WO2010105530A1 - 电流电压动态可调输入的太阳能光伏控制系统 - Google Patents

电流电压动态可调输入的太阳能光伏控制系统 Download PDF

Info

Publication number
WO2010105530A1
WO2010105530A1 PCT/CN2010/070959 CN2010070959W WO2010105530A1 WO 2010105530 A1 WO2010105530 A1 WO 2010105530A1 CN 2010070959 W CN2010070959 W CN 2010070959W WO 2010105530 A1 WO2010105530 A1 WO 2010105530A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
solar photovoltaic
current
cpu
voltage
Prior art date
Application number
PCT/CN2010/070959
Other languages
English (en)
French (fr)
Inventor
沈朝晖
徐开勤
Original Assignee
Shen Zhaohui
Xu Kaiqin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shen Zhaohui, Xu Kaiqin filed Critical Shen Zhaohui
Publication of WO2010105530A1 publication Critical patent/WO2010105530A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the invention relates to an electronic system, in particular to a solar photovoltaic control system with dynamically adjustable current and voltage output.
  • the Maximum Power Point Tracking (MPPT) system is a way to maximize the conversion of solar energy into electrical energy by adjusting the operating conditions of the solar cells so that the photovoltaic cells change in environmental conditions such as light intensity and temperature.
  • the technology of the output With different software algorithms and control methods, the efficiency of MPPT is very different. Therefore, the market needs an MPPT module that can adapt to the needs of actual outdoor photovoltaic power generation systems and environmental changes, and is used in grid-connected or non-grid-connected photovoltaic systems.
  • the MPPT module enables photovoltaic cells to convert solar energy into electrical energy under different environmental conditions, and whether this electrical energy can be transmitted to the grid or load with the highest efficiency depends on the voltage, current and other electrical properties of each photovoltaic cell output. Whether the parameters are unified or coordinated throughout the system. This requires efficient and controllable power converters to achieve this dynamic input and output variation to ensure that the photovoltaic cells and systems always output maximum power. Since the solar photovoltaic power station needs to monitor the working status of each PV module in real-time operation, it can efficiently and accurately provide the decision-making basis for management, such as adjustment, maintenance and replacement, so as to improve the management level of solar photovoltaic power station. Reduce operating and maintenance costs while working efficiently.
  • the technical problem to be solved by the present invention is to provide a solar photovoltaic control system with dynamically adjustable current and voltage output, which can realize the maximum photoelectric conversion efficiency and maximum power transmission efficiency of the solar photovoltaic cell assembly, and can not only realize communication connection externally. And it can work more efficiently according to system requirements.
  • a solar photovoltaic control system with dynamically adjustable output current and voltage comprising a CPU module with an MPPT program, a DC/DC module, and a wired and/or wireless communication module, the CPU module with the MPPT program and a DC/DC module, wired And/or a wireless communication module and a solar photovoltaic cell assembly, the DC/DC module being connected to a CPU module with an MPPT program and a solar photovoltaic cell assembly, the wired and/or wireless communication module being connected to the remote information terminal;
  • the MPPT module calculates, tracks and controls the maximum power point voltage of the solar photovoltaic cell module in real time, ensuring that the solar photovoltaic cell module always outputs the maximum power; the solar photovoltaic cell module outputs the electric energy output under the control of the MPPT program to the DC/DC module, and the solar energy
  • the battery operating parameter data is sent to the CPU in real time; the CPU continuously adjusts the output current and voltage values of the DC/DC module according to the command signal transmitted from the remote information terminal
  • the CPU module with the MPPT program is connected to the near-end general interface.
  • the CPU transmits the operating current voltage parameter of the solar photovoltaic cell module and the current voltage parameter outputted by the DC/DC module to the remote information via a wired and/or wireless communication module.
  • the CPU transmits the operating current voltage parameter of the solar photovoltaic cell assembly and the current voltage parameter outputted by the DC/DC module to the near-end universal interface.
  • the CPU causes the DC/DC module to continuously adjust the current and voltage values of the output according to the command signal transmitted from the near-end universal interface.
  • the working parameters of the final output of the DC/DC module are sent to the CPU in real time.
  • the CPU module with the MPPT program automatically disconnects the system and the carried solar photovoltaic cell module from the entire solar grid-connected power generation system when the output current voltage value of the system is lower or higher than the specified range, so that the entire grid is connected.
  • the system forms a path and alarms here; when the solar photovoltaic module carried by the system itself fails, the CPU module with the MPPT program causes the solar photovoltaic module to bypass the system and directly connect to the grid-connected system, and simultaneously alarms , without affecting the solar photovoltaic cell assembly to deliver electrical energy to the system.
  • the solar photovoltaic cell assembly is one or more pieces.
  • the proximal universal interface is connected to a display device, an indicator light or a voice control device.
  • the solar photovoltaic cell module can achieve maximum photoelectric conversion efficiency under different environmental conditions such as light intensity and temperature;
  • the solar photovoltaic cell assembly is displayed with the best efficiency current and voltage parameters and power transmission;
  • the entire grid-connected system works under controlled conditions, which not only improves the energy conversion and energy transmission efficiency of the system, but also enables the entire grid-connected power generation system to work intelligently in real-time monitoring.
  • FIG. 1 is a schematic illustration of a solar photovoltaic control system with a dynamically adjustable current and voltage output of the present invention.
  • 1 is a solar photovoltaic cell module
  • 2 is a DC/DC module
  • 3 is a CPU module with an MPPT program
  • 4 is a wired and / or wireless communication module
  • 5 is a near-end universal interface.
  • the solar photovoltaic control system of the present invention provides a solar photovoltaic cell module, a DC/DC module, a CPU with a MPPT program (central processing unit), and a wired and/or wireless communication module. 4.
  • the near-end universal interface 5 is composed.
  • the solar photovoltaic cell assembly 1 can be one or more pieces, and the near-end universal interface 5 can be connected to a display device, an indicator light, a voice control device, and the like.
  • the CPU module 3 with the MPPT program is connected to the DC/DC module 2, the wired and/or wireless communication module 4, and the solar photovoltaic cell module 1, and the DC/DC module 2 is connected to the CPU module 3 with the MPPT program and the solar photovoltaic cell module 1.
  • the wired and/or wireless communication module 4 is connected to the remote information terminal.
  • the system can transmit information such as working conditions and electrical performance parameters of the solar photovoltaic cell module 1 to the remote information terminal through wired and/or wireless means (wired and/or wireless communication module 4); or according to the remote information terminal through wired and / or wireless mode (wired and / or wireless communication module 4) transmitted external command adjustment system output current voltage and other electrical performance parameters, the above two-way information transmission and command transmission functions can also be achieved through the near-end universal port 5; Solar photovoltaic module 1 or this system is not working normally At this time, the system can also automatically disconnect the solar photovoltaic module 1 or the system from the grid-connected system according to the built-in program. Combined with the MPPT function that comes with the system, it not only ensures that the solar cell works at the point of maximum photoelectric conversion efficiency, but also realizes that the energy of the solar photovoltaic power generation system is transmitted to the grid or load in the most efficient manner.
  • the implementation process of the present invention is specifically as follows:
  • Solar photovoltaic cell module 1 starts to generate electricity and output current voltage under a certain light intensity
  • the MPPT program in the CPU module 3 with the MPPT program calculates, tracks and controls the maximum power point voltage of the solar photovoltaic cell module 1 in real time, ensuring that the solar photovoltaic cell module 1 always outputs the maximum power under different environmental conditions such as different light intensity and temperature. ;
  • the solar photovoltaic cell module 1 transmits the electric energy outputted under the control of the MPPT module in the CPU module 3 with the MPPT program to the DC/DC module 2, and transmits the solar cell operating parameter data to the CPU module 3 with the MPPT program in real time. CPU.
  • the CPU in the CPU module 3 with MPPT program can make the DC/DC module 2 continuously adjust the current and voltage values of its output according to the command signal transmitted from the telematics terminal or the near-end universal interface 5.
  • the operating parameters such as the current output voltage of the final output of the system can be sent to the CPU in the CPU module 3 with the MPPT program in real time.
  • the CPU in the CPU module 3 with the MPPT program can transmit the operating current voltage parameter of the solar photovoltaic cell module 1 and the current voltage parameter outputted by the DC/DC module 2 to the remote via the wired and/or wireless communication module 4.
  • Information terminal, or CPU can put solar light
  • the operating current voltage parameter of the volt battery assembly 1 and the current voltage parameter outputted by the DC/DC module 2 are directly transmitted to the near-end universal interface 5.
  • the operating current and voltage parameters of the solar photovoltaic module 1 and the current and voltage parameters output after being converted by the DC/DC module 2 can also be directly transmitted to the remote information terminal via the wired and/or wireless communication module 4.
  • the program that comes with the CPU module 3 with MPPT program can automatically take the system and the solar photovoltaic module 1 carried from the whole solar grid-connected power generation system when the output current voltage value of the system is lower or higher than the specified range. Disconnected, so that the entire grid-connected system forms a path and alarms; when the solar photovoltaic module 1 carried by the system itself fails, the program of the CPU module 3 with the MPPT program will make the solar photovoltaic
  • the battery assembly 1 bypasses the system and is directly connected to the grid-connected system, and alarms at the same time, so as not to affect the component to deliver power to the system. These abnormal working conditions are notified to the administrator through the telematics terminal. After the above problems or faults return to normal, the system will be put back into service.
  • a component of a solar photovoltaic grid-connected power generation system is equipped with the system, the maximum power point voltage of the component at a light intensity of lOOOW/m 2 is 35V; when the light intensity is reduced to 800W/m 2 , the maximum power point voltage thereof It is 32V. Due to system limitations, systems without MPPT program still operate the module at 35V at 800W/n light intensity, so the maximum power of the component cannot be used at this time. The components with this system will be Under the tracking, calculation and control of the MPPT program, the working voltage of the component is adjusted to the maximum power point voltage of 32V at this time, thereby maximizing the conversion of solar energy into electrical energy.
  • the electric energy obtained under the control of the MPPT module changes due to environmental factors such as light intensity.
  • the current and voltage value parameter signals finally output by the DC/DC module are also transmitted to the CPU and wired and/or wireless communication modules.
  • the CPU can transmit the operating current voltage parameter of the solar cell module and the current/voltage parameter outputted by the DC/DC conversion to the near-end universal interface and transmit to the remote information terminal through the wired and/or wireless module.
  • the remote information terminal will also find the problem at the first time and notify the administrator of the alarm.
  • the system When the system itself fails (for example, the MPPT program works abnormally, the output power of the DC/DC module is attenuated more than the input power), the system will be automatically disconnected from the entire photovoltaic system, and the photovoltaic module will be carried. Directly connected to the PV module display, and immediately alert the remote information terminal to remind the administrator to overhaul.
  • the MPPT program of the present invention can quickly and efficiently track the maximum power point of a photovoltaic module according to changes in environmental factors such as light intensity and temperature.
  • the DC/DC converter module of the system can realize dynamic adjustment of current and voltage output.
  • the system integrates each module into a chip as much as possible, thereby minimizing cost and volume, improving product performance and reliability, and reducing energy self-loss.
  • With the PV modules installed in this system it is intelligent, so that the manager can clearly understand the working status of the entire power generation system.
  • the system can not only transmit data, but also accept commands. When the system or the components in the system are in abnormal working state, the system will automatically switch and alarm, which reduces the fault occurrence point of the entire voltaic power generation system and improves the reliability of the system. .

Description

说 明 书
电流电压动态可调输出的太阳能光伏控制系统
技术领域
本发明涉及一种电子系统,尤其涉及一种电流电压动态可调输出的太 阳能光伏控制系统。
背景技术
太阳能是一种清洁高效的可再生能源。最大功率跟踪 (Maximum Power Point Tracking,简称 MPPT)系统是一种通过调节太阳能电池的工作状况, 使光伏电池在光照强度、温度等环境条件变化的情况下,始终能最大程度 地将太阳能转变为电能输出的技术。 采用不同软件算法以及控制手段, MPPT的效率有着很大差异。 因此市场需要一种能够适应实际户外光伏发 电系统需求和环境变化规律的 MPPT模块, 使之运用于并网或非并网的光 伏系统中。 MPPT模块能使光伏电池在不同环境条件下, 最大限度地将太 阳能转化为电能,而这些电能是否能最高效率地传输给电网或负载,则取 决于每个光伏电池输出的电压、电流等电性能参数是否在整个系统中得以 统一或协调。这就需要高效且可控的电源变换器来实现这种动态输入、输 出变化,才能保证光伏电池及系统始终输出最大功率。 由于太阳能光伏电 站在日常运营中, 需要实时监测每块光伏组件的工作状态, 高效、准确地 向管理者提供做出调整、维修、更换等管理行为的决策依据, 从而在提高 太阳能光伏电站管理水平和工作效率的同时, 降低运营维护成本。
发明内容 本发明要解决的技术问题是提供一种电流电压动态可调输出的太阳 能光伏控制系统,该系统能使太阳能光伏电池组件实现最大的光电转化效 率和最大电能传输效率,不仅可以对外实现通讯联系,而且可以按系统要 求更高效地工作。
为了解决上述技术问题, 本发明通过如下技术方案实现:
一种电流电压动态可调输出的太阳能光伏控制系统, 包括带 MPPT程 序的 CPU模块、 DC/DC模块以及有线和 /或无线通讯模块, 所述带 MPPT程 序的 CPU模块与 DC/DC模块、 有线和 /或无线通讯模块以及太阳能光伏电 池组件连接, 所述 DC/DC模块与带 MPPT程序的 CPU模块以及太阳能光伏 电池组件连接, 所述有线和 /或无线通讯模块与远程信息终端连接; 所述 MPPT模块实时运算、 跟踪并控制太阳能光伏电池组件的最大功 率点电压,保证太阳能光伏电池组件始终输出最大功率;太阳能光伏电池 组件在 MPPT程序控制下输出的电能传输到 DC/DC模块, 并把太阳能电池 工作参数数据实时发送给 CPU; CPU根据远程信息终端传输过来的指令信 号,使 DC/DC模块连续调节其输出的电流电压值;太阳能光伏电池组件的 工作电流电压参数和经 DC/DC模块变换后输出的电流电压参数经由有线 和 /或无线通讯模块, 传送到远程信息终端。
所述带 MPPT程序的 CPU模块与近端通用接口连接。
所述 CPU将太阳能光伏电池组件的工作电流电压参数和经 DC/DC模块 变换后输出的电流电压参数经由有线和 /或无线通讯模块传送到远程信息 所述 CPU将太阳能光伏电池组件的工作电流电压参数和经 DC/DC模块 变换后输出的电流电压参数传送到近端通用接口。
所述 CPU根据近端通用接口传输过来的指令信号,使 DC/DC模块连续 调节其输出的电流电压值。
所述 DC/DC模块最终输出的工作参数实时发送给 CPU。
所述带 MPPT程序的 CPU模块在本系统输出电流电压值低于或高于指 定范围时,自动将本系统及携带的太阳能光伏电池组件从整个太阳能并网 发电系统中断开,使整个并网系统在此形成通路并报警; 当该系统自身发 生故障而所携带的太阳能光伏电池组件正常工作时, 带 MPPT程序的 CPU 模块使太阳能光伏电池组件绕开本系统与并网系统直接连接, 同时报警, 从而不影响太阳能光伏电池组件向系统输送电能。
所述太阳能光伏电池组件是一块或多块。
所述近端通用接口连接显示装置、 指示灯或声控装置。
与现有技术相比, 本发明的有益效果在于:
1、 使太阳能光伏电池组件在不同光照强度、 温度等环境条件下都能 实现最大的光电转化效率;
2、 使太阳能光伏电池组件陈列以最佳效率的电流电压参数工作和电 能传输;
3、 使太阳能光伏电池组件及光伏发电系统智能化, 不仅可以对外实 现通讯联系, 而且可以按系统要求更高效地工作;
4、 运用于非并网系统时, 不仅可以获得最大的光电转化效率, 还可 以通过自动调节充电电流电压参数, 来提高充电效率, 縮短充电时间; 在 并网系统中,使整个并网系统在可控的状况下工作,不仅提高了系统的能 源转化和能源传输效率,而且使整个并网发电系统在实时监控中智能化地 工作。
附图说明
图 1 是本发明电流电压动态可调输出的太阳能光伏控制系统的示意 图。 其中, 1是太阳能光伏电池组件; 2是 DC/DC模块; 3是带 MPPT程序 的 CPU模块; 4是有线和 /或无线通讯模块; 5是近端通用接口。
具体实施方式
下面结合附图和具体实施方式对本发明作进一歩详细说明。
如图 1所示,本发明电流电压动态可调输出的太阳能光伏控制系统包 括太阳能光伏电池组件 1、 DC/DC模块 2、 带 MPPT程序的 CPU (中央处理 器)、 有线和 /或无线通讯模块 4、 近端通用接口 5组成。 太阳能光伏电池 组件 1可以是一块或多块, 近端通用接口 5可接显示装置、指示灯、声控 等装置。 带 MPPT程序的 CPU模块 3与 DC/DC模块 2、 有线和 /或无线通讯 模块 4以及太阳能光伏电池组件 1连接, DC/DC模块 2与带 MPPT程序的 CPU模块 3以及太阳能光伏电池组件 1连接, 有线和 /或无线通讯模块 4 与远程信息终端连接。 该系统可以将太阳能光伏电池组件 1的工作状况、 电性能参数等信息通过有线和 /或无线方式 (有线和 /或无线通讯模块 4 ) 传输给远程信息终端; 也可以根据远程信息终端通过有线和 /或无线方式 (有线和 /或无线通讯模块 4 ) 传输过来的外部指令调节系统输出的电流 电压等电性能参数,以上双向信息传输和指令传达的功能也可以通过近端 通用端口 5实现;在太阳能光伏电池组件 1或本系统出现非正常工作状态 时,本系统还可以根据自带的程序自动将太阳能光伏电池组件 1或本系统 从并网系统中断开。 结合系统自带的 MPPT功能, 不仅保证太阳能电池在 最大光电转换效率点上工作,而且实现太阳能光伏发电系统的电能以最高 效的方式传输给电网或负载。
如图 1所示, 本发明的实现过程具体如下:
1.太阳能光伏电池组件 1在一定光照强度下,开始发电,输出电流电 压;
2. 带 MPPT程序的 CPU模块 3中的 MPPT程序实时运算、 跟踪并控制 太阳能光伏电池组件 1的最大功率点电压, 保证太阳能光伏电池组件 1 在不同光照强度、 温度等环境条件下始终输出最大功率;
3.太阳能光伏电池组件 1在带 MPPT程序的 CPU模块 3中的 MPPT模块 控制下输出的电能传输到 DC/DC模块 2,并把太阳能电池工作参数数据实 时发送给带 MPPT程序的 CPU模块 3中的 CPU。
4. 带 MPPT程序的 CPU模块 3中的 CPU可以根据远程信息终端或近端 通用接口 5传输过来的指令信号,使 DC/DC模块 2连续调节其输出的电流 电压值。
5.本系统的最终输出的电流电压等工作参数可实时发送给带 MPPT程 序的 CPU模块 3中的 CPU。
6. 带 MPPT程序的 CPU模块 3中的 CPU可以将太阳能光伏电池组件 1 的工作电流电压参数和经 DC/DC模块 2变换后输出的电流电压参数经由有 线和 /或无线通讯模块 4传送到远程信息终端, 或者 CPU可以将太阳能光 伏电池组件 1的工作电流电压参数和经 DC/DC模块 2变换后输出的电流电 压参数直接传送到近端通用接口 5。
7.太阳能光伏电池组件 1的工作电流电压参数和经 DC/DC模块 2变换 后输出的电流电压参数也可直接经由有线和 /或无线通讯模块 4, 传送到 远程信息终端。
8. 带 MPPT程序的 CPU模块 3中自带的程序在本系统输出电流电压值 低于或高于指定范围时,可以自动将本系统及携带的太阳能光伏电池组件 1从整个太阳能并网发电系统中断开,使整个并网系统在此形成通路并报 警; 当本系统自身发生故障而所携带的太阳能光伏电池组件 1正常工作 时, 带 MPPT程序的 CPU模块 3自带的程序会使太阳能光伏电池组件 1绕 开本系统与并网系统直接连接, 同时报警,从而不影响组件向系统输送电 能。这些非正常工作状态都会通过远程信息终端通知管理者。以上问题或 故障恢复正常后, 系统会重新投入使用。
下面举一实施例进一歩详细说明本发明:
例如,一个太阳能光伏并网发电系统的组件安装有本系统,组件在光 照强度为 lOOOW/m2时的最大功率点电压为 35V; 当光照强度下降为 800W/ m2时, 其最大功率点电压为 32V。 而由于系统的限制, 不带 MPPT程序的 系统, 在 800W/n光照强度时, 仍使组件在 35V的电压工作, 因此不能发 挥此时组件的最大功率; 而带有本系统的组件, 将在 MPPT程序的跟踪、 运算和控制下, 及时将组件的工作电压调整到此时的最大功率点电压 32V, 从而最大限度地将太阳能转化为电能。
在 MPPT模块控制下获得的电能, 因光照强度等环境因素的变化, 而 以动态变化的电流电压值传输给 DC/DC模块, 假设此时 I=4A, U=32V0 这 些电流电压值参数信号会被传输给 CPU以及有线和 /或无线通讯模块。 CPU 会根据远程信息终端或近端通用接口发出指令的要求, 实时控制 DC/DC 模块的输出电流电压值, 假设为 1=2. 6A, U=48V。 以使整个太阳能组件阵 列的电能传输效率最高, 并最有利于后段的逆变 (或充电) 效率。
DC/DC模块最终输出的电流电压值参数信号也会被传输给 CPU和有线 和 /或无线通讯模块。 CPU可以将太阳能电池组件的工作电流电压参数和 经 DC/DC变换后输出的电流电压参数传输给近端通用接口和通过有线和 / 或无线模块传输给远程信息终端。
假设在 800W/n 的光照强度下,太阳能光伏组件的工作电流电压应该 是 I=4A, U=32V, 当 CPU发现其实际的电流电压值偏离过大, 超出允许的 范围, 比如只有: I=2A, U=32V时, CPU自带的软件会将该组件从光伏陈 列中断下, 在此形成通路, 并同时报警, 以确保不影响其它组件的能量传 输和系统效率。远程的信息终端也将第一时间发现问题,报警通知管理者。
当本系统自身发生故障时 (比如 MPPT程序工作异常, DC/DC模块的输 出功率比输入功率衰减过大等情况), 本系统会被自动从整个光伏系统上 断开, 同时将所携带光伏组件直接与光伏组件陈列相连,并立刻在远程信 息终端上报警, 提醒管理者检修。
本发明的 MPPT程序可根据光照强度、 温度等环境因素的变化, 迅速 而高效地跟踪光伏组件的最大功率点。本系统的 DC/DC变流模块,可实现 电流电压输出动态可调。本系统尽可能将各模块集成为芯片,从而最大限 度地降低了成本和体积,提高了产品的性能和可靠性,减少了能量自损耗。 装了本系统的光伏组件,就具有了智能,使管理者清晰地了解整个发电 统的工作运行状况。该系统不仅可传输数据, 接受指令, 当本系统或所 带组件出现非正常工作状态时,本系统会自动投切和报警, 降低了整个 伏发电系统的故障发生点, 提高了系统的可靠性。

Claims

权 利 要 求 书
1.一种电流电压动态可调输出的太阳能光伏控制系统, 其特征在于, 包括带 MPPT程序的 CPU模块、 DC/DC模块以及有线和 /或无线通讯模块, 所述带 MPPT程序的 CPU模块与 DC/DC模块、有线和 /或无线通讯模块以及 太阳能光伏电池组件连接, 所述 DC/DC模块与带 MPPT程序的 CPU模块以 及太阳能光伏电池组件连接, 所述有线和 /或无线通讯模块与远程信息终 端连接;
所述 MPPT程序实时运算、 跟踪并控制太阳能光伏电池组件的最大功 率点电压,保证太阳能光伏电池组件始终输出最大功率;太阳能光伏电池 组件在 MPPT程序控制下输出的电能传输到 DC/DC模块, 并把太阳能电池 工作参数数据实时发送给 CPU; CPU根据远程信息终端传输过来的指令信 号,使 DC/DC模块连续调节其输出的电流电压值;太阳能光伏电池组件的 工作电流电压参数和经 DC/DC模块变换后输出的电流电压参数经由有线 和 /或无线通讯模块, 传送到远程信息终端。
2. 如权利要求 1所述的电流电压动态可调输出的太阳能光伏控制系 统, 其特征在于, 所述带 MPPT程序的 CPU模块与近端通用接口连接。
3. 如权利要求 1所述的电流电压动态可调输出的太阳能光伏控制系 统,其特征在于,所述 CPU将太阳能光伏电池组件的工作电流电压参数和 经 DC/DC模块变换后输出的电流电压参数经由有线和 /或无线通讯模块传 送到远程信息终端。
4. 如权利要求 2所述的电流电压动态可调输出的太阳能光伏控制系 统,其特征在于,所述 CPU将太阳能光伏电池组件的工作电流电压参数和 经 DC/DC模块变换后输出的电流电压参数传送到近端通用接口。
5. 如权利要求 2所述的电流电压动态可调输出的太阳能光伏控制系 统, 其特征在于, 所述 CPU根据近端通用接口传输过来的指令信号, 使 DC/DC模块连续调节其输出的电流电压值。
6. 如权利要求 1所述的电流电压动态可调输出的太阳能光伏控制系 统, 其特征在于, 所述 DC/DC模块最终输出的工作参数实时发送给 CPU。
7. 如权利要求 1所述的电流电压动态可调输出的太阳能光伏控制系 统, 其特征在于, 所述带 MPPT程序的 CPU模块在本系统输出电流电压值 低于或高于指定范围时,自动将本系统及携带的太阳能光伏电池组件从整 个太阳能并网发电系统中断开,使整个并网系统在此形成通路并报警; 当 该系统自身发生故障而所携带的太阳能光伏电池组件正常工作时, 带 MPPT程序的 CPU模块使太阳能光伏电池组件绕开本系统与并网系统直接 连接, 同时报警, 从而不影响太阳能光伏电池组件向系统输送电能。
8. 如权利要求 1所述的电流电压动态可调输出的太阳能光伏控制系 统, 其特征在于, 所述太阳能光伏电池组件是一块或多块。
9. 如权利要求 2所述的电流电压动态可调输出的太阳能光伏控制系 统, 其特征在于, 所述近端通用接口连接显示装置、 指示灯或声控装置。
PCT/CN2010/070959 2009-03-20 2010-03-10 电流电压动态可调输入的太阳能光伏控制系统 WO2010105530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910056970.2 2009-03-20
CN200910056970A CN101841257A (zh) 2009-03-20 2009-03-20 电流电压动态可调输出的太阳能光伏控制系统

Publications (1)

Publication Number Publication Date
WO2010105530A1 true WO2010105530A1 (zh) 2010-09-23

Family

ID=42739186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070959 WO2010105530A1 (zh) 2009-03-20 2010-03-10 电流电压动态可调输入的太阳能光伏控制系统

Country Status (2)

Country Link
CN (1) CN101841257A (zh)
WO (1) WO2010105530A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102541089A (zh) * 2012-01-12 2012-07-04 冶金自动化研究设计院 基于工业无线网络的光伏单轴跟踪系统及控制方法
US20130271925A1 (en) * 2012-03-27 2013-10-17 Rohm Co., Ltd. Wireless communication module, led lighting device, solar photovoltaic system, self-start system and detection device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488021B (zh) * 2011-01-03 2015-06-11 Po Yuan Huang Solar power supply with adjustable power supply for multiple power supplies
CN103744467B (zh) * 2013-12-16 2015-08-26 浙江大学 用于微小卫星电源系统的太阳能电池最大功率追踪装置及其控制方法
CN104750075A (zh) * 2015-03-18 2015-07-01 苏州科技学院 一种基于Zigbee技术的光伏发电电源控制装置
CN110536521A (zh) * 2018-05-23 2019-12-03 北京铂阳顶荣光伏科技有限公司 一种路灯控制方法、装置、系统及设备
CN108900157A (zh) * 2018-06-07 2018-11-27 意美旭智芯能源科技有限公司 一种智能光伏接线盒及电流调控方法
CN117318162B (zh) * 2023-11-29 2024-03-19 深圳鹏城新能科技有限公司 基于家庭储能逆变器的mppt优化方法、系统及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554913A (zh) * 2003-12-29 2004-12-15 上海诚意电器有限公司 太阳能光伏整体集成并网控制器及方法
CN2672938Y (zh) * 2003-12-29 2005-01-19 中国科学院电工研究所 一种独立运行太阳能光伏电站控制器
CN201054515Y (zh) * 2007-06-06 2008-04-30 北京自动化技术研究院 光伏并网逆变器数据记录、远程传输及显示单元
CN201418047Y (zh) * 2009-03-20 2010-03-03 沈朝晖 电流电压动态可调输出的太阳能光伏控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554913A (zh) * 2003-12-29 2004-12-15 上海诚意电器有限公司 太阳能光伏整体集成并网控制器及方法
CN2672938Y (zh) * 2003-12-29 2005-01-19 中国科学院电工研究所 一种独立运行太阳能光伏电站控制器
CN201054515Y (zh) * 2007-06-06 2008-04-30 北京自动化技术研究院 光伏并网逆变器数据记录、远程传输及显示单元
CN201418047Y (zh) * 2009-03-20 2010-03-03 沈朝晖 电流电压动态可调输出的太阳能光伏控制系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102541089A (zh) * 2012-01-12 2012-07-04 冶金自动化研究设计院 基于工业无线网络的光伏单轴跟踪系统及控制方法
US20130271925A1 (en) * 2012-03-27 2013-10-17 Rohm Co., Ltd. Wireless communication module, led lighting device, solar photovoltaic system, self-start system and detection device
US9380724B2 (en) * 2012-03-27 2016-06-28 Rohm Co., Ltd. Wireless communication module, LED lighting device, solar photovoltaic system, self-start system and detection device
US9699889B2 (en) 2012-03-27 2017-07-04 Rohm Co., Ltd. Wireless communication module, LED lighting device, solar photovoltaic system, self-start system and detection device
US9894753B2 (en) 2012-03-27 2018-02-13 Rohm Co., Ltd. Wireless communication module and solar photovoltaic system

Also Published As

Publication number Publication date
CN101841257A (zh) 2010-09-22

Similar Documents

Publication Publication Date Title
WO2010105530A1 (zh) 电流电压动态可调输入的太阳能光伏控制系统
US9041252B2 (en) Advanced renewable energy harvesting
CN102594178B (zh) 串联连接的逆变器
US20120068543A1 (en) Apparatus and method for managing and conditioning photovoltaic power harvesting systems
KR20120035687A (ko) 계통 연계형 전력 저장 시스템 및 이를 위한 통합 제어기
CN102484431A (zh) 自适应光电逆变器
CN115065321B (zh) 非看门狗式的自动控制电压安全的优化装置及光伏系统
CN206004396U (zh) 一种智能化并离网互补式光伏发电系统
US20220278647A1 (en) Method for determining an operating parameter of a pv installation, pv installation having an inverter and inverter for such a pv installation
JP4561928B1 (ja) 電圧設定装置、太陽光発電システム、および電圧設定装置の制御方法
TW201212251A (en) Solar power generation apparatus and solar power generation system
CN109412531A (zh) 光伏发电系统及其控制方法
CN205375197U (zh) 高倍聚光光伏并网发电系统
CN201418047Y (zh) 电流电压动态可调输出的太阳能光伏控制系统
CN210201493U (zh) 一种新能源电站发电单元测控装置
WO2009146065A2 (en) Energy interface module and power conversion system
CN220775408U (zh) 一种分布式光伏发电协调系统
CN214674940U (zh) 模块化逆变系统
CN218783583U (zh) 基于最大功率点跟踪的并网型光伏电网系统
CN209659239U (zh) 光伏发电系统
CN212304768U (zh) 一种采用电力电子开关装备互链的智能微电网系统
TWI780496B (zh) 太陽能模組之智能優化安全監控系統
CN116742784A (zh) 一种直流配电网配电设备及配电方法
CN107222012B (zh) 一种光伏供电系统、方法及装置
CN207234505U (zh) 光伏发电智能采集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753097

Country of ref document: EP

Kind code of ref document: A1