WO2019205155A1 - 温度补偿电路 - Google Patents

温度补偿电路 Download PDF

Info

Publication number
WO2019205155A1
WO2019205155A1 PCT/CN2018/085141 CN2018085141W WO2019205155A1 WO 2019205155 A1 WO2019205155 A1 WO 2019205155A1 CN 2018085141 W CN2018085141 W CN 2018085141W WO 2019205155 A1 WO2019205155 A1 WO 2019205155A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
compensation module
transistor
compensation
voltage
Prior art date
Application number
PCT/CN2018/085141
Other languages
English (en)
French (fr)
Inventor
向伟
蓝永海
吴光胜
冯军正
Original Assignee
深圳市华讯方舟微电子科技有限公司
华讯方舟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华讯方舟微电子科技有限公司, 华讯方舟科技有限公司 filed Critical 深圳市华讯方舟微电子科技有限公司
Priority to PCT/CN2018/085141 priority Critical patent/WO2019205155A1/zh
Publication of WO2019205155A1 publication Critical patent/WO2019205155A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only

Definitions

  • the present application belongs to the field of transistor technologies, and in particular, to a temperature compensation circuit.
  • the transistor has a temperature characteristic. As the temperature increases, the on-voltage drop of the transistor becomes smaller. Therefore, the static operating point of the transistor becomes higher while the bias remains unchanged. Conversely, the temperature decreases, and the transistor conducts. As the voltage drop becomes larger, the quiescent operating point of the transistor becomes smaller. In order to improve the temperature stability of the transistor, current or voltage negative feedback is usually adopted.
  • the working principle of current negative feedback is: when the temperature rises, the current of the collector of the transistor will become larger, resulting in an increase in the voltage drop of the emitter grounding resistance, and the bias voltage of the base of the transistor is constant. Therefore, the bias voltage on the emitter of the transistor becomes smaller, eventually resulting in a smaller collector current of the transistor, achieving temperature stability; the disadvantage is that at a limit temperature, a good temperature cannot be achieved even if a large negative feedback is applied. Compensation effect.
  • the working principle of voltage negative feedback is: when the temperature rises, the current of the collector of the transistor will become larger, resulting in a larger voltage drop across the collector load, and the bias of the base of the transistor becomes smaller due to the constant supply voltage.
  • the embodiment of the present application provides a temperature compensation circuit to solve the problem that the existing temperature compensation circuit cannot achieve a better temperature compensation effect under the limit temperature state.
  • the embodiment of the present application provides a temperature compensation circuit, including: a voltage dividing module, a first compensation module, a second compensation module, and a third compensation module;
  • the voltage dividing module is adapted to be connected to an external power source, and is further connected to the first compensation module, configured to divide a voltage of the external power source into a first voltage and output the signal to the first compensation module;
  • the first compensation module is further connected to the second compensation module, and configured to output a first quiescent current to the second compensation module according to the first voltage;
  • the second compensation module is adapted to be connected to the external power source, and is further connected to the third compensation module, for adjusting a first bias voltage of the first power supply according to the voltage of the external power source and the first quiescent current. And outputting the adjusted first bias voltage to the third compensation module;
  • the third compensation module is configured to adjust its own bias voltage according to the adjusted first bias voltage.
  • the voltage dividing module comprises: a voltage dividing end and an output end;
  • the voltage dividing end of the voltage dividing module is adapted to be connected to the external power source, and the output end of the voltage dividing module is connected to the first compensation module.
  • the voltage dividing module further includes: a first resistor and a second resistor;
  • a first end of the first resistor is connected to a voltage dividing end of the voltage dividing module, and a second end of the first resistor is connected to an output end of the voltage dividing module;
  • the first end of the second resistor is connected to the second end of the first resistor, and the second end of the second resistor is grounded.
  • the first compensation module includes: an input end and an output end;
  • An input end of the first compensation module is connected to an output end of the voltage dividing module, and an output end of the first compensation module is connected to the second compensation module.
  • the first compensation module further includes: a first transistor and a third resistor;
  • a base of the first transistor is connected to an input end of the first compensation module, an emitter of the first transistor is connected to a first end of the third resistor, and a collector and a collector of the first transistor are connected Connecting the output of the first compensation module;
  • the second end of the third resistor is grounded.
  • the second compensation module includes: a first input end, a second input end, and an output end;
  • a first input end of the second compensation module is adapted to be connected to the external power source, a second input end of the second compensation module is connected to an output end of the first compensation module, and the second compensation module is The output is connected to the third compensation module.
  • the second compensation module further includes: a second transistor, a fourth resistor, and a fifth resistor;
  • a first end of the fourth resistor is connected to a collector of the second transistor, and a second end of the fourth resistor is connected to a base of the second transistor;
  • the second end of the fifth resistor is connected to the output end of the second compensation module.
  • the temperature compensation circuit includes an input end and an output end;
  • the third compensation module includes: a voltage input end, a signal input end, and a signal output end;
  • the voltage input end of the third compensation module is connected to the output end of the second compensation module, and the signal input end of the third compensation module is connected to the input end of the temperature compensation circuit, and the third compensation module is The signal output is coupled to the output of the temperature compensation circuit.
  • the third compensation module further includes: a third transistor, a sixth resistor, and a first load;
  • a collector of the third transistor is connected to a signal output end of the third compensation module, a base of the third transistor is connected to a signal input end of the third compensation module, and an emitter of the third transistor Grounding
  • a first end of the sixth resistor is connected to a voltage input end of the third compensation module, and a second end of the sixth resistor is connected to a base of the third transistor;
  • An input end of the first load is coupled to a first end of the sixth resistor, and an output end of the first load is coupled to a collector of the third transistor.
  • the first transistor, the second transistor, and the third transistor are all triodes or field effect transistors.
  • the first transistor, the second transistor, and the third transistor are transistors of the same type.
  • the temperature compensation circuit further includes: a first capacitor;
  • the first end of the first capacitor is connected to the output end of the second compensation module, and the second end of the first capacitor is grounded.
  • the temperature compensation circuit further includes: a second capacitor and a third capacitor;
  • the signal input end of the third compensation module is connected to the input end of the temperature compensation circuit through the second capacitor, and the signal output end of the third compensation module passes through the third capacitor and the temperature compensation circuit The output is connected.
  • the temperature compensation circuit further includes: a first filtering module
  • the first filtering module is adapted to be connected to the external power source, and is further connected to the second compensation module, and is configured to filter a voltage input by the external power source to the second compensation module.
  • the first filtering module includes: a fourth capacitor and a fifth capacitor;
  • the first end of the fourth capacitor is connected to the second compensation module, and the second end of the fourth capacitor is grounded;
  • the first end of the fifth capacitor is connected to the second compensation module, and the second end of the fifth capacitor is grounded.
  • the temperature compensation circuit further includes: a second filtering module
  • the second filtering module is connected to the voltage dividing module, and is further connected to the first compensation module, and is configured to filter a voltage input by the voltage dividing module to the first compensation module.
  • the second filtering module includes: a sixth capacitor
  • the first end of the sixth capacitor is connected to the first compensation module, and the second end of the sixth capacitor is grounded.
  • the temperature compensation circuit operates at a temperature ranging from -40 ° C to +90 ° C.
  • the application divides the voltage of the external power source into the first voltage output by the voltage dividing module to the first compensation module; the first compensation module outputs the first quiescent current to the second compensation module according to the first voltage; the second compensation module is based on the external power supply
  • the voltage and the first quiescent current adjust their own first bias voltage, and output the adjusted first bias voltage to the third compensation module; the third compensation module adjusts its own bias according to the adjusted first bias voltage
  • the voltage adjusts the quiescent operating point due to temperature changes, achieving better temperature compensation at the extreme temperature, making temperature compensation more accurate, while avoiding the effects on transistor performance.
  • FIG. 1 is a schematic structural diagram of a temperature compensation circuit according to an embodiment of the present application.
  • FIG. 2 is a circuit diagram of a temperature compensation circuit provided by an embodiment of the present application.
  • the embodiment of the present application provides a temperature compensation circuit, including: a voltage dividing module 100, a first compensation module 200, a second compensation module 300, and a third compensation module 400.
  • the voltage dividing module 100 is adapted to be connected to an external power source, and the voltage dividing module 100 is also connected to the first compensation module 200.
  • the voltage dividing module 100 divides the voltage of the external power source into a first voltage and outputs it to the first compensation module 200.
  • the first compensation module 200 is connected to the second compensation module 300.
  • the first compensation module 200 outputs a first quiescent current to the second compensation module 300 according to the first voltage.
  • the second compensation module 300 is adapted to be connected to the external power source and also to the third compensation module 400.
  • the second compensation module 300 adjusts its own first bias voltage according to the voltage of the external power source and the first quiescent current, and outputs the adjusted first bias voltage to the third compensation module 400.
  • the third compensation module 400 adjusts its own bias voltage according to the adjusted first bias voltage.
  • the quiescent current of the first compensation module 200 increases, and when the first compensation module 200 inputs the increased quiescent current (first quiescent current) to the second compensation module 300 Afterwards, the second compensation module 300 reduces the self-bias voltage according to the voltage of the external power source and the first quiescent current, and the second compensation module 300 reduces the bias voltage (adjusted bias voltage). Output to the third compensation module 400, the bias voltage of the third compensation module 400 is lowered, so that the static operating point of the third compensation module 400 does not become higher due to an increase in temperature.
  • the quiescent current of the first compensation module 200 decreases, and when the first compensation module 200 inputs the reduced quiescent current (first quiescent current) to the second compensation module 300, the second The compensation module 300 increases the self-bias voltage according to the voltage of the external power source and the first quiescent current, and the second compensation module 300 outputs the increased bias voltage (adjusted bias voltage) to the third The offset voltage of the compensation module 400 and the third compensation module 400 is increased, so that the static operating point of the third compensation module 400 does not become smaller due to the decrease in temperature.
  • the voltage dividing module 100 divides the voltage of the external power source into a first voltage output to the first compensation module 200; the first compensation module 200 outputs the first static to the second compensation module 300 according to the first voltage.
  • the second compensation module 300 adjusts its own first bias voltage according to the voltage of the external power source and the first quiescent current, and outputs the adjusted first bias voltage to the third compensation module 400; the third compensation module 400 adjusts according to the current After the first bias voltage adjusts its own bias voltage, it achieves better temperature compensation at the limit temperature, which makes the temperature compensation more precise and avoids the influence on the transistor performance.
  • the voltage dividing module 100 includes: a voltage dividing end and an output end.
  • the voltage dividing end of the voltage dividing module 100 is adapted to be connected to the external power source, and the output end of the voltage dividing module 100 is connected to the first compensation module 200.
  • the voltage dividing module 100 further includes: a first resistor Rh1 and a second resistor Rh2.
  • the first end of the first resistor Rh1 is connected to the voltage dividing end of the voltage dividing module, and the second end of the first resistor Rh1 is connected to the output end of the voltage dividing module 100.
  • the first end of the second resistor Rh2 is connected to the second end of the first resistor Rh1, and the second end of the second resistor Rh2 is grounded.
  • the first resistor Rh1 and the second resistor Rh2 divide the voltage VCC of the external power source, and the voltage of the external power source VCC is output to the first compensation module 200 to decrease, to obtain the first voltage.
  • a voltage is further output to the first compensation module 200, so that the voltage of the first compensation module 200 and the voltage of the second compensation module 300 are unequal to achieve compensation of the transistor temperature.
  • the present application uses an external power supply to provide different voltages for the first compensation module 200 and the second compensation module 300, so the voltage dividing module 100 is employed. It should be understood that there are multiple ways to provide different voltages for the first compensation module 200 and the second compensation module 300.
  • the first compensation module 200 can be an independent power source such as an MCU (Microcontroller Unit) or a reference voltage source. The voltage is provided. The manner in which the first compensation module 200 and the second compensation module 300 are provided with different voltages is not limited.
  • the first compensation module 200 includes: an input end and an output end.
  • the input end of the first compensation module 200 is connected to the output end of the voltage dividing module 100, and the output end of the first compensation module 200 is connected to the second compensation module 300.
  • the first compensation module 200 further includes: a first transistor Q2 and a third resistor R2.
  • the base of the first transistor Q2 is connected to the input end of the first compensation module 200, the emitter of the first transistor Q2 is connected to the first end of the third resistor R2, and the collector of the first transistor Q2 is coupled to the first compensation module 200.
  • the output is connected.
  • the second end of the third resistor R2 is grounded.
  • the third resistor R2 is used to compensate for the asymmetry caused by the difference in the transistors in the temperature compensation circuit, and to avoid damage to the performance of the transistor due to an increase or decrease in temperature.
  • the base of the first transistor Q1 receives the first voltage, and when the temperature of the temperature compensation circuit increases, the first quiescent current of the first transistor Q1 rises, and is input to the second compensation module 300 to make the second The bias voltage of the compensation module 300 becomes smaller; when the temperature of the temperature compensation circuit decreases, the first quiescent current of the first transistor Q1 decreases, and is input to the second compensation module 300, so that the bias voltage of the second compensation module 300 is changed. Big.
  • the second compensation module 300 includes: a first input terminal, a second input terminal, and an output terminal.
  • the first input end of the second compensation module 300 is adapted to be connected to the external power source, the second input end of the second compensation module 300 is connected to the output end of the first compensation module 200, and the output end of the second compensation module 300 is The three compensation modules 400 are connected.
  • the second compensation module 400 further includes: a second transistor Q1, a fourth resistor R1, and a fifth resistor R3.
  • the collector and the second transistor Q1 are connected, the base of the second transistor Q1 is connected, and the emitter of the second transistor Q1 is connected to the first terminal of the fifth resistor R3.
  • the first end of the fourth resistor R1 is connected to the collector of the second transistor Q1, and the second end of the fourth resistor R1 is connected to the base of the second transistor Q1.
  • the second end of the fifth resistor R3 is connected to the output end of the second compensation module 300.
  • the first quiescent current of the first transistor Q1 rises and is input to the second compensation module 300, and the voltage on the fourth resistor R1 rises. Since the voltage of the second compensation module 300 is provided by the external power supply voltage VCC, the voltage of the second compensation module 300 does not change, that is, the bias voltage of the second transistor Q1 decreases; the second transistor Q1 is adjusted by the fifth resistor R3.
  • the bias voltage is output to the third compensation module 400 as a compensation voltage for the third compensation module 400 transistor.
  • the first quiescent current of the first transistor Q1 falls and is input to the second compensation module 300.
  • the current of the second compensation module 300 decreases, so the voltage on the fourth resistor R1 is lowered.
  • the voltage of the second compensation module 300 is provided by the external power supply voltage VCC, so that the voltage of the second compensation module 300 does not change, and the bias voltage of the second transistor Q1 rises.
  • the second transistor Q1 outputs the adjusted bias voltage to the third compensation module 400 through the fifth resistor R3 as the compensation voltage of the third compensation module 400 transistor.
  • the third compensation module 400 includes: a voltage input terminal, a signal input terminal, and a signal output terminal.
  • the temperature compensation circuit includes an input terminal Input and an output terminal Output.
  • the voltage input end of the third compensation module 400 is connected to the output end of the second compensation module 300, the signal input end of the third compensation module 400 is connected to the input terminal Input of the temperature compensation circuit, and the signal output end and temperature of the third compensation module 400 are connected.
  • the output of the compensation circuit is connected to Output.
  • the third compensation module 400 further includes: a third transistor Q3, a sixth resistor R5, and a first load R0.
  • the collector of the third transistor Q3 is connected to the signal output terminal of the third compensation module 400, the base of the third transistor Q3 is connected to the signal input terminal of the third compensation module 400, and the emitter of the third transistor Q3 is grounded.
  • the first end of the sixth resistor R5 is connected to the voltage input end of the third compensation module 400, and the second end of the sixth resistor R5 is connected to the base of the third transistor Q3.
  • the input end of the first load R0 is connected to the first end of the sixth resistor R5, and the output end of the first load R0 is connected to the collector of the third transistor Q3.
  • first load R0 may be a component or a circuit structure that implements other functions.
  • the specific structure or circuit of the first load R0 is not limited in this application.
  • the temperature compensation circuit when the temperature of the temperature compensation circuit increases, the quiescent current of the first transistor Q2 in the first compensation module 200 increases, and the bias voltage of the second transistor Q1 in the second compensation module 300 decreases; the second transistor Q1 outputs the adjusted bias voltage to the third compensation module 400 through the fifth resistor R3, so that the bias voltage of the third transistor Q3 in the third compensation module 400 is lowered, and the third transistor Q3 is compensated for rising due to the temperature rise.
  • the high bias voltage even if the static operating point of the third transistor Q3 is unchanged, the temperature compensation circuit achieves better temperature compensation under high temperature conditions and does not affect the performance of the transistor.
  • the quiescent current of the first transistor Q2 in the first compensation module 200 decreases, causing the bias voltage of the second transistor Q1 in the second compensation module 300 to rise; the second transistor Q1 passes the fifth
  • the resistor R3 outputs the adjusted bias voltage to the third compensation module 400 to increase the bias voltage of the third transistor Q3 in the third compensation module 400, and compensates for the bias voltage of the third transistor Q3 being lowered due to the temperature drop. Even if the static operating point of the third transistor Q3 is unchanged, the temperature compensation circuit achieves a better temperature compensation effect under high temperature conditions without affecting the performance of the transistor.
  • the first transistor Q1, the second transistor Q2, and the third transistor Q3 are all triodes or field effect transistors.
  • the first transistor Q1, the second transistor Q2, and the third transistor Q3 are transistors of the same type. It should be understood that the same type of transistor may refer to the same transistor type, including transistors having the same operational performance, having the same bias voltage and static operating point.
  • the transistors in the temperature compensation circuit of the present application use the same type of transistors, so that the temperature characteristics of the transistors in the temperature compensation circuit are more similar, so that the transistors in the temperature compensation circuit are Accurate complementarity between the two.
  • the temperature compensation circuit further includes: a first capacitor C4.
  • the first end of the first capacitor C4 is connected to the output end of the second compensation module 300, and the second end of the first capacitor C4 is grounded. Specifically, the first end of the first capacitor C4 is connected to the second end of the fifth resistor R3.
  • the first capacitor C4 is configured to filter the adjusted bias voltage input by the second compensation module 300 to the third compensation module 400.
  • the temperature compensation circuit further includes: a second capacitor C5 and a third capacitor C6.
  • the signal input end of the third compensation module 400 is connected to the input end of the temperature compensation circuit through the second capacitor C5.
  • the second capacitor C5 is configured to filter a signal input at an input end of the temperature compensation circuit to reduce signal oscillation.
  • the signal may be a voltage signal, a current signal, or the like.
  • the signal output end of the third compensation module 400 is connected to the output of the temperature compensation circuit via a third capacitor C6.
  • the second capacitor C5 is configured to filter a signal outputted by the output of the temperature compensation circuit.
  • the signal may be a voltage signal, a current signal, or the like.
  • the temperature compensation circuit further includes: a first filtering module 500.
  • the first filtering module 500 is adapted to be connected to the external power source, and the first filtering module 500 is further connected to the second compensation module 300.
  • the first filtering module 500 is configured to filter a voltage input by the external power source to the second compensation module 300.
  • the first filtering module 500 includes: a fourth capacitor C1 and a fifth capacitor C2.
  • the first end of the fourth capacitor C1 is connected to the second compensation module 300, and the second end of the fourth capacitor C1 is grounded.
  • the first end of the fifth capacitor C2 is connected to the second compensation module 300, and the second end of the fifth capacitor C2 is grounded.
  • the temperature compensation circuit further includes: a second filtering module 600.
  • the second filtering module 600 is connected to the voltage dividing module 100, and the second filtering module 600 is also connected to the first compensation module 200.
  • the second filtering module 600 is configured to filter the voltage input by the voltage dividing module 100 to the first compensation module 200.
  • the second filtering module 600 includes: a sixth capacitor C3.
  • the first end of the sixth capacitor C3 is connected to the first compensation module 200, and the second end of the sixth capacitor C38 is grounded. Specifically, the first end of the sixth capacitor C3 is connected to the base of the first transistor Q2, and is also connected to the second end of the first resistor Rh1.
  • the temperature compensation circuit operates at a temperature ranging from -40 ° C to +90 ° C.
  • the temperature compensation circuit can make the quiescent operating point of the transistor have better temperature compensation effect in the temperature range of -40 ° C to +90 ° C, the compensation is more accurate, and the performance of the transistor is not damaged.
  • the voltage dividing module 100 divides the voltage of the external power source into a first voltage output to the first compensation module 200; the first compensation module 200 outputs a first quiescent current to the second compensation module 300 according to the first voltage; The second compensation module 300 adjusts its first bias voltage according to the voltage of the external power source and the first quiescent current, and outputs the adjusted first bias voltage to the third compensation module 400.
  • the third compensation module 400 is configured according to the adjusted A bias voltage adjusts its own bias voltage, thereby adjusting the static operating point due to temperature changes, achieving better temperature compensation at the limit temperature, making temperature compensation more accurate, while avoiding transistor performance. influences.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)

Abstract

一种温度补偿电路,包括:分压模块(100),适于与外部电源连接,还与第一补偿模块(200)连接,将外部电源的电压分压为第一电压输出给第一补偿模块(200);第一补偿模块(200),与第二补偿模块(300)连接,根据第一电压向第二补偿模块(300)输出第一静态电流;第二补偿模块(300),适于与外部电源连接,还与第三补偿模块(400)连接,根据外部电源的电压和第一静态电流调整自身的第一偏置电压,并向第三补偿模块(400)输出调整后的第一偏置电压;第三补偿模块(400),根据调整后的第一偏置电压调整自身的偏置电压,进而调整自身的温度变化改变的静态工作点。该电路能够在极限温度下达到更好的温度补偿效果,使温度补偿更精准,同时避免了对晶体管工作性能的影响。

Description

温度补偿电路 技术领域
本申请属于晶体管技术领域,尤其涉及一种温度补偿电路。
背景技术
晶体管具有温度特性,随着温度的升高,晶体管的导通压降会变小,因此在偏置保持不变的情况下,晶体管的静态工作点会变高;反之,温度降低,晶体管的导通压降变大,晶体管的静态工作点会变小,为了改善晶体管的温度稳定性,通常会采取电流或电压负反馈的方式。
其中,电流负反馈的工作原理是:温度升高,晶体管的集电极的电流会变大,从而导致发射极接地电阻的压降增大,而晶体管的基极的偏置电压又是恒定的,因此晶体管的发射极上的偏置电压变小,最终导致晶体管的集电极电流变小,实现了温度稳定性;缺点是:极限温度时,即使施加很大的负反馈也不能达到较好的温度补偿效果。
电压负反馈的工作原理是:温度升高,晶体管的集电极的电流会变大,从而导致集电极负载上的压降变大,又因供电电压不变,则晶体管基极的偏压变小,抑制集电极电流的增大,从而实现了温度稳定性;缺点是极限温度条件下晶体管也不能达到较好的温度补偿效果。
技术问题
有鉴于此,本申请实施例提供了一种温度补偿电路,以解决现有温度补偿电路在处于极限温度状态下不能达到较好的温度补偿效果的问题。
技术解决方案
本申请实施例提供了一种温度补偿电路,包括:分压模块、第一补偿模块、第二补偿模块和第三补偿模块;
所述分压模块适于与外部电源连接,还与所述第一补偿模块连接,用于将所述外部电源的电压分压为第一电压并输出给所述第一补偿模块;
所述第一补偿模块还与所述第二补偿模块连接,用于根据所述第一电压向所述第二补偿模块输出第一静态电流;
所述第二补偿模块适于与所述外部电源连接,还与所述第三补偿模块连接,用于根据所述外部电源的电压和所述第一静态电流调整自身的第一偏置电压,并向所述第三补偿模块输出调整后的第一偏置电压;
所述第三补偿模块用于根据所述调整后的第一偏置电压调整自身的偏置电压。
可选的,所述分压模块包括:分压端和输出端;
所述分压模块的分压端适于与所述外部电源连接,所述分压模块的输出端与所述第一补偿模块连接。
可选的,所述分压模块还包括:第一电阻和第二电阻;
所述第一电阻的第一端与所述分压模块的分压端连接,所述第一电阻的第二端与所述分压模块的输出端连接;
所述第二电阻的第一端与所述第一电阻的第二端连接,所述第二电阻的第二端接地。
可选的,所述第一补偿模块包括:输入端和输出端;
所述第一补偿模块的输入端与所述分压模块的输出端连接,所述第一补偿模块的输出端与所述第二补偿模块连接。
可选的,所述第一补偿模块还包括:第一晶体管和第三电阻;
所述第一晶体管的基极与所述第一补偿模块的输入端连接,所述第一晶体管的发射极与所述第三电阻的第一端连接,所述第一晶体管的集电极与所述第一补偿模块的输出端连接;
所述第三电阻的第二端接地。
可选的,所述第二补偿模块包括:第一输入端、第二输入端和输出端;
所述第二补偿模块的第一输入端适于与所述外部电源连接,所述第二补偿模块的第二输入端与所述第一补偿模块的输出端连接,所述第二补偿模块的输出端与所述第三补偿模块连接。
可选的,所述第二补偿模块还包括:第二晶体管、第四电阻和第五电阻;
所述第二晶体管的集电极与连接,所述第二晶体管的基极与连接,所述第二晶体管的发射极与所述第五电阻的第一端连接;
所述第四电阻的第一端与所述第二晶体管的集电极连接,所述第四电阻的第二端与所述第二晶体管的基极连接;
所述第五电阻的第二端与所述第二补偿模块的输出端连接。
可选的,所述温度补偿电路包括输入端和输出端;
所述第三补偿模块包括:电压输入端、信号输入端和信号输出端;
所述第三补偿模块的电压输入端与所述第二补偿模块的输出端连接,所述第三补偿模块的信号输入端与所述温度补偿电路的输入端连接,所述第三补偿模块的信号输出端与所述温度补偿电路的输出端连接。
可选的,所述第三补偿模块还包括:第三晶体管、第六电阻和第一负载;
所述第三晶体管的集电极与所述第三补偿模块的信号输出端连接,所述第三晶体管的基极与所述第三补偿模块的信号输入端连接,所述第三晶体管的发射极接地;
所述第六电阻的第一端与所述第三补偿模块的电压输入端连接,所述第六电阻的第二端与所述第三晶体管的基极连接;
所述第一负载的输入端与所述第六电阻的第一端连接,所述第一负载的输出端与所述第三晶体管的集电极连接。
可选的,所述第一晶体管、所述第二晶体管和所述第三晶体管均为三极管或场效应管。
可选的,所述第一晶体管、所述第二晶体管和所述第三晶体管为同一类型晶体管。
可选的,所述温度补偿电路还包括:第一电容;
所述第一电容的第一端与所述第二补偿模块的输出端连接,所述第一电容的第二端接地。
可选的,所述温度补偿电路还包括:第二电容和第三电容;
所述第三补偿模块的信号输入端通过所述第二电容与所述温度补偿电路的输入端连接,所述第三补偿模块的信号输出端通过所述第三电容与所述温度补偿电路的输出端连接。
可选的,所述温度补偿电路还包括:第一滤波模块;
所述第一滤波模块适于与所述外部电源连接,还与所述第二补偿模块连接,用于对所述外部电源向所述第二补偿模块输入的电压进行滤波。
可选的,所述第一滤波模块包括:第四电容和第五电容;
所述第四电容的第一端与所述第二补偿模块连接,所述第四电容的第二端接地;
所述第五电容的第一端与所述第二补偿模块连接,所述第五电容的第二端接地。
可选的,所述温度补偿电路还包括:第二滤波模块;
所述第二滤波模块与所述分压模块连接,还与所述第一补偿模块连接,用于对所述分压模块向所述第一补偿模块输入的电压进行滤波。
可选的,所述第二滤波模块包括:第六电容;
所述第六电容的第一端与所述第一补偿模块连接,所述第六电容的第二端接地。
可选的,所述的温度补偿电路工作的温度范围为-40℃至+90℃。
有益效果
本申请通过分压模块将外部电源的电压分压为第一电压输出给第一补偿模块;第一补偿模块根据第一电压向第二补偿模块输出第一静态电流;第二补偿模块根据外部电源的电压和第一静态电流调整自身的第一偏置电压,并向第三补偿模块输出调整后的第一偏置电压;第三补偿模块根据调整后的第一偏置电压调整自身的偏置电压,进而调整由于温度变化改变的静态工作点,实现了在极限温度下达到更好的温度补偿效果,使温度补偿更精准,同时避免了对晶体管工作性能的影响。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种温度补偿电路的结构示意图;
图2是本申请实施例提供的一种温度补偿电路的电路图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
请一并参考图1及图2,本申请实施例提供了一种温度补偿电路,包括:分压模块100、第一补偿模块200、第二补偿模块300和第三补偿模块400。
分压模块100适于与外部电源连接,分压模块100还与第一补偿模块200连接。
分压模块100将所述外部电源的电压分压为第一电压并输出给第一补偿模块200。
第一补偿模块200与第二补偿模块300连接。
第一补偿模块200根据所述第一电压向所述第二补偿模块300输出第一静态电流。
第二补偿模块300适于与所述外部电源连接,还与第三补偿模块400连接。
第二补偿模块300根据所述外部电源的电压和所述第一静态电流调整自身的第一偏置电压,并向第三补偿模块400输出调整后的第一偏置电压。
第三补偿模块400根据所述调整后的第一偏置电压调整自身的偏置电压。
具体地,在温度补偿电路的温度升高时,第一补偿模块200的静态电流会增大,当第一补偿模块200将增大的静态电流(第一静态电流)输入到第二补偿模块300后,第二补偿模块300根据所述外部电源的电压和所述第一静态电流使自身偏置电压变小,第二补偿模块300将变小后的偏置电压(调整后的偏置电压)输出到第三补偿模块400,第三补偿模块400的偏置电压降低,使第三补偿模块400的静态工作点不会因温度的升高而变高。
在温度补偿电路的温度降低时,第一补偿模块200的静态电流会减小,当第一补偿模块200将减小的静态电流(第一静态电流)输入到第二补偿模块300后,第二补偿模块300根据所述外部电源的电压和所述第一静态电流使自身偏置电压变大,第二补偿模块300将变大后的偏置电压(调整后的偏置电压)输出到第三补偿模块400,第三补偿模块400的偏置电压升高,使第三补偿模块400的静态工作点不会因温度的降低而变小。
上述实施例的温度补偿电路,分压模块100将外部电源的电压分压为第一电压输出给第一补偿模块200;第一补偿模块200根据第一电压向第二补偿模块300输出第一静态电流;第二补偿模块300根据外部电源的电压和第一静态电流调整自身的第一偏置电压,并向第三补偿模块400输出调整后的第一偏置电压;第三补偿模块400根据调整后的第一偏置电压调整自身的偏置电压,实现了在极限温度下达到更好的温度补偿效果,使温度补偿更精准,同时避免了对晶体管工作性能的影响。
进一步地,参见图2,作为一个具体实施例,分压模块100包括:分压端和输出端。
分压模块100的分压端适于与所述外部电源连接,分压模块100的输出端与第一补偿模块200连接。
可选的,分压模块100还包括:第一电阻Rh1和第二电阻Rh2。
第一电阻Rh1的第一端与分压模块的分压端连接,第一电阻Rh1的第二端与分压模块100的输出端连接。
第二电阻Rh2的第一端与第一电阻Rh1的第二端连接,第二电阻Rh2的第二端接地。
具体地,第一电阻Rh1和第二电阻Rh2将外部电源的电压VCC进行分压,将外部电源的电压VCC输出到第一补偿模块200的电压减小,得到所述第一电压,所述第一电压再输出给第一补偿模块200,使第一补偿模块200的电压与第二补偿模块300的电压不等,实现对晶体管温度的补偿。
本申请为了减少成本,使用一个外部电源为第一补偿模块200和第二补偿模块300提供不同的电压,所以采用分压模块100。应理解,为第一补偿模块200和第二补偿模块300提供不同电压的方式还有多种,可以通过MCU(Microcontroller Unit,微控制单元)、基准电压源等独立的电源为第一补偿模块200提供电压,本申请对为第一补偿模块200和第二补偿模块300提供不同的电压的方式不做限定。
进一步地,作为一个具体实施例,第一补偿模块200包括:输入端和输出端。
第一补偿模块200的输入端与分压模块100的输出端连接,第一补偿模块200的输出端与第二补偿模块300连接。
可选的,第一补偿模块200还包括:第一晶体管Q2和第三电阻R2。
第一晶体管Q2的基极与第一补偿模块200的输入端连接,第一晶体管Q2的发射极与第三电阻R2的第一端连接,第一晶体管Q2的集电极与第一补偿模块200的输出端连接.
第三电阻R2的第二端接地。第三电阻R2用于补偿因温度补偿电路中晶体管的差异性所造成的不对称性,避免由于温度升高或降低损坏晶体管的性能。
具体地,第一晶体管Q1的基极接收所述第一电压,当温度补偿电路的温度升高时,第一晶体管Q1的第一静态电流升高,输入到第二补偿模块300,使第二补偿模块300的偏置电压变小;当温度补偿电路的温度降低时,第一晶体管Q1的第一静态电流减小,输入到第二补偿模块300,使第二补偿模块300的偏置电压变大。
进一步地,参见图2,作为一个具体实施例,第二补偿模块300包括:第一输入端、第二输入端和输出端。
第二补偿模块300的第一输入端适于与所述外部电源连接,第二补偿模块300的第二输入端与第一补偿模块200的输出端连接,第二补偿模块300的输出端与第三补偿模块400连接。
可选的,第二补偿模块400还包括:第二晶体管Q1、第四电阻R1和第五电阻R3。
第二晶体管Q1的集电极与连接,第二晶体管Q1的基极与连接,第二晶体管Q1的发射极与第五电阻R3的第一端连接。
第四电阻R1的第一端与第二晶体管Q1的集电极连接,第四电阻R1的第二端与第二晶体管Q1的基极连接。
第五电阻R3的第二端与第二补偿模块300的输出端连接。
具体地,当温度补偿电路的温度升高时,第一晶体管Q1的第一静态电流升高并输入到第二补偿模块300,此时第四电阻R1上的电压便会升高。由于第二补偿模块300的电压是由外部电源电压VCC提供,所以第二补偿模块300的电压不变,即第二晶体管Q1的偏置电压降低;第二晶体管Q1通过第五电阻R3将调整后的偏置电压输出到第三补偿模块400,作为第三补偿模块400晶体管的补偿电压。
当温度补偿电路的温度降低时,第一晶体管Q1的第一静态电流下降并输入到第二补偿模块300,此时第二补偿模块300的电流降低,所以第四电阻R1上的电压便会降低。第二补偿模块300的电压是由外部电源电压VCC提供,所以第二补偿模块300的电压不变,则第二晶体管Q1的偏置电压升高。第二晶体管Q1通过第五电阻R3将调整后的偏置电压输出到第三补偿模块400,作为第三补偿模块400晶体管的补偿电压。
进一步地,参见图2,作为一个具体实施例,第三补偿模块400包括:电压输入端、信号输入端和信号输出端。
其中,所述温度补偿电路包括输入端Input和输出端Output。
第三补偿模块400的电压输入端与第二补偿模块300的输出端连接,第三补偿模块400的信号输入端与温度补偿电路的输入端Input连接,第三补偿模块400的信号输出端与温度补偿电路的输出端Output连接。
可选的,第三补偿模块400还包括:第三晶体管Q3、第六电阻R5和第一负载R0。
第三晶体管Q3的集电极与第三补偿模块400的信号输出端连接,第三晶体管Q3的基极与第三补偿模块400的信号输入端连接,第三晶体管Q3的发射极接地。
第六电阻R5的第一端与第三补偿模块400的电压输入端连接,第六电阻R5的第二端与第三晶体管Q3的基极连接。
第一负载R0的输入端与第六电阻R5的第一端连接,第一负载R0的输出端与第三晶体管Q3的集电极连接。
应理解,第一负载R0可以是元器件,也可以是实现其他功能的电路结构,本申请对第一负载R0的具体结构或电路不做限定。
具体的,当温度补偿电路的温度升高时,第一补偿模块200中第一晶体管Q2的静态电流升高,使第二补偿模块300中的第二晶体管Q1的偏置电压降低;第二晶体管Q1通过第五电阻R3将调整后的偏置电压输出到第三补偿模块400,使第三补偿模块400中的第三晶体管Q3的偏置电压降低,补偿第三晶体管Q3由于温度升高而升高的偏置电压,即使第三晶体管Q3的静态工作点不变,温度补偿电路在高温条件下达到更好的温度补偿效果,不影响晶体管的性能。
当温度补偿电路的温度降低时,第一补偿模块200中第一晶体管Q2的静态电流降低,使第二补偿模块300中的第二晶体管Q1的偏置电压升高;第二晶体管Q1通过第五电阻R3将调整后的偏置电压输出到第三补偿模块400,使第三补偿模块400中的第三晶体管Q3的偏置电压升高,补偿由于温度降低使第三晶体管Q3降低的偏置电压,即使第三晶体管Q3的静态工作点不变,温度补偿电路在高温条件下达到更好的温度补偿效果,不影响晶体管的性能。
可选的,第一晶体管Q1、第二晶体管Q2和第三晶体管Q3均为三极管或场效应管。
可选的,第一晶体管Q1、第二晶体管Q2和第三晶体管Q3为同一类型晶体管。应理解,同一类型晶体管可以指晶体管型号相同,包括晶体管具有相同工作性能,具有相同偏置电压和静态工作点。
为了减少不同类型晶体管会造成温度补偿电路的不对称性,本申请的温度补偿电路中的晶体管采用同一类型的晶体管,使温度补偿电路中的晶体管的温度特性更加相似,使温度补偿电路中晶体管之间进行的精准互补。
进一步地,参考图1及图2,作为一个具体实施例,温度补偿电路还包括:第一电容C4。
第一电容C4的第一端与第二补偿模块300的输出端连接,第一电容C4的第二端接地。具体的,第一电容C4的第一端与第五电阻R3的第二端连接。
第一电容C4用于对第二补偿模块300输入到第三补偿模块400的所述调整后的偏置电压进行滤波。
可选的,温度补偿电路还包括:第二电容C5和第三电容C6。
第三补偿模块400的信号输入端通过第二电容C5与温度补偿电路的输入端连接。可选的,第二电容C5用于对温度补偿电路的输入端输入的信号进行滤波,减少信号的振荡。
可选的,所述信号可以是电压信号和电流信号等。
第三补偿模块400的信号输出端通过第三电容C6与温度补偿电路的输出端连接。可选的,第二电容C5用于对温度补偿电路的输出端输出的信号进行滤波。所述信号可以是电压信号和电流信号等。
进一步地,所述温度补偿电路还包括:第一滤波模块500。
第一滤波模块500适于与所述外部电源连接,第一滤波模块500还与第二补偿模块300连接。
第一滤波模块500用于对所述外部电源向第二补偿模块300输入的电压进行滤波。
可选的,第一滤波模块500包括:第四电容C1和第五电容C2。
第四电容C1的第一端与第二补偿模块300连接,第四电容C1的第二端接地。
第五电容C2的第一端与第二补偿模块300连接,第五电容C2的第二端接地。
进一步地,所述温度补偿电路还包括:第二滤波模块600。
第二滤波模块600与分压模块100连接,第二滤波模块600还与第一补偿模块200连接。
第二滤波模块600用于对分压模块100向第一补偿模块200输入的电压进行滤波。
可选的,第二滤波模块600包括:第六电容C3。
第六电容C3的第一端与第一补偿模块200连接,第六电容C38的第二端接地。具体地,第六电容C3的第一端与第一晶体管Q2的基极连接,还与第一电阻Rh1的第二端连接。
可选的,所述的温度补偿电路工作的温度范围为-40℃至+90℃。
具体的,温度补偿电路能够使晶体管的静态工作点在-40℃至+90℃的温度范围内更好的温度补偿效果,补偿更加精准,且不损坏晶体管的工作性能。
上述实施例中,分压模块100将外部电源的电压分压为第一电压输出给第一补偿模块200;第一补偿模块200根据第一电压向第二补偿模块300输出第一静态电流;第二补偿模块300根据外部电源的电压和第一静态电流调整自身的第一偏置电压,并向第三补偿模块400输出调整后的第一偏置电压;第三补偿模块400根据调整后的第一偏置电压调整自身的偏置电压,进而调整由于温度变化改变的静态工作点,实现了在极限温度下达到更好的温度补偿效果,使温度补偿更精准,同时避免了对晶体管工作性能的影响。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种温度补偿电路,其特征在于,包括:分压模块、第一补偿模块、第二补偿模块和第三补偿模块;
    所述分压模块适于与外部电源连接,还与所述第一补偿模块连接,用于将所述外部电源的电压分压为第一电压并输出给所述第一补偿模块;
    所述第一补偿模块还与所述第二补偿模块连接,用于根据所述第一电压向所述第二补偿模块输出第一静态电流;
    所述第二补偿模块适于与所述外部电源连接,还与所述第三补偿模块连接,用于根据所述外部电源的电压和所述第一静态电流调整自身的第一偏置电压,并向所述第三补偿模块输出调整后的第一偏置电压;
    所述第三补偿模块用于根据所述调整后的第一偏置电压调整自身的偏置电压。
  2. 根据权利要求1所述的温度补偿电路,其特征在于,所述分压模块包括:分压端和输出端;
    所述分压模块的分压端适于与所述外部电源连接,所述分压模块的输出端与所述第一补偿模块连接。
  3. 根据权利要求2所述的温度补偿电路,其特征在于,所述分压模块还包括:第一电阻和第二电阻;
    所述第一电阻的第一端与所述分压模块的分压端连接,所述第一电阻的第二端与所述分压模块的输出端连接;
    所述第二电阻的第一端与所述第一电阻的第二端连接,所述第二电阻的第二端接地。
  4. 根据权利要求2所述的温度补偿电路,其特征在于,所述第一补偿模块包括:输入端和输出端;
    所述第一补偿模块的输入端与所述分压模块的输出端连接,所述第一补偿模块的输出端与所述第二补偿模块连接。
  5. 根据权利要求4所述的温度补偿电路,其特征在于,所述第一补偿模块还包括:第一晶体管和第三电阻;
    所述第一晶体管的基极与所述第一补偿模块的输入端连接,所述第一晶体管的发射极与所述第三电阻的第一端连接,所述第一晶体管的集电极与所述第一补偿模块的输出端连接;
    所述第三电阻的第二端接地。
  6. 根据权利要求4所述的温度补偿电路,其特征在于,所述第二补偿模块包括:第一输入端、第二输入端和输出端;
    所述第二补偿模块的第一输入端适于与所述外部电源连接,所述第二补偿模块的第二输入端与所述第一补偿模块的输出端连接,所述第二补偿模块的输出端与所述第三补偿模块连接。
  7. 根据权利要求6所述的温度补偿电路,其特征在于,所述第二补偿模块还包括:第二晶体管、第四电阻和第五电阻;
    所述第二晶体管的集电极与连接,所述第二晶体管的基极与连接,所述第二晶体管的发射极与所述第五电阻的第一端连接;
    所述第四电阻的第一端与所述第二晶体管的集电极连接,所述第四电阻的第二端与所述第二晶体管的基极连接;
    所述第五电阻的第二端与所述第二补偿模块的输出端连接。
  8. 根据权利要求6所述的温度补偿电路,其特征在于,所述温度补偿电路包括输入端和输出端;
    所述第三补偿模块包括:电压输入端、信号输入端和信号输出端;
    所述第三补偿模块的电压输入端与所述第二补偿模块的输出端连接,所述第三补偿模块的信号输入端与所述温度补偿电路的输入端连接,所述第三补偿模块的信号输出端与所述温度补偿电路的输出端连接。
  9. 根据权利要求8所述的温度补偿电路,其特征在于,所述第三补偿模块还包括:第三晶体管、第六电阻和第一负载;
    所述第三晶体管的集电极与所述第三补偿模块的信号输出端连接,所述第三晶体管的基极与所述第三补偿模块的信号输入端连接,所述第三晶体管的发射极接地;
    所述第六电阻的第一端与所述第三补偿模块的电压输入端连接,所述第六电阻的第二端与所述第三晶体管的基极连接;
    所述第一负载的输入端与所述第六电阻的第一端连接,所述第一负载的输出端与所述第三晶体管的集电极连接。
  10. 根据权利要求9所述的温度补偿电路,其特征在于,所述第一晶体管、所述第二晶体管和所述第三晶体管均为三极管或场效应管。
  11. 根据权利要求10所述的温度补偿电路,其特征在于,所述第一晶体管、所述第二晶体管和所述第三晶体管为同一类型晶体管。
  12. 根据权利要求6所述的温度补偿电路,其特征在于,所述温度补偿电路还包括:第一电容;
    所述第一电容的第一端与所述第二补偿模块的输出端连接,所述第一电容的第二端接地。
  13. 根据权利要求8所述的温度补偿电路,其特征在于,所述温度补偿电路还包括:第二电容和第三电容;
    所述第三补偿模块的信号输入端通过所述第二电容与所述温度补偿电路的输入端连接,所述第三补偿模块的信号输出端通过所述第三电容与所述温度补偿电路的输出端连接。
  14. 根据权利要求1至13任一所述的温度补偿电路,其特征在于,所述温度补偿电路还包括:第一滤波模块;
    所述第一滤波模块适于与所述外部电源连接,还与所述第二补偿模块连接,用于对所述外部电源向所述第二补偿模块输入的电压进行滤波。
  15. 根据权利要求14所述的温度补偿电路,其特征在于,所述第一滤波模块包括:第四电容和第五电容;
    所述第四电容的第一端与所述第二补偿模块连接,所述第四电容的第二端接地;
    所述第五电容的第一端与所述第二补偿模块连接,所述第五电容的第二端接地。
  16. 根据权利要求1至13任一所述的温度补偿电路,其特征在于,所述温度补偿电路还包括:第二滤波模块;
    所述第二滤波模块与所述分压模块连接,还与所述第一补偿模块连接,用于对所述分压模块向所述第一补偿模块输入的电压进行滤波。
  17. 根据权利要求16所述的温度补偿电路,其特征在于,所述第二滤波模块包括:第六电容;
    所述第六电容的第一端与所述第一补偿模块连接,所述第六电容的第二端接地。
  18. 根据权利要求1所述的温度补偿电路,其特征在于,所述的温度补偿电路工作的温度范围为-40℃至+90℃。
PCT/CN2018/085141 2018-04-28 2018-04-28 温度补偿电路 WO2019205155A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085141 WO2019205155A1 (zh) 2018-04-28 2018-04-28 温度补偿电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085141 WO2019205155A1 (zh) 2018-04-28 2018-04-28 温度补偿电路

Publications (1)

Publication Number Publication Date
WO2019205155A1 true WO2019205155A1 (zh) 2019-10-31

Family

ID=68294744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085141 WO2019205155A1 (zh) 2018-04-28 2018-04-28 温度补偿电路

Country Status (1)

Country Link
WO (1) WO2019205155A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828240A (en) * 1973-06-26 1974-08-06 Itt Monolithic integrable series stabilization circuit for generating a constant low voltage output
US6087901A (en) * 1996-03-12 2000-07-11 T.I.F. Co., Ltd Tuning amplifier
CN103424580A (zh) * 2012-05-15 2013-12-04 富泰华工业(深圳)有限公司 电子负载
CN104575479A (zh) * 2015-02-04 2015-04-29 常州东村电子有限公司 一种电磁式蜂鸣器主动方波驱动电路
CN106455230A (zh) * 2016-11-18 2017-02-22 贵州恒芯微电子科技有限公司 一种具有分段温度补偿的线性恒流电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828240A (en) * 1973-06-26 1974-08-06 Itt Monolithic integrable series stabilization circuit for generating a constant low voltage output
US6087901A (en) * 1996-03-12 2000-07-11 T.I.F. Co., Ltd Tuning amplifier
CN103424580A (zh) * 2012-05-15 2013-12-04 富泰华工业(深圳)有限公司 电子负载
CN104575479A (zh) * 2015-02-04 2015-04-29 常州东村电子有限公司 一种电磁式蜂鸣器主动方波驱动电路
CN106455230A (zh) * 2016-11-18 2017-02-22 贵州恒芯微电子科技有限公司 一种具有分段温度补偿的线性恒流电源

Similar Documents

Publication Publication Date Title
US20130271100A1 (en) High power supply rejection linear low-dropout regulator for a wide range of capacitance loads
KR102150503B1 (ko) 공통 모드 궤환 회로를 포함하는 완전 차동 신호 시스템
US10498291B2 (en) Bias circuit and power amplifier circuit
WO2019024803A1 (zh) 电平移位电路和集成电路芯片
TWI448868B (zh) Voltage regulator
CN102386860B (zh) 放大电路和电流-电压转换电路
JP5046144B2 (ja) 増幅回路
US7961049B2 (en) Amplifier with compensated gate bias
WO2019205155A1 (zh) 温度补偿电路
JP5578048B2 (ja) 映像信号出力回路
WO2020206802A1 (zh) 一种运算放大器和显示装置
JP5447548B2 (ja) 増幅回路
JPWO2020110252A1 (ja) アクティブサーキュレータ
TW202303165A (zh) 電流感測電路
KR20050055642A (ko) 달링톤 증폭기의 온도 보상 회로
US6801090B1 (en) High performance differential amplifier
TWI664809B (zh) 阻抗電路及偏壓電路
US20120075015A1 (en) Amplifier and method for linearizing same
US9590607B2 (en) Input buffer circuit
TW202038555A (zh) 差動放大器
TWI833350B (zh) 線性放大器及電源調製器
US11228286B2 (en) Linear amplifier
WO2017147947A1 (zh) 一种无源极电阻的大功率场效应管互补输出电路
CN108365842B (zh) 一种差分转单端的转换电路
JP2010231498A (ja) 定電圧電源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916327

Country of ref document: EP

Kind code of ref document: A1