WO2019205059A1 - 一种可与心肺复苏机连接的监护仪及监护方法 - Google Patents

一种可与心肺复苏机连接的监护仪及监护方法 Download PDF

Info

Publication number
WO2019205059A1
WO2019205059A1 PCT/CN2018/084650 CN2018084650W WO2019205059A1 WO 2019205059 A1 WO2019205059 A1 WO 2019205059A1 CN 2018084650 W CN2018084650 W CN 2018084650W WO 2019205059 A1 WO2019205059 A1 WO 2019205059A1
Authority
WO
WIPO (PCT)
Prior art keywords
cardiopulmonary resuscitation
resuscitation machine
monitor
data
control
Prior art date
Application number
PCT/CN2018/084650
Other languages
English (en)
French (fr)
Inventor
蒋浩宇
洪俊标
叶文宇
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2018/084650 priority Critical patent/WO2019205059A1/zh
Priority to CN201880083824.6A priority patent/CN111699020A/zh
Publication of WO2019205059A1 publication Critical patent/WO2019205059A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators

Definitions

  • Cardiac arrest refers to a physiological condition in which the heart suddenly loses its ejection function. If cardiac arrest cannot be treated in time, cardiac arrest will quickly lead to death. Cardiac resuscitation is currently an effective means of emergency treatment for cardiac arrest.
  • the principle of cardiac resuscitation is: through the chest compression of patients with cardiac arrest, the external pressure is used to passively maintain a certain pumping mechanism, so that the body itself and the brain and other major organs maintain a basic perfusion level, Avoid rapid degeneration and necrosis of major organs.
  • the quality of cardiac resuscitation directly affects the success rate of rescue patients with cardiac arrest.
  • a cardiac resuscitation machine is a device that continuously presses a patient by a mechanical motion device.
  • the working principle is: performing a preset repeated pressing action instead of an artificial pressing.
  • the medical staff needs to constantly observe the physiological state changes reflected by the monitor connected to the patient, and then control and adjust the pressing process of the cardiopulmonary resuscitation machine according to the physiological state change.
  • this kind of monitoring method will affect the working efficiency of the cardiopulmonary resuscitation machine, on the other hand, it will increase the possibility of error.
  • the monitor collects the physiological state of the patient so that the medical staff can make the evaluation judgment, due to the implementation of the pressing process
  • the physiological parameters of the patient for example, the surface electrocardiogram signal
  • a physiological data processing module for processing the physiological signal to obtain physiological data
  • Cardiopulmonary resuscitation interface module for connecting cardiopulmonary resuscitation machine to communicate with cardiopulmonary resuscitation machine
  • control module configured to receive data input by the cardiopulmonary resuscitation machine through the cardiopulmonary resuscitator interface module, and/or output a first control instruction to the cardiopulmonary resuscitation machine through the cardiopulmonary resuscitator interface module; the control module is further configured to control the physiological signal Reception, processing, and display of physiological data.
  • the embodiment of the present application provides another monitor that can be connected to a cardiopulmonary resuscitation machine, and the monitor includes:
  • FIG. 1 is a schematic diagram of a monitor that can be connected to a cardiopulmonary resuscitation machine according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a display interface of a monitor according to an embodiment of the present application.
  • FIG. 5B is a schematic diagram of another manner for displaying information of a reference control instruction according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an interface for manually setting a first control instruction according to an embodiment of the present disclosure
  • FIG. 12 is a flowchart of a method for monitoring by using a monitor according to an embodiment of the present application.
  • FIG. 13 is a flowchart of three working modes of a monitor according to an embodiment of the present application.
  • the sensing element is used to collect data, for example, to support the distance of the pressing mechanism from the patient.
  • the controller is used to drive the driving unit according to the data fed back by the sensing component, and is also used to send data to the monitor through the monitor interface module.
  • the drive unit is used to drive the support pressing mechanism to press the patient.
  • the cardiopulmonary resuscitation machine is a widely used medical device, and the cardiopulmonary resuscitation machine of the embodiment of the present application differs from the existing cardiopulmonary resuscitation machine in that a monitor interface for communicating with the monitor of the embodiment of the present application is added. Module, not to repeat here.
  • the cardiopulmonary resuscitation motion control control 401 can be used to stop or initiate the compression movement of the cardiopulmonary resuscitation machine.
  • the text displayed on the control may vary according to the state of the cardiopulmonary resuscitation machine, that is, when the cardiopulmonary resuscitation machine is performing a pressing motion, the text on the control will be “stop CPR”, meaning “stop cardiopulmonary resuscitation”, medical care The person can stop the pressing motion of the cardiopulmonary resuscitation machine through the cardiopulmonary resuscitation motion control control 401.
  • the medical staff can conveniently observe the physiological data of the patient and/or the corresponding graphic of the physiological data through the display, and the data input by the cardiopulmonary resuscitation machine and/or the corresponding data of the data input by the cardiopulmonary resuscitation machine.
  • the medical staff can adjust the working state of the cardiopulmonary resuscitation machine through the displayed controls to improve the efficiency of monitoring.
  • the display 103 is further configured to display an interface for manually setting the first control instruction before receiving the first operation.
  • FIG. 6 is a schematic diagram of an interface for manually setting a first control instruction according to an embodiment of the present application.
  • the medical staff can determine whether the second operation needs to be input through the reference control command displayed on the display 103.
  • the control command can be manually set by inputting the second operation. If the monitor receives the second operation input by the medical staff, it is determined that the control command corresponding to the second operation is the first control command. Further, the cardiopulmonary resuscitation machine can adjust its working state according to the first control command. The manual setting operation of the first control instruction by the medical staff improves the accuracy of the operation of the monitor.
  • control module 105 is configured to receive data input by the cardiopulmonary resuscitation machine through the cardiopulmonary resuscitator interface module 104, and/or output to the cardiopulmonary resuscitation machine through the cardiopulmonary resuscitator interface module 104.
  • a control command is specifically configured to: receive data input by the cardiopulmonary resuscitation machine through the cardiopulmonary resuscitation interface module 104; if the control module receives the third operation, the control module 105 does not output the first control instruction to the cardiopulmonary resuscitation machine
  • the third operation is an operation of inputting information according to the reference control command displayed by the display. Taking FIG. 5A as an example, the third operation may be a click operation for the "Cancel" button in FIG.
  • the third operation may also be other forms of operations, such as voice input, sliding operation.
  • the medical staff can determine whether the third operation needs to be input through the reference control command displayed on the display 103.
  • the transmission of the control command can be canceled by inputting the third operation. If the monitor receives the third operation input by the medical staff, the first control command is not sent to the cardiopulmonary resuscitation machine. Improve the accuracy of the monitor work by canceling the reference control command by the medical staff.
  • the cardiopulmonary resuscitation processing module filters the physiological signal according to the data input by the cardiopulmonary resuscitation machine received by the cardiopulmonary resuscitation interface module to obtain first physiological data, where the physiological data includes the first Physiological data.
  • the filtering process can filter out interference signals that interfere with physiological signals when the cardiopulmonary resuscitation machine is pressed.
  • the first physiological data can be used in the case of using the physiological data mentioned above.
  • the display 103 can display the physiological data, that is, the display 103 can display the first physiological data.
  • the physiological signal may be an ECG signal, a blood oxygen signal, or the like that describes a physiological condition of the patient.
  • a least mean square (LMS) filtering method may be used to filter out the compression interference of the cardiopulmonary resuscitation machine subjected to the physiological signal, and the processing formula of the LMS filtering method is as follows:
  • n is the discrete sampling point number of the ECG signal
  • k is the harmonic series of the pressing noise model
  • f c is the press pressing frequency
  • f s is the ECG signal
  • s I (n) is the in-phase reference of the pressed noise model
  • s Q (n) is the orthogonal reference of the pressed noise model.
  • a(n) and b(n) respectively correspond to the coefficients of the in- phase and quadrature components in the noise model
  • s in (n) is the original acquisition.
  • Interfering ECG signal An estimated value of the electrocardiographic signal after the compression interference is removed by using the pressed noise model.
  • the coefficients a(n) and b(n) of the pressed noise model can be iteratively updated using the LMS algorithm.
  • the monitor further includes a network communication module, configured to send data information to the electronic medical record system, where the data information includes data input by the cardiopulmonary resuscitation machine, and the physiological signal is processed. At least one of the physiological data; the network communication module is further configured to receive historical medical record data sent by the electronic medical record system.
  • the network communication module may be a wired communication module, or may be a wireless communication module, and the wireless communication module may be a communication protocol based on a local area network or a wide area network.
  • the multi-parameter threshold alarm is performed by pre-storing a preset threshold of one or more parameter combinations, when the physiological data obtained by the physiological signal is processed, or the first of the physiological data after filtering the interference
  • the alarm module issues an alarm when the parameter combination exceeds the preset threshold of the first parameter combination.
  • the first parameter combination is a combination of parameters in the one or more parameter combinations.
  • the alarm is combined with the historical case data, and the average value of each parameter in the historical case data is obtained, and the physiological parameter obtained by processing the physiological signal or the second parameter ratio in the physiological data after filtering the interference is processed.
  • the alarm module issues an alarm when the average value of the second parameter is greater than the first reference value, or when the second parameter is smaller than the average value of the second parameter by the second reference value.
  • the monitor further includes a defibrillation electrode interface module for connecting the defibrillation electrode to communicate with the defibrillation electrode; the control module 105 is further configured to pass the defibrillation electrode The interface module receives data of the defibrillation electrode output, and/or outputs a third control command to the defibrillation electrode through the defibrillation electrode interface module, the third control command is used to instruct the defibrillation electrode to adjust its operating state. It should be understood that the above communication method suitable for the monitor and the cardiopulmonary resuscitation machine is also applicable between the monitor and the defibrillation electrode.
  • the monitor can receive the electrocardiographic signal of the patient transmitted by the defibrillation electrode through the defibrillation electrode interface module.
  • the monitor can send a third control command to the defibrillation electrode to control the defibrillation electrode to adjust its operating state.
  • the monitor can realize centralized display of patient physiological parameter information collected by one or more physiological sensors, collection of ECG information of defibrillation electrodes, and working state information of cardiopulmonary resuscitation machine, as well as compression movement of cardiopulmonary resuscitation machine and defibrillation electrode discharge. Centralized control.
  • the monitor's centralized control of the cardiopulmonary resuscitation press and defibrillation electrode discharge can operate in manual, semi-automatic or automatic mode.
  • the medical staff can manually set the working parameters of the cardiopulmonary resuscitation machine according to the displayed physiological data and/or the corresponding data of the physiological data, manually control the movement of the cardiopulmonary resuscitation machine, manually select the discharge energy of the defibrillation electrode, manually pass the division.
  • the vibrating electrode is discharged.
  • the monitor can continuously monitor the physiological state of the patient during cardiopulmonary resuscitation based on the displayed physiological data and/or the corresponding data of the physiological data. Upon detecting a change in the patient's physiological state, the monitor can output a reference control command that displays the control cardiopulmonary resuscitation machine.
  • the monitor can also be connected to a cardiopulmonary resuscitation machine, a ventilator and a defibrillation electrode.
  • the monitor communicates with the cardiopulmonary resuscitation machine, ventilator and defibrillation electrodes.
  • the monitor can receive status information of the patient's respiratory mechanics sent by the ventilator and the ventilation status of the current ventilator, and the monitor can send a second control command to the ventilator to control the ventilation process of the ventilator.
  • the monitor can send a third control command to the defibrillation electrode to control the operating state of the defibrillation electrode.
  • the monitor can realize centralized display of patient physiological parameter information collected by one or more physiological sensors, collection of ECG information of the defibrillation electrode, respiratory mechanical state information transmitted by the ventilator, ventilation state information, and working state information of the cardiopulmonary resuscitation machine, and Centralized control of the cardiopulmonary resuscitation press, defibrillation electrode discharge, and ventilator ventilation procedures.
  • the monitor can operate in manual, semi-automatic or automatic mode for centralized control of cardiopulmonary resuscitation press, defibrillation electrode discharge, and ventilator ventilation.
  • the control module 1105 when the monitor operates in the first mode, synchronously controls the physiological signal when the cardiopulmonary resuscitator interface module 1104 communicates with the cardiopulmonary resuscitation machine. receive. In this way, the monitor can receive the physiological signals of the patient while communicating with the cardiopulmonary resuscitation machine, and the data feedback is more timely, improving the efficiency and accuracy of the monitor work.
  • the control module 1105 can receive data input by the cardiopulmonary resuscitation machine, and/or output a first control command to the cardiopulmonary resuscitation machine, and synchronously control the reception, processing, and display of the physiological data.
  • control module 1105 is configured to output a first control instruction to the cardiopulmonary resuscitation machine through the cardiopulmonary resuscitation interface module 1104, specifically: if the control module 1105 receives the first operation of the input The control module 1105 sends the first control command to the cardiopulmonary resuscitation machine through the cardiopulmonary resuscitation interface module 1104 to instruct the cardiopulmonary resuscitation machine to adjust its working state, the first operation being the reference displayed according to the display 1103. The operation of controlling the information input of the instruction is used to determine that the reference control instruction is the first control instruction. In this way, the medical staff can determine whether the first operation needs to be input through the reference control command displayed on the display 1103.
  • the cardiopulmonary resuscitation processing module is configured to filter the physiological signal according to the data input by the cardiopulmonary resuscitation machine received by the cardiopulmonary resuscitation interface module to obtain first physiological data, where the physiological data includes the First physiological data.
  • the filtering process can filter out interference signals that interfere with physiological signals when the cardiopulmonary resuscitation machine is pressed.
  • the first physiological data can be used in the case of using the physiological data mentioned above.
  • the display 1103 can display the physiological data, that is, the display 1103 can display the first physiological data.
  • the physiological signal may be an ECG signal, a blood oxygen signal, or the like that describes a physiological condition of the patient.
  • a least mean square filtering method may be used to filter out the compression interference of the cardiopulmonary resuscitation machine to which the physiological signal is subjected.
  • the display 1103 when the monitor is operating in the first mode, the display 1103 is further configured to output data indicating that the control module 1105 receives the cardiopulmonary resuscitation machine input through the cardiopulmonary resuscitation interface module 1104; similarly, the monitor operates on In the first mode, the display 1103 is further configured to output data indicative of the ventilator output received by the control module 1105 through the ventilator interface module.
  • the monitor can send a third control command to the defibrillation electrode to effect adjustment of the operational state of the defibrillation electrode.
  • the monitor can output a reference control command that displays a change in ventilator ventilation settings when a patient is found to be under-ventilated or over-ventilated.
  • the monitor will send the first reference control command to the cardiopulmonary resuscitation machine for corresponding control, or send the second reference control command to the ventilator to change the ventilation parameter, or send the third reference control command to The defibrillation module is charged and discharged.
  • the monitor can send a first control command to the cardiopulmonary resuscitation machine, thereby implementing control adjustment of the pressing motion of the cardiopulmonary resuscitation machine.
  • Each reference control instruction corresponds to a reference operation
  • the reference operation corresponding to the confirmation control may be to stop the cardiopulmonary resuscitation machine pressing
  • the reference operation corresponding to the manual setting control may be to enter the manual setting interface to perform subsequent parameter setting operations, and cancel the corresponding control
  • the reference operation may be to continue the cardiopulmonary resuscitation machine press, so that the medical staff can select whether to perform the reference control instruction, and improve the accuracy of the work of the monitor.
  • the monitor and the cardiopulmonary resuscitation machine and the ventilator can establish a communication between the monitor and the cardiopulmonary resuscitation machine and the ventilator.
  • the medical staff can observe the cardiopulmonary resuscitation machine, the working state of the ventilator on the monitor, and adjust the cardiopulmonary resuscitation machine through the monitor.
  • the working state of the ventilator does not need to separate the monitor and the cardiopulmonary resuscitation machine, the ventilator to monitor and adjust the work, improve the efficiency and accuracy of the monitoring.
  • the method further includes: receiving, by the monitor, data of the defibrillation electrode input, and/or outputting a third control instruction to the defibrillation electrode, the third control instruction for controlling the defibrillation electrode to adjust its working state .
  • the above communication method suitable for the monitor and the cardiopulmonary resuscitation machine is also applicable between the monitor and the defibrillation electrode.
  • the monitor is also operative to output data indicative of the received cardiopulmonary resuscitation machine input; similarly, the monitor is also operative to output data indicative of the received defibrillation electrode output.
  • the monitor can output a reference control command that displays defibrillation.
  • the monitor will send the first control command to the cardiopulmonary resuscitation machine for corresponding control or send the third control command to the defibrillation electrode for charging and discharging.
  • the monitor can continuously monitor the physiological state of the patient during cardiopulmonary resuscitation according to the displayed physiological data and/or the corresponding figure of the physiological data.
  • FIG. 14 is a flowchart of still another method for monitoring by using a monitor according to an embodiment of the present application.
  • the working mode of the monitor includes a first mode and a second mode, and the method includes:
  • the method further includes outputting data indicating the input of the cardiopulmonary resuscitation machine.
  • the data input by the cardiopulmonary resuscitation machine may be the working state and/or setting information of the cardiopulmonary resuscitation machine.
  • the medical staff can observe the working status and/or setting information of the cardiopulmonary resuscitation machine in the monitor to monitor the treatment process and avoid the reduction caused by the switching observation of the monitor and the cardiopulmonary resuscitation machine. Work efficiency and the possibility of increasing the likelihood of errors.
  • the monitor outputs a first control command to the cardiopulmonary resuscitation machine, including, if receiving the second operation of the input, sending a first control command to the cardiopulmonary resuscitation machine to control the cardiopulmonary resuscitation machine to adjust its working state.
  • the second operation is an operation corresponding to the control instruction for setting the first control instruction.
  • the monitor is further configured to display an interface for manually setting the first control instruction before receiving the first operation. In this way, the medical staff can determine whether the second operation needs to be input through the reference control command displayed by the monitor. When the medical staff needs to correct the reference control command, the control command can be manually set by inputting the second operation.
  • the monitor can receive status information of the patient's respiratory mechanics sent by the ventilator and the ventilation status of the current ventilator.
  • the monitor can send a second control command to the ventilator to control the working state of the ventilator.
  • the monitor can realize centralized display of patient physiological parameter information collected by one or more physiological sensors, respiratory mechanical state information and ventilation state information transmitted by the ventilator, and cardiopulmonary resuscitation machine working state information.
  • the monitor can achieve centralized control of the cardiopulmonary resuscitation press and ventilator ventilation process.
  • the monitor In the first mode of the monitor, the monitor can operate in manual, semi-automatic or automatic mode for centralized control of cardiopulmonary resuscitation press and ventilator ventilation.
  • the monitor when the monitor is operating in the first mode, the monitor receives data input by the defibrillation electrode, and/or outputs a control command to the defibrillation electrode; The monitor controls the reception, processing, and display of the physiological data when the second mode is operated.
  • the processor 1501 may be a central processing unit (CPU), and the processor may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 1501 may display the physiological data of the patient and/or the graphic corresponding to the physiological data through the output device 1503, and may also display the data input by the cardiopulmonary resuscitation machine and/or the data input by the cardiopulmonary resuscitation machine. Graphics. The medical staff can judge whether it is necessary to adjust the working state of the cardiopulmonary resuscitation machine based on the displayed data. When it is required to adjust the working state of the cardiopulmonary resuscitation machine, the processor 1501 generates a first control command according to the adjustment data of the cardiopulmonary resuscitation machine input by the medical staff, and the first control instruction is used to control the cardiopulmonary resuscitation machine to adjust its working state.
  • Each reference control instruction corresponds to a reference operation
  • the reference operation corresponding to the confirmation control may be to stop the cardiopulmonary resuscitation machine pressing
  • the reference operation corresponding to the manual setting control may be to enter the manual setting interface to perform subsequent parameter setting operations, and cancel the corresponding control
  • the reference operation may be to continue the cardiopulmonary resuscitation machine press, so that the medical staff can select whether to perform the reference control instruction, and improve the accuracy of the work of the monitor.
  • the processor 1501 is further configured to receive data input by the ventilator and/or output a second control instruction to the ventilator, the second control instruction being used to control the ventilator to adjust its working state.
  • the above communication method suitable for the monitor and the cardiopulmonary resuscitation machine is also applicable between the monitor and the ventilator.
  • the monitor is also used to output data indicative of the received cardiopulmonary resuscitation machine input; similarly, the monitor is also used to output data indicative of the received ventilator output. In this way, it is possible to establish a communication between the monitor and the cardiopulmonary resuscitation machine and the ventilator.
  • the input device 1602 can include a keyboard, a touchpad, a fingerprint sensor (for collecting fingerprint information of the user and direction information of the fingerprint), a microphone, a communication interface, and the like, and the output device 1603 can include a display (LCD, etc.), a speaker, and a communication interface. , alarms, etc.
  • the medical staff can judge whether it is necessary to adjust the working state of the cardiopulmonary resuscitation machine based on the displayed data.
  • the processor 1601 When it is required to adjust the working state of the cardiopulmonary resuscitation machine, the processor 1601 generates a first control command according to the adjustment data of the cardiopulmonary resuscitation machine input by the medical staff, and the first control instruction is used to control the cardiopulmonary resuscitation machine to adjust its working state.
  • the medical staff can adjust the working state of the cardiopulmonary resuscitation machine by operating the monitor, without the need for the medical staff to operate on the two devices separately, reducing the possibility of error and improving the efficiency of the monitoring.
  • Each reference control instruction corresponds to a reference operation
  • the reference operation corresponding to the confirmation control may be to stop the cardiopulmonary resuscitation machine pressing
  • the reference operation corresponding to the manual setting control may be to enter the manual setting interface to perform subsequent parameter setting operations, and cancel the corresponding control
  • the reference operation may be to continue the cardiopulmonary resuscitation machine press, so that the medical staff can select whether to perform the reference control instruction, and improve the accuracy of the work of the monitor.
  • the processor 1601 receives the data input by the cardiopulmonary resuscitation machine through the output device 1603, and/or outputs the first control instruction to the cardiopulmonary resuscitation machine, including receiving data input by the cardiopulmonary resuscitation machine; if receiving the third operation, Then, the first control instruction is not output to the cardiopulmonary resuscitation machine, and the third operation is an operation corresponding to the reference control instruction.
  • the medical staff can determine whether the third operation needs to be input through the displayed reference control command. When the medical staff does not need to send the reference control command, the transmission of the control command can be canceled by inputting the third operation. If the monitor receives the third operation input by the medical staff, the first control command is not sent to the cardiopulmonary resuscitation machine. Improve the accuracy of the monitor work by canceling the reference control command by the medical staff.
  • the processor 1601 is further configured to perform an alarm according to the physiological data obtained by processing the physiological signal.
  • the alarm mode may include a single parameter threshold alarm, a multi-parameter combination alarm, and a mode in which alarms are combined with historical case data.
  • the monitor can monitor the physiological condition of the patient in real time. When the physiological data reflecting the physiological condition of the patient meets the preset alarm condition, the monitor will issue an alarm to remind the medical staff to take rescue measures for the patient and improve the monitoring. Efficiency and accuracy.
  • the medical staff can observe the cardiopulmonary resuscitation machine, the working state of the ventilator on the monitor, and adjust the cardiopulmonary resuscitation machine through the monitor.
  • the working state of the ventilator does not need to separate the monitor and the cardiopulmonary resuscitation machine, the ventilator to monitor and adjust the work, improve the efficiency and accuracy of the monitoring.
  • each operation may also correspond to the corresponding description of the method embodiment shown in FIG. 14 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

本申请公开了一种可与心肺复苏机连接的监护仪及监护方法,该监护仪包括:传感器接口模块,用于连接生理传感器,并接收连接到病人的生理传感器采集到的生理信号;生理数据处理模块,用于处理所述生理信号获得生理数据;显示器,用于输出显示所述生理数据;心肺复苏机接口模块,用于连接心肺复苏机,可与所述心肺复苏机实现通讯;控制模块,用于通过所述心肺复苏机接口模块接收所述心肺复苏机输入的数据、和/或通过所述心肺复苏机接口模块向所述心肺复苏机输出第一控制指令;所述控制模块还用于控制所述生理信号的接收,处理以及所述生理数据的显示。本申请实施例可以提高监护的效率。

Description

一种可与心肺复苏机连接的监护仪及监护方法 技术领域
本申请涉及医疗器械技术领域,尤其涉及一种可与心肺复苏机连接的监护仪及监护方法。
背景技术
心脏骤停是指心脏突然失去射血功能的一种生理状况,如果心脏骤停不能得到及时救治,心脏骤停将快速导致病人死亡。心脏复苏是目前针对心脏骤停进行紧急救治的有效手段。心脏复苏的原理为:通过对心脏骤停的病人实施胸外按压,利用外部压力使人体被动地维持一定的泵血机制,从而使人体的心脏本身和大脑等主要脏器保持基本的灌注水平,避免出现主要器官迅速的衰竭坏死。心脏复苏的质量直接影响到心脏骤停病人的抢救成功率。由于人工进行心脏复苏按压可能会因为疲劳等因素的影响而降低按压质量,本领域技术人员特此提出心肺复苏机的概念。心脏复苏机是一种通过机械运动装置对病人进行持续按压的设备,工作原理为:执行预先设置好的重复的按压动作来代替人工的按压。
目前,在心脏复苏机的工作过程中,医护人员需要不断观察与病人连接的监护仪反映的生理状态变化,再根据该生理状态变化对心肺复苏机的按压过程进行控制和调整。这种监护方式一方面会影响心肺复苏机的工作效率,另一方面也会增加出错的可能性,同时,在监护仪采集病人的生理状态以便医护人员进行评估判断时,由于在实施按压过程中病人的生理参数(例如,体表心电信号等)受到外部按压的干扰较大,医护人员通常需要先暂停心肺复苏机的持续按压动作,但暂停按压会使病人的灌注水平迅速下降,暂停时间超过10秒就会对心肺复苏质量产生较大的负面影响。如何提高监护的效率是本领域技术人员正在研究的问题。
发明内容
本申请实施例提供一种可与心肺复苏机连接的监护仪及监护方法,可以提 高监护的效率。
第一方面,本申请实施例提供了一种可与心肺复苏机连接的监护仪,该监护仪包括:
传感器接口模块,用于连接生理传感器,并接收连接到病人的生理传感器采集到的生理信号;
生理数据处理模块,用于处理该生理信号获得生理数据;
显示器,用于输出显示该生理数据;
心肺复苏机接口模块,用于连接心肺复苏机,可与心肺复苏机实现通讯;
控制模块,用于通过该心肺复苏机接口模块接收心肺复苏机输入的数据、和/或通过该心肺复苏机接口模块向心肺复苏机输出第一控制指令;该控制模块还用于控制生理信号的接收,处理以及生理数据的显示。
第二方面,本申请实施例提供了又一种可与心肺复苏机连接的监护仪,该监护仪包括:
传感器接口模块,用于连接生理传感器,并接收连接到病人的生理传感器采集到的生理信号;
生理数据处理模块,用于处理该生理信号获得生理数据;
显示器,用于输出显示该生理数据;
心肺复苏机接口模块,用于连接心肺复苏机,可与心肺复苏机实现通讯;
控制模块,用于控制监护仪的工作模式在第一模式和第二模式之间切换,其中,该监护仪工作于该第一模式时,该控制模块通过该心肺复苏机接口模块接收心肺复苏机输入的数据、和/或通过该心肺复苏机接口模块向心肺复苏机输出控制指令;该监护仪工作于该第二模式时,该控制模块还用于控制该生理信号的接收,处理以及生理数据的显示。
第三方面,本申请实施例提供了一种应用监护仪进行监护的方法,该方法包括:
接收采集到的生理信号,并处理该生理信号获得生理数据;
输出显示该生理数据;
接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令;
控制生理信号的接收,处理以及生理数据的显示。
第四方面,本申请实施例提供了又一种应用监护仪进行监护的方法,监护仪的工作模式包括第一模式和第二模式,该方法包括:
监护仪工作于该第一模式时,接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令;以及
监护仪工作于该第二模式时,接收采集到的生理信号,并处理该生理信号获得生理数据;输出显示该生理数据。
第五方面,本申请实施例提供了又一种可与心肺复苏机连接的监护仪,包括处理器和存储器,该处理器和存储器相互连接,其中,该存储器用于存储程序指令,该处理器用于调用该存储器中的程序指令来执行上述第一方面的方法。
第六方面,本申请实施例提供了又一种可与心肺复苏机连接的监护仪,包括处理器和存储器,该处理器和存储器相互连接,其中,该存储器用于存储程序指令,该处理器用于调用该存储器中的程序指令来执行上述第二方面的方法。
第七方面,本申请实施例提供了一种计算机可读存储介质,该计算机存储介质存储有程序指令,该程序指令当被处理器运行时,该处理器执行上述第一方面或第二方面的方法。
本申请实施例可以建立监护仪和心肺复苏机之间的通讯,监护仪能够接收心肺复苏机输入的数据,该数据体现该心肺复苏机的工作状态;还能够向心肺复苏机输出第一控制指令以指示该心肺复苏机调节自身的工作状态。通过上述方式,医护人员可以在监护仪上观测到心肺复苏机的工作状态,还可以通过监护仪调整心肺复苏机的工作状态,无需分开对监护仪和心肺复苏机进行监测和调整的工作,提高监护的效率和准确性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种可与心肺复苏机连接的监护仪的示意图;
图2为本申请实施例提供的一种心肺复苏机的示意图;
图3为本申请实施例提供的一种监护仪与心肺复苏机连接的示意图;
图4为本申请实施例提供的一种监护仪显示界面的示意图;
图5A为本申请实施例提供的一种参考控制指令的信息的显示方式的示意图;
图5B为本申请实施例提供的又一种参考控制指令的信息的显示方式的示意图;
图5C为本申请实施例提供的又一种参考控制指令的信息的显示方式的示意图;
图6为本申请实施例提供的一种手动设置第一控制指令的界面的示意图;
图7为本申请实施例提供的一种滤除干扰后的心电信号的示意图;
图8为本申请实施例提供的一种监护仪与心肺复苏机,呼吸机连接的示意图;
图9为本申请实施例提供的一种监护仪与心肺复苏机,除颤电极连接的示意图;
图10为本申请实施例提供的一种监护仪与心肺复苏机,呼吸机,除颤电极连接的示意图;
图11为本申请实施例提供的一种可与心肺复苏机连接的监护仪的示意图;
图12为本申请实施例提供的一种应用监护仪进行监护的方法的流程图;
图13为本申请实施例提供的一种监护仪的三种工作模式的流程图;
图14为本申请实施例提供的又一种应用监护仪进行监护的方法的流程图;
图15为本申请实施例提供的又一种可与心肺复苏机连接的监护仪;
图16为本申请实施例提供的又一种可与心肺复苏机连接的监护仪。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包 含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
参见图1,为本申请实施例提供的一种可与心肺复苏机连接的监护仪的示意图。该监护仪10包括:
传感器接口模块101,用于连接生理传感器,并接收连接到病人的生理传感器采集到的生理信号。
生理数据处理模块102,用于处理该生理信号获得生理数据。
显示器103,用于输出显示该生理数据。
心肺复苏机接口模块104,用于连接心肺复苏机,可与心肺复苏机实现通讯。
控制模块105,用于通过该心肺复苏机接口模块104接收心肺复苏机输入的数据、和/或通过该心肺复苏机接口模块104向心肺复苏机输出第一控制指令;该控制模块105还用于同步控制生理信号的接收,处理以及生理数据的显示。
需要说明的是,该监护仪可以为便携式监护仪,该监护仪还可以为具有部分监护功能的医疗设备,例如,具有部分监护功能的除颤仪,具有部分监护功 能的呼吸机,等等。其中,监护仪连接的生理传感器可以为通过有线连接方式或者无线连接方式与监护仪连接的生理传感器,还可以为设置在与监护仪连接的医疗设备上的生理传感器,例如,设置在心肺复苏机上的生理传感器。
心肺复苏机,通常也称作心肺复苏仪,是一类以机械代替人力实施人工呼吸(机械通气)和胸外按压等基础生命支持操作的设备,可分为电动式心肺复苏机和气动式心肺复苏机两种。此类设备可提供高水平无间断的人工循环和通气支持,并且某些便携可移动式的心肺复苏机可被用于院前急救中,即使在转运患者的过程中其工作也不会受到明显影响。参见图2,为本申请实施例提供的一种心肺复苏机的示意图。其中,监护仪接口模块用于连接监护仪,可与监护仪实现通讯。感知元件用于采集数据,例如,支撑按压机构离病人的距离。控制器用于根据感知元件反馈的数据驱动驱动单元工作,也用于通过监护仪接口模块向监护仪发送数据。驱动单元用于驱动支撑按压机构对病人进行按压。心肺复苏机为已广泛使用的医疗设备,在本申请实施例的心肺复苏机,相对于现有的心肺复苏机,区别在于多了用于与本申请实施例的监护仪进行通讯的监护仪接口模块,在此不多赘述。
参见图3,为本申请实施例提供的一种监护仪与心肺复苏机连接的示意图。其中,监护仪的心肺复苏机接口模块与心肺复苏机的监护仪接口模块进行连接,该连接的连接方式可以为有线连接,也可以为无线连接。监护仪的传感器接口模块可以与一个或多个生理传感器相连接,图中示意地连接了n个生理传感器。该监护仪与生理传感器的连接方式可以为有线连接,也可以为无线连接。
在又一种可选的方案中,该控制模块105通过该心肺复苏机接口模块104与该心肺复苏机通讯时同步控制生理信号的接收。通过这种方式,监护仪在实现与心肺复苏机通讯的同时,可以接收病人的生理信号,数据反馈更加及时,提高监护仪工作的效率和准确性。当然,该控制模块105可以接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,并同步控制该生理信号的接收、处理和该生理数据的显示。
在又一种可选的方案中,该显示器103还用于输出显示该控制模块105通过该心肺复苏机接口模块104接收到的心肺复苏机输入的数据。需要说明的是,该心肺复苏机输入的数据可以为该心肺复苏机的工作状态和/或设置信息。 具体的,该心肺复苏机的工作状态可以为该心肺复苏机实时的按压过程的信息,例如,心肺复苏机按压过程中的按压数据对应的图形(例如曲线图、柱形图);该心肺复苏机的设置信息可以为连续按压,定时间断按压,暂停和终止,还可以为,该心肺复苏机的按压频率,按压深度,按压占空比等工作参数。通过这种方式,医护人员可以在监护仪中观测到该心肺复苏机的工作状态和/或设置信息,以便对治疗过程进行监护,避免了在监护仪和心肺复苏机进行切换观测而造成的降低工作效率和增加出错可能性的问题。
在又一种可选的方案中,该显示器103包括第一显示区和第二显示区;该第一显示区用于显示该生理数据和/或该生理数据对应的图形(例如曲线图、柱形图等等),该第二显示区用于显示该心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。其中,心肺复苏机输入的数据对应的图形可以为人体心肺复苏过程中的病人肺部按压状态的可视化受力情况。可选的,该显示器103还可以包括第三显示区,该第三显示区可以显示心肺复苏机工作的相关控件,该心肺复苏机工作的相关控件用于调整心肺复苏机的工作状态。
参见图4,为本申请实施例提供的一种监护仪显示界面的示意图。其中,第一显示区显示了病人的生理数据和该生理数据对应的图形;第二显示区显示了心肺复苏机输入的数据和该心肺复苏机输入的数据对应的图形。该第三显示区显示了心肺复苏机工作的相关控件。其中,心肺复苏机工作的相关控件包括心肺复苏机运动控制控件401、心肺复苏机按压参数设置控件402、心肺复苏机控制模式选择控件403。需要说明的是,该心肺复苏机工作的相关控件还可以包括其他控件,这里不做限定。心肺复苏机运动控制控件401可以用于停止或者开始心肺复苏机的按压运动。可选的,控件上显示文字可以根据心肺复苏机的状态而变化,即,当心肺复苏机正在进行按压运动时,控件上的文字将为“停止CPR”,意为“停止心肺复苏”,医护人员可以通过心肺复苏机运动控制控件401停止心肺复苏机的按压运动。当心肺复苏机没有执行按压运动时,控件上的文字将为“开始CPR”,意为“开始心肺复苏”,医护人员可以通过心肺复苏机运动控制控件401启动心肺复苏机的按压运动。心肺复苏机按压参数设置控件402可以用于设置心肺复苏机的工作参数。心肺复 苏机控制模式选择控件403可以用于选择心肺复苏机的工作模式。可选的,该心肺复苏机的工作模式可以为自动模式,半自动模式和手动模式。
通过这种方式,医护人员可以通过显示器方便地观测到病人的生理数据和/或该生理数据对应的图形,以及心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。同时,医护人员可以通过显示的控件对心肺复苏机的工作状态进行调节,提升监护的效率。
需要说明的是,该监护仪可以有三种工作模式,该三种工作模式可以为手动模式,半自动模式和自动模式。下面针对这三种模式做详细介绍。
在手动模式下,该显示器103可以显示病人的生理数据和/或该生理数据对应的图形,也可以显示心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。医护人员可以根据显示的数据判断是否需要对心肺复苏机的工作状态进行调整。当需要调整心肺复苏机的工作状态时,该监护仪根据医护人员输入的心肺复苏机的调整数据生成第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。具体的,该心肺复苏机调节自身的工作状态可以为,心肺复苏机工作状态的转换,例如,将心肺复苏机原始的连续按压状态转换为定时间断按压状态。该心肺复苏机调节自身的工作状态还可以为,心肺复苏机工作参数的调整,例如,将心肺复苏机原始的按压深度5.5厘米调整为按压深度5厘米。通过这种方式,医护人员可以通过监护仪显示的病人的生理数据和/或该生理数据对应的图形,以及心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形判断是否需要对心肺复苏机的工作状态进行调节。同时,可以通过对监护仪的操作实现对心肺复苏机的工作状态的调节,无需医护人员分别在两个设备上进行操作,减少了出错的可能性,提升了监护的效率。
可选的,该监护仪还包括心肺复苏处理模块,该心肺复苏处理模块用于连接该心肺复苏机接口模块104,显示器103还用于显示参考控制指令的信息;在半自动模式下,该参考控制指令为该心肺复苏处理模块根据该心肺复苏机输入的数据和该生理数据生成的、用于执行参考操作的控制指令。参见图5A,为本申请实施例提供的一种参考控制指令的信息的显示方式的示意图。可以看出,通过这种方式,医护人员能够看到生成的参考控制指令信息,例如图5A 的确认控件、取消控件和手动设置控件。每种参考控制指令对应一种参考操作,例如确认控件对应的参考操作可以是停止心肺复苏机按压,手动设置控件对应的参考操作可以是进入手动设置界面进行后续参数设置的操作,取消控件对应的参考操作可以是继续心肺复苏机按压,以便医护人员可以对该参考控制指令进行是否执行的选择,提高监护仪工作的准确性。参见图5B,为本申请实施例提供的又一种参考控制指令的信息的显示方式的示意图。参见图5C,为本申请实施例提供的又一种参考控制指令的信息的显示方式的示意图。
在又一种可选的方案中,该控制模块105,用于通过该心肺复苏机接口模块104向心肺复苏机输出第一控制指令,具体为:若该控制模块105接收到输入的第一操作,则该控制模块105通过该心肺复苏机接口模块104向该心肺复苏机发送该第一控制指令以指示该心肺复苏机调整自身的工作状态,该第一操作为根据该显示器103显示的该参考控制指令的信息输入的操作,用于确定该参考控制指令为该第一控制指令。以图5A为例,该第一操作可以为针对图5A中“确定”按钮的点击操作。需要说明的是,该第一操作还可以为其他形式的操作,例如语音输入,滑动操作。通过这种方式,医护人员可以通过显示器103显示的参考控制指令判断是否需要输入第一操作,若监护仪接收到医护人员输入的该第一操作,则确定对应该第一操作的参考指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对生成的参考控制指令的确定操作,提高监护仪工作的准确性。
在又一种可选的方案中,该控制模块105,用于通过该心肺复苏机接口模块104向心肺复苏机输出第一控制指令,具体为:若该控制模块105接收到输入的第二操作,则该控制模块105通过该心肺复苏机接口模块104向该心肺复苏机发送第一控制指令以指示该心肺复苏机调整自身的工作状态,该第二操作为根据该显示器103显示的该参考控制指令的信息输入的操作,用于设置该第一控制指令。以图5A为例,该第二操作可以为针对图3中“手动设置”按钮的点击操作和后续如图6中的参数设置操作。需要说明的是,该第二操作还可以为其他形式的操作,例如语音输入,滑动操作。可选的,在接收该第一操作之前,该显示器103还用于显示手动设置第一控制指令的界面。参见图6,为本申请实施例提供的一种手动设置第一控制指令的界面的示意图。
通过这种方式,医护人员可以通过显示器103显示的参考控制指令判断是否需要输入第二操作,当医护人员需要修正该参考控制指令时,能够通过输入第二操作的方式手动设置控制指令。若监护仪接收到医护人员输入的该第二操作,则确定与该第二操作对应的控制指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对第一控制指令的手动设置操作,提高监护仪工作的准确性。
在又一种可选的方案中,该控制模块105,用于通过该心肺复苏机接口模块104接收心肺复苏机输入的数据、和/或通过该心肺复苏机接口模块104向心肺复苏机输出第一控制指令,具体为:用于通过该心肺复苏机接口模块104接收心肺复苏机输入的数据;若该控制模块接收到第三操作,则该控制模块105不向心肺复苏机输出第一控制指令,该第三操作为根据该显示器显示的该参考控制指令的信息输入的操作。以图5A为例,该第三操作可以为针对图5A中“取消”按钮的点击操作。需要说明的是,该第三操作还可以为其他形式的操作,例如语音输入,滑动操作。通过这种方式,医护人员可以通过显示器103显示的参考控制指令判断是否需要输入第三操作,当医护人员不需要发送该参考控制指令时,能够通过输入第三操作的方式取消控制指令的发送。若监护仪接收到医护人员输入的该第三操作,则不向心肺复苏机发送该第一控制指令。通过医护人员对参考控制指令的取消操作,提高监护仪工作的准确性。
该监护仪还可以包括心肺复苏处理模块,该心肺复苏处理模块用于连接该心肺复苏机接口模块104,在自动模式下,该心肺复苏处理模块用于根据该心肺复苏机输入的数据和该生理数据生成该第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,监护仪可以根据病人的生理状况和心肺复苏机的工作状态生成第一控制指令,该第一控制指令可以控制心肺复苏机调节自身的工作状态,无需医护人员输入其他操作,提高监护的效率。
在又一种可选的方案中,该心肺复苏处理模块根据该心肺复苏接口模块接收的该心肺复苏机输入的数据对该生理信号进行滤波处理得到第一生理数据,该生理数据包括该第一生理数据。这里的滤波处理,可以将在心肺复苏机进行按压时对生理信号产生干扰的干扰信号进行滤除。需要说明的是,上述提到的 使用到该生理数据的情况,均可以使用该第一生理数据。例如,该显示器103可以显示该生理数据,即,该显示器103可以显示该第一生理数据。可选的,该生理信号可以为心电信号,血氧信号等描述病人生理状况的数据。可选的,可以采用最小均方(least mean square,LMS)滤波方法来滤除该生理信号所受到的心肺复苏机工作时的按压干扰,LMS滤波方法的处理公式如下:
s I(n)=[cos(φ(n)),…,cos(kφ(n))]
s Q(n)=[sin(φ(n)),…,sin(kφ(n))]
Figure PCTCN2018084650-appb-000001
Figure PCTCN2018084650-appb-000002
Figure PCTCN2018084650-appb-000003
上述公式中,n为心电信号离散采样点序号,k为按压噪声模型的谐波级数,φ(n)按压噪声模型的相位,f c为按压机按压频率,f s为心电信号的采样频率,s I(n)为按压噪声模型的同相参考,s Q(n)为按压噪声模型的正交参考,
Figure PCTCN2018084650-appb-000004
为按压噪声模型对心电信号中按压引入噪声的估计值,a(n)和b(n)分别对应按压噪声模型中同相和正交分量的系数,s in(n)为原始采集的受到按压干扰的心电信号,
Figure PCTCN2018084650-appb-000005
为利用按压噪声模型去除按压干扰后的心电信号的估计值。按压噪声模型的系数a(n)和b(n)可以采用LMS算法来进行迭代更新。
参见图7,为本申请实施例提供的一种滤除干扰后的心电信号的示意图。其中,第一信号701为该心肺复苏机工作时,生理传感器采集到的心电信号;第二信号702为滤除该第一信号701所受到的该心肺复苏机工作时的按压干扰后的心电信号;第三信号703为该心肺复苏机运动的参考信号。参考第三信号703可以看出第一信号701在没有按压的时间段即没有受到按压干扰的情况下呈现出停搏的节律,但在按压的时间段由于按压干扰而出现类似室速的节律。而滤除了按压干扰的第二信号702在心肺复苏机按压和没有按压的时间段都比较明显的呈现出停搏的节律,直观得显示了病人实际的心电数据。可选的,监护仪还可以采用类似的方式处理受心肺复苏机的按压运动影响较大的其他生理信号,例如血氧信号。通过这种方式,可以滤除该心肺复苏机工作时对该生理信号的按压干扰,从而可以得到病人实际的生理数据。
在又一种可选的方案中,该监护仪还包括网络通讯模块,该网络通讯模块用于向电子病历系统发送数据信息,该数据信息包括该心肺复苏机输入的数据、处理该生理信号获得的该生理数据中的至少一项;该网络通讯模块还用于接收电子病历系统发送的历史病历数据。具体的,该网络通讯模块可以是有线通信模块,还可以是无线通信模块,该无线通信模块可以是基于局域网或广域网的通信协议。需要说明的是,该网络通讯模块向电子病历系统发送数据信息,用于记录该数据信息以便于后续对病人的病历数据进行查询和分析;该网络通讯模块接收电子病历系统发送的历史病历数据,用于结合该病人的历史病历数据,对心肺复苏过程的治疗进行监护。上述的历史病历数据,可以包括病人的历史监测生理数据、医嘱数据等等。
在又一种可选的方案中,该监护仪还包括报警模块,用于根据该处理该生理信号获得的该生理数据进行报警。具体地,报警模式可包括单参数阈值报警,多参数组合报警和结合历史病例数据进行报警的模式。该单参数阈值报警的方式为,该报警模块预存有一个或多个参数的预设阈值,当该处理该生理信号获得的该生理数据,或者该滤除干扰后的生理数据中的第一参数超过了第一参数的预设阈值时,该报警模块发出报警。该第一参数为该一个或多个参数中的参数。该多参数阈值报警的方式为,该报警模块预存有一个或多个参数组合的预设阈值,当该处理该生理信号获得的该生理数据,或者该滤除干扰后的生理数据中的第一参数组合超过了第一参数组合的预设阈值时,该报警模块发出报警。该第一参数组合为该一个或多个参数组合中的参数组合。结合历史病例数据进行报警的方式为,处理得到历史病例数据中的各个参数的平均值,当该处理该生理信号获得的该生理数据,或者该滤除干扰后的生理数据中的第二参数比第二参数的平均值大第一参考值,或者第二参数比第二参数的平均值小第二参考值时,该报警模块发出报警。通过这种方式,监护仪可以实时监控病人的生理状况,当反映病人的生理状况的生理数据满足预设的报警条件时,该报警模块将发出报警以提醒医护人员对病人采取救助措施,提高了监护的效率和准确性。
在又一种可选的方案中,该监护仪还包括呼吸机接口模块,用于连接呼吸机,可与该呼吸机实现通讯;该控制模块105,还用于通过该呼吸机接口模块接收呼吸机输出的数据、和/或通过该呼吸机接口模块向该呼吸机输出第二 控制指令,该第二控制指令用于指示该呼吸机调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与呼吸机之间。例如,该显示器103还用于输出显示该控制模块105通过该心肺复苏机接口模块104接收到的心肺复苏机输入的数据;类似的,该显示器103还用于输出显示该控制模块105通过该呼吸机接口模块接收到的呼吸机输出的数据。
在又一种可选的方案中,监护仪可以通过该呼吸机接口模块接收呼吸机发送的病人呼吸力学的状态信息以及当前呼吸机的通气状态。监护仪可以发送第二控制指令至呼吸机来控制呼吸机的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、呼吸机传送的呼吸力学状态信息及通气状态信息和心肺复苏机工作状态信息的集中显示。监护仪可以实现对于心肺复苏机的按压运动和呼吸机通气过程的集中控制。监护仪对于心肺复苏机按压运动和呼吸机通气过程的集中控制可以工作在手动、半自动或者自动模式。在手动模式,用户可以根据集中显示的信息来手动设置心肺复苏机的工作参数,手动控制心肺复苏机的运动,手动设置呼吸机的通气模式及参数(例如潮气量,通气频率)。在半自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到病人通气不足或者通气过量时监护仪可以输出显示更改呼吸机通气设置的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一控制指令至心肺复苏机进行相应控制或者发送第二控制指令至呼吸机进行通气参数的更改。在自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时监护仪可以发送第一控制指令调整心肺复苏机的工作状态。在检测到病人通气不足或者通气过量时监护仪可以发送第二控制指令调整呼吸机的工作状态。
参见图8,为本申请实施例提供的一种监护仪与心肺复苏机,呼吸机连接的示意图。通过这种方式,可以建立监护仪和心肺复苏机,呼吸机之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,呼吸机的工作状态,还可以通过 监护仪调整心肺复苏机,呼吸机的工作状态,无需分开对监护仪和心肺复苏机,呼吸机进行监测和调整的工作,提高监护的效率和准确性。
在又一种可选的方案中,该监护仪还包括除颤电极接口模块,用于连接除颤电极,可与该除颤电极实现通讯;该控制模块105,还用于通过该除颤电极接口模块接收除颤电极输出的数据、和/或通过该除颤电极接口模块向该除颤电极输出第三控制指令,该第三控制指令用于指示该除颤电极调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与除颤电极之间。例如,该显示器103还用于输出显示该控制模块105通过该心肺复苏机接口模块104接收到的心肺复苏机输入的数据;类似的,该显示器103还用于输出显示该控制模块105通过该除颤电极模块接收到的除颤电极输出的数据。
在又一种可选的方案中,监护仪可以通过除颤电极接口模块接收除颤电极发送的病人的心电信号。监护仪可以发送第三控制指令至除颤电极来控制除颤电极调节自身的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、除颤电极采集心电信息和心肺复苏机工作状态信息的集中显示,以及对于心肺复苏机的按压运动和除颤电极放电的集中控制。监护仪对于心肺复苏机的按压运动和除颤电极放电的集中控制可以工作在手动、半自动或者自动模式。在手动模式,医护人员可以根据显示的生理数据和/或生理数据对应的图形来手动设置心肺复苏机的工作参数,手动控制心肺复苏机的运动,手动选择除颤电极的放电能量,手动通过除颤电极实施放电。在半自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时,监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以输出显示实施除颤的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一控制指令至心肺复苏机进行相应控制或者发送第三控制指令至除颤电极进行充电及放电。在自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时,监护仪可以向心肺复苏机发送第一控制指令, 从而实现对心肺复苏机的按压运动进行控制调整。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以向除颤电极发送第三控制指令,从而实现对除颤电极的工作状态的调整。
参见图9,为本申请实施例提供的一种监护仪与心肺复苏机,除颤电极连接的示意图。通过这种方式,可以建立监护仪和心肺复苏机,除颤电极之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,除颤电极的工作状态,还可以通过监护仪调整心肺复苏机,除颤电极的工作状态,无需分开对监护仪和心肺复苏机,除颤电极进行监测和调整的工作,提高监护的效率和准确性。
在又一种可选的方案中,监护仪还可以同时连接心肺复苏机,呼吸机和除颤电极。监护仪可以实现与心肺复苏机,呼吸机和除颤电极的通讯。监护仪可以接收呼吸机发送的病人呼吸力学的状态信息以及当前呼吸机的通气状态,监护仪可以发送第二控制指令至呼吸机来控制呼吸机的通气过程。监护仪可以发送第三控制指令至除颤电极来控制除颤电极的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、除颤电极采集心电信息、呼吸机传送的呼吸力学状态信息及通气状态信息和心肺复苏机工作状态信息的集中显示,以及对于心肺复苏机的按压运动、除颤电极放电和呼吸机通气过程的集中控制。监护仪对于心肺复苏机按压运动、除颤电极放电和呼吸机通气过程的集中控制可以工作在手动、半自动或者自动模式。在手动模式,医护人员可以根据显示的生理数据和/或生理数据对应的图形来手动设置心肺复苏机的工作参数,手动控制心肺复苏机的运动,手动选择除颤模块的放电能量,手动通过除颤模块实施放电,手动设置呼吸机的通气模式及参数(例如潮气量,通气频率)。在半自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时,监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以输出显示实施除颤的参考控制指令。在检测到病人通气不足或者通气过量时,监护仪可以输出显示更改呼吸机通气设置的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一参考控制指令至心肺复苏机进行相应控制,或者发送第二参考控制指令至呼吸机进行通气参数的更改,或者发送第三参考控制指令至除 颤模块进行充电及放电。在自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时,监护仪可以向心肺复苏机发送第一控制指令,从而实现对心肺复苏机的按压运动进行控制调整。在检测到病人通气不足或者通气过量时,监护仪可以向呼吸机发送第二控制指令,从而实现对呼吸机工作状态的调整。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以向除颤电极发送第三控制指令,从而实现对除颤电极的工作状态的调整。
参见图10,为本申请实施例提供的一种监护仪与心肺复苏机,呼吸机,除颤电极连接的示意图。通过这种方式,可以建立监护仪和心肺复苏机,呼吸机,除颤电极之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,呼吸机,除颤电极的工作状态,还可以通过监护仪调整心肺复苏机,呼吸机,除颤电极的工作状态,无需分开对监护仪和心肺复苏机,呼吸机,除颤电极进行监测和调整的工作,提高监护的效率和准确性。
在图1所示的监护仪中,能够实现监护仪和心肺复苏机之间的通讯,监护仪能够接收心肺复苏机输入的数据,该数据体现该心肺复苏机的工作状态;还能够向心肺复苏机输出第一控制指令以指示该心肺复苏机调节自身的工作状态。通过上述方式,医护人员可以在监护仪上观测到心肺复苏机的工作状态,还可以通过监护仪调整心肺复苏机的工作状态,无需分开对监护仪和心肺复苏机进行监测和调整的工作,提高监护的效率和准确性。
参见图11,为本申请实施例提供的又一种可与心肺复苏机连接的监护仪的示意图。该监护仪110包括,传感器接口模块1101,生理数据处理模块1102,显示器1103,心肺复苏机接口模块1104和控制模块1105,各个模块的介绍如下。
传感器接口模块1101,用于连接生理传感器,并接收连接到病人的生理传感器采集到的生理信号。
生理数据处理模块1102,用于处理所述生理信号获得生理数据。
显示器1103,用于输出显示所述生理数据。
心肺复苏机接口模块1104,用于连接心肺复苏机,可与心肺复苏机实现通讯。
控制模块1105,用于控制监护仪的工作模式在第一模式和第二模式之间切换,其中,所述监护仪工作于所述第一模式时,所述控制模块通过所述心肺复苏机接口模块接收心肺复苏机输入的数据、和/或通过所述心肺复苏机接口模块向心肺复苏机输出控制指令;所述监护仪工作于所述第二模式时,所述控制模块控制所述生理信号的接收,处理以及生理数据的显示。
在又一种可选的方案中,所述监护仪工作于所述第一模式时,所述控制模块1105通过所述心肺复苏机接口模块1104与所述心肺复苏机通讯时同步控制生理信号的接收。通过这种方式,监护仪在实现与心肺复苏机通讯的同时,可以接收病人的生理信号,数据反馈更加及时,提高监护仪工作的效率和准确性。当然,该控制模块1105可以接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,并同步控制该生理信号的接收、处理和该生理数据的显示。
在又一种可选的方案中,所述监护仪工作于所述第一模式时,所述显示器1103还用于输出显示所述控制模块1105通过所述心肺复苏机接口模块1104接收到的心肺复苏机输入的数据。需要说明的是,该心肺复苏机输入的数据可以为该心肺复苏机的工作状态和/或设置信息。通过这种方式,医护人员可以在监护仪中观测到该心肺复苏机的工作状态和/或设置信息,以便对治疗过程进行监护,避免了在监护仪和心肺复苏机进行切换观测而造成的降低工作效率和增加出错可能性的问题。
在又一种可选的方案中,所述显示器1103包括第一显示区和第二显示区;所述监护仪工作于所述第二模式时,所述第一显示区用于显示所述生理数据和/或所述生理数据对应的图形;所述监护仪工作于所述第一模式时,所述第二显示区用于显示所述心肺复苏机输入的数据和/或所述心肺复苏机输入的数据对应的图形。可选的,该显示器1103还可以包括第三显示区,所述监护仪工作于所述第一模式,该第三显示区可以显示心肺复苏机工作的相关控件,该心肺复苏机工作的相关控件用于调整心肺复苏机的工作状态。通过这种方式,通过监护仪工作模式的切换,医护人员可以方便地观测到病人的生理数据和/或该生理数据对应的图形,以及心肺复苏机输入的数据和/或该心肺 复苏机输入的数据对应的图形。同时,医护人员可以通过显示的控件对心肺复苏机的工作状态进行调节,提升监护的效率。
需要说明的是,在该监护仪工作于第一模式的情况下,该监护仪可以有三种工作模式,该三种工作模式可以为手动模式,半自动模式和自动模式。下面针对这三种模式做详细介绍。
在手动模式下,当需要调整心肺复苏机的工作状态时,该监护仪根据医护人员输入的心肺复苏机的调整数据生成第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,医护人员可以通过对监护仪的操作实现对心肺复苏机的工作状态的调节,无需医护人员分别在两个设备上进行操作,减少了出错的可能性,提升了监护的效率。
可选的,该监护仪还包括心肺复苏处理模块,该心肺复苏处理模块用于连接该心肺复苏机接口模块1104,显示器1103还用于显示参考控制指令的信息;在半自动模式下,该参考控制指令为该心肺复苏处理模块根据该心肺复苏机输入的数据和该生理数据生成的、用于执行参考操作的控制指令。通过这种方式,医护人员能够看到生成的参考控制指令的信息,例如,确认指令的信息、取消指令的信息和手动设置指令的信息。每种参考控制指令对应一种参考操作,例如确认控件对应的参考操作可以是停止心肺复苏机按压,手动设置控件对应的参考操作可以是进入手动设置界面进行后续参数设置的操作,取消控件对应的参考操作可以是继续心肺复苏机按压,以便医护人员可以对该参考控制指令进行是否执行的选择,提高监护仪工作的准确性。
在又一种可选的方案中,该控制模块1105,用于通过该心肺复苏机接口模块1104向心肺复苏机输出第一控制指令,具体为:若该控制模块1105接收到输入的第一操作,则该控制模块1105通过该心肺复苏机接口模块1104向该心肺复苏机发送该第一控制指令以指示该心肺复苏机调整自身的工作状态,该第一操作为根据该显示器1103显示的该参考控制指令的信息输入的操作,用于确定该参考控制指令为该第一控制指令。通过这种方式,医护人员可以通过显示器1103显示的参考控制指令判断是否需要输入第一操作,若监护仪接收到医护人员输入的该第一操作,则确定对应该第一操作的参考指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通 过医护人员对生成的参考控制指令的确定操作,提高监护仪工作的准确性。
在又一种可选的方案中,该控制模块1105,用于通过该心肺复苏机接口模块1104向心肺复苏机输出第一控制指令,具体为:若该控制模块1105接收到输入的第二操作,则该控制模块1105通过该心肺复苏机接口模块1104向该心肺复苏机发送第一控制指令以指示该心肺复苏机调整自身的工作状态,该第二操作为根据该显示器1103显示的该参考控制指令的信息输入的操作,用于设置该第一控制指令。可选的,在接收该第一操作之前,该显示器1103还用于显示手动设置第一控制指令的界面。通过这种方式,医护人员可以通过显示器1103显示的参考控制指令判断是否需要输入第二操作,当医护人员需要修正该参考控制指令时,能够通过输入第二操作的方式手动设置控制指令。若监护仪接收到医护人员输入的该第二操作,则确定与该第二操作对应的控制指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对第一控制指令的手动设置操作,提高监护仪工作的准确性。
在又一种可选的方案中,该控制模块1105,用于通过该心肺复苏机接口模块1104接收心肺复苏机输入的数据、和/或通过该心肺复苏机接口模块1104向心肺复苏机输出第一控制指令,具体为:用于通过该心肺复苏机接口模块1104接收心肺复苏机输入的数据;若该控制模块接收到第三操作,则该控制模块1105不向心肺复苏机输出第一控制指令,该第三操作为根据该显示器显示的该参考控制指令的信息输入的操作。通过这种方式,医护人员可以通过显示器1103显示的参考控制指令判断是否需要输入第三操作,当医护人员不需要发送该参考控制指令时,能够通过输入第三操作的方式取消控制指令的发送。若监护仪接收到医护人员输入的该第三操作,则不向心肺复苏机发送该第一控制指令。通过医护人员对参考控制指令的取消操作,提高监护仪工作的准确性。
该监护仪还可以包括心肺复苏处理模块,该心肺复苏处理模块用于连接该心肺复苏机接口模块1104,在自动模式下,该心肺复苏处理模块用于根据该心肺复苏机输入的数据和该生理数据生成该第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,监护仪可以根据病人的生理状况和心肺复苏机的工作状态生成第一控制指令,该第一控制指令可 以控制心肺复苏机调节自身的工作状态,无需医护人员输入其他操作,提高监护的效率。
在又一种可选的方案中,该心肺复苏处理模块用于根据该心肺复苏接口模块接收的该心肺复苏机输入的数据对该生理信号进行滤波处理得到第一生理数据,该生理数据包括该第一生理数据。这里的滤波处理,可以将在心肺复苏机进行按压时对生理信号产生干扰的干扰信号进行滤除。需要说明的是,上述提到的使用到该生理数据的情况,均可以使用该第一生理数据。例如,该显示器1103可以显示该生理数据,即,该显示器1103可以显示该第一生理数据。可选的,该生理信号可以为心电信号,血氧信号等描述病人生理状况的数据。可选的,可以采用最小均方滤波方法来滤除该生理信号所受到的心肺复苏机工作时的按压干扰。
在又一种可选的方案中,该监护仪还包括网络通讯模块,该网络通讯模块用于向电子病历系统发送数据信息,该数据信息包括该心肺复苏机输入的数据、处理该生理信号获得的该生理数据中的至少一项;该网络通讯模块还用于接收电子病历系统发送的历史病历数据。具体的,该网络通讯模块可以是有线通信模块,还可以是无线通信模块,该无线通信模块可以是基于局域网或广域网的通信协议。需要说明的是,该网络通讯模块向电子病历系统发送数据信息,用于记录该数据信息以便于后续对病人的病历数据进行查询和分析;该网络通讯模块接收电子病历系统发送的历史病历数据,用于结合该病人的历史病历数据,对心肺复苏过程的治疗进行监护。上述的历史病历数据,可以包括病人的历史监测生理数据、医嘱数据等等。
在又一种可选的方案中,该监护仪还包括报警模块,用于根据该处理该生理信号获得的该生理数据进行报警。具体地,报警模式可包括单参数阈值报警,多参数组合报警和结合历史病例数据进行报警的模式。通过这种方式,监护仪可以实时监控病人的生理状况,当反映病人的生理状况的生理数据满足预设的报警条件时,该报警模块将发出报警以提醒医护人员对病人采取救助措施,提高了监护的效率和准确性。
在又一种可选的方案中,该监护仪还包括呼吸机接口模块,用于连接呼吸机,可与该呼吸机实现通讯;该控制模块1105,还用于通过该呼吸机接口 模块接收呼吸机输出的数据、和/或通过该呼吸机接口模块向该呼吸机输出第二控制指令,该第二控制指令用于指示该呼吸机调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与呼吸机之间。例如,在监护仪工作于第一模式时,该显示器1103还用于输出显示该控制模块1105通过该心肺复苏机接口模块1104接收到的心肺复苏机输入的数据;类似的,在监护仪工作于第一模式时,该显示器1103还用于输出显示该控制模块1105通过该呼吸机接口模块接收到的呼吸机输出的数据。
在又一种可选的方案中,所述监护仪工作于所述第一模式时,所述控制模块1105通过所述呼吸机接口模块接收所述呼吸机输入的数据、和/或通过所述呼吸机接口模块向所述呼吸机输出控制指令;所述监护仪工作于所述第二模式时,所述控制模块1105控制所述生理信号的接收,处理以及所述生理数据的显示。
在又一种可选的方案中,监护仪可以通过该呼吸机接口模块接收呼吸机发送的病人呼吸力学的状态信息以及当前呼吸机的通气状态。监护仪可以发送第二控制指令至呼吸机来控制呼吸机的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、呼吸机传送的呼吸力学状态信息及通气状态信息和心肺复苏机工作状态信息的集中显示。监护仪可以实现对于心肺复苏机的按压运动和呼吸机通气过程的集中控制。在监护仪的第一模式下,监护仪对于心肺复苏机按压运动和呼吸机通气过程的集中控制可以工作在手动、半自动或者自动模式。在手动模式,用户可以手动设置心肺复苏机的工作参数,手动控制心肺复苏机的运动,手动设置呼吸机的通气模式及参数(例如潮气量,通气频率)。在半自动模式,在检测到病人生理状态发生变化时监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到病人通气不足或者通气过量时监护仪可以输出显示更改呼吸机通气设置的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一控制指令至心肺复苏机进行相应控制或者发送第二控制指令至呼吸机进行通气参数的更改。在自动模式,在检测到病人生理状态发生变化时监护仪可以发送第一控制指令调整心肺复苏机的工作状态。在检测到病人通气不足或者通气过量时监护仪可以发送第二控制指令调整呼吸机的工作状态。
通过这种方式,可以建立监护仪和心肺复苏机,呼吸机之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,呼吸机的工作状态,还可以通过监护仪调整心肺复苏机,呼吸机的工作状态,无需分开对监护仪和心肺复苏机,呼吸机进行监测和调整的工作,提高监护的效率和准确性。
在又一种可选的方案中,该监护仪还包括除颤电极接口模块,用于连接除颤电极,可与该除颤电极实现通讯;该控制模块1105,还用于通过该除颤电极接口模块接收除颤电极输出的数据、和/或通过该除颤电极接口模块向该除颤电极输出第三控制指令,该第三控制指令用于指示该除颤电极调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与除颤电极之间。例如,在监护仪工作于第一模式时,该显示器1103还用于输出显示该控制模块1105通过该心肺复苏机接口模块1104接收到的心肺复苏机输入的数据;类似的,在监护仪工作于第一模式时,该显示器1103还用于输出显示该控制模块1105通过该除颤电极模块接收到的除颤电极输出的数据。
在又一种可选的方案中,所述监护仪工作于所述第一模式时,所述控制模块1105通过所述除颤电极接口模块接收所述除颤电极输入的数据、和/或通过所述除颤电极接口模块向所述除颤电极输出控制指令;所述监护仪工作于所述第二模式时,所述控制模块1105控制所述生理信号的接收,处理以及所述生理数据的显示。
在又一种可选的方案中,监护仪可以通过除颤电极接口模块接收除颤电极发送的病人的心电信号。监护仪可以发送第三控制指令至除颤电极来控制除颤电极调节自身的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、除颤电极采集心电信息和心肺复苏机工作状态信息的集中显示,以及对于心肺复苏机的按压运动和除颤电极放电的集中控制。在监护仪的第一模式下,监护仪对于心肺复苏机的按压运动和除颤电极放电的集中控制可以工作在手动、半自动或者自动模式。在手动模式,医护人员可以手动设置心肺复苏机的工作参数,手动控制心肺复苏机的运动,手动选择除颤电极的放电能量,手动通过除颤电极实施放电。在半自动模式,在检测到病人生理状态发生变化时,监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到 病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以输出显示实施除颤的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一控制指令至心肺复苏机进行相应控制或者发送第三控制指令至除颤电极进行充电及放电。在自动模式,在检测到病人生理状态发生变化时,监护仪可以向心肺复苏机发送第一控制指令,从而实现对心肺复苏机的按压运动进行控制调整。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以向除颤电极发送第三控制指令,从而实现对除颤电极的工作状态的调整。
通过这种方式,可以建立监护仪和心肺复苏机,除颤电极之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,除颤电极的工作状态,还可以通过监护仪调整心肺复苏机,除颤电极的工作状态,无需分开对监护仪和心肺复苏机,除颤电极进行监测和调整的工作,提高监护的效率和准确性。
在又一种可选的方案中,监护仪还可以同时连接心肺复苏机,呼吸机和除颤电极。监护仪可以实现与心肺复苏机,呼吸机和除颤电极的通讯。监护仪可以接收呼吸机发送的病人呼吸力学的状态信息以及当前呼吸机的通气状态,监护仪可以发送第二控制指令至呼吸机来控制呼吸机的通气过程。监护仪可以发送第三控制指令至除颤电极来控制除颤电极的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、除颤电极采集心电信息、呼吸机传送的呼吸力学状态信息及通气状态信息和心肺复苏机工作状态信息的集中显示,以及对于心肺复苏机的按压运动、除颤电极放电和呼吸机通气过程的集中控制。在监护仪的第一模式下,监护仪对于心肺复苏机按压运动、除颤电极放电和呼吸机通气过程的集中控制可以工作在手动、半自动或者自动模式。在手动模式,医护人员可以手动设置心肺复苏机的工作参数,手动控制心肺复苏机的运动,手动选择除颤模块的放电能量,手动通过除颤模块实施放电,手动设置呼吸机的通气模式及参数(例如潮气量,通气频率)。在半自动模式,在检测到病人生理状态发生变化时,监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以输出显示实施除颤的参考控制指令。在检测到病人通气不足或者通气过量时,监护仪可以输出显示更改呼吸机通气设置的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一参考控制指令至心肺复苏机进行相应 控制,或者发送第二参考控制指令至呼吸机进行通气参数的更改,或者发送第三参考控制指令至除颤模块进行充电及放电。在自动模式,在检测到病人生理状态发生变化时,监护仪可以向心肺复苏机发送第一控制指令,从而实现对心肺复苏机的按压运动进行控制调整。在检测到病人通气不足或者通气过量时,监护仪可以向呼吸机发送第二控制指令,从而实现对呼吸机工作状态的调整。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以向除颤电极发送第三控制指令,从而实现对除颤电极的工作状态的调整。
通过这种方式,可以建立监护仪和心肺复苏机,呼吸机,除颤电极之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,呼吸机,除颤电极的工作状态,还可以通过监护仪调整心肺复苏机,呼吸机,除颤电极的工作状态,无需分开对监护仪和心肺复苏机,呼吸机,除颤电极进行监测和调整的工作,提高监护的效率和准确性。
在图11所示的监护仪中,能够实现监护仪和心肺复苏机之间的通讯,监护仪能够接收心肺复苏机输入的数据,该数据体现该心肺复苏机的工作状态;还能够向心肺复苏机输出第一控制指令以指示该心肺复苏机调节自身的工作状态。通过上述方式,医护人员可以在监护仪上观测到心肺复苏机的工作状态,还可以通过监护仪调整心肺复苏机的工作状态,无需分开对监护仪和心肺复苏机进行监测和调整的工作,提高监护的效率和准确性。
参见图12,为本申请实施例提供的一种应用监护仪进行监护的方法的流程图。该方法包括:
S1201、监护仪接收采集到的生理信号,并处理该生理信号获得生理数据。
可选的,采集到的生理信号可以为心电信号,血氧信号等描述病人生理状况的数据。
S1202、监护仪输出显示该生理数据。
S1203、监护仪接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令;控制生理信号的接收,处理以及生理数据的显示。
可选的,该方法包括,该监护仪接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,同步控制该生理信号的接收。通过这种方式,监护仪在实现与心肺复苏机通讯的同时,可以接收病人的生理信号,数据反馈更加 及时,提高监护仪工作的效率和准确性。当然,该监护仪可以接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,并同步控制该生理信号的接收、处理和该生理数据的显示。
可选的,该监护仪接收心肺复苏机输入的数据之后,还包括,输出显示该心肺复苏机输入的数据。需要说明的是,该心肺复苏机输入的数据可以为该心肺复苏机的工作状态和/或设置信息。具体的,该心肺复苏机的工作状态可以为该心肺复苏机实时的按压过程的信息,例如,心肺复苏机按压过程中的按压数据对应的图形;该心肺复苏机的设置信息可以为连续按压,定时间断按压,暂停和终止,还可以为,该心肺复苏机的按压频率,按压深度,按压占空比等工作参数。通过这种方式,医护人员可以在监护仪中观测到该心肺复苏机的工作状态和/或设置信息,以便对治疗过程进行监护,避免了在监护仪和心肺复苏机进行切换观测而造成的降低工作效率和增加出错可能性的问题。
可选的,该方法还包括,该监护仪生成第一显示区,并于该第一显示区显示该生理数据和/或该生理数据对应的图形;生成第二显示区,并于该第二显示区显示该心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。其中,心肺复苏机输入的数据对应的图形可以为可视化人体心肺复苏图标展现的病人肺部按压状态的受力情况。可选的,该方法还可以包括显示心肺复苏机工作的相关控件,该心肺复苏机工作的相关控件用于调整心肺复苏机的工作状态。通过这种方式,医护人员可以通过显示器方便地观测到病人的生理数据和/或该生理数据对应的图形,以及心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。同时,医护人员可以通过显示的控件对心肺复苏机的工作状态进行调节,提升监护的效率。
需要说明的是,该监护仪可以有三种工作模式,该三种工作模式可以为手动模式,半自动模式和自动模式。参考图13,为本申请实施例提供的一种监护仪的三种工作模式的流程图。下面针对这三种模式做详细介绍。
在手动模式下,该监护仪可以显示病人的生理数据和/或该生理数据对应的图形,也可以显示心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。医护人员可以根据显示的数据判断是否需要对心肺复苏机的工作状态进行调整。当需要调整心肺复苏机的工作状态时,该监护仪根据医护人员输 入的心肺复苏机的调整数据生成第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,医护人员可以通过监护仪显示的病人的生理数据和/或该生理数据对应的图形,以及心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形判断是否需要对心肺复苏机的工作状态进行调节。同时,可以通过对监护仪的操作实现对心肺复苏机的工作状态的调节,无需医护人员分别在两个设备上进行操作,减少了出错的可能性,提升了监护的效率。
在半自动模式下,该监护仪可以显示参考控制指令的信息;该参考控制指令为该心肺复苏处理模块根据该心肺复苏机输入的数据和该生理数据生成的、用于执行参考操作的控制指令。可以看出,通过这种方式,医护人员能够看到生成的参考控制指令信息,例如,确认控件、取消控件和手动设置控件。每种参考控制指令对应一种参考操作,例如确认控件对应的参考操作可以是停止心肺复苏机按压,手动设置控件对应的参考操作可以是进入手动设置界面进行后续参数设置的操作,取消控件对应的参考操作可以是继续心肺复苏机按压,以便医护人员可以对该参考控制指令进行是否执行的选择,提高监护仪工作的准确性。
可选的,该监护仪向心肺复苏机输出第一控制指令,包括,若接收到输入的第一操作,则向该心肺复苏机发送该第一控制指令以控制该心肺复苏机调整自身的工作状态,该第一操作为对应该参考控制指令的操作,用于确定该参考控制指令为该第一控制指令。通过这种方式,医护人员可以通过显示器显示的参考控制指令判断是否需要输入第一操作,若监护仪接收到医护人员输入的该第一操作,则确定对应该第一操作的参考指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对生成的参考控制指令的确定操作,提高监护仪工作的准确性。
可选的,该监护仪向心肺复苏机输出第一控制指令,包括,若接收到输入的第二操作,则向该心肺复苏机发送第一控制指令以控制该心肺复苏机调整自身的工作状态,该第二操作为对应该参考控制指令的操作,用于设置该第一控制指令。可选的,监护仪在接收该第一操作之前,该监护仪还用于显示手动设置第一控制指令的界面。通过这种方式,医护人员可以通过监护仪显示的参考 控制指令判断是否需要输入第二操作,当医护人员需要修正该参考控制指令时,能够通过输入第二操作的方式手动设置控制指令。若监护仪接收到医护人员输入的该第二操作,则确定与该第二操作对应的控制指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对第一控制指令的手动设置操作,提高监护仪工作的准确性。
可选的,该监护仪接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,包括,接收心肺复苏机输入的数据;若接收到第三操作,则不向心肺复苏机输出第一控制指令,该第三操作为对应该参考控制指令的操作。通过这种方式,医护人员可以通过显示的参考控制指令判断是否需要输入第三操作,当医护人员不需要发送该参考控制指令时,能够通过输入第三操作的方式取消控制指令的发送。若监护仪接收到医护人员输入的该第三操作,则不向心肺复苏机发送该第一控制指令。通过医护人员对参考控制指令的取消操作,提高监护仪工作的准确性。
在自动模式下,监护仪根据该心肺复苏机输入的数据和该生理数据生成该第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,监护仪可以根据病人的生理状况和心肺复苏机的工作状态生成第一控制指令,该第一控制指令可以控制心肺复苏机调节自身的工作状态,无需医护人员输入其他操作,提高监护的效率。
可选的,该方法还包括,监护仪根据该心肺复苏机输入的数据对该生理信号进行滤波处理得到第一生理数据,该生理数据包括该第一生理数据。需要说明的是,上述提到的使用到该生理数据的情况,均可以使用该第一生理数据。例如,该监护仪可以显示该生理数据,即,该监护仪可以显示该第一生理数据。可选的,该生理信号可以为心电信号,血氧信号等描述病人生理状况的数据。可选的,可以采用最小均方滤波方法来滤除该生理信号所受到的心肺复苏机工作时的按压干扰。通过这种方式,可以滤除该心肺复苏机工作时对该生理信号的按压干扰,从而可以得到病人实际的生理数据。
可选的,该方法还包括,监护仪向电子病历系统发送数据信息,该数据信息包括该心肺复苏机输入的数据、处理该生理信号获得的该生理数据中的至少一项;接收电子病历系统发送的历史病历数据。具体的,发送数据信息和接收 历史病历数据可以通过有线通信,还可以通过无线通信;该无线通信可以是基于局域网或广域网的通信协议。需要说明的是,向电子病历系统发送数据信息,用于记录该数据信息以便于后续对病人的病历数据进行查询和分析;接收电子病历系统发送的历史病历数据,用于结合该病人的历史病历数据,对心肺复苏过程的治疗进行监护。上述的历史病历数据,可以包括病人的历史监测生理数据、医嘱数据等等。
可选的,该监护仪可以根据该处理该生理信号获得的该生理数据进行报警。具体地,报警模式可包括单参数阈值报警,多参数组合报警和结合历史病例数据进行报警的模式。通过这种方式,监护仪可以实时监控病人的生理状况,当反映病人的生理状况的生理数据满足预设的报警条件时,该监护仪将发出报警以提醒医护人员对病人采取救助措施,提高了监护的效率和准确性。
可选的,该方法还包括,监护仪接收呼吸机输入的数据、和/或向该呼吸机输出第二控制指令,该第二控制指令用于控制该呼吸机调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与呼吸机之间。例如,该监护仪还用于输出显示接收到的心肺复苏机输入的数据;类似的,该监护仪还用于输出显示接收到的呼吸机输出的数据。
可选的,监护仪可以接收呼吸机发送的病人呼吸力学的状态信息以及当前呼吸机的通气状态。监护仪可以发送第二控制指令至呼吸机来控制呼吸机的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、呼吸机传送的呼吸力学状态信息及通气状态信息和心肺复苏机工作状态信息的集中显示。监护仪可以实现对于心肺复苏机的按压运动和呼吸机通气过程的集中控制。监护仪对于心肺复苏机按压运动和呼吸机通气过程的集中控制可以工作在手动、半自动或者自动模式。在手动模式,用户可以根据集中显示的信息来手动设置心肺复苏机的工作参数,手动控制心肺复苏机的运动,手动设置呼吸机的通气模式及参数(例如潮气量,通气频率)。在半自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到病人 通气不足或者通气过量时监护仪可以输出显示更改呼吸机通气设置的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一控制指令至心肺复苏机进行相应控制或者发送第二控制指令至呼吸机进行通气参数的更改。在自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时监护仪可以发送第一控制指令调整心肺复苏机的工作状态。在检测到病人通气不足或者通气过量时监护仪可以发送第二控制指令调整呼吸机的工作状态。
通过这种方式,可以建立监护仪和心肺复苏机,呼吸机之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,呼吸机的工作状态,还可以通过监护仪调整心肺复苏机,呼吸机的工作状态,无需分开对监护仪和心肺复苏机,呼吸机进行监测和调整的工作,提高监护的效率和准确性。
可选的,该方法还包括,监护仪接收除颤电极输入的数据、和/或向该除颤电极输出第三控制指令,该第三控制指令用于控制该除颤电极调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与除颤电极之间。例如,该监护仪还用于输出显示接收到的心肺复苏机输入的数据;类似的,该监护仪还用于输出显示接收到的除颤电极输出的数据。
在又一种可选的方案中,监护仪可以接收除颤电极发送的病人的心电信号。监护仪可以发送第三控制指令至除颤电极来控制除颤电极调节自身的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、除颤电极采集心电信息和心肺复苏机工作状态信息的集中显示,以及对于心肺复苏机的按压运动和除颤电极放电的集中控制。监护仪对于心肺复苏机的按压运动和除颤电极放电的集中控制可以工作在手动、半自动或者自动模式。在手动模式,医护人员可以根据显示的生理数据和/或生理数据对应的图形来手动设置心肺复苏机的工作参数,手动控制心肺复苏机的运动,手动选择除颤电极的放电能量,手动通过除颤电极实施放电。在半自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时,监护仪 可以输出显示控制心肺复苏机的参考控制指令。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以输出显示实施除颤的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一控制指令至心肺复苏机进行相应控制或者发送第三控制指令至除颤电极进行充电及放电。在自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时,监护仪可以向心肺复苏机发送第一控制指令,从而实现对心肺复苏机的按压运动进行控制调整。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以向除颤电极发送第三控制指令,从而实现对除颤电极的工作状态的调整。
通过这种方式,可以建立监护仪和心肺复苏机,除颤电极之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,除颤电极的工作状态,还可以通过监护仪调整心肺复苏机,除颤电极的工作状态,无需分开对监护仪和心肺复苏机,除颤电极进行监测和调整的工作,提高监护的效率和准确性。
在又一种可选的方案中,监护仪还可以同时连接心肺复苏机,呼吸机和除颤电极。监护仪可以实现与心肺复苏机,呼吸机和除颤电极的通讯。监护仪可以接收呼吸机发送的病人呼吸力学的状态信息以及当前呼吸机的通气状态,监护仪可以发送第二控制指令至呼吸机来控制呼吸机的通气过程。监护仪可以发送第三控制指令至除颤电极来控制除颤电极的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、除颤电极采集心电信息、呼吸机传送的呼吸力学状态信息及通气状态信息和心肺复苏机工作状态信息的集中显示,以及对于心肺复苏机的按压运动、除颤电极放电和呼吸机通气过程的集中控制。监护仪对于心肺复苏机按压运动、除颤电极放电和呼吸机通气过程的集中控制可以工作在手动、半自动或者自动模式。在手动模式,医护人员可以根据显示的生理数据和/或生理数据对应的图形来手动设置心肺复苏机的工作参数,手动控制心肺复苏机的运动,手动选择除颤模块的放电能量,手动通过除颤模块实施放电,手动设置呼吸机的通气模式及参数(例如潮气量,通气频率)。在半自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理 状态发生变化时,监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以输出显示实施除颤的参考控制指令。在检测到病人通气不足或者通气过量时,监护仪可以输出显示更改呼吸机通气设置的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一参考控制指令至心肺复苏机进行相应控制,或者发送第二参考控制指令至呼吸机进行通气参数的更改,或者发送第三参考控制指令至除颤模块进行充电及放电。在自动模式,监护仪可以根据显示的生理数据和/或生理数据对应的图形,持续对心肺复苏过程中的病人生理状态进行监控。在检测到病人生理状态发生变化时,监护仪可以向心肺复苏机发送第一控制指令,从而实现对心肺复苏机的按压运动进行控制调整。在检测到病人通气不足或者通气过量时,监护仪可以向呼吸机发送第二控制指令,从而实现对呼吸机工作状态的调整。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以向除颤电极发送第三控制指令,从而实现对除颤电极的工作状态的调整。
在图12所示的方法中,能够实现监护仪和心肺复苏机之间的通讯,监护仪能够接收心肺复苏机输入的数据,该数据体现该心肺复苏机的工作状态;还能够向心肺复苏机输出第一控制指令以指示该心肺复苏机调节自身的工作状态。通过上述方式,医护人员可以在监护仪上观测到心肺复苏机的工作状态,还可以通过监护仪调整心肺复苏机的工作状态,无需分开对监护仪和心肺复苏机进行监测和调整的工作,提高监护的效率和准确性。
参见图14,为本申请实施例提供的又一种应用监护仪进行监护的方法的流程图。监护仪的工作模式包括第一模式和第二模式,所述方法包括:
所述监护仪工作于所述第一模式时,接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令。
所述监护仪工作于所述第二模式时,接收采集到的生理信号,并处理所述生理信号获得生理数据;输出显示所述生理数据。
可选的,该方法包括,所述监护仪工作于所述第一模式时,接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,同步控制所述生理信号的接收。通过这种方式,监护仪在实现与心肺复苏机通讯的同时,可以接收病人的生理信号,数据反馈更加及时,提高监护仪工作的效率和准确性。当然, 该监护仪可以接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,并同步控制该生理信号的接收、处理和该生理数据的显示。
可选的,所述监护仪工作于所述第一模式时,接收心肺复苏机输入的数据之后,还包括,输出显示所述心肺复苏机输入的数据。需要说明的是,该心肺复苏机输入的数据可以为该心肺复苏机的工作状态和/或设置信息。通过这种方式,医护人员可以在监护仪中观测到该心肺复苏机的工作状态和/或设置信息,以便对治疗过程进行监护,避免了在监护仪和心肺复苏机进行切换观测而造成的降低工作效率和增加出错可能性的问题。
可选的,所述方法还包括,所述监护仪工作于所述第二模式时,生成第一显示区,并于所述第一显示区显示所述生理数据和/或所述生理数据对应的图形。所述监护仪工作于所述第一模式时,生成第二显示区,并于所述第二显示区显示所述心肺复苏机输入的数据和/或所述心肺复苏机输入的数据对应的图形。其中,心肺复苏机输入的数据对应的图形可以为可视化人体心肺复苏图标展现的病人肺部按压状态的受力情况。可选的,该方法还可以包括,所述监护仪工作于所述第一模式,还可以显示心肺复苏机工作的相关控件,该心肺复苏机工作的相关控件用于调整心肺复苏机的工作状态。通过这种方式,医护人员可以通过显示器方便地观测到病人的生理数据和/或该生理数据对应的图形,以及心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。同时,医护人员可以通过显示的控件对心肺复苏机的工作状态进行调节,提升监护的效率。
需要说明的是,该监护仪在第一模式下,可以有三种工作模式,该三种工作模式可以为手动模式,半自动模式和自动模式。下面针对这三种模式做详细介绍。
在手动模式下,医护人员可以根据显示的数据判断是否需要对心肺复苏机的工作状态进行调整。当需要调整心肺复苏机的工作状态时,该监护仪根据医护人员输入的心肺复苏机的调整数据生成第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,医护人员可以通过对监护仪的操作实现对心肺复苏机的工作状态的调节,无需医护人员分别在两个设备上进行操作,减少了出错的可能性,提升了监护的效率。
在半自动模式下,该监护仪可以显示参考控制指令的信息;该参考控制指令为该心肺复苏处理模块根据该心肺复苏机输入的数据和该生理数据生成的、用于执行参考操作的控制指令。可以看出,通过这种方式,医护人员能够看到生成的参考控制指令信息,例如,确认指令的信息、取消指令的信息和手动设置指令的信息。每种参考控制指令对应一种参考操作,例如确认控件对应的参考操作可以是停止心肺复苏机按压,手动设置控件对应的参考操作可以是进入手动设置界面进行后续参数设置的操作,取消控件对应的参考操作可以是继续心肺复苏机按压,以便医护人员可以对该参考控制指令进行是否执行的选择,提高监护仪工作的准确性。
可选的,该监护仪向心肺复苏机输出第一控制指令,包括,若接收到输入的第一操作,则向该心肺复苏机发送该第一控制指令以控制该心肺复苏机调整自身的工作状态,该第一操作为对应该参考控制指令的操作,用于确定该参考控制指令为该第一控制指令。通过这种方式,医护人员可以通过显示器显示的参考控制指令判断是否需要输入第一操作,若监护仪接收到医护人员输入的该第一操作,则确定对应该第一操作的参考指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对生成的参考控制指令的确定操作,提高监护仪工作的准确性。
可选的,该监护仪向心肺复苏机输出第一控制指令,包括,若接收到输入的第二操作,则向该心肺复苏机发送第一控制指令以控制该心肺复苏机调整自身的工作状态,该第二操作为对应该参考控制指令的操作,用于设置该第一控制指令。可选的,监护仪在接收该第一操作之前,该监护仪还用于显示手动设置第一控制指令的界面。通过这种方式,医护人员可以通过监护仪显示的参考控制指令判断是否需要输入第二操作,当医护人员需要修正该参考控制指令时,能够通过输入第二操作的方式手动设置控制指令。若监护仪接收到医护人员输入的该第二操作,则确定与该第二操作对应的控制指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对第一控制指令的手动设置操作,提高监护仪工作的准确性。
可选的,该监护仪接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,包括,接收心肺复苏机输入的数据;若接收到第三操作,则不向 心肺复苏机输出第一控制指令,该第三操作为对应该参考控制指令的操作。通过这种方式,医护人员可以通过显示的参考控制指令判断是否需要输入第三操作,当医护人员不需要发送该参考控制指令时,能够通过输入第三操作的方式取消控制指令的发送。若监护仪接收到医护人员输入的该第三操作,则不向心肺复苏机发送该第一控制指令。通过医护人员对参考控制指令的取消操作,提高监护仪工作的准确性。
在自动模式下,监护仪根据该心肺复苏机输入的数据和该生理数据生成该第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,监护仪可以根据病人的生理状况和心肺复苏机的工作状态生成第一控制指令,该第一控制指令可以控制心肺复苏机调节自身的工作状态,无需医护人员输入其他操作,提高监护的效率。
可选的,该方法还包括,监护仪根据该心肺复苏机输入的数据对该生理信号进行滤波处理得到第一生理数据,该生理数据包括该第一生理数据。需要说明的是,上述提到的使用到该生理数据的情况,均可以使用该第一生理数据。例如,该监护仪可以显示该生理数据,即,该监护仪可以显示该第一生理数据。可选的,该生理信号可以为心电信号,血氧信号等描述病人生理状况的数据。可选的,可以采用最小均方滤波方法来滤除该生理信号所受到的心肺复苏机工作时的按压干扰。通过这种方式,可以滤除该心肺复苏机工作时对该生理信号的按压干扰,从而可以得到病人实际的生理数据。
可选的,该方法还包括,监护仪向电子病历系统发送数据信息,该数据信息包括该心肺复苏机输入的数据、处理该生理信号获得的该生理数据中的至少一项;接收电子病历系统发送的历史病历数据。具体的,发送数据信息和接收历史病历数据可以通过有线通信,还可以通过无线通信;该无线通信可以是基于局域网或广域网的通信协议。需要说明的是,向电子病历系统发送数据信息,用于记录该数据信息以便于后续对病人的病历数据进行查询和分析;接收电子病历系统发送的历史病历数据,用于结合该病人的历史病历数据,对心肺复苏过程的治疗进行监护。上述的历史病历数据,可以包括病人的历史监测生理数据、医嘱数据等等。
可选的,该监护仪可以根据该处理该生理信号获得的该生理数据进行报警。 具体地,报警模式可包括单参数阈值报警,多参数组合报警和结合历史病例数据进行报警的模式。通过这种方式,监护仪可以实时监控病人的生理状况,当反映病人的生理状况的生理数据满足预设的报警条件时,该监护仪将发出报警以提醒医护人员对病人采取救助措施,提高了监护的效率和准确性。
可选的,该方法还包括,接收呼吸机输入的数据、和/或向该呼吸机输出第二控制指令,该第二控制指令用于控制该呼吸机调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与呼吸机之间。例如,在监护仪工作于第一模式时,该监护仪还用于输出显示接收到的心肺复苏机输入的数据;类似的,在监护仪工作于第一模式时,该监护仪还用于输出显示接收到的呼吸机输出的数据。
可选的,所述监护仪工作于所述第一模式时,接收所述呼吸机输入的数据、和/或向所述呼吸机输出控制指令;所述监护仪工作于所述第二模式时,控制所述生理信号的接收,处理以及所述生理数据的显示。
可选的,监护仪可以接收呼吸机发送的病人呼吸力学的状态信息以及当前呼吸机的通气状态。监护仪可以发送第二控制指令至呼吸机来控制呼吸机的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、呼吸机传送的呼吸力学状态信息及通气状态信息和心肺复苏机工作状态信息的集中显示。监护仪可以实现对于心肺复苏机的按压运动和呼吸机通气过程的集中控制。在监护仪的第一模式下,监护仪对于心肺复苏机按压运动和呼吸机通气过程的集中控制可以工作在手动、半自动或者自动模式。在手动模式,用户可以根据集中显示的信息来手动设置心肺复苏机的工作参数,手动控制心肺复苏机的运动,手动设置呼吸机的通气模式及参数(例如潮气量,通气频率)。在半自动模式,在检测到病人生理状态发生变化时监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到病人通气不足或者通气过量时监护仪可以输出显示更改呼吸机通气设置的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一控制指令至心肺复苏机进行相应控制或者发送第二控制指令至呼吸机进行通气参数的更改。在自动模式,在检测到病人生理状态发生变化时监护仪可以发送第一控制指令调整 心肺复苏机的工作状态。在检测到病人通气不足或者通气过量时监护仪可以发送第二控制指令调整呼吸机的工作状态。
通过这种方式,可以建立监护仪和心肺复苏机,呼吸机之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,呼吸机的工作状态,还可以通过监护仪调整心肺复苏机,呼吸机的工作状态,无需分开对监护仪和心肺复苏机,呼吸机进行监测和调整的工作,提高监护的效率和准确性。
可选的,该方法还包括,监护仪接收除颤电极输入的数据、和/或向该除颤电极输出第三控制指令,该第三控制指令用于控制该除颤电极调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与除颤电极之间。例如,在监护仪工作于第一模式时,该监护仪还用于输出显示接收到的心肺复苏机输入的数据;类似的,在监护仪工作于第一模式时,该监护仪还用于输出显示接收到的除颤电极输出的数据。
在又一种可选的方案中,所述监护仪工作于所述第一模式时,监护仪接收所述除颤电极输入的数据、和/或向所述除颤电极输出控制指令;所述监护仪工作于所述第二模式时,控制所述生理信号的接收,处理以及所述生理数据的显示。
在又一种可选的方案中,监护仪可以接收除颤电极发送的病人的心电信号。监护仪可以发送第三控制指令至除颤电极来控制除颤电极调节自身的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、除颤电极采集心电信息和心肺复苏机工作状态信息的集中显示,以及对于心肺复苏机的按压运动和除颤电极放电的集中控制。在监护仪的第一模式下,监护仪对于心肺复苏机的按压运动和除颤电极放电的集中控制可以工作在手动、半自动或者自动模式。在手动模式,医护人员可以手动控制心肺复苏机的运动,手动选择除颤电极的放电能量,手动通过除颤电极实施放电。在半自动模式,在检测到病人生理状态发生变化时,监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以输出显示实施除颤的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一控制指令至心肺复苏机进行相应控制或者发送第三控制指令至除颤电极进行充电及放电。在自动模式,在检测 到病人生理状态发生变化时,监护仪可以向心肺复苏机发送第一控制指令,从而实现对心肺复苏机的按压运动进行控制调整。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以向除颤电极发送第三控制指令,从而实现对除颤电极的工作状态的调整。
通过这种方式,可以建立监护仪和心肺复苏机,除颤电极之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,除颤电极的工作状态,还可以通过监护仪调整心肺复苏机,除颤电极的工作状态,无需分开对监护仪和心肺复苏机,除颤电极进行监测和调整的工作,提高监护的效率和准确性。
在又一种可选的方案中,监护仪还可以同时连接心肺复苏机,呼吸机和除颤电极。监护仪可以实现与心肺复苏机,呼吸机和除颤电极的通讯。监护仪可以接收呼吸机发送的病人呼吸力学的状态信息以及当前呼吸机的通气状态,监护仪可以发送第二控制指令至呼吸机来控制呼吸机的通气过程。监护仪可以发送第三控制指令至除颤电极来控制除颤电极的工作状态。监护仪可以实现对于一个或多个生理传感器采集的病人生理参数信息、除颤电极采集心电信息、呼吸机传送的呼吸力学状态信息及通气状态信息和心肺复苏机工作状态信息的集中显示,以及对于心肺复苏机的按压运动、除颤电极放电和呼吸机通气过程的集中控制。在第一模式下,监护仪对于心肺复苏机按压运动、除颤电极放电和呼吸机通气过程的集中控制可以工作在手动、半自动或者自动模式。在手动模式,医护人员可以手动控制心肺复苏机的运动,手动选择除颤模块的放电能量,手动通过除颤模块实施放电,手动设置呼吸机的通气模式及参数(例如潮气量,通气频率)。在半自动模式,在检测到病人生理状态发生变化时,监护仪可以输出显示控制心肺复苏机的参考控制指令。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以输出显示实施除颤的参考控制指令。在检测到病人通气不足或者通气过量时,监护仪可以输出显示更改呼吸机通气设置的参考控制指令。用户选择确认参考控制指令后,监护仪将会发送第一参考控制指令至心肺复苏机进行相应控制,或者发送第二参考控制指令至呼吸机进行通气参数的更改,或者发送第三参考控制指令至除颤模块进行充电及放电。在自动模式,在检测到病人生理状态发生变化时,监护仪可以向心肺复苏机发送第一控制指令,从而实现对心肺复苏机的按压运动进行控制调整。在检测到 病人通气不足或者通气过量时,监护仪可以向呼吸机发送第二控制指令,从而实现对呼吸机工作状态的调整。在检测到病人处于可除颤状态时(室颤或者可除颤室速),监护仪可以向除颤电极发送第三控制指令,从而实现对除颤电极的工作状态的调整。
通过这种方式,可以建立监护仪和心肺复苏机,呼吸机,除颤电极之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,呼吸机,除颤电极的工作状态,还可以通过监护仪调整心肺复苏机,呼吸机,除颤电极的工作状态,无需分开对监护仪和心肺复苏机,呼吸机,除颤电极进行监测和调整的工作,提高监护的效率和准确性。
在图14所示的方法中,能够实现监护仪和心肺复苏机之间的通讯,监护仪能够接收心肺复苏机输入的数据,该数据体现该心肺复苏机的工作状态;还能够向心肺复苏机输出第一控制指令以指示该心肺复苏机调节自身的工作状态。通过上述方式,医护人员可以在监护仪上观测到心肺复苏机的工作状态,还可以通过监护仪调整心肺复苏机的工作状态,无需分开对监护仪和心肺复苏机进行监测和调整的工作,提高监护的效率和准确性。
参见图15,为本申请实施例提供的又一种可与心肺复苏机连接的监护仪。该监护仪150可以包括:一个或多个处理器1501;一个或多个输入设备1502,一个或多个输出设备1503和存储器1504。上述处理器1501、输入设备1502、输出设备1503和存储器1504通过总线1505连接。存储器1502用于存储指令,处理器1501用于执行存储器1502存储的指令。
所称处理器1501可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
输入设备1502可以包括键盘、触控板、指纹采传感器(用于采集用户的指纹信息和指纹的方向信息)、麦克风、通信接口等,输出设备1503可以包括显示器(LCD等)、扬声器、通信接口、报警器等。
该存储器1504可以包括只读存储器和随机存取存储器,并向处理器1501提供指令和数据。存储器1504的一部分还可以包括非易失性随机存取存储器。例如,存储器1504还可以存储设备类型的信息。
处理器1501用于运行存储器1504存储的指令来执行如下操作:
通过输入设备1502接收采集到的生理信号,并处理该生理信号获得生理数据,其中,输入设备1502可以为通信接口地等。
通过输出设备1503输出显示该生理数据,其中,输出设备1503可以是显示器,扬声器等。
通过输入设备1502接收心肺复苏机输入的数据、和/或通过输出设备1503向心肺复苏机输出第一控制指令;控制生理信号的接收,处理以及生理数据的显示。
可选的,该处理器1501还用于,接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,同步控制该生理信号的接收。通过这种方式,监护仪在实现与心肺复苏机通讯的同时,可以接收病人的生理信号;数据反馈更加及时,提高监护仪工作的效率和准确性。
可选的,该处理器1501接收心肺复苏机输入的数据之后,还包括,通过输出设备1503输出显示该心肺复苏机输入的数据。需要说明的是,该心肺复苏机输入的数据可以为该心肺复苏机的工作状态和/或设置信息。具体的,该心肺复苏机的工作状态可以为该心肺复苏机实时的按压过程的信息,例如,心肺复苏机按压过程中的按压数据对应的图形;该心肺复苏机的设置信息可以为连续按压,定时间断按压,暂停和终止,还可以为,该心肺复苏机的按压频率,按压深度,按压占空比等工作参数。通过这种方式,医护人员可以在监护仪中观测到该心肺复苏机的工作状态和/或设置信息,以便对治疗过程进行监护,避免了在监护仪和心肺复苏机进行切换观测而造成的降低工作效率和增加出错可能性的问题。
可选的,该处理器1501还用于,通过输出设备1503显示该生理数据和/或该生理数据对应的图形;显示该心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。可选的,还可以显示心肺复苏机工作的相关控件,该心肺复苏机工作的相关控件用于调整心肺复苏机的工作状态。通过这种方式, 医护人员可以通过监护仪方便地观测到病人的生理数据和/或该生理数据对应的图形,以及心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。同时,医护人员可以通过显示的控件对心肺复苏机的工作状态进行调节,提升监护的效率。
需要说明的是,该监护仪可以有三种工作模式,该三种工作模式可以为手动模式,半自动模式和自动模式。下面针对这三种模式做详细介绍。
在手动模式下,该处理器1501可以通过输出设备1503显示病人的生理数据和/或该生理数据对应的图形,也可以显示心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。医护人员可以根据显示的数据判断是否需要对心肺复苏机的工作状态进行调整。当需要调整心肺复苏机的工作状态时,该处理器1501根据医护人员输入的心肺复苏机的调整数据生成第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,医护人员可以通过监护仪显示的病人的生理数据和/或该生理数据对应的图形,以及心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形判断是否需要对心肺复苏机的工作状态进行调节。同时,可以通过对监护仪的操作实现对心肺复苏机的工作状态的调节,无需医护人员分别在两个设备上进行操作,减少了出错的可能性,提升了监护的效率。
在半自动模式下,该处理器1501通过输出设备1503显示参考控制指令的信息;该参考控制指令为该心肺复苏处理模块根据该心肺复苏机输入的数据和该生理数据生成的、用于执行参考操作的控制指令。可以看出,通过这种方式,医护人员能够看到生成的参考控制指令信息,例如,确认控件、取消控件和手动设置控件。每种参考控制指令对应一种参考操作,例如确认控件对应的参考操作可以是停止心肺复苏机按压,手动设置控件对应的参考操作可以是进入手动设置界面进行后续参数设置的操作,取消控件对应的参考操作可以是继续心肺复苏机按压,以便医护人员可以对该参考控制指令进行是否执行的选择,提高监护仪工作的准确性。
可选的,该处理器1501通过输出设备1503向心肺复苏机输出第一控制指令,包括,若接收到输入的第一操作,则向该心肺复苏机发送该第一控制指令以控制该心肺复苏机调整自身的工作状态,该第一操作为对应该参考控制指令 的操作,用于确定该参考控制指令为该第一控制指令。通过这种方式,医护人员可以通过显示的参考控制指令判断是否需要输入第一操作,若监护仪接收到医护人员输入的该第一操作,则确定对应该第一操作的参考指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对生成的参考控制指令的确定操作,提高监护仪工作的准确性。
可选的,该处理器1501通过输出设备1503向心肺复苏机输出第一控制指令,包括,若接收到输入的第二操作,则向该心肺复苏机发送第一控制指令以控制该心肺复苏机调整自身的工作状态,该第二操作为对应该参考控制指令的操作,用于设置该第一控制指令。可选的,在接收该第一操作之前,该处理器1501还用于通过输出设备1503显示手动设置第一控制指令的界面。通过这种方式,医护人员可以通过监护仪显示的参考控制指令判断是否需要输入第二操作,当医护人员需要修正该参考控制指令时,能够通过输入第二操作的方式手动设置控制指令。若监护仪接收到医护人员输入的该第二操作,则确定与该第二操作对应的控制指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对第一控制指令的手动设置操作,提高监护仪工作的准确性。
可选的,该处理器1501通过输出设备1503接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,包括,接收心肺复苏机输入的数据;若接收到第三操作,则不向心肺复苏机输出第一控制指令,该第三操作为对应该参考控制指令的操作。通过这种方式,医护人员可以通过显示的参考控制指令判断是否需要输入第三操作,当医护人员不需要发送该参考控制指令时,能够通过输入第三操作的方式取消控制指令的发送。若监护仪接收到医护人员输入的该第三操作,则不向心肺复苏机发送该第一控制指令。通过医护人员对参考控制指令的取消操作,提高监护仪工作的准确性。
在自动模式下,该处理器1501根据该心肺复苏机输入的数据和该生理数据生成该第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,监护仪可以根据病人的生理状况和心肺复苏机的工作状态生成第一控制指令,该第一控制指令可以控制心肺复苏机调节自身的工作状态,无需医护人员输入其他操作,提高监护的效率。
可选的,该处理器1501还用于,根据该心肺复苏机输入的数据对该生理信号进行滤波处理得到第一生理数据,该生理数据包括该第一生理数据。需要说明的是,上述提到的使用到该生理数据的情况,均可以使用该第一生理数据。例如,该监护仪可以显示该生理数据,即,该监护仪可以显示该第一生理数据。可选的,该生理信号可以为心电信号,血氧信号等描述病人生理状况的数据。可选的,可以采用最小均方滤波方法来滤除该生理信号所受到的心肺复苏机工作时的按压干扰。通过这种方式,可以滤除该心肺复苏机工作时对该生理信号的按压干扰,从而可以得到病人实际的生理数据。
可选的,该处理器1501还用于,向电子病历系统发送数据信息,该数据信息包括该心肺复苏机输入的数据、处理该生理信号获得的该生理数据中的至少一项;接收电子病历系统发送的历史病历数据。具体的,发送数据信息和接收历史病历数据可以通过有线通信,还可以通过无线通信;该无线通信可以是基于局域网或广域网的通信协议。需要说明的是,向电子病历系统发送数据信息,用于记录该数据信息以便于后续对病人的病历数据进行查询和分析;接收电子病历系统发送的历史病历数据,用于结合该病人的历史病历数据,对心肺复苏过程的治疗进行监护。上述的历史病历数据,可以包括病人的历史监测生理数据、医嘱数据等等。
可选的,该处理器1501还用于,根据处理该生理信号获得的该生理数据进行报警。具体地,报警模式可包括单参数阈值报警,多参数组合报警和结合历史病例数据进行报警的模式。通过这种方式,监护仪可以实时监控病人的生理状况,当反映病人的生理状况的生理数据满足预设的报警条件时,该监护仪将发出报警以提醒医护人员对病人采取救助措施,提高监护的效率和准确性。
可选的,该处理器1501还用于,接收呼吸机输入的数据、和/或向该呼吸机输出第二控制指令,该第二控制指令用于控制该呼吸机调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与呼吸机之间。例如,该监护仪还用于输出显示接收到的心肺复苏机输入的数据;类似的,该监护仪还用于输出显示接收到的呼吸机输出的数据。通过这种方式,可以建立监护仪和心肺复苏机,呼吸机之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,呼吸机的工作状态,还可以通过 监护仪调整心肺复苏机,呼吸机的工作状态,无需分开对监护仪和心肺复苏机,呼吸机进行监测和调整的工作,提高监护的效率和准确性。
可选的,该处理器1501还用于,接收除颤电极输入的数据、和/或向该除颤电极输出第三控制指令,该第三控制指令用于控制该除颤电极调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与除颤电极之间。例如,该监护仪还用于输出显示接收到的心肺复苏机输入的数据;类似的,该监护仪还用于输出显示接收到的除颤电极输出的数据。通过这种方式,可以建立监护仪和心肺复苏机,除颤电极之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,除颤电极的工作状态,还可以通过监护仪调整心肺复苏机,除颤电极的工作状态,无需分开对监护仪和心肺复苏机,除颤电极进行监测和调整的工作,提高监护的效率和准确性。
需要说明的是,各个操作的实现还可以对应参照图12所示的方法实施例的相应描述。
在图15所示的监护仪中,能够实现监护仪和心肺复苏机之间的通讯,监护仪能够接收心肺复苏机输入的数据,该数据体现该心肺复苏机的工作状态;还能够向心肺复苏机输出第一控制指令以指示该心肺复苏机调节自身的工作状态。通过上述方式,医护人员可以在监护仪上观测到心肺复苏机的工作状态,还可以通过监护仪调整心肺复苏机的工作状态,无需分开对监护仪和心肺复苏机进行监测和调整的工作,提高监护的效率和准确性。
参见图16,为本申请实施例提供的又一种可与心肺复苏机连接的监护仪。该监护仪160可以包括:一个或多个处理器1601;一个或多个输入设备1602,一个或多个输出设备1603和存储器1604。上述处理器1601、输入设备1602、输出设备1603和存储器1604通过总线1605连接。存储器1602用于存储指令,处理器1601用于执行存储器1602存储的指令。
所称处理器1601可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或 者该处理器也可以是任何常规的处理器等。
输入设备1602可以包括键盘、触控板、指纹采传感器(用于采集用户的指纹信息和指纹的方向信息)、麦克风、通信接口等,输出设备1603可以包括显示器(LCD等)、扬声器、通信接口、报警器等。
该存储器1604可以包括只读存储器和随机存取存储器,并向处理器1601提供指令和数据。存储器1604的一部分还可以包括非易失性随机存取存储器。例如,存储器1604还可以存储设备类型的信息。
处理器1601用于运行存储器1604存储的指令来执行如下操作:
监护仪的工作模式包括第一模式和第二模式。所述监护仪工作于所述第一模式时,通过输入设备1602接收心肺复苏机输入的数据、和/或通过输出设备1603向心肺复苏机输出第一控制指令,其中,输入设备1602可以为通信接口地等。
所述监护仪工作于所述第二模式时,通过输入设备1602接收采集到的生理信号,并处理所述生理信号获得生理数据;通过输出设备1603输出显示所述生理数据,其中,输出设备1603可以是显示器,扬声器等。
可选的,所述监护仪工作于所述第一模式时,该处理器1601还用于,接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,同步控制所述生理信号的接收。通过这种方式,监护仪在实现与心肺复苏机通讯的同时,可以接收病人的生理信号;数据反馈更加及时,提高监护仪工作的效率和准确性。
可选的,所述监护仪工作于所述第一模式时,该处理器1601接收心肺复苏机输入的数据之后,还包括,通过输出设备1603输出显示所述心肺复苏机输入的数据。需要说明的是,该心肺复苏机输入的数据可以为该心肺复苏机的工作状态和/或设置信息。具体的,该心肺复苏机的工作状态可以为该心肺复苏机实时的按压过程的信息,例如,心肺复苏机按压过程中的按压数据对应的图形;该心肺复苏机的设置信息可以为连续按压,定时间断按压,暂停和终止,还可以为,该心肺复苏机的按压频率,按压深度,按压占空比等工作参数。通过这种方式,医护人员可以在监护仪中观测到该心肺复苏机的工作状态和/或设置信息,以便对治疗过程进行监护,避免了在监护仪和心肺复苏机进行切换 观测而造成的降低工作效率和增加出错可能性的问题。
可选的,所述方法还包括,所述监护仪工作于所述第二模式时,该处理器1601生成第一显示区,并于所述第一显示区显示所述生理数据和/或所述生理数据对应的图形。所述监护仪工作于所述第一模式时,该处理器1601生成第二显示区,并于所述第二显示区显示所述心肺复苏机输入的数据和/或所述心肺复苏机输入的数据对应的图形。可选的,在第一模式下,该处理器1601还可以显示心肺复苏机工作的相关控件,该心肺复苏机工作的相关控件用于调整心肺复苏机的工作状态。通过这种方式,医护人员可以通过监护仪方便地观测到病人的生理数据和/或该生理数据对应的图形,以及心肺复苏机输入的数据和/或该心肺复苏机输入的数据对应的图形。同时,医护人员可以通过显示的控件对心肺复苏机的工作状态进行调节,提升监护的效率。
需要说明的是,该监护仪可以有三种工作模式,该三种工作模式可以为手动模式,半自动模式和自动模式。下面针对这三种模式做详细介绍。
在手动模式下,医护人员可以根据显示的数据判断是否需要对心肺复苏机的工作状态进行调整。当需要调整心肺复苏机的工作状态时,该处理器1601根据医护人员输入的心肺复苏机的调整数据生成第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,医护人员可以通过对监护仪的操作实现对心肺复苏机的工作状态的调节,无需医护人员分别在两个设备上进行操作,减少了出错的可能性,提升了监护的效率。
在半自动模式下,该处理器1601通过输出设备1603显示参考控制指令的信息;该参考控制指令为该心肺复苏处理模块根据该心肺复苏机输入的数据和该生理数据生成的、用于执行参考操作的控制指令。可以看出,通过这种方式,医护人员能够看到生成的参考控制指令信息。每种参考控制指令对应一种参考操作,例如确认控件对应的参考操作可以是停止心肺复苏机按压,手动设置控件对应的参考操作可以是进入手动设置界面进行后续参数设置的操作,取消控件对应的参考操作可以是继续心肺复苏机按压,以便医护人员可以对该参考控制指令进行是否执行的选择,提高监护仪工作的准确性。
可选的,该处理器1601通过输出设备1603向心肺复苏机输出第一控制指令,包括,若接收到输入的第一操作,则向该心肺复苏机发送该第一控制指令 以控制该心肺复苏机调整自身的工作状态,该第一操作为对应该参考控制指令的操作,用于确定该参考控制指令为该第一控制指令。通过这种方式,医护人员可以通过显示的参考控制指令判断是否需要输入第一操作,若监护仪接收到医护人员输入的该第一操作,则确定对应该第一操作的参考指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对生成的参考控制指令的确定操作,提高监护仪工作的准确性。
可选的,该处理器1601通过输出设备1603向心肺复苏机输出第一控制指令,包括,若接收到输入的第二操作,则向该心肺复苏机发送第一控制指令以控制该心肺复苏机调整自身的工作状态,该第二操作为对应该参考控制指令的操作,用于设置该第一控制指令。可选的,在接收该第一操作之前,该处理器1601还用于通过输出设备1603显示手动设置第一控制指令的界面。通过这种方式,医护人员可以通过监护仪显示的参考控制指令判断是否需要输入第二操作,当医护人员需要修正该参考控制指令时,能够通过输入第二操作的方式手动设置控制指令。若监护仪接收到医护人员输入的该第二操作,则确定与该第二操作对应的控制指令为该第一控制指令。进而,心肺复苏机可以根据该第一控制指令调整自身的工作状态。通过医护人员对第一控制指令的手动设置操作,提高监护仪工作的准确性。
可选的,该处理器1601通过输出设备1603接收心肺复苏机输入的数据、和/或向心肺复苏机输出第一控制指令,包括,接收心肺复苏机输入的数据;若接收到第三操作,则不向心肺复苏机输出第一控制指令,该第三操作为对应该参考控制指令的操作。通过这种方式,医护人员可以通过显示的参考控制指令判断是否需要输入第三操作,当医护人员不需要发送该参考控制指令时,能够通过输入第三操作的方式取消控制指令的发送。若监护仪接收到医护人员输入的该第三操作,则不向心肺复苏机发送该第一控制指令。通过医护人员对参考控制指令的取消操作,提高监护仪工作的准确性。
在自动模式下,该处理器1601根据该心肺复苏机输入的数据和该生理数据生成该第一控制指令,该第一控制指令用于控制该心肺复苏机调节自身的工作状态。通过这种方式,监护仪可以根据病人的生理状况和心肺复苏机的工作状态生成第一控制指令,该第一控制指令可以控制心肺复苏机调节自身的工作 状态,无需医护人员输入其他操作,提高监护的效率。
可选的,该处理器1601还用于,根据该心肺复苏机输入的数据对该生理信号进行滤波处理得到第一生理数据,该生理数据包括该第一生理数据。需要说明的是,上述提到的使用到该生理数据的情况,均可以使用该第一生理数据。例如,该监护仪可以显示该生理数据,即,该监护仪可以显示该第一生理数据。可选的,该生理信号可以为心电信号,血氧信号等描述病人生理状况的数据。可选的,可以采用最小均方滤波方法来滤除该生理信号所受到的心肺复苏机工作时的按压干扰。通过这种方式,可以滤除该心肺复苏机工作时对该生理信号的按压干扰,从而可以得到病人实际的生理数据。
可选的,该处理器1601还用于,向电子病历系统发送数据信息,该数据信息包括该心肺复苏机输入的数据、处理该生理信号获得的该生理数据中的至少一项;接收电子病历系统发送的历史病历数据。具体的,发送数据信息和接收历史病历数据可以通过有线通信,还可以通过无线通信;该无线通信可以是基于局域网或广域网的通信协议。需要说明的是,向电子病历系统发送数据信息,用于记录该数据信息以便于后续对病人的病历数据进行查询和分析;接收电子病历系统发送的历史病历数据,用于结合该病人的历史病历数据,对心肺复苏过程的治疗进行监护。上述的历史病历数据,可以包括病人的历史监测生理数据、医嘱数据等等。
可选的,该处理器1601还用于,根据处理该生理信号获得的该生理数据进行报警。具体地,报警模式可包括单参数阈值报警,多参数组合报警和结合历史病例数据进行报警的模式。通过这种方式,监护仪可以实时监控病人的生理状况,当反映病人的生理状况的生理数据满足预设的报警条件时,该监护仪将发出报警以提醒医护人员对病人采取救助措施,提高监护的效率和准确性。
可选的,该处理器1601还用于,接收呼吸机输入的数据、和/或向该呼吸机输出第二控制指令,该第二控制指令用于控制该呼吸机调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与呼吸机之间。例如,该监护仪工作于第一模式下,还用于输出显示接收到的心肺复苏机输入的数据;类似的,该监护仪工作于第一模式下,还用于输出显示接收到的呼吸机输出的数据。通过这种方式,可以建立监护 仪和心肺复苏机,呼吸机之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,呼吸机的工作状态,还可以通过监护仪调整心肺复苏机,呼吸机的工作状态,无需分开对监护仪和心肺复苏机,呼吸机进行监测和调整的工作,提高监护的效率和准确性。
可选的,该处理器1601还用于,接收除颤电极输入的数据、和/或向该除颤电极输出第三控制指令,该第三控制指令用于控制该除颤电极调节自身的工作状态。需要理解的是,上述适用于监护仪和心肺复苏机的通讯方式也同样适用于监护仪与除颤电极之间。例如,该监护仪工作于第一模式下,还用于输出显示接收到的心肺复苏机输入的数据;类似的,该监护仪工作于第一模式下,该监护仪还用于输出显示接收到的除颤电极输出的数据。通过这种方式,可以建立监护仪和心肺复苏机,除颤电极之间的通讯,医护人员可以在监护仪上观测到心肺复苏机,除颤电极的工作状态,还可以通过监护仪调整心肺复苏机,除颤电极的工作状态,无需分开对监护仪和心肺复苏机,除颤电极进行监测和调整的工作,提高监护的效率和准确性。
需要说明的是,各个操作的实现还可以对应参照图14所示的方法实施例的相应描述。
在图16所示的监护仪中,能够实现监护仪和心肺复苏机之间的通讯,监护仪能够接收心肺复苏机输入的数据,该数据体现该心肺复苏机的工作状态;还能够向心肺复苏机输出第一控制指令以指示该心肺复苏机调节自身的工作状态。通过上述方式,医护人员可以在监护仪上观测到心肺复苏机的工作状态,还可以通过监护仪调整心肺复苏机的工作状态,无需分开对监护仪和心肺复苏机进行监测和调整的工作,提高监护的效率和准确性。
在本申请的另一实施例中提供一种芯片系统,该芯片系统包括至少一个处理器,存储器和接口电路,该存储器、该收发器和该至少一个处理器通过线路互联,该至少一个存储器中存储有指令;该指令被该处理器执行时,图12或图14所示实施例的方法得以实现。
在本申请实施例的另一实施例中提供一种计算机程序,所述计算机程序包括程序指令,当程序指令当被处理器执行时使,图12或图14所示实施例的方法得以实现。
在本申请的另一实施例中提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现图12或图14所示实施例的方法。
所述计算机可读存储介质可以是前述任一实施例所述的终端的内部存储单元,例如终端的硬盘或内存。所述计算机可读存储介质也可以是所述终端的外部存储设备,例如所述终端上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述终端的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述终端所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的监护仪和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的一种可与心肺复苏机连接的监护仪及监护方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为 单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (44)

  1. 一种可与心肺复苏机连接的监护仪,其特征在于,包括:
    传感器接口模块,用于连接生理传感器,并接收连接到病人的生理传感器采集到的生理信号;
    生理数据处理模块,用于处理所述生理信号获得生理数据;
    显示器,用于输出显示所述生理数据;
    心肺复苏机接口模块,用于连接心肺复苏机,可与所述心肺复苏机实现通讯;
    控制模块,用于通过所述心肺复苏机接口模块接收所述心肺复苏机输入的数据、和/或通过所述心肺复苏机接口模块向所述心肺复苏机输出第一控制指令;所述控制模块还用于控制所述生理信号的接收,处理以及所述生理数据的显示。
  2. 根据权利要求1所述的监护仪,其特征在于,所述控制模块通过所述心肺复苏机接口模块与所述心肺复苏机通讯时同步控制所述生理信号的接收。
  3. 根据权利要求1所述的监护仪,其特征在于,所述显示器还用于输出显示所述控制模块通过所述心肺复苏机接口模块接收到的所述心肺复苏机输入的数据。
  4. 根据权利要求3所述的监护仪,其特征在于,所述显示器包括第一显示区和第二显示区;所述第一显示区用于显示所述生理数据和/或所述生理数据对应的图形,所述第二显示区用于显示所述心肺复苏机输入的数据和/或所述心肺复苏机输入的数据对应的图形。
  5. 根据权利要求3所述的监护仪,其特征在于,所述显示器还用于显示参考控制指令的信息;所述参考控制指令为所述心肺复苏处理模块根据所述心肺复苏机输入的数据和所述生理数据生成的、用于执行参考操作的控制指令。
  6. 根据权利要求5所述的监护仪,其特征在于,所述控制模块,用于通过所述心肺复苏机接口模块向所述心肺复苏机输出第一控制指令,具体为:
    若所述控制模块接收到输入的第一操作,则所述控制模块通过所述心肺复苏机接口模块向所述心肺复苏机发送所述第一控制指令以控制所述心肺复苏 机调整自身的工作状态,所述第一操作为对应所述参考控制指令的操作,用于确定所述参考控制指令为所述第一控制指令;
    或者,若所述控制模块接收到输入的第二操作,则所述控制模块通过所述心肺复苏机接口模块向所述心肺复苏机发送第一控制指令以控制所述心肺复苏机调整自身的工作状态,所述第二操作为对应所述参考控制指令的信息的操作,用于设置所述第一控制指令。
  7. 根据权利要求5所述的监护仪,其特征在于,所述控制模块,用于通过所述心肺复苏机接口模块接收所述心肺复苏机输入的数据、和/或通过所述心肺复苏机接口模块向所述心肺复苏机输出第一控制指令,具体为:
    用于通过所述心肺复苏机接口模块接收所述心肺复苏机输入的数据;
    若所述控制模块接收到第三操作,则所述控制模块不向心肺复苏机输出第一控制指令,所述第三操作为对应所述参考控制指令的操作。
  8. 根据权利要求1所述的监护仪,其特征在于,所述监护仪还包括心肺复苏处理模块,所述心肺复苏处理模块用于连接所述心肺复苏机接口模块,根据所述心肺复苏接口模块接收的所述心肺复苏机输入的数据对所述生理信号进行滤波处理得到第一生理数据;和/或用于根据所述心肺复苏机输入的数据和所述生理数据生成所述第一控制指令;所述生理数据包括所述第一生理数据,所述第一控制指令用于控制所述心肺复苏机调节自身的工作状态。
  9. 根据权利要求1-8任一项所述的监护仪,其特征在于,所述监护仪还包括网络通讯模块,所述网络通讯模块用于向电子病历系统发送数据信息,所述数据信息包括所述心肺复苏机输入的数据、处理所述生理信号获得的所述生理数据中的至少一项;所述网络通讯模块还用于接收电子病历系统发送的历史病历数据。
  10. 根据权利要求1所述的监护仪,其特征在于,所述监护仪还包括呼吸机接口模块,用于连接呼吸机,可与所述呼吸机实现通讯;和/或所述监护仪还包括除颤电极接口模块,用于连接除颤电极,可与所述除颤电极实现通讯;
    所述控制模块,还用于通过所述呼吸机接口模块接收所述呼吸机输入的数据、和/或通过所述呼吸机接口模块向所述呼吸机输出第二控制指令,所述第二控制指令用于控制所述呼吸机调节自身的工作状态;和/或所述控制模块, 还用于通过所述除颤电极接口模块接收所述除颤电极输入的数据、和/或通过所述除颤电极接口模块向所述除颤电极输出第三控制指令,所述第三控制指令用于控制所述除颤电极调节自身的工作状态。
  11. 一种可与心肺复苏机连接的监护仪,包括:
    传感器接口模块,用于连接生理传感器,并接收连接到病人的生理传感器采集到的生理信号;
    生理数据处理模块,用于处理所述生理信号获得生理数据;
    显示器,用于输出显示所述生理数据;
    心肺复苏机接口模块,用于连接心肺复苏机,可与所述心肺复苏机实现通讯;
    控制模块,用于控制监护仪的工作模式在第一模式和第二模式之间切换,其中,所述监护仪工作于所述第一模式时,所述控制模块通过所述心肺复苏机接口模块接收所述心肺复苏机输入的数据、和/或通过所述心肺复苏机接口模块向所述心肺复苏机输出控制指令;所述监护仪工作于所述第二模式时,所述控制模块控制所述生理信号的接收,处理以及所述生理数据的显示。
  12. 根据权利要求11所述的监护仪,其特征在于,所述监护仪工作于所述第一模式时,所述控制模块通过所述心肺复苏机接口模块与所述心肺复苏机通讯时同步控制生理信号的接收。
  13. 根据权利要求11所述的监护仪,其特征在于,所述监护仪工作于所述第一模式时,所述显示器还用于输出显示所述控制模块通过所述心肺复苏机接口模块接收到的所述心肺复苏机输入的数据。
  14. 根据权利要求13所述的监护仪,其特征在于,所述显示器包括第一显示区和第二显示区;所述监护仪工作于所述第二模式时,所述第一显示区用于显示所述生理数据和/或所述生理数据对应的图形;所述监护仪工作于所述第一模式时,所述第二显示区用于显示所述心肺复苏机输入的数据和/或所述心肺复苏机输入的数据对应的图形。
  15. 根据权利要求13所述的监护仪,其特征在于,所述显示器还用于显示参考控制指令的信息;所述参考控制指令为所述心肺复苏处理模块根据所述心肺复苏机输入的数据和所述生理数据生成的、用于执行参考操作的控制指令。
  16. 根据权利要求15所述的监护仪,其特征在于,所述控制模块,用于通过所述心肺复苏机接口模块向所述心肺复苏机输出第一控制指令,具体为:
    若所述控制模块接收到输入的第一操作,则所述控制模块通过所述心肺复苏机接口模块向所述心肺复苏机发送所述第一控制指令以指示所述心肺复苏机调整自身的工作状态,所述第一操作为对应所述参考控制指令的操作,用于确定所述参考控制指令为所述第一控制指令;
    或者,若所述控制模块接收到输入的第二操作,则所述控制模块通过所述心肺复苏机接口模块向所述心肺复苏机发送第一控制指令以指示所述心肺复苏机调整自身的工作状态,所述第二操作为对应所述参考控制指令的信息的操作,用于设置所述第一控制指令。
  17. 根据权利要求15所述的监护仪,其特征在于,所述控制模块,用于通过所述心肺复苏机接口模块接收所述心肺复苏机输入的数据、和/或通过所述心肺复苏机接口模块向所述心肺复苏机输出第一控制指令,具体为:
    用于通过所述心肺复苏机接口模块接收所述心肺复苏机输入的数据;
    若所述控制模块接收到第三操作,则所述控制模块不向所述心肺复苏机输出第一控制指令,所述第三操作为对应所述参考控制指令的操作。
  18. 根据权利要求11所述的监护仪,其特征在于,所述监护仪还包括心肺复苏处理模块,所述心肺复苏处理模块用于连接所述心肺复苏机接口模块,根据所述心肺复苏接口模块接收的所述心肺复苏机输入的数据对所述生理信号进行滤波处理得到第一生理数据;和/或用于根据所述心肺复苏机输入的数据和所述生理数据生成所述第一控制指令;所述生理数据包括所述第一生理数据,所述第一控制指令用于控制所述心肺复苏机调节自身的工作状态。
  19. 根据权利要求11-18任一项所述的监护仪,其特征在于,所述监护仪还包括网络通讯模块,所述网络通讯模块用于向电子病历系统发送数据信息,所述数据信息包括所述心肺复苏机输入的数据、处理所述生理信号获得的所述生理数据中的至少一项;所述网络通讯模块还用于接收电子病历系统发送的历史病历数据。
  20. 根据权利要求11所述的监护仪,其特征在于,所述监护仪还包括呼吸机接口模块,用于连接呼吸机,可与所述呼吸机实现通讯;和/或所述监护仪 还包括除颤电极接口模块,用于连接除颤电极,可与所述除颤电极实现通讯;
    所述控制模块,还用于通过所述呼吸机接口模块接收所述呼吸机输入的数据、和/或通过所述呼吸机接口模块向所述呼吸机输出第二控制指令,所述第二控制指令用于控制所述呼吸机调节自身的工作状态;和/或所述控制模块,还用于通过所述除颤电极接口模块接收所述除颤电极输入的数据、和/或通过所述除颤电极接口模块向所述除颤电极输出第三控制指令,所述第三控制指令用于控制所述除颤电极调节自身的工作状态。
  21. 一种应用监护仪进行监护的方法,其特征在于,包括:
    接收采集到的生理信号,并处理所述生理信号获得生理数据;
    输出显示所述生理数据;
    接收心肺复苏机输入的数据、和/或向所述心肺复苏机输出第一控制指令;
    控制所述生理信号的接收,处理以及所述生理数据的显示。
  22. 根据权利要求21所述的方法,其特征在于,接收心肺复苏机输入的数据、和/或向所述心肺复苏机输出第一控制指令,同步控制所述生理信号的接收。
  23. 根据权利要求21所述的方法,其特征在于,所述接收心肺复苏机输入的数据之后,还包括:
    输出显示所述心肺复苏机输入的数据。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    生成第一显示区,并于所述第一显示区显示所述生理数据和/或所述生理数据对应的图形;
    生成第二显示区,并于所述第二显示区显示所述心肺复苏机输入的数据和/或所述心肺复苏机输入的数据对应的图形。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    显示参考控制指令的信息;所述参考控制指令为所述心肺复苏处理模块根据所述心肺复苏机输入的数据和所述生理数据生成的、用于执行参考操作的控制指令。
  26. 根据权利要求25所述的方法,其特征在于,所述向所述心肺复苏机输出第一控制指令,包括:
    若接收到输入的第一操作,则向所述心肺复苏机发送所述第一控制指令以控制所述心肺复苏机调整自身的工作状态,所述第一操作为对应所述参考控制指令的操作,用于确定所述参考控制指令为所述第一控制指令;
    或者,若接收到输入的第二操作,则向所述心肺复苏机发送第一控制指令以控制所述心肺复苏机调整自身的工作状态,所述第二操作为对应所述参考控制指令的操作,用于设置所述第一控制指令。
  27. 根据权利要求25所述的方法,其特征在于,所述接收心肺复苏机输入的数据、和/或向所述心肺复苏机输出第一控制指令,包括:
    接收心肺复苏机输入的数据;
    若接收到第三操作,则不向所述心肺复苏机输出第一控制指令,所述第三操作为对应所述参考控制指令的操作。
  28. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    根据所述心肺复苏机输入的数据对所述生理信号进行滤波处理得到第一生理数据,所述生理数据包括所述第一生理数据。
  29. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    根据所述心肺复苏机输入的数据和所述生理数据生成所述第一控制指令,所述第一控制指令用于控制所述心肺复苏机调节自身的工作状态。
  30. 根据权利要求21-29任一项所述的方法,其特征在于,所述方法还包括:
    向电子病历系统发送数据信息,所述数据信息包括所述心肺复苏机输入的数据、处理所述生理信号获得的所述生理数据中的至少一项;接收电子病历系统发送的历史病历数据。
  31. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    接收呼吸机输入的数据、和/或向所述呼吸机输出第二控制指令,所述第二控制指令用于控制所述呼吸机调节自身的工作状态;和/或接收除颤电极输入的数据、和/或向所述除颤电极输出第三控制指令,所述第三控制指令用于控制所述除颤电极调节自身的工作状态。
  32. 一种应用监护仪进行监护的方法,其特征在于,监护仪的工作模式包括第一模式和第二模式,所述方法包括:
    所述监护仪工作于所述第一模式时,接收心肺复苏机输入的数据、和/或向所述心肺复苏机输出第一控制指令;以及
    所述监护仪工作于所述第二模式时,接收采集到的生理信号,并处理所述生理信号获得生理数据;输出显示所述生理数据。
  33. 根据权利要求32所述的方法,其特征在于,所述监护仪工作于所述第一模式时,接收心肺复苏机输入的数据、和/或向所述心肺复苏机输出第一控制指令,同步控制所述生理信号的接收。
  34. 根据权利要求32所述的方法,其特征在于,所述监护仪工作于所述第一模式时,接收心肺复苏机输入的数据之后,还包括:
    输出显示所述心肺复苏机输入的数据。
  35. 根据权利要求34所述的方法,其特征在于,所述方法还包括:
    所述监护仪工作于所述第二模式时,生成第一显示区,并于所述第一显示区显示所述生理数据和/或所述生理数据对应的图形;
    所述监护仪工作于所述第一模式时,生成第二显示区,并于所述第二显示区显示所述心肺复苏机输入的数据和/或所述心肺复苏机输入的数据对应的图形。
  36. 根据权利要求34所述的方法,其特征在于,所述方法还包括:
    显示参考控制指令的信息;所述参考控制指令为所述心肺复苏处理模块根据所述心肺复苏机输入的数据和所述生理数据生成的、用于执行参考操作的控制指令。
  37. 根据权利要求36所述的方法,其特征在于,所述向所述心肺复苏机输出第一控制指令,包括:
    若接收到输入的第一操作,则向所述心肺复苏机发送所述第一控制指令以控制所述心肺复苏机调整自身的工作状态,所述第一操作为对应所述参考控制指令的操作,用于确定所述参考控制指令为所述第一控制指令;
    或者,若接收到输入的第二操作,则向所述心肺复苏机发送第一控制指令以控制所述心肺复苏机调整自身的工作状态,所述第二操作为对应所述参考控制指令的操作,用于输入所述第一控制指令。
  38. 根据权利要求36所述的方法,其特征在于,
    所述接收心肺复苏机输入的数据、和/或向所述心肺复苏机输出第一控制指令,包括:
    接收心肺复苏机输入的数据;
    若接收到第三操作,则不向所述心肺复苏机输出第一控制指令,所述第三操作为对应所述参考控制指令的操作。
  39. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    根据所述心肺复苏机输入的数据对所述生理信号进行滤波处理得到第一生理数据,所述生理数据包括所述第一生理数据。
  40. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    根据所述心肺复苏机输入的数据和所述生理数据生成所述第一控制指令,所述第一控制指令用于控制所述心肺复苏机调节自身的工作状态。
  41. 根据权利要求32-40任一项所述的方法,其特征在于,所述方法还包括:
    向电子病历系统发送数据信息,所述数据信息包括所述心肺复苏机输入的数据、处理所述生理信号获得的所述生理数据中的至少一项;接收电子病历系统发送的历史病历数据。
  42. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    接收呼吸机输入的数据、和/或向所述呼吸机输出第二控制指令,所述第二控制指令用于控制所述呼吸机调节自身的工作状态;和/或接收除颤电极输入的数据、和/或向所述除颤电极输出第三控制指令,所述第三控制指令用于控制所述除颤电极调节自身的工作状态。
  43. 一种监护仪,其特征在于,包括处理器和存储器,其中,所述存储器用于存储程序指令,所述处理器被配置用于调用所述程序指令来执行如权利要求21-31任一项权利要求所述的方法。
  44. 一种监护仪,其特征在于,包括处理器和存储器,其中,所述存储器用于存储程序指令,所述处理器被配置用于调用所述程序指令来执行如权利要求32-42任一项权利要求所述的方法。
PCT/CN2018/084650 2018-04-26 2018-04-26 一种可与心肺复苏机连接的监护仪及监护方法 WO2019205059A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/084650 WO2019205059A1 (zh) 2018-04-26 2018-04-26 一种可与心肺复苏机连接的监护仪及监护方法
CN201880083824.6A CN111699020A (zh) 2018-04-26 2018-04-26 一种可与心肺复苏机连接的监护仪及监护方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/084650 WO2019205059A1 (zh) 2018-04-26 2018-04-26 一种可与心肺复苏机连接的监护仪及监护方法

Publications (1)

Publication Number Publication Date
WO2019205059A1 true WO2019205059A1 (zh) 2019-10-31

Family

ID=68293456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084650 WO2019205059A1 (zh) 2018-04-26 2018-04-26 一种可与心肺复苏机连接的监护仪及监护方法

Country Status (2)

Country Link
CN (1) CN111699020A (zh)
WO (1) WO2019205059A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113208898A (zh) * 2021-04-15 2021-08-06 深圳市安保科技有限公司 心肺复苏机器人及其交互方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706034A (zh) * 2012-10-05 2014-04-09 日本光电工业株式会社 控制具有分析心电图功能的除纤颤器的方法以及除纤颤器
CN103735401A (zh) * 2013-10-11 2014-04-23 中国医学科学院北京协和医院 基于脉搏血氧的心肺复苏质量反馈控制系统
CN103860180A (zh) * 2013-12-16 2014-06-18 中国医学科学院北京协和医院 在心肺复苏(cpr)过程中实时识别自主循环恢复(rosc)
CN105125190A (zh) * 2015-07-24 2015-12-09 深圳市安保科技有限公司 一种电动电控智能反馈控制型急救系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8731658B2 (en) * 2005-01-31 2014-05-20 Physio-Control, Inc System and method for using diagnostic pulses in connection with defibrillation therapy
BRPI0707744A2 (pt) * 2006-02-15 2011-05-10 Koninkl Philips Electronics Nv instrumento que auxilia um paramÉdico na administraÇço de cpr
JP2009103824A (ja) * 2007-10-22 2009-05-14 Mitaka Supply Co Ltd 心肺蘇生訓練システム
CN102325516A (zh) * 2009-02-18 2012-01-18 皇家飞利浦电子股份有限公司 用于具有辅助的cpr的监视器/除颤器的cpr显示器
US8725253B2 (en) * 2010-02-12 2014-05-13 Zoll Medical Corporation Defibrillator display including CPR depth information
US9198826B2 (en) * 2010-07-13 2015-12-01 Physio-Control, Inc. CPR chest compression machine stopping to detect patient recovery
WO2012065167A1 (en) * 2010-11-12 2012-05-18 Zoll Medical Corporation Real-time evaluation of cpr performance
WO2014152597A1 (en) * 2013-03-14 2014-09-25 Zoll Medical Corporation Treatment guidance based on victim circulatory status and prior shock outcome
US20150105636A1 (en) * 2013-10-10 2015-04-16 Covidien Lp System and method for emergency resuscitation
WO2016097938A1 (en) * 2014-12-18 2016-06-23 Koninklijke Philips N.V. Apparatus for monitoring a cardiac rhythm during cpr
EP3265175A1 (en) * 2015-03-03 2018-01-10 Koninklijke Philips N.V. Adaptable clinical usage profiles for advanced defibrillators
KR101950028B1 (ko) * 2015-06-12 2019-03-08 주식회사메디아나 자동 심폐소생술장치
US10675213B2 (en) * 2015-06-26 2020-06-09 Koninklijke Philips N.V. Determining return of spontaneous circulation during CPR
CN106390257A (zh) * 2016-11-02 2017-02-15 上海海事大学 一种智能型心肺复苏装置
CN107625627B (zh) * 2017-09-07 2019-08-20 中国人民解放军军事医学科学院卫生装备研究所 一种心肺复苏辅助系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706034A (zh) * 2012-10-05 2014-04-09 日本光电工业株式会社 控制具有分析心电图功能的除纤颤器的方法以及除纤颤器
CN103735401A (zh) * 2013-10-11 2014-04-23 中国医学科学院北京协和医院 基于脉搏血氧的心肺复苏质量反馈控制系统
CN103860180A (zh) * 2013-12-16 2014-06-18 中国医学科学院北京协和医院 在心肺复苏(cpr)过程中实时识别自主循环恢复(rosc)
CN105125190A (zh) * 2015-07-24 2015-12-09 深圳市安保科技有限公司 一种电动电控智能反馈控制型急救系统

Also Published As

Publication number Publication date
CN111699020A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
US11707632B2 (en) Wearable cardioverter defibrillator (WCD) system reacting to high-amplitude ECG noise
US11660249B2 (en) CPR chest compression machine stopping to detect patient recovery
US20230118908A1 (en) CPR Team Performance
US20180008159A1 (en) System and method of remote ecg monitoring, remote disease screening, and early-warning system based on wavelet analysis
US8121681B2 (en) Cooperating defibrillators and external chest compression devices
JP6080021B2 (ja) Cpr深さ情報を含む除細動器ディスプレイ
US11179570B2 (en) Pacing device with acoustic sensor
EP3434325B1 (en) Wearable cardioverter defibrillator (wcd) system reacting to high-frequency ecg noise
US11633614B2 (en) Wearable cardiac device to monitor physiological response to activity
EP4197590A1 (en) Rescue scene video transmission
CN104519951A (zh) 救援服务激活
WO2007093944A2 (en) Cpr assistance and effectiveness display
US11260238B2 (en) Wearable medical device (WMD) implementing adaptive techniques to save power
CN113545978B (zh) 一种心肺复苏cpr参数反馈的方法及装置
CN102974035B (zh) 体外除颤仪及其扩展器、除颤监护系统
JPWO2020008864A1 (ja) 心電計測システムおよび心電送信機
CN106333839A (zh) 一种胸外按压控制装置、方法及系统
WO2019205059A1 (zh) 一种可与心肺复苏机连接的监护仪及监护方法
CN110368286A (zh) 一种无线心肺复苏指导装置
US20200037953A1 (en) System, method and apparatus for measuring, classifying and displaying electrical cardiac activity
CN112970072A (zh) 用于进行紧急护理程序的辅助设备、用于同步心肺复苏的辅助系统及相关方法
EP3501401A1 (en) Apparatus and method for auscultation
JP2020014659A (ja) 高振幅ecg雑音に反応する着用型自動除細動器(wcd)システム
CN210472166U (zh) 基于筛查先天性心脏病的听诊器
US20240041381A1 (en) Arrhythmia detection in a wearable medical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916646

Country of ref document: EP

Kind code of ref document: A1