WO2019202753A1 - Oxide sintered body, sputtering target, and method for producing oxide thin film - Google Patents

Oxide sintered body, sputtering target, and method for producing oxide thin film Download PDF

Info

Publication number
WO2019202753A1
WO2019202753A1 PCT/JP2018/032028 JP2018032028W WO2019202753A1 WO 2019202753 A1 WO2019202753 A1 WO 2019202753A1 JP 2018032028 W JP2018032028 W JP 2018032028W WO 2019202753 A1 WO2019202753 A1 WO 2019202753A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide sintered
sputtering target
sputtering
oxide
Prior art date
Application number
PCT/JP2018/032028
Other languages
French (fr)
Japanese (ja)
Inventor
享祐 寺村
功児 深川
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN201880041330.1A priority Critical patent/CN110770191B/en
Priority to KR1020197036451A priority patent/KR102380914B1/en
Priority to JP2019500522A priority patent/JP6511209B1/en
Publication of WO2019202753A1 publication Critical patent/WO2019202753A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/203Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using physical deposition, e.g. vacuum deposition, sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the disclosed embodiment relates to a method for manufacturing an oxide sintered body, a sputtering target, and an oxide thin film.
  • a sputtering method which is a thin film forming method using a sputtering target, is extremely effective as a method for forming a thin film with a large area and high precision, and the sputtering method is widely used in display devices such as liquid crystal display devices.
  • TFT thin film transistors
  • IGZO oxides represented by In—Ga—Zn composite oxide (hereinafter also referred to as “IGZO”) instead of amorphous silicon.
  • IGZO oxides represented by In—Ga—Zn composite oxide
  • problems such as abnormal quality of the formed thin film and occurrence of cracks in the sputtering target during sputtering may occur due to occurrence of abnormal discharge.
  • One technique for avoiding these problems is to increase the density of the sputtering target.
  • abnormal discharge may occur even with high-density targets.
  • the crystal phase constituting the target is a double phase and there is a resistance difference between different crystal phases, there is a risk that abnormal discharge will occur.
  • Patent Document 2 discusses a ratio in which the ratio of each metal element is In ⁇ Ga ⁇ Zn.
  • the ratio of In, Ga, and Zn in the IGZO sputtering target can be adjusted as appropriate so that predetermined semiconductor characteristics can be obtained.
  • a target having a homologous crystal structure represented by InGaZnO 4 or In 2 Ga 2 ZnO 7 has been studied.
  • the sputtering target is preferably a single phase having a homologous crystal structure.
  • a high-density sputtering target composed of a single phase tends to have a larger crystal grain size than a sputtering target composed of multiple phases. And when crystal grain size enlarges, the mechanical strength of a sputtering target will fall and a crack may generate
  • the sputtering target has a uniform distribution of the above characteristics within the sputtering plane. If the distribution of density and the like is not uniform within the surface, abnormal discharge or cracking during sputtering may occur. In the case of an IGZO sputtering target, the nonuniformity of the characteristic distribution on the sputtering surface may appear as the color difference.
  • One aspect of the embodiment has been made in view of the above, and an object thereof is to provide a sputtering target capable of stably performing sputtering and an oxide sintered body for producing the sputtering target.
  • the oxide sintered body according to one aspect of the embodiment is an oxide sintered body containing indium, gallium, and zinc in a ratio satisfying the following formulas (1) to (3), and is a single-phase crystal phase:
  • the average particle size of the crystal phase is 15.0 ⁇ m or less. 0.01 ⁇ In / (In + Ga + Zn) ⁇ 0.20 (1) 0.10 ⁇ Ga / (In + Ga + Zn) ⁇ 0.49 (2) 0.50 ⁇ Zn / (In + Ga + Zn) ⁇ 0.89 (3)
  • sputtering can be performed stably.
  • FIG. 1 is an SEM image (50 times) of an oxide sintered body in Example 1.
  • FIG. 2 is an SEM image (500 times) of the oxide sintered body in Example 1.
  • FIG. 3 is an SEM image (500 times) of the oxide sintered body in Comparative Example 2.
  • FIG. 4 is an X-ray diffraction chart of the oxide sintered body in Example 1.
  • FIG. 5 is a diagram comparing the X-ray diffraction chart of the oxide sintered body in Example 1 and the peak positions in the X-ray diffraction charts of InGaZnO 4 , In 2 Ga 2 ZnO 7 and Ga 2 ZnO 4 .
  • the oxide sintered body of the embodiment is an oxide sintered body containing indium (In), gallium (Ga), and zinc (Zn), and can be used as a sputtering target.
  • the oxide sintered body of the embodiment is composed of a single-phase crystal phase, and the average grain size of the crystal phase is 15.0 ⁇ m or less. Thereby, the bending strength of the oxide sintered body can be increased. In addition, when grinding such an oxide sintered body, it is possible to prevent the surface from becoming rough due to peeling of the enlarged particles on the surface, and thus it is easy to obtain a smooth surface.
  • the oxide sintered body of the embodiment preferably has an average particle size of 10.0 ⁇ m or less, more preferably 8.0 ⁇ m or less, and even more preferably 6.0 ⁇ m or less. More preferably, it is 0 ⁇ m or less.
  • the lower limit of the average particle diameter is not particularly defined, but is usually 1.0 ⁇ m or more.
  • the oxide sintered body is composed of a single-phase crystal phase, the distribution of each element in the oxide sintered body can be made uniform. Therefore, according to the embodiment, the distribution of each element in the oxide semiconductor thin film formed by sputtering can be made uniform.
  • the atomic ratio of each element satisfies the following formulas (1) to (3). 0.01 ⁇ In / (In + Ga + Zn) ⁇ 0.20 (1) 0.10 ⁇ Ga / (In + Ga + Zn) ⁇ 0.49 (2) 0.50 ⁇ Zn / (In + Ga + Zn) ⁇ 0.89 (3)
  • the atomic ratio of each element preferably satisfies the following formulas (4) to (6), 0.05 ⁇ In / (In + Ga + Zn) ⁇ 0.15 (4) 0.15 ⁇ Ga / (In + Ga + Zn) ⁇ 0.45 (5) 0.50 ⁇ Zn / (In + Ga + Zn) ⁇ 0.80 (6) More preferably, the atomic ratio of each element satisfies the following formulas (7) to (9). 0.05 ⁇ In / (In + Ga + Zn) ⁇ 0.15 (7) 0.20 ⁇ Ga / (In + Ga + Zn) ⁇ 0.40 (8) 0.50 ⁇ Zn / (In + Ga + Zn) ⁇ 0.70 (9)
  • the oxide sintered body of the embodiment may contain inevitable impurities derived from raw materials and the like.
  • Inevitable impurities in the oxide sintered body of the embodiment include Fe, Cr, Ni, Si, W, Cu, Al, and the like, and their contents are each usually 100 ppm or less.
  • diffraction peaks are observed in the following regions A to P in the single-phase crystal phase constituting the oxide sintered body of the embodiment. preferable.
  • this oxide sintered body when used as a sputtering target, it is possible to suppress the occurrence of abnormal discharge. Therefore, according to the embodiment, the generation of particles due to such abnormal discharge can be suppressed, so that the production yield of TFT can be improved.
  • the oxide sintered body of the embodiment preferably has a relative density of 97.0% or more.
  • this oxide sintered compact is used as a sputtering target, the discharge state of DC sputtering can be stabilized.
  • a relative density is 98.0% or more, and it is further more preferable that a relative density is 99.0% or more.
  • the relative density is 97.0% or more
  • voids can be reduced in the sputtering target, and it is easy to prevent uptake of gas components in the atmosphere.
  • abnormal discharge starting from such voids, cracking of the sputtering target, and the like are less likely to occur.
  • the oxide sintered body of the embodiment preferably has a bending strength of 40 MPa or more. Therefore, when manufacturing a sputtering target using this oxide sintered compact, or when performing sputtering with this sputtering target, it can suppress that an oxide sintered compact is damaged.
  • the oxide sintered body of the embodiment preferably has a bending strength of 50 MPa or more, more preferably 60 MPa or more, and even more preferably 70 MPa or more.
  • the upper limit value of the bending strength is not particularly defined, but is usually 300 MPa or less.
  • the oxide sintered body used for the sputtering target of the embodiment preferably has a maximum surface roughness height Ry of 15.0 ⁇ m or less. Therefore, when sputtering using this sputtering target, it can suppress that a nodule generate
  • the maximum height Ry is 11.0 micrometers or less, and it is further more preferable that it is 10.0 micrometers or less.
  • the lower limit value of the maximum height Ry is not particularly defined, but is usually 0.1 ⁇ m or more.
  • the oxide sintered body of the embodiment preferably has a specific resistance of 40 m ⁇ ⁇ cm or less.
  • this oxide sintered compact is used as a sputtering target, sputtering using an inexpensive DC power source is possible, and the film formation rate can be improved. Thereby, generation
  • the oxide sintered body of the embodiment preferably has a specific resistance of 35 m ⁇ ⁇ cm or less, and more preferably has a specific resistance of 30 m ⁇ ⁇ cm or less.
  • the lower limit value of the specific resistance is not particularly defined, but is usually 0.1 m ⁇ ⁇ cm or more.
  • the color difference ⁇ E * on the surface of the sputtering target is preferably 10 or less.
  • ⁇ E * is preferably 10 or less in the color difference in the depth direction of the sputtering target.
  • the sputtering target of the embodiment more preferably the color difference of the entire surface and depth Delta] E * is 9 or less, and further preferably the color difference Delta] E * is 8 or less.
  • the oxide sputtering target of the embodiment can be manufactured by the following method, for example. First, the raw material powder is mixed.
  • the raw material powder is usually In 2 O 3 powder, Ga 2 O 3 powder and ZnO powder.
  • the mixing ratio of the raw material powders is appropriately determined so as to obtain a desired constituent element ratio in the oxide sintered body.
  • Each raw material powder is preferably dry-mixed in advance.
  • It can mix using various mixers, such as a container rotation type mixer and a container fixed type mixer.
  • a high-speed mixer manufactured by Earth Technica Co., Ltd., for example.
  • the raw powder is uniformly dispersed and mixed by performing dry mixing in advance as described above, it is easy to obtain a sintered body having a single-phase structure, and the color difference is preferably within the above-mentioned range.
  • Examples of a method for producing a molded body from the mixed powder thus mixed include a slip casting method and CIP (Cold Isostatic Pressing). Subsequently, two types of methods will be described as specific examples of the forming method.
  • a slurry containing a mixed powder and an organic additive is prepared using a dispersion medium, and the slurry is poured into a mold to remove the dispersion medium.
  • Organic additives that can be used here are known binders and dispersants.
  • the dispersion medium used for preparing the slurry is not particularly limited, and can be appropriately selected from water, alcohol and the like according to the purpose.
  • the ball mill mixing which puts mixed powder, an organic additive, and a dispersion medium in a pot and can be used can be used.
  • the slurry thus obtained is poured into a mold, and the dispersion medium is removed to produce a molded body.
  • the mold that can be used here include a metal mold, a gypsum mold, and a resin mold that pressurizes and removes the dispersion medium.
  • CIP method In the CIP method described here, a slurry containing a mixed powder and an organic additive is prepared using a dispersion medium, and a dry powder obtained by spray-drying the slurry is filled in a mold and subjected to pressure molding. I do.
  • Organic additives that can be used here are known binders and dispersants.
  • the dispersion medium used for preparing the slurry is not particularly limited, and can be appropriately selected from water, alcohol and the like according to the purpose. Moreover, there is no restriction
  • the slurry thus obtained is spray-dried to produce a dry powder having a water content of 1% or less, and the dry powder is filled into a mold and pressure-molded by the CIP method to produce a molded body. .
  • the obtained molded body is fired to produce a sintered body.
  • the kiln which can be used for manufacture of a ceramic sintered compact can be used.
  • the firing temperature is 1350 ° C. to 1580 ° C., preferably 1400 ° C. to 1550 ° C., more preferably 1450 ° C. to 1550 ° C. While the higher the firing temperature, the higher the density of the sintered body is obtained. On the other hand, it is preferable to control the temperature below the above temperature from the viewpoint of suppressing the enlargement of the structure of the sintered body and preventing cracking. Further, if the firing temperature is lower than 1350 ° C., it is difficult to form a single-phase crystal phase, which is not preferable.
  • the obtained sintered body is cut.
  • Such cutting is performed using a surface grinder or the like.
  • the maximum height Ry of the surface roughness after cutting can be appropriately controlled by selecting the size of the abrasive grains of the grindstone used for the cutting, but the grain size of the sintered body is enlarged. If so, the maximum height Ry is increased due to peeling of the enlarged particles.
  • a sputtering target is prepared by bonding the sintered body that has been cut to a substrate.
  • Stainless steel, copper, titanium or the like can be appropriately selected as the material of the base material.
  • a low melting point solder such as indium can be used as the bonding material.
  • Example 1 In 2 O 3 powder having an average particle diameter of 0.6 ⁇ m, Ga 2 O 3 powder having an average particle diameter of 1.5 ⁇ m, and ZnO powder having an average particle diameter of 0.8 ⁇ m manufactured by Earth Technica Co., Ltd. The dry powder was mixed using a high speed mixer to prepare a mixed powder.
  • the average particle size of the raw material powder was measured using a particle size distribution measuring apparatus HRA manufactured by Nikkiso Co., Ltd. In this measurement, water was used as the solvent, and the measurement was performed with a refractive index of 2.20. The same measurement conditions were used for the average particle diameter of the raw material powder described below.
  • the average particle size of the raw material powder is the volume cumulative particle diameter D 50 in the cumulative volume 50% by volume by laser diffraction scattering particle size distribution measuring method.
  • the prepared slurry was poured into a metal mold sandwiching a filter and drained to obtain a molded body.
  • this molded body was fired to produce a sintered body. The firing was performed at a firing temperature of 1500 ° C., a firing time of 10 hours, a heating rate of 100 ° C./h, and a cooling rate of 100 ° C./h.
  • the obtained sintered body was cut to obtain a sputtering target having a width of 210 mm, a length of 710 mm, and a thickness of 6 mm.
  • a # 170 grindstone was used for the cutting process.
  • Example 2 to 3 A sputtering target was obtained using the same method as in Example 1. In Examples 2 to 3, when preparing the mixed powder, each raw material powder was blended so that the atomic ratio of the metal elements contained in all the raw material powders was the atomic ratio shown in Table 1.
  • the atomic ratio of each metal element measured when preparing each raw material powder is equal to the atomic ratio of each metal element in the obtained oxide sintered body. It was confirmed.
  • the atomic ratio of each metal element in the oxide sintered body can be measured by, for example, ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy).
  • the air mass of the sputtering target is divided by the volume (the mass of the sintered body in water / the specific gravity of water at the measurement temperature), and the percentage value relative to the theoretical density ⁇ (g / cm 3 ) is expressed as a relative density (unit:%). ).
  • C 1 to C 3 and ⁇ 1 to ⁇ 3 in the above formulas represent the following values, respectively.
  • C 1 mass% of In 2 O 3 powder used for the production of the oxide sintered body ⁇ ⁇ 1 : Density of In 2 O 3 (7.18 g / cm 3 )
  • C 2 mass% of Ga 2 O 3 powder used for production of oxide sintered body ⁇ ⁇ 2 : density of Ga 2 O 3 (5.95 g / cm 3 )
  • C 3 mass% of ZnO powder used for the production of oxide sintered body ⁇ ⁇ 3 : ZnO density (5.60 g / cm 3 )
  • the probe is applied to the surface of the oxide sintered body after processing, and AUTO RANGE Measured in mode.
  • the measurement locations were a total of five locations near the center and four corners of the oxide sintered body, and the average value of each measurement value was taken as the bulk resistance value of the sintered body.
  • the bending strength of each of the sputtering targets of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above was measured.
  • Such bending strength is obtained by using JIS-R-1601 (bending strength of fine ceramics) using a sample piece (overall length 36 mm, width 4.0 mm, thickness 3.0 mm) cut from an oxide sintered body by wire electric discharge machining. It was measured according to the three-point bending strength measuring method in (Testing method).
  • the atomic ratio of each element contained in the mixed powder the presence or absence of dry mixing during the production of the oxide sintered body, the firing temperature, the oxide Table 1 shows the relative density, specific resistance (bulk resistance), and bending strength measurement results of the sintered body.
  • the oxide sintered bodies of Examples 1 to 3 all have a relative density of 97.0% or more. Therefore, according to the embodiment, when such an oxide sintered body is used as a sputtering target, the discharge state of DC sputtering can be stabilized.
  • the oxide sintered bodies of Examples 1 to 3 all have a specific resistance of 40 m ⁇ cm or less. Therefore, according to the embodiment, when an oxide sintered body is used as a sputtering target, sputtering using an inexpensive DC power source is possible, and the film formation rate can be improved.
  • the oxide sintered bodies of Examples 1 to 3 all have a bending strength of 40 MPa or more. Therefore, according to the embodiment, the oxide sintered body can be prevented from being damaged when the sputtering target is manufactured using the oxide sintered body or when sputtering is performed using the sputtering target. .
  • the cut surface obtained by cutting the oxide sintered body is polished step by step using emery paper # 180, # 400, # 800, # 1000, # 2000, and finally buffed. And finished to a mirror surface.
  • etching solution nitric acid (60 to 61% aqueous solution, manufactured by Kanto Chemical Co., Ltd.), hydrochloric acid (35.0 to 37.0% aqueous solution, manufactured by Kanto Chemical Co., Ltd.) and pure water at a volume ratio of 40 ° C.
  • ImageJ 1.51k http://imageJ.nih.gov/ij/) provided by the National Institutes of Health (NIH) was used.
  • FIGS. 1 and 2 are SEM images of the oxide sintered body in Example 1.
  • FIG. 1 and 2 black portions are chipped portions due to surface polishing.
  • the oxide sintered body of Example 1 is composed of a single-phase crystal phase.
  • FIG. 3 is an SEM image of the oxide sintered body in Comparative Example 2.
  • the portion that appears black is a phase in which indium is reduced (In poor phase).
  • the oxide sintered body of Comparative Example 2 is composed of a multiphase crystal phase.
  • X-ray diffraction (XRD) measurement was performed on the oxide sintered bodies of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above to obtain an X-ray diffraction chart. It was.
  • FIG. 4 is an X-ray diffraction chart of the oxide sintered body in Example 1.
  • diffraction peaks are observed in the following areas A to P when the diffraction angle 2 ⁇ is in the range of 20 ° to 70 °.
  • the oxide sintered body of Example 1 is composed of a single-phase crystal phase
  • the diffraction peak observed in the above-described regions A to P is such a single-phase crystal phase. It turns out that it originates in. In other words, it is possible to identify the single-phase crystal phase constituting the oxide sintered body of Example 1 by using the chart obtained by the X-ray diffraction measurement.
  • FIG. 5 is a diagram comparing the X-ray diffraction chart of the oxide sintered body in Example 1 and the peak positions in the X-ray diffraction charts of InGaZnO 4 , In 2 Ga 2 ZnO 7 and Ga 2 ZnO 4 .
  • the single-phase crystal phase constituting the oxide sintered body of Example 1 is a known crystal phase (here, InGaZnO 4 , In 2 Ga 2 ZnO 7, and Ga 2 ZnO 4 ). It can be seen that diffraction peaks are observed at different peak positions.
  • the “known crystal phase” means “a crystal phase in which a peak position of an X-ray diffraction chart is registered in a JCPDS (Joint Committee of Powder Diffraction Standards) card”.
  • the single-phase crystal phase constituting the oxide sintered body of Example 1 is a crystal phase that has not been known so far.
  • the maximum height Ry of the surface roughness was measured for each of the sputtering targets of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above. Specifically, the maximum height Ry of the sputtering surface was measured using a surface roughness measuring instrument (SJ-210 / manufactured by Mitutoyo Corporation). Ten locations on the sputtering surface were measured, and the maximum value was defined as the maximum height Ry of the sputtering target. The measurement results are shown in Table 2.
  • the “color difference ⁇ E * ” is an index obtained by quantifying the difference between two colors.
  • the maximum color difference ⁇ E * in the depth direction is measured by using a color difference meter at each depth to the center of the sputtering target by cutting 0.5 mm at an arbitrary position of the cut sputtering target, The L value, a value, and b value of each measured point were evaluated in the CIE 1976 space. Then, a color difference ⁇ E * is obtained from a combination of all two points from the differences ⁇ L, ⁇ a, ⁇ b between the L value, a value, and b value of two measured points, and a plurality of obtained color differences ⁇ E * are obtained. The maximum value was defined as the maximum color difference ⁇ E * in the depth direction.
  • the sputtering targets obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were used indium as a low melting point solder as a bonding material. Bonded to a copper substrate.
  • the oxide sintered bodies of Examples 1 to 3 are all composed of a single phase. Therefore, according to the embodiment, as can be seen from the results of arcing evaluation, when such an oxide sintered body is used as a sputtering target, sputtering can be performed stably.
  • the oxide sintered bodies of Examples 1 to 3 all have an average particle size of 15.0 ⁇ m or less. Therefore, according to the embodiment, when the oxide sintered body is ground, it is possible to prevent the surface from becoming rough due to peeling of large crystal grains from the surface.
  • the sputtering targets of Examples 1 to 3 all have a maximum height Ry of the surface roughness of the oxide sintered body of 15.0 ⁇ m or less. Therefore, according to the embodiment, it is possible to suppress generation of nodules on the target surface during sputtering.
  • the maximum color difference ⁇ E * in the in-plane direction and the depth direction is 10 or less. Therefore, according to the embodiment, since there is no bias in the crystal grain size and composition, it is suitable as a sputtering target.
  • the shape of the oxide sintered body is not limited to a plate shape, and may be any shape such as a cylindrical shape. It may be a shape.

Abstract

An oxide sintered body pertaining to an embodiment of the present invention contains indium, gallium, and zinc at ratios that satisfy the following formulas (1) to (3), wherein the oxide sintered body consists of a single crystalline phase, and the average grain size of the crystalline phase is not greater than 15.0 μm. (1) 0.01 ≤ In/(In + Ga + Zn) < 0.20 (2) 0.10 ≤ Ga/(In + Ga + Zn) ≤ 0.49 (3) 0.50 ≤ Zn/(In + Ga + Zn) ≤ 0.89

Description

酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜の製造方法Oxide sintered body, sputtering target, and method for producing oxide thin film
 開示の実施形態は、酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜の製造方法に関する。 The disclosed embodiment relates to a method for manufacturing an oxide sintered body, a sputtering target, and an oxide thin film.
 スパッタリングターゲットを用いた薄膜形成手法であるスパッタリング法は薄膜を大面積、高精度に形成する製法として極めて有効であり、液晶表示装置などの表示デバイスにおいて、スパッタリング法が広く活用されている。近年の薄膜トランジスタ(以下「TFT」とも言う。)などの半導体層の技術分野においては、アモルファスシリコンに代わってIn-Ga-Zn複合酸化物(以下「IGZO」とも言う。)に代表される酸化物半導体が注目されており、IGZO薄膜の形成についてもスパッタリング法が活用されている(たとえば、特許文献1参照)。 A sputtering method, which is a thin film forming method using a sputtering target, is extremely effective as a method for forming a thin film with a large area and high precision, and the sputtering method is widely used in display devices such as liquid crystal display devices. In the technical field of semiconductor layers such as thin film transistors (hereinafter also referred to as “TFT”) in recent years, oxides represented by In—Ga—Zn composite oxide (hereinafter also referred to as “IGZO”) instead of amorphous silicon. Semiconductors are attracting attention, and sputtering is also used to form IGZO thin films (see, for example, Patent Document 1).
 かかるスパッタリング法には、異常放電などが発生することにより、形成される薄膜の品質異常やスパッタリング中でのスパッタリングターゲットの割れの発生などの問題が起きる場合がある。それらの問題を避ける手法のひとつとして、スパッタリングターゲットを高密度化する手法がある。 In such a sputtering method, problems such as abnormal quality of the formed thin film and occurrence of cracks in the sputtering target during sputtering may occur due to occurrence of abnormal discharge. One technique for avoiding these problems is to increase the density of the sputtering target.
 また高密度なターゲットであっても異常放電が発生する場合がある。たとえば、ターゲットを構成する結晶相が複相であり、異なる結晶相の間に抵抗差があると異常放電が発生するリスクがある。 Also, abnormal discharge may occur even with high-density targets. For example, if the crystal phase constituting the target is a double phase and there is a resistance difference between different crystal phases, there is a risk that abnormal discharge will occur.
 TFTの半導体層にIGZO薄膜を使用する場合、In、Ga、Znの比率によって、その半導体特性は大きく変化し、様々な比率が検討されている。たとえば、特許文献2では、各金属元素の比率がIn<Ga<Znとなるような比率が検討されている。IGZOスパッタリングターゲットのIn、Ga、Znの比率は所定の半導体特性が得られるように適宜調節することができる。たとえば、IGZOスパッタリングターゲットとしては、InGaZnOやInGaZnOで表されるホモロガス結晶構造を示すターゲットが検討されている。 When an IGZO thin film is used for a semiconductor layer of a TFT, the semiconductor characteristics vary greatly depending on the ratio of In, Ga, and Zn, and various ratios are being studied. For example, Patent Document 2 discusses a ratio in which the ratio of each metal element is In <Ga <Zn. The ratio of In, Ga, and Zn in the IGZO sputtering target can be adjusted as appropriate so that predetermined semiconductor characteristics can be obtained. For example, as an IGZO sputtering target, a target having a homologous crystal structure represented by InGaZnO 4 or In 2 Ga 2 ZnO 7 has been studied.
 一方、Znを多く含むIGZOスパッタリングターゲットにおいては、ホモロガス結晶構造とGaZnOのスピネル構造の複相からなるターゲットについても検討されている(たとえば、特許文献3参照)。 On the other hand, in an IGZO sputtering target containing a large amount of Zn, a target composed of a double phase of a homologous crystal structure and a Ga 2 ZnO 4 spinel structure has also been studied (for example, see Patent Document 3).
 しかしながら、GaZnOはホモロガス結晶構造などと比べ、抵抗が高いことから、異常放電が発生するリスクが高い。したがって、スパッタリングターゲットとしてはホモロガス結晶構造の単相であることが好ましい。 However, since Ga 2 ZnO 4 has a higher resistance than a homologous crystal structure or the like, there is a high risk of occurrence of abnormal discharge. Therefore, the sputtering target is preferably a single phase having a homologous crystal structure.
 一方、単相で構成される高密度なスパッタリングターゲットは複相で構成されるスパッタリングターゲットに比べて、結晶粒径が肥大化する傾向にある。そして、結晶粒径が肥大化するとスパッタリングターゲットの機械強度が低下し、スパッタリング中に割れが発生する場合がある。 On the other hand, a high-density sputtering target composed of a single phase tends to have a larger crystal grain size than a sputtering target composed of multiple phases. And when crystal grain size enlarges, the mechanical strength of a sputtering target will fall and a crack may generate | occur | produce during sputtering.
 また、スパッタリングターゲットはスパッタリング面内で上記特性の分布が均一であることも重要である。面内で密度などの分布が不均一であると、異常放電の発生やスパッタリング中の割れなどが発生する場合がある。IGZOスパッタリングターゲットの場合、スパッタリング面の特性分布の不均一性が色差の濃淡として現れる場合がある。 It is also important that the sputtering target has a uniform distribution of the above characteristics within the sputtering plane. If the distribution of density and the like is not uniform within the surface, abnormal discharge or cracking during sputtering may occur. In the case of an IGZO sputtering target, the nonuniformity of the characteristic distribution on the sputtering surface may appear as the color difference.
特開2007-73312号公報JP 2007-73312 A 特開2017-145510号公報JP 2017-145510 A 特開2008-163441号公報JP 2008-163441 A
 実施形態の一態様は、上記に鑑みてなされたものであって、スパッタリングを安定して行うことができるスパッタリングターゲットおよびそれを製造するための酸化物焼結体を提供することを目的とする。 One aspect of the embodiment has been made in view of the above, and an object thereof is to provide a sputtering target capable of stably performing sputtering and an oxide sintered body for producing the sputtering target.
 実施形態の一態様に係る酸化物焼結体は、インジウム、ガリウムおよび亜鉛を以下の式(1)~(3)を満たす比率で含む酸化物焼結体であって、単相の結晶相で構成され、前記結晶相の平均粒径が15.0μm以下である。
 0.01≦In/(In+Ga+Zn)<0.20 ・・(1)
 0.10≦Ga/(In+Ga+Zn)≦0.49 ・・(2)
 0.50≦Zn/(In+Ga+Zn)≦0.89 ・・(3)
The oxide sintered body according to one aspect of the embodiment is an oxide sintered body containing indium, gallium, and zinc in a ratio satisfying the following formulas (1) to (3), and is a single-phase crystal phase: The average particle size of the crystal phase is 15.0 μm or less.
0.01 ≦ In / (In + Ga + Zn) <0.20 (1)
0.10 ≦ Ga / (In + Ga + Zn) ≦ 0.49 (2)
0.50 ≦ Zn / (In + Ga + Zn) ≦ 0.89 (3)
 実施形態の一態様によれば、スパッタリングを安定して行うことができる。 According to one aspect of the embodiment, sputtering can be performed stably.
図1は、実施例1における酸化物焼結体のSEM画像(50倍)である。FIG. 1 is an SEM image (50 times) of an oxide sintered body in Example 1. 図2は、実施例1における酸化物焼結体のSEM画像(500倍)である。FIG. 2 is an SEM image (500 times) of the oxide sintered body in Example 1. 図3は、比較例2における酸化物焼結体のSEM画像(500倍)である。FIG. 3 is an SEM image (500 times) of the oxide sintered body in Comparative Example 2. 図4は、実施例1における酸化物焼結体のX線回折チャートである。FIG. 4 is an X-ray diffraction chart of the oxide sintered body in Example 1. 図5は、実施例1における酸化物焼結体のX線回折チャートと、InGaZnO、InGaZnOおよびGaZnOのX線回折チャートにおけるピーク位置とを比較する図である。FIG. 5 is a diagram comparing the X-ray diffraction chart of the oxide sintered body in Example 1 and the peak positions in the X-ray diffraction charts of InGaZnO 4 , In 2 Ga 2 ZnO 7 and Ga 2 ZnO 4 .
 以下、添付図面を参照して、本願の開示する酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜の製造方法の実施形態について説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a method for manufacturing an oxide sintered body, a sputtering target, and an oxide thin film disclosed in the present application will be described with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
 実施形態の酸化物焼結体は、インジウム(In)と、ガリウム(Ga)と、亜鉛(Zn)を含む酸化物焼結体であって、スパッタリングターゲットとして用いることができる。 The oxide sintered body of the embodiment is an oxide sintered body containing indium (In), gallium (Ga), and zinc (Zn), and can be used as a sputtering target.
 実施形態の酸化物焼結体は、単相の結晶相で構成され、前記結晶相の平均粒径が15.0μm以下である。これにより、かかる酸化物焼結体の抗折強度が高くすることができる。また、かかる酸化物焼結体を研削加工する際に、表面の肥大粒子の剥離によって表面が粗くなることを抑制することができることから、平滑な表面を得やすい。 The oxide sintered body of the embodiment is composed of a single-phase crystal phase, and the average grain size of the crystal phase is 15.0 μm or less. Thereby, the bending strength of the oxide sintered body can be increased. In addition, when grinding such an oxide sintered body, it is possible to prevent the surface from becoming rough due to peeling of the enlarged particles on the surface, and thus it is easy to obtain a smooth surface.
 なお、実施形態の酸化物焼結体は、平均粒径が10.0μm以下であることが好ましく、8.0μm以下であることがより好ましく、6.0μm以下であることがさらに好ましく、5.0μm以下であることが一層好ましい。なお、平均粒径の下限値は特に定めるものではないが、通常1.0μm以上である。 The oxide sintered body of the embodiment preferably has an average particle size of 10.0 μm or less, more preferably 8.0 μm or less, and even more preferably 6.0 μm or less. More preferably, it is 0 μm or less. The lower limit of the average particle diameter is not particularly defined, but is usually 1.0 μm or more.
 また、かかる酸化物焼結体は単相の結晶相で構成されていることから、酸化物焼結体内における各元素の分布を均一にすることができる。したがって、実施形態によれば、スパッタリング成膜された酸化物半導体薄膜の膜中における各元素の分布を均一にすることができる。 Further, since the oxide sintered body is composed of a single-phase crystal phase, the distribution of each element in the oxide sintered body can be made uniform. Therefore, according to the embodiment, the distribution of each element in the oxide semiconductor thin film formed by sputtering can be made uniform.
 また、実施形態の酸化物焼結体は、各元素の原子比が、以下の式(1)~(3)を満たす。
 0.01≦In/(In+Ga+Zn)<0.20 ・・(1)
 0.10≦Ga/(In+Ga+Zn)≦0.49 ・・(2)
 0.50≦Zn/(In+Ga+Zn)≦0.89 ・・(3)
In the oxide sintered body of the embodiment, the atomic ratio of each element satisfies the following formulas (1) to (3).
0.01 ≦ In / (In + Ga + Zn) <0.20 (1)
0.10 ≦ Ga / (In + Ga + Zn) ≦ 0.49 (2)
0.50 ≦ Zn / (In + Ga + Zn) ≦ 0.89 (3)
 これにより、TFTに使用した場合に適した半導体層が得られる。 Thereby, a semiconductor layer suitable for use in a TFT can be obtained.
 なお、実施形態の酸化物焼結体は、各元素の原子比が、以下の式(4)~(6)を満たすことが好ましく、
 0.05≦In/(In+Ga+Zn)≦0.15 ・・(4)
 0.15≦Ga/(In+Ga+Zn)≦0.45 ・・(5)
 0.50≦Zn/(In+Ga+Zn)≦0.80 ・・(6)
各元素の原子比が、以下の式(7)~(9)を満たすことがより好ましい。
 0.05≦In/(In+Ga+Zn)≦0.15 ・・(7)
 0.20≦Ga/(In+Ga+Zn)≦0.40 ・・(8)
 0.50≦Zn/(In+Ga+Zn)≦0.70 ・・(9)
In the oxide sintered body of the embodiment, the atomic ratio of each element preferably satisfies the following formulas (4) to (6),
0.05 ≦ In / (In + Ga + Zn) ≦ 0.15 (4)
0.15 ≦ Ga / (In + Ga + Zn) ≦ 0.45 (5)
0.50 ≦ Zn / (In + Ga + Zn) ≦ 0.80 (6)
More preferably, the atomic ratio of each element satisfies the following formulas (7) to (9).
0.05 ≦ In / (In + Ga + Zn) ≦ 0.15 (7)
0.20 ≦ Ga / (In + Ga + Zn) ≦ 0.40 (8)
0.50 ≦ Zn / (In + Ga + Zn) ≦ 0.70 (9)
 また、実施形態の酸化物焼結体は、原料等に由来する不可避不純物が含まれ得る。実施形態の酸化物焼結体における不可避不純物としてはFe、Cr、Ni、Si、W、Cu、Al等があげられ、それらの含有量は各々通常100ppm以下である。 Moreover, the oxide sintered body of the embodiment may contain inevitable impurities derived from raw materials and the like. Inevitable impurities in the oxide sintered body of the embodiment include Fe, Cr, Ni, Si, W, Cu, Al, and the like, and their contents are each usually 100 ppm or less.
 また、実施形態の酸化物焼結体を構成する単相の結晶相は、X線回折測定(CuKα線)により得られるチャートにおいて、下記のA~Pの領域に回折ピークが観測されることが好ましい。
 A.24.5°~26.0°
 B.31.0°~32.5°
 C.32.5°~33.2°
 D.33.2°~34.0°
 E.34.5°~35.7°
 F.35.7°~37.0°
 G.38.0°~39.2°
 H.39.2°~40.5°
 I.43.0°~45.0°
 J.46.5°~48.5°
 K.55.5°~57.8°
 L.57.8°~59.5°
 M.59.5°~61.5°
 N.65.5°~68.0°
 O.68.0°~69.0°
 P.69.0°~70.0°
Further, in the chart obtained by X-ray diffraction measurement (CuKα ray), diffraction peaks are observed in the following regions A to P in the single-phase crystal phase constituting the oxide sintered body of the embodiment. preferable.
A. 24.5 ° to 26.0 °
B. 31.0 ° -32.5 °
C. 32.5 ° -33.2 °
D. 33.2 ° -34.0 °
E. 34.5 ° -35.7 °
F. 35.7 ° -37.0 °
G. 38.0 ° to 39.2 °
H. 39.2 ° ~ 40.5 °
I. 43.0 °-45.0 °
J. et al. 46.5 ° to 48.5 °
K. 55.5 ° -57.8 °
L. 57.8 ° to 59.5 °
M.M. 59.5 ° ~ 61.5 °
N. 65.5 ° -68.0 °
O. 68.0 °-69.0 °
P. 69.0 °-70.0 °
 これにより、かかる酸化物焼結体をスパッタリングターゲットに用いた場合に、異常放電が発生することを抑制できる。したがって、実施形態によれば、かかる異常放電に起因したパーティクルの発生を抑制することができることから、TFTの生産歩留まりを向上させることができる。 Thereby, when this oxide sintered body is used as a sputtering target, it is possible to suppress the occurrence of abnormal discharge. Therefore, according to the embodiment, the generation of particles due to such abnormal discharge can be suppressed, so that the production yield of TFT can be improved.
 また、実施形態の酸化物焼結体は、相対密度が97.0%以上であることが好ましい。これにより、かかる酸化物焼結体をスパッタリングターゲットとして用いた場合に、DCスパッタリングの放電状態を安定させることができる。なお、実施形態の酸化物焼結体は、相対密度が98.0%以上であることがより好ましく、相対密度が99.0%以上であることがさらに好ましい。 Further, the oxide sintered body of the embodiment preferably has a relative density of 97.0% or more. Thereby, when this oxide sintered compact is used as a sputtering target, the discharge state of DC sputtering can be stabilized. In addition, as for the oxide sintered compact of embodiment, it is more preferable that a relative density is 98.0% or more, and it is further more preferable that a relative density is 99.0% or more.
 相対密度が97.0%以上であると、かかる酸化物焼結体をスパッタリングターゲットとして用いた場合に、スパッタリングターゲット中に空隙を少なくでき、大気中のガス成分の取り込みを防止しやすい。また、スパッタリング中に、かかる空隙を起点とした異常放電やスパッタリングターゲットの割れ等が生じにくくなる。 When the relative density is 97.0% or more, when such an oxide sintered body is used as a sputtering target, voids can be reduced in the sputtering target, and it is easy to prevent uptake of gas components in the atmosphere. In addition, during the sputtering, abnormal discharge starting from such voids, cracking of the sputtering target, and the like are less likely to occur.
 また、実施形態の酸化物焼結体は、抗折強度が40MPa以上であることが好ましい。これにより、かかる酸化物焼結体を用いてスパッタリングターゲットを製造する際や、かかるスパッタリングターゲットでスパッタリングを行う際に、酸化物焼結体が破損することを抑制することができる。 Further, the oxide sintered body of the embodiment preferably has a bending strength of 40 MPa or more. Thereby, when manufacturing a sputtering target using this oxide sintered compact, or when performing sputtering with this sputtering target, it can suppress that an oxide sintered compact is damaged.
 なお、実施形態の酸化物焼結体は、抗折強度が50MPa以上であることがより好ましく、60MPa以上であることがさらに好ましく、70MPa以上であることが一層好ましい。なお、抗折強度の上限値は特に定めるものではないが、通常300MPa以下である。 Note that the oxide sintered body of the embodiment preferably has a bending strength of 50 MPa or more, more preferably 60 MPa or more, and even more preferably 70 MPa or more. The upper limit value of the bending strength is not particularly defined, but is usually 300 MPa or less.
 また、実施形態のスパッタリングターゲットに用いられる酸化物焼結体は、表面粗さの最大高さRyが15.0μm以下であることが好ましい。これにより、かかるスパッタリングターゲットを用いてスパッタリングする際に、ターゲット表面でノジュールが発生することを抑制することができる。 Further, the oxide sintered body used for the sputtering target of the embodiment preferably has a maximum surface roughness height Ry of 15.0 μm or less. Thereby, when sputtering using this sputtering target, it can suppress that a nodule generate | occur | produces on the target surface.
 なお、実施形態のスパッタリングターゲットに用いられる酸化物焼結体は、最大高さRyが11.0μm以下であることがより好ましく、10.0μm以下であることがさらに好ましい。なお、最大高さRyの下限値は特に定めるものではないが、通常0.1μm以上である。 In addition, as for the oxide sintered compact used for the sputtering target of embodiment, it is more preferable that the maximum height Ry is 11.0 micrometers or less, and it is further more preferable that it is 10.0 micrometers or less. The lower limit value of the maximum height Ry is not particularly defined, but is usually 0.1 μm or more.
 また、実施形態の酸化物焼結体は、比抵抗が40mΩ・cm以下であることが好ましい。これにより、かかる酸化物焼結体をスパッタリングターゲットとして用いた場合に、安価なDC電源を用いたスパッタリングが可能となり、成膜レートを向上させることができる。また、これにより、異常放電の発生を抑制できる。 Further, the oxide sintered body of the embodiment preferably has a specific resistance of 40 mΩ · cm or less. Thereby, when this oxide sintered compact is used as a sputtering target, sputtering using an inexpensive DC power source is possible, and the film formation rate can be improved. Thereby, generation | occurrence | production of abnormal discharge can be suppressed.
 なお、実施形態の酸化物焼結体は、比抵抗が35mΩ・cm以下であることがより好ましく、比抵抗が30mΩ・cm以下であることがさらに好ましい。なお、比抵抗の下限値は特に定めるものではないが、通常0.1mΩ・cm以上である。 The oxide sintered body of the embodiment preferably has a specific resistance of 35 mΩ · cm or less, and more preferably has a specific resistance of 30 mΩ · cm or less. The lower limit value of the specific resistance is not particularly defined, but is usually 0.1 mΩ · cm or more.
 また、実施形態のスパッタリングターゲットは、スパッタリングターゲット表面の色差ΔEが10以下であることが好ましい。また、スパッタリングターゲットの深さ方向の色差もΔEが10以下であることが好ましい。この数値が上記条件を満たす場合、結晶粒径や組成に偏りがないためスパッタリングターゲットとして好適である。 In the sputtering target of the embodiment, the color difference ΔE * on the surface of the sputtering target is preferably 10 or less. In addition, ΔE * is preferably 10 or less in the color difference in the depth direction of the sputtering target. When this numerical value satisfies the above conditions, there is no bias in the crystal grain size and composition, which is suitable as a sputtering target.
 なお、実施形態のスパッタリングターゲットは、表面全体と深さ方向の色差ΔEが9以下であることがより好ましく、色差ΔEが8以下であることがさらに好ましい。 Incidentally, the sputtering target of the embodiment, more preferably the color difference of the entire surface and depth Delta] E * is 9 or less, and further preferably the color difference Delta] E * is 8 or less.
<酸化物スパッタリングターゲットの各製造工程>
 実施形態の酸化物スパッタリングターゲットは、たとえば以下に示すような方法により製造することができる。まず、原料粉末を混合する。原料粉末としては、通常In粉末、Ga粉末およびZnO粉末である。
<Each production process of oxide sputtering target>
The oxide sputtering target of the embodiment can be manufactured by the following method, for example. First, the raw material powder is mixed. The raw material powder is usually In 2 O 3 powder, Ga 2 O 3 powder and ZnO powder.
 各原料粉末の混合比率は、酸化物焼結体における所望の構成元素比になるように適宜決定される。 The mixing ratio of the raw material powders is appropriately determined so as to obtain a desired constituent element ratio in the oxide sintered body.
 各原料粉末は、事前に乾式混合することが好ましい。かかる乾式混合の方法には特に制限はなく、容器回転型混合機、容器固定型混合機等の種々の混合機を用いて混合することができる。中でも、原料粉末にせん断力と衝撃力を加えて高速分散、混合を行うことができることから、たとえば株式会社アーステクニカ製ハイスピードミキサ等で混合することが好ましい。このように事前に乾式混合処理を施すことによって、原料粉末が均一に分散、混合されると、単相構造の焼結体を得られやすくなり、また色差が前述の範囲となるため好ましい。 Each raw material powder is preferably dry-mixed in advance. There is no restriction | limiting in particular in the method of this dry type mixing, It can mix using various mixers, such as a container rotation type mixer and a container fixed type mixer. Among these, since it is possible to apply shearing force and impact force to the raw material powder to perform high-speed dispersion and mixing, it is preferable to mix with a high-speed mixer manufactured by Earth Technica Co., Ltd., for example. When the raw powder is uniformly dispersed and mixed by performing dry mixing in advance as described above, it is easy to obtain a sintered body having a single-phase structure, and the color difference is preferably within the above-mentioned range.
 このように混合された混合粉末から成形体を作製する方法としては、たとえばスリップキャスト法や、CIP(Cold Isostatic Pressing:冷間等方圧加圧法)などが挙げられる。つづいて、成形方法の具体例として、2種類の方法についてそれぞれ説明する。 Examples of a method for producing a molded body from the mixed powder thus mixed include a slip casting method and CIP (Cold Isostatic Pressing). Subsequently, two types of methods will be described as specific examples of the forming method.
(スリップキャスト法)
 ここで説明するスリップキャスト法では、混合粉末と有機添加物とを含有するスラリーを、分散媒を用いて調製し、かかるスラリーを型に流し込んで分散媒を除去することにより成形を行う。ここで用いることができる有機添加物は、公知のバインダーや分散剤などである。
(Slip cast method)
In the slip casting method described here, a slurry containing a mixed powder and an organic additive is prepared using a dispersion medium, and the slurry is poured into a mold to remove the dispersion medium. Organic additives that can be used here are known binders and dispersants.
 また、スラリーを調製する際に用いる分散媒には特に制限はなく、目的に応じて、水やアルコールなどから適宜選択して用いることができる。また、スラリーを調製する方法にも特に制限はなく、たとえば、混合粉末と、有機添加物と、分散媒とをポットに入れて混合するボールミル混合を用いることができる。このようにして得られたスラリーを型に流し込み、分散媒を除去して成形体を作製する。ここで用いることができる型は、金属型や石膏型、加圧して分散媒除去を行う樹脂型などである。 Further, the dispersion medium used for preparing the slurry is not particularly limited, and can be appropriately selected from water, alcohol and the like according to the purpose. Moreover, there is no restriction | limiting in particular also in the method of preparing a slurry, For example, the ball mill mixing which puts mixed powder, an organic additive, and a dispersion medium in a pot and can be used can be used. The slurry thus obtained is poured into a mold, and the dispersion medium is removed to produce a molded body. Examples of the mold that can be used here include a metal mold, a gypsum mold, and a resin mold that pressurizes and removes the dispersion medium.
(CIP法)
 ここで説明するCIP法では、混合粉末と有機添加物とを含有するスラリーを、分散媒を用いて調製し、かかるスラリーを噴霧乾燥して得られた乾燥粉末を型に充填して加圧成形を行う。ここで用いることができる有機添加物は、公知のバインダーや分散剤などである。
(CIP method)
In the CIP method described here, a slurry containing a mixed powder and an organic additive is prepared using a dispersion medium, and a dry powder obtained by spray-drying the slurry is filled in a mold and subjected to pressure molding. I do. Organic additives that can be used here are known binders and dispersants.
 また、スラリーを調製する際に用いる分散媒には特に制限はなく、目的に応じて、水やアルコールなどから適宜選択して用いることができる。また、スラリーを調製する方法にも特に制限はなく、たとえば、混合粉末と、有機添加物と分散媒とをポットに入れて混合するボールミル混合を用いることができる。 Further, the dispersion medium used for preparing the slurry is not particularly limited, and can be appropriately selected from water, alcohol and the like according to the purpose. Moreover, there is no restriction | limiting in particular also in the method of preparing a slurry, For example, the ball mill mixing which puts mixed powder, an organic additive, and a dispersion medium in a pot and can be used can be used.
 このようにして得られたスラリーを噴霧乾燥して、含水率が1%以下の乾燥粉末を作製し、かかる乾燥粉末を型に充填してCIP法により加圧成形して、成形体を作製する。 The slurry thus obtained is spray-dried to produce a dry powder having a water content of 1% or less, and the dry powder is filled into a mold and pressure-molded by the CIP method to produce a molded body. .
 次に得られた成形体を焼成し、焼結体を作製する。かかる焼結体を作製する焼成炉には特に制限はなく、セラミックス焼結体の製造に使用可能である焼成炉を用いることができる。 Next, the obtained molded body is fired to produce a sintered body. There is no restriction | limiting in particular in the kiln which produces this sintered compact, The kiln which can be used for manufacture of a ceramic sintered compact can be used.
 焼成温度は、1350℃~1580℃であり、1400℃~1550℃が好ましく、1450℃~1550℃がより好ましい。焼成温度が高いほど高密度の焼結体が得られる一方で、焼結体の組織の肥大化を抑制して割れを防止する観点から上記温度以下で制御するのが好ましい。また、焼成温度が1350℃未満であると、単相の結晶相を形成することが困難となるので、好ましくない。 The firing temperature is 1350 ° C. to 1580 ° C., preferably 1400 ° C. to 1550 ° C., more preferably 1450 ° C. to 1550 ° C. While the higher the firing temperature, the higher the density of the sintered body is obtained. On the other hand, it is preferable to control the temperature below the above temperature from the viewpoint of suppressing the enlargement of the structure of the sintered body and preventing cracking. Further, if the firing temperature is lower than 1350 ° C., it is difficult to form a single-phase crystal phase, which is not preferable.
 次に得られた焼結体を切削加工する。かかる切削加工は、平面研削盤などを用いて行う。また、切削加工後の表面粗さの最大高さRyは、切削加工に用いる砥石の砥粒の大きさを選定することにより、適宜制御することができるが、焼結体の粒径が肥大化していると、肥大粒子の剥離により最大高さRyは大きくなる。 Next, the obtained sintered body is cut. Such cutting is performed using a surface grinder or the like. Further, the maximum height Ry of the surface roughness after cutting can be appropriately controlled by selecting the size of the abrasive grains of the grindstone used for the cutting, but the grain size of the sintered body is enlarged. If so, the maximum height Ry is increased due to peeling of the enlarged particles.
 切削加工した焼結体を基材に接合することによってスパッタリングターゲットを作製する。基材の材質にはステンレスや銅、チタンなどを適宜選択することができる。接合材にはインジウムなどの低融点半田を使用することができる。 A sputtering target is prepared by bonding the sintered body that has been cut to a substrate. Stainless steel, copper, titanium or the like can be appropriately selected as the material of the base material. A low melting point solder such as indium can be used as the bonding material.
[実施例1]
 平均粒径が0.6μmであるIn粉末と、平均粒径が1.5μmであるGa粉末と、平均粒径が0.8μmであるZnO粉末とを株式会社アーステクニカ製のハイスピードミキサで乾式混合して、混合粉末を調製した。
[Example 1]
In 2 O 3 powder having an average particle diameter of 0.6 μm, Ga 2 O 3 powder having an average particle diameter of 1.5 μm, and ZnO powder having an average particle diameter of 0.8 μm manufactured by Earth Technica Co., Ltd. The dry powder was mixed using a high speed mixer to prepare a mixed powder.
 なお、原料粉末の平均粒径は、日機装株式会社製の粒度分布測定装置HRAを用いて測定した。かかる測定の際、溶媒には水を使用し、測定物質の屈折率2.20で測定した。また、以下に記載の原料粉末の平均粒径についても同様の測定条件とした。なお、原料粉末の平均粒径はレーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50である。 The average particle size of the raw material powder was measured using a particle size distribution measuring apparatus HRA manufactured by Nikkiso Co., Ltd. In this measurement, water was used as the solvent, and the measurement was performed with a refractive index of 2.20. The same measurement conditions were used for the average particle diameter of the raw material powder described below. The average particle size of the raw material powder is the volume cumulative particle diameter D 50 in the cumulative volume 50% by volume by laser diffraction scattering particle size distribution measuring method.
 なお、かかる混合粉末の調製の際、すべての原料粉末に含まれる金属元素の原子比が、In/(In+Ga+Zn)=0.1、Ga/(In+Ga+Zn)=0.3、Zn/(In+Ga+Zn)=0.6となるように各原料粉末を配合した。 When preparing such a mixed powder, the atomic ratio of metal elements contained in all raw material powders is In / (In + Ga + Zn) = 0.1, Ga / (In + Ga + Zn) = 0.3, Zn / (In + Ga + Zn) = Each raw material powder was mix | blended so that it might become 0.6.
 次に、混合粉末が調製されたポットに、混合粉末に対して0.2質量%のバインダーと、混合粉末に対して0.6質量%の分散剤と、混合粉末に対して20質量%の水とを加え、ボールミル混合してスラリーを調製した。 Next, in the pot in which the mixed powder was prepared, 0.2% by weight of the binder with respect to the mixed powder, 0.6% by weight of the dispersant with respect to the mixed powder, and 20% by weight of the mixed powder. Water was added and ball mill mixing was performed to prepare a slurry.
 次に、調製されたスラリーを、フィルターを挟んだ金属製の型に流し込み、排水して成形体を得た。次に、この成形体を焼成して焼結体を作製した。かかる焼成は、焼成温度1500℃、焼成時間10時間、昇温速度100℃/h、降温速度100℃/hで行った。 Next, the prepared slurry was poured into a metal mold sandwiching a filter and drained to obtain a molded body. Next, this molded body was fired to produce a sintered body. The firing was performed at a firing temperature of 1500 ° C., a firing time of 10 hours, a heating rate of 100 ° C./h, and a cooling rate of 100 ° C./h.
 次に、得られた焼結体を切削加工し、幅210mm×長さ710mm×厚さ6mmのスパッタリングターゲットを得た。なお、かかる切削加工には#170の砥石を使用した。 Next, the obtained sintered body was cut to obtain a sputtering target having a width of 210 mm, a length of 710 mm, and a thickness of 6 mm. A # 170 grindstone was used for the cutting process.
[実施例2~3]
 実施例1と同様な方法を用いて、スパッタリングターゲットを得た。なお、実施例2~3では、混合粉末の調製の際、すべての原料粉末に含まれる金属元素の原子比が、表1に記載の原子比となるように各原料粉末を配合した。
[Examples 2 to 3]
A sputtering target was obtained using the same method as in Example 1. In Examples 2 to 3, when preparing the mixed powder, each raw material powder was blended so that the atomic ratio of the metal elements contained in all the raw material powders was the atomic ratio shown in Table 1.
[比較例1~3]
 比較例1~3では、混合粉末の調製の際、すべての原料粉末に含まれる金属元素の原子比がIn/(In+Ga+Zn)=0.1、Ga/(In+Ga+Zn)=0.3、Zn/(In+Ga+Zn)=0.6となるように各原料粉末を配合した。なお、焼成温度は表1に記載の温度となる様にし、また比較例2では乾式混合を行わなかった。それ以外は実施例1と同様な方法を用いて、スパッタリングターゲットを得た。
[Comparative Examples 1 to 3]
In Comparative Examples 1 to 3, when the mixed powder was prepared, the atomic ratio of metal elements contained in all raw material powders was In / (In + Ga + Zn) = 0.1, Ga / (In + Ga + Zn) = 0.3, Zn / ( Each raw material powder was blended so that In + Ga + Zn) = 0.6. The firing temperature was set to the temperature shown in Table 1, and in Comparative Example 2, no dry mixing was performed. Otherwise, a sputtering target was obtained using the same method as in Example 1.
 なお、実施例1~3および比較例1~3において、各原料粉末を調製する際に計量した各金属元素の原子比が、得られた酸化物焼結体における各金属元素の原子比と等しいことを確認した。酸化物焼結体における各金属元素の原子比は、たとえば、ICP-AES(Inductively Coupled Plasma Atomic Emission Spectroscopy:誘導結合プラズマ発光分光法)により測定することができる。 In Examples 1 to 3 and Comparative Examples 1 to 3, the atomic ratio of each metal element measured when preparing each raw material powder is equal to the atomic ratio of each metal element in the obtained oxide sintered body. It was confirmed. The atomic ratio of each metal element in the oxide sintered body can be measured by, for example, ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy).
 つづいて、上記にて得られた実施例1~3および比較例1~3のスパッタリングターゲットについて、相対密度の測定を行った。かかる相対密度は、アルキメデス法に基づき測定した。 Subsequently, relative density was measured for the sputtering targets of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above. Such relative density was measured based on the Archimedes method.
 具体的には、スパッタリングターゲットの空中質量を体積(焼結体の水中質量/計測温度における水比重)で除し、理論密度ρ(g/cm)に対する百分率の値を相対密度(単位:%)とした。 Specifically, the air mass of the sputtering target is divided by the volume (the mass of the sintered body in water / the specific gravity of water at the measurement temperature), and the percentage value relative to the theoretical density ρ (g / cm 3 ) is expressed as a relative density (unit:%). ).
 また、かかる理論密度ρ(g/cm)は、酸化物焼結体の製造に用いた原料粉末の質量%および密度から算出した。具体的には、下記の式(10)により算出した。
 ρ={(C/100)/ρ+(C/100)/ρ+(C3/100)/ρ-1 ・・(10) 
Moreover, this theoretical density (rho) (g / cm < 3 >) was computed from the mass% and density of the raw material powder used for manufacture of oxide sinter. Specifically, it was calculated by the following formula (10).
ρ = {(C 1/100 ) / ρ 1 + (C 2/100) / ρ 2 + (C 3/100) / ρ 3} -1 ·· (10)
 なお、上記式中のC~Cおよびρ~ρは、それぞれ以下の値を示している。
・C:酸化物焼結体の製造に用いたIn粉末の質量%
・ρ:Inの密度(7.18g/cm
・C:酸化物焼結体の製造に用いたGa粉末の質量%
・ρ:Gaの密度(5.95g/cm
・C:酸化物焼結体の製造に用いたZnO粉末の質量%
・ρ:ZnOの密度(5.60g/cm
Note that C 1 to C 3 and ρ 1 to ρ 3 in the above formulas represent the following values, respectively.
C 1 : mass% of In 2 O 3 powder used for the production of the oxide sintered body
・ Ρ 1 : Density of In 2 O 3 (7.18 g / cm 3 )
C 2 : mass% of Ga 2 O 3 powder used for production of oxide sintered body
・ Ρ 2 : density of Ga 2 O 3 (5.95 g / cm 3 )
C 3 : mass% of ZnO powder used for the production of oxide sintered body
・ Ρ 3 : ZnO density (5.60 g / cm 3 )
 つづいて、上記にて得られた実施例1~3および比較例1~3のスパッタリングターゲットについて、それぞれ比抵抗(バルク抵抗)の測定を行った。 Subsequently, specific resistance (bulk resistance) was measured for the sputtering targets of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above.
 具体的には、三菱化学株式会社製ロレスタ(登録商標)HP MCP-T410(直列4探針プローブ TYPE ESP)を用いて、加工後の酸化物焼結体の表面にプローブをあてて、AUTO RANGEモードで測定した。測定箇所は酸化物焼結体の中央付近および4隅の計5か所とし、各測定値の平均値をその焼結体のバルク抵抗値とした。 Specifically, using Loresta (registered trademark) HP MCP-T410 (series 4-probe probe TYPE ESP) manufactured by Mitsubishi Chemical Corporation, the probe is applied to the surface of the oxide sintered body after processing, and AUTO RANGE Measured in mode. The measurement locations were a total of five locations near the center and four corners of the oxide sintered body, and the average value of each measurement value was taken as the bulk resistance value of the sintered body.
 つづいて、上記にて得られた実施例1~3および比較例1~3のスパッタリングターゲットについて、それぞれ抗折強度の測定を行った。かかる抗折強度は、ワイヤー放電加工により酸化物焼結体から切り出した試料片(全長36mm以上、幅4.0mm、厚さ3.0mm)を用い、JIS-R-1601(ファインセラミックスの曲げ強度試験方法)の3点曲げ強さの測定方法にしたがって測定した。 Subsequently, the bending strength of each of the sputtering targets of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above was measured. Such bending strength is obtained by using JIS-R-1601 (bending strength of fine ceramics) using a sample piece (overall length 36 mm, width 4.0 mm, thickness 3.0 mm) cut from an oxide sintered body by wire electric discharge machining. It was measured according to the three-point bending strength measuring method in (Testing method).
 ここで、上述の実施例1~3および比較例1~3について、混合粉末の際に含有する各元素の原子比と、酸化物焼結体製造時の乾式混合の有無、焼成温度、酸化物焼結体の相対密度、比抵抗(バルク抵抗)および抗折強度の測定結果とを表1に示す。 Here, for Examples 1 to 3 and Comparative Examples 1 to 3 described above, the atomic ratio of each element contained in the mixed powder, the presence or absence of dry mixing during the production of the oxide sintered body, the firing temperature, the oxide Table 1 shows the relative density, specific resistance (bulk resistance), and bending strength measurement results of the sintered body.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3の酸化物焼結体は、相対密度がすべて97.0%以上であることがわかる。したがって、実施形態によれば、かかる酸化物焼結体をスパッタリングターゲットとして用いた場合に、DCスパッタリングの放電状態を安定させることができる。 It can be seen that the oxide sintered bodies of Examples 1 to 3 all have a relative density of 97.0% or more. Therefore, according to the embodiment, when such an oxide sintered body is used as a sputtering target, the discharge state of DC sputtering can be stabilized.
 また、実施例1~3の酸化物焼結体は、比抵抗がすべて40mΩcm以下であることがわかる。したがって、実施形態によれば、酸化物焼結体をスパッタリングターゲットとして用いた場合に、安価なDC電源を用いたスパッタリングが可能となり、成膜レートを向上させることができる。 It can also be seen that the oxide sintered bodies of Examples 1 to 3 all have a specific resistance of 40 mΩcm or less. Therefore, according to the embodiment, when an oxide sintered body is used as a sputtering target, sputtering using an inexpensive DC power source is possible, and the film formation rate can be improved.
 また、実施例1~3の酸化物焼結体は、抗折強度がすべて40MPa以上であることがわかる。したがって、実施形態によれば、かかる酸化物焼結体を用いてスパッタリングターゲットを製造する際や、かかるスパッタリングターゲットでスパッタリングを行う際に、酸化物焼結体が破損することを抑制することができる。 It can also be seen that the oxide sintered bodies of Examples 1 to 3 all have a bending strength of 40 MPa or more. Therefore, according to the embodiment, the oxide sintered body can be prevented from being damaged when the sputtering target is manufactured using the oxide sintered body or when sputtering is performed using the sputtering target. .
 つづいて、上記にて得られた実施例1~3および比較例1~3のスパッタリングターゲットの表面を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて観察するとともに、結晶の平均粒径の測定を行った。 Subsequently, the surfaces of the sputtering targets of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above were observed using a scanning electron microscope (SEM), and the average crystal grain size was measured. Was measured.
 具体的には、酸化物焼結体を切断して得られた切断面を、エメリー紙#180、#400、#800、#1000、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げた。 Specifically, the cut surface obtained by cutting the oxide sintered body is polished step by step using emery paper # 180, # 400, # 800, # 1000, # 2000, and finally buffed. And finished to a mirror surface.
 その後、40℃のエッチング液(硝酸(60~61%水溶液、関東化学(株)製)、塩酸(35.0~37.0%水溶液、関東化学(株)製)および純水を体積比でHCl:H2O:HNO3=1:1:0.08の割合で混合)に2分間浸漬してエッチングを行った。 Thereafter, an etching solution (nitric acid (60 to 61% aqueous solution, manufactured by Kanto Chemical Co., Ltd.), hydrochloric acid (35.0 to 37.0% aqueous solution, manufactured by Kanto Chemical Co., Ltd.) and pure water at a volume ratio of 40 ° C. Etching was performed by immersing in HCl: H2O: HNO3 = 1: 1: 0.08) for 2 minutes.
 そして、現れた面を走査型電子顕微鏡(SU3500、(株)日立ハイテクノロジーズ製)を用いて観察した。なお、平均粒径の測定では、倍率500倍、175μm×250μmの範囲のBSE-COMP像を無作為に10視野撮影し、組織のSEM画像を得た。 Then, the appearing surface was observed using a scanning electron microscope (SU3500, manufactured by Hitachi High-Technologies Corporation). In the measurement of the average particle diameter, BSE-COMP images with a magnification of 500 times and a range of 175 μm × 250 μm were randomly photographed in 10 fields to obtain an SEM image of the tissue.
 また、粒子解析には、アメリカ国立衛生研究所(NIH:National Institutes of Health)が提供する画像処理ソフトウェアImageJ 1.51k(http://imageJ.nih.gov/ij/)を用いた。 For the particle analysis, image processing software ImageJ 1.51k (http://imageJ.nih.gov/ij/) provided by the National Institutes of Health (NIH) was used.
 まず粒界に沿って描画を行い、全ての描画が完了した後、画像補正(Image→Adjust→Threshold)を行い、画像補正後に残ったノイズは、必要に応じて除去(Process→Noise→Despeckle)を行った。 First, draw along the grain boundary, and after all drawing is complete, perform image correction (Image → Adjust → Threshold), and remove noise remaining after image correction as needed (Process → Noise → Despeckle) Went.
 その後、粒子解析を実施(Analyze→Analyze Particles)して、各粒子における面積を得た後、面積円相当径を算出した。10視野において算出された全粒子の面積円相当径の平均値を、本発明における平均粒径とした。 Thereafter, particle analysis was performed (Analyze → Analyze Particles), and after obtaining the area of each particle, the area equivalent circle diameter was calculated. The average value of the area equivalent circle diameters of all particles calculated in 10 fields of view was defined as the average particle size in the present invention.
 図1および図2は、実施例1における酸化物焼結体のSEM画像である。なお、図1および図2において、黒色に見える部分は表面研磨による欠け部分である。図1および図2に示すように、実施例1の酸化物焼結体は、単相の結晶相で構成されていることがわかる。 1 and 2 are SEM images of the oxide sintered body in Example 1. FIG. In FIGS. 1 and 2, black portions are chipped portions due to surface polishing. As shown in FIGS. 1 and 2, it can be seen that the oxide sintered body of Example 1 is composed of a single-phase crystal phase.
 図3は、比較例2における酸化物焼結体のSEM画像である。なお、図3において、黒色に見える部分はインジウムが少なくなっている相(In poor相)である。図3に示すように、比較例2の酸化物焼結体は、複相の結晶相で構成されていることがわかる。 FIG. 3 is an SEM image of the oxide sintered body in Comparative Example 2. In FIG. 3, the portion that appears black is a phase in which indium is reduced (In poor phase). As shown in FIG. 3, it can be seen that the oxide sintered body of Comparative Example 2 is composed of a multiphase crystal phase.
 つづいて、上記にて得られた実施例1~3および比較例1~3の酸化物焼結体について、それぞれX線回折(X-Ray Diffraction:XRD)測定を行い、X線回折チャートを得た。 Subsequently, X-ray diffraction (XRD) measurement was performed on the oxide sintered bodies of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above to obtain an X-ray diffraction chart. It was.
 なお、かかるX線回折測定の具体的な測定条件は以下の通りであった。
・装置:SmartLab(株式会社リガク製、登録商標)
・線源:CuKα線
・管電圧:40kV
・管電流:30mA
・スキャン速度:5deg/min
・ステップ:0.02deg
・スキャン範囲:2θ=20度~70度
The specific measurement conditions for the X-ray diffraction measurement were as follows.
Apparatus: SmartLab (registered trademark, manufactured by Rigaku Corporation)
-Radiation source: CuKα line-Tube voltage: 40 kV
・ Tube current: 30mA
Scan speed: 5 deg / min
・ Step: 0.02deg
Scan range: 2θ = 20 ° to 70 °
 図4は、実施例1における酸化物焼結体のX線回折チャートである。図4に示すように、実施例1のX線回折チャートでは、回折角2θが20°~70°の範囲において、下記のA~Pの領域に回折ピークが観測される。
 A.24.5°~26.0°
 B.31.0°~32.5°
 C.32.5°~33.2°
 D.33.2°~34.0°
 E.34.5°~35.7°
 F.35.7°~37.0°
 G.38.0°~39.2°
 H.39.2°~40.5°
 I.43.0°~45.0°
 J.46.5°~48.5°
 K.55.5°~57.8°
 L.57.8°~59.5°
 M.59.5°~61.5°
 N.65.5°~68.0°
 O.68.0°~69.0°
 P.69.0°~70.0°
FIG. 4 is an X-ray diffraction chart of the oxide sintered body in Example 1. As shown in FIG. 4, in the X-ray diffraction chart of Example 1, diffraction peaks are observed in the following areas A to P when the diffraction angle 2θ is in the range of 20 ° to 70 °.
A. 24.5 ° to 26.0 °
B. 31.0 ° -32.5 °
C. 32.5 ° -33.2 °
D. 33.2 ° -34.0 °
E. 34.5 ° -35.7 °
F. 35.7 ° -37.0 °
G. 38.0 ° to 39.2 °
H. 39.2 ° ~ 40.5 °
I. 43.0 °-45.0 °
J. et al. 46.5 ° to 48.5 °
K. 55.5 ° -57.8 °
L. 57.8 ° to 59.5 °
M.M. 59.5 ° ~ 61.5 °
N. 65.5 ° -68.0 °
O. 68.0 °-69.0 °
P. 69.0 °-70.0 °
 上述のように、実施例1の酸化物焼結体は、単相の結晶相で構成されていることから、上記のA~Pの領域に観測される回折ピークは、かかる単相の結晶相に起因していることがわかる。換言すると、このX線回折測定で得られるチャートにより、実施例1の酸化物焼結体を構成する単相の結晶相の同定が可能である。 As described above, since the oxide sintered body of Example 1 is composed of a single-phase crystal phase, the diffraction peak observed in the above-described regions A to P is such a single-phase crystal phase. It turns out that it originates in. In other words, it is possible to identify the single-phase crystal phase constituting the oxide sintered body of Example 1 by using the chart obtained by the X-ray diffraction measurement.
 図5は、実施例1における酸化物焼結体のX線回折チャートと、InGaZnO、InGaZnOおよびGaZnOのX線回折チャートにおけるピーク位置とを比較する図である。 FIG. 5 is a diagram comparing the X-ray diffraction chart of the oxide sintered body in Example 1 and the peak positions in the X-ray diffraction charts of InGaZnO 4 , In 2 Ga 2 ZnO 7 and Ga 2 ZnO 4 .
 図5に示すように、実施例1の酸化物焼結体を構成する単相の結晶相は、既知の結晶相(ここでは、InGaZnO、InGaZnOおよびGaZnO)とは異なるピーク位置に回折ピークが観測されていることがわかる。ここで、「既知の結晶相」とは、「JCPDS(Joint Committee of Powder Diffraction Standards)カードにX線回折チャートのピーク位置が登録されている結晶相」という意味である。 As shown in FIG. 5, the single-phase crystal phase constituting the oxide sintered body of Example 1 is a known crystal phase (here, InGaZnO 4 , In 2 Ga 2 ZnO 7, and Ga 2 ZnO 4 ). It can be seen that diffraction peaks are observed at different peak positions. Here, the “known crystal phase” means “a crystal phase in which a peak position of an X-ray diffraction chart is registered in a JCPDS (Joint Committee of Powder Diffraction Standards) card”.
 すなわち、実施例1の酸化物焼結体を構成する単相の結晶相は、これまで知られていない結晶相であることがわかる。 That is, it can be seen that the single-phase crystal phase constituting the oxide sintered body of Example 1 is a crystal phase that has not been known so far.
 つづいて、上記にて得られた実施例1~3および比較例1~3のスパッタリングターゲットについて、それぞれ表面粗さの最大高さRyの測定を行った。具体的には、表面粗さ測定器(SJ-210/株式会社ミツトヨ製)を用いてスパッタリング面の最大高さRyを測定した。スパッタリング面の10個所を測定して、その最大値をそのスパッタリングターゲットの最大高さRyとした。測定結果を表2に示す。 Subsequently, the maximum height Ry of the surface roughness was measured for each of the sputtering targets of Examples 1 to 3 and Comparative Examples 1 to 3 obtained above. Specifically, the maximum height Ry of the sputtering surface was measured using a surface roughness measuring instrument (SJ-210 / manufactured by Mitutoyo Corporation). Ten locations on the sputtering surface were measured, and the maximum value was defined as the maximum height Ry of the sputtering target. The measurement results are shown in Table 2.
 つづいて、上記にて得られた実施例1~3および比較例1~3のスパッタリングターゲットにおいて、表面内の色差ΔEおよび深さ方向の色差ΔEの測定をそれぞれ行った。なお、「色差ΔE」とは、2つの色の違いを数値化した指標である。 Subsequently, in the sputtering target of Examples 1-3 and Comparative Examples 1 to 3 obtained in the above, the measurement of the color difference Delta] E * color difference Delta] E * and the depth direction of the surface was carried out, respectively. The “color difference ΔE * ” is an index obtained by quantifying the difference between two colors.
 かかる表面内の最大色差ΔEは、切削加工したスパッタリングターゲットの表面をx軸、y軸方向に50mm間隔で色差計(コミカミノルタ社製、色彩色差計CP-300)を用いて測定し、測定された各点のL値、a値およびb値をCIE1976空間で評価した。そして、測定された各点のうち2点のL値、a値およびb値の差分ΔL、Δa、Δbから、下記の式(11)より色差ΔEをすべての2点の組み合わせで求め、求められた複数の色差ΔEの最大値を表面内の最大色差ΔEとした。
 ΔE=((ΔL)+(Δa)+(Δb)1/2 ・・(11)
The maximum color difference ΔE * in the surface is measured by measuring the surface of the cut sputtering target with a color difference meter (manufactured by Comic Minolta, color difference meter CP-300) at intervals of 50 mm in the x-axis and y-axis directions. The L value, a value, and b value of each point were evaluated in the CIE 1976 space. Then, from each of the measured points, the difference ΔL, Δa, Δb between the L value, a value, and b value of the two points is used to obtain the color difference ΔE * by the combination of all two points from the following equation (11). The maximum value of the obtained plurality of color differences ΔE * was defined as the maximum color difference ΔE * within the surface.
ΔE * = ((ΔL) 2 + (Δa) 2 + (Δb) 2 ) 1/2 (11)
 また、深さ方向の最大色差ΔEは、切削加工したスパッタリングターゲットの任意の箇所において、0.5mmずつ切削加工し、スパッタリングターゲットの中央部までの各深さで色差計を用いて測定し、測定された各点のL値、a値およびb値をCIE1976空間で評価した。そして、測定された各点のうち2点のL値、a値およびb値の差分ΔL、Δa、Δbから色差ΔEをすべての2点の組み合わせで求め、求められた複数の色差ΔEの最大値を深さ方向の最大色差ΔEとした。 Moreover, the maximum color difference ΔE * in the depth direction is measured by using a color difference meter at each depth to the center of the sputtering target by cutting 0.5 mm at an arbitrary position of the cut sputtering target, The L value, a value, and b value of each measured point were evaluated in the CIE 1976 space. Then, a color difference ΔE * is obtained from a combination of all two points from the differences ΔL, Δa, Δb between the L value, a value, and b value of two measured points, and a plurality of obtained color differences ΔE * are obtained. The maximum value was defined as the maximum color difference ΔE * in the depth direction.
 ここでアーキング(異常放電)の発生量からターゲットの評価を行うため、実施例1~3および比較例1~3で得られたスパッタリングターゲットを、低融点半田であるインジウムを接合材として使用し、銅製の基材に接合した。 Here, in order to evaluate the target from the amount of arcing (abnormal discharge), the sputtering targets obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were used indium as a low melting point solder as a bonding material. Bonded to a copper substrate.
 つづいて、実施例1~3および比較例1~3のスパッタリングターゲットを用いてスパッタリングを行い、アーキング(異常放電)の発生量からターゲットの評価を行った。評価結果を表2に示す。
(アーキング評価)
 A:非常に少ない。
 B:多い。
 C:非常に多い。
Subsequently, sputtering was performed using the sputtering targets of Examples 1 to 3 and Comparative Examples 1 to 3, and the target was evaluated from the amount of arcing (abnormal discharge) generated. The evaluation results are shown in Table 2.
(Arking evaluation)
A: Very few.
B: Many.
C: Very many.
 ここで、上述の実施例1~3および比較例1~3について、混合粉末の際に含有する各元素の原子比と、スパッタリングターゲットに用いられる酸化物焼結体の結晶相、平均粒径、表面粗さの最大高さRy、面内方向の最大色差ΔE、深さ方向の最大色差ΔE、およびアーキング評価の測定結果とを表2に示す。 Here, for Examples 1 to 3 and Comparative Examples 1 to 3 described above, the atomic ratio of each element contained in the mixed powder, the crystal phase of the oxide sintered body used for the sputtering target, the average particle size, surface roughness maximum height Ry of the maximum color difference Delta] E * in the in-plane direction, the maximum color difference Delta] E * in the depth direction, and the measurement results of the arcing evaluation are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~3の酸化物焼結体は、結晶相がすべて単相で構成されていることがわかる。したがって、実施形態によれば、アーキング評価の結果からわかるように、かかる酸化物焼結体をスパッタリングターゲットに用いた場合に、スパッタリングを安定して行うことができる。 It can be seen that the oxide sintered bodies of Examples 1 to 3 are all composed of a single phase. Therefore, according to the embodiment, as can be seen from the results of arcing evaluation, when such an oxide sintered body is used as a sputtering target, sputtering can be performed stably.
 また、実施例1~3の酸化物焼結体は、平均粒径がすべて15.0μm以下であることがわかる。したがって、実施形態によれば、かかる酸化物焼結体を研削加工する際に、大きな結晶粒が表面からはがれることにより、表面が粗くなることを抑制することができる。 It can also be seen that the oxide sintered bodies of Examples 1 to 3 all have an average particle size of 15.0 μm or less. Therefore, according to the embodiment, when the oxide sintered body is ground, it is possible to prevent the surface from becoming rough due to peeling of large crystal grains from the surface.
 また、実施例1~3のスパッタリングターゲットは、酸化物焼結体の表面粗さの最大高さRyがすべて15.0μm以下であることがわかる。したがって、実施形態によれば、スパッタリングする際に、ターゲット表面でノジュールが発生することを抑制することができる。 It can also be seen that the sputtering targets of Examples 1 to 3 all have a maximum height Ry of the surface roughness of the oxide sintered body of 15.0 μm or less. Therefore, according to the embodiment, it is possible to suppress generation of nodules on the target surface during sputtering.
 実施例1~3のスパッタリングターゲットは、面内方向および深さ方向の最大色差ΔEが10以下であることがわかる。したがって、実施形態によれば、結晶粒径や組成に偏りがないためスパッタリングターゲットとして好適である。 It can be seen that in the sputtering targets of Examples 1 to 3, the maximum color difference ΔE * in the in-plane direction and the depth direction is 10 or less. Therefore, according to the embodiment, since there is no bias in the crystal grain size and composition, it is suitable as a sputtering target.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、実施形態では、板状の酸化物焼結体を用いてスパッタリングターゲットが作製された例について示したが、酸化物焼結体の形状は板状に限られず、円筒状など、どのような形状であってもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, A various change is possible unless it deviates from the meaning. For example, in the embodiment, an example in which a sputtering target is manufactured using a plate-shaped oxide sintered body has been described. However, the shape of the oxide sintered body is not limited to a plate shape, and may be any shape such as a cylindrical shape. It may be a shape.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Thus, the broader aspects of the present invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications can be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.

Claims (11)

  1.  インジウム、ガリウムおよび亜鉛を、以下の式(1)~(3)を満たす比率で含む酸化物焼結体であって、
     単相の結晶相で構成され、
     前記結晶相の平均粒径が15.0μm以下である酸化物焼結体。
     0.01≦In/(In+Ga+Zn)<0.20 ・・(1)
     0.10≦Ga/(In+Ga+Zn)≦0.49 ・・(2)
     0.50≦Zn/(In+Ga+Zn)≦0.89 ・・(3)
    An oxide sintered body containing indium, gallium and zinc in a ratio satisfying the following formulas (1) to (3):
    It consists of a single-phase crystal phase,
    An oxide sintered body having an average particle size of the crystal phase of 15.0 μm or less.
    0.01 ≦ In / (In + Ga + Zn) <0.20 (1)
    0.10 ≦ Ga / (In + Ga + Zn) ≦ 0.49 (2)
    0.50 ≦ Zn / (In + Ga + Zn) ≦ 0.89 (3)
  2.  インジウム、ガリウムおよび亜鉛を、以下の式(4)~(6)を満たす比率で含む請求項1に記載の酸化物焼結体。
     0.05≦In/(In+Ga+Zn)≦0.15 ・・(4)
     0.15≦Ga/(In+Ga+Zn)≦0.45 ・・(5)
     0.50≦Zn/(In+Ga+Zn)≦0.80 ・・(6)
    2. The oxide sintered body according to claim 1, comprising indium, gallium and zinc in a ratio satisfying the following formulas (4) to (6).
    0.05 ≦ In / (In + Ga + Zn) ≦ 0.15 (4)
    0.15 ≦ Ga / (In + Ga + Zn) ≦ 0.45 (5)
    0.50 ≦ Zn / (In + Ga + Zn) ≦ 0.80 (6)
  3.  インジウム、ガリウムおよび亜鉛を、以下の式(7)~(9)を満たす比率で含む請求項1または2に記載の酸化物焼結体。
     0.05≦In/(In+Ga+Zn)≦0.15 ・・(7)
     0.20≦Ga/(In+Ga+Zn)≦0.40 ・・(8)
     0.50≦Zn/(In+Ga+Zn)≦0.70 ・・(9)
    The oxide sintered body according to claim 1 or 2, comprising indium, gallium and zinc in a ratio satisfying the following formulas (7) to (9).
    0.05 ≦ In / (In + Ga + Zn) ≦ 0.15 (7)
    0.20 ≦ Ga / (In + Ga + Zn) ≦ 0.40 (8)
    0.50 ≦ Zn / (In + Ga + Zn) ≦ 0.70 (9)
  4.  前記結晶相は、X線回折測定(CuKα線)により得られるチャートにおいて、以下のA~Pの領域に回折ピークが観測される請求項1~3のいずれか一つに記載の酸化物焼結体。
     A.24.5°~26.0°
     B.31.0°~32.5°
     C.32.5°~33.2°
     D.33.2°~34.0°
     E.34.5°~35.7°
     F.35.7°~37.0°
     G.38.0°~39.2°
     H.39.2°~40.5°
     I.43.0°~45.0°
     J.46.5°~48.5°
     K.55.5°~57.8°
     L.57.8°~59.5°
     M.59.5°~61.5°
     N.65.5°~68.0°
     O.68.0°~69.0°
     P.69.0°~70.0°
    The oxide sintering according to any one of claims 1 to 3, wherein the crystal phase has a diffraction peak observed in the following regions A to P in a chart obtained by X-ray diffraction measurement (CuKα ray). body.
    A. 24.5 ° to 26.0 °
    B. 31.0 ° -32.5 °
    C. 32.5 ° -33.2 °
    D. 33.2 ° -34.0 °
    E. 34.5 ° -35.7 °
    F. 35.7 ° -37.0 °
    G. 38.0 ° to 39.2 °
    H. 39.2 ° ~ 40.5 °
    I. 43.0 °-45.0 °
    J. et al. 46.5 ° to 48.5 °
    K. 55.5 ° -57.8 °
    L. 57.8 ° to 59.5 °
    M.M. 59.5 ° ~ 61.5 °
    N. 65.5 ° -68.0 °
    O. 68.0 °-69.0 °
    P. 69.0 °-70.0 °
  5.  相対密度が97.0%以上である
     請求項1~4のいずれか一つに記載の酸化物焼結体。
    The oxide sintered body according to any one of claims 1 to 4, wherein the relative density is 97.0% or more.
  6.  抗折強度が40MPa以上である
     請求項1~5のいずれか一つに記載の酸化物焼結体。
    The oxide sintered body according to any one of claims 1 to 5, having a bending strength of 40 MPa or more.
  7.  比抵抗が40mΩcm以下である
     請求項1~6のいずれか一つに記載の酸化物焼結体。
    The oxide sintered body according to any one of claims 1 to 6, wherein the specific resistance is 40 mΩcm or less.
  8.  請求項1~7のいずれか一つに記載の酸化物焼結体からなるスパッタリングターゲット。 A sputtering target comprising the oxide sintered body according to any one of claims 1 to 7.
  9.  表面粗さの最大高さRyが15.0μm以下である
     請求項8に記載のスパッタリングターゲット。
    The sputtering target according to claim 8, wherein the maximum height Ry of the surface roughness is 15.0 μm or less.
  10.  色差ΔEが10以下である
     請求項8または9に記載のスパッタリングターゲット。
    The sputtering target according to claim 8 or 9, wherein the color difference ΔE * is 10 or less.
  11.  請求項8~10のいずれか一つに記載のスパッタリングターゲットをスパッタリングして成膜する、酸化物薄膜の製造方法。
     
    A method for producing an oxide thin film, comprising forming a film by sputtering the sputtering target according to any one of claims 8 to 10.
PCT/JP2018/032028 2018-04-18 2018-08-29 Oxide sintered body, sputtering target, and method for producing oxide thin film WO2019202753A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880041330.1A CN110770191B (en) 2018-04-18 2018-08-29 Oxide sintered body, sputtering target, and method for producing oxide thin film
KR1020197036451A KR102380914B1 (en) 2018-04-18 2018-08-29 Oxide sintered body, sputtering target and manufacturing method of oxide thin film
JP2019500522A JP6511209B1 (en) 2018-04-18 2018-08-29 Oxide sinter, sputtering target and method for producing oxide thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018080072 2018-04-18
JP2018-080072 2018-04-18

Publications (1)

Publication Number Publication Date
WO2019202753A1 true WO2019202753A1 (en) 2019-10-24

Family

ID=68239411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032028 WO2019202753A1 (en) 2018-04-18 2018-08-29 Oxide sintered body, sputtering target, and method for producing oxide thin film

Country Status (3)

Country Link
JP (1) JP6661041B2 (en)
TW (2) TWI679292B (en)
WO (1) WO2019202753A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860352A (en) * 1994-06-13 1996-03-05 Tosoh Corp Ito sputtering target
JP3644647B2 (en) * 1995-04-25 2005-05-11 Hoya株式会社 Conductive oxide and electrode using the same
WO2012017659A1 (en) * 2010-08-05 2012-02-09 三菱マテリアル株式会社 Method for producing sputtering target, and sputtering target
JP2013147423A (en) * 2008-06-06 2013-08-01 Idemitsu Kosan Co Ltd Sputtering target for oxide thin film and process for producing the same
JP2014040348A (en) * 2012-08-22 2014-03-06 Tosoh Corp Igzo sintered compact, method for producing the same, and sputtering target
JP2015024944A (en) * 2012-12-27 2015-02-05 東ソー株式会社 Oxide sintered body, sputtering target and method for producing the same
JP2015189630A (en) * 2014-03-28 2015-11-02 出光興産株式会社 oxide sintered body and sputtering target
JP2016098394A (en) * 2014-11-20 2016-05-30 Tdk株式会社 Sputtering target, transparent conductive oxide thin film, and conductive film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345952B2 (en) * 2007-12-27 2013-11-20 Jx日鉱日石金属株式会社 Method for producing a-IGZO oxide thin film
CN102016112B (en) * 2008-06-10 2012-08-08 Jx日矿日石金属株式会社 Sintered-oxide target for sputtering and process for producing the same
JP2013193945A (en) * 2012-03-22 2013-09-30 Sumitomo Metal Mining Co Ltd SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM
KR101644767B1 (en) * 2014-03-28 2016-08-01 제이엑스금속주식회사 Sintered oxide body and sputtering target comprising said sintered oxide body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860352A (en) * 1994-06-13 1996-03-05 Tosoh Corp Ito sputtering target
JP3644647B2 (en) * 1995-04-25 2005-05-11 Hoya株式会社 Conductive oxide and electrode using the same
JP2013147423A (en) * 2008-06-06 2013-08-01 Idemitsu Kosan Co Ltd Sputtering target for oxide thin film and process for producing the same
WO2012017659A1 (en) * 2010-08-05 2012-02-09 三菱マテリアル株式会社 Method for producing sputtering target, and sputtering target
JP2014040348A (en) * 2012-08-22 2014-03-06 Tosoh Corp Igzo sintered compact, method for producing the same, and sputtering target
JP2015024944A (en) * 2012-12-27 2015-02-05 東ソー株式会社 Oxide sintered body, sputtering target and method for producing the same
JP2015189630A (en) * 2014-03-28 2015-11-02 出光興産株式会社 oxide sintered body and sputtering target
JP2016098394A (en) * 2014-11-20 2016-05-30 Tdk株式会社 Sputtering target, transparent conductive oxide thin film, and conductive film

Also Published As

Publication number Publication date
JP6661041B2 (en) 2020-03-11
TW201943876A (en) 2019-11-16
TWI679292B (en) 2019-12-11
JP2019189517A (en) 2019-10-31
TWI755648B (en) 2022-02-21
TW202006162A (en) 2020-02-01

Similar Documents

Publication Publication Date Title
JP5237557B2 (en) Sputtering target and manufacturing method thereof
JP5237558B2 (en) Sputtering target and oxide semiconductor film
JP5883368B2 (en) Oxide sintered body and sputtering target
WO2014021334A1 (en) Sintered oxide body and sputtering target
EP3660183B1 (en) Potassium sodium niobate sputtering target and method for producing same
JP7218481B2 (en) Sputtering target material and oxide semiconductor
JP6511209B1 (en) Oxide sinter, sputtering target and method for producing oxide thin film
KR102099197B1 (en) Oxide sintered bodies and sputtering targets, and methods for manufacturing them
WO2019202753A1 (en) Oxide sintered body, sputtering target, and method for producing oxide thin film
JP6885038B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JP7282766B2 (en) Oxide sintered body and sputtering target
JPWO2020170950A1 (en) Oxide sintered body, sputtering target and manufacturing method of sputtering target
TWI725685B (en) Sintered body
JP6883431B2 (en) LiCoO2 sintered body and its manufacturing method
WO2019131876A1 (en) Oxide sintered compact, sputtering target and oxide thin film
JP2023067117A (en) IGZO sputtering target
WO2017119381A1 (en) Oxide sintered body, method for producing same and sputtering target
JP2019019402A (en) Sputtering target, production method of sputtering target, and production method of magnetic medium

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019500522

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915201

Country of ref document: EP

Kind code of ref document: A1