WO2017119381A1 - Oxide sintered body, method for producing same and sputtering target - Google Patents

Oxide sintered body, method for producing same and sputtering target Download PDF

Info

Publication number
WO2017119381A1
WO2017119381A1 PCT/JP2016/089029 JP2016089029W WO2017119381A1 WO 2017119381 A1 WO2017119381 A1 WO 2017119381A1 JP 2016089029 W JP2016089029 W JP 2016089029W WO 2017119381 A1 WO2017119381 A1 WO 2017119381A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide sintered
niobium
zinc
oxide
Prior art date
Application number
PCT/JP2016/089029
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤謙一
原浩之
原慎一
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016230493A external-priority patent/JP6885038B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to CN201680077981.7A priority Critical patent/CN108430949B/en
Priority to KR1020187019722A priority patent/KR102649404B1/en
Priority to US16/068,596 priority patent/US10669208B2/en
Publication of WO2017119381A1 publication Critical patent/WO2017119381A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to an oxide sintered body containing zinc, niobium, aluminum and oxygen as constituent elements and a sputtering target comprising the sintered body.
  • Niobium oxide target which is a general high refractive index material, cannot obtain the conductivity of the target capable of DC discharge in the atmospheric pressure sintering method, so by reducing the sintered body under high temperature and pressure conditions, The conductivity of the sintered body is increased (for example, see Patent Document 1).
  • composite oxide sintered bodies made of zinc, aluminum, and titanium have been reported as high refractive index targets (see, for example, Patent Document 3).
  • the zinc oxide target containing titanium achieves a high refractive index of 2.0 or more, and it is said that a complex oxide sintered body having a stable DC discharge performance with less arcing is obtained.
  • titanium has an extremely low film formation rate of half or less compared to niobium having the same high refractive index material, and there is a problem that a target containing titanium has low productivity of sputtering.
  • the sintered body obtained by mixing niobium oxide or titanium oxide and zinc oxide, which is a high refractive index material as described above, is an insulating material that is a composite oxide of a conductive phase mainly composed of zinc oxide, a high refractive index material and zinc oxide.
  • An object of the present invention is to provide an oxide sintered body used for a sputtering target capable of obtaining a high refractive index film having a high film formation rate without splashing from the target surface even during high power film formation. It is.
  • the present inventors have intensively studied a composite oxide sintered body composed of a ZnO phase and a Zn 3 Nb 2 O 8 phase.
  • the Zn 3 Nb 2 O 8 phase is a material with extremely low conductivity, and the bulk resistance of the single phase is 10 11 ⁇ ⁇ cm or more.
  • the ZnO phase exhibits slight conductivity due to oxygen deficiency or solid solution substitution of a small amount of niobium.
  • the present inventors lowered the resistance between the insulating Zn 3 Nb 2 O 8 phase and the conductive ZnO phase while lowering the resistance of the ZnO phase due to solid solution of aluminum.
  • the present invention resides in the following [1] to [8].
  • An oxide sintered body characterized by being: [2] The oxide sintered body according to [1], wherein the relative density is 98% or more.
  • [4] The oxide sintered body according to any one of [1] to [3], wherein the crystal grain size of the ZnO phase in the oxide sintered body is 3 ⁇ m or less.
  • [5] The oxide sintered body according to any one of [1] to [4], wherein the bulk resistance value is 100 ⁇ ⁇ cm or less.
  • [6] A sputtering target using the oxide sintered body according to any one of [1] to [5] as a target material.
  • the present invention provides an oxide sintered body having zinc, niobium, aluminum and oxygen as constituent elements.
  • the niobium contained in the oxide sintered body of the present invention has an atomic ratio of Nb / (Zn + Nb + Al) of 0.00 when the contents of the constituent elements zinc, niobium and aluminum are Zn, Nb and Al, respectively. It is 076 to 0.289, and preferably 0.135 to 0.230.
  • Nb / (Zn + Nb + Al) is less than 0.076, the refractive index of the film obtained by sputtering decreases, and when Nb / (Zn + Nb + Al) exceeds 0.289, the Zn 3 Nb 2 O 8 phase increases. And resistance becomes high.
  • the aluminum contained in the oxide sintered body has an atomic ratio of Al / (Zn + Nb + Al) of 0.006 to 0.031, preferably 0.013 to 0.025.
  • Al / (Zn + Nb + Al) is less than 0.006, the ZnAl 2 O 4 phase is not sufficiently formed, and splash is generated from the target surface during sputtering.
  • Al / (Zn + Nb + Al) exceeds 0.031, the transmittance on the low wavelength side of the thin film formed by sputtering is lowered, which is not preferable.
  • the oxide sintered body of the present invention is composed of three phases of a ZnO phase, a ZnAl 2 O 4 phase, and a Zn 3 Nb 2 O 8 phase if the constituent elements zinc, niobium, and aluminum are the compositions described above. Splash from the target surface during sputtering is suppressed, and excellent discharge characteristics are obtained.
  • the maximum intensity of a diffraction peak (corresponding to a ZnO phase) having an incident angle (2 ⁇ ) in X-ray diffraction between 35.9 ° and 36.5 ° is I 1 , 36.6 ° to 37.2 °.
  • the amount of metal elements (impurities) other than zinc, niobium, and aluminum is preferably 1 atm% or less, and more preferably 0.1 atm% or less.
  • the oxide sintered body of the present invention preferably has a relative density of 98% or more, more preferably 99% or more, and particularly preferably 100% or more.
  • each crystal phase ZnO phase, ZnAl 2 O 4 when assuming no solid solution).
  • Phase, Zn 3 Nb 2 O 8 phase weighted average. Therefore, the density of the sintered body may exceed the theoretical density defined by the present invention.
  • the density of the sintered body is preferably 5.57 g / cm 3 or more, more preferably 5.61 g / cm 3 or more, and particularly preferably further 5.70 g / cm 3 or more.
  • the average crystal grain size of the ZnO phase in the oxide sintered body is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and further 1.5 ⁇ m or less. Is particularly preferred. If the crystal grain size of the ZnO phase is too large, electric field concentration on the ZnO phase during sputtering becomes significant, ZnO is easily reduced, and splash is generated from the target surface.
  • the bulk resistance value is preferably 100 ⁇ ⁇ cm or less, and 50 ⁇ ⁇ cm. The following is more preferable.
  • the input load to the target is normalized by the power density (W / cm 2 ) obtained by dividing the input power by the target area.
  • the typical power density in normal production is about 1 to 4 W / cm 2 , but in the present invention, an oxide that becomes a high-quality target material with extremely little arcing even under high power conditions exceeding 4 W / cm 2 A sintered body is obtained.
  • the method for producing an oxide sintered body according to the present invention includes zinc oxide powder, niobium pentoxide powder and aluminum oxide as raw material powder, the atomic ratio of elements is the content of zinc, niobium and aluminum, respectively Zn, Nb and Al. After that, the mixture was mixed so that Nb / (Zn + Nb + Al) was 0.076 to 0.289 and Al / (Zn + Nb + Al) was 0.006 to 0.031, and molded using the obtained mixed powder. The obtained molded body is fired.
  • the raw material powder is preferably an oxide powder of zinc oxide, niobium pentoxide, and aluminum oxide powder in consideration of handleability.
  • the purity of each raw material powder is preferably 99.9% or more, more preferably 99.99% or more. If impurities are included, it causes abnormal grain growth in the firing process.
  • Nb / (Zn + Nb + Al) is 0. It is necessary to mix so that Al / (Zn + Nb + Al) is 0.006 to 0.031 and 0.06 to 0.289.
  • Nb / (Zn + Nb + Al) is more preferably 0.135 to 0.230
  • Al / (Zn + Nb + Al) is more preferably 0.013 to 0.025.
  • the ZnO powder is refined in the mixed powder as a raw material, and Nb 2 O 5 It is important to uniformly mix and pulverize the powder and the trace amount of Al 2 O 3 powder.
  • the BET value of the mixed powder before mixing is obtained from the weighted average according to the following calculation formula from the mixing ratio of each raw material powder.
  • the BET value of the ZnO powder used is BZ [m 2 / g]
  • the weight ratio is WZ [wt%]
  • the BET value of the Nb 2 O 5 powder is BN [m 2 / g]
  • the weight ratio is WN [wt%].
  • the weighted average of the BET values of the mixed powder is (BZ ⁇ WZ + BN ⁇ WN + BA ⁇ WA) / 100 is calculated.
  • the BET value of the mixed powder after mixing is preferably 6 m 2 / g or more, more preferably 7 m 2 / g or more, and further 10 m 2 / g. The above is particularly preferable.
  • the method for pulverizing and mixing the powder is not particularly limited as long as it can be sufficiently pulverized and mixed.
  • dry and wet media stirring mills using balls and beads such as zirconia, alumina, and nylon resin are not limited.
  • mixing methods such as media-less container rotating mixing and mechanical stirring mixing.
  • Specific examples include a ball mill, a bead mill, an attritor, a vibration mill, a planetary mill, a jet mill, a V-type mixer, a paddle type mixer, and a twin-shaft planetary agitation mixer.
  • a wet bead mill for example, a wet method capable of enhancing dispersibility and having a relatively high grinding ability.
  • the solid content concentration in the slurry is 35% to 65%, more preferably 50% to 60%. If the solid content concentration is too high, the pulverizing ability is lowered and the desired powder physical property value cannot be obtained.
  • zirconia beads are used for the grinding media, and the bead diameter is in the range of ⁇ 0.2 to 0.3 mm where the grinding power can be increased.
  • the amount of beads introduced into the mill is in the range of 75 to 90% as the bead filling rate relative to the mill volume.
  • the type of dispersant is not particularly limited, but it is important to keep the change in slurry viscosity below a certain level. Depending on the processing batch, the slurry viscosity may increase due to some factor even under the same conditions. In this case, by appropriately adjusting the amount of the dispersing agent and keeping the slurry viscosity within 500 to 2000 mPa ⁇ s, Stable powder physical properties can be obtained.
  • the slurry temperature also needs to be strictly controlled.
  • the mill inlet slurry temperature is controlled to 12 ° C. or lower, preferably 9 ° C. or lower, and constantly controlled so that the slurry outlet slurry temperature is 18 ° C. or lower.
  • the rotation speed of the beads is 6 to 15 m / sec as the peripheral speed at the outermost periphery of the bead stirring blade.
  • the peripheral speed is low, the pulverization force is weakened, and the processing time until the desired powder physical properties are reached becomes long, and the productivity is remarkably deteriorated.
  • the peripheral speed is high, the pulverization force is increased, but the heat generated by the pulverization increases, the slurry temperature rises and the operation becomes difficult.
  • the slurry after the wet mixing treatment can be used as it is in a wet molding method such as cast molding, but in the case of dry molding, the powder fluidity is high and the compact density is uniform. It is desirable to use a dry granulated powder. Although it does not limit about the granulation method, spray granulation, fluidized bed granulation, rolling granulation, stirring granulation, etc. can be used. In particular, it is desirable to use spray granulation which is easy to operate and can be processed in large quantities. In the molding process, molding aids such as polyvinyl alcohol, acrylic polymer, methylcellulose, waxes, and oleic acid may be added to the raw material powder.
  • the molding method is not particularly limited, and a molding method capable of molding the mixed powder obtained in the step (1) into a desired shape can be appropriately selected. Examples thereof include a press molding method, a casting molding method, and an injection molding method.
  • the molding pressure is not particularly limited as long as the molded body is free from cracks and the like and can be handled, and the molding density is preferably as high as possible. Therefore, it is also possible to use a method such as cold isostatic pressing (CIP) molding.
  • CIP pressure is preferably for 1 ton / cm 2 or more to obtain a sufficient consolidation effect, more preferably 2 ton / cm 2 or more, particularly preferably 2 ⁇ 3ton / cm 2.
  • the molded body obtained in the step (2) is fired.
  • a firing method capable of obtaining a high-density and uniform sintered body can be appropriately selected, and a general resistance heating type electric furnace, microwave heating furnace, or the like can be used.
  • the firing holding temperature is 1000 to 1300 ° C.
  • the holding time is preferably 0.5 to 10 hours, more preferably 1 to 5 hours.
  • the density of the sintered body decreases, which is not preferable.
  • the firing temperature is high and the holding time is long, crystal grains grow and cause microscopic segregation of each element, which is not preferable. If the crystal grain size of the ZnO phase is too large, electric field concentration on the ZnO phase during sputtering becomes remarkable, ZnO is easily reduced, and splash is generated from the target surface.
  • the firing atmosphere can be either an air atmosphere or an oxygen atmosphere which is an oxidizing atmosphere. Baking in an air atmosphere is possible without requiring special atmosphere control.
  • the oxide sintered body is composed of three phases of a ZnO phase, a ZnAl 2 O 4 phase, and a Zn 3 Nb 2 O 8 phase, and an incident angle (2 ⁇ ) in X-ray diffraction is
  • the maximum intensity of the diffraction peak (corresponding to the ZnO phase) existing between 35.9 ° and 36.5 ° is I 1 and exists between 36.6 ° and 37.2 ° (ZnAl 2 O 4 phase
  • the diffraction intensity ratio I 2 / I 1 is 0.03 or more when the maximum intensity of the diffraction peak is I 2 .
  • the obtained sintered body is formed into a desired shape such as a plate shape, a circular shape, or a cylindrical shape by using a machining machine such as a surface grinder, a cylindrical grinder, a lathe, a cutting machine, or a machining center. To grind. Furthermore, a sputtering target using the sintered body of the present invention as a target material is obtained by bonding (bonding) a backing plate made of oxygen-free copper, titanium, or the like to the backing tube or backing tube using indium solder or the like as necessary. Can do. In order to suppress arcing immediately after the start of use, the surface roughness (Ra) of the target is preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the contents of zinc, niobium and aluminum in the thin film containing zinc, niobium, aluminum and oxygen as the constituent elements are Zn, Nb and Al, respectively.
  • a thin film characterized by the above can be obtained.
  • Such a thin film has a high refractive index and can be suitably used as an insulating film.
  • the oxide sintered body of the present invention When used as a sputtering target, there is no splash from the target surface and stable DC discharge is possible even under high oxygen partial pressure sputtering conditions when high power is applied or arcing is likely to occur. Thus, an insulating film having a high film formation rate and a high refractive index can be obtained.
  • d (a + b + c) / ((a / 5.606) + (b / 5.734) + (c / 4.700)) (1)
  • the refractive index of the thin film sample obtained by the film formation evaluation was measured with a spectroscopic ellipsometer (trade name: M-2000V-Te, manufactured by JA Woollam), and the value at a wavelength of 550 nm was used. Using a photometer (trade name: U-4100, manufactured by Hitachi High-Technologies Corporation), the maximum value at a wavelength of 350 to 450 nm was measured as a value including the transmittance of the glass substrate.
  • the film formation rate was calculated by preparing a thin film sample formed for 30 minutes under sputtering conditions for film formation evaluation, and measuring the film thickness with a surface shape measuring instrument (trade name: Dektak 3030, manufactured by ULVAC).
  • Example 1 A zinc oxide powder having a BET value 3.8 m 2 / g, niobium oxide powder having a BET value 5.4 m 2 / g, and aluminum oxide powder having a BET value 12m 2 / g (all 99.9% or higher), Nb / (Zn + Nb + Al) was weighed to a ratio of 0.230 and Al / (Zn + Nb + Al) to a ratio of 0.020. The weighed powder was slurried with 10 kg of pure water, and 0.1 wt% of the polyacrylate dispersant was added to the total powder amount to prepare a slurry with a solid content concentration of 60%.
  • a bead mill with an internal volume of 2.5 L is filled with 85% ⁇ 0.3 mm zirconia beads, and the slurry is circulated in the mill at a mill peripheral speed of 7.0 m / sec and a slurry supply rate of 2.5 L / min. Processed. Further, the temperature was controlled within the range of 8-9 ° C. of the slurry supply tank and 14-16 ° C. of the slurry outlet temperature, and the circulation number (pass number) in the mill was 15 times.
  • the obtained slurry is spray-dried, and the dried powder is passed through a 150 ⁇ m sieve, and a molded body of 120 mm ⁇ 120 mm ⁇ 8 mmt is produced at a pressure of 300 kg / cm 2 by a press molding method, and then 2 ton / cm 2 . CIP-treated with pressure.
  • Examples 2 to 8, Comparative Examples 1 to 5 A sintered body was produced in the same manner as in Example 1 except that the composition was changed to the contents shown in Table 1 (in Example 7, the number of passes of the bead mill was changed to 10). In Comparative Examples 3 and 4, the bulk resistance of the sintered body was high and DC discharge was not possible. Table 1 shows the results of sputtering evaluation of the obtained sintered body and sputtering target.
  • Example 9 The same conditions as in Example 1 except that the grinding conditions of the bead mill and the firing conditions using a microwave (frequency: 2.45 GHz) heating-type firing furnace (furnace volume: 300 mm ⁇ 300 mm ⁇ 300 mm) were changed as follows.
  • the sintered body was produced by the method.
  • Table 1 shows the results of sputtering evaluation of the obtained sintered body and sputtering target.
  • Temperature rising rate 200 ° C. to 1250 ° C. 900 ° C./hr
  • Air temperature cooling rate Up to 950 ° C 400 ° C / hr 200 ° C./hr after 950 ° C.
  • Example 10 A sintered body was produced in the same manner as in Example 9 except that the firing temperature using the microwave heating furnace was 1150 ° C. Table 1 shows the results of sputtering evaluation of the obtained sintered body and sputtering target.
  • Example 11 Using a zinc oxide powder having a BET value 9.6 m 2 / g raw material powder, niobium oxide powder having a BET value 7.9 m 2 / g (all 99.9% or higher), the firing temperature using a microwave oven A sintered body was produced in the same manner as in Example 9 except that was set to 1100 ° C. Table 1 shows the results of sputtering evaluation of the obtained sintered body and sputtering target. (Measurement of thin film resistivity) The resistivity of the thin film obtained in each of Examples 1 to 11 was measured by a four-terminal method using a Loresta HP MCP-T410 (manufactured by Mitsubishi Yuka). All the thin film resistors were high resistance films of 10 8 ⁇ ⁇ cm or more.
  • the oxide sintered body according to the present invention is expected to be used for a sputtering target capable of obtaining a high refractive index film because it has a high film formation rate without splashing from the target surface even during high power film formation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Provided is an oxide sintered body that is used for a sputtering target which has high film formation rate and is free from a splash from the target surface even during the high-power film formation, and which enables the achievement of a film with a high refractive index. The present invention uses an oxide sintered body which contains, as constituent elements, zinc, niobium, aluminum and oxygen, and wherein if Zn, Nb and Al respectively represent the contents of zinc, niobium and aluminum, Zn, Nb and Al satisfy: Nb/(Zn + Nb + Al) = 0.076-0.289; and Al/(Zn + Nb + Al) = 0.006-0.031.

Description

酸化物焼結体、その製造方法及びスパッタリングターゲットOxide sintered body, manufacturing method thereof and sputtering target
 本発明は、亜鉛、ニオブ、アルミニウム及び酸素を構成元素とする酸化物焼結体及び当該焼結体を含んでなるスパッタリングターゲットに関するものである。 The present invention relates to an oxide sintered body containing zinc, niobium, aluminum and oxygen as constituent elements and a sputtering target comprising the sintered body.
 近年、携帯型ディスプレイや建材ガラスにおいて屈折率調整用として高屈折率膜が採用されつつある。高屈折率材料として一般的な酸化ニオブターゲットは、常圧焼結法ではDC放電が可能なターゲットの導電性が得られないため、高温、加圧条件下で焼結体を還元することにより、焼結体の導電性を高めている(例えば、特許文献1参照)。 In recent years, high refractive index films are being adopted for refractive index adjustment in portable displays and building glass. Niobium oxide target, which is a general high refractive index material, cannot obtain the conductivity of the target capable of DC discharge in the atmospheric pressure sintering method, so by reducing the sintered body under high temperature and pressure conditions, The conductivity of the sintered body is increased (for example, see Patent Document 1).
 また、酸化ニオブに亜鉛を添加することで、抵抗率が下がることも報告されている(例えば、特許文献2参照)。 It has also been reported that the resistivity decreases by adding zinc to niobium oxide (see, for example, Patent Document 2).
 しかしながら、いずれの方法もホットプレス法で製造しなければならないため、大型のターゲットの製造においては巨大なプレス機構が必要となるため、現実的なプロセスではなく、ターゲットサイズは小型品に限定されている。また、ホットプレス法は還元雰囲気下での焼結であるため、ターゲット内の酸素欠損量が多くなる傾向がある。酸素欠損量の多いターゲットでは、高い透過性を得るためにスパッタリング時にスパッタガスとして酸素を導入する必要があり、酸素の導入によって成膜レートが低下するという問題も生じている。 However, since both methods must be manufactured by the hot press method, a large press mechanism is required for manufacturing a large target, so this is not a realistic process, and the target size is limited to a small product. Yes. Moreover, since the hot press method is sintering in a reducing atmosphere, the amount of oxygen deficiency in the target tends to increase. In a target having a large amount of oxygen vacancies, it is necessary to introduce oxygen as a sputtering gas at the time of sputtering in order to obtain high permeability, and there is a problem that the film formation rate is lowered by the introduction of oxygen.
 また、高屈折率ターゲットとして、亜鉛、アルミニウム、チタンより成る複合酸化物焼結体も報告されている(例えば、特許文献3参照)。チタンを含有した酸化亜鉛系ターゲットは、屈折率2.0以上の高屈折率を実現すると共に、アーキング発生の少ない、安定なDC放電性能を有する複合酸化物焼結体が得られるとされている。しかし、チタンは同じ高屈折率材料のニオブと比べても、成膜レートが半分以下と極端に低く、チタンを含有するターゲットはスパッタリングの生産性が低いという問題があった。 Also, composite oxide sintered bodies made of zinc, aluminum, and titanium have been reported as high refractive index targets (see, for example, Patent Document 3). The zinc oxide target containing titanium achieves a high refractive index of 2.0 or more, and it is said that a complex oxide sintered body having a stable DC discharge performance with less arcing is obtained. . However, titanium has an extremely low film formation rate of half or less compared to niobium having the same high refractive index material, and there is a problem that a target containing titanium has low productivity of sputtering.
 また、近年では高パワー負荷を投入可能な円筒ターゲットの採用等が進んでおり、従来想定していなかった高パワーを投入した成膜が主流になりつつある。さらに、上記のような高屈折率材料の酸化ニオブや酸化チタンと酸化亜鉛の混合による焼結体は、酸化亜鉛を主体とする導電相と高屈折率材料と酸化亜鉛の複合酸化物である絶縁相の混合系でDC放電可能となるが、導電相と絶縁相が共存するため、スパッタ電流が導電相の酸化亜鉛に集中し、酸化亜鉛が還元され低融点の金属亜鉛がスプラッシュし、ターゲット表面に穴が開くとともに、パーティクルとなる問題があった。 Also, in recent years, the adoption of a cylindrical target capable of supplying a high power load is progressing, and film formation using a high power, which has not been assumed in the past, is becoming mainstream. Further, the sintered body obtained by mixing niobium oxide or titanium oxide and zinc oxide, which is a high refractive index material as described above, is an insulating material that is a composite oxide of a conductive phase mainly composed of zinc oxide, a high refractive index material and zinc oxide. DC discharge is possible in the mixed phase of the phase, but since the conductive phase and the insulating phase coexist, the sputtering current is concentrated on the zinc oxide of the conductive phase, the zinc oxide is reduced and the low melting metal zinc splashes, and the target surface There was a problem that a hole was formed in and a particle was formed.
日本国特開2005-256175号公報Japanese Unexamined Patent Publication No. 2005-256175 日本国特開2005-317093号公報Japanese Unexamined Patent Publication No. 2005-317093 日本国特開2009-298649号公報Japanese Unexamined Patent Publication No. 2009-298649
 本発明の目的は、高パワー成膜時においてもターゲット表面からのスプラッシュがなく高成膜レートであり、高屈折率膜を得ることができるスパッタリングターゲットに用いられる酸化物焼結体を提供することである。 An object of the present invention is to provide an oxide sintered body used for a sputtering target capable of obtaining a high refractive index film having a high film formation rate without splashing from the target surface even during high power film formation. It is.
 本発明者らは、ZnO相とZnNb相よりなる複合酸化物焼結体について鋭意検討を行った。複合酸化物を形成する結晶相の内、ZnNb相は導電性の極めて低い材料で、単相のバルク抵抗は1011Ω・cm以上である。一方、ZnO相は酸素欠損または微量のニオブの固溶置換により、僅かに導電性を示す。本発明者らは、Alを添加することで、アルミニウムの固溶によりZnO相の抵抗を下げつつ、絶縁性のZnNb相と導電性のZnO相の間の抵抗率を有するZnAl相(単相のバルク抵抗10Ω・cm)を析出させることにより得られた焼結体をスパッタリングターゲットとして用いることで、スパッタリング中のターゲット表面からのスプラッシュを抑制し、優れた放電特性を実現するに至った。 The present inventors have intensively studied a composite oxide sintered body composed of a ZnO phase and a Zn 3 Nb 2 O 8 phase. Of the crystal phases forming the composite oxide, the Zn 3 Nb 2 O 8 phase is a material with extremely low conductivity, and the bulk resistance of the single phase is 10 11 Ω · cm or more. On the other hand, the ZnO phase exhibits slight conductivity due to oxygen deficiency or solid solution substitution of a small amount of niobium. By adding Al 2 O 3 , the present inventors lowered the resistance between the insulating Zn 3 Nb 2 O 8 phase and the conductive ZnO phase while lowering the resistance of the ZnO phase due to solid solution of aluminum. By using a sintered body obtained by precipitating ZnAl 2 O 4 phase (single-phase bulk resistance 10 8 Ω · cm) having a sputtering target, the splash from the target surface during sputtering is suppressed, Excellent discharge characteristics have been achieved.
 すなわち、本発明は以下の[1]乃至[8]に存する。
[1]構成元素として、亜鉛、ニオブ、アルミニウム及び酸素を有する酸化物焼結体において、亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、
 Nb/(Zn+Nb+Al)=0.076~0.289
 Al/(Zn+Nb+Al)=0.006~0.031
であることを特徴とする酸化物焼結体。
[2]相対密度が98%以上であることを特徴とする[1]に記載の酸化物焼結体。
[3]密度が5.57g/cm以上であることを特徴とする[1]に記載の酸化物焼結体。
[4]酸化物焼結体中のZnO相の結晶粒径が3μm以下であることを特徴とする[1]~[3]のいずれかに記載の酸化物焼結体。
[5]バルク抵抗値が100Ω・cm以下であることを特徴とする[1]~[4]いずれかに記載の酸化物焼結体。
[6][1]~[5]のいずれかに記載の酸化物焼結体をターゲット材として用いることを特徴とするスパッタリングターゲット。
[7]酸化亜鉛粉末、酸化ニオブ粉末及び酸化アルミニウム粉末を原料粉末として、元素の原子比が、亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、
 Nb/(Zn+Nb+Al)=0.076~0.289
 Al/(Zn+Nb+Al)=0.006~0.031
となるように混合し、得られた混合粉末を用いて成形し、得られた成形体を焼成することを特徴とする酸化物焼結体の製造方法。
[8]構成元素として、亜鉛、ニオブ、アルミニウム及び酸素を有する薄膜において、亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、
 Nb/(Zn+Nb+Al)=0.076~0.289
 Al/(Zn+Nb+Al)=0.006~0.031
であることを特徴とする薄膜。
に関するものである。
That is, the present invention resides in the following [1] to [8].
[1] In an oxide sintered body having zinc, niobium, aluminum and oxygen as constituent elements, when the contents of zinc, niobium and aluminum are Zn, Nb and Al, respectively,
Nb / (Zn + Nb + Al) = 0.076 to 0.289
Al / (Zn + Nb + Al) = 0.006 to 0.031
An oxide sintered body characterized by being:
[2] The oxide sintered body according to [1], wherein the relative density is 98% or more.
[3] The oxide sintered body according to [1], wherein the density is 5.57 g / cm 3 or more.
[4] The oxide sintered body according to any one of [1] to [3], wherein the crystal grain size of the ZnO phase in the oxide sintered body is 3 μm or less.
[5] The oxide sintered body according to any one of [1] to [4], wherein the bulk resistance value is 100 Ω · cm or less.
[6] A sputtering target using the oxide sintered body according to any one of [1] to [5] as a target material.
[7] When zinc oxide powder, niobium oxide powder and aluminum oxide powder are used as raw material powder, and the atomic ratio of elements is zinc, niobium and aluminum content is Zn, Nb and Al, respectively,
Nb / (Zn + Nb + Al) = 0.076 to 0.289
Al / (Zn + Nb + Al) = 0.006 to 0.031
A method for producing an oxide sintered body, comprising: mixing so as to form, molding using the obtained mixed powder, and firing the obtained molded body.
[8] In a thin film containing zinc, niobium, aluminum and oxygen as constituent elements, when the contents of zinc, niobium and aluminum are Zn, Nb and Al, respectively,
Nb / (Zn + Nb + Al) = 0.076 to 0.289
Al / (Zn + Nb + Al) = 0.006 to 0.031
A thin film characterized by being
It is about.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明は、構成元素として、亜鉛、ニオブ、アルミニウム及び酸素を有する酸化物焼結体において、亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、
 Nb/(Zn+Nb+Al)=0.076~0.289
 Al/(Zn+Nb+Al)=0.006~0.031
であることを特徴とする酸化物焼結体である。
The present invention provides an oxide sintered body having zinc, niobium, aluminum and oxygen as constituent elements. When the contents of zinc, niobium and aluminum are Zn, Nb and Al, respectively,
Nb / (Zn + Nb + Al) = 0.076 to 0.289
Al / (Zn + Nb + Al) = 0.006 to 0.031
It is an oxide sintered body characterized by being.
 本発明の酸化物焼結体に含有されるニオブは、構成元素である亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、原子比でNb/(Zn+Nb+Al)が0.076~0.289であり、0.135~0.230であることが好ましい。Nb/(Zn+Nb+Al)が0.076未満だと、スパッタリングして得られる膜の屈折率が低下してしまい、Nb/(Zn+Nb+Al)が0.289を超えると、ZnNb相が増加し、抵抗が高くなってしまう。 The niobium contained in the oxide sintered body of the present invention has an atomic ratio of Nb / (Zn + Nb + Al) of 0.00 when the contents of the constituent elements zinc, niobium and aluminum are Zn, Nb and Al, respectively. It is 076 to 0.289, and preferably 0.135 to 0.230. When Nb / (Zn + Nb + Al) is less than 0.076, the refractive index of the film obtained by sputtering decreases, and when Nb / (Zn + Nb + Al) exceeds 0.289, the Zn 3 Nb 2 O 8 phase increases. And resistance becomes high.
 一方、酸化物焼結体に含有されるアルミニウムは、原子比でAl/(Zn+Nb+Al)が0.006~0.031であり、0.013~0.025であることが好ましい。Al/(Zn+Nb+Al)が0.006未満だと、ZnAl相が十分に形成されずスパッタリング時にターゲット表面からスプラッシュが発生してしまう。Al/(Zn+Nb+Al)が0.031を超えると、スパッタリング成膜された薄膜の低波長側の透過率が低くなってしまうために、好ましくない。 On the other hand, the aluminum contained in the oxide sintered body has an atomic ratio of Al / (Zn + Nb + Al) of 0.006 to 0.031, preferably 0.013 to 0.025. When Al / (Zn + Nb + Al) is less than 0.006, the ZnAl 2 O 4 phase is not sufficiently formed, and splash is generated from the target surface during sputtering. When Al / (Zn + Nb + Al) exceeds 0.031, the transmittance on the low wavelength side of the thin film formed by sputtering is lowered, which is not preferable.
 本発明の酸化物焼結体は、構成元素である亜鉛、ニオブ及びアルミニウムが上述した組成であれば、ZnO相、ZnAl相、ZnNb相の3相から構成され、スパッタリング中のターゲット表面からのスプラッシュを抑制し、優れた放電特性を有する。X線回折における入射角(2θ)が、35.9°~36.5°の間に存在する(ZnO相に相当する)回折ピークの最大強度をI、36.6°~37.2°の間に存在する(ZnAl相に相当する)回折ピークの最大強度をIとした時の、回折強度比I/Iの値が0.03以上であれば、ZnAl相が十分に形成されている。 The oxide sintered body of the present invention is composed of three phases of a ZnO phase, a ZnAl 2 O 4 phase, and a Zn 3 Nb 2 O 8 phase if the constituent elements zinc, niobium, and aluminum are the compositions described above. Splash from the target surface during sputtering is suppressed, and excellent discharge characteristics are obtained. The maximum intensity of a diffraction peak (corresponding to a ZnO phase) having an incident angle (2θ) in X-ray diffraction between 35.9 ° and 36.5 ° is I 1 , 36.6 ° to 37.2 °. exists between the long (ZnAl 2 corresponding to O 4 phase) when the maximum intensity of the diffraction peak was I 2, the value of the diffraction intensity ratio I 2 / I 1 is 0.03 or more, ZnAl 2 O Four phases are sufficiently formed.
 また、本発明の酸化物焼結体は、亜鉛、ニオブ、アルミニウム以外の金属元素(不純物)の量は1atm%以下であることが好ましく、0.1atm%以下であることがより好ましい。 In the oxide sintered body of the present invention, the amount of metal elements (impurities) other than zinc, niobium, and aluminum is preferably 1 atm% or less, and more preferably 0.1 atm% or less.
 本発明の酸化物焼結体は、相対密度が98%以上であることが好ましく、99%以上であることがより好ましく、さらに100%以上であることが特に好ましい。相対密度の算出に用いる理論密度は後述するが、各酸化物に対する各元素の固溶量の同定が困難なため、固溶が無いと仮定したときの各結晶相(ZnO相、ZnAl相、ZnNb相)の密度の加重平均を用いた。したがって、焼結体の密度が本発明の規定する理論密度を超える場合がある。本材料では、相対密度が98%未満であると、スパッタリングターゲットとして用いた場合にアーキングの発生により、酸化亜鉛が還元されスプラッシュが起き易くなる傾向がある。焼結体の密度としては、5.57g/cm以上であることが好ましく、5.61g/cm以上であることがより好ましく、さらに5.70g/cm以上であることが特に好ましい。 The oxide sintered body of the present invention preferably has a relative density of 98% or more, more preferably 99% or more, and particularly preferably 100% or more. Although the theoretical density used for calculating the relative density will be described later, since it is difficult to identify the solid solution amount of each element with respect to each oxide, each crystal phase (ZnO phase, ZnAl 2 O 4 when assuming no solid solution). Phase, Zn 3 Nb 2 O 8 phase) weighted average. Therefore, the density of the sintered body may exceed the theoretical density defined by the present invention. In this material, when the relative density is less than 98%, zinc oxide tends to be reduced due to arcing when it is used as a sputtering target, and splash tends to occur. The density of the sintered body, is preferably 5.57 g / cm 3 or more, more preferably 5.61 g / cm 3 or more, and particularly preferably further 5.70 g / cm 3 or more.
 本発明の酸化物焼結体は、酸化物焼結体中のZnO相の平均結晶粒径が3μm以下であることが好ましく、2μm以下であることがより好ましく、さらに1.5μm以下であることが特に好ましい。ZnO相の結晶粒径が大きすぎると、スパッタリング中のZnO相への電界集中が顕著となり、ZnOが還元され易く、ターゲット表面からスプラッシュが発生してしまう。 In the oxide sintered body of the present invention, the average crystal grain size of the ZnO phase in the oxide sintered body is preferably 3 μm or less, more preferably 2 μm or less, and further 1.5 μm or less. Is particularly preferred. If the crystal grain size of the ZnO phase is too large, electric field concentration on the ZnO phase during sputtering becomes significant, ZnO is easily reduced, and splash is generated from the target surface.
 本発明の酸化物焼結体は、スパッタリングターゲットとして使用する場合、成膜レートの低下がなく安定的にDC放電を行えるため、バルク抵抗値が100Ω・cm以下であることが好ましく、50Ω・cm以下であることがより好ましい。 When the oxide sintered body of the present invention is used as a sputtering target, since the DC discharge can be stably performed without lowering the film formation rate, the bulk resistance value is preferably 100 Ω · cm or less, and 50 Ω · cm. The following is more preferable.
 ターゲットへの投入負荷は、投入電力をターゲット面積で割った電力密度(W/cm)で規格化される。通常生産における一般的な電力密度は1~4W/cm程度であるが、本発明においては4W/cmを超える高パワー条件においてもアーキング発生の極めて少ない、高品質なターゲット材料となる酸化物焼結体が得られる。 The input load to the target is normalized by the power density (W / cm 2 ) obtained by dividing the input power by the target area. The typical power density in normal production is about 1 to 4 W / cm 2 , but in the present invention, an oxide that becomes a high-quality target material with extremely little arcing even under high power conditions exceeding 4 W / cm 2 A sintered body is obtained.
 次に、本発明の酸化物焼結体の製造方法について説明する。 Next, a method for manufacturing the oxide sintered body of the present invention will be described.
 本発明の酸化物焼結体の製造方法は、酸化亜鉛粉末、五酸化ニオブ粉末及び酸化アルミニウムを原料粉末として、元素の原子比が、亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、Nb/(Zn+Nb+Al)が0.076~0.289、Al/(Zn+Nb+Al)が0.006~0.031となるように混合し、得られた混合粉末を用いて成形した後、得られた成形体を焼成することを特徴とする。 The method for producing an oxide sintered body according to the present invention includes zinc oxide powder, niobium pentoxide powder and aluminum oxide as raw material powder, the atomic ratio of elements is the content of zinc, niobium and aluminum, respectively Zn, Nb and Al. After that, the mixture was mixed so that Nb / (Zn + Nb + Al) was 0.076 to 0.289 and Al / (Zn + Nb + Al) was 0.006 to 0.031, and molded using the obtained mixed powder. The obtained molded body is fired.
 以下、本発明の酸化物焼結体の製造方法について、工程毎に説明する。 Hereinafter, the manufacturing method of the oxide sintered body of the present invention will be described for each step.
 (1)原料混合工程
 原料粉末は、取り扱い性を考慮すると酸化亜鉛、五酸化ニオブ及び酸化アルミニウム粉末の各酸化物粉末が好ましい。各原料粉末の純度は99.9%以上が好ましく、より好ましくは99.99%以上である。不純物が含まれると、焼成工程における異常粒成長の原因となる。
(1) Raw material mixing step The raw material powder is preferably an oxide powder of zinc oxide, niobium pentoxide, and aluminum oxide powder in consideration of handleability. The purity of each raw material powder is preferably 99.9% or more, more preferably 99.99% or more. If impurities are included, it causes abnormal grain growth in the firing process.
 本工程において、酸化亜鉛粉末、五酸化ニオブ粉末及び酸化アルミニウム粉末を、元素の原子比が亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、Nb/(Zn+Nb+Al)が0.076~0.289、Al/(Zn+Nb+Al)が0.006~0.031となるように混合する必要がある。ニオブに関しては、Nb/(Zn+Nb+Al)が0.135~0.230であることがより好ましく、アルミニウムに関しては、Al/(Zn+Nb+Al)が0.013~0.025であることがより好ましい。 In this step, when the zinc oxide powder, niobium pentoxide powder and aluminum oxide powder have an atomic ratio of zinc, niobium and aluminum of Zn, Nb and Al, respectively, Nb / (Zn + Nb + Al) is 0. It is necessary to mix so that Al / (Zn + Nb + Al) is 0.006 to 0.031 and 0.06 to 0.289. For niobium, Nb / (Zn + Nb + Al) is more preferably 0.135 to 0.230, and for aluminum, Al / (Zn + Nb + Al) is more preferably 0.013 to 0.025.
 本発明の酸化物焼結体は、ZnO相の結晶粒径を小さく、かつ焼結体中に均一分散させる必要があるため、原料である混合粉末において、ZnO粉末を微細化し、Nb粉末と微量添加のAl粉末とを均一に混合・粉砕することが重要となる。混合の目安としては、混合前後の混合粉末のBET値の増加量が、2m/g以上となることが好ましく、3m/g以上であることがより好ましく、さらに6m/g以上であることが特に好ましい。BET値の増加量が2m/g未満である場合、混合が十分でなく各元素の偏析が発生する可能性がある。混合前の混合粉末のBET値は、各原料粉末の混合比から下記計算式による加重平均より求める。使用するZnO粉末のBET値をBZ[m/g]、重量比をWZ[wt%]、Nb粉末のBET値をBN[m/g]、重量比をWN[wt%]、Al粉末のBET値をBA[m/g]、重量比をWA[wt%]としたとき、混合粉末のBET値の加重平均は、(BZ×WZ+BN×WN+BA×WA)/100で算出される。 Since the oxide sintered body of the present invention has a small crystal grain size of the ZnO phase and needs to be uniformly dispersed in the sintered body, the ZnO powder is refined in the mixed powder as a raw material, and Nb 2 O 5 It is important to uniformly mix and pulverize the powder and the trace amount of Al 2 O 3 powder. The measure of mixture, the amount of increase in BET value of the mixed powder before and after mixing, it is preferable that the 2m 2 / g or more, more preferably 3m 2 / g or more, is further 6 m 2 / g or more It is particularly preferred. When the increase amount of the BET value is less than 2 m 2 / g, mixing is not sufficient and segregation of each element may occur. The BET value of the mixed powder before mixing is obtained from the weighted average according to the following calculation formula from the mixing ratio of each raw material powder. The BET value of the ZnO powder used is BZ [m 2 / g], the weight ratio is WZ [wt%], the BET value of the Nb 2 O 5 powder is BN [m 2 / g], and the weight ratio is WN [wt%]. When the BET value of the Al 2 O 3 powder is BA [m 2 / g] and the weight ratio is WA [wt%], the weighted average of the BET values of the mixed powder is (BZ × WZ + BN × WN + BA × WA) / 100 is calculated.
 さらに、高密度焼結体を得るために、混合後の混合粉末のBET値は、6m/g以上であることが好ましく、7m/g以上であることがより好ましく、さらに10m/g以上であることが特に好ましい。 Furthermore, in order to obtain a high-density sintered body, the BET value of the mixed powder after mixing is preferably 6 m 2 / g or more, more preferably 7 m 2 / g or more, and further 10 m 2 / g. The above is particularly preferable.
 上記粉末の粉砕・混合方法は、十分に粉砕・混合可能であれば、特に限定されるものではないが、ジルコニア、アルミナ、ナイロン樹脂等のボールやビーズを用いた乾式、湿式のメディア撹拌型ミルやメディアレスの容器回転式混合、機械撹拌式混合等の混合方法が例示される。具体的には、ボールミル、ビーズミル、アトライタ、振動ミル、遊星ミル、ジェットミル、V型混合機、パドル式混合機、二軸遊星撹拌式混合機等が挙げられるが、容易に粉砕・混合を行うためには、分散性を高められる湿式法で、比較的粉砕能力が高い、例えば、湿式ビーズミルを用いることが好適である。 The method for pulverizing and mixing the powder is not particularly limited as long as it can be sufficiently pulverized and mixed. However, dry and wet media stirring mills using balls and beads such as zirconia, alumina, and nylon resin are not limited. And mixing methods such as media-less container rotating mixing and mechanical stirring mixing. Specific examples include a ball mill, a bead mill, an attritor, a vibration mill, a planetary mill, a jet mill, a V-type mixer, a paddle type mixer, and a twin-shaft planetary agitation mixer. For this purpose, it is preferable to use a wet bead mill, for example, a wet method capable of enhancing dispersibility and having a relatively high grinding ability.
 湿式ビーズミル装置にて粉末を処理する場合、下記の条件で行うことが好ましい。 When processing powder with a wet bead mill apparatus, it is preferable to carry out under the following conditions.
 スラリー中の固形分濃度は35%~65%、より好ましくは50%~60%とする。固形分濃度が高くなり過ぎると粉砕能力が低下し、所望する粉末物性値が得られない。粉砕メディアは、摩耗による原料への不純物混入防止も考慮し、ジルコニアビーズを用い、ビーズ径は粉砕力が高められるφ0.2~0.3mmの範囲内とする。ミルに投入するビーズ量は、ミル容積に対するビーズ充填率として75~90%の範囲とする。 The solid content concentration in the slurry is 35% to 65%, more preferably 50% to 60%. If the solid content concentration is too high, the pulverizing ability is lowered and the desired powder physical property value cannot be obtained. In consideration of prevention of impurities from being mixed into the raw material due to abrasion, zirconia beads are used for the grinding media, and the bead diameter is in the range of φ0.2 to 0.3 mm where the grinding power can be increased. The amount of beads introduced into the mill is in the range of 75 to 90% as the bead filling rate relative to the mill volume.
 分散剤の種類は特に問わないが、スラリー粘度の変化を一定以下に抑えることが重要である。処理のバッチによっては同一条件であってもスラリー粘度が何らかの要因によって上昇することがあるが、この場合は分散剤量を適宜調整し、スラリー粘度を常に500~2000mPa・s以内とすることで、安定した粉末物性を得ることができる。スラリー温度も厳密に管理する必要があり、ミル入口スラリー温度を12℃以下、好ましくは9℃以下に管理すると共に、ミル出口のスラリー温度を18℃以下となるように常時管理する。 The type of dispersant is not particularly limited, but it is important to keep the change in slurry viscosity below a certain level. Depending on the processing batch, the slurry viscosity may increase due to some factor even under the same conditions. In this case, by appropriately adjusting the amount of the dispersing agent and keeping the slurry viscosity within 500 to 2000 mPa · s, Stable powder physical properties can be obtained. The slurry temperature also needs to be strictly controlled. The mill inlet slurry temperature is controlled to 12 ° C. or lower, preferably 9 ° C. or lower, and constantly controlled so that the slurry outlet slurry temperature is 18 ° C. or lower.
 ビーズの回転数は、ビーズ撹拌羽の最外周における周速として6~15m/secとする。周速が小さいと粉砕力が弱まり、目的とする粉末物性に到達するまでの処理時間が長くなり生産性が著しく劣る。一方、周速が大きいと粉砕力は強まるが、粉砕に伴う発熱が多くなり、スラリー温度が上昇し運転が困難となるため、好ましくない。 The rotation speed of the beads is 6 to 15 m / sec as the peripheral speed at the outermost periphery of the bead stirring blade. When the peripheral speed is low, the pulverization force is weakened, and the processing time until the desired powder physical properties are reached becomes long, and the productivity is remarkably deteriorated. On the other hand, if the peripheral speed is high, the pulverization force is increased, but the heat generated by the pulverization increases, the slurry temperature rises and the operation becomes difficult.
 上記条件を踏まえ、ビーズミルの運転条件を調整する。高BETの原料粉末を用いた場合であっても、原料粉末の分散性を考慮して、少なくともミル内への粉砕パス回数を10回以上の処理回数となる処理時間とすることが好ましい。 ∙ Adjust the operation conditions of the bead mill based on the above conditions. Even when a high BET raw material powder is used, in consideration of the dispersibility of the raw material powder, it is preferable that at least the number of pulverization passes into the mill is set to a processing time of 10 times or more.
 湿式混合処理を行った後のスラリーは、鋳込み成形等の湿式成形方法では、スラリーをそのまま用いることが可能であるが、乾式で成形する場合には、粉末の流動性が高く成形体密度が均一となる乾燥造粒粉末を用いるのが望ましい。造粒方法については限定しないが、噴霧造粒、流動層造粒、転動造粒、撹拌造粒などが使用できる。特に、操作が容易で、多量に処理できる噴霧造粒を用いることが望ましい。なお、成形処理に際しては、ポリビニルアルコール、アクリル系ポリマー、メチルセルロース、ワックス類、オレイン酸等の成形助剤を原料粉末に添加しても良い。 The slurry after the wet mixing treatment can be used as it is in a wet molding method such as cast molding, but in the case of dry molding, the powder fluidity is high and the compact density is uniform. It is desirable to use a dry granulated powder. Although it does not limit about the granulation method, spray granulation, fluidized bed granulation, rolling granulation, stirring granulation, etc. can be used. In particular, it is desirable to use spray granulation which is easy to operate and can be processed in large quantities. In the molding process, molding aids such as polyvinyl alcohol, acrylic polymer, methylcellulose, waxes, and oleic acid may be added to the raw material powder.
 (2)成形工程
 成形方法は、(1)工程で得られた混合粉末を目的とした形状に成形できる成形方法を適宜選択することが可能であり、特に限定されるものではない。プレス成形法、鋳込み成形法、射出成形法等が例示できる。
(2) Molding step The molding method is not particularly limited, and a molding method capable of molding the mixed powder obtained in the step (1) into a desired shape can be appropriately selected. Examples thereof include a press molding method, a casting molding method, and an injection molding method.
 成形圧力は成形体にクラック等の発生がなく、取り扱いが可能な成形体が得られる圧力であれば特に限定されるものではないが、成形密度は可能な限り高めた方が好ましい。そのために冷間静水圧プレス(CIP)成形等の方法を用いることも可能である。CIP圧力は充分な圧密効果を得るため1ton/cm以上が好ましく、さらに好ましくは2ton/cm以上、特に好ましくは2~3ton/cmである。 The molding pressure is not particularly limited as long as the molded body is free from cracks and the like and can be handled, and the molding density is preferably as high as possible. Therefore, it is also possible to use a method such as cold isostatic pressing (CIP) molding. CIP pressure is preferably for 1 ton / cm 2 or more to obtain a sufficient consolidation effect, more preferably 2 ton / cm 2 or more, particularly preferably 2 ~ 3ton / cm 2.
 (3)焼成工程
 次に、(2)工程で得られた成形体を焼成する。焼成は、高密度で均一な焼結体が得られる焼成方法を適宜選択することが可能であり、一般的な抵抗加熱式の電気炉やマイクロ波加熱炉等を使用することができる。
(3) Firing step Next, the molded body obtained in the step (2) is fired. For firing, a firing method capable of obtaining a high-density and uniform sintered body can be appropriately selected, and a general resistance heating type electric furnace, microwave heating furnace, or the like can be used.
 焼成条件としては、例えば、焼成保持温度は1000~1300℃で、保持時間は0.5~10時間が好ましく、より好ましくは1~5時間である。焼成温度が低く、保持時間が短い場合、焼結体の密度が低下するため、好ましくない。一方、焼成温度が高く、保持時間が長い場合、結晶粒子が成長し各元素の微視的な偏析の原因となるため、好ましくない。ZnO相の結晶粒径が大きすぎると、スパッタリング中のZnO相への電界集中が顕著となり、ZnOが還元され易くなり、ターゲット表面からスプラッシュが発生してしまう。焼成雰囲気は、酸化性雰囲気である大気雰囲気または酸素雰囲気いずれも可能である。特別な雰囲気制御を必要とせず、大気雰囲気中での焼成が可能である。 As the firing conditions, for example, the firing holding temperature is 1000 to 1300 ° C., and the holding time is preferably 0.5 to 10 hours, more preferably 1 to 5 hours. When the firing temperature is low and the holding time is short, the density of the sintered body decreases, which is not preferable. On the other hand, when the firing temperature is high and the holding time is long, crystal grains grow and cause microscopic segregation of each element, which is not preferable. If the crystal grain size of the ZnO phase is too large, electric field concentration on the ZnO phase during sputtering becomes remarkable, ZnO is easily reduced, and splash is generated from the target surface. The firing atmosphere can be either an air atmosphere or an oxygen atmosphere which is an oxidizing atmosphere. Baking in an air atmosphere is possible without requiring special atmosphere control.
 上述の焼成条件で焼成を行えば、酸化物焼結体はZnO相、ZnAl相及びZnNb相の3相で構成され、X線回折における入射角(2θ)が、35.9°~36.5°の間に存在する(ZnO相に相当する)回折ピークの最大強度をI、36.6°~37.2°の間に存在する(ZnAl相に相当する)回折ピークの最大強度をIとした時の、回折強度比I/Iの値が0.03以上となる。 If firing is performed under the above firing conditions, the oxide sintered body is composed of three phases of a ZnO phase, a ZnAl 2 O 4 phase, and a Zn 3 Nb 2 O 8 phase, and an incident angle (2θ) in X-ray diffraction is The maximum intensity of the diffraction peak (corresponding to the ZnO phase) existing between 35.9 ° and 36.5 ° is I 1 and exists between 36.6 ° and 37.2 ° (ZnAl 2 O 4 phase The diffraction intensity ratio I 2 / I 1 is 0.03 or more when the maximum intensity of the diffraction peak is I 2 .
 (4)ターゲット化工程
 得られた焼結体は、平面研削盤、円筒研削盤、旋盤、切断機、マシニングセンター等の機械加工機を用いて、板状、円状、円筒状等の所望の形状に研削加工する。さらに、必要に応じて無酸素銅やチタン等からなるバッキングプレート、バッキングチューブにインジウム半田等を用いて接合(ボンディング)することにより、本発明の焼結体をターゲット材としたスパッタリングターゲットを得ることができる。使用開始直後のアーキングを抑制するために、ターゲットの表面粗さ(Ra)は1μm以下であることが好ましく、0.5μm以下であることがより好ましい。
(4) Targeting process The obtained sintered body is formed into a desired shape such as a plate shape, a circular shape, or a cylindrical shape by using a machining machine such as a surface grinder, a cylindrical grinder, a lathe, a cutting machine, or a machining center. To grind. Furthermore, a sputtering target using the sintered body of the present invention as a target material is obtained by bonding (bonding) a backing plate made of oxygen-free copper, titanium, or the like to the backing tube or backing tube using indium solder or the like as necessary. Can do. In order to suppress arcing immediately after the start of use, the surface roughness (Ra) of the target is preferably 1 μm or less, and more preferably 0.5 μm or less.
 上述したスパッタリングターゲットを用いて成膜すれば、構成元素として、亜鉛、ニオブ、アルミニウム及び酸素を有する薄膜において、亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、
 Nb/(Zn+Nb+Al)=0.076~0.289
 Al/(Zn+Nb+Al)=0.006~0.031
であることを特徴とする薄膜が得られる。このような薄膜は高屈折率であり、絶縁膜として好適に用いることができる。
If a film is formed using the above-described sputtering target, the contents of zinc, niobium and aluminum in the thin film containing zinc, niobium, aluminum and oxygen as the constituent elements are Zn, Nb and Al, respectively.
Nb / (Zn + Nb + Al) = 0.076 to 0.289
Al / (Zn + Nb + Al) = 0.006 to 0.031
A thin film characterized by the above can be obtained. Such a thin film has a high refractive index and can be suitably used as an insulating film.
 本発明の酸化物焼結体は、スパッタリングターゲットとして使用した場合、高パワー投入時やアーキングが起き易い高酸素分圧のスパッタ条件においても、ターゲット表面からのスプラッシュがなく、安定したDC放電が可能で、高成膜レートであり、高屈折率の絶縁膜を得ることができる。 When the oxide sintered body of the present invention is used as a sputtering target, there is no splash from the target surface and stable DC discharge is possible even under high oxygen partial pressure sputtering conditions when high power is applied or arcing is likely to occur. Thus, an insulating film having a high film formation rate and a high refractive index can be obtained.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。なお、本実施例における各測定は以下のように行った。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In addition, each measurement in a present Example was performed as follows.
 (1)焼結体の密度
 焼結体の相対密度は、JIS R 1634に準拠して、アルキメデス法によりかさ密度を測定し、理論密度で割って相対密度を求めた。焼結体の理論密度は、焼結体中のNb相がすべてZnNb相として反応し、Al相がすべてZnAl相として反応したと仮定し計算したときのZnO相の重量a[g]、ZnNb相の重量b[g]及びZnAl相の重量c[g]と、それぞれの真密度5.606[g/cm]、5.734[g/cm]及び4.700[g/cm]を用いて、下記式で表される加重平均より算出した。
d=(a+b+c)/((a/5.606)+(b/5.734)+(c/4.700))・・・(1)
 (2)X線回折試験
 鏡面研磨した焼結体試料の2θ=20~70°の範囲のX線回折パターンを測定した。
走査方法 :ステップスキャン法(FT法)
X線源  :CuKα
パワー  :40kV、40mA
ステップ幅:0.01°
 (3)結晶粒径
 鏡面研磨し、EPMAによる組成分析によりZnO相と、ZnNb相、ZnAl相を同定した後、SEM像から直径法でZnO相の結晶粒径を測定した。サンプルは任意の3点以上を観察し、各々300個以上の粒子の測定を行った。また、酸によるケミカルエッチングを併せて行うと、粒界識別が容易である。
(EPMA分析条件)
装置   :波長分散型電子線マイクロアナライザー
加速電圧 :15kV
照射電流 :30nA
 (4)抵抗率の測定
 焼成後の焼結体表面より1mm以上研削した後の任意の部分より切り出した10サンプルの平均値を測定データとした。
試料サイズ:10mm×20mm×1mm
測定方法 :4端子法
測定装置 :ロレスタHP MCP-T410(三菱油化製)
 (5)スパッタリング評価
 得られた焼結体を101.6mmΦ×6mmtに加工した後、無酸素銅製のバッキングプレートにインジウムハンダによりボンディングしてスパッタリングターゲットとした。このターゲットを用いて下記の条件で、成膜評価した後、DC放電の安定性評価を行なった。
(1) Density of Sintered Body The relative density of the sintered body was determined by measuring the bulk density by the Archimedes method in accordance with JIS R 1634 and dividing by the theoretical density. The theoretical density of the sintered body is calculated on the assumption that all of the Nb 2 O 5 phases in the sintered body reacted as Zn 3 Nb 2 O 8 phases and all of the Al 2 O 3 phases reacted as ZnAl 2 O 4 phases. The weight a [g] of the ZnO phase, the weight b [g] of the Zn 3 Nb 2 O 8 phase, the weight c [g] of the ZnAl 2 O 4 phase, and the respective true densities of 5.606 [g / cm 3 ], 5.734 [g / cm 3 ] and 4.700 [g / cm 3 ], and calculated from the weighted average represented by the following formula.
d = (a + b + c) / ((a / 5.606) + (b / 5.734) + (c / 4.700)) (1)
(2) X-ray diffraction test An X-ray diffraction pattern in the range of 2θ = 20 to 70 ° of the mirror-polished sintered sample was measured.
Scanning method: Step scan method (FT method)
X-ray source: CuKα
Power: 40kV, 40mA
Step width: 0.01 °
(3) Crystal grain size After mirror polishing and identifying the ZnO phase, Zn 3 Nb 2 O 8 phase, and ZnAl 2 O 4 phase by EPMA composition analysis, the crystal grain size of the ZnO phase is determined by the diameter method from the SEM image. It was measured. Three or more arbitrary samples were observed, and 300 or more particles were measured for each sample. Further, when chemical etching with acid is performed together, grain boundary identification is easy.
(EPMA analysis conditions)
Apparatus: Wavelength dispersive electron beam microanalyzer Accelerating voltage: 15 kV
Irradiation current: 30 nA
(4) Measurement of resistivity The average value of 10 samples cut out from an arbitrary portion after grinding 1 mm or more from the sintered body surface after firing was used as measurement data.
Sample size: 10 mm x 20 mm x 1 mm
Measuring method: 4-terminal method measuring device: Loresta HP MCP-T410 (Mitsubishi Yuka)
(5) Sputtering evaluation The obtained sintered body was processed to 101.6 mmΦ × 6 mmt, and then bonded to an oxygen-free copper backing plate with indium solder to obtain a sputtering target. Using this target, film formation was evaluated under the following conditions, and then the stability of DC discharge was evaluated.
 成膜評価で得られた薄膜試料の屈折率は、分光エリプソメーター(商品名:M-2000V-Te、J.A.Woollam社製)で測定し、波長550nmの値を用い、透過率は分光光度計(商品名:U-4100、日立ハイテクノロジーズ社製)を用いて、ガラス基板の透過率も含む値として、波長350~450nmにおける最大値を測定した。また、成膜レートは、成膜評価のスパッタリング条件で30分間成膜した薄膜試料を作製し、その膜厚を表面形状測定器(商品名:Dektak3030、アルバック社製)で測定し算出した。
(成膜評価のスパッタリング条件)
ガス   :アルゴン+酸素(3%)
圧力   :0.6Pa
電源   :DC
投入パワー:200W(2.4W/cm
膜厚   :80nm
基板   :無アルカリガラス(コーニング社製EAGLE XG、厚み0.7mm)
基板温度 :室温
(DC放電安定性評価のスパッタリング条件)
ガス   :アルゴン+酸素(3%)
      アルゴン+酸素(6%)
圧力   :0.6Pa
電源   :DC
投入パワー:600W(7.4W/cm
      800W(9.9W/cm
放電時間 :30min
評価   :放電後のターゲット表面のスプラッシュの個数(目視)。
The refractive index of the thin film sample obtained by the film formation evaluation was measured with a spectroscopic ellipsometer (trade name: M-2000V-Te, manufactured by JA Woollam), and the value at a wavelength of 550 nm was used. Using a photometer (trade name: U-4100, manufactured by Hitachi High-Technologies Corporation), the maximum value at a wavelength of 350 to 450 nm was measured as a value including the transmittance of the glass substrate. The film formation rate was calculated by preparing a thin film sample formed for 30 minutes under sputtering conditions for film formation evaluation, and measuring the film thickness with a surface shape measuring instrument (trade name: Dektak 3030, manufactured by ULVAC).
(Sputtering conditions for film formation evaluation)
Gas: Argon + oxygen (3%)
Pressure: 0.6Pa
Power supply: DC
Input power: 200 W (2.4 W / cm 2 )
Film thickness: 80nm
Substrate: Alkali-free glass (Corning EAGLE XG, thickness 0.7 mm)
Substrate temperature: Room temperature (Sputtering conditions for DC discharge stability evaluation)
Gas: Argon + oxygen (3%)
Argon + oxygen (6%)
Pressure: 0.6Pa
Power supply: DC
Input power: 600 W (7.4 W / cm 2 )
800W (9.9W / cm 2 )
Discharge time: 30 min
Evaluation: Number of splashes on target surface after discharge (visual observation).
 (実施例1)
 BET値3.8m/gの酸化亜鉛粉末と、BET値5.4m/gの酸化ニオブ粉末、及びBET値12m/gの酸化アルミニウム粉末(すべて純度99.9%以上)を、Nb/(Zn+Nb+Al)で0.230、及びAl/(Zn+Nb+Al)で0.020の割合となるように秤量した。秤量した粉末を純水10kgにてスラリー化し、ポリアクリレート系分散剤を全粉末量に対して0.1wt%入れ、固形分濃度60%のスラリーを調製した。内容積2.5Lのビーズミル装置にφ0.3mmジルコニアビーズを85%充填し、ミル周速7.0m/sec、スラリー供給量2.5L/minにてスラリーをミル内に循環させ、粉砕、混合処理を行った。さらに、スラリー供給タンクの温度を8~9℃、スラリー出口温度を14~16℃の範囲内で温度管理を行い、ミル内の循環回数(パス回数)は15回とした。その後、得られたスラリーを噴霧乾燥し、乾燥後の粉末を150μmの篩に通し、プレス成形法により300kg/cmの圧力で120mm×120mm×8mmtの成形体を作製後、2ton/cmの圧力でCIP処理した。
Example 1
A zinc oxide powder having a BET value 3.8 m 2 / g, niobium oxide powder having a BET value 5.4 m 2 / g, and aluminum oxide powder having a BET value 12m 2 / g (all 99.9% or higher), Nb / (Zn + Nb + Al) was weighed to a ratio of 0.230 and Al / (Zn + Nb + Al) to a ratio of 0.020. The weighed powder was slurried with 10 kg of pure water, and 0.1 wt% of the polyacrylate dispersant was added to the total powder amount to prepare a slurry with a solid content concentration of 60%. A bead mill with an internal volume of 2.5 L is filled with 85% φ0.3 mm zirconia beads, and the slurry is circulated in the mill at a mill peripheral speed of 7.0 m / sec and a slurry supply rate of 2.5 L / min. Processed. Further, the temperature was controlled within the range of 8-9 ° C. of the slurry supply tank and 14-16 ° C. of the slurry outlet temperature, and the circulation number (pass number) in the mill was 15 times. Thereafter, the obtained slurry is spray-dried, and the dried powder is passed through a 150 μm sieve, and a molded body of 120 mm × 120 mm × 8 mmt is produced at a pressure of 300 kg / cm 2 by a press molding method, and then 2 ton / cm 2 . CIP-treated with pressure.
 次に、この成形体をアルミナ製のセッターの上に設置して、抵抗加熱式の電気炉(炉内容積:250mm×250mm×250mm)にて以下の焼成条件で焼成した。得られた焼結体及びスパッタリングターゲットのスパッタリング評価結果を表1に示す。
(焼成条件)
焼成温度:1250℃
保持時間:3時間
昇温速度:950℃~1250℃ 300℃/hr
     その他の温度域    100℃/hr
雰囲気 :大気雰囲気
降温速度:950℃まで     100℃/hr
     950℃以降     150℃/hr。
Next, this compact was placed on an alumina setter and fired in a resistance heating type electric furnace (furnace volume: 250 mm × 250 mm × 250 mm) under the following firing conditions. Table 1 shows the results of sputtering evaluation of the obtained sintered body and sputtering target.
(Baking conditions)
Firing temperature: 1250 ° C
Holding time: 3 hours Temperature rising rate: 950 ° C to 1250 ° C 300 ° C / hr
Other temperature range 100 ℃ / hr
Atmosphere: Air temperature cooling rate: Up to 950 ° C 100 ° C / hr
After 950 ° C., 150 ° C./hr.
 (実施例2~8、比較例1~5)
 組成を表1の内容に変更した以外は実施例1と同様の方法(実施例7はビーズミルのパス回数を10回に変更した)で焼結体を作製した。比較例3と4は焼結体のバルク抵抗が高くDC放電ができなかった。得られた焼結体及びスパッタリングターゲットのスパッタリング評価結果を表1に示す。
(Examples 2 to 8, Comparative Examples 1 to 5)
A sintered body was produced in the same manner as in Example 1 except that the composition was changed to the contents shown in Table 1 (in Example 7, the number of passes of the bead mill was changed to 10). In Comparative Examples 3 and 4, the bulk resistance of the sintered body was high and DC discharge was not possible. Table 1 shows the results of sputtering evaluation of the obtained sintered body and sputtering target.
 (実施例9)
 ビーズミルの粉砕条件とマイクロ波(周波数:2.45GHz)加熱式の焼成炉(炉内容積:300mm×300mm×300mm)を用いた焼成条件を下記のように変更した以外は実施例1と同様の方法で焼結体を作製した。得られた焼結体及びスパッタリングターゲットのスパッタリング評価結果を表1に示す。
(粉砕条件)
ミル周速:13m/sec
ミル内の循環回数(パス回数):20回
(焼成条件)
焼成温度:1200℃
保持時間:1時間
昇温速度:200℃~1250℃ 900℃/hr
     その他の温度域    100℃/hr
雰囲気 :大気雰囲気
降温速度:950℃まで     400℃/hr
     950℃以降     200℃/hr。
Example 9
The same conditions as in Example 1 except that the grinding conditions of the bead mill and the firing conditions using a microwave (frequency: 2.45 GHz) heating-type firing furnace (furnace volume: 300 mm × 300 mm × 300 mm) were changed as follows. The sintered body was produced by the method. Table 1 shows the results of sputtering evaluation of the obtained sintered body and sputtering target.
(Crushing conditions)
Mill peripheral speed: 13m / sec
Number of circulations in the mill (number of passes): 20 times (firing conditions)
Firing temperature: 1200 ° C
Holding time: 1 hour Temperature rising rate: 200 ° C. to 1250 ° C. 900 ° C./hr
Other temperature range 100 ℃ / hr
Atmosphere: Air temperature cooling rate: Up to 950 ° C 400 ° C / hr
200 ° C./hr after 950 ° C.
 (実施例10)
 マイクロ波加熱炉を用いた焼成温度を1150℃とした以外は実施例9と同様の方法で焼結体を作製した。得られた焼結体及びスパッタリングターゲットのスパッタリング評価結果を表1に示す。
(Example 10)
A sintered body was produced in the same manner as in Example 9 except that the firing temperature using the microwave heating furnace was 1150 ° C. Table 1 shows the results of sputtering evaluation of the obtained sintered body and sputtering target.
 (実施例11)
 原料粉末をBET値9.6m/gの酸化亜鉛粉末と、BET値7.9m/gの酸化ニオブ粉末(すべて純度99.9%以上)を用い、マイクロ波加熱炉を用いた焼成温度を1100℃とした以外は実施例9と同様の方法で焼結体を作製した。得られた焼結体及びスパッタリングターゲットのスパッタリング評価結果を表1に示す。
(薄膜抵抗率の測定)
 実施例1~11で得られた薄膜の抵抗率の測定をロレスタHP MCP-T410(三菱油化製)を用いて4端子法で行った。薄膜抵抗は全て10Ω・cm以上の高抵抗膜であった。
(Example 11)
Using a zinc oxide powder having a BET value 9.6 m 2 / g raw material powder, niobium oxide powder having a BET value 7.9 m 2 / g (all 99.9% or higher), the firing temperature using a microwave oven A sintered body was produced in the same manner as in Example 9 except that was set to 1100 ° C. Table 1 shows the results of sputtering evaluation of the obtained sintered body and sputtering target.
(Measurement of thin film resistivity)
The resistivity of the thin film obtained in each of Examples 1 to 11 was measured by a four-terminal method using a Loresta HP MCP-T410 (manufactured by Mitsubishi Yuka). All the thin film resistors were high resistance films of 10 8 Ω · cm or more.
 (参考例)
 101.6mmΦ×6mmtサイズの還元Nbターゲット(豊島製作所社製)を用いて、実施例と同じ成膜評価のスパッタリング条件で成膜を行った。成膜レートは、スパッタガスがアルゴン+酸素(3%)のとき、9.0nm/minであり、薄膜の透過率が酸素ガスに対して飽和するアルゴン+酸素(5%)のとき、7.4nm/minであった。
(Reference example)
Using a reduced Nb 2 O 5 target (manufactured by Toyoshima Seisakusho Co., Ltd.) having a size of 101.6 mmΦ × 6 mmt, film formation was performed under the same film formation evaluation sputtering conditions as in Examples. The film formation rate is 9.0 nm / min when the sputtering gas is argon + oxygen (3%), and when the transmittance of the thin film is argon + oxygen (5%) that is saturated with respect to oxygen gas, 7. It was 4 nm / min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2016年1月8日に出願された日本特許出願2016-002924号、及び2016年11月28日に出願された日本特許出願2016-230493号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The specification, claims, drawings and abstract of Japanese Patent Application No. 2016-002924 filed on January 8, 2016 and Japanese Patent Application No. 2016-230493 filed on November 28, 2016. The entire contents of this document are hereby incorporated by reference as the disclosure of the specification of the present invention.
 本発明による酸化物焼結体は、高パワー成膜時においてもターゲット表面からのスプラッシュがなく高成膜レートであるため、高屈折率膜を得ることができるスパッタリングターゲットに用いられることが期待される。 The oxide sintered body according to the present invention is expected to be used for a sputtering target capable of obtaining a high refractive index film because it has a high film formation rate without splashing from the target surface even during high power film formation. The

Claims (8)

  1. 構成元素として、亜鉛、ニオブ、アルミニウム及び酸素を有する酸化物焼結体において、亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、
     Nb/(Zn+Nb+Al)=0.076~0.289
     Al/(Zn+Nb+Al)=0.006~0.031
    であることを特徴とする酸化物焼結体。
    In the oxide sintered body having zinc, niobium, aluminum and oxygen as constituent elements, when the contents of zinc, niobium and aluminum are Zn, Nb and Al, respectively,
    Nb / (Zn + Nb + Al) = 0.076 to 0.289
    Al / (Zn + Nb + Al) = 0.006 to 0.031
    An oxide sintered body characterized by being:
  2. 相対密度が98%以上であることを特徴とする請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, wherein the relative density is 98% or more.
  3. 密度が5.57g/cm以上であることを特徴とする請求項1に記載の酸化物焼結体。 2. The oxide sintered body according to claim 1, wherein the density is 5.57 g / cm 3 or more.
  4. 酸化物焼結体のZnO相の結晶粒径が3μm以下であることを特徴とする請求項1~3のいずれかに記載の酸化物焼結体。 The oxide sintered body according to any one of claims 1 to 3, wherein the crystal grain size of the ZnO phase of the oxide sintered body is 3 µm or less.
  5. バルク抵抗値が100Ω・cm以下であることを特徴とする請求項1~4のいずれかに記載の酸化物焼結体。 5. The oxide sintered body according to claim 1, wherein the bulk resistance value is 100 Ω · cm or less.
  6. 請求項1~5のいずれかに記載の酸化物焼結体をターゲット材として用いることを特徴とするスパッタリングターゲット。 6. A sputtering target comprising the oxide sintered body according to claim 1 as a target material.
  7. 酸化亜鉛粉末、酸化ニオブ粉末及び酸化アルミニウム粉末を原料粉末として、元素の原子比が、亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、
     Nb/(Zn+Nb+Al)=0.076~0.289
     Al/(Zn+Nb+Al)=0.006~0.031
    となるように混合し、得られた混合粉末を用いて成形し、得られた成形体を焼成することを特徴とする酸化物焼結体の製造方法。
    Zinc oxide powder, niobium oxide powder and aluminum oxide powder as raw material powder, when the atomic ratio of elements is zinc, niobium and aluminum content Zn, Nb and Al, respectively,
    Nb / (Zn + Nb + Al) = 0.076 to 0.289
    Al / (Zn + Nb + Al) = 0.006 to 0.031
    A method for producing an oxide sintered body, comprising: mixing so as to form, molding using the obtained mixed powder, and firing the obtained molded body.
  8. 構成元素として、亜鉛、ニオブ、アルミニウム及び酸素を有する薄膜において、亜鉛、ニオブ及びアルミニウムの含有量をそれぞれZn、Nb及びAlとしたときに、
     Nb/(Zn+Nb+Al)=0.076~0.289
     Al/(Zn+Nb+Al)=0.006~0.031
    であることを特徴とする薄膜。
    In a thin film having zinc, niobium, aluminum and oxygen as constituent elements, when the contents of zinc, niobium and aluminum are Zn, Nb and Al, respectively,
    Nb / (Zn + Nb + Al) = 0.076 to 0.289
    Al / (Zn + Nb + Al) = 0.006 to 0.031
    A thin film characterized by being
PCT/JP2016/089029 2016-01-08 2016-12-28 Oxide sintered body, method for producing same and sputtering target WO2017119381A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680077981.7A CN108430949B (en) 2016-01-08 2016-12-28 Oxide sintered body, method for producing same, and sputtering target
KR1020187019722A KR102649404B1 (en) 2016-01-08 2016-12-28 Oxide sintered body, its manufacturing method and sputtering target
US16/068,596 US10669208B2 (en) 2016-01-08 2016-12-28 Oxide sintered body, method for producing same and sputtering target

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-002924 2016-01-08
JP2016002924 2016-01-08
JP2016230493A JP6885038B2 (en) 2016-01-08 2016-11-28 Oxide sintered body, its manufacturing method and sputtering target
JP2016-230493 2016-11-28

Publications (1)

Publication Number Publication Date
WO2017119381A1 true WO2017119381A1 (en) 2017-07-13

Family

ID=59273639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089029 WO2017119381A1 (en) 2016-01-08 2016-12-28 Oxide sintered body, method for producing same and sputtering target

Country Status (1)

Country Link
WO (1) WO2017119381A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119062A (en) * 1998-02-16 2000-04-25 Japan Energy Corp Light-transmitting film and sputtering target for forming the same
JP2009221589A (en) * 2008-03-19 2009-10-01 Tosoh Corp Sputtering target consisting of oxide sintered compact
JP2013036073A (en) * 2011-08-05 2013-02-21 Sumitomo Metal Mining Co Ltd Zn-Sn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119062A (en) * 1998-02-16 2000-04-25 Japan Energy Corp Light-transmitting film and sputtering target for forming the same
JP2009221589A (en) * 2008-03-19 2009-10-01 Tosoh Corp Sputtering target consisting of oxide sintered compact
JP2013036073A (en) * 2011-08-05 2013-02-21 Sumitomo Metal Mining Co Ltd Zn-Sn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
US9885109B2 (en) ITO ceramic sputtering targets with reduced In2O3 contents and method of producing it
JP6264846B2 (en) Oxide sintered body, sputtering target and manufacturing method thereof
WO2014021334A1 (en) Sintered oxide body and sputtering target
TWI540214B (en) Zinc oxide sintered compact, sputtering target, and zinc oxide thin film
JP6078189B1 (en) IZO sintered compact sputtering target and manufacturing method thereof
JP5904056B2 (en) IGZO sintered body, manufacturing method thereof, and sputtering target
WO2012043571A1 (en) Sintered composite oxide, manufacturing method therefor, sputtering target, transparent conductive oxide film, and manufacturing method therefor
JPH0925567A (en) High density ito sintered body, its production and sputtering target
JP6229366B2 (en) Composite oxide sintered body and oxide transparent conductive film
JP6885038B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JP6582698B2 (en) Oxide sintered body and sputtering target
JP5998712B2 (en) IGZO sintered body, sputtering target, and oxide film
JP2014125422A (en) Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
WO2017119381A1 (en) Oxide sintered body, method for producing same and sputtering target
JP6520523B2 (en) Oxide sintered body, method for producing the same, and sputtering target
JP6800405B2 (en) Oxide sintered body, its manufacturing method and sputtering target
TWI679292B (en) Sintered oxide body, sputtering target and method for producing oxide thin film
JP2022108718A (en) IGZO sputtering target
WO2023074118A1 (en) Igzo sputtering target
JP2020147822A (en) MANUFACTURING METHOD OF MgO-TiO-BASED SPUTTERING TARGET
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film
JP2022108736A (en) IGZO sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187019722

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883880

Country of ref document: EP

Kind code of ref document: A1