WO2019202854A1 - 溶接トーチ及びそれを用いたアーク溶接装置 - Google Patents

溶接トーチ及びそれを用いたアーク溶接装置 Download PDF

Info

Publication number
WO2019202854A1
WO2019202854A1 PCT/JP2019/007304 JP2019007304W WO2019202854A1 WO 2019202854 A1 WO2019202854 A1 WO 2019202854A1 JP 2019007304 W JP2019007304 W JP 2019007304W WO 2019202854 A1 WO2019202854 A1 WO 2019202854A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
torch
welding torch
arc
tip
Prior art date
Application number
PCT/JP2019/007304
Other languages
English (en)
French (fr)
Inventor
小林 直樹
龍之介 柴垣
英樹 井原
宏太 堀江
健太 玉川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020514002A priority Critical patent/JP7340735B2/ja
Priority to CN201980025797.1A priority patent/CN111971140B/zh
Publication of WO2019202854A1 publication Critical patent/WO2019202854A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/29Supporting devices adapted for making use of shielding means

Definitions

  • the present invention relates to a welding torch and an arc welding apparatus using the same, and more particularly to a welding torch for manual welding.
  • Patent Literature 1 discloses a configuration in which an acceleration sensor attached to a welding torch detects an acceleration that moves the welding torch in a predetermined direction, and the welding condition is changed based on the detection result.
  • Patent Document 2 in arc welding performed by synchronizing automatic welding and manual welding performed using a welding torch held by a robot, two weldings are synchronized based on the detection result of an acceleration sensor.
  • a configuration is disclosed in which it is determined whether or not it has been taken and an alarm is issued if synchronization is not taken.
  • Patent Document 3 discloses a configuration in which a position detection sensor is attached to a welding torch for manual welding to detect the position of the welding torch in a three-dimensional space.
  • JP 2013-0666906 A JP 2014-159042 A Japanese Patent No. 5030951
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a welding torch capable of detecting the posture and the movement of the tip in a manually operated arc welding torch and an arc welding apparatus using the same. There is to do.
  • a welding torch according to the present invention is a welding torch for arc welding performed manually, and is characterized in that an acceleration sensor and an angular velocity sensor are attached.
  • the attitude of the welding torch and the movement of the tip can be detected.
  • the arc welding apparatus includes a wire feeding device that feeds a welding wire held by the welding torch toward an object to be welded, and a power supply device that supplies power to the welding torch.
  • the power supply device has a welding condition setting unit configured to be able to automatically change welding conditions based on the attitude of the welding torch and the movement of the tip detected by the acceleration sensor and the angular velocity sensor. It is characterized by.
  • desired welding can be performed by automatically changing the welding conditions in accordance with the attitude of the welding torch and the movement of the tip.
  • the welding torch according to the present invention can detect the attitude of the welding torch and the movement of the tip. Moreover, according to the arc welding apparatus which concerns on this invention, according to the attitude
  • FIG. 1 is a schematic diagram showing a configuration of an arc welding apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing the appearance of the welding torch.
  • FIG. 3 is a schematic diagram showing the internal structure of the welding torch.
  • FIG. 4 is a schematic diagram showing the movement of the welding torch during arc welding.
  • FIG. 5 is a schematic diagram showing the movement trajectory of the welding torch tip during weaving.
  • FIG. 6 is a schematic diagram illustrating the movement of the welding torch when the welding posture is changed according to the second embodiment of the present invention.
  • FIG. 7A is a time chart showing a welding current and a welding voltage output waveform and a droplet detachment state during pulse welding.
  • FIG. 7B is a schematic diagram illustrating a droplet detachment state when the welding quality is deteriorated.
  • FIG. 7C is a schematic diagram showing a droplet detachment state in a normal state.
  • FIG. 8 is a time chart showing the output waveform of the welding voltage according to the third embodiment of the present invention.
  • FIG. 9 is a time chart showing an output waveform of a welding current during pulse welding according to Embodiment 3 of the present invention.
  • FIG. 10 is a time chart of an output waveform of a welding current and a detection signal in the posture / motion detection unit according to the fourth embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a configuration of an arc welding apparatus according to the present embodiment.
  • FIG. 2 is a schematic diagram of the appearance of the welding torch, and
  • FIG. 3 is a schematic diagram of the internal structure of the welding torch.
  • the arc welding apparatus 10 includes a power supply device 20, a wire feeding device 30, and a welding torch 60. Further, a shielding gas, for example, CO 2 gas is supplied to the welding torch 60 from the gas cylinder 80 through the gas hose 81 and the wire feeding device 30. The shield gas is supplied by adjusting with a flow rate regulator (not shown) so that the pressure and flow rate of the shield gas become predetermined values.
  • the gas hose 81 is accommodated in the torch cable 41, and a power cable 40 and a control cable 50 described later are similarly accommodated in the torch cable 41.
  • the power device 20 has a power cable 40 connected to one of the output terminals 21 and a work cable 42 connected to the other, and power is supplied from the power cable 40 to the welding torch 60. Specifically, a welding current is supplied to the welding wire 70 passing through the welding torch 60 through the power cable 40 housed in the torch cable 41 and connected to the welding torch 60 and a welding tip (not shown). Further, the power supply device 20 is configured to send a control signal for controlling the wire feeding speed and the welding current flowing through the welding wire 70 to the wire feeding device 30.
  • the power supply device 20 receives an output signal from the sensor device 100 described later, and detects the posture / motion detection unit 22 that detects the posture of the welding torch 60 and the movement of the tip, and the detection result of the posture / motion detection unit 22. And a welding condition setting unit 23 configured so that the welding conditions can be automatically changed. Based on the signal from the welding condition change part 23, welding conditions, such as welding current, are changed.
  • each of the posture / motion detection unit 22 and the welding condition setting unit 23 is a control function block executed by a CPU (Central Processing Unit) (not shown) provided in the power supply device 20.
  • the posture / motion detection unit 22 and the welding condition setting unit 23 may be provided outside the power supply device 20.
  • the wire feeding device 30 includes a wire feeding mechanism (not shown) and a motor 31 that drives the wire feeding device.
  • the wire feeding device 30 moves the welding wire 70 at a predetermined speed in accordance with a control signal from the power supply device 20. It feeds toward the workpiece (welding object) W.
  • the shield gas supplied from the gas cylinder 80 is supplied to the welding torch 60.
  • the shield gas may be directly supplied to the welding torch 60 via the flow rate regulator.
  • the control cable 50 is connected to the power supply device 20 and the wire feeding device 30, and sends a control signal for controlling the wire feeding speed of the welding wire 70 as described above, and is a sensor device provided in the welding torch 60. 100 output signals are sent to the posture / motion detector 22 of the power supply device 20. In addition, driving power for the sensor device 100 and other devices provided in the welding torch 60 is supplied via the control cable 50. In addition, the control cable 50 is configured to send an operation signal of the torch switch 64 that determines the start / stop of welding to the power supply device 20.
  • the welding torch 60 has a torch body 61, a torch holder 63, a torch switch 64, and a head 62.
  • the head 62 projects outward from the torch holder 63, and the torch cable 41 is connected to the end of the torch holder 63 on the side opposite to the head 62.
  • the welding torch 60 holds the welding wire 70 therein, and the welding wire 70 is directed from the tip of the head 62, that is, the tip 62a of the welding torch 60 (hereinafter simply referred to as the tip 62a) toward the workpiece W. Be sent.
  • a sensor device 100 and a vibration motor (vibrating body) 110 are mounted in the torch holder 63, and these control through the torch cable 41 via wires 104 and 111, respectively. It is electrically connected to the cable 50.
  • a torch switch 64 is attached to the torch holder 63, and the torch switch 64 is also electrically connected to the control cable 50 passing through the torch cable 41 via the wiring 112.
  • the sensor device 100 includes an acceleration sensor 101, an angular velocity sensor 102, and a signal processing unit 103 that performs signal processing on the outputs of the sensors 101 and 102, and these are integrated in one package.
  • the acceleration sensor 101 and the angular velocity sensor 102 measure changes in acceleration or angular velocity in the directions of three axes (X axis, Y axis, and Z axis shown in FIG. 2) orthogonal to each other in the three-dimensional space. It is a sensor to detect each. That is, the sensor device 100 is a so-called 6-axis sensor.
  • the signal processing unit 103 is configured by an IC or an LSI.
  • the sensor device 100 detects the movement of the tip 62a of the welding torch 60 from changes in acceleration and angular velocity of each axis and a predetermined difference in position between the sensor device 100 and the tip 62a of the welding torch 60. Specifically, based on the output signal from the sensor device 100, arithmetic processing is executed by the posture / motion detection unit 22 provided in the power supply device 20, and the speed and swing width of the tip 62 a and the welding torch 60 are detected. It is configured to obtain the posture and the like.
  • the signal processing unit 103 receives analog output signals from the acceleration sensor 101 and the angular velocity sensor 102, and performs noise filtering, signal amplification, or digitization of the analog output signal. In this embodiment, the acceleration sensor 101, the angular velocity sensor 103, and the signal processing unit 103 are integrated in one package. However, they may be separately prepared and mounted on a printed board.
  • the vibration motor (vibrating body) 110 is driven by electric power supplied through the control cable 50. Further, the vibration motor 110 is configured to vibrate in a plurality of vibration modes according to a control signal sent from the welding condition setting unit 23. The operation and function of the vibration motor 110 will be described in detail later.
  • the sensor device 100 having the acceleration sensor 101 and the angular velocity sensor 102 is attached to the welding torch 60 of the present embodiment.
  • the welding torch 60 By making the welding torch 60 in this way, not only the moving speed of the welding torch 60 but also the posture and the movement of the tip 62a can be detected.
  • the arc welding apparatus 10 includes a welding torch 60 and a power supply device 20 that supplies electric power to the welding torch 60.
  • the power supply device 20 has a welding condition setting unit 23 configured to be able to automatically change welding conditions based on the attitude of the welding torch 60 and the movement of the tip 62a detected by the acceleration sensor 101 and the angular velocity sensor 102. is doing.
  • desired welding can be performed by automatically changing the welding conditions in accordance with the attitude of the welding torch 60 and the movement of the tip 62a.
  • the arc welding conditions can be automatically adjusted according to the shape of the workpiece W and the welding technique, and a decrease in welding quality can be suppressed. This will be further described.
  • FIG. 4 shows a schematic diagram of the movement of the welding torch when the welding posture is changed
  • FIG. 5 shows a schematic diagram of the movement trajectory of the welding torch tip during weaving.
  • the sensor device 100 can detect the attitude of the welding torch 60 and the movement of the tip 62a, and the welding current can be automatically adjusted according to these. For example, as shown in FIG. 4, the welding current is changed from I1 to I2 between downward welding and facing welding. By doing so, stable and high-quality arc welding can be performed. Moreover, it is not necessary to perform a laborious switching operation before and after the transition between the downward welding and the facing welding, and the working efficiency of the welding can be improved.
  • stable and high-quality arc welding can be performed even when arc welding is performed with a technique that is considered to be highly difficult.
  • a weaving technique in one technique of arc welding called a weaving technique, in the butt welding performed by matching the joints of the workpieces W arranged on the left and right, the welding torch 60 is moved so as to be distributed to the left and right workpieces W. By performing arc welding, the build-up amount of the weld bead is increased.
  • the weaving technique for example, in a moving direction switching portion (hereinafter simply referred to as a switching portion), the tip 62a of the welding arc 60 that has been moved to the right is moved to the left by changing the direction, and the arc irradiation time is relative. Become longer.
  • it is necessary to stabilize the welding quality it is necessary to make the heat input per unit area the same. For this reason, it is necessary to reduce the welding current and the wire feeding speed at the switching portion, and to increase the welding current and increase the wire feeding speed between the switching portions.
  • the sensor device 100 can detect the movement of the tip 62a of the welding torch 60, particularly the moving direction and speed, and can automatically adjust the welding current and the wire feeding speed according to these.
  • a somewhat unskilled worker can perform welding with a certain quality or higher even when arc welding is performed by the weaving technique.
  • Desired arc welding can be performed with a certain quality or more.
  • FIG. 6 is a schematic diagram of the movement of the welding torch according to the present embodiment, and shows changes in the attitude of the welding torch, the tip speed, and the deviation amount from the target locus along the welding progress direction. Moreover, this welding is performed by a beginner who is unfamiliar with welding work.
  • the movement of the welding torch varies, exceeding the allowable range capable of maintaining the welding quality, in other words, the welding wire 70 of the welding wire 70.
  • the tip may move. For example, as shown in FIG. 6, in one welding section, a portion (points A, C, and D shown in FIG. 6) in which the deviation amount from the target locus is large occurs, or the attitude of the welding torch 60 is out of the allowable range. Shift (points B, D, E shown in FIG. 6). Further, the speed of the tip 62a of the welding torch 60 may deviate from the allowable range (points D and E shown in FIG. 6). As described above, when the posture of the welding torch 60 and the movement of the tip 62a are out of the predetermined allowable range, the welding quality is deteriorated, and in some cases, a welding failure occurs in which a portion that is not welded occurs.
  • the welding torch 60 shown in FIGS. 1 to 3 incorporates a vibration motor 110 that vibrates in a plurality of vibration modes in accordance with a signal from the welding condition setting unit 23.
  • the vibration motor 110 By causing the vibration motor 110 to function as a kind of alarm, when an operator moves the welding torch 60 incorrectly, he / she can be alerted so that the correct movement can be learned early. Is possible.
  • One example will be described below.
  • the vibration motor 110 vibrates once short and weakly (mode 1). If the speed of the tip 62a is out of the allowable range, it vibrates briefly once. (Mode 2). Further, if the deviation amount from the target locus is out of the allowable range, the vibration motor 110 vibrates twice strongly and twice. Further, as shown at a point D shown in FIG. 6, if at least two of the attitude of the welding torch 60, the speed of the tip 62a, and the deviation from the target locus are out of the allowable range, the vibration motor 110 is long and strong. Vibrates (mode 3). In addition, as in the point E shown in FIG. 6, if the state of mode 3 occurs a plurality of times, the vibration motor 110 continues to vibrate strongly until the operator operates the torch switch 64 to stop welding (mode 4). .
  • the relationship between the malfunction point of the movement of the welding torch 60 and the vibration mode of the vibration mode 110 is not particularly limited to this. In addition, it is possible to arbitrarily determine which parameter is used as a trigger for vibrating the vibration motor 110 among the posture of the welding torch 60 and the movement of the tip 62a.
  • the operator can easily know where the problem is in the operation of the welding torch 60 performed by himself and does not vibrate the vibration motor 110. In other words, you can learn how to move correctly at an early stage.
  • FIG. 7A shows an output waveform of a welding current and a welding voltage at the time of pulse welding and a time chart of a droplet detachment state.
  • FIG. 7B is a schematic diagram showing a droplet detachment state when the welding quality is lowered
  • FIG. 7C is a schematic diagram of a droplet detachment state in a normal state.
  • the welding wire 70 is sent to the workpiece W at a constant wire feed speed, and a peak current and a base current lower than the peak current are alternately passed through the welding wire 70 at a predetermined cycle.
  • This is a welding technique in which an arc is generated between the workpiece W and the welding wire 70, and high-quality welding can be performed.
  • the tip of the droplet is constricted by the electromagnetic pinch force and is detached from the welding wire 70 and transferred to the workpiece W.
  • the welding torch 60 and the arc welding apparatus 10 of the present embodiment by detecting the movement of the tip 62a of the welding torch 10 and automatically adjusting the pulse width of the peak current based on the detection result, It is possible to appropriately set the timing of droplet detachment.
  • FIG. 8 shows a time chart of the output waveform of the welding voltage according to the present embodiment
  • FIG. 9 shows a time chart of the output waveform of the welding current at the time of pulse welding according to the present embodiment.
  • the welding voltage temporarily rises after the detachment of the droplets, so the timing of the detachment of the droplets can be determined by monitoring the change in the welding voltage over time.
  • the welding voltage may temporarily rise even at a timing different from the original timing due to, for example, a positional fluctuation of the tip 62a of the welding torch 60.
  • the positional fluctuation of the tip 62 a of the welding torch 60 can be detected by an output signal from the sensor device 100. That is, as shown on the right side of FIG. 8, it is possible to detect whether the welding voltage is temporarily increased due to position fluctuation or the like, or whether the droplet is detached due to shaking of the welding torch 60 or the like. Can do.
  • the signal from the welding condition setting unit 23 is used as shown in FIG. As shown in FIG. 2, the adjustment is made so that the pulse width of the peak current is shortened, and the droplets are detached at a predetermined timing.
  • FIG. 10 shows a time chart of the output waveform of the welding current and the detection signal in the posture / motion detector according to the present embodiment.
  • the welding torch 60 After operating the torch switch 64 to stop welding, it is often the case that the welding torch 60 is placed at a predetermined position in the workplace during the break of the worker or when the worker is changed. However, in such a case, if the torch switch 64 is operated unintentionally, the wire feeding device 30 is activated and a welding current flows through the welding wire 70. If this is not noticed, it is dangerous if an operator tries to start a welding operation, and an arc may occur in an unintended place and cause a welding failure.
  • the welding current becomes zero. If the welding torch 60 is put on a predetermined position at this time, the position is fixed, and the output signal from the sensor device 100 becomes zero. If the position or speed of the tip 62a of the welding torch 60 does not change beyond the period T1, that is, if the tip 62a of the welding torch 60 does not move during the period T1, the sensor device 100 and the posture / motion detector 22 detect it.
  • the welding condition setting unit 23 switches the torch switch 64 from the enabled state to the disabled state. That is, the valid state is changed to the invalid state. In the disabled state, the welding stopped state is maintained even if the torch switch 64 is operated.
  • the sensor device 100 detects the movement of the tip 62 a of the welding torch 60, and the output signal is sent to the posture / motion detection unit 22. Sent. At this time, the welding current is maintained at zero.
  • the welding condition setting unit 23 switches the torch switch 64 from the disabled state to the enabled state, and when the operator operates the torch switch 64, the arc welding apparatus 10 switches to the welding start state.
  • the current flowing through the welding torch 60 is equal to or less than a predetermined value (in this case, zero), and the tip 62a of the welding torch 60 has not moved for a predetermined period T1.
  • a predetermined value in this case, zero
  • the welding condition setting unit 23 invalidates the operation of the torch switch 64.
  • the torch switch 64 is unintentionally operated, and the arc welding apparatus 10 can be prevented from switching from the welding stop state to the welding start state, thereby ensuring work safety.
  • the predetermined period T1 it is possible to discriminate between simple pauses and breaks in which the worker leaves the site, and the work efficiency can be improved. Furthermore, by providing the predetermined period T2, it is possible to determine whether the operator picks up the welding torch 60 to perform the operation or only touches the welding torch 60 unintentionally. Can be done safely.
  • the predetermined value of the current flowing through the welding wire 70 may be a weak current value larger than zero.
  • the welding torch 60 shown in FIGS. 1 to 3 can detect the movement of the tip 62a. Using this fact, the torch switch 64 can be omitted. In addition, the welding conditions can be changed at the operator's own will.
  • the vibration is detected by the sensor device 100, and the number of times the welding torch 60 is tapped can be detected based on the detected signal.
  • a table in which the number of taps and the welding conditions are associated in advance is stored in the welding condition setting unit 23, or the welding condition setting unit 23 can read the table stored in another place. Keep it. By doing in this way, an operator can tap the welding torch 60 and can change a welding condition automatically according to the frequency
  • the torch switch 64 can be omitted if the welding start / stop is switched when the number of taps is one.
  • the welding current is increased by a predetermined value, and when tapping three times continuously, the welding current is decreased by a predetermined value. it can.
  • the relationship between the number of taps and the welding conditions is not particularly limited to the above, and is set as appropriate.
  • the number of taps may be increased, for example, the tap may be continuously tapped five times.
  • the above welding condition change may be performed so that the value can be changed according to the strength with which the welding torch 60 is tapped, that is, the magnitude of vibration applied to the welding torch 60.
  • the strength (magnitude of vibration) where the welding torch 60 is tapped corresponds to the magnitude of the angular velocity detected by the angular velocity sensor 102 of the sensor device 100 when the welding torch 60 is tapped.
  • the method of applying vibration to the welding torch 60 is not particularly limited to the above, and other methods may be used.
  • the welding torch 60 held in the hand may be shaken and the welding conditions may be changed by the number of times.
  • the attitude / motion detection unit 22 provided in the power supply device 20 determines the speed, width, attitude, and the like of the tip 62 a of the welding torch 60.
  • the present invention is not particularly limited thereto, and for example, these values may be calculated by the signal processing unit 103 provided in the sensor device 100.
  • the welding condition setting unit 23 prohibits the use of the function of automatically changing the welding conditions during the training of the worker and sets only the function of vibrating the vibration motor 110 to a usable state.
  • the function of automatically changing the welding conditions may be used, and only the function of vibrating the vibration motor 110 may be prohibited.
  • the consumable electrode type arc welding has been described as an example.
  • the welding torch 60 and the arc welding apparatus 10 according to the present invention are also applicable to non-consumable electrode type arc welding such as TIG. Applicable.
  • the wire feeding device 30 is not necessary, and power is directly supplied from the power supply device 20 to the welding torch 60 via the power cable 40.
  • a welding rod or a filler material feeding device may be arranged.
  • the present invention is not limited to this, and it is possible to combine the components described in the above embodiments to form a new embodiment.
  • the welding torch of the present invention can detect the posture and the movement of the tip, it is useful when applied to an arc welding apparatus for manual welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

手動で行うアーク溶接用の溶接トーチ60に、加速度センサ101と角速度センサ102とを備えたセンサデバイス100が取付けられている。

Description

溶接トーチ及びそれを用いたアーク溶接装置
 本発明は、溶接トーチ及びそれを用いたアーク溶接装置に関し、特に手動溶接用の溶接トーチに関する。
 従来、人が手に持って溶接作業を行う、いわゆる手動溶接用の溶接トーチに加速度センサを取付けてアーク溶接を行う構成が提案されている。例えば、特許文献1には、溶接トーチに取付けられた加速度センサで所定の方向に溶接トーチを動かす加速度を検出し、検出結果に基づいて溶接条件を変更する構成が開示されている。また、特許文献2には、ロボットに保持された溶接トーチを用いて行う自動溶接と手動溶接とを同期させて行うアーク溶接において、加速度センサでの検出結果に基づいて、2つの溶接の同期が取れているかどうかを判断し、同期が取れていなければ警報を発する構成が開示されている。
 また、これらとは別に、特許文献3には、手動溶接用の溶接トーチに位置検出センサを取付けて、三次元空間における溶接トーチの位置検出を行う構成が開示されている。
特開2013-066906号公報 特開2014-159042号公報 特許第5030951号公報
 しかし、特許文献1,2に開示された従来の構成では、溶接トーチの形状や、溶接時の先端の温度の制約から、加速度センサを溶接トーチの先端に取付けることはできなかった。このため、溶接トーチの先端の正確な動きは把握できなかった。さらに、加速度センサは、重力加速度(=1G)よりも小さい加速度を検出することが難しく、作業者の手ぶれ等により、1Gよりも小さな加速度で溶接トーチ、特にその先端が動く場合は、この動きや溶接トーチの姿勢の変化を把握できなかった。また、特許文献3に開示された従来の構成は、溶接トーチの位置は検出できるものの、その先端の動きや速度等は検出できなかった。
 本発明はかかる点に鑑みてなされたもので、その目的は、手動で行うアーク溶接用の溶接トーチにおいて、その姿勢や先端の動きを検出可能な溶接トーチ及びそれを用いたアーク溶接装置を提供することにある。
 上記目的を達成するために、本発明に係る溶接トーチは、手動で行うアーク溶接用の溶接トーチであって、加速度センサ及び角速度センサが取付けられていることを特徴とする。
 この構成によれば、溶接トーチの姿勢及び先端の動きを検出することができる。
 また、本発明に係るアーク溶接装置は、前記溶接トーチに保持された溶接ワイヤを溶接対象物に向けて送給するワイヤ送給装置と、前記溶接トーチに電力を供給する電源装置と、を備え、前記電源装置は、前記加速度センサ及び前記角速度センサで検出された前記溶接トーチの姿勢と先端の動きとに基づいて、溶接条件を自動的に変更可能に構成された溶接条件設定部を有していることを特徴とする。
 この構成によれば、溶接トーチの姿勢や先端の動きに応じて、溶接条件を自動的に変更して所望の溶接を行うことができる。
 本発明に係る溶接トーチによれば、溶接トーチの姿勢及び先端の動きを検出することができる。また、本発明に係るアーク溶接装置によれば、溶接トーチの姿勢や先端の動きに応じて、溶接条件を自動的に変更して所望の溶接を行うことができる。
図1は、本発明の実施形態1に係るアーク溶接装置の構成を示す模式図である。 図2は、溶接トーチの外観を示す模式図である。 図3は、溶接トーチの内部構造を示す模式図である。 図4は、アーク溶接時の溶接トーチの動きを示す模式図である。 図5は、ウィービング時の溶接トーチ先端の移動軌跡を示す模式図である。 図6は、本発明の実施形態2に係る溶接姿勢変更時の溶接トーチの動きを示す模式図である。 図7Aは、パルス溶接時の溶接電流と溶接電圧の出力波形及び溶滴離脱状態を示すタイムチャートである。 図7Bは、溶接品質が低下した場合の溶滴離脱状態を示す模式図である。 図7Cは、正常な状態での溶滴離脱状態を示す模式図である。 図8は、本発明の実施形態3に係る溶接電圧の出力波形を示すタイムチャートである。 図9は、本発明の実施形態3に係るパルス溶接時の溶接電流の出力波形を示すタイムチャートである。 図10は、本発明の実施形態4に係る溶接電流の出力波形と姿勢/動き検出部での検出信号のタイムチャートである。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。
 (実施形態1) 
 [アーク溶接装置の構成及び溶接トーチの構成]
 図1は、本実施形態に係るアーク溶接装置の構成の模式図を示す。図2は、溶接トーチの外観の模式図を、図3は、溶接トーチの内部構造の模式図をそれぞれ示す。
 図1に示すように、アーク溶接装置10は、電源装置20とワイヤ送給装置30と溶接トーチ60とを備えている。また、ガスボンベ80からガスホース81及びワイヤ送給装置30を介してシールドガス、例えば、COガスが溶接トーチ60に供給されている。なお、シールドガスの圧力及び流量が所定の値になるように図示しない流量調整器で調整され、シールドガスが供給される。なお、ガスホース81はトーチケーブル41の内部に収容されており、後述する電力ケーブル40と制御ケーブル50も同様にトーチケーブル41の内部に収容されている。
 電源装置20は、出力端子21の一方に電力ケーブル40が、他方にワークケーブル42がそれぞれ接続されており、電力ケーブル40から溶接トーチ60に電力が供給される。具体的には、トーチケーブル41内に収容されて溶接トーチ60に接続された電力ケーブル40及び図示しない溶接用チップを介して溶接トーチ60内を通る溶接ワイヤ70に溶接電流が供給される。また、電源装置20は、ワイヤ送給装置30に対してワイヤ送給速度や溶接ワイヤ70を流れる溶接電流を制御するための制御信号を送るように構成されている。さらに、電源装置20は、後述するセンサデバイス100からの出力信号を受け取って溶接トーチ60の姿勢と先端の動きとを検出する姿勢/動き検出部22と、姿勢/動き検出部22での検出結果に基づいて、溶接条件を自動的に変更可能に構成された溶接条件設定部23とを有している。溶接条件変更部23からの信号に基づいて、溶接電流等の溶接条件が変更される。なお、姿勢/動き検出部22と溶接条件設定部23とは、いずれも、電源装置20に設けられた図示しないCPU(Central Processing Unit)で実行される制御機能ブロックである。なお、姿勢/動き検出部22と溶接条件設定部23とは、電源装置20の外部に設けられていてもよい。
 ワイヤ送給装置30は、ワイヤ送給機構(図示せず)とワイヤ送給装置を駆動するモータ31とで構成され、電源装置20からの制御信号に応じて、溶接ワイヤ70を所定の速度でワーク(溶接対象物)Wに向けて送給する。また、ガスボンベ80から供給されたシールドガスを溶接トーチ60に供給する。なお、シールドガスは、流量調整器を介して溶接トーチ60に直接供給されるようにしてもよい。
 制御ケーブル50は、電源装置20とワイヤ送給装置30とに接続され、前述したように、溶接ワイヤ70のワイヤ送給速度を制御する制御信号を送るとともに、溶接トーチ60に設けられたセンサデバイス100の出力信号を電源装置20の姿勢/動き検出部22に送るように構成されている。また、制御ケーブル50を介して、センサデバイス100や、それ以外に溶接トーチ60に設けられたデバイスの駆動電力が供給される。また、制御ケーブル50は、溶接の開始/停止を決定するトーチスイッチ64の操作信号を電源装置20に送るように構成されている。
 溶接トーチ60は、トーチ本体61とトーチホルダ63とトーチスイッチ64とヘッド62とを有している。ヘッド62はトーチホルダ63から外に突き出しており、ヘッド62と反対側のトーチホルダ63の端部にトーチケーブル41が接続されている。また、溶接トーチ60は、内部に溶接ワイヤ70を保持しており、溶接ワイヤ70は、ヘッド62の先端、つまり、溶接トーチ60の先端62a(以下、単に先端62aという)からワークWに向けて送給される。
 また、図3に示すように、トーチホルダ63内にはセンサデバイス100とバイブレーションモータ(振動体)110とが取付けられており、これらは、それぞれ配線104,111を介してトーチケーブル41内を通る制御ケーブル50に電気的に接続されている。また、トーチホルダ63には、トーチスイッチ64が取付けられており、トーチスイッチ64も配線112を介してトーチケーブル41内を通る制御ケーブル50に電気的に接続されている。トーチスイッチ64を操作することで、溶接開始状態、つまり、ワイヤ送給装置30が作動し、溶接ワイヤ70に溶接電流が流れるON状態と、溶接停止状態、つまり、溶接電流の供給が停止し、ワイヤ送給装置30も停止するOFF状態とが切替えられる。
 センサデバイス100は、加速度センサ101と角速度センサ102とこれらセンサ101,102の出力を信号処理する信号処理部103とで構成されるとともに、これらが1つのパッケージ内に集積されたデバイスである。なお、図2に示すように、加速度センサ101と角速度センサ102とは、三次元空間の互いに直交する3軸(図2に示すX軸、Y軸、Z軸)方向の加速度または角速度の変化をそれぞれ検出するセンサである。つまり、センサデバイス100は、いわゆる6軸センサである。また、信号処理部103は、ICまたはLSIで構成されている。センサデバイス100は、各軸の加速度及び角速度の変化と、予め定められたセンサデバイス100と溶接トーチ60の先端62aとの位置の差とから溶接トーチ60の先端62aの動きを検出する。なお、具体的には、センサデバイス100からの出力信号に基づいて、電源装置20に設けられた姿勢/動き検出部22で演算処理が実行されて先端62aの速度や振れ幅や溶接トーチ60の姿勢等が求まるように構成されている。また、信号処理部103は加速度センサ101及び角速度センサ102のアナログ出力信号を受け取って、ノイズのフィルタリングや信号増幅あるいはアナログ出力信号のデジタル化処理を行ったりする。なお、本実施形態では、加速度センサ101と角速度センサ103と信号処理部103とを1つのパッケージ内に集積しているが、それぞれを別個に準備してプリント基板に実装するようにしてもよい。
 バイブレーションモータ(振動体)110は、制御ケーブル50を介して供給された電力によって駆動される。また、バイブレーションモータ110は、溶接条件設定部23から送られる制御信号に応じた複数の振動モードで振動するように構成されている。バイブレーションモータ110の動作及び機能については後で詳述する。
 [効果等]
 以上説明したように、本実施形態の溶接トーチ60には、加速度センサ101と角速度センサ102とを有するセンサデバイス100が取付けられている。
 溶接トーチ60をこのようにすることで、溶接トーチ60の移動速度だけでなく、姿勢や先端62aの動きを検出することができる。
 また、アーク溶接装置10は、溶接トーチ60と、溶接トーチ60に電力を供給する電源装置20と、を備えている。電源装置20は、加速度センサ101及び角速度センサ102で検出された溶接トーチ60の姿勢と先端62aの動きとに基づいて、溶接条件を自動的に変更可能に構成された溶接条件設定部23を有している。
 アーク溶接装置10をこのように構成することで、溶接トーチ60の姿勢や先端62aの動きに応じて、溶接条件を自動的に変更して所望の溶接を行うことができる。具体的には、ワークWの形状や溶接技法に応じて、アーク溶接条件を自動的に調整することができ、溶接品質の低下を抑制できる。このことについてさらに説明する。
 図4は、溶接姿勢変更時の溶接トーチの動きの模式図を示し、図5は、ウィービング時の溶接トーチ先端の移動軌跡の模式図を示す。
 図4に示すように、L字形状のワークWに対してアーク溶接を行う場合、溶接トーチ60の先端62aを下向きにして行う下向き溶接から先端62aを立ち上げて行う立ち向かい溶接に移行する。この移行前後では、溶接トーチ60の先端62aとワークWとの距離を一定に保つのが難しいため、一定の溶接条件、例えば、一定の溶接電流でアーク溶接を行った場合、移行前後で溶接箇所の仕上がりが異なってしまうおそれがある。また、下向き溶接と立ち向かい溶接とで溶接条件を変更する場合には、下向き溶接終了後に、一旦、アーク溶接を終了し、条件変更を行った後に、立ち向かい溶接に合わせて溶接トーチ60の姿勢や先端62aの位置を変更し、再度、アーク溶接を行う必要があった。このような作業は非常に手間がかかり、溶接の作業効率を低下させていた。
 一方、本実施形態によれば、センサデバイス100によって、溶接トーチ60の姿勢や先端62aの動きを検出でき、これらに応じて溶接電流を自動的に調整できる。例えば、図4に示すように、下向き溶接と立ち向かい溶接とで溶接電流をI1からI2に変更する。このようにすることで、安定した高品質のアーク溶接が行える。また、下向き溶接と立ち向かい溶接との移行前後で、手間のかかる切替作業を行わずに済み、溶接の作業効率を向上させることができる。
 また、本実施形態によれば、難易度が高いとされる技法でアーク溶接を行う場合にも、安定した高品質のアーク溶接を行うことができる。
 図5に示すように、ウィービング技法と呼ばれるアーク溶接の一技法では、左右に配置されたワークWの継目を突き合わせて行う突き合わせ溶接において、左右のワークWに振分けるように溶接トーチ60を動かしてアーク溶接を行うことで、溶接ビードの肉盛り量を増やしている。ウィービング技法においては、例えば、右に移動させていた溶接アーク60の先端62aを、向きを変えて左に動かす、移動方向の切替部分(以下、単に切替部分という)では、アークの照射時間が相対的に長くなる。一方、溶接品質を安定させるには、単位面積当りの入熱量が同じになるようにする必要がある。このため、切替部分では、溶接電流を小さくするとともに、ワイヤ送給速度を低くし、また、切替部分の間では、溶接電流を大きくするとともに、ワイヤ送給速度を高める必要があった。
 しかし、作業者の手の動きに連動させてこのような制御を行うのは非常に熟練を要し、難しい作業となっていた。
 一方、本実施形態によれば、センサデバイス100によって、溶接トーチ60の先端62aの動き、特に移動方向や速度を検出でき、これらに応じて溶接電流及びワイヤ送給速度を自動的に調整できる。このことにより、多少不慣れな作業者が、ウィービング技法によってアーク溶接を行っても一定以上の品質の溶接を行うことができる。また、この技法によらず、溶接トーチ60を複雑に動かすアーク溶接や、複雑な形状のワークWをアーク溶接する場合にも、本実施形態の溶接トーチ60及びアーク溶接装置100を用いることで、一定以上の品質で所望のアーク溶接を行うことができる。
 (実施形態2)
 図1~3に示す溶接トーチ60を使用することで、作業者の技能向上を図ることもできる。図6は、本実施形態に係る溶接トーチの動きの模式図を示し、溶接の進行方向に沿った溶接トーチの姿勢、先端の速度及び目標軌跡からのずれ量の変化を示している。また、この溶接は、溶接作業に不慣れな初心者が行っている。
 初心者が溶接トーチ60を手に持ってアーク溶接を行う場合、その動かし方にばらつきが生じ、溶接品質を維持できる許容範囲を超えて、溶接トーチ60の先端62a、言いかえると、溶接ワイヤ70の先端が動いてしまうことがある。例えば、図6に示すように、一つの溶接区間において、目標軌跡からのずれ量が大きくなる部分(図6に示す地点A,C,D)が生じたり、溶接トーチ60の姿勢が許容範囲からずれたりする(図6に示す地点B,D,E)。また、溶接トーチ60の先端62aの速度が許容範囲からずれたりもする(図6に示す地点D,E)。このように、溶接トーチ60の姿勢や先端62aの動きが所定の許容範囲から外れると、溶接品質が低下し、場合によっては溶接されない箇所が生じる溶接不良が起こったりする。
 一方、前述したように、図1~3に示す溶接トーチ60には、溶接条件設定部23からの信号に応じて、複数の振動モードで振動するバイブレーションモータ110が内蔵されている。このバイブレーションモータ110を一種のアラームとして機能させることで、作業者が誤った溶接トーチ60の動かし方をしている場合には、注意を喚起し、正しい動かし方を早期に覚えられるようにすることが可能となる。その一例を以下に説明する。
 例えば、溶接トーチ60の姿勢が許容範囲から外れていれば、バイブレーションモータ110は短く弱く1回振動し(モード1)、先端62aの速度が許容範囲から外れていれば、短く強く1回振動する(モード2)。また、目標軌跡からのずれ量が許容範囲から外れていれば、バイブレーションモータ110は短く強く2回振動する。さらに、図6に示す地点Dのように、溶接トーチ60の姿勢と先端62aの速度及び目標軌跡からのずれ量のうち、少なくとも2つが許容範囲から外れていれば、バイブレーションモータ110は長く強く2回振動する(モード3)。また、図6に示す地点Eのように、モード3の状態が複数回起これば、作業者がトーチスイッチ64を操作して溶接を停止するまでバイブレーションモータ110は強く振動し続ける(モード4)。
 なお、溶接トーチ60の動きの不具合点とバイブレーションモード110の振動モードとの関係は特にこれに限定されない。また、溶接トーチ60の姿勢や先端62aの動きのうち、どのパラメータを用いてバイブレーションモータ110を振動させるトリガーとするかも、任意に決めることができる。
 溶接トーチ60及びアーク溶接装置10をこのようにすることで、作業者は、自身が行う溶接トーチ60の操作のうち、どこに問題があるのかを容易に知ることができ、バイブレーションモータ110を振動させない、つまり、正しい動かし方を早期に習得することができる。
 (実施形態3)
 図7Aは、パルス溶接時の溶接電流と溶接電圧との出力波形及び溶滴離脱状態のタイムチャートを示す。また、図7Bは、溶接品質が低下した場合の溶滴離脱状態を示す模式図を、図7Cは、正常な状態での溶滴離脱状態の模式図をそれぞれ示す。
 作業者が溶接トーチ60を手に持って、ワークWに対してパルス溶接を行う場合がある。パルス溶接は、ワークWに対して溶接ワイヤ70を一定のワイヤ送給速度で送るとともに、溶接ワイヤ70にピーク電流と、ピーク電流よりも低いベース電流とを所定の周期で交互に流すことで、ワークWと溶接ワイヤ70との間でアークを発生させる溶接技法であり、高品質の溶接を行うことができる。
 一方、作業時に溶接トーチ60の手ぶれが生じることは避けがたいが、これに起因して作業者毎にパルス溶接の溶接品質にばらつきを生じてしまう。特に、図2に示す溶接トーチ60の先端62aとワークWとの距離や速度にばらつきが出ると、パルス溶接の溶接品質が安定しなくなる。このことについてさらに説明する。
 図7Aに示すように、溶接ワイヤ70に所定のピーク電流を流すと、先端が溶融して溶滴が形成し始める。また、この間に、溶接ワイヤ70とワークWとの間にアーク90が発生し、溶接電圧は一定以上の値に保たれている。溶滴が十分に成長すると、電磁ピンチ力によって、溶滴の先端がくびれて溶接ワイヤ70から離脱しワークWに移行する。
 この場合、図7Aに示す時点IIIで溶滴が離脱すれば、図7Cに示すように、溶滴の飛散物であるスパッタが少なく、高品質の溶接となる。一方、作業者の手ぶれや操作ばらつきによって、溶接トーチ60の先端62aの距離がばらつくと、時点IやIIで溶滴の離脱が起こることがある。この場合、所定の電流域よりも高い電流域で溶滴が落下するため、図7Bに示すように、スパッタの飛散が大きくなり、溶接品質が低下してしまう。また、作業者の手ぶれや操作ばらつきによって、溶接トーチ60の先端62aとワークWとの速度ばらついた場合も、溶滴の飛散が大きくなり、溶接品質が低下してしまうことがある。
 一方、本実施形態の溶接トーチ60及びアーク溶接装置10によれば、溶接トーチ10の先端62aの動きを検出し、その検出結果に基づいてピーク電流のパルス幅を自動的に調整することで、溶滴の離脱タイミングを適切に設定することができる。
 図8は、本実施形態に係る溶接電圧の出力波形のタイムチャートを、図9は、本実施形態に係るパルス溶接時の溶接電流の出力波形のタイムチャートをそれぞれ示す。
 図8の左側に示すように、溶滴の離脱後は溶接電圧が一時的に上昇することから、溶接電圧の時間変化をモニターすることで溶滴の離脱タイミングを判断することができる。しかし、溶接トーチ60の先端62aの位置ぶれなどで、本来のタイミングとは異なるタイミングでも、溶接電圧が一時的に上昇することがある。一方、溶接トーチ60の先端62aの位置ぶれは、センサデバイス100からの出力信号によって検出することができる。つまり、図8の右側に示すように、位置ぶれなどで溶接電圧の一時的な上昇が起こっているのか、溶接トーチ60の手ぶれ等により溶滴の離脱が起こっているのかを区別して検出することができる。
 このため、例えば、センサデバイス100の出力信号と溶接電圧とをモニターして、所定のタイミングよりも早く溶滴の離脱が起こりそうだと判断できたら、溶接条件設定部23からの信号によって、図9に示すように、ピーク電流のパルス幅が短くなるように調整し、所定のタイミングで溶滴を離脱させるようにする。このようにすることで、溶滴離脱時のスパッタを低く抑えられ、溶接品質を維持することができる。
 (実施形態4)
 図10は、本実施形態に係る溶接電流の出力波形と姿勢/動き検出部での検出信号のタイムチャートを示す。
 トーチスイッチ64を操作して、溶接停止状態にした後、作業者の休憩中や作業者の交代時等に、溶接トーチ60を作業場の所定の位置に置いておくことは良くある。しかし、このような場合に、トーチスイッチ64が意図せず操作されてしまうと、ワイヤ送給装置30が起動し、溶接ワイヤ70に溶接電流が流れる状態となる。これに気づかず、作業者が溶接作業を開始しようとすると危険であり、また、意図しない場所でアークが立ったりして溶接不良を起こす場合もあり得る。
 一方、本実施形態の溶接トーチ60及びアーク溶接装置10によれば、所定の条件を満たす場合にトーチスイッチ64の操作を無効にすることで、このような不具合を無くすことができる。
 図10に示すように、トーチスイッチ64を操作して溶接停止状態にすると溶接電流は零になる。また、この時点で溶接トーチ60を所定の位置に掛けておくと、その位置は固定され、センサデバイス100からの出力信号も零となる。期間T1を越えて、溶接トーチ60の先端62aの位置や速度に変化がなければ、つまり、期間T1に溶接トーチ60の先端62aが動いていないとセンサデバイス100及び姿勢/動き検出部22によって検出された場合は、溶接条件設定部23は、トーチスイッチ64をイネーブル(Enable)状態からディスエーブル(Disable)状態に切替える。つまり、有効状態から無効状態にする。ディスエーブル状態では、トーチスイッチ64を操作しても、溶接停止状態が維持される。
 次に、作業者が溶接トーチ60を手に持って作業を開始しようとすると、センサデバイス100は、溶接トーチ60の先端62aの動きを検出し、その出力信号が、姿勢/動き検出部22に送られる。このとき、溶接電流は零のまま維持される。さらに期間T2が経過すると、溶接条件設定部23は、トーチスイッチ64をディスエーブル状態からイネーブル状態に切替え、作業者がトーチスイッチ64を操作すると、アーク溶接装置10は溶接開始状態に切り替わる。
 本実施形態の溶接トーチ60及びアーク溶接装置10によれば、溶接トーチ60に流れる電流が所定値以下(この場合は零)で、かつ溶接トーチ60の先端62aが所定の期間T1動いていないと姿勢/動き検出部22によって検出された場合は、溶接条件設定部23はトーチスイッチ64の操作を無効にする。このことにより、意図せずにトーチスイッチ64が操作されて、溶接停止時様態から溶接開始状態にアーク溶接装置10が切替わるのを防止でき、作業の安全性の確保が図れる。また、意図せずに溶接が開始された場合に溶接不良が発生するのを防止できる。また、所定の期間T1を設けることで、単なる小休止と、作業者が現場を離れたりする休憩等とを判別して、作業効率を向上させることができる。さらに、所定の期間T2を設けることにより、作業者が溶接トーチ60を手に取って作業を行うのか、意図せずに溶接トーチ60に触ってしまっただけなのかを判別でき、以降の溶接作業を安全に行うことができる。
 なお、期間T1,T2は適宜決められ、作業毎に変更することも可能である。また、溶接ワイヤ70に流れる電流の所定値を、零よりも大きい微弱な電流値としてもよい。
 (実施形態5)
 これまで述べたように、図1~3に示す溶接トーチ60は、その先端62aの動きを検出することができる。このことを利用して、トーチスイッチ64を省略することができる。また、作業者自身の意志で溶接条件を変更することもできる。
 溶接トーチ60をタップすると、その振動はセンサデバイス100によって検出され、検出された信号に基づいて、溶接トーチ60がタップされた回数を検出することができる。このとき、タップされた回数と溶接条件とを予め関連付けたテーブルを溶接条件設定部23に記憶させておくか、あるいは、溶接条件設定部23が別の場所に記憶された当該テーブルを読み込み可能にしておく。このようにすることで、作業者が溶接トーチ60をタップし、その回数に応じて溶接条件を自動的に変更することができる。
 例えば、タップされる回数が1回の場合に、溶接開始/停止を切替えられるようにすると、トーチスイッチ64を省略することができる。また、溶接トーチ60を2回連続してタップする場合に、溶接電流が所定の値だけ大きくなり、3回連続してタップする場合に、溶接電流が所定の値だけ小さくなるようにすることもできる。このようにすることで、作業者が溶接箇所を確認しながら、溶接条件を微調整することができる。なお、タップ回数と溶接条件との関係は上記に特に限定されず、適宜設定される。また、アーク溶接装置10の誤動作を防止するため、トーチスイッチ64を省略する場合には、タップ回数を多くする、例えば、5回連続タップするようにしてもよい。また上記の溶接条件変更は、溶接トーチ60がタップされた強さ、つまり、溶接トーチ60に加えられた振動の大きさで値を変更できるよう操作できるようにしてもよい。なお、溶接トーチ60がタップされた強さ(振動の大きさ)は、溶接トーチ60がタップされたときに、センサデバイス100の角速度センサ102で検出された角速度の大きさに対応する。
 また、溶接トーチ60に振動を加える方法は特に上記に限定されず、他の方法を用いてもよい。例えば、手に持った溶接トーチ60を振って、その回数で溶接条件を変更するようにしてもよい。
 (その他の実施形態)
 なお、実施形態1~5において、センサデバイス100からの出力信号に基づいて、電源装置20に設けられた姿勢/動き検出部22により、溶接トーチ60の先端62aの速度や振れ幅や姿勢等が算出されていたが、特にこれに限定されず、例えば、センサデバイス100に設けられた信号処理部103でこれらの値を算出するようにしてもよい。また、実施形態2において、溶接条件設定部23は、作業者の訓練時には、溶接条件を自動的に変更する機能は使用禁止とし、バイブレーションモータ110を振動させる機能のみを使用可能な状態にしてもよく、実際の溶接作業中には、溶接条件を自動的に変更する機能は使用可能とし、バイブレーションモータ110を振動させる機能のみを使用禁止としてもよい。
 また、実施形態1~5において、消耗電極式のアーク溶接を例に取って説明したが、本発明に係る溶接トーチ60及びアーク溶接装置10は、TIG等の非消耗電極式のアーク溶接にも適用可能である。ただし、その場合は、ワイヤ送給装置30は不要となるので、電源装置20から電力ケーブル40を介して直接、溶接トーチ60に電力が供給される。また、ワイヤ送給装置30の代わりに溶接棒または溶加材送給装置を配置してもよい。また、これに限らず、上記の各実施形態で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。
 本発明の溶接トーチは、姿勢及び先端の動きを検出できるため、手動溶接用のアーク溶接装置に適用する上で有用である。
10  アーク溶接装置
20  電源装置
22  姿勢/動き検出部
23  溶接条件設定部
30  ワイヤ送給装置
31  モータ
40  電力ケーブル
41  トーチケーブル
42  ワークケーブル
50  制御ケーブル
60  溶接トーチ
61  トーチ本体
62  ヘッド
62a 溶接トーチ61の先端
63  トーチホルダ
64  トーチスイッチ
70  溶接ワイヤ
80  ガスボンベ
81  ガスホース
90  アーク
100 センサデバイス
101 加速度センサ
102 角速度センサ
103 信号処理部
110 バイブレーションモータ(振動体)
W   ワーク(溶接対象物)

Claims (9)

  1.  手動で行うアーク溶接用の溶接トーチであって、
     加速度センサ及び角速度センサが取付けられていることを特徴とする溶接トーチ。
  2.  請求項1に記載の溶接トーチにおいて、
     前記加速度センサの出力信号及び/または前記角速度センサの出力信号に応じて所定の振動モードで振動する振動体が取付けられていることを特徴とする溶接トーチ。
  3.  請求項1に記載の溶接トーチと、
     前記溶接トーチに電力を供給する電源装置と、を備え、
     前記電源装置は、前記加速度センサ及び前記角速度センサで検出された前記溶接トーチの姿勢と先端の動きとに基づいて、溶接条件を自動的に変更可能に構成された溶接条件設定部を有していることを特徴とするアーク溶接装置。
  4.  請求項2に記載の溶接トーチと、
     前記溶接トーチに電力を供給する電源装置と、を備え、
     前記電源装置は、前記加速度センサ及び前記角速度センサで検出された前記溶接トーチの姿勢と先端の動きとに基づいて、溶接条件及び前記振動体の振動モードの少なくとも一方を自動的に変更可能に構成された溶接条件設定部を有していることを特徴とするアーク溶接装置。
  5.  請求項4に記載のアーク溶接装置において、
     前記溶接条件設定部は、アーク溶接中に前記溶接トーチの先端の速度及び振れ幅並びに前記溶接トーチの姿勢のうち少なくとも1つが所定の範囲から外れると、前記振動体を振動させてアーク溶接を行う作業者に知らせることを特徴とするアーク溶接装置。
  6.  請求項5に記載のアーク溶接装置において、
     前記溶接条件設定部は、前記溶接トーチの先端の速度及び振れ幅並びに前記溶接トーチの姿勢が前記所定の範囲から外れた度合い及び/または頻度に応じて、前記振動体の振動モードを切替えることを特徴とするアーク溶接装置。
  7.  請求項3ないし6のいずれか1項に記載のアーク溶接装置において、
     前記溶接トーチに保持された溶接ワイヤを溶接対象物に向けて送給するワイヤ送給装置をさらに備え、
     ピーク電流と該ピーク電流よりも小さいベース電流とを交互に前記溶接ワイヤに流して行うパルス溶接時に、前記溶接条件設定部は、前記加速度センサ及び前記角速度センサで検出された前記溶接トーチの動きに基づいて、前記溶接ワイヤに流れる溶接電流の1周期内で1つの溶滴が前記溶接ワイヤから離脱するように、前記ピーク電流のパルス幅を変更することを特徴とするアーク溶接装置。
  8.  請求項3ないし7のいずれか1項に記載のアーク溶接装置において、
     前記溶接条件設定部は、前記溶接トーチに振動が加えられた回数、または前記溶接トーチに加えられた振動の大きさ、あるいは前記溶接トーチに振動が加えられたときに前記角速度センサで検出された角速度の大きさに応じて、溶接条件を変更することを特徴とするアーク溶接装置。
  9.  請求項3ないし8のいずれか1項に記載のアーク溶接装置において、
     前記溶接トーチは、アーク溶接の開始及び終了を切替えるトーチスイッチをさらに備え、
     前記溶接トーチに流れる電流が所定値以下で、かつ前記溶接トーチの先端が所定の期間動いていないと前記加速度センサ及び前記角速度センサによって検出された場合は、前記溶接条件 設定部は前記トーチスイッチの操作を無効にすることを特徴とするアーク溶接装置。
PCT/JP2019/007304 2018-04-20 2019-02-26 溶接トーチ及びそれを用いたアーク溶接装置 WO2019202854A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020514002A JP7340735B2 (ja) 2018-04-20 2019-02-26 アーク溶接装置
CN201980025797.1A CN111971140B (zh) 2018-04-20 2019-02-26 焊炬以及使用了该焊炬的电弧焊接装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018081528 2018-04-20
JP2018-081528 2018-04-20

Publications (1)

Publication Number Publication Date
WO2019202854A1 true WO2019202854A1 (ja) 2019-10-24

Family

ID=68239439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007304 WO2019202854A1 (ja) 2018-04-20 2019-02-26 溶接トーチ及びそれを用いたアーク溶接装置

Country Status (3)

Country Link
JP (1) JP7340735B2 (ja)
CN (1) CN111971140B (ja)
WO (1) WO2019202854A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3888833A1 (en) * 2020-03-31 2021-10-06 Illinois Tool Works, Inc. Welding-type power supply with provision of feedback based on synergic control of a welding-type output
WO2021205837A1 (ja) * 2020-04-07 2021-10-14 パナソニックIpマネジメント株式会社 溶接機の制御方法
WO2021215152A1 (ja) * 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 溶接機の制御方法
WO2022035820A1 (en) 2020-08-12 2022-02-17 The Esab Group Inc. Monitoring system employing smart gloves to analyze operator fabrication activities
WO2023042007A1 (en) * 2021-09-17 2023-03-23 Esab Ab Trigger module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113182744A (zh) * 2021-03-15 2021-07-30 中国石油天然气集团有限公司 油气管道半自动焊接位姿检测系统、方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515646A (ja) * 2004-10-13 2008-05-15 カラカス・エルドガン 取付け、分離、又は表面処理法、特に溶接法を実施する装置
JP2012218058A (ja) * 2011-04-13 2012-11-12 Sumitomo Heavy Industries Marine & Engineering Co Ltd 溶接シミュレータ
US20160193679A1 (en) * 2015-01-05 2016-07-07 Illinois Tool Works Inc. Measurement of three-dimensional welding torch orientation for manual arc welding process
JP2016209892A (ja) * 2015-05-01 2016-12-15 株式会社ダイヘン 溶接システム、溶接電源装置、および、それらの送給制御方法
WO2018135126A1 (ja) * 2017-01-19 2018-07-26 株式会社ダイヘン 溶接トーチ、および、溶接システム
JP2019018240A (ja) * 2017-07-21 2019-02-07 日立Geニュークリア・エナジー株式会社 溶接制御システム、溶接用手袋および溶接訓練方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4038403B2 (ja) * 2002-07-03 2008-01-23 矢島技研株式会社 供給ヘッドへの部品供給装置
US7323659B2 (en) * 2004-09-28 2008-01-29 Illinois Tool Works Inc. System and method of precise wire feed control in a welder
CN201913354U (zh) * 2010-12-30 2011-08-03 浙江劳士顿焊接设备有限公司 一种直流脉冲氩弧焊的控制系统
JP2013066906A (ja) * 2011-09-22 2013-04-18 Daihen Corp アーク溶接装置
CN103317209B (zh) * 2012-03-22 2017-05-10 株式会社大亨 电弧焊接装置
CN203316886U (zh) * 2013-07-12 2013-12-04 深圳华意隆电气股份有限公司 一种数字化逆变焊机
US10170019B2 (en) * 2014-01-07 2019-01-01 Illinois Tool Works Inc. Feedback from a welding torch of a welding system
CN107073629B (zh) * 2014-11-11 2019-01-11 松下知识产权经营株式会社 焊接装置以及焊接方法
EP3247525B1 (en) * 2015-01-22 2020-03-04 Illinois Tool Works Inc. Manual tool tracking and guidance with inertial measurement unit
JP2017185503A (ja) * 2016-04-01 2017-10-12 株式会社東芝 溶接作業補助装置、溶接作業補助方法
CN106735736B (zh) * 2016-11-21 2019-03-26 中国核电工程有限公司 一种手工焊接热输入测定装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515646A (ja) * 2004-10-13 2008-05-15 カラカス・エルドガン 取付け、分離、又は表面処理法、特に溶接法を実施する装置
JP2012218058A (ja) * 2011-04-13 2012-11-12 Sumitomo Heavy Industries Marine & Engineering Co Ltd 溶接シミュレータ
US20160193679A1 (en) * 2015-01-05 2016-07-07 Illinois Tool Works Inc. Measurement of three-dimensional welding torch orientation for manual arc welding process
JP2016209892A (ja) * 2015-05-01 2016-12-15 株式会社ダイヘン 溶接システム、溶接電源装置、および、それらの送給制御方法
WO2018135126A1 (ja) * 2017-01-19 2018-07-26 株式会社ダイヘン 溶接トーチ、および、溶接システム
JP2019018240A (ja) * 2017-07-21 2019-02-07 日立Geニュークリア・エナジー株式会社 溶接制御システム、溶接用手袋および溶接訓練方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3888833A1 (en) * 2020-03-31 2021-10-06 Illinois Tool Works, Inc. Welding-type power supply with provision of feedback based on synergic control of a welding-type output
WO2021205837A1 (ja) * 2020-04-07 2021-10-14 パナソニックIpマネジメント株式会社 溶接機の制御方法
WO2021215152A1 (ja) * 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 溶接機の制御方法
WO2022035820A1 (en) 2020-08-12 2022-02-17 The Esab Group Inc. Monitoring system employing smart gloves to analyze operator fabrication activities
WO2023042007A1 (en) * 2021-09-17 2023-03-23 Esab Ab Trigger module

Also Published As

Publication number Publication date
CN111971140B (zh) 2022-09-23
CN111971140A (zh) 2020-11-20
JPWO2019202854A1 (ja) 2021-04-22
JP7340735B2 (ja) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2019202854A1 (ja) 溶接トーチ及びそれを用いたアーク溶接装置
US11847298B2 (en) User interface with real time pictograph representation of parameter settings
EP3691819B1 (en) Metal manufacturing system using mechanical oscillation for mechanically oscillating a structural component toward and away from the workpiece
US9744615B2 (en) Method and system for stud welding
CN108290237B (zh) 不用磁力计测量焊接过程的三维焊枪取向的方法和装置
CN111032265B (zh) 低能量运动辅助点射式焊炬
JPWO2013129151A1 (ja) プラズマ−mig溶接方法および溶接トーチ
US20070023408A1 (en) Welding system and method
US20170113293A1 (en) Welding system for ac welding with reduced spatter
JP2007508940A (ja) 溶接プロセスを制御する方法
JP5919399B2 (ja) アークの開始前にワイヤをパルス駆動することを伴うアーク溶接プロセスを開始するための装置及び方法
TWI503197B (zh) Arc welding method
JP6995044B2 (ja) 溶接システム
CN111468802A (zh) 具有集成开关的用于受控短路焊接过程的系统和方法
WO2017040257A1 (en) Hybrid manual and automated welding
CN110961767A (zh) 焊接装置以及焊接方法
KR20200121891A (ko) 용접 장치 및 용접 장치를 이용한 용접 방법
EP1512481A2 (en) Voltage regulated GMA welding using a constant current power source and wire feeder having variable gain
JP2015186809A (ja) 工業製品の製造方法、スポット溶接システム
WO2021215152A1 (ja) 溶接機の制御方法
CN114340827B (zh) 用于实施多重焊接方法的方法和焊接设备
JP2000271750A (ja) アーク溶接装置
JP2009018314A (ja) 非消耗電極アーク溶接装置
WO2021205837A1 (ja) 溶接機の制御方法
CN111843112A (zh) 用于控制焊接功率和预加热功率的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788184

Country of ref document: EP

Kind code of ref document: A1