WO2019202892A1 - 観測装置、観測システム、および、観測方法 - Google Patents

観測装置、観測システム、および、観測方法 Download PDF

Info

Publication number
WO2019202892A1
WO2019202892A1 PCT/JP2019/011324 JP2019011324W WO2019202892A1 WO 2019202892 A1 WO2019202892 A1 WO 2019202892A1 JP 2019011324 W JP2019011324 W JP 2019011324W WO 2019202892 A1 WO2019202892 A1 WO 2019202892A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation
echo
radar
echo data
precipitation
Prior art date
Application number
PCT/JP2019/011324
Other languages
English (en)
French (fr)
Inventor
昌裕 箕輪
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2019202892A1 publication Critical patent/WO2019202892A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to an observation apparatus, an observation system, and an observation method that use the Doppler velocity to be observed.
  • a radar device such as an X-band radar is known (for example, see Patent Documents 1 and 2).
  • the radar device transmits a transmission wave (radio wave) around the radar device, and receives a reflected wave or the like reflected by raindrops as a reception wave.
  • a radar apparatus produces
  • the weather radar described in Patent Document 1 is a Doppler radar device that detects a Doppler velocity of an echo included in a received wave.
  • JP 2010-185768 A Japanese Patent No. 2572841
  • the Doppler radar device has a configuration for removing ground clutter that is an unnecessary reflected wave from a stationary object such as the ground. Specifically, the ground clutter is removed by replacing the echo intensity of the echo whose Doppler velocity component is zero in the radar echo with zero. Thereby, the ground clutter is removed from the received echo including the precipitation echo.
  • ground clutter removal processing can remove land echoes that are stationary echoes, so that precipitation echoes can be detected more accurately.
  • the Doppler velocity of the precipitation echo is zero, similar to the Doppler velocity of the echo from the land. End up. For this reason, the precipitation echo where the Doppler velocity becomes zero disappears together with the land echo by the ground clutter removal processing.
  • an object of the present invention is to provide an observation apparatus, an observation system, and an observation method capable of removing ground clutter and suppressing removal of necessary echoes such as precipitation echoes. To do.
  • an observation apparatus is a plurality of radar apparatuses installed at different positions, each of which is at least one other radar apparatus and a part of the observation area.
  • an acquisition unit that acquires echo data including Doppler velocity information from a plurality of radar devices, all of which are installed in duplicate, and the Doppler velocity among the one echo data acquired from the one radar device.
  • a replacement unit that replaces the echo data at the zero speed point where is zero or substantially zero with the echo data at the zero speed point among the other echo data acquired from other radar devices. ing.
  • the replacement unit may perform the replacement for a region where the observation regions of the first radar device, the second radar device, and the third radar device overlap each other. is there.
  • the replacement unit may perform the replacement by using the echo data at a plurality of time points having different wind directions in an observation region of the plurality of radar devices.
  • an observation system includes a radar device installed at a plurality of observation points and the observation device.
  • an observation method is a plurality of radar devices installed at different positions, each of which is at least one other radar device and a part of the observation region.
  • echo data including Doppler velocity information is acquired from a plurality of radar devices that are all installed in duplicate, and the Doppler velocity is zero or one of the echo data acquired from one of the radar devices.
  • the echo data at the zero velocity point that is substantially zero is replaced with the echo data at the zero velocity point among the other echo data acquired from other radar devices.
  • ground clutter can be removed and necessary echoes such as precipitation echoes can be prevented from being removed.
  • FIG. 3A is a schematic plan view showing an observation region of the observation system.
  • FIG. 3B is a schematic echo image showing the observation result of the first observation region by the first radar device.
  • FIG. 3C is a schematic echo image showing the observation result of the second observation region by the second radar device.
  • FIG. 4A is a first echo image after the ground clutter removal process.
  • FIG. 4B is a second echo image after the ground clutter removal process.
  • FIG. 4C is a diagram in which the first echo image and the second echo image after the ground clutter removal processing are superimposed.
  • FIG. 5A is a first echo image after replacement processing by the replacement unit.
  • FIG. 5B is a second echo image after replacement processing by the replacement unit.
  • FIG. 6A is a schematic plan view showing the observation region of the observation system, and the observation time point is different from the observation region shown in FIG.
  • FIG. 6B is an image after the ground clutter removal process is performed on the first echo image showing the result of observing the first observation region shown in FIG. 6A with the first radar device.
  • FIG. 6C is an image after the ground clutter removal process is performed on the second echo image showing the result of observing the second observation region shown in FIG. 6A with the second radar device.
  • FIG. 7A is a schematic plan view in which a third observation region is further added to the first observation region and the second observation region shown in FIG.
  • FIG. 7B is a third echo image showing a result of observing the third observation region shown in FIG. 7A with the third radar device
  • FIG. 7C shows the result shown in FIG. It is an image after performing a ground
  • FIG. 1 is a block diagram showing a configuration of an observation system 1 according to an embodiment of the present invention.
  • the observation system 1 is used for meteorological observation and the like, and performs meteorological observation by processing a received wave obtained by transmitting a transmission wave into the atmosphere.
  • the observation system 1 is a weather observation system that observes precipitation as an observation target.
  • the observation system 1 includes the first echo data ED1 that is data obtained by the first radar device 10 that is one of a plurality of radar devices, and the second radar that is one of the plurality of radar devices.
  • the second echo data ED2 which is data obtained by the device 20, is used.
  • the precipitation echo data that is unintentionally deleted in one of the first echo data ED1 and the second echo data ED2 is corrected with the precipitation echo data in the other of the first echo data ED1 and the second echo data ED2.
  • the observation system 1 detects the precipitation echo more accurately while removing the ground clutter that is an unnecessary reflected wave from a stationary object such as land.
  • FIG. 2 is a block diagram showing a configuration of the radar apparatus 10 (20, 30) of the observation system 1.
  • FIG. 3A is a schematic plan view showing observation areas AR1 and AR2 of the observation system 1.
  • FIG. 3B is a schematic echo image E1 showing an observation result of the first observation area AR1 by the first radar device 10.
  • FIG. 3C is a schematic echo image E2 showing an observation result of the second observation area AR2 by the second radar device 20.
  • the first observation area AR1 of the observation system 1 is an area having a predetermined radius centered on the first observation point P1 installed on the ground.
  • the second observation area AR2 is an area having a predetermined radius centered on the second observation point P2 installed on the ground.
  • the radii of the observation areas AR1 and AR2 vary depending on the frequency bands of the radar devices 10 and 20. Examples of the frequency bands of the radar devices 10 and 20 include an S band (2.8 GHz band), a C band (5 GHz band), and an X band (9.7 GHz band).
  • the radar apparatuses 10 and 20 observe a predetermined elevation angle range from the corresponding observation points P1 and P2 as observation areas AR1 and AR2.
  • the first observation point P1 is disposed in the second observation region AR2
  • the second observation point P2 is disposed in the first observation region AR1.
  • all the observation points P1 and P2 are arranged in the overlapping area AR12 of the observation areas AR1 and AR2.
  • the radar devices 10 and 20 are installed at different positions P1 and P2, and a part of the observation areas AR1 and AR2 overlap each other.
  • the first precipitation area W1, the second precipitation area W2, the third precipitation area W3, and the fourth precipitation area W4, which are areas in precipitation are shown.
  • the first precipitation region W1 is located in the first observation region AR1, and a part thereof is also located in the second observation region AR2.
  • the entire second precipitation region W2 is located in the first observation region AR1 and in the second observation region AR2.
  • the entire third precipitation region W3 is located in the first observation region AR1 and in the second observation region AR2.
  • the fourth precipitation region W4 is located in the second observation region AR2, and a part thereof is also located in the first observation region AR1.
  • traveling directions of the precipitation regions W1 to W4 are indicated by arrows as traveling directions D1 to D4.
  • the traveling direction D1 is oriented 90 degrees with respect to the radial direction from the first observation point P1 toward the center of the first precipitation region W1. That is, the traveling direction D1 is a direction along the tangential direction of the first observation region AR1. On the other hand, the traveling direction D1 is directed at an angle greatly deviating from 90 degrees with respect to the radial direction from the second observation point P2 toward the center of the first precipitation region W1. That is, the traveling direction D1 is not along the tangential direction of the second observation region AR2.
  • the traveling direction D2 is oriented 90 degrees with respect to the radial direction from the second observation point P2 toward the center of the second precipitation region W2. That is, the traveling direction D2 is a direction along the tangential direction of the second observation region AR2.
  • the traveling direction D2 is directed at an angle greatly deviating from 90 degrees with respect to the radial direction from the first observation point P1 toward the center of the second precipitation region W2. That is, the traveling direction D2 is not along the tangential direction of the first observation region AR1.
  • the traveling direction D3 is relative to the radial direction from the first observation point P1 toward the center of the third precipitation region W3 and also from the second observation point P2 toward the center of the third precipitation region W3. However, it is oriented at an angle greatly deviating from 90 degrees. That is, the traveling direction D3 is not along the tangential direction of the first observation region AR1, and is not along the tangential direction of the second observation region AR2. Similarly, the traveling direction D4 is not along the tangential direction of the first observation region AR1, and is not along the tangential direction of the second observation region AR2.
  • the observation system 1 includes radar devices 10 and 20 as a plurality of radar devices, an observation device 40, and a display unit 50.
  • the radar devices 10 and 20 have the same configuration except that the installation locations are different. Therefore, hereinafter, the configuration of the first radar device 10 will be mainly described, and the description of the configuration of the second radar device 20 that overlaps the configuration of the first radar device 10 may be omitted.
  • the first radar device 10 includes an antenna 11, a circulator 12, a transmission unit 13, a reception unit 14, an A / D conversion unit 15, and a signal processing unit 16.
  • the antenna 11 is configured to transmit a radar transmission wave that is an electromagnetic wave and receive a radar reception wave (reflection wave) that is an electromagnetic wave. Specifically, the antenna 11 outputs a radar transmission wave output from the transmission unit 13 via the circulator 12. The antenna 11 receives the radar reception wave and outputs the radar reception wave to the reception unit 14 via the circulator 12.
  • the antenna 11 of the first radar device 10 rotates around the vertical axis on the first observation point P1 and transmits a radar transmission wave to 360 degrees around the first observation point P1 and receives a radar reception wave. To do.
  • an operation from transmission of a radar transmission wave to transmission of the next radar transmission wave is referred to as “sweep”.
  • the operation of rotating the antenna 11 360 ° while transmitting / receiving electromagnetic waves is called “scan”.
  • the radar reception wave received after the first radar device 10 transmits the radar transmission wave includes an echo signal reflected by rain or the like.
  • the radar transmission wave generated by the transmission unit 13 is a transmission signal obtained by up-converting and amplifying a predetermined radar transmission waveform into a predetermined RF (Radio Frequency) frequency band.
  • the receiving unit 14 amplifies the radar reception wave from the antenna 11.
  • the receiving unit 14 outputs the amplified radar reception wave to the A / D conversion unit 15.
  • the A / D converter 15 converts the radar reception wave that is an analog signal into a radar reception signal that is a digital signal.
  • the A / D converter 15 outputs the radar reception signal to the signal processor 16.
  • the signal processing unit 16 performs predetermined signal processing on the radar reception signal to generate first echo data ED1 as data indicating the relationship between the distance from the first observation point P1 and the echo intensity for each sweep. To do. Then, the signal processing unit 16 generates first echo data ED1 for one scan. As shown in FIG. 3B, the first echo image E1 specified by the first echo data ED1 for one scan is an image obtained by observing the first observation area AR1. In the first echo image E1, the first to fourth precipitation echo images E11 to E14 exist in areas corresponding to the first to fourth precipitation areas W1 to W4. The signal intensity of each precipitation echo image E11 to E14 corresponds to precipitation intensity (rainfall).
  • the first echo data ED1 includes data indicating a ground clutter caused by a reflected wave from land. For this reason, the first echo image E1 includes the first ground clutter echo image E15.
  • the first echo data ED1 has a plurality of weather parameters including precipitation intensity, precipitation position, Doppler velocity information including the frequency of the transmission wave and the frequency of the reflected wave from the precipitation.
  • the first echo data ED1 generated by the signal processing unit 16 of the first weather radar apparatus 10 is output to the observation apparatus 40.
  • the second radar device 20 includes an antenna 11, a circulator 12, a transmission unit 13, a reception unit 14, an A / D conversion unit 15, and a signal processing unit 16.
  • the second radar device 20 is different from the first radar device 10 in that the first radar device 10 observes the first observation region AR1, whereas the second radar device 20 observes the second observation region AR2. It is at the point to observe.
  • the antenna 11 of the second radar device 20 rotates around the vertical axis on the second observation point P2 and transmits a radar transmission wave to 360 degrees around the second observation point P2 and receives a radar reception wave. To do.
  • the signal processing unit 16 of the second radar device 20 performs predetermined signal processing on the radar reception signal, so that the second echo as data indicating the relationship between the distance from the observation point P2 and the echo intensity for each sweep. Data ED2 is generated. Then, the signal processing unit 16 generates second echo data ED2 for one scan. As shown in FIG. 3C, the second echo image E2 specified by the second echo data ED2 for one scan is an image obtained by observing the second observation area AR2. In the second echo image E2, first to fourth precipitation echo images E21 to E24 exist in areas corresponding to the first to fourth precipitation areas W1 to W4. The signal intensity of each precipitation echo image E21 to E24 corresponds to the precipitation intensity (rainfall amount).
  • the second echo data ED2 includes data indicating a ground clutter caused by a reflected wave from the land. Therefore, the second echo image E2 includes a second ground clutter echo image E25.
  • the second echo data ED2 has a plurality of weather parameters including precipitation intensity, precipitation position, Doppler velocity information including the frequency of the transmission wave and the frequency of the reflected wave from the precipitation.
  • the second echo data ED2 generated by the signal processing unit 16 of the second radar device 20 is output to the observation device 40.
  • rain, snow, hail, hail, frost, etc. are exemplified as the precipitation detected by each radar device 10, 20. it can. Further, the precipitation observation by the first radar device 10 and the precipitation observation by the second radar device 20 are performed simultaneously.
  • the observation device 40 is connected to the radar devices 10 and 20 so that data communication can be performed wirelessly or by wire.
  • the observation device 40 may be installed at the observation point P1 or the observation point P2, or may be installed at a weather station or the like different from the observation points P1 and P2.
  • the observation device 40 associates the first echo data ED1 obtained by the first radar device 10 with the second echo data ED2 obtained by the second radar device 20.
  • the observation apparatus 40 includes an acquisition unit 41, a Doppler velocity calculation unit 42, a ground clutter removal unit 43, a replacement unit 44, and a precipitation intensity calculation unit 45.
  • the observation apparatus 40 is configured by devices such as a hardware processor 46 (for example, CPU, FPGA, etc.) and a nonvolatile memory.
  • a hardware processor 46 for example, CPU, FPGA, etc.
  • the CPU reads the program from the non-volatile memory and executes it, so that the observation device 40 becomes the acquisition unit 41, the Doppler velocity calculation unit 42, the ground clutter removal unit 43, the replacement unit 44, and the precipitation intensity calculation unit 45. Can function.
  • the acquisition unit 41 acquires the first echo data ED1 from the first radar device 10 and the second echo data ED2 from the second radar device 20. That is, the acquisition unit 41 is installed at different positions, and echo data ED1 including Doppler velocity information from the radar devices 10 and 20 that are installed at least partially or entirely in other observation areas AR1 and AR2, respectively. , ED2.
  • the Doppler velocity calculation unit 42 calculates the Doppler velocity of the reception wave obtained by receiving the transmission wave. Specifically, the Doppler velocity calculation unit 42 calculates the Doppler velocity of each echo image E11 to E15 in the first echo image E1 using the first echo data ED1. At this time, the Doppler velocity calculation unit 42 uses the frequency of the transmission wave output from the transmission unit 13 of the first radar device 10 and the frequency of the echoes of the echo images E11 to E15. E15 Doppler velocity is calculated. Similarly, the Doppler velocity calculation unit 42 calculates the Doppler velocity of each echo image E21 to E25 in the second echo image E2 using the second echo data ED2. At this time, the Doppler velocity calculation unit 42 uses the frequency of the transmission wave output from the transmission unit 13 of the second radar device 20 and the frequency of the echoes of the echo images E21 to E25 to Calculate the Doppler velocity of E25.
  • a line L1 (a line L1 along the radial direction) from the center point E10 corresponding to the first observation point P1 to the center point of the first precipitation echo image E11 is orthogonal to the traveling direction D1.
  • the Doppler velocity is zero.
  • the Doppler speed is zero for the entire first ground clutter image E15.
  • the Doppler velocity is zero.
  • the second ground clutter image E25 is a stationary land or the like, the Doppler speed is zero for the entire second ground clutter image E25.
  • the Doppler speed calculation unit 42 outputs data indicating the calculated Doppler speed to the ground clutter removal unit 43.
  • the ground clutter removal unit 43 removes a region where the Doppler velocity is zero or substantially zero (below a predetermined threshold Th) from the echo images E11 to E15 and E21 to E25 in the echo images E1 and E2.
  • the threshold value Th is set to about 1 km / h, for example.
  • the ground clutter removal unit 43 replaces the echo intensity in a predetermined angular range ⁇ around the corresponding center points E10 and E20 with zero in the echo images E1 and E2 around the location where the Doppler velocity is zero. As a result, as shown in FIG.
  • FIG. 4A which is the first echo image E1 after the ground clutter removal process, the region where the Doppler velocity is zero or less than the threshold Th in the first precipitation echo image E11
  • the defect area E11a is a zero area. Further, the first ground clutter image E15 is completely removed.
  • FIG. 4B which is the second echo image E2 after the ground clutter removal processing, the region where the Doppler velocity is zero or less than the threshold Th in the second precipitation echo image E22 is echo intensity.
  • the defect region E22a is a zero region. Further, the second ground clutter image E25 is completely removed.
  • the first echo data ED1 and the second echo data ED2 after the ground clutter removal process are performed are output to the replacement unit 44.
  • the replacement unit 44 uses the first radar data ED1 acquired from the first radar device 10 to obtain echo data at a zero velocity point where the Doppler velocity is zero or substantially zero (threshold value Th or less). Of the second echo data ED2 acquired from 20, the echo data at the zero speed point is replaced. Similarly, the replacement unit 44 uses the second echo data ED2 acquired from the second radar device 20 to obtain the echo data at the zero speed point where the Doppler velocity is zero or substantially zero (threshold value Th or less). Of the first echo data ED1 acquired from one radar apparatus 10, the echo data at the zero speed point is replaced.
  • the replacement unit 44 replaces the data at the zero speed point where the Doppler velocity is zero or less than the threshold value Th among other echo data, and the Doppler velocity is larger than the threshold value Th at the zero velocity point. Is replaced with data at the zero velocity point.
  • the replacement unit 44 converts the first echo image E1 and the second echo image E2 after the ground clutter removal processing to the center points E10 and E20. They are superimposed while being arranged so that the positions correspond to the positions of the observation points P1, P2. Then, the replacement unit 44 performs a replacement process on the overlapping area AR12 where the observation areas AR1 and AR2 overlap each other.
  • the replacement unit 44 does not include the first echo image E1 but the second echo image E2 in the overlapping region E12 between the first echo image E1 and the second echo image E2.
  • the image (in this embodiment, the replacement target image E26 indicated by hatching) is added to the first echo image E1.
  • a portion that overlaps the first precipitation echo image E21 of the second echo image E2 in the defect region E11a of the first precipitation echo image E11 of the first echo image E1 is replaced with the replacement target image E26.
  • FIG. 5A which is the first echo image E1 after the replacement processing by the replacement unit 44, an echo image (replacement target image E26) is located at a position overlapping the second echo image E2 in the defect area E11a. ) Will be included.
  • the replacement unit 44 also includes a first echo that is not included in the second echo image E2 in the overlapping region E12 between the first echo image E1 and the second echo image E2.
  • An image included in the image E1 (in this embodiment, a replacement target image E16 indicated by hatching) is added to the second echo image E2.
  • a portion that overlaps the second precipitation echo image E12 of the first echo image E1 in the defect region E22a of the second precipitation echo image E22 of the second echo image E2 is replaced with the replacement target image E16.
  • FIG. 5B which is the second echo image E2 after the replacement processing by the replacement unit 44, the entire missing region E22a is replaced with the echo image (replacement target image E16).
  • the first echo data ED1 and the second echo data ED2 after the above replacement processing is performed are output to the precipitation intensity calculation unit 45.
  • the precipitation intensity calculation unit 45 performs a process such as multiplying the echo intensity of each precipitation echo image E11 to E14 of the first echo data ED1 by a predetermined coefficient, so that each precipitation echo image E11 to E11 in the first echo image E1.
  • the precipitation intensity indicated by E14 is set.
  • the precipitation intensity calculation unit 45 performs a process such as multiplying the echo intensity of each precipitation echo image E21 to E24 of the second echo data ED2 by a predetermined coefficient, thereby performing each precipitation echo image in the second echo image E2.
  • Precipitation intensity indicated by E21 to E24 is set.
  • the first echo data ED1 and the second echo data ED2 on which the precipitation intensity setting process has been performed are output to the display unit 50.
  • the display unit 50 is an image display device such as a liquid crystal display.
  • the display unit 50 displays the echo images E1 and E2 based on the given echo data ED1 and ED2, for example, in a color display corresponding to the precipitation intensity.
  • the replacement unit 44 has a zero velocity point where the Doppler velocity is zero or substantially zero in one echo data ED1 or ED2 acquired from one radar device 10 or 20. Is replaced with the echo data at the zero velocity point in the other echo data ED2 or ED1 acquired from the other radar device 20 or 10.
  • the replacement unit 44 at least a part of the precipitation echo images E ⁇ b> 11 and E ⁇ b> 22 removed by the ground clutter removal unit 43 due to the Doppler velocity being zero or substantially zero can be revived by the replacement unit 44.
  • the replacement unit 44 performs the replacement process using the echo data ED1 and ED2 at a certain temporary point. However. This does not have to be the case.
  • the replacement unit 44 may perform the replacement process using the echo data ED1 and ED2 at a plurality of time points with different wind directions in the observation areas AR1 and AR2.
  • precipitation regions W1A to W4A may be observed as shown in the plan view of FIG. 6A at a time different from the time of the weather shown in FIG. 3A of the above embodiment.
  • the traveling directions D1A to D4A of the precipitation areas W1A to W4A are along the tangential direction of the outer circumference circles of the observation areas AR1 and AR2, which are orthogonal to the straight line L12 connecting the observation points P1 and P2.
  • the regions where the Doppler velocity is zero or less than the threshold value Th are the defect regions E11aA and E13aA.
  • the regions where the Doppler velocity is zero or less than the threshold value Th are the defect regions E21aA and E23aA.
  • the defect area E23aA corresponding to the defect area E13aA is a defect area, the defect area cannot be filled even if the replacement process is performed by the replacement unit 44.
  • the replacement unit 44 performs a replacement process using the second echo data ED2A. Specifically, with reference to FIGS. 4A and 6C, the replacement unit 44 converts the echo data of the missing region E23aA of the third precipitation echo image E23A in the second echo image E2A to the first echo.
  • the replacement unit 44 can perform a replacement process. Specifically, with reference to FIG. 4B and FIG. 6B, the replacement unit 44 converts the echo data of the defect region E13aA of the third precipitation echo image E13A in the first echo image E1A to the second echo. It replaces with the echo data of the corresponding location of the third precipitation echo image E23 in the image E2. Thereby, in the first echo image E1A, an echo image of a corresponding portion of the third precipitation echo image E23 can be displayed also in the defect area E13aA.
  • the replacement unit 44 performs replacement processing using the echo data ED1, ED2, ED1A, ED2A at a plurality of time points with different wind directions in the observation regions AR1, AR2. According to this configuration, precipitation echoes with non-zero Doppler velocities can be incorporated into more precipitation echo defect regions E13aA and E23aA.
  • a third radar device 30 for observing the observation area AR3 may be provided.
  • the observation system 1 is obtained by the first echo data ED1 obtained by the first radar device 10, the second echo data ED2 obtained by the second radar device 20, and the third radar device 30.
  • the third echo data ED3 is used.
  • the precipitation echo data deleted by the ground clutter removal unit 43 in any of the first to third echo data ED1 to ED3 is corrected with the precipitation echo data in the other echo data.
  • the third observation area AR3 is an area having a predetermined radius centered on the third observation point P3 installed on the ground.
  • the radius of the third observation region AR3 is the same as the radius of each of the observation regions AR1 and AR2.
  • a part of the first observation area AR1, a part of the second observation area AR2, and a part of the third observation area AR3 overlap each other.
  • all the observation points P1, P2, P3 are arranged in the overlapping area AR123 of the observation areas AR1, AR2, AR3.
  • the observation points P1, P2, and P3 are not aligned on a straight line.
  • the radar devices 10, 20, and 30 are installed at different positions, and a part of the observation areas AR1, AR2, and AR3 overlap each other.
  • the radar devices 10, 20, and 30 have the same configuration except that the installation locations are different. Precipitation observation by the first to third radar devices 10, 20, and 30 is performed simultaneously.
  • the third radar device 30 includes an antenna 11, a circulator 12, a transmission unit 13, a reception unit 14, an A / D conversion unit 15, and a signal processing unit 16. And have.
  • the antenna 11 of the third radar device 30 rotates around the vertical axis on the observation point P3, transmits a radar transmission wave to 360 degrees around the observation point P3, and receives a radar reception wave.
  • the signal processing unit 16 of the third radar device 30 performs predetermined signal processing on the radar reception signal, so that the third echo as data indicating the relationship between the distance from the observation point P3 and the echo intensity for each sweep. Data ED3 is generated. Then, the signal processing unit 16 generates third echo data ED3 for one scan. With reference to FIG. 7B, in the third echo image E3 specified by the third echo data ED3 for one scan, the third precipitation echo E33 exists in the region corresponding to the third precipitation region W3A. Yes. The signal intensity of the third precipitation echo E33 corresponds to the precipitation intensity (rainfall amount).
  • the third echo data ED3 includes data indicating a ground clutter caused by a reflected wave from the land.
  • the third echo image E33 includes a third ground clutter echo image 35.
  • the third echo data ED3 has a plurality of weather parameters including precipitation intensity, precipitation position, Doppler velocity information including the frequency of the transmission wave and the frequency of the reflected wave from the precipitation.
  • the third echo data ED3 generated by the signal processing unit 16 of the third radar device 30 is output to the observation device 40.
  • observation device 40 is connected to third radar device 30 so that data communication can be performed wirelessly or by wire.
  • the ground clutter removing unit 43 of the observation device 40 removes the third ground clutter echo image 35 of the third echo image E3, but increases the Doppler velocity of the third precipitation echo image 33. Since it is larger than the threshold value, the third precipitation echo image 33 is not removed.
  • replacement unit 44 includes zero velocity point (defect region E13aA) in which the Doppler velocity is zero or less than threshold value Th in first echo data ED1A. ) Is replaced with the data of the third echo data ED3 (third echo image E3) in which the Doppler velocity is greater than the threshold value Th at the zero velocity point, at the zero velocity point.
  • the replacement unit 44 of the second echo data ED2A has a zero velocity point (defect region) where the Doppler velocity is zero or less than the threshold value Th.
  • the data of E23aA) is replaced with the data of the third echo data ED3 (third echo image E3) whose Doppler velocity is greater than the threshold value Th at the velocity zero point at the velocity zero point.
  • the replacement unit 44 performs echo data processing on the overlapping area AR123 in which the observation areas AR1, AR2, and AR3 of the three radar devices 10, 20, and 30 overlap each other. Perform replacement. According to this configuration, even if the echo data ED1A and ED2A from the two radar devices 10 and 20 generate the defect areas E13aA and E23aA in the echo image by the ground clutter process, the echo data of the defect areas E13aA and E23aA is obtained. By replacing with the corresponding echo data of the third precipitation echo E33 obtained by the third radar device 30, the missing areas E13aA and E23aA can be interpolated.
  • Radar devices may be arranged at four or more locations. In this case, regarding the four or more radar devices, all of the observation areas of the two radar devices may overlap.
  • the present invention can be widely applied as an observation apparatus, an observation system, and an observation method.
  • All processes described herein may be embodied and fully automated by software code modules executed by a computing system including one or more computers or processors.
  • the code module may be stored on any type of non-transitory computer readable media or other computer storage device. Some or all of the methods may be implemented with dedicated computer hardware.
  • the various exemplary logic blocks and modules described in connection with the embodiments disclosed herein can be implemented or executed by machines such as processors.
  • the processor may be a microprocessor, but in the alternative, the processor may be a controller, microcontroller, or state machine, or a combination thereof.
  • the processor can include an electrical circuit configured to process computer-executable instructions.
  • the processor includes an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable device that performs logical operations without processing computer-executable instructions.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a processor is also a combination of computing devices, such as a combination of a digital signal processor (digital signal processor) and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a DSP core, or any other It can be implemented as such a configuration. Although described herein primarily with respect to digital technology, a processor may also include primarily analog elements. For example, some or all of the signal processing algorithms described herein can be implemented with analog circuitry or mixed analog and digital circuitry.
  • a computing environment includes any type of computer system including, but not limited to, a microprocessor, mainframe computer, digital signal processor, portable computing device, device controller, or computer system based on a computing engine within the apparatus. be able to.
  • conditional languages such as “done” “done” “would” or “possibly” may mean that certain embodiments include particular features, elements and / or steps, It is understood in a context within the commonly used context to convey that an embodiment is not included. Thus, such a conditional language is generally any feature in which features, elements and / or steps are required for one or more embodiments, or one or more embodiments can be characterized by these features. It does not mean that the elements and / or steps necessarily include logic to determine whether they are included in or implemented in any particular embodiment.
  • a disjunctive language such as the phrase “at least one of X, Y, Z” means that the item, term, etc. is any of X, Y, Z, or any combination thereof, unless otherwise specified. Is understood in the context commonly used to show that it can be (eg, X, Y, Z). Thus, such disjunctive languages generally require at least one of X, at least one of Y, or at least one of Z, each with a particular embodiment. Does not mean.
  • a numeral such as “one” should generally be interpreted as including one or more described items.
  • phrases such as “a device configured to” are intended to include one or more listed devices. Such one or more listed devices can also be collectively configured to perform the recited citations.
  • a processor configured to execute A, B and C below is a first processor configured to execute A and a second processor configured to execute B and C. Processor.
  • an enumeration of a specific number of examples introduced is explicitly listed, those skilled in the art will typically recognize that such an enumeration is at least the number listed (e.g., other modifiers).
  • the simple enumeration of “two enumerations” without “” is usually to be understood as meaning at least two enumerations, or two or more enumerations).
  • the term “horizontal” as used herein, regardless of its direction, is a plane parallel to the plane or surface of the floor or description of the area in which the system being described is used. Is defined as the plane in which the method is performed.
  • the term “floor” can be replaced with the terms “ground” or “water surface”.
  • the term “vertical / vertical” refers to a direction perpendicular / vertical to a defined horizontal line. Terms such as “upper”, “lower”, “lower”, “upper”, “side”, “higher”, “lower”, “upward”, “beyond”, and “below” are defined relative to the horizontal plane. ing.
  • connection includes a direct connection and / or a connection having an intermediate structure between the two described components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】グランドクラッタを除去できるとともに降水エコー等の必要なエコーが除去されてしまうことを抑制できる観測装置、観測システム、および、観測方法を提供する。 【解決手段】観測システム1は、取得部41と、置換部44とを有する。取得部41は、異なる位置に設置されたレーダー装置10,20からそれぞれ、ドップラ速度情報を含むエコーデータED1,ED2を取得する。置換部44は、一のレーダー装置10または20から取得される一のエコーデータED1またはED2のうち、ドップラ速度がゼロまたは略ゼロである速度ゼロ地点のエコーデータを、他のレーダー装置20または10から取得される他のエコーデータED2またはED1のうち上記速度ゼロ地点のエコーデータに置換する。

Description

観測装置、観測システム、および、観測方法
 本発明は、観測対象のドップラ速度を利用する観測装置、観測システム、および、観測方法に関する。
 気象レーダーとして、Xバンドレーダー等のレーダー装置が知られている(例えば、特許文献1,2参照)。レーダー装置は、当該レーダー装置の周囲に送信波(電波)を送信し、雨滴等に反射した反射波等を受信波として受信する。そして、レーダー装置は、受信波に信号処理を施すことで、気象レーダーアンテナからの距離とエコー信号の強さとの関係を示すエコーデータを、気象データとして生成する。特許文献1に記載の気象レーダーは、ドップラレーダー装置であり、受信波に含まれるエコーのドップラ速度を検出する。
特開2010-185768号公報 特許第2572841号公報
 ドップラレーダー装置においては、地面等の静止物からの不要な反射波であるグランドクラッタを除去するための構成を有している。具体的には、レーダーエコーのうち、ドップラ速度成分がゼロであるエコーのエコー強度をゼロに置換することで、グランドクラッタを除去する。これにより、降水エコーを含む受信エコーからグランドクラッタを除去している。このようなグランドクラッタ除去処理により、動かないエコーである陸地エコーを除去できる結果、降水エコーをより正確に検出できる。
 しかしながら、降水エコーの速度ベクトルの方向が、レーダースキャン時における観測地点回りの円周方向に沿う接線方向である場合、降水エコーのドップラ速度は、陸地からのエコーのドップラ速度と同様にゼロとなってしまう。このため、ドップラ速度がゼロとなる降水エコーも、グランドクラッタ除去処理によって陸地エコーとともに消えてしまう。
 本発明は、上記実情に鑑みることにより、グランドクラッタを除去できるとともに降水エコー等の必要なエコーが除去されてしまうことを抑制できる観測装置、観測システム、および、観測方法を提供することを目的とする。
 (1)上記課題を解決するために、この発明のある局面に係わる観測装置は、異なる位置に設置された複数のレーダー装置であって、それぞれ他の少なくとも1のレーダー装置と観測領域の一部または全部が重複して設置された、複数のレーダー装置から、ドップラ速度情報を含むエコーデータを取得する取得部と、一の前記レーダー装置から取得される一の前記エコーデータのうち、前記ドップラ速度がゼロまたは略ゼロである速度ゼロ地点の前記エコーデータを、他の前記レーダー装置から取得される他の前記エコーデータのうち、前記速度ゼロ地点の前記エコーデータに置換する置換部と、を備えている。
 (2)前記置換部は、第1の前記レーダー装置、第2の前記レーダー装置、および、第3の前記レーダー装置における前記観測領域が互いに重なっている領域を対象に、前記置換を行う場合がある。
 (3)また、前記置換部は、複数の前記レーダー装置の観測領域における風向きの異なる複数の時点での各前記エコーデータを用いて前記置換を行う場合がある。
 (4)上記課題を解決するために、この発明のある局面に係わる観測システムは、複数の観測地点に設置されたレーダー装置と、前記観測装置と、を備えている。
 (5)上記課題を解決するために、この発明のある局面に係わる観測方法は、異なる位置に設置された複数のレーダー装置であって、それぞれ他の少なくとも1のレーダー装置と観測領域の一部または全部が重複して設置された、複数のレーダー装置から、ドップラ速度情報を含むエコーデータを取得し、一の前記レーダー装置から取得される一の前記エコーデータのうち、前記ドップラ速度がゼロまたは略ゼロである速度ゼロ地点の前記エコーデータを、他の前記レーダー装置から取得される他の前記エコーデータのうち、前記速度ゼロ地点の前記エコーデータに置換する。
 本発明によると、グランドクラッタを除去できるとともに降水エコー等の必要なエコーが除去されてしまうことを抑制できる。
本発明の一実施形態に係る観測システムの構成を示すブロック図である。 観測システムのレーダー装置の構成を示すブロック図である。 図3(A)は、観測システムの観測領域を示す模式的な平面図である。図3(B)は、第1レーダー装置による第1観測領域の観測結果を示す模式的なエコー画像である。図3(C)は、第2レーダー装置による第2観測領域の観測結果を示す模式的なエコー画像である。 図4(A)は、グランドクラッタ除去処理後の第1エコー画像である。図4(B)は、グランドクラッタ除去処理後の第2エコー画像である。図4(C)は、グランドクラッタ除去処理後の第1エコー画像および第2エコー画像を重ね合わせた図である。 図5(A)は、置換部による置換処理後の第1エコー画像である。図5(B)は、置換部による置換処理後の第2エコー画像である。 図6(A)は、観測システムの観測領域を示す模式的な平面図であり、図3(A)に示す観測領域とは観測時点が異なっている。図6(B)は、図6(A)に示す第1観測領域を第1レーダー装置で観測した結果を示す第1エコー画像にグランドクラッタ除去処理を行った後の画像である。図6(C)は、図6(A)に示す第2観測領域を第2レーダー装置で観測した結果を示す第2エコー画像にグランドクラッタ除去処理を行った後の画像である。 図7(A)は、図6(A)に示す第1観測領域および第2観測領域にさらに第3観測領域を追加して示す模式的な平面図である。図7(B)は、図7(A)に示す第3観測領域を第3レーダー装置で観測した結果を示す第3エコー画像であり、図7(C)は、図7(B)に示す第3エコー画像にグランドクラッタ除去処理を行った後の画像である。
 以下、本発明を実施するための形態について、図面を参照しつつ説明する。
 図1は、本発明の一実施形態に係る観測システム1の構成を示すブロック図である。観測システム1は、気象観測等に用いられ、大気中へ送信波を送信することで得られた受信波を信号処理することで、気象観測を行う。本実施形態では、観測システム1は、観測対象としての降水を観測する気象観測システムである。本実施形態では、観測システム1は、複数のレーダー装置の一つである第1レーダー装置10で得られたデータである第1エコーデータED1と、複数のレーダー装置の一つである第2レーダー装置20で得られたデータである第2エコーデータED2と、を用いる。そして、第1エコーデータED1および第2エコーデータED2の一方で意図せず削除された降水エコーのデータを、第1エコーデータED1および第2エコーデータED2の他方における降水エコーのデータで補正する。この補正により、観測システム1は、陸地等の静止物からの不要な反射波であるグランドクラッタを除去しつつ、降水エコーをより正確に検出する。
 図2は、観測システム1のレーダー装置10(20,30)の構成を示すブロック図である。図3(A)は、観測システム1の観測領域AR1,AR2を示す模式的な平面図である。図3(B)は、第1レーダー装置10による第1観測領域AR1の観測結果を示す模式的なエコー画像E1である。図3(C)は、第2レーダー装置20による第2観測領域AR2の観測結果を示す模式的なエコー画像E2である。
 図3(A)を参照して、観測システム1の第1観測領域AR1は、地上に設置された第1観測点P1を中心とする所定の半径の領域である。また、第2観測領域AR2は、地上に設置された第2観測点P2を中心とする所定の半径の領域である。各観測領域AR1,AR2の半径は、レーダー装置10,20の周波数帯に応じて異なる。レーダー装置10,20の周波数帯として、S帯(2.8GHz帯)、C帯(5GHz帯)、X帯(9.7GHz帯)を例示できる。レーダー装置10,20は、対応する観測点P1,P2から所定の仰角範囲を観測領域AR1,AR2として観測する。本実施形態では、第1観測領域AR1の一部と第2観測領域AR2の一部とが重なっている。また、本実施形態では、第1観測点P1は、第2観測領域AR2内に配置されており、第2観測点P2は、第1観測領域AR1内に配置されている。このように、本実施形態では、全ての観測点P1,P2が、観測領域AR1,AR2の重なり領域AR12内に配置されている。
 上述の説明から明らかなように、レーダー装置10,20は、互いに異なる位置P1,P2に設置されており、互いの観測領域AR1,AR2の一部が重複している。
 図3(A)において、一例として、観測領域AR1,AR2において、降水中の領域である第1降水領域W1、第2降水領域W2、第3降水領域W3、および、第4降水領域W4を示している。第1降水領域W1は、第1観測領域AR1内に位置しており、且つ、一部が第2観測領域AR2内にも位置している。第2降水領域W2は、当該第2降水領域W2の全体が、第1観測領域AR1内に位置し、且つ、第2観測領域AR2内に位置している。同様に、第3降水領域W3は、当該第3降水領域W3の全体が、第1観測領域AR1内に位置し、且つ、第2観測領域AR2内に位置している。第4降水領域W4は、第2観測領域AR2内に位置しており、且つ、一部が第1観測領域AR1内にも位置している。
 本実施形態では、各降水領域W1~W4の進行方向を、進行方向D1~D4として矢印で示している。
 平面視において、進行方向D1は、第1観測点P1から第1降水領域W1の中心に向かう径方向に対して90度の向きを向いている。すなわち、進行方向D1は、第1観測領域AR1の接線方向に沿う方向である。一方で、進行方向D1は、第2観測点P2から第1降水領域W1の中心に向かう径方向に対しては、90度から大きく外れた角度の向きを向いている。すなわち、進行方向D1は、第2観測領域AR2の接線方向に沿ってはいない。
 平面視において、進行方向D2は、第2観測点P2から第2降水領域W2の中心に向かう径方向に対して90度の向きを向いている。すなわち、進行方向D2は、第2観測領域AR2の接線方向に沿う方向である。一方で、進行方向D2は、第1観測点P1から第2降水領域W2の中心に向かう径方向に対しては、90度から大きく外れた角度の向きを向いている。すなわち、進行方向D2は、第1観測領域AR1の接線方向に沿ってはいない。
 平面視において、進行方向D3は、第1観測点P1から第3降水領域W3の中心に向かう径方向に対しても、第2観測点P2から第3降水領域W3の中心に向かう径方向に対しても、90度から大きく外れた角度の向きを向いている。すなわち、進行方向D3は、第1観測領域AR1の接線方向に沿ってはおらず、且つ、第2観測領域AR2の接線方向に沿ってもいない。同様に、進行方向D4は、第1観測領域AR1の接線方向に沿ってはおらず、且つ、第2観測領域AR2の接線方向に沿ってもいない。
 図1~図3(C)を参照して、次に、観測システム1の構成を説明する。
 観測システム1は、複数のレーダー装置としてのレーダー装置10,20と、観測装置40と、表示部50と、を有している。
 レーダー装置10,20は、設置箇所が異なっている点以外は同じ構成を有している。よって、以下では、主に第1レーダー装置10の構成を説明し、第1レーダー装置10の構成と重複する第2レーダー装置20の構成の説明を省略する場合がある。
 第1レーダー装置10は、アンテナ11と、サーキュレータ12と、送信部13と、受信部14と、A/D変換部15と、信号処理部16と、を有している。
 アンテナ11は、電磁波であるレーダー送信波の送信と、電磁波であるレーダー受信波(反射波)の受信と、を行うように構成されている。具体的には、アンテナ11は、送信部13からサーキュレータ12を介して出力されたレーダー送信波を出力する。また、アンテナ11は、レーダー受信波を受信し、このレーダー受信波を、サーキュレータ12を介して受信部14へ出力する。
 第1レーダー装置10のアンテナ11は、第1観測点P1上の鉛直軸回りを回転しつつ、第1観測点P1の周囲360度に対してレーダー送信波を送信するとともに、レーダー受信波を受信する。なお、以下の説明では、レーダー送信波を送信してから次のレーダー送信波を送信するまでの動作を、「スイープ」という。また、電磁波の送受信を行いながらアンテナ11を360°回転させる動作を、「スキャン」という。
 第1レーダー装置10がレーダー送信波を送信した後に受信されるレーダー受信波は、雨等で反射されたエコー信号を含んでいる。送信部13で生成されるレーダー送信波は、所定のレーダー送信波形を所定のRF(Radio Frequency)周波数帯にアップコンバートおよび増幅された送信信号である。
 受信部14は、アンテナ11からのレーダー受信波を増幅する。受信部14は、増幅したレーダー受信波を、A/D変換部15に出力する。
 A/D変換部15は、アナログ信号であるレーダー受信波をデジタル信号であるレーダー受信信号に変換する。A/D変換部15は、レーダー受信信号を信号処理部16に出力する。
 信号処理部16は、レーダー受信信号に所定の信号処理を施すことで、1スイープ毎に、第1観測点P1からの距離とエコー強度との関係を示すデータとしての第1エコーデータED1を生成する。そして、信号処理部16は、1スキャン分の第1エコーデータED1を生成する。図3(B)に示されているように、1スキャン分の第1エコーデータED1で特定される第1エコー画像E1は、第1観測領域AR1を観測して得られた画像である。第1エコー画像E1では、第1~第4降水領域W1~W4に対応する領域に、第1~第4降水エコー像E11~E14が存在している。各降水エコー像E11~E14の信号強度は、降水強度(降雨量)に相当する。また、第1エコーデータED1には、陸地からの反射波に起因するグランドクラッタを示すデータが含まれている。このため、第1エコー画像E1には、第1グランドクラッタエコー像E15が含まれている。第1エコーデータED1は、降水強度と、降水位置と、送信波の周波数および降水からの反射波の周波数を含むドップラ速度情報と、を含む複数の気象パラメータを有している。第1気象レーダー装置10の信号処理部16で生成された第1エコーデータED1は、観測装置40へ出力される。
 第2レーダー装置20は、アンテナ11と、サーキュレータ12と、送信部13と、受信部14と、A/D変換部15と、信号処理部16と、を有している。
 第2レーダー装置20が第1レーダー装置10と異なっているのは、第1レーダー装置10が第1観測領域AR1を観測するのに対して、第2レーダー装置20は、第2観測領域AR2を観測する点にある。
 第2レーダー装置20のアンテナ11は、第2観測点P2上の鉛直軸回りを回転しつつ、第2観測点P2の周囲360度に対してレーダー送信波を送信するとともに、レーダー受信波を受信する。
 第2レーダー装置20の信号処理部16は、レーダー受信信号に所定の信号処理を施すことで、1スイープ毎に、観測点P2からの距離とエコー強度との関係を示すデータとしての第2エコーデータED2を生成する。そして、信号処理部16は、1スキャン分の第2エコーデータED2を生成する。図3(C)に示されているように、1スキャン分の第2エコーデータED2で特定される第2エコー画像E2は、第2観測領域AR2を観測して得られた画像である。第2エコー画像E2では、第1~第4降水領域W1~W4に対応する領域に、第1~第4降水エコー像E21~E24が存在している。各降水エコー像E21~E24の信号強度は、降水強度(降雨量)に相当する。また、第2エコーデータED2には、陸地からの反射波に起因するグランドクラッタを示すデータが含まれている。このため、第2エコー画像E2には、第2グランドクラッタエコー像E25が含まれている。第2エコーデータED2は、降水強度と、降水位置と、送信波の周波数および降水からの反射波の周波数を含むドップラ速度情報と、を含む複数の気象パラメータを有している。第2レーダー装置20の信号処理部16で生成された第2エコーデータED2は、観測装置40へ出力される。
 再び図1~図3(C)を参照して、本実施形態において、各レーダー装置10,20で検出される降水として、雨・雪・雹(ひょう)・霰(あられ)・霜等を例示できる。また、第1レーダー装置10による降水観測と、第2レーダー装置20による降水観測とは、同時に行われる。
 観測装置40は、各レーダー装置10,20と、無線または有線でデータ通信可能に接続されている。観測装置40は、観測点P1または観測点P2に設置されていてもよいし、観測点P1,P2とは別の気象台等に設置されていてもよい。観測装置40は、第1レーダー装置10で得られた第1エコーデータED1と、第2レーダー装置20で得られた第2エコーデータED2とを互いに関連付ける。
 観測装置40は、取得部41と、ドップラ速度算出部42と、グランドクラッタ除去部43と、置換部44と、降水強度算出部45と、を有している。
 観測装置40は、ハードウェア・プロセッサ46(例えば、CPU、FPGA等)および不揮発性メモリ等のデバイスで構成されている。例えば、CPUが不揮発性メモリからプログラムを読み出して実行することにより、観測装置40を、取得部41、ドップラ速度算出部42、グランドクラッタ除去部43、置換部44、および、降水強度算出部45として機能させることができる。
 取得部41は、第1レーダー装置10から第1エコーデータED1を取得するとともに、第2レーダー装置20から第2エコーデータED2を取得する。すなわち、取得部41は、異なる位置に設置され、それぞれ他の少なくとも観測領域AR1,AR2の一部または全部が重複して設置された、レーダー装置10,20から、ドップラ速度情報を含むエコーデータED1,ED2を取得する。
 ドップラ速度算出部42は、送信波を受信することで得られた受信波のドップラ速度を算出する。具体的には、ドップラ速度算出部42は、第1エコーデータED1を用いて、第1エコー画像E1における各エコー像E11~E15のドップラ速度を算出する。このとき、ドップラ速度算出部42は、第1レーダー装置10の送信部13から出力された送信波の周波数と、各エコー像E11~E15のエコーの周波数と、を用いて、各エコー像E11~E15のドップラ速度を算出する。同様に、ドップラ速度算出部42は、第2エコーデータED2を用いて、第2エコー画像E2における各エコー像E21~E25のドップラ速度を算出する。このとき、ドップラ速度算出部42は、第2レーダー装置20の送信部13から出力された送信波の周波数と、各エコー像E21~E25のエコーの周波数と、を用いて、各エコー像E21~E25のドップラ速度を算出する。
 第1エコー画像E1において、第1観測点P1に相当する中心点E10から第1降水エコー像E11の中心点に向かう線L1(径方向に沿う線L1)であって、進行方向D1と直交する線L1上において、ドップラ速度がゼロである。また、第1グランドクラッタ像E15は、静止した陸地等であるため、第1グランドクラッタ像E15の全体について、ドップラ速度がゼロである。
 また、第2エコー画像E2において、第2観測点P2に相当する中心点E20から第2降水エコー像E22の中心点に向かう線L2(径方向に沿う線L2)であって、進行方向D2と直交する線L2上において、ドップラ速度がゼロである。また、第2グランドクラッタ像E25は、静止した陸地等であるため、第2グランドクラッタ像E25の全体について、ドップラ速度がゼロである。
 ドップラ速度算出部42は、算出したドップラ速度を示すデータを、グランドクラッタ除去部43へ出力する。グランドクラッタ除去部43は、各エコー画像E1,E2におけるエコー像E11~E15,E21~E25について、ドップラ速度がゼロまたは略ゼロ(所定のしきい値Th以下)である領域を、除去する。しきい値Thは、例えば時速1km程度に設定される。グランドクラッタ除去部43は、各エコー画像E1,E2において、ドップラ速度がゼロである箇所を中心として、対応する中心点E10,E20回りの所定の角度範囲θのエコー強度をゼロに置換する。これにより、グランドクラッタ除去処理後の第1エコー画像E1である図4(A)に示すように、第1降水エコー像E11のうちドップラ速度がゼロまたはしきい値Th以下の領域は、エコー強度ゼロである領域としての欠損領域E11aとなる。また、第1グランドクラッタ像E15は、完全に除去されている。同様に、グランドクラッタ除去処理後の第2エコー画像E2である図4(B)に示すように、第2降水エコー像E22のうちドップラ速度がゼロまたはしきい値Th以下の領域は、エコー強度ゼロである領域としての欠損領域E22aとなる。また、第2グランドクラッタ像E25は、完全に除去されている。
 図4(A)~図4(B)および図1を参照して、グランドクラッタ除去処理が行われた後の第1エコーデータED1および第2エコーデータED2は、置換部44へ出力される。
 置換部44は、第1レーダー装置10から取得される第1エコーデータED1のうち、ドップラ速度がゼロまたは略ゼロ(しきい値Th以下)である速度ゼロ地点のエコーデータを、第2レーダー装置20から取得される第2エコーデータED2のうち、上記速度ゼロ地点のエコーデータに置換する。同様に、置換部44は、第2レーダー装置20から取得される第2エコーデータED2のうち、ドップラ速度がゼロまたは略ゼロ(しきい値Th以下)である速度ゼロ地点のエコーデータを、第1レーダー装置10から取得される第1エコーデータED1のうち、上記速度ゼロ地点のエコーデータに置換する。換言すれば、置換部44は、一のエコーデータのうち、ドップラ速度がゼロまたはしきい値Th以下である速度ゼロ地点のデータを、当該速度ゼロ地点においてドップラ速度がしきい値Thより大きい他のエコーデータの当該速度ゼロ地点におけるデータに置換する。
 より具体的に説明すると、置換部44は、例えば、図4(C)に示すように、グランドクラッタ除去処理後の第1エコー画像E1と第2エコー画像E2とを、中心点E10,E20の位置が観測点P1,P2の位置に相当するように配置しつつ重ね合わせる。そして、置換部44は、観測領域AR1,AR2が互いに重なっている重なり領域AR12を対象に、置換処理を行う。
 具体的には、置換部44は、第1エコー画像E1と第2エコー画像E2との重なり領域E12において、第1エコー画像E1には含まれておらず第2エコー画像E2には含まれている像(本実施形態では、ハッチングで示す置換対象像E26)を、第1エコー画像E1に加える。本実施形態では、第1エコー画像E1の第1降水エコー像E11の欠損領域E11aのうち第2エコー画像E2の第1降水エコー像E21と重なっている部分が、置換対象像E26に置換される。これにより、置換部44による置換処理後の第1エコー画像E1である図5(A)に示すように、欠損領域E11aのうち第2エコー画像E2と重なる箇所に、エコー像(置換対象像E26)が含まれることとなる。
 図4(C)を参照して、また、置換部44は、第1エコー画像E1と第2エコー画像E2との重なり領域E12において、第2エコー画像E2には含まれておらず第1エコー画像E1には含まれている像(本実施形態では、ハッチングで示す置換対象像E16)を、第2エコー画像E2に加える。本実施形態では、第2エコー画像E2の第2降水エコー像E22の欠損領域E22aのうち第1エコー画像E1の第2降水エコー像E12と重なっている部分が、置換対象像E16に置換される。これにより、置換部44による置換処理後の第2エコー画像E2である図5(B)に示すように、欠損領域E22aの全体が、エコー像(置換対象像E16)に置換される。
 図1、図5(A)および図5(B)を参照して、上記の置換処理が行われた後の第1エコーデータED1および第2エコーデータED2は、降水強度算出部45へ出力される。降水強度算出部45は、第1エコーデータED1の各降水エコー像E11~E14のエコー強度に所定の係数を乗算する等の処理を行うことで、第1エコー画像E1における各降水エコー像E11~E14が示す降水強度を設定する。また、降水強度算出部45は、第2エコーデータED2の各降水エコー像E21~E24のエコー強度に所定の係数を乗算する等の処理を行うことで、第2エコー画像E2における各降水エコー像E21~E24が示す降水強度を設定する。降水強度設定処理が行われた第1エコーデータED1および第2エコーデータED2は、表示部50へ出力される。
 表示部50は、液晶ディスプレイ等の画像表示装置である。表示部50は、与えられた各エコーデータED1,ED2に基づいて、各エコー画像E1,E2を、例えば降水強度に応じたカラー表示で表示する。
 以上説明したように、本実施形態によると、置換部44は、一のレーダー装置10または20から取得される一のエコーデータED1またはED2のうち、ドップラ速度がゼロまたは略ゼロである速度ゼロ地点のエコーデータを、他のレーダー装置20または10から取得される他のエコーデータED2またはED1のうち、上記速度ゼロ地点のエコーデータに置換する。この構成によると、ドップラ速度がゼロまたは略ゼロであることによりグランドクラッタ除去部43で除去されてしまった降水エコー像E11,E22の少なくとも一部を、置換部44において復活させることができる。これにより、グランドクラッタを除去できるとともに降水エコー等の必要なエコーが除去されてしまうことを抑制できる。
<第1変形例>
 なお、上述の実施形態では、置換部44は、ある一時点におけるエコーデータED1,ED2を用いて置換処理を行った。しかしながら。この通りでなくてもよい。例えば、置換部44は、観測領域AR1,AR2における風向きの異なる複数の時点での各エコーデータED1,ED2を用いて置換処理を行ってもよい。
 例えば、上記実施形態の図3(A)で示す気象時の時間とは異なる時間において、図6(A)の平面図に示すように、降水領域W1A~W4Aが観測される場合がある。この場合の降水領域W1A~W4Aの進行方向D1A~D4Aは、観測点P1,P2を結んだ直線L12と直交する、観測領域AR1,AR2の各外周円の接線方向に沿っている。このような気象をレーダー装置10,20で観測したときの各エコーデータED1A,ED2Aを観測装置40のグランドクラッタ除去部43で信号処理すると、図6(B)および図6(C)に示すエコー画像E1A,E2Aのエコーデータが生成されることとなる。すなわち、図6(B)に示すように、第1エコー画像E1Aの降水エコー像E11A,E13Aにおいて、ドップラ速度がゼロまたはしきい値Th以下である領域が、欠損領域E11aA、E13aAとなる。また、図6(C)に示すように、第2エコー画像E2Aのエコー像E21A,E23Aにおいて、ドップラ速度がゼロまたはしきい値Th以下である領域が、欠損領域E21aA、E23aAとなる。
 このような状況下では、欠損領域E13aAと対応する欠損領域E23aAは、何れも欠損領域であるため、置換部44で置換処理を行ったとしても、欠損領域を埋めることができない。このような場合、図4(A)に示す、第1時点における、グランドクラッタ除去処理後の第1エコーデータED1と、図6(C)に示す、第2時点における、グランドクラッタ除去処理後の第2エコーデータED2Aとを用いて、置換部44が置換処理を行う。具体的には、図4(A)および図6(C)を参照して、置換部44は、第2エコー画像E2Aにおける第3降水エコー像E23Aの欠損領域E23aAのエコーデータを、第1エコー画像E1における第3降水エコー像E13の対応する箇所のエコーデータに置換する。これにより、第2エコー画像E2Aにおいて、欠損領域E23aAに第3降水エコー像E13の対応する部分のエコー像を表示できる。
 また、図4(B)に示す、第1時点における、グランドクラッタ除去処理後の第2エコーデータED2と、図6(B)に示す、第2時点における、グランドクラッタ除去処理後の第1エコーデータED1Aとを用いて、置換部44が置換処理を行うことができる。具体的には、図4(B)および図6(B)を参照して、置換部44は、第1エコー画像E1Aにおける第3降水エコー像E13Aの欠損領域E13aAのエコーデータを、第2エコー画像E2における第3降水エコー像E23の対応する箇所のエコーデータに置換する。これにより、第1エコー画像E1Aにおいて、欠損領域E13aAにも第3降水エコー像E23の対応する部分のエコー像を表示できる。
 このように、本変形例では、置換部44は、観測領域AR1,AR2における風向きの異なる複数の時点でのエコーデータED1,ED2,ED1A,ED2Aを用いて、置換処理を行う。この構成によると、より多くの降水エコーの欠損領域E13aA,E23aAに対して、ドップラ速度がゼロでない降水エコーを組み込むことができる。
<第2変形例>
 なお、図6(B)および図6(C)に示す、降水エコー像E13A,E23Aの欠損領域E13aA,E23aAを補うために、図7(A)に示すように、観測システム1に、レーダー装置10,20に加えて、観測領域AR3を観測する第3レーダー装置30が設けられてもよい。
 この変形例では、観測システム1は、第1レーダー装置10で得られた第1エコーデータED1と、第2レーダー装置20で得られた第2エコーデータED2と、第3レーダー装置30で得られた第3エコーデータED3と、を用いる。そして、第1~第3エコーデータED1~ED3の何れかにおいてグランドクラッタ除去部43で削除された降水エコーのデータを、他のエコーデータにおける降水エコーのデータで補正する。
 第3観測領域AR3は、地上に設置された第3観測点P3を中心とする所定の半径の領域である。第3観測領域AR3の半径は、観測領域AR1,AR2のそれぞれの半径と同じである。本実施形態では、第1観測領域AR1の一部と第2観測領域AR2の一部と第3観測領域AR3の一部とが互いに重なっている。本実施形態では、全ての観測点P1,P2,P3が、観測領域AR1,AR2,AR3の重なり領域AR123に配置されている。観測点P1,P2,P3は、一直線上に並んでいない。
 このように、レーダー装置10,20,30は、互いに異なる位置に設置されており、互いに観測領域AR1,AR2,AR3の一部が重複している。レーダー装置10,20,30は、設置箇所が異なっている点以外は同じ構成を有している。第1~第3レーダー装置10,20,30による降水観測は、同時に行われる。
 図2および図7(A)を参照して、第3レーダー装置30は、アンテナ11と、サーキュレータ12と、送信部13と、受信部14と、A/D変換部15と、信号処理部16と、を有している。
 第3レーダー装置30のアンテナ11は、観測点P3上の鉛直軸回りを回転しつつ、観測点P3の周囲360度に対してレーダー送信波を送信するとともに、レーダー受信波を受信する。
 第3レーダー装置30の信号処理部16は、レーダー受信信号に所定の信号処理を施すことで、1スイープ毎に、観測点P3からの距離とエコー強度との関係を示すデータとしての第3エコーデータED3を生成する。そして、信号処理部16は、1スキャン分の第3エコーデータED3を生成する。図7(B)を参照して、1スキャン分の第3エコーデータED3で特定される第3エコー画像E3では、第3降水領域W3Aに対応する領域に、第3降水エコーE33が存在している。第3降水エコーE33の信号強度は、降水強度(降雨量)に相当する。また、第3エコーデータED3には、陸地からの反射波に起因するグランドクラッタを示すデータが含まれている。このため、第3エコー画像E33には、第3グランドクラッタエコー像35が含まれている。第3エコーデータED3は、降水強度と、降水位置と、送信波の周波数および降水からの反射波の周波数を含むドップラ速度情報と、を含む複数の気象パラメータを有している。第3レーダー装置30の信号処理部16で生成された第3エコーデータED3は、観測装置40へ出力される。
 図1、および、図7(A)~図7(C)を参照して、観測装置40は、第3レーダー装置30と、無線または有線でデータ通信可能に接続されている。観測装置40のグランドクラッタ除去部43は、図7(C)に示すように、第3エコー画像E3の第3グランドクラッタエコー像35は除去するけれども、第3降水エコー像33のドップラ速度がしきい値より大きいため、第3降水エコー像33は除去しない。
 そして、図6(B)および図7(C)を参照して、置換部44は、第1エコーデータED1Aのうち、ドップラ速度がゼロまたはしきい値Th以下である速度ゼロ地点(欠損領域E13aA)のデータを、当該速度ゼロ地点においてドップラ速度がしきい値Thより大きい第3エコーデータED3(第3エコー像E3)のデータの、当該速度ゼロ地点におけるデータに置換する。同様に、図6(C)および図7(C)を参照して、置換部44は、第2エコーデータED2Aのうち、ドップラ速度がゼロまたはしきい値Th以下である速度ゼロ地点(欠損領域E23aA)のデータを、当該速度ゼロ地点においてドップラ速度がしきい値Thより大きい第3エコーデータED3(第3エコー像E3)のデータの、当該速度ゼロ地点におけるデータに置換する。
 以上説明したように、第2変形例によると、置換部44は、3つのレーダー装置10,20,30における観測領域AR1,AR2,AR3が互いに重なっている重なり領域AR123を対象に、エコーデータの置換を行う。この構成によると、2つのレーダー装置10,20からのエコーデータED1A,ED2Aの何れにおいてもグランドクラッタ処理によってエコー画像に欠損領域E13aA,E23aAが生じる場合でも、この欠損領域E13aA,E23aAのエコーデータを、第3レーダー装置30で得られた第3降水エコーE33の対応する箇所のエコーデータに置き換えることで、欠損領域E13aA,E23aAを補間できる。
<他の変形例>
 なお、上述の実施形態および各変形例では、レーダー装置が2箇所または3箇所に配置される形態を例に説明した。しかしながら、この通りでなくてもよい。レーダー装置は、4箇所以上に配置されていてもよい。この場合、4つ以上のレーダー装置に関して、2つのレーダー装置の観測領域の全部が重複していてもよい。
 また、上述の実施形態および各変形例では、降水領域W1~W4および降水領域W1A~W4Aのそれぞれにおいて、同一降水領域内の風向が一様な場合を例に説明した。しかしながら、この通りでなくてもよい。例えば、降水領域W1~W4および降水領域W1A~W4Aのうちの一つの降水領域内で風向が一様でない複雑な場合においても、上述の実施形態および各変形例で説明したのと同様の処理が可能である。
 より具体的には、一つの降水領域内で風向が複雑な場合に、一のレーダー装置から見てドップラ速度ゼロの場所が入り乱れる。このため、レーダー装置10,20,30のうちの一つ(すなわち単独レーダー)で観測した場合には、上記一の降水領域に対するグランドクラッタ除去処理によって一部のエコー像が消える。このような場合においても、2つ以上のレーダー装置で上記一の降水領域を観測すると、上記エコー像が消えてしまう部分は、他のレーダー装置でドップラ速度が速度ゼロとならないため、グランドクラッタ除去処理では消えない。よって、このような場合でも、複数のレーダー装置からのエコーデータを利用することで、グランドクラッタ除去処理で消去されたエコーを復元することが可能である。
 以上、本発明の実施形態について説明したけれども、本発明は上述の実施の形態に限られない。本発明は、特許請求の範囲に記載した限りにおいて様々な変更が可能である。
 本発明は、観測装置、観測システム、および、観測方法として、広く適用することができる。
1 観測システム
10 第1レーダー装置
20 第2レーダー装置
30 第3レーダー装置
40 観測装置
41 取得部
44 置換部
AR1 第1観測領域
AR2 第2観測領域
AR3 第3観測領域
ED1,ED2,ED1A,ED2A,ED3 エコーデータ
用語
 必ずしも全ての目的または効果・利点が、本明細書中に記載される任意の特定の実施形態に則って達成され得るわけではない。従って、例えば当業者であれば、特定の実施形態は、本明細書中で教示または示唆されるような他の目的または効果・利点を必ずしも達成することなく、本明細書中で教示されるような1つまたは複数の効果・利点を達成または最適化するように動作するように構成され得ることを想到するであろう。
 本明細書中に記載される全ての処理は、1つまたは複数のコンピュータまたはプロセッサを含むコンピューティングシステムによって実行されるソフトウェアコードモジュールにより具現化され、完全に自動化され得る。コードモジュールは、任意のタイプの非一時的なコンピュータ可読媒体または他のコンピュータ記憶装置に記憶することができる。一部または全ての方法は、専用のコンピュータハードウェアで具現化され得る。
 本明細書中に記載されるもの以外でも、多くの他の変形例があることは、本開示から明らかである。例えば、実施形態に応じて、本明細書中に記載されるアルゴリズムのいずれかの特定の動作、イベント、または機能は、異なるシーケンスで実行することができ、追加、併合、または完全に除外することができる (例えば、記述された全ての行為または事象がアルゴリズムの実行に必要というわけではない)。さらに、特定の実施形態では、動作またはイベントは、例えば、マルチスレッド処理、割り込み処理、または複数のプロセッサまたはプロセッサコアを介して、または他の並列アーキテクチャ上で、逐次ではなく、並列に実行することができる。さらに、異なるタスクまたはプロセスは、一緒に機能し得る異なるマシンおよび/またはコンピューティングシステムによっても実行され得る。
 本明細書中に開示された実施形態に関連して説明された様々な例示的論理ブロックおよびモジュールは、プロセッサなどのマシンによって実施または実行することができる。プロセッサは、マイクロプロセッサであってもよいが、代替的に、プロセッサは、コントローラ、マイクロコントローラ、またはステートマシン、またはそれらの組み合わせなどであってもよい。プロセッサは、コンピュータ実行可能命令を処理するように構成された電気回路を含むことができる。別の実施形態では、プロセッサは、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはコンピュータ実行可能命令を処理することなく論理演算を実行する他のプログラマブルデバイスを含む。プロセッサはまた、コンピューティングデバイスの組み合わせ、例えば、デジタル信号プロセッサ(デジタル信号処理装置)とマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと組み合わせた1つ以上のマイクロプロセッサ、または任意の他のそのような構成として実装することができる。本明細書中では、主にデジタル技術に関して説明するが、プロセッサは、主にアナログ素子を含むこともできる。例えば、本明細書中に記載される信号処理アルゴリズムの一部または全部は、アナログ回路またはアナログとデジタルの混合回路により実装することができる。コンピューティング環境は、マイクロプロセッサ、メインフレームコンピュータ、デジタル信号プロセッサ、ポータブルコンピューティングデバイス、デバイスコントローラ、または装置内の計算エンジンに基づくコンピュータシステムを含むが、これらに限定されない任意のタイプのコンピュータシステムを含むことができる。
 特に明記しない限り、「できる」「できた」「だろう」または「可能性がある」などの条件付き言語は、特定の実施形態が特定の特徴、要素および/またはステップを含むが、他の実施形態は含まないことを伝達するために一般に使用される文脈内での意味で理解される。従って、このような条件付き言語は、一般に、特徴、要素および/またはステップが1つ以上の実施形態に必要とされる任意の方法であること、または1つ以上の実施形態が、これらの特徴、要素および/またはステップが任意の特定の実施形態に含まれるか、または実行されるかどうかを決定するための論理を必然的に含むことを意味するという訳ではない。
 語句「X、Y、Zの少なくとも1つ」のような選言的言語は、特に別段の記載がない限り、項目、用語等が X, Y, Z、のいずれか、又はそれらの任意の組み合わせであり得ることを示すために一般的に使用されている文脈で理解される(例: X、Y、Z)。従って、このような選言的言語は、一般的には、特定の実施形態がそれぞれ存在するXの少なくとも1つ、Yの少なくとも1つ、またはZの少なくとも1つ、の各々を必要とすることを意味するものではない。
 本明細書中に記載されかつ/または添付の図面に示されたフロー図における任意のプロセス記述、要素またはブロックは、プロセスにおける特定の論理機能または要素を実装するための1つ以上の実行可能命令を含む、潜在的にモジュール、セグメント、またはコードの一部を表すものとして理解されるべきである。代替の実施形態は、本明細書中に記載された実施形態の範囲内に含まれ、ここでは、要素または機能は、当業者に理解されるように、関連する機能性に応じて、実質的に同時にまたは逆の順序で、図示または説明されたものから削除、順不同で実行され得る。
 特に明示されていない限り、「一つ」のような数詞は、一般的に、1つ以上の記述された項目を含むと解釈されるべきである。従って、「~するように設定された一つのデバイス」などの語句は、1つ以上の列挙されたデバイスを含むことを意図している。このような1つまたは複数の列挙されたデバイスは、記載された引用を実行するように集合的に構成することもできる。例えば、「以下のA、BおよびCを実行するように構成されたプロセッサ」は、Aを実行するように構成された第1のプロセッサと、BおよびCを実行するように構成された第2のプロセッサとを含むことができる。加えて、導入された実施例の具体的な数の列挙が明示的に列挙されたとしても、当業者は、このような列挙が典型的には少なくとも列挙された数(例えば、他の修飾語を用いない「2つの列挙と」の単なる列挙は、通常、少なくとも2つの列挙、または2つ以上の列挙を意味する)を意味すると解釈されるべきである。
 一般に、本明細書中で使用される用語は、一般に、「非限定」用語(例えば、「~を含む」という用語は「それだけでなく、少なくとも~を含む」と解釈すべきであり、「~を持つ」という用語は「少なくとも~を持っている」と解釈すべきであり、「含む」という用語は「以下を含むが、これらに限定されない。」などと解釈すべきである。) を意図していると、当業者には判断される。
 説明の目的のために、本明細書中で使用される「水平」という用語は、その方向に関係なく、説明されるシステムが使用される領域の床の平面または表面に平行な平面、または説明される方法が実施される平面として定義される。「床」という用語は、「地面」または「水面」という用語と置き換えることができる。「垂直/鉛直」という用語は、定義された水平線に垂直/鉛直な方向を指します。「上側」「下側」「下」「上」「側面」「より高く」「より低く」「上の方に」「~を越えて」「下の」などの用語は水平面に対して定義されている。
 本明細書中で使用される用語の「付着する」、「接続する」、「対になる」及び他の関連用語は、別段の注記がない限り、取り外し可能、移動可能、固定、調節可能、及び/または、取り外し可能な接続または連結を含むと解釈されるべきである。接続/連結は、直接接続及び/または説明した2つの構成要素間の中間構造を有する接続を含む。
 特に明示されていない限り、本明細書中で使用される、「およそ」、「約」、および「実質的に」のような用語が先行する数は、列挙された数を含み、また、さらに所望の機能を実行するか、または所望の結果を達成する、記載された量に近い量を表す。例えば、「およそ」、「約」及び「実質的に」とは、特に明示されていない限り、記載された数値の10%未満の値をいう。本明細書中で使用されているように、「およそ」、「約」、および「実質的に」などの用語が先行して開示されている実施形態の特徴は、さらに所望の機能を実行するか、またはその特徴について所望の結果を達成するいくつかの可変性を有する特徴を表す。
 上述した実施形態には、多くの変形例および修正例を加えることができ、それらの要素は、他の許容可能な例の中にあるものとして理解されるべきである。そのような全ての修正および変形は、本開示の範囲内に含まれることを意図し、以下の特許請求の範囲によって保護される。

Claims (5)

  1.  異なる位置に設置された複数のレーダー装置であって、それぞれ他の少なくとも1のレーダー装置と観測領域の一部または全部が重複して設置された、複数のレーダー装置から、ドップラ速度情報を含むエコーデータを取得する取得部と、
     一の前記レーダー装置から取得される一の前記エコーデータのうち、前記ドップラ速度がゼロまたは略ゼロである速度ゼロ地点の前記エコーデータを、他の前記レーダー装置から取得される他の前記エコーデータのうち、前記速度ゼロ地点の前記エコーデータに置換する置換部と、
    を備えていることを特徴とする、観測装置。
  2.  請求項1に記載の観測装置であって、
     前記置換部は、第1の前記レーダー装置、第2の前記レーダー装置、および、第3の前記レーダー装置における前記観測領域が互いに重なっている領域を対象に、前記置換を行うことを特徴とする、観測装置。
  3.  請求項1または請求項2に記載の観測装置であって、
     前記置換部は、複数の前記レーダー装置の観測領域における風向きの異なる複数の時点での各前記エコーデータを用いて前記置換を行うことを特徴とする、観測装置。
  4.  複数の観測地点に設置されたレーダー装置と、
     請求項1~請求項3の何れか1項に記載の観測装置と、
    を備えていることを特徴とする、観測システム。
  5.  異なる位置に設置された複数のレーダー装置であって、それぞれ他の少なくとも1のレーダー装置と観測領域の一部または全部が重複して設置された、複数のレーダー装置から、ドップラ速度情報を含むエコーデータを取得し、
     一の前記レーダー装置から取得される一の前記エコーデータのうち、前記ドップラ速度がゼロまたは略ゼロである速度ゼロ地点の前記エコーデータを、他の前記レーダー装置から取得される他の前記エコーデータのうち、前記速度ゼロ地点の前記エコーデータに置換する、観測方法。
PCT/JP2019/011324 2018-04-17 2019-03-19 観測装置、観測システム、および、観測方法 WO2019202892A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018079021 2018-04-17
JP2018-079021 2018-04-17

Publications (1)

Publication Number Publication Date
WO2019202892A1 true WO2019202892A1 (ja) 2019-10-24

Family

ID=68239232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011324 WO2019202892A1 (ja) 2018-04-17 2019-03-19 観測装置、観測システム、および、観測方法

Country Status (1)

Country Link
WO (1) WO2019202892A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028705A (ja) * 1998-07-09 2000-01-28 Mitsubishi Electric Corp 気象レーダネットワークシステム
JP2004212274A (ja) * 2003-01-07 2004-07-29 Mitsubishi Electric Corp 風速ベクトル計測装置及び風速ベクトル計測方法
US20100315432A1 (en) * 2007-12-03 2010-12-16 Selex Systems Integration Gmbh Method for determining compound data of weather radars in an overlapping region of the monitoring regions of at least two weather radars
JP2011520127A (ja) * 2008-05-07 2011-07-14 コロラド ステート ユニバーシティー リサーチ ファウンデーション ネットワーク化された波形システム
JP2018059895A (ja) * 2016-09-29 2018-04-12 パナソニック株式会社 マルチレーダシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028705A (ja) * 1998-07-09 2000-01-28 Mitsubishi Electric Corp 気象レーダネットワークシステム
JP2004212274A (ja) * 2003-01-07 2004-07-29 Mitsubishi Electric Corp 風速ベクトル計測装置及び風速ベクトル計測方法
US20100315432A1 (en) * 2007-12-03 2010-12-16 Selex Systems Integration Gmbh Method for determining compound data of weather radars in an overlapping region of the monitoring regions of at least two weather radars
JP2011520127A (ja) * 2008-05-07 2011-07-14 コロラド ステート ユニバーシティー リサーチ ファウンデーション ネットワーク化された波形システム
JP2018059895A (ja) * 2016-09-29 2018-04-12 パナソニック株式会社 マルチレーダシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWAMURA, SEIJI ET AL.: "An improved bistatic observational system with Okinawa polarimetric weather radar COBRA", IEICE TECHNICAL REPORT, vol. 110, 15 April 2010 (2010-04-15), pages 13 - 18, ISSN: 0913-5685 *

Similar Documents

Publication Publication Date Title
JP5658871B2 (ja) 信号処理装置、レーダ装置、信号処理プログラム及び信号処理方法
EP2584373B1 (en) Radar device
US8368582B2 (en) Doppler radar apparatus and method of calculating doppler velocity
EP2345907A2 (en) Radar method and device for reducing ghost echos
EP3300052A1 (en) Road information sensing device and road information sensing method
JP6996880B2 (ja) クラッタ除去装置及びクラッタ除去プログラム
JP2011059016A (ja) 気象レーダシステムとその信号処理方法
JP7295317B2 (ja) 気象レーダーのためのノイズ除去装置および方法
JP2013142660A (ja) レーダシステム、トランスポンダ装置、レーダ処理方法及びレーダ処理プログラム
JP5996259B2 (ja) 津波検出装置、津波検出方法及び津波検出プログラム
WO2019058836A1 (ja) レーダ装置及び物標追尾方法
US10742246B2 (en) Receiver path arrangement
WO2019202892A1 (ja) 観測装置、観測システム、および、観測方法
US8836575B2 (en) Detection device, radar apparatus, detection method and detection program
WO2019216086A1 (ja) 気象レーダ装置、気象観測方法、および、気象観測プログラム
US10502696B2 (en) Water vapor observing apparatus
JP2015017967A (ja) レーダ装置
JP2011059015A (ja) 干渉波検出装置及び干渉波検出方法
JP5398424B2 (ja) 気象レーダシステムとその降水強度算出方法及びプログラム
JP5145811B2 (ja) 物体識別装置および物体識別方法、ならびに物体識別装置を備えた車両
WO2018020867A1 (ja) レーダシステム、レーダ装置、及び気象観測方法
WO2020170690A1 (ja) レーダ制御装置、レーダ制御方法及びプログラム
CN113661388B (zh) 观测信号生成装置、观测装置、观测信号生成方法、观测方法、存储介质
JP6235557B2 (ja) レーダー装置
JP2017067504A (ja) 気象レーダ信号処理装置と処理プログラム並びに処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP