压范围可以为0V至24V。
根据本申请的第二方面,提供了一种太阳能系统,包括:
至少一个太阳能控制器以及多个如第一方面所述的太阳能组件接线盒,所述太阳能组件接线盒与太阳能组件对应连接;
所述太阳能组件接线盒通过有线方式连接所述太阳能控制器,且每个太阳能控制器连接的所述太阳能组件接线盒的个数不超过所述有线方式对应的预设个数;和/或
所述太阳能组件接线盒通过无线方式连接所述太阳能控制器,且每个太阳能控制器连接的所述太阳能组件接线盒的个数不超过所述无线方式对应的预设个数。
根据本申请的第三方面,提供了一种太阳能系统,包括:
至少一个太阳能控制器以及多个网关;每个所述网关通过有线方式和/或无线方式连接所述太阳能控制器;
每个所述网关通过有线方式连接多个如第一方面所述的太阳能组件接线盒,所述太阳能组件接线盒与太阳能组件对应连接,且每个所述网关连接的所述太阳能组件接线盒的个数不超过所述网关的 有线连接容量;和/或
每个所述网关通过无线方式连接多个如第一方面所述的太阳能组件接线盒,所述太阳能组件接线盒与太阳能组件对应连接,且每个所述网关连接的所述太阳能组件接线盒的个数不超过所述网关的无线连接容量。
根据本申请的第四方面,提供了一种太阳能组件控制方法,包括:
获取太阳能组件的状态检测数据;
在所述状态检测数据异常时生成关断控制信号;
将所述关断控制信号发送给电源模块,以使所述电源模块接收到所述关断控制信号后,调整输出电压处于预设的低电压范围。
在一示例性实施例中,在生成关断控制信号步骤之前,所述方法还可以包括:
比较所述状态检测数据与预设状态阈值之间的大小,如果所述状态检测数据大于预设状态阈值,所述状态检测数据异常;
相应地,如果所述状态检测数据大于预设状态阈值,则生成关断控制信号。
在一示例性实施例中,所述方法还可以包括:
无线接收远程关断控制指令;
在无线接收到远程关断控制指令后,生成所述关断控制信号。
在一示例性实施例中,生成关断控制信号的步骤可以包括:
所述状态检测数据为温度数据,在所述温度数据异常时生成关断控制信号;
和/或
所述状态检测数据为太阳能组件输出的电压数据,在所述电压数据异常时生成关断控制信号;
和/或
所述状态检测数据为太阳能组件输出的电流数据,在所述电流数据异常时生成关断控制信号。
在一示例性实施例中,比较所述状态检测数据与预设状态阈值之间的大小的步骤和生成关断控制信号步骤可以包括:
所述状态检测数据为温度数据,比较所述温度数据与预设温度阈值之间的大小;如果所述温度数据大于所述预设温度阈值,则生成关断控制信号;
和/或
所述状态检测数据为太阳能组件输出的电压数据,比较所述电压数据与预设电压阈值之间的大小;如果所述电压数据大于所述预设电压阈值,则生成关断控制信号;
和/或
所述状态检测数据为太阳能组件输出的电流数据,比较所述电流数据与预设电流阈值之间的大小;如果所述电流数据大于所述预设电流阈值,则生成关断控制信号。
在一示例性实施例中,所述低电压范围可以为0V至24V。
在阅读并理解了附图和详细描述后,可以理解本申请的其他方面。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为示出一种示例性的太阳能系统的结构示意图;
图2为示出本申请的示例性的太阳能组件接线盒的结构框图;
图3为示出本申请的示例性的又一种太阳能组件接线盒的结构框图;
图4为示出本申请的示例性的另一种太阳能组件接线盒的结构框图;
图5为示出本申请的示例性的太阳能系统的结构示意图;
图6为示出本申请的示例性的另一种太阳能系统的结构示意图;
图7为示出本申请的示例性的又一种太阳能系统的结构示意图;
图8为示出本申请的示例性的太阳能组件控制方法流程图;
图9为示出本申请的示例性的另一种太阳能组件控制方法流程图;
图10为示出本申请的示例性实施的又一种太阳能组件控制方法流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1示出了一种太阳能系统,太阳能系统的通讯分为四个层次:接线盒层、网关层、太阳能控制器层和服务器层,接线盒通过2.4G频段与网关进行无线通讯,一个网关可以接入上百个接线盒,网关与接线盒的距离在二十至三十米以内。网关与太阳能控制器之间采用433M频段进行无线通讯,一个网关可以接入至少10个中继,通信距离在一千米以内。太阳能控制器与太阳能服务器通过以太网进行通讯,也可以采用4G等无线通讯方式进行通讯。图1所示的太阳能系统可以 将成千上万个太阳能组件组到一个太阳能服务器内。
在第一示例性实施例中,如图2所示,本公开提供一种太阳能组件接线盒,用于连接太阳能组件5并输出电能,太阳能组件5包括应用于BIPV场合的薄膜组件,太阳能组件接线盒可包括:安装壳1、状态检测模块2、控制器3以及电源模块4。
在一示例性实施例中,状态检测模块2、控制器3以及电源模块4均安装在安装壳1内;安装壳1具有两个输入端以及两个输出端;安装壳1的两个输入端连接太阳能组件5的两个输出端;安装壳1的两个输出端连接电源模块4的两个输出端,安装壳1的两个输出端用于输出电能;状态检测模块2连接控制器3,控制器3连接电源模块4。
在一示例性实施例中,电源模块4例如为DC/DC电源模块。
在一示例性实施例中,安装壳1的两个输出端可连接逆变器6,进而使逆变器6输出交流电。
本实施例公开的太阳能组件接线盒的信号流向或数据流向描述如下:
状态检测模块2检测太阳能组件5的状态,并将状态检测数据发送给控制器3,控制器3获取状态检测数据,并在状态检测数据异常时生成关断控制信号并发送给电源模块4,电源模块4接收到关断控制信号后,调整输出电压处于预设的低电压范围。
在一示例性实施例中,太阳能组件接线盒的状态具体为太阳能组件接线盒工作相关的状态,包括温度、电流和/或电压等。
在一示例性实施例中,状态检测模块2检测太阳能组件5的状态,太阳能组件5的状态包括温度、电流和/或电压等。太阳能组件接线盒可安装在太阳能组件5的背面。
在一示例性实施例中,控制器3获取状态检测数据后,判断状态检测数据是否异常,判断方式例如比较状态检测数据与预设状态 阈值之间的大小,如果状态检测数据大于预设状态阈值,则判定状态检测数据异常。比较功能可通过比较电路实现。
在一示例性实施例中,预设状态阈值为太阳能组件5正常工作时所对应的临界值,状态检测数据超出临界值则表示状态检测数据异常。控制器3获取状态检测数据后,可通过比对预设状态阈值,确定状态检测数据是否异常,比对功能的实现可采用比较电路来实现,也即控制器3中设置有比较电路,比较电路属于成熟技术,本实施例不再赘述。
在一示例性实施例中,控制器3获取状态检测数据后,若确定状态检测数据异常,说明太阳能组件5处于异常环境,异常环境例如火灾、自然灾害或其他有损太阳能组件5的环境,则控制器3生成关断控制信号,用以关断太阳能组件5。
在一示例性实施例中,控制器3生成关断控制信号,关断控制信号可控制电源模块4调整自身的输出电压处于预设的低电压范围,也即电源模块4接收到关断控制信号后,调整自身的输出电压处于预设的低电压范围。
在一示例性实施例中,关断控制信号例如为PWM(Pulse Width Modulation,脉冲宽度调制)占空比配置信号,PWM占空比配置信号可控制电源模块4调整PWM占空比,从而控制自身的输出电压处于预设的低电压范围。
在一示例性实施例中,预设的低电压范围例如为0V至24V,属于人体安全电压,PWM占空比配置信号所配置的PWM占空比处于与预设的低电压范围对应的PWM占空比范围。在一示例性实施例中,PWM占空比配置信号所配置的占空比为与0V对应的PWM占空比。
如上所述,根据本实施例公开的太阳能组件接线盒,通过状态检测模块2检测太阳能组件5的状态,控制器3可根据状态确定是 否需要关断太阳能组件5,并在确定需要关断太阳能组件5时向电源模块4发送关断控制信号,控制电源模块4调整输出电压处于低电压范围,又由于电源模块4的输出端连接太阳能组件接线盒的输出端,因此,太阳能组件接线盒的输出电压处于低电压范围,实现太阳能组件的安全关断,保证人员的安全。
图3示出了本申请的一示例性实施例的太阳能组件接线盒的结构框图。与图2所示的太阳能组件接线盒相比,图3所示的太阳能组件接线盒还可包括无线通信模块7。
在一示例性实施例中,无线通信模块7安装在安装壳1内,且连接控制器3。
在一示例性实施例中,控制器3通过无线通信模块7接收远程关断控制指令后,生成关断控制信号并发送给电源模块4,电源模块4接收到关断控制信号后,调整输出电压处于预设的低电压范围。
在一示例性实施例中,控制器3通过无线通信模块7可与太阳能控制器无线连接,从而控制器3通过无线通信模块7可无线接收太阳能控制器发送的远程关断控制指令,该远程关断控制指令由专业人员操作太阳能控制器发出。
在一示例性实施例中,控制器3通过无线通信模块7也可与用户终端(User Equipment,UE)无线连接,UE例如为智能手机,从而控制器3通过无线通信模块7可无线接收UE发送的远程关断控制指令。
在一示例性实施例中,控制器3接收远程关断控制指令后或者获取状态检测数据并在所述状态检测数据异常时都会生成关断控制信号。
图2中状态检测模块2包括的各状态检测电路,具体描述如下:
在一示例性实施例中,状态检测模块2包括温度检测电路21;温度检测电路21检测太阳能组件接线盒内温度,并将检测的温度数据发送给控制器3,控制器3获取温度数据,并在温度数据异常时生成关断控制信号,将该关断控制信号发送给电源模块4。
在一示例性实施例中,状态检测模块2可以包括电压检测电路22。电压检测电路22检测安装壳1的两个输入端之间的电压(相当于检测太阳能组件5输出的电压),并将检测的电压数据发送给控制器3,控制器3获取电压数据,并在电压数据异常时生成关断控制信号,将该关断控制信号发送给电源模块4。
在一示例性实施例中,状态检测模块2可以包括电流检测电路23。电流检测电路23检测安装壳1的任一输入端的电流(相当于检测太阳能组件5输出的电流),并将检测的电流数据发送给控制器3,控制器3获取电流数据,并在电流数据异常时生成关断控制信号,将该关断控制信号发送给电源模块4。
在一示例性实施例中,控制器3获取温度数据后,判断温度数据是否异常,判断方式例如比较温度数据与预设温度阈值之间的大小,如果温度数据大于预设温度阈值,则判定温度数据异常。比较功能可通过比较电路实现。
在一示例性实施例中,控制器3获取电压数据后,判断电压数据是否异常,判断方式例如比较电压数据与预设电压阈值之间的大小,如果电压数据大于预设电压阈值,则判定电压数据异常。比较功能可通过比较电路实现。
在一示例性实施例中,控制器3获取电流数据后,判断电流数据是否异常,判断方式例如比较电流数据与预设电流阈值之间的大小,如果电流数据大于预设电流阈值,则判定电流数据异常。比较功能可通过比较电路实现。
在一示例性实施例中,状态检测模块2可以包括温度检测电路 21、电压检测电路22和电流检测电路23中的任意一种及其组合,控制器3接收到异常的温度数据、异常的电压数据或异常的电流数据中的任意一种或其组合都会生成关断控制信号。
在一示例性实施例中,预设温度阈值、预设电压阈值和预设电流阈值均为太阳能组件5正常工作时所对应的临界值,超出临界值则表示太阳能组件5异常,预设温度阈值、预设电压阈值和预设电流阈值的具体取值根据太阳能组件5的性能确定,本实施例不限定具体取值。
在一示例性实施例中,温度检测电路21也可设置在太阳能组件5的背面直接检测太阳能组件5的温度,温度检测电路21也可设置在太阳能组件5周围预设范围内检测太阳能组件5所处的环境温度。
图4示出了本申请的一示例性实施例的太阳能组件接线盒的结构框图。与图2所示的太阳能组件接线盒相比,图4所示的太阳能组件接线盒还可包括供电模块8。
在一示例性实施例中,供电模块8安装在安装壳1内,且供电模块8用于获取太阳能组件5输出的电能,并向控制器3供电。
在一示例性实施例中,供电模块8也可向状态检测模块2包括的各状态检测电路供电。
在第二示例性实施例中,本公开还提供一种太阳能系统,可包括:
至少一个太阳能控制器以及多个如第一示例性实施例所述的太阳能组件接线盒;不同的所述太阳能组件接线盒连接不同的太阳能组件,也即太阳能组件接线盒与太阳能组件一一对应连接。
在一示例性实施例中,太阳能系统为两层结构,下层是太阳能组件接线盒,上层是太阳能控制器。
在一示例性实施例中,太阳能组件接线盒通过有线方式连接太 阳能控制器,且每个太阳能控制器连接的太阳能组件接线盒的个数不超过有线方式对应的预设个数。
在一示例性实施例中,太阳能组件接线盒通过无线方式连接太阳能控制器,且每个太阳能控制器连接的太阳能组件接线盒的个数不超过无线方式对应的预设个数。
在一示例性实施例中,太阳能控制器的功能可沿用现有的太阳能控制器的功能,在此不再赘述。
在一示例性实施例中,太阳能系统根据不同的连接方式对太阳能组件接线盒的个数有限制。具体地,当太阳能组件接线盒通过有线方式连接太阳能控制器时,每个太阳能控制器连接的太阳能组件接线盒的个数不超过有线方式对应的预设个数;当太阳能组件接线盒通过无线方式连接太阳能控制器时,每个太阳能控制器连接的太阳能组件接线盒的个数不超过无线方式对应的预设个数。
在一示例性实施例中中,不同的有线方式对应的预设个数不同,不同的无线方式对应的预设个数不同。
在一示例性实施例中,若有线方式为RS485方式,则RS485方式对应的预设个数例如为60个至80个范围内的任一个数,RS485方式对应的预设个数的具体取值受限于采用RS485方式进行通信的通信能力,RS485方式对应的预设个数可根据实际情况确定。
在一示例性实施例中,若有线方式为电力载波方式,则电力载波方式对应的预设个数例如为20个至50个范围内的任一个数,电力载波方式对应的预设个数的具体取值受限于电力线布局、电力线能组串连接的接线盒的个数以及逆变器的容量,其中逆变器的容量为逆变器连接的太阳能组件接线盒的个数。
在一示例性实施例中,无线方式对应的预设个数例如为500个,无线方式对应的预设个数受限于不同无线方式对应的覆盖范围以及 无线接入数量。
在第三示例性实施例中,本公开还提供一种太阳能系统,可包括:至少一个太阳能控制器以及多个网关;每个网关通过有线方式和/或无线方式连接太阳能控制器。
在一示例性实施例中,太阳能系统为三层结构,下层是太阳能组件接线盒,中间层是网关,上层是太阳能控制器。
在一示例性实施例中,每个网关通过有线方式连接多个如第一示例性实施例所述的太阳能组件接线盒,不同的太阳能组件接线盒连接不同的太阳能组件,且每个网关连接的太阳能组件接线盒的个数不超过网关的有线连接容量;网关的有线连接容量也即网关通过有线方式连接的太阳能组件接线盒的最大个数。
在一示例性实施例中,每个网关通过无线方式连接多个如第一示例性实施例所述的太阳能组件接线盒,不同的太阳能组件接线盒连接不同的太阳能组件,且每个网关连接的太阳能组件接线盒的个数不超过网关的无线连接容量;网关的无线连接容量也即网关通过无线方式连接的太阳能组件接线盒的最大个数。
在一示例性实施例中,若有线方式为电力载波方式,则连接同一逆变器6的所有太阳能组件接线盒通过电力载波方式(例如电力线)连接同一网关。
下面结合图5至图7,对太阳能系统进行具体说明。太阳能系统根据太阳能组件接线盒的个数可以分为两层结构和三层结构。
如果太阳能组件接线盒的个数未超过有线方式对应的预设个数,则采用如第二示例性实施例所述的两层有线结构,例如太阳能组件接线盒通过RS485或电力载波等有线方式与太阳能控制器通讯。
如果太阳能组件接线盒的个数未超过无线方式对应的预设个数, 则采用如第二示例性实施例所述的两层无线结构,例如太阳能组件接线盒通过ZigBee或蓝牙等无线方式与太阳能控制器通讯。
如果太阳能组件接线盒的个数超过有线方式对应的预设个数且超过无线方式对应的预设个数,则采用如第三示例性实施例所述的三层结构,三层结构的太阳能系统包括三种典型的通讯架构方案:有线方案、无线方案及有线与无线混合方案。
有线方案:采用RS485或电力载波方式,具体地,如图5所示,每一百个左右太阳能组件接线盒通过RS485连接一个网关,也可根据实际现场环境调整一个网关连接的太阳能组件接线盒的数量。当采用电力载波方式通讯时,网关的数量可根据逆变器的数量来配置,一个逆变器连接的所有太阳能组件接线盒可使用一个网关,网关再通过RS485等有线方式与太阳能控制器连接,实现整个太阳能系统的通讯连接。
无线方案:采用ZigBee加LoRa或NB-IoT的方式,具体地,如图6所示,太阳能组件接线盒以几十到一百个左右为单位,组成一个ZigBee网络,每一个ZigBee网络设置一个网关,网关由LoRa模块与ZigBee通信模块构成,LoRa模块与ZigBee通信模块之间通过串口连接,其中ZigBee通信模块可以为cc2530芯片或cc2538芯片。网关负责与各个太阳能组件接线盒的无线通讯。LoRa模块通讯有两种方式:第一种采用LoRaWAN,针对于远距离通信网络设计的一套通讯协议和系统架构,具有体积小、功耗低、传输距离远、抗干扰能力强等特点,可根据实际应用情况对天线增益进行调节。LoRaWAN是一个典型的星形拓扑结构,在这个网络架构中,太阳能控制器是一个透明的中继,连接LoRa模块和太阳能服务器(图中未示出太阳能服务器,太阳能服务器也即图1中服务器层所包括的太阳能服务器),太阳能控制器与太阳能服务器通过标准IP(互联网协议)连接,太阳能控制器和LoRa模块间以星形网方式组网,太阳能 控制器可以实现多通道并行接收,同时处理多路信号,所有的LoRa模块与太阳能控制器之间均是双向通信,增加了网络容量。第二种采用点对点轮询的方式组网,但是点对点轮询效率要远低于星形网,点对点轮询的方式组网的好处是在通讯协议和系统方面便于实现,研发和工程成本相对较低,比较适用于太阳能组件接线盒数量较少的项目当中,一般在少于500个接线盒的项目中均可以采用太阳能控制器与网关点对点轮询的方式组网。
另外,NB-IoT是物联网领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,也即低功耗广域网(LPWAN)。NB-IoT构建于蜂窝网络,可直接部署于GSM网络、UMTS网络或LTE网络。NB-IoT模块在无线方案中可以直接替代LoRa模块和太阳能控制器的功能,因此通过两层无线网络即可实现太阳能组件接线盒与服务器之间的数据通讯。
有线与无线混合方案,即RS485与ZigBee相结合的方式,或电力载波与LoRa相结合的方式,具体地,如图7所示,采用RS485加ZigBee通信模块的通讯架构,其中ZigBee通信模块可以为cc2530芯片或cc2538芯片,图7所示的网关还包括图7中未示出的串口转RS485接口,便于RS485与ZigBee通信模块之间的连接。有线与无线混合方案优点是结合有线方式的可靠性与无线方式的便捷性等不同特点来实现整个网络性能的最优设计。
以上方案中,采用RS485或电力载波的有线方案时,具有技术成熟,可靠性高等特点。采用ZigBee无线通讯方案,太阳能组件接线盒与网关组网时施工方便,不需额外增加线缆,还可以根据项目实际情况选择组合方案,有些项目为了美观需要把太阳能组件接线盒与太阳能组件分开,便于将太阳能组件接线盒隐藏在太阳能组件的金属框架中,这种安装方式会将无线信号屏蔽,故需要采用RS485或电力载波的有线方案,将线缆放在框架中既不影响美观又能实现 可靠的通讯。
在具体应用中,可以采用CAN总线来替代RS485或电力载波的有线方案,在实施例中提到的组网规模和距离范围内CAN总线方案均可以实现上述的通讯功能,其主要难点在软件的实现和硬件成本上比RS485略显劣势。
在具体应用中,可以采用蓝牙mesh组网来替代ZigBee组网方案,这种组网方案在组网数量和距离方面都不差于不加功率放大器的ZigBee组网方案。在网关与中控器的无线通讯可采用433MHz的无线通讯技术,这种通讯距离可以达到几百米,传输速率一般也不会低于LORA和NB-IoT的传输速率,缺点主要是在功耗方面要高于这两种无线通讯技术。
在第四示例性实施例中,如图8所示,本申请提供一种太阳能组件控制方法,该方法的执行主体为第一示例性实施例涉及的太阳能组件接线盒,该方法可包括步骤801至步骤803:
801、获取太阳能组件的状态检测数据;
802、在所述状态检测数据异常时生成关断控制信号;
803、将所述关断控制信号发送给电源模块,以使所述电源模块接收到所述关断控制信号后,调整输出电压处于预设的低电压范围。
在一示例性实施例中,步骤802包括:
所述状态检测数据为温度数据,在所述温度数据异常时生成关断控制信号;
和/或
所述状态检测数据为太阳能组件输出的电压数据,在所述电压数据异常时生成关断控制信号;
和/或
所述状态检测数据为太阳能组件输出的电流数据,在所述电流 数据异常时生成关断控制信号。
在一示例性实施例中,当状态检测数据包括温度数据、电压数据和电流数据时,只要温度数据、电压数据和电流数据任一个异常,都会生成关断控制信号。
如图9所示,本公开提供另一种太阳能组件控制方法,该方法的执行主体为第一示例性实施例涉及的太阳能组件接线盒,该方法可包括步骤901至步骤904:
901、获取太阳能组件的状态检测数据;
902、比较所述状态检测数据与预设状态阈值之间的大小;
903、如果所述状态检测数据大于预设状态阈值,则生成关断控制信号;
904、将所述关断控制信号发送给电源模块,以使所述电源模块接收到所述关断控制信号后,调整输出电压处于预设的低电压范围。
如图10所示,本公开提供又一种太阳能组件控制方法,该方法除了包括图9所示的步骤901至步骤904,还包括步骤1001和步骤1002:
1001、无线接收远程关断控制指令;
1002、在无线接收到远程关断控制指令后,生成所述关断控制信号。
在一示例性实施例中,步骤1002生成所述关断控制信号后,执行步骤904。
在一示例性实施例中,电源模块收到步骤1002和步骤903生成的任一关断控制信号,都会调整输出电压处于所述低电压范围。
在一示例性实施例中,步骤902中比较所述状态检测数据与预设状态阈值之间的大小;以及步骤903中在所述状态检测数据大于预设状态阈值后,生成关断控制信号,具体实现为如下步骤:
所述状态检测数据为温度数据,比较所述温度数据与预设温度 阈值之间的大小;如果所述温度数据大于所述预设温度阈值,则生成关断控制信号;
和/或
所述状态检测数据为太阳能组件输出的电压数据,比较所述电压数据与预设电压阈值之间的大小;如果所述电压数据大于所述预设电压阈值,则生成关断控制信号;
和/或
所述状态检测数据为太阳能组件输出的电流数据,比较所述电流数据与预设电流阈值之间的大小;如果所述电流数据大于所述预设电流阈值,则生成关断控制信号。
在一示例性实施例中,所述低电压范围为0V至24V。
以上示例性实施例公开的太阳能组件控制方法由第一示例性实施例涉及的太阳能组件接线盒来执行,为避免重复,具体说明及效果参见第一示例性实施例,在此不再赘述。
根据本申请的上述示例性实施例,通过状态检测模块检测太阳能组件接线盒的状态,控制器可根据状态确定是否需要关断太阳能组件,并在确定需要关断太阳能组件时向电源模块发送关断控制信号,控制电源模块调整输出电压处于低电压范围,从而使得太阳能组件接线盒的输出电压处于低电压范围,实现太阳能组件的安全关断,保证人员的安全。
需要说明的是,在本文中,术语“包括”意在涵盖非排他性的包含。以上仅为本申请的优选实施例,并非因此限制本公开的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种太阳能组件接线盒,包括:
    状态检测模块、控制器以及电源模块;
    所述状态检测模块连接所述控制器,所述控制器连接所述电源模块;
    所述状态检测模块构造为检测太阳能组件的状态,并将状态检测数据发送给所述控制器,所述控制器构造为获取所述状态检测数据,并在所述状态检测数据异常时生成关断控制信号并发送给所述电源模块,所述电源模块构造为接收到所述关断控制信号后,调整输出电压处于预设的低电压范围。
  2. 根据权利要求1所述的太阳能组件接线盒,其中,
    所述控制器构造为在获取所述状态检测数据后,比较所述状态检测数据与预设状态阈值之间的大小,如果所述状态检测数据大于预设状态阈值,则生成关断控制信号。
  3. 根据权利要求1或2所述的太阳能组件接线盒,其中,
    所述太阳能组件接线盒还包括:无线通信模块;
    所述无线通信模块连接所述控制器;
    所述控制器构造为通过所述无线通信模块接收远程关断控制指令后,生成所述关断控制信号并发送给所述电源模块。
  4. 根据权利要求1至3中任一项所述的太阳能组件接线盒,其中,所述状态检测模块包括温度检测电路、电压检测电路、电流检测电路中的一个或多个;
    所述温度检测电路构造为检测太阳能组件的温度,并将检测的温度数据发送给所述控制器,所述控制器构造为获取所述温度数据,并在所述温度数据异常时生成关断控制信号并发送给所述电源模块;
    所述电压检测电路构造为检测太阳能组件输出的电压,并将检 测的电压数据发送给所述控制器,所述控制器构造为获取所述电压数据,并在所述电压数据异常时生成关断控制信号并发送给所述电源模块;
    所述电流检测电路构造为检测太阳能组件输出的电流,并将检测的电流数据发送给所述控制器,所述控制器构造为获取所述电流数据,并在所述电流数据异常时生成关断控制信号并发送给所述电源模块。
  5. 根据权利要求4所述的太阳能组件接线盒,其中,
    所述控制器构造为在获取所述温度数据后,比较所述温度数据与预设温度阈值之间的大小,如果所述温度数据大于所述预设温度阈值,则生成关断控制信号;
    所述控制器构造为在获取所述电压数据后,比较所述电压数据与预设电压阈值之间的大小,如果所述电压数据大于所述预设电压阈值,则生成关断控制信号;
    所述控制器构造为在获取所述电流数据后,比较所述电流数据与预设电流阈值之间的大小,如果所述电流数据大于所述预设电流阈值,则生成关断控制信号。
  6. 根据权利要求1至5中任一项所述的太阳能组件接线盒,其中,所述太阳能组件接线盒还包括:供电模块;
    所述供电模块构造为获取太阳能组件输出的电能,并向所述控制器供电。
  7. 根据权利要求1至6中任一项所述的太阳能组件接线盒,其中,所述低电压范围为0V至24V。
  8. 一种太阳能系统,包括:
    至少一个太阳能控制器以及多个如权利要求1至7中任一项所述的太阳能组件接线盒,所述太阳能组件接线盒与太阳能组件对应连接;
    所述太阳能组件接线盒通过有线方式连接所述太阳能控制器,且每个太阳能控制器连接的所述太阳能组件接线盒的个数不超过所述有线方式对应的预设个数;和/或
    所述太阳能组件接线盒通过无线方式连接所述太阳能控制器,且每个太阳能控制器连接的所述太阳能组件接线盒的个数不超过所述无线方式对应的预设个数。
  9. 一种太阳能系统,包括:
    至少一个太阳能控制器以及多个网关;每个所述网关通过有线方式和/或无线方式连接所述太阳能控制器;
    每个所述网关通过有线方式连接多个如权利要求1至7任一项所述的太阳能组件接线盒,所述太阳能组件接线盒与太阳能组件对应连接,且每个所述网关连接的所述太阳能组件接线盒的个数不超过所述网关的有线连接容量;和/或
    每个所述网关通过无线方式连接多个如权利要求1至7任一项所述的太阳能组件接线盒,所述太阳能组件接线盒与太阳能组件对应连接,且每个所述网关连接的所述太阳能组件接线盒的个数不超过所述网关的无线连接容量。
  10. 一种太阳能组件控制方法,包括:
    获取太阳能组件的状态检测数据;
    在所述状态检测数据异常时生成关断控制信号;以及
    将所述关断控制信号发送给电源模块,以使所述电源模块接收到所述关断控制信号后,调整输出电压处于预设的低电压范围。
  11. 根据权利要求10所述的方法,其中,在生成关断控制信号步骤之前,所述方法还包括:
    比较所述状态检测数据与预设状态阈值之间的大小,如果所述状态检测数据大于预设状态阈值,所述状态检测数据异常;并且
    如果所述状态检测数据大于预设状态阈值,则生成关断控制信 号。
  12. 根据权利要求10或11所述的方法,其中,所述方法还包括:
    无线接收远程关断控制指令;以及
    在无线接收到远程关断控制指令后,生成所述关断控制信号。
  13. 根据权利要求10至12中任一项所述的方法,其中,生成关断控制信号步骤包括:
    所述状态检测数据为温度数据,在所述温度数据异常时生成关断控制信号;
    和/或
    所述状态检测数据为太阳能组件输出的电压数据,在所述电压数据异常时生成关断控制信号;
    和/或
    所述状态检测数据为太阳能组件输出的电流数据,在所述电流数据异常时生成关断控制信号。
  14. 根据权利要求11所述的方法,其中,比较所述状态检测数据与预设状态阈值之间的大小的步骤和生成关断控制信号的步骤包括:
    所述状态检测数据为温度数据,比较所述温度数据与预设温度阈值之间的大小;如果所述温度数据大于所述预设温度阈值,则生成关断控制信号;
    和/或
    所述状态检测数据为太阳能组件输出的电压数据,比较所述电压数据与预设电压阈值之间的大小;如果所述电压数据大于所述预设电压阈值,则生成关断控制信号;
    和/或
    所述状态检测数据为太阳能组件输出的电流数据,比较所述电 流数据与预设电流阈值之间的大小;如果所述电流数据大于所述预设电流阈值,则生成关断控制信号。
  15. 根据权利要求10至14中任一项所述的方法,其中,所述低电压范围为0V至24V。
PCT/CN2018/094313 2018-04-28 2018-07-03 太阳能组件接线盒、太阳能系统及太阳能组件控制方法 WO2019205289A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810402227.7 2018-04-28
CN201820639106.X 2018-04-28
CN201810402227.7A CN110417348A (zh) 2018-04-28 2018-04-28 太阳能组件接线盒、太阳能系统及太阳能组件控制方法
CN201820639106.XU CN208424310U (zh) 2018-04-28 2018-04-28 一种太阳能组件接线盒及太阳能系统

Publications (1)

Publication Number Publication Date
WO2019205289A1 true WO2019205289A1 (zh) 2019-10-31

Family

ID=63077706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094313 WO2019205289A1 (zh) 2018-04-28 2018-07-03 太阳能组件接线盒、太阳能系统及太阳能组件控制方法

Country Status (6)

Country Link
US (1) US20190334473A1 (zh)
EP (1) EP3561987A1 (zh)
JP (1) JP2019193550A (zh)
KR (1) KR20190125149A (zh)
AU (1) AU2018214063A1 (zh)
WO (1) WO2019205289A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260397B (zh) * 2020-09-03 2023-01-17 国家电网有限公司 一种便携式变电站测控装置升级设备
KR102576975B1 (ko) * 2021-03-19 2023-09-12 퍼스트실리콘 주식회사 태양광 발전 시스템의 패널편차에 의한 크리스마스 트리 라이트 이펙트 현상 규명을 위한 테스트 장치
WO2023204325A1 (ko) * 2022-04-20 2023-10-26 퍼스트실리콘 주식회사 태양광 발전 시스템의 패널편차에 의한 크리스마스 트리 라이트 이펙트 현상 규명을 위한 테스트 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140765A (zh) * 2010-10-07 2013-06-05 东芝三菱电机产业系统株式会社 故障检测装置
JP5801699B2 (ja) * 2011-12-06 2015-10-28 株式会社Nttファシリティーズ 太陽光発電装置
CN107834977A (zh) * 2017-11-23 2018-03-23 湖南红太阳新能源科技有限公司 一种光伏组件智能接线盒及其控制方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174307A (ja) * 1998-12-01 2000-06-23 Toshiba Corp 太陽電池発電モジュール及びモジュール接続台数診断装置
US6593520B2 (en) * 2000-02-29 2003-07-15 Canon Kabushiki Kaisha Solar power generation apparatus and control method therefor
DE102009032288A1 (de) * 2009-07-09 2011-01-13 Kostal Industrie Elektrik Gmbh Photovoltaikanlage
EP2284973B1 (de) * 2009-08-06 2012-04-25 SMA Solar Technology AG Rückstromsensor für parallel geschaltete Solarmodule
US8837097B2 (en) * 2010-06-07 2014-09-16 Eaton Corporation Protection, monitoring or indication apparatus for a direct current electrical generating apparatus or a plurality of strings
US8659858B2 (en) * 2010-08-24 2014-02-25 Sanyo Electric Co., Ltd. Ground-fault detecting device, current collecting box using the ground-fault detecting device, and photovoltaic power generating device using the current collecting box
US8508896B2 (en) * 2010-11-09 2013-08-13 Eaton Corporation DC feeder protection system
DE102010053500A1 (de) * 2010-11-23 2012-05-24 Trimos Gmbh Photovoltaikgenerator mit Schutzschaltungsanlage für Photovoltaikmodule
EP2671256B1 (de) * 2011-02-02 2019-03-13 SMA Solar Technology AG Schutzeinrichtung für eine photovoltaikanlage
US20130015875A1 (en) * 2011-07-13 2013-01-17 United Solar Ovonic Llc Failure detection system for photovoltaic array
GB2496139B (en) * 2011-11-01 2016-05-04 Solarcity Corp Photovoltaic power conditioning units
JP2013197217A (ja) * 2012-03-16 2013-09-30 Toshiba Corp 太陽電池発電システム及びその状態監視方法
US20130328404A1 (en) * 2012-06-11 2013-12-12 Panasonic Corporation Voltage conversion apparatus, power generation system, and voltage conversion method
US20140077608A1 (en) * 2012-09-18 2014-03-20 Panasonic Corporation Power generation control device, photovoltaic power generation system and power generation control method
CN203617965U (zh) * 2013-12-09 2014-05-28 北京科诺伟业科技股份有限公司 光伏组串/阵列输出功率优化、汇流、火灾监控装置
US10211631B2 (en) * 2013-12-17 2019-02-19 Enphase Energy, Inc. Voltage clipping
CN105846758A (zh) * 2015-01-16 2016-08-10 台达电子工业股份有限公司 光伏发电系统及关断装置
CN205584126U (zh) * 2016-05-03 2016-09-14 闪耀魅力有限公司 太阳能光伏组件用安全断开接线盒及电站系统
US9991843B2 (en) * 2016-06-03 2018-06-05 Tigo Energy, Inc. Contacts for Junction Boxes on Solar Panels
CN207304483U (zh) * 2017-10-26 2018-05-01 江苏英迈能源科技有限公司 太阳能光伏组件的监控关断装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140765A (zh) * 2010-10-07 2013-06-05 东芝三菱电机产业系统株式会社 故障检测装置
JP5801699B2 (ja) * 2011-12-06 2015-10-28 株式会社Nttファシリティーズ 太陽光発電装置
CN107834977A (zh) * 2017-11-23 2018-03-23 湖南红太阳新能源科技有限公司 一种光伏组件智能接线盒及其控制方法

Also Published As

Publication number Publication date
KR20190125149A (ko) 2019-11-06
EP3561987A1 (en) 2019-10-30
AU2018214063A1 (en) 2019-11-14
US20190334473A1 (en) 2019-10-31
JP2019193550A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
US8228022B2 (en) Solar energy control system
US9602023B2 (en) Single chip grid connected solar micro inverter
WO2019205289A1 (zh) 太阳能组件接线盒、太阳能系统及太阳能组件控制方法
JP3215387U (ja) 太陽光発電モジュールのための監視・停止装置
US11323786B2 (en) General purpose single chip controller
EP2748975A1 (en) Electrical lighting system power control
CN102830661A (zh) 家居控制系统以及家居控制方法
US20220278647A1 (en) Method for determining an operating parameter of a pv installation, pv installation having an inverter and inverter for such a pv installation
WO2010105530A1 (zh) 电流电压动态可调输入的太阳能光伏控制系统
CN208424310U (zh) 一种太阳能组件接线盒及太阳能系统
CN110417348A (zh) 太阳能组件接线盒、太阳能系统及太阳能组件控制方法
CN109976427B (zh) 一种低待机功耗的电源系统
TW201804708A (zh) 室內光源供電控制系統及方法
WO2022217457A1 (zh) 一种供电系统及拓扑检测方法
CN213244435U (zh) 一种智能照明控制系统
CN105207613B (zh) 一种带智能网管的太阳能poe供电单体设备
CN201919011U (zh) 智能电源控制装置
CN202586856U (zh) 一种带无线控制的发电机控制装置
CN114697323B (zh) 智能管理系统、光伏数字能源系统及通讯管理方法
JP2016181969A (ja) 分散型電源のシステム制御装置、分散型電源のシステム制御方法、及びパワーコンディショナ
CN219834439U (zh) 一种基于物联网的智能照明开关面板
CN108282940A (zh) 一种路灯控制系统及控制方法
CN109274330A (zh) 一种基于lora无线通信的一体化组件监控器及光伏组件
Di Zenobio et al. EDISON: An innovative lighting architecture facilitating building automation
CN210225449U (zh) 物联网网关及物联网系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916715

Country of ref document: EP

Kind code of ref document: A1