WO2019202720A1 - Nozzle for cold spray and cold-splay device - Google Patents

Nozzle for cold spray and cold-splay device Download PDF

Info

Publication number
WO2019202720A1
WO2019202720A1 PCT/JP2018/016234 JP2018016234W WO2019202720A1 WO 2019202720 A1 WO2019202720 A1 WO 2019202720A1 JP 2018016234 W JP2018016234 W JP 2018016234W WO 2019202720 A1 WO2019202720 A1 WO 2019202720A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
powder material
cold spray
powder
cold
Prior art date
Application number
PCT/JP2018/016234
Other languages
French (fr)
Japanese (ja)
Inventor
和真 高橋
佳弘 細谷
弘之 吉見
Original Assignee
株式会社特殊金属エクセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社特殊金属エクセル filed Critical 株式会社特殊金属エクセル
Priority to JP2018534880A priority Critical patent/JP6404532B1/en
Priority to PCT/JP2018/016234 priority patent/WO2019202720A1/en
Publication of WO2019202720A1 publication Critical patent/WO2019202720A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the present invention relates to a nozzle suitable for use in cold spray and a cold spray apparatus equipped with the nozzle.
  • the cold spray method is a technique in which a powder material (metal powder) is collided with a base material in a solid phase state below the melting temperature to form a film on the base material. This is essentially different from the thermal spraying method in which the material is melted and adhered to the substrate.
  • the cold spray method provides a dense film that does not oxidize in the atmosphere, has little thermal effect on the material particles, suppresses thermal alteration, has a high film formation rate, can be thickened, and has high adhesion efficiency Etc., and has excellent advantages that cannot be obtained by thermal spraying. For this reason, attention has been focused on effectively applying the metal material on which this film is formed to various structural materials.
  • the conventional cold spray method has a problem in that the powder material adheres to the inner wall portion of the nozzle due to the material of the nozzle and the powder material to be used.
  • the spraying temperature is higher than 500 ° C in order to increase the adhesion efficiency
  • the temperature of the inner wall of the nozzle rises, and the interatomic bonding between the powder material and the nozzle material easily proceeds to the nozzle.
  • the adhesion of becomes faster.
  • Fig. 3 (a) shows the internal state of the nozzle when stainless steel is used as the nozzle material and maraging steel is used as the powder material, and the nozzle is continuously operated for 120 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C. Show.
  • FIG. 1 shows the internal state of the nozzle when stainless steel is used as the nozzle material and maraging steel is used as the powder material, and the nozzle is continuously operated for 120 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C. Show. In FIG
  • the broken line portion indicates the location where the powder material is adhered, but it has been confirmed that 15% of the cross-sectional area is blocked.
  • the nozzle is blocked in a short time, and therefore, the nozzle needs to be frequently replaced. As a result, this has been an obstacle to the practical application of the continuous coating method that requires operation for 300 minutes or more.
  • known documents referring to the cold spray method and the thermal spraying method will be described.
  • Patent Document 1 describes that the portion of the nozzle inner wall surface on which particle adhesion is likely to occur can be effectively prevented by adhering the raw material powder by configuring it with either quartz glass or borosilicate glass.
  • Glass materials have a problem that wear progresses due to the spraying of high hardness powder material such as maraging steel.
  • Fig. 3 (b) shows a state in which maraging steel is used as a powder material, and a quartz glass tube having an outer diameter of ⁇ 8 and an inner diameter of ⁇ 6 is continuously operated for 15 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C. It has been confirmed that as much as 40% of wear occurs per volume.
  • Patent Document 1 the entire divergent part is made of borosilicate glass, and using Inconel powder material, the operating gas temperature is 800 ° C, the powder supply rate is 200 g / min, and the chamber gas pressure is 3 MPa.
  • the evaluation relates to the observation of the turbulence of the jet flow of the powder material, the confirmation of the powder material adhesion on the inner wall of the nozzle and the film formation efficiency, and the degree of wear of the nozzle is not disclosed .
  • Patent Document 2 although it is a nozzle for a thermal spray gun, it is possible to control the plasma / arc adhesion region by the dynamic influence of heat by configuring the nozzle surface portion with any of tungsten, molybdenum, silver or iridium. It is disclosed. However, while the cold spray method causes the powder material to collide with the base material in the solid state below the melting temperature, the spraying method melts the material to be sprayed and attaches it to the base material. The occurrence of this proceeds by a completely different mechanism.
  • high-speed flame spraying and plasma spraying can be cited as spraying methods that operate in the supersonic region as in the cold spray method.
  • high-speed flame spraying the inner wall surface on the outlet side of the nozzle tends to be clogged, but the cause is that the powder material that has entered the high-speed frame is pulverized and refined, resulting in extremely poor fluidity.
  • measures such as lowering the combustion chamber pressure, increasing the particle size of the powder material, shortening the nozzle length, and lowering the supply amount of the powder material are effective.
  • Patent Document 3 discloses a method of preventing nozzle blockage by forming a part or all of a divergent portion, which is an enlarged portion of a nozzle, with a glass material.
  • the replacement work efficiency of the divergent portion is increased by using different materials such as metal and heat-resistant resin.
  • a combination of members having a difference in linear expansion coefficient may cause voids due to non-uniform thermal diffusion on the joint surface in addition to interface peeling due to thermal shock.
  • tungsten carbide is used for the linear convergence nozzle of the micro cold spray direct writing system.
  • Nozzle molding of tungsten carbide has a feature that the finished surface roughness is rough because a sintering method is common. Therefore, after sintering, it is necessary to smooth the inside of the nozzle by machining such as surface polishing.
  • tungsten carbide is a carbide, its workability is very poor, and it is difficult to satisfy the required dimensional accuracy within ⁇ 2.0 ⁇ m inside the sonic nozzle.
  • the present invention has been made in view of the above circumstances, and as a nozzle material, a cold spray that prevents clogging due to adhesion of the powder material to the inner wall of the nozzle and prevents the nozzle from being worn even when a high-hardness powder material is used.
  • An object is to provide a nozzle and a cold spray device.
  • the present inventors have conducted intensive research, and the powder material does not adhere to the inner wall of the nozzle even when a long-time cold spray is performed.
  • the design of the material and shape of the nozzle is particularly important as will be described later.
  • the present inventors use a metal having a cohesive energy of 170 kcal / g-atom or more and an alloy thereof as the nozzle material, so that the powder material can be applied to the nozzle inner wall even when cold spray is performed for a long time. It has been found that the nozzle does not wear even when a high hardness powder material is not used. In other words, the reason why the powder material does not adhere to the nozzle is that the metal with higher cohesive energy, which is the force for separating the constituent atoms of the solid, is more stable as a solid, and the interatomic bond between the powder material and the nozzle material is less likely to occur. Can be mentioned.
  • FIG. 4 is a graph showing the relationship between each period and the cohesive energy in the periodic table. Further, the cause of the nozzle not being worn is that the nozzle material has characteristics of a high melting point and a high hardness.
  • the spraying temperature is higher than 500 ° C. in order to increase the adhesion efficiency
  • the temperature of the inner wall surface of the nozzle rises, and the higher the temperature, the more brittle the nozzle material becomes and the more easily it is worn.
  • Metals with high cohesive energy are characterized by having a high melting point of 1900 ° C. or higher and are not easily embrittled at high temperatures.
  • a material of HV150 or higher for the nozzle it is possible to further prevent nozzle wear.
  • tantalum has a hardness of HV220
  • tungsten has a hardness of HV350
  • osmium has a high hardness of HV410 and is hard to wear.
  • vanadium of HV120 and the like is easily worn.
  • tungsten is disclosed in the nozzle for a thermal spray gun in Patent Document 2, the purpose of this document is to use a high melting point material that can withstand direct contact with a plasma arc.
  • the cold spray method is not limited to this, and molybdenum and iridium, which are high melting point materials disclosed in Patent Document 2, cannot be used because the cohesive energy is less than 170 kcal / mol.
  • molybdenum is 155 kcal / mol and iridium is 165 kcal / mol.
  • FIG. 3 (c) shows the internal state of the nozzle when operated continuously for 120 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C. using molybdenum as the nozzle material and maraging steel as the powder material.
  • a blockage of 5% occurs in the cross-sectional area.
  • the cohesive energy is less than 170 kcal / mol, it can be said that an interatomic bond between the powder material and the nozzle material occurs and is likely to adhere.
  • the present invention has been made by integrating the above findings and has the following configuration.
  • Nozzle inlet portion to which gas for accelerating powder material and heating powder material is supplied a nozzle reduction portion following this nozzle inlet portion, a divergent nozzle enlargement portion following this nozzle reduction portion, and this nozzle
  • a powder material inlet provided in the enlarged portion, and a powder material charged from the powder material inlet and heated below the melting point of the powder material by the gas is conveyed to the gas, and the substrate is supersonic.
  • a nozzle for cold spray formed with a nozzle outlet part sprayed on The nozzle is made of a metal or an alloy having a cohesive energy of 170 kcal / g-atom or more, and a nozzle for cold spraying.
  • a cold spray device comprising means for supplying the powder material into the nozzle from the inlet.
  • the present invention by using a metal or alloy having a cohesive energy of 170 kcal / g-atom or more as a material for a nozzle, it is possible to prevent the powder material from adhering to the inner wall of the nozzle and to have a high hardness. Can be used to produce a cold spray coating without wear on the nozzle. As a result, it is possible to produce a continuous coating that requires 300 minutes or more of operation for all powder materials regardless of hardness. The film position accuracy can be obtained. Moreover, since the material of the nozzle is not tungsten carbide but a metal or an alloy as in the invention of Patent Document 4, the moldability is good and the inside of the nozzle can be made smooth.
  • FIG. 1 is a schematic sectional view showing an example of a main body portion of a cold spray nozzle according to the present invention.
  • FIG. 2 is an explanatory diagram showing an overall outline of the cold spray apparatus.
  • FIG. 3 is a photograph showing the internal state of the nozzle when continuously operated using a nozzle made of a material that does not fall within the scope of the present invention.
  • FIG. 3A shows the internal state of the nozzle when continuously operating for 120 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C. using stainless steel as the nozzle material and maraging steel as the powder material.
  • FIG. 3 (b) shows the state when maraging steel is used as the powder material and the quartz glass tube with an outer diameter of ⁇ 8 and an inner diameter of ⁇ 6 is continuously operated for 15 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C.
  • Fig. 3 (c) shows the inside of the nozzle when operated continuously for 120 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C, using molybdenum as the nozzle material and maraging steel as the powder material. It is a photograph showing the state.
  • FIG. 4 is a graph showing the relationship between each period in the periodic table and the cohesive energy, and the solid line with the highest peak indicates the sixth period in the periodic table. This table is quoted from 2006/10 literature, the origin of manufacturing – the world of science vol30 “Iron in metal”.
  • FIG. 5 shows a rewinding device that sprays a powder material onto the center of the width of the base material while winding the base material.
  • the form of the nozzle according to the present invention will be described based on the sectional view of the nozzle body shown in FIG.
  • the nozzle body continues through a reduction part 1 following a nozzle inlet part 11 a to which acceleration gas (flow direction is indicated by an arrow) is supplied, and a throat part 2 (minimum reduction part) to the reduction part 1. It is comprised from the elongate wide end expansion part 3 and the nozzle exit part 11b.
  • the nozzle according to the present invention only needs to include the reduced portion 1, the throat portion 2, and the enlarged portion 3 between the nozzle inlet portion 11a and the nozzle outlet portion 11b, and other shapes are arbitrary.
  • the enlarged portion 3 may be a quadrangular pyramid divergent shape, and a parallel portion may be provided on the nozzle outlet side from the enlarged portion 3.
  • the enlarged portion 3 is provided with a powder inlet 4 into which a powder material is charged.
  • the powder inlet 4 is preferably located close to the throat portion 2 in the enlarged portion 3.
  • the cold spray nozzle (nozzle body) shown in FIG. 1 is an example in which one powder inlet 4 is provided, but a plurality of nozzles may be provided as necessary.
  • the powder materials may be supplied from a plurality of powder inlets 4 using a required number of powder supply devices.
  • all of the reduced portion 1, the throat portion 2 and the enlarged portion 3 are formed of a metal or alloy having a cohesive energy of 170 kcal / g-atom or more, and as a result, adhesion and wear of the nozzle inner wall portion are prevented. be able to.
  • the nozzle body may be configured by combining a plurality of metals or alloys. Therefore, it is preferable to limit the dimensional accuracy to any one of them.
  • the method for producing the nozzle is not particularly limited, but machining by a machine tool such as machining, machining by a press, or the like is common.
  • the nozzle body may be manufactured by combining a plurality of members, but it is preferable that the entire nozzle is an integral type because there is a possibility that a gap is generated due to non-uniform thermal diffusion of the joint surface.
  • the material of the nozzle (nozzle body) is selected from tungsten, tantalum, rhenium, hafnium, niobium and alloys thereof having a cohesive energy of 170 kcal / g-atom or more. Niobium is preferred.
  • As the alloy an alloy such as tungsten-niobium, tantalum-tungsten, or tantalum-niobium is preferable because it is easily dissolved.
  • the accelerating gas examples include air, nitrogen, helium, argon, or a mixture thereof. Copper and other materials that easily oxidize powder can improve the adhesion efficiency by using helium as an acceleration gas, so an appropriate acceleration gas can be selected depending on the powder material and the material of the substrate to be laminated. preferable.
  • FIG. 2 is an overall schematic diagram of the cold spray apparatus according to the present invention.
  • the accelerating gas is supplied in the order of the compression cylinder 5 and the transport pipe 6, and is heated by a heater 7 provided in the transport pipe as necessary. Since the heating temperature increases the adhesion efficiency as the temperature increases, the lower limit is preferably 100 ° C. or higher and the upper limit is preferably within the range of the melting point of the material powder used.
  • the powder material is supplied in the order of the powder supply device 8 and the transport pipe 9, but when mixing a plurality of powder materials, it is necessary to prepare the necessary number of powder supply devices.
  • the powder material supplied from the powder inlet 4 is ejected from the nozzle outlet 11 in a state where the acceleration gas transported into the chamber 10 passes through the nozzle throat 2 and is accelerated at supersonic speed.
  • the “supersonic speed” is a speed higher than the sound speed of 1225 km / h, and the upper limit of operation in the present invention is 3960 km / h.
  • reference numeral 12 denotes a nozzle body
  • 13 denotes a rewinding device.
  • Table 3 shows the evaluation results of nozzle clogging, adhesion efficiency, and location accuracy with respect to the stacking conditions.
  • Evaluation of nozzle clogging is when the inner wall of the nozzle is observed after 300 minutes of operation, and the case where adhesion of the material powder is not confirmed is set to “Yes”, and the powder material does not come out due to clogging during 300 minutes of operation. Was rejected as “x”.
  • the film position accuracy was evaluated by measuring the stacking position and stacking width of the central part of the pure nickel base material at the time when the length of 1 meter elapsed after the start of spraying and when the length of 1 meter after the end of spraying was measured. A case where the difference in the stacking position or stacking width was 0.5 mm or less was evaluated as “good”, and a case where it exceeded 0.5 mm was determined as “failed”.
  • the metal or alloy having a cohesive energy of 170 kcal / g-atom or more is used as the material of the nozzle body, so that the powder material adheres to the inner wall of the nozzle.
  • the nozzle is not worn even when a powder material with high hardness is used, and continuous coating production requiring operation for 300 minutes or more can be performed and high film position accuracy can be obtained.

Abstract

[Problem] To provide a nozzle for cold spray and a cold-spay device that prevent clogging due to adhesion of powder materials to an inner wall part of the nozzle for cold spray and that has a nozzle which is not abraded even when high-hardness powder materials are used. [Solution] The nozzle for cold spray for spraying powder materials according to the present invention comprises a reduced part 1, a throat part 2, an enlarged part 3 widen toward an end, and a nozzle body 12 in which a powder-material charging port 4 is formed. The nozzle body 12 is constituted by a material of a metal or an alloy having cohesive energy of 170 kcal/ g-atom or more. The cold-spay device is a device for performing cold spraying with use of the nozzle for cold spray constituted as described above.

Description

コールドスプレー用ノズル及びコールドスプレー装置Nozzle for cold spray and cold spray device
 本発明は、コールドスプレーの使用に適したノズル及びこのノズルを装着したコールドスプレー装置に関する。 The present invention relates to a nozzle suitable for use in cold spray and a cold spray apparatus equipped with the nozzle.
 コールドスプレー法は、粉末材料(金属粉末)を溶融温度以下の固相状態で基材に衝突させて基材に成膜する技術であり、固相状態の粉末状態を用いて成膜する点において、材料を溶融させて基材に付着させる溶射法とは本質的に異なる。
 コールドスプレー法は、大気中で酸化の無い緻密な皮膜が得られる、材料粒子への熱影響が少なく熱変質を抑えられる、成膜速度が速い、厚膜化が可能である、付着効率が高いなど、溶射法では得られない優れた利点を有している。
 このことから、この皮膜を形成した金属材料を各種の構造材料に有効に適用することに注目が集まっている。
The cold spray method is a technique in which a powder material (metal powder) is collided with a base material in a solid phase state below the melting temperature to form a film on the base material. This is essentially different from the thermal spraying method in which the material is melted and adhered to the substrate.
The cold spray method provides a dense film that does not oxidize in the atmosphere, has little thermal effect on the material particles, suppresses thermal alteration, has a high film formation rate, can be thickened, and has high adhesion efficiency Etc., and has excellent advantages that cannot be obtained by thermal spraying.
For this reason, attention has been focused on effectively applying the metal material on which this film is formed to various structural materials.
 他方、従来のコールドスプレー法は、ノズルの材質や使用する粉末材料によりノズル内壁部に粉末材料が付着して閉塞するという問題がある。特に、付着効率を高めるために吹付温度を500℃以上の高温側で行う場合には、ノズル内壁面の温度が上昇し、粉末材料とノズル材料との原子間結合が容易に進むことからノズルへの付着が早くなる。
 例えば、図3(a)はノズルの材質にステンレス鋼を用いて粉末材料にマルエージング鋼を使用し、吹付圧力3.0MPaおよび吹付温度800℃にて120分間連続運転した際のノズル内部の状態を示す。図3(a)において、破線部が粉末材料の付着箇所を示すが、断面積で15%もの閉塞が生じることが確認されている。
 このように、従来のコールドスプレー法では、短時間でノズルが閉塞するために、頻繁にノズルの交換作業を必要とする。この結果、300分以上の運転を必要とした連続被覆法の実用化において障害となっていた。
 以下、コールドスプレー法及び溶射法に言及した公知文献について説明する。
On the other hand, the conventional cold spray method has a problem in that the powder material adheres to the inner wall portion of the nozzle due to the material of the nozzle and the powder material to be used. In particular, when the spraying temperature is higher than 500 ° C in order to increase the adhesion efficiency, the temperature of the inner wall of the nozzle rises, and the interatomic bonding between the powder material and the nozzle material easily proceeds to the nozzle. The adhesion of becomes faster.
For example, Fig. 3 (a) shows the internal state of the nozzle when stainless steel is used as the nozzle material and maraging steel is used as the powder material, and the nozzle is continuously operated for 120 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C. Show. In FIG. 3 (a), the broken line portion indicates the location where the powder material is adhered, but it has been confirmed that 15% of the cross-sectional area is blocked.
As described above, in the conventional cold spray method, the nozzle is blocked in a short time, and therefore, the nozzle needs to be frequently replaced. As a result, this has been an obstacle to the practical application of the continuous coating method that requires operation for 300 minutes or more.
Hereinafter, known documents referring to the cold spray method and the thermal spraying method will be described.
 特許文献1には、粒子付着の起こり易いノズル内壁面の部位を、石英ガラス又はホウケイ酸ガラスの何れかで構成することで、原料粉末の付着を効果的に防止できると記載されているが、ガラス素材はマルエージング鋼など高硬度の粉末材料の吹付により摩耗が進行するといった問題がある。例えば、図3(b)は粉末材料にマルエージング鋼を使用し、外径φ8で内径φ6の石英ガラスの管に吹付圧力3.0MPaおよび吹付温度800℃にて15分間連続運転した際の状態を示し、体積あたり40%もの摩耗が生じることが確認されている。 Patent Document 1 describes that the portion of the nozzle inner wall surface on which particle adhesion is likely to occur can be effectively prevented by adhering the raw material powder by configuring it with either quartz glass or borosilicate glass. Glass materials have a problem that wear progresses due to the spraying of high hardness powder material such as maraging steel. For example, Fig. 3 (b) shows a state in which maraging steel is used as a powder material, and a quartz glass tube having an outer diameter of φ8 and an inner diameter of φ6 is continuously operated for 15 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C. It has been confirmed that as much as 40% of wear occurs per volume.
 また、特許文献1ではダイバージェント部の全体をホウケイ酸ガラスで構成し、インコネルの粉末材料を用いて作動ガス温度800℃、粉末供給量200g/分、チャンバーガス圧力3MPaにて300分間のコールドスプレー操作の実施例が開示されているが、評価は粉末材料の噴出流の乱れの観察とノズル内壁部の粉末材料付着の確認及び皮膜形成効率に関するもので、ノズルの摩耗度合については開示されていない。 In Patent Document 1, the entire divergent part is made of borosilicate glass, and using Inconel powder material, the operating gas temperature is 800 ° C, the powder supply rate is 200 g / min, and the chamber gas pressure is 3 MPa. Although an example of operation is disclosed, the evaluation relates to the observation of the turbulence of the jet flow of the powder material, the confirmation of the powder material adhesion on the inner wall of the nozzle and the film formation efficiency, and the degree of wear of the nozzle is not disclosed .
 特許文献2には、溶射ガン用のノズルではあるが、ノズル表面部にタングステン、モリブデン、銀又はイリジウムの何れかで構成することで、熱の動的影響によってプラズマ・アーク付着領域を制御できると開示されている。しかし、コールドスプレー法が粉末材料を溶融温度以下の固相状態で基材へ衝突させるのに対し、溶射法は吹付ける材料を溶融させて基材に付着させるため、ノズル内壁部に対する摩耗または付着の発生については、全く異なるメカニズムで進行する。 In Patent Document 2, although it is a nozzle for a thermal spray gun, it is possible to control the plasma / arc adhesion region by the dynamic influence of heat by configuring the nozzle surface portion with any of tungsten, molybdenum, silver or iridium. It is disclosed. However, while the cold spray method causes the powder material to collide with the base material in the solid state below the melting temperature, the spraying method melts the material to be sprayed and attaches it to the base material. The occurrence of this proceeds by a completely different mechanism.
 例えば、コールドスプレー法と同じく超音速域で作動させる溶射法として、高速フレーム溶射およびプラズマ溶射が挙げられる。高速フレーム溶射は、ノズルの出口側の内壁面が閉塞し易いが、原因は高速フレームに突入した粉末材料が粉砕して微細化し、極端に流動性が悪くなるためである。このような場合、燃焼室圧力を下げる、粉末材料の粒径を上げる、ノズルの長さを短くする、粉末材料の供給量を下げるといった対策が有効である。 For example, high-speed flame spraying and plasma spraying can be cited as spraying methods that operate in the supersonic region as in the cold spray method. In high-speed flame spraying, the inner wall surface on the outlet side of the nozzle tends to be clogged, but the cause is that the powder material that has entered the high-speed frame is pulverized and refined, resulting in extremely poor fluidity. In such a case, measures such as lowering the combustion chamber pressure, increasing the particle size of the powder material, shortening the nozzle length, and lowering the supply amount of the powder material are effective.
 また、プラズマ溶射では、ノズル内壁面が損耗することにより電荷集中が生じ、銅などの陽極素材に付着が生じるが、特許文献2に開示されているように、プラズマ・アークとの直接接触による損耗に耐えられるタングステンやモリブデンなど融点が1900℃以上の高融点材料もしくは銀などの高い熱伝導率材料をライニング素材にすることで防止できる。
 しかし、すでに述べたように、プラズマ溶射と本発明に係るコールドスプレーとはその成膜メカニズムが全く異なり、プラズマ溶射の手法を適用して、本発明の課題を解決することはできない。
In plasma spraying, charge concentration occurs due to wear on the inner wall surface of the nozzle and adhesion to an anode material such as copper occurs. However, as disclosed in Patent Document 2, wear due to direct contact with a plasma arc is caused. This can be prevented by using a high-melting-point material with a melting point of 1900 ° C or higher, such as tungsten or molybdenum, which can withstand heat, or a high thermal conductivity material, such as silver, as the lining material.
However, as already described, the plasma spraying and the cold spray according to the present invention have completely different film forming mechanisms, and the problem of the present invention cannot be solved by applying the plasma spraying technique.
 特許文献3には、ノズルの拡大部とされるダイバージェント部の一部又は全部をガラス材で構成することで、ノズルの閉塞を防止する方法が開示されている。また、ノズルの縮小部とのど部においては、金属や耐熱樹脂など異なる材質を使用することでダイバージェント部の交換作業効率を上げている。しかし、特許文献3にも記載されている通り、線膨張係数に差がある部材同士の組み合わせは熱衝撃による界面剥離などの他、接合面の熱拡散不均一により空隙が生じる恐れがある。 Patent Document 3 discloses a method of preventing nozzle blockage by forming a part or all of a divergent portion, which is an enlarged portion of a nozzle, with a glass material. In addition, in the reduced portion and the throat portion of the nozzle, the replacement work efficiency of the divergent portion is increased by using different materials such as metal and heat-resistant resin. However, as described in Patent Document 3, a combination of members having a difference in linear expansion coefficient may cause voids due to non-uniform thermal diffusion on the joint surface in addition to interface peeling due to thermal shock.
 特許文献4には、マイクロコールドスプレー直接書き込みシステムの直線収れんノズルにタングステンカーバイドが使用されている。タングステンカーバードのノズル成形は、焼結法が一般的であることから仕上がりの表面粗さが粗くなる特徴がある。そのため、焼結後は表面研磨などの機械加工によりノズル内部を平滑にする必要がある。しかし、タングステンカーバイドは炭化物であることから加工性が非常に悪く、音速ノズル内部の必要寸法精度である±2.0μm以内を満足することが困難である。 In Patent Document 4, tungsten carbide is used for the linear convergence nozzle of the micro cold spray direct writing system. Nozzle molding of tungsten carbide has a feature that the finished surface roughness is rough because a sintering method is common. Therefore, after sintering, it is necessary to smooth the inside of the nozzle by machining such as surface polishing. However, since tungsten carbide is a carbide, its workability is very poor, and it is difficult to satisfy the required dimensional accuracy within ± 2.0 μm inside the sonic nozzle.
WO2012/086037WO2012 / 086037 WO2014/120357WO2014 / 120357 WO2012/086037WO2012 / 086037 特表2015-511270Special table 2015-511270
 先に説明したように、粉末材料の付着防止にガラス素材を使用した場合では、高硬度の粉末材料の吹付によりノズルの摩耗が進行する問題がある。例えば、ビッカース硬度でHV300を超えるようなマルエージング鋼やタングステン及びモリブデンなどの高硬度の粉末材料は、更にノズルの摩耗を早めてしまう。ノズルの摩耗が促進されると、ノズル内壁部に凹凸が形成されることにより衝撃波が生じるため、粉末材料の流れが不均一になる。これにより、粉末材料が基材に皮膜を形成する位置が乱れ、ロケーション精度が悪化することで皮膜厚みにバラつきが生じる問題がある。 As described above, when a glass material is used to prevent adhesion of the powder material, there is a problem that the wear of the nozzle proceeds due to the spraying of the powder material with high hardness. For example, maraging steel with a Vickers hardness exceeding HV300, and powder materials with high hardness such as tungsten and molybdenum further accelerate the wear of the nozzle. When the wear of the nozzle is promoted, shock waves are generated by forming irregularities on the inner wall portion of the nozzle, so that the flow of the powder material becomes non-uniform. As a result, the position where the powder material forms the film on the base material is disturbed, and there is a problem in that the film thickness varies due to the deterioration of location accuracy.
 本発明は上記事情に鑑みてなされたもので、ノズルの素材として、ノズル内壁部への粉末材料の付着による閉塞を防止するとともに、高硬度の粉末材料を使用してもノズルが摩耗しないコールドスプレー用ノズル及びコールドスプレー装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and as a nozzle material, a cold spray that prevents clogging due to adhesion of the powder material to the inner wall of the nozzle and prevents the nozzle from being worn even when a high-hardness powder material is used. An object is to provide a nozzle and a cold spray device.
 本発明者等は、上記課題を解決する為、鋭意研究を行い、長時間のコールドスプレーを行ってもノズル内壁部へ粉末材料が付着せず、高硬度の粉末材料を使用してもノズルが摩耗しない製造方法を得るには、後述するように、ノズルの材質および形状の設計の検討が特に重要であることを見出した。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research, and the powder material does not adhere to the inner wall of the nozzle even when a long-time cold spray is performed. In order to obtain a manufacturing method that does not wear, it has been found that the design of the material and shape of the nozzle is particularly important as will be described later.
 まず、本発明者らは、ノズルの材質を凝集エネルギーが170kcal/g-atom以上の値を有する金属およびその合金を用いることで、長時間のコールドスプレーを行ってもノズル内壁部に粉末材料が付着せず、高硬度の粉末材料を使用してもノズルが摩耗しないことを見出した。すなわち、粉末材料がノズルに付着しない原因は、固体の構成原子同士を引き離すための力である凝集エネルギーが高い金属ほど固体として安定しており、粉末材料とノズル素材との原子間結合が生じ難いことが挙げられる。図4は、周期表における各周期と凝集エネルギーの関係を示したグラフである。また、ノズルが摩耗しない原因は、該ノズル素材が高融点および高硬度の特性を有することが挙げられる。 First, the present inventors use a metal having a cohesive energy of 170 kcal / g-atom or more and an alloy thereof as the nozzle material, so that the powder material can be applied to the nozzle inner wall even when cold spray is performed for a long time. It has been found that the nozzle does not wear even when a high hardness powder material is not used. In other words, the reason why the powder material does not adhere to the nozzle is that the metal with higher cohesive energy, which is the force for separating the constituent atoms of the solid, is more stable as a solid, and the interatomic bond between the powder material and the nozzle material is less likely to occur. Can be mentioned. FIG. 4 is a graph showing the relationship between each period and the cohesive energy in the periodic table. Further, the cause of the nozzle not being worn is that the nozzle material has characteristics of a high melting point and a high hardness.
 特に、付着効率を高めるために吹付温度を500℃以上の高温側で行う場合には、ノズル内壁面の温度が上昇し、温度が高いほどノズル素材の脆化が進んで摩耗し易くなる。凝集エネルギーが高い金属は、1900℃以上の高融点を有する特徴があり、高温下において脆化し難い。また、HV150以上の素材をノズルに選定することで、更にノズルの摩耗を防止できる。
 例えば、タンタルの硬度はHV220、タングステンはHV350、オスミウムはHV410と高い硬度を有し摩耗し難いが、HV120のバナジウムなどは摩耗が進行し易い。
In particular, when the spraying temperature is higher than 500 ° C. in order to increase the adhesion efficiency, the temperature of the inner wall surface of the nozzle rises, and the higher the temperature, the more brittle the nozzle material becomes and the more easily it is worn. Metals with high cohesive energy are characterized by having a high melting point of 1900 ° C. or higher and are not easily embrittled at high temperatures. In addition, by selecting a material of HV150 or higher for the nozzle, it is possible to further prevent nozzle wear.
For example, tantalum has a hardness of HV220, tungsten has a hardness of HV350, and osmium has a high hardness of HV410 and is hard to wear. However, vanadium of HV120 and the like is easily worn.
 なお、タングステンに関しては特許文献2の溶射ガン用のノズルに開示されているが、該文献の目的はプラズマ・アークとの直接接触による耐えられる高融点材料を用いることである。しかしながら、コールドスプレー法はこの限りではなく、特許文献2に開示の高融点材料であるモリブデンおよびイリジウムは凝集エネルギーが170kcal/mol未満であることから使用することはできない。各々の凝集エネルギーについては、モリブデンが155kcal/mol、イリジウムが165kcal/molである。 In addition, although tungsten is disclosed in the nozzle for a thermal spray gun in Patent Document 2, the purpose of this document is to use a high melting point material that can withstand direct contact with a plasma arc. However, the cold spray method is not limited to this, and molybdenum and iridium, which are high melting point materials disclosed in Patent Document 2, cannot be used because the cohesive energy is less than 170 kcal / mol. About each cohesive energy, molybdenum is 155 kcal / mol and iridium is 165 kcal / mol.
 例えば、図3(c)はノズルの材質にモリブデンを用いて粉末材料にマルエージング鋼を使用し、吹付圧力3.0MPaおよび吹付温度800℃にて120分間連続運転した際のノズル内部の状態を示すが、断面積で5%もの閉塞が生じることを確認している。このように、高融点材料であっても凝集エネルギーが170kcal/mol未満であると、粉末材料とノズル素材との原子間結合が生じ付着し易いと言える。 For example, FIG. 3 (c) shows the internal state of the nozzle when operated continuously for 120 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C. using molybdenum as the nozzle material and maraging steel as the powder material. However, it has been confirmed that a blockage of 5% occurs in the cross-sectional area. Thus, even if it is a high melting point material, when the cohesive energy is less than 170 kcal / mol, it can be said that an interatomic bond between the powder material and the nozzle material occurs and is likely to adhere.
 本発明は以上の知見を総合してなされたもので、以下の構成からなる。
[1] 粉末材料加速用且つ粉末材料加熱用のガスが供給されるノズル入口部と、このノズル入口部に続くノズル縮小部と、このノズル縮小部に続く末広状のノズル拡大部と、このノズル拡大部に設けられた粉末材料投入口と、この粉末材料投入口から投入され、前記ガスにて当該粉末材料の融点以下に加熱された粉末材料が前記ガスに搬送されて、超音速で基材に吹付けられるノズル出口部とを形成したコールドスプレー用ノズルであって、
 前記ノズルは、その材質が170kcal/g-atom以上の凝集エネルギーを有する金属または合金から構成されていることを特徴とするコールドスプレー用ノズル。
[2] 前記の凝集エネルギーが170kcal/g-atomを有する金属又は合金は、ニオブ、タンタル、タングステンの群から選択された金属又はその合金である[1]に記載のコールドスプレー用ノズル。
[3] 前記ノズルを構成する金属又は合金の融点は、1900℃以上であることを特徴とする[1]又は[2]に記載のコールドスプレー用ノズル。
[4] 前記ノズルを構成する金属又は合金は、HV150以上の硬度を有することを特徴とする[1]~[3]のいずれかに記載のコールドスプレー用ノズル。
[5] 前記ノズルは一体のノズル構造であることを特徴とする[1]~[4]のいずれかに記載のコールドスプレー用ノズル。
[6] [1]~[5]のいずれか記載されたコールドスプレー用ノズルと、前記粉末材料加速用且つ粉末材料加熱用のガスをノズル入口部からノズル内に供給する手段と、粉末材料を前記粉末材料投入口からノズル内に供給する手段とを備えたコールドスプレー装置。
The present invention has been made by integrating the above findings and has the following configuration.
[1] Nozzle inlet portion to which gas for accelerating powder material and heating powder material is supplied, a nozzle reduction portion following this nozzle inlet portion, a divergent nozzle enlargement portion following this nozzle reduction portion, and this nozzle A powder material inlet provided in the enlarged portion, and a powder material charged from the powder material inlet and heated below the melting point of the powder material by the gas is conveyed to the gas, and the substrate is supersonic. A nozzle for cold spray formed with a nozzle outlet part sprayed on
The nozzle is made of a metal or an alloy having a cohesive energy of 170 kcal / g-atom or more, and a nozzle for cold spraying.
[2] The cold spray nozzle according to [1], wherein the metal or alloy having a cohesive energy of 170 kcal / g-atom is a metal selected from the group of niobium, tantalum, and tungsten or an alloy thereof.
[3] The nozzle for cold spray according to [1] or [2], wherein the metal or alloy constituting the nozzle has a melting point of 1900 ° C. or higher.
[4] The cold spray nozzle according to any one of [1] to [3], wherein the metal or alloy constituting the nozzle has a hardness of HV150 or higher.
[5] The nozzle for cold spray according to any one of [1] to [4], wherein the nozzle has an integral nozzle structure.
[6] The cold spray nozzle described in any one of [1] to [5], means for supplying the gas for accelerating the powder material and heating the powder material into the nozzle from the nozzle inlet, and the powder material A cold spray device comprising means for supplying the powder material into the nozzle from the inlet.
 本発明によれば、凝集エネルギーが170kcal/g-atom以上の値を有する金属又は合金をノズルの素材とすることで、ノズル内壁部への粉末材料の付着を防止するとともに、高硬度の粉末材料を使用してもノズルが摩耗することなくコールドスプレー皮膜の製造が可能となり、この結果、硬度に関係なく全ての粉末材料について、300分以上の運転を必要とした連続被覆製造を実施できるとともに高い皮膜位置精度を得ることができる。

 また、ノズルの材質が、特許文献4の発明のようにタングステンカーバイドではなく、金属又は合金であるので、成形性がよく、ノズル内部を平滑にすることができる。
 さらに、同一の材質の金属又は合金を用いて一体にノズルを構成することが可能なので、特許文献3に記載された発明のように、線膨張係数に差がある部材同士を組み合わせる必要はなく、その結果、熱衝撃による界面剥離や接合面の熱拡散不均一により空隙が生じることがない。
According to the present invention, by using a metal or alloy having a cohesive energy of 170 kcal / g-atom or more as a material for a nozzle, it is possible to prevent the powder material from adhering to the inner wall of the nozzle and to have a high hardness. Can be used to produce a cold spray coating without wear on the nozzle. As a result, it is possible to produce a continuous coating that requires 300 minutes or more of operation for all powder materials regardless of hardness. The film position accuracy can be obtained.

Moreover, since the material of the nozzle is not tungsten carbide but a metal or an alloy as in the invention of Patent Document 4, the moldability is good and the inside of the nozzle can be made smooth.
Furthermore, since it is possible to configure the nozzle integrally using the same material metal or alloy, it is not necessary to combine members having a difference in linear expansion coefficient as in the invention described in Patent Document 3, As a result, voids are not generated due to interfacial debonding due to thermal shock and non-uniform thermal diffusion of the joint surface.
図1は、本発明に係るコールドスプレー用ノズルの本体部分の一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of a main body portion of a cold spray nozzle according to the present invention. 図2は、コールドスプレー装置の全体概要を示す説明図である。FIG. 2 is an explanatory diagram showing an overall outline of the cold spray apparatus. 図3は本発明から外れる材質のノズルを用いて連続運転した場合のノズル内部の状態を示した写真で、破線領域は材料粉末の付着箇所を示す。 図3(a)は、ノズルの材質にステンレス鋼を用いて粉末材料にマルエージング鋼を使用し、吹付圧力3.0MPaおよび吹付温度800℃にて120分間連続運転した際のノズル内部の状態を示す写真、 図3(b)は、粉末材料にマルエージング鋼を使用し、外径φ8で内径φ6の石英ガラスの管に吹付圧力3.0MPaおよび吹付温度800℃にて15分間連続運転した際の状態を示す写真、 図3(c)は、ノズルの材質にモリブデンを用いて粉末材料にマルエージング鋼を使用し、吹付圧力3.0MPaおよび吹付温度800℃にて120分間連続運転した際のノズル内部の状態を示す写真である。FIG. 3 is a photograph showing the internal state of the nozzle when continuously operated using a nozzle made of a material that does not fall within the scope of the present invention. FIG. 3A shows the internal state of the nozzle when continuously operating for 120 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C. using stainless steel as the nozzle material and maraging steel as the powder material. The photo, Fig. 3 (b) shows the state when maraging steel is used as the powder material and the quartz glass tube with an outer diameter of φ8 and an inner diameter of φ6 is continuously operated for 15 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C. Fig. 3 (c) shows the inside of the nozzle when operated continuously for 120 minutes at a spraying pressure of 3.0 MPa and a spraying temperature of 800 ° C, using molybdenum as the nozzle material and maraging steel as the powder material. It is a photograph showing the state. 図4は、周期表における各周期と凝集エネルギーの関係を示したグラフであり、一番ピークの高い実線は、周期表における第6周期目を示す。なお、この表は、モノづくりの原点―科学の世界vol30”金属の中の鉄”2006/10文献からの引用である。FIG. 4 is a graph showing the relationship between each period in the periodic table and the cohesive energy, and the solid line with the highest peak indicates the sixth period in the periodic table. This table is quoted from 2006/10 literature, the origin of manufacturing – the world of science vol30 “Iron in metal”. 図5は、基材を巻取りながら該基材の幅中心部に粉末材料を吹付ける巻替え装置を示す。FIG. 5 shows a rewinding device that sprays a powder material onto the center of the width of the base material while winding the base material.
 まず、本発明に係るノズルの形態について、図1に示すノズル本体の断面図に基づいて説明する。図1において、ノズル本体は加速用ガス(流動方向を矢印で示す)が供給されるノズル入口部11aに続く縮小部1と、該縮小部1にのど部2(最小縮小部)を介して続く長尺末広状の拡大部3とノズル出口部11bから構成される。本発明に係るノズルは、ノズル入口部11aとノズル出口部11bとの間に、縮小部1と、のど部2と、拡大部3を有していればよく、その他の形状は任意である。例えば、拡大部3は円錐状の他に四角錐状の末広形でもよく、また、拡大部3よりノズル出口側に平行部を設けてもよい。
 拡大部3には、粉末材料が投入される粉末投入口4が設けられている。粉末投入口4は、拡大部3のうち、のど部2に近い位置が好ましい。
 なお、図1に示したコールドスプレー用ノズル(ノズル本体)は、粉末投入口4を1個設けた例であるが、必要に応じて複数個設けることができる。例えば、異なる粉末材料を混合する場合は、必要台数の粉末供給装置を用いて、複数個設けた粉末投入口4から粉末材料を供給するようにしてもよい。
First, the form of the nozzle according to the present invention will be described based on the sectional view of the nozzle body shown in FIG. In FIG. 1, the nozzle body continues through a reduction part 1 following a nozzle inlet part 11 a to which acceleration gas (flow direction is indicated by an arrow) is supplied, and a throat part 2 (minimum reduction part) to the reduction part 1. It is comprised from the elongate wide end expansion part 3 and the nozzle exit part 11b. The nozzle according to the present invention only needs to include the reduced portion 1, the throat portion 2, and the enlarged portion 3 between the nozzle inlet portion 11a and the nozzle outlet portion 11b, and other shapes are arbitrary. For example, in addition to the conical shape, the enlarged portion 3 may be a quadrangular pyramid divergent shape, and a parallel portion may be provided on the nozzle outlet side from the enlarged portion 3.
The enlarged portion 3 is provided with a powder inlet 4 into which a powder material is charged. The powder inlet 4 is preferably located close to the throat portion 2 in the enlarged portion 3.
Note that the cold spray nozzle (nozzle body) shown in FIG. 1 is an example in which one powder inlet 4 is provided, but a plurality of nozzles may be provided as necessary. For example, when mixing different powder materials, the powder materials may be supplied from a plurality of powder inlets 4 using a required number of powder supply devices.
 本発明では、上記縮小部1とのど部2と拡大部3の全てが170kcal/g-atom以上の凝集エネルギーを有する金属又は合金から形成され、その結果、ノズル内壁部の付着と摩耗を防止することができる。
 ノズルを構成する金属又は合金が上記凝集エネルギーを有していれば、複数の金属又は合金を組み合わせてノズル本体を構成してもよいが、高い吹付温度の際に素材同士の熱膨張差によりノズルの寸法精度が低くなり、超音速を保つことができない可能性があるので、いずれか1種類に限定したほうが好ましい。
In the present invention, all of the reduced portion 1, the throat portion 2 and the enlarged portion 3 are formed of a metal or alloy having a cohesive energy of 170 kcal / g-atom or more, and as a result, adhesion and wear of the nozzle inner wall portion are prevented. be able to.
As long as the metal or alloy constituting the nozzle has the above cohesive energy, the nozzle body may be configured by combining a plurality of metals or alloys. Therefore, it is preferable to limit the dimensional accuracy to any one of them.
 該ノズルの製造方法は、特に限定されないが、マシニングなどの工作機械による加工やプレスによる加工等が一般的である。
 また、ノズル本体は複数の部材を組み合わせて製作してもよいが、接合面の熱拡散不均一により空隙が生じる恐れがあるため、ノズル全体が一体型であることが好ましい。
The method for producing the nozzle is not particularly limited, but machining by a machine tool such as machining, machining by a press, or the like is common.
In addition, the nozzle body may be manufactured by combining a plurality of members, but it is preferable that the entire nozzle is an integral type because there is a possibility that a gap is generated due to non-uniform thermal diffusion of the joint surface.
 ノズル(ノズル本体)の素材は、170kcal/g-atom以上の凝集エネルギーを有するタングステン、タンタル、レニウム、ハフニウム、ニオブ及びその合金等から選択されるが、特に、加工のし易さからタングステン、タンタル、ニオブが好ましい。また合金としては、固溶のし易さからタングステン-ニオブ、タンタル-タングステン、タンタル-ニオブなどの合金が好ましい。 The material of the nozzle (nozzle body) is selected from tungsten, tantalum, rhenium, hafnium, niobium and alloys thereof having a cohesive energy of 170 kcal / g-atom or more. Niobium is preferred. As the alloy, an alloy such as tungsten-niobium, tantalum-tungsten, or tantalum-niobium is preferable because it is easily dissolved.
 加速用ガスとしては、例えば、空気、窒素、ヘリウム、アルゴンまたはそれらの混合気等が挙げられる。粉末材料が酸化し易い銅等は、加速用ガスとしてヘリウムを用いることで付着効率を向上することができるので、粉末材料および積層させる基材の材質によって、適宜な加速用ガスを選択することが好ましい。 Examples of the accelerating gas include air, nitrogen, helium, argon, or a mixture thereof. Copper and other materials that easily oxidize powder can improve the adhesion efficiency by using helium as an acceleration gas, so an appropriate acceleration gas can be selected depending on the powder material and the material of the substrate to be laminated. preferable.
 図2は、本発明に係るコールドスプレー装置の全体概略図である。加速用ガスは圧縮ボンベ5、搬送パイプ6の順で供給されるが、必要に応じて搬送パイプに設けられたヒーター7で加熱される。加熱温度は、温度が高いほど付着効率が増すため、下限は100℃以上で上限は用いる材料粉末の融点以下の範囲であることが好ましい。 FIG. 2 is an overall schematic diagram of the cold spray apparatus according to the present invention. The accelerating gas is supplied in the order of the compression cylinder 5 and the transport pipe 6, and is heated by a heater 7 provided in the transport pipe as necessary. Since the heating temperature increases the adhesion efficiency as the temperature increases, the lower limit is preferably 100 ° C. or higher and the upper limit is preferably within the range of the melting point of the material powder used.
 粉末材料は、粉末供給装置8、搬送パイプ9の順で供給されるが、複数の粉末材料を混合する場合は、必要台数の粉末供給装置を用意する必要がある。 The powder material is supplied in the order of the powder supply device 8 and the transport pipe 9, but when mixing a plurality of powder materials, it is necessary to prepare the necessary number of powder supply devices.
 粉末投入口4から供給された粉末材料は、チャンバー10内に搬送された加速用ガスがノズルのど部2を通過して超音速に加速した状態でノズル出口11から噴出する。「超音速」とは、音速1225km/hより大きい速度であり、本発明における作動上限は3960km/hである。 The powder material supplied from the powder inlet 4 is ejected from the nozzle outlet 11 in a state where the acceleration gas transported into the chamber 10 passes through the nozzle throat 2 and is accelerated at supersonic speed. The “supersonic speed” is a speed higher than the sound speed of 1225 km / h, and the upper limit of operation in the present invention is 3960 km / h.
 次に、本発明の実施例を本発明の条件から外れる比較例と共に説明する。
 表1に示すノズル素材(ノズル本体の素材)と表2に示す粉末材料を用い、ノズルの出口内径を5mmで構成し、作動条件として吹付圧力を3MPa、吹付温度を800℃、加速用ガスを窒素、粉末供給速度を200g/minに設定して300分間稼働した。吹付けて皮膜を形成する基材と皮膜形成方法は、300分間の稼働と皮膜位置精度を評価するために、厚み0.5mm、幅50mm、長さ400m以上の純ニッケルのコイルを用い、図5に示すように、巻替え装置にて基材を巻取りながら該基材の幅中心部に粉末材料を吹付けた。なお、図5中、符号12はノズル本体、13は巻き替え装置である。
 表3に前記積層条件に対する、ノズル閉塞および付着効率、ロケーション精度の評価結果について示す。
Next, examples of the present invention will be described together with comparative examples that deviate from the conditions of the present invention.
Using the nozzle material (nozzle body material) shown in Table 1 and the powder material shown in Table 2, the nozzle inner diameter is 5mm, the operating pressure is 3MPa, the spraying temperature is 800 ℃, the acceleration gas is The system was operated for 300 minutes with the nitrogen and powder feed rates set at 200 g / min. The base material and the film formation method to form a film by spraying use a pure nickel coil of thickness 0.5mm, width 50mm, length 400m or more in order to evaluate the operation for 300 minutes and the film position accuracy. As shown in FIG. 2, the powder material was sprayed on the center of the width of the base material while winding the base material with a rewinding device. In FIG. 5, reference numeral 12 denotes a nozzle body, and 13 denotes a rewinding device.
Table 3 shows the evaluation results of nozzle clogging, adhesion efficiency, and location accuracy with respect to the stacking conditions.
(ノズル閉塞の評価)
 ノズル閉塞の評価は、300分間の稼働後にノズル内壁部を観察し、材料粉末の付着が確認されなかった場合を合格「〇」とし、300分間の稼働中に粉末材料が閉塞により出なくなった場合を不合格「×」とした。
(Evaluation of nozzle blockage)
Evaluation of nozzle clogging is when the inner wall of the nozzle is observed after 300 minutes of operation, and the case where adhesion of the material powder is not confirmed is set to “Yes”, and the powder material does not come out due to clogging during 300 minutes of operation. Was rejected as “x”.
(付着効率の評価)
 付着効率の評価は、吹き付け前の粉末材料と吹き付け後の純ニッケルのコイルに付着した粉末材料の重量から付着率を算出し、付着率が70%以上であれば合格「〇」とし、70%未満であれば不合格「×」とした。
(Evaluation of adhesion efficiency)
For the evaluation of the adhesion efficiency, calculate the adhesion rate from the weight of the powder material before spraying and the powder material adhered to the pure nickel coil after spraying. If it was less than that, it was judged as “failed”.
(皮膜位置精度の評価)
 皮膜位置精度の評価は、吹き付け開始後の長さ1メートル経過時点と吹き付け終了後の長さ1メートル遡った時点における純ニッケル基材幅中心部分の積層位置と積層幅を計測し、前記双方の積層位置または積層幅の差が0.5mm以下の場合を合格「〇」とし、0.5mmを超える場合を不合格「×」とした。
(Evaluation of coating position accuracy)
The film position accuracy was evaluated by measuring the stacking position and stacking width of the central part of the pure nickel base material at the time when the length of 1 meter elapsed after the start of spraying and when the length of 1 meter after the end of spraying was measured. A case where the difference in the stacking position or stacking width was 0.5 mm or less was evaluated as “good”, and a case where it exceeded 0.5 mm was determined as “failed”.
表1
Figure JPOXMLDOC01-appb-I000001
Table 1
Figure JPOXMLDOC01-appb-I000001
表2
Figure JPOXMLDOC01-appb-I000002
Table 2
Figure JPOXMLDOC01-appb-I000002
表3
Figure JPOXMLDOC01-appb-I000003
Table 3
Figure JPOXMLDOC01-appb-I000003
(実施例)
 表3において、本発明例(No1~3)は、HV300を超える粉末材料を使用しても付着効率および皮膜位置精度に優れ、300時間の稼働においてもノズルが閉塞しないことが確認された。
(Example)
In Table 3, it was confirmed that the inventive examples (Nos. 1 to 3) were excellent in adhesion efficiency and film position accuracy even when a powder material exceeding HV300 was used, and the nozzle was not blocked even after 300 hours of operation.
(比較例)
 これに対し、比較例:No4~6は、稼働300時間に到達する前にノズルが閉塞し、粉末材料を吹き付けできないという不具合が生じた。
 比較例:No7~9は、HV300を超える材料粉末を使用するとノズル内壁部に摩耗が生じ、付着効率および皮膜位置精度を満足することができなかった。
 比較例:No10~11は、各素材のガラス転移温度に吹付温度が達した際にノズルの溶融が生じた。
(Comparative example)
On the other hand, Comparative Examples: Nos. 4 to 6 had a problem that the nozzles were blocked before reaching 300 hours of operation and the powder material could not be sprayed.
Comparative Examples: Nos. 7 to 9 caused wear on the inner wall of the nozzle when material powder exceeding HV300 was used, and could not satisfy the adhesion efficiency and the film position accuracy.
Comparative Example: Nos. 10 to 11 had nozzle melting when the spraying temperature reached the glass transition temperature of each material.
 以上の実験結果から分かるように、本発明によれば、凝集エネルギーが170kcal/g-atom以上の値を有する金属又は合金をノズル本体の素材とすることで、ノズル内壁部への粉末材料の付着を防止するとともに、高硬度の粉末材料を使用してもノズルが摩耗することなく、300分以上の運転を必要とした連続被覆製造を実施できるとともに高い皮膜位置精度を得ることができる。 As can be seen from the above experimental results, according to the present invention, the metal or alloy having a cohesive energy of 170 kcal / g-atom or more is used as the material of the nozzle body, so that the powder material adheres to the inner wall of the nozzle. In addition, the nozzle is not worn even when a powder material with high hardness is used, and continuous coating production requiring operation for 300 minutes or more can be performed and high film position accuracy can be obtained.
1・・・縮小部
2・・・のど部
3・・・拡大部
4・・・粉末材料投入口
5・・・圧縮ボンベ
6・・・搬送パイプ
7・・・ヒーター
8・・・粉末供給装置
9・・・搬送パイプ
10・・・チャンバー
11a・・・ノズル入口
11b・・・ノズル出口
12・・・ノズル本体
13・・・巻替え装置
DESCRIPTION OF SYMBOLS 1 ... Reduction part 2 ... Throat part 3 ... Expansion part 4 ... Powder material injection port 5 ... Compression cylinder 6 ... Conveyance pipe 7 ... Heater 8 ... Powder supply apparatus 9 ... Transport pipe 10 ... Chamber 11a ... Nozzle inlet 11b ... Nozzle outlet 12 ... Nozzle body 13 ... Rewinding device

Claims (6)

  1.  ノズル本体に、粉末材料加速用且つ粉末材料加熱用のガスを供給するノズル入口部と、このノズル入口部に続くノズル縮小部と、このノズル縮小部に続く末広状のノズル拡大部と、このノズル拡大部に設けられた粉末材料投入口と、この粉末材料投入口から投入され、前記ガスにて前記ノズル本体内を搬送されかつ、当該粉末材料の融点以下に加熱された粉末材料を、超音速で基材に吹付けるノズル出口部とを形成したコールドスプレー用ノズルであって、
     前記ノズル本体は、その材質が170kcal/g-atom以上の凝集エネルギーを有する金属または合金から構成されていることを特徴とするコールドスプレー用ノズル。
    A nozzle inlet for supplying a gas for accelerating powder material and heating powder material to the nozzle body, a nozzle reducing part following the nozzle inlet, a divergent nozzle expanding part following the nozzle reducing part, and the nozzle A powder material inlet provided in the enlarged portion, and a powder material charged from the powder material inlet, transported in the nozzle body by the gas, and heated below the melting point of the powder material are supersonic. A nozzle for cold spray formed with a nozzle outlet part sprayed on the base material,
    The nozzle body is made of a metal or an alloy having a cohesive energy of 170 kcal / g-atom or more, and a nozzle for cold spraying.
  2.  前記の凝集エネルギーが170kcal/g-atomを有する金属又は合金は、ニオブ、タンタル、タングステンの群から選択された金属、又はその合金である請求項1に記載のコールドスプレー用ノズル。 The cold spray nozzle according to claim 1, wherein the metal or alloy having a cohesive energy of 170 kcal / g-atom is a metal selected from the group of niobium, tantalum, and tungsten, or an alloy thereof.
  3.  前記ノズル本体を構成する金属又は合金の融点は、1900℃以上であることを特徴とする請求項1又は2に記載のコールドスプレー用ノズル。 The nozzle for cold spray according to claim 1 or 2, wherein the melting point of the metal or alloy constituting the nozzle body is 1900 ° C or higher.
  4.  前記ノズル本体を構成する金属又は合金は、HV150以上の硬度を有することを特徴とする請求項1~3のいずれか1項に記載のコールドスプレー用ノズル。 The cold spray nozzle according to any one of claims 1 to 3, wherein the metal or alloy constituting the nozzle body has a hardness of HV150 or more.
  5.  前記ノズル本体は一体のノズル構造であることを特徴とする請求項1~4のいずれか1項に記載のコールドスプレー用ノズル。 The cold spray nozzle according to any one of claims 1 to 4, wherein the nozzle body has an integral nozzle structure.
  6.  請求項1~5のいずれか1項に記載されたコールドスプレー用ノズルと、前記粉末材料加速用且つ粉末材料加熱用のガスをノズル入口部からノズル内に供給する手段と、粉末材料を前記粉末材料投入口からノズル内に供給する手段とを備えたコールドスプレー装置。 A nozzle for cold spray according to any one of claims 1 to 5, means for supplying gas for accelerating the powder material and heating the powder material into the nozzle from a nozzle inlet, and supplying the powder material to the powder A cold spray device comprising means for supplying the material into the nozzle from the material inlet.
PCT/JP2018/016234 2018-04-20 2018-04-20 Nozzle for cold spray and cold-splay device WO2019202720A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018534880A JP6404532B1 (en) 2018-04-20 2018-04-20 Nozzle for cold spray and cold spray device
PCT/JP2018/016234 WO2019202720A1 (en) 2018-04-20 2018-04-20 Nozzle for cold spray and cold-splay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016234 WO2019202720A1 (en) 2018-04-20 2018-04-20 Nozzle for cold spray and cold-splay device

Publications (1)

Publication Number Publication Date
WO2019202720A1 true WO2019202720A1 (en) 2019-10-24

Family

ID=63788240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016234 WO2019202720A1 (en) 2018-04-20 2018-04-20 Nozzle for cold spray and cold-splay device

Country Status (2)

Country Link
JP (1) JP6404532B1 (en)
WO (1) WO2019202720A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095886A (en) * 2003-09-02 2005-04-14 Nippon Steel Corp Cold spray nozzle, cold spray film, and production method therefor
JP2008093635A (en) * 2006-10-16 2008-04-24 Plasma Giken Kogyo Kk Nozzle for cold spray and cold spray device
JP2009179831A (en) * 2008-01-29 2009-08-13 Plasma Giken Kogyo Kk Nozzle for cold spray and cold spray device
JP2011000584A (en) * 2009-06-18 2011-01-06 Honda Motor Co Ltd Nozzle for cold spray
JP2012025983A (en) * 2010-07-20 2012-02-09 Startack Kk Method for forming coating film, and composite material formed by the method
JP2015218353A (en) * 2014-05-16 2015-12-07 株式会社日立製作所 Nozzle and attachment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095886A (en) * 2003-09-02 2005-04-14 Nippon Steel Corp Cold spray nozzle, cold spray film, and production method therefor
JP2008093635A (en) * 2006-10-16 2008-04-24 Plasma Giken Kogyo Kk Nozzle for cold spray and cold spray device
JP2009179831A (en) * 2008-01-29 2009-08-13 Plasma Giken Kogyo Kk Nozzle for cold spray and cold spray device
JP2011000584A (en) * 2009-06-18 2011-01-06 Honda Motor Co Ltd Nozzle for cold spray
JP2012025983A (en) * 2010-07-20 2012-02-09 Startack Kk Method for forming coating film, and composite material formed by the method
JP2015218353A (en) * 2014-05-16 2015-12-07 株式会社日立製作所 Nozzle and attachment

Also Published As

Publication number Publication date
JP6404532B1 (en) 2018-10-10
JPWO2019202720A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP5877590B2 (en) Cold spray nozzle and cold spray device using the cold spray nozzle
JP4310251B2 (en) Nozzle for cold spray and method for producing cold spray coating
KR100767251B1 (en) Replaceable throat insert for a kinetic spray nozzle
AU2018297846B2 (en) Cold spray gun and cold spray apparatus equipped with the same
Sova et al. Potential of cold gas dynamic spray as additive manufacturing technology
US7654223B2 (en) Cold spray apparatus having powder preheating device
JP5171125B2 (en) Nozzle for cold spray and cold spray device using the nozzle for cold spray
JP5809901B2 (en) Laminate and method for producing laminate
JP4999520B2 (en) Nozzle for cold spray and cold spray device
JP5802435B2 (en) Combustion cold spray and method thereof
US20070278324A1 (en) Device for cold gas spraying
JP2006116532A (en) Continuous in-line manufacturing process for high-speed coating welding by dynamic spray treatment
WO2009096275A1 (en) Nozzle for cold spray and cold spray device
JP2016000849A (en) Production method of laminate, and laminate
JP5605901B2 (en) Method for repairing metal material by cold spray method, method for producing powder material for cold spray, and cold spray film
WO2007091102A1 (en) Kinetic spraying apparatus and method
CN105624604B (en) In the densification preparation method of the controllable composition of accessory inner surface thermal spraying and structure coating
JP6404532B1 (en) Nozzle for cold spray and cold spray device
JP4787127B2 (en) Nozzle for cold spray and cold spray device
JP5471842B2 (en) Surface coated cutting tool
RU2237746C1 (en) Method and apparatus for gas-dynamic deposition of coating
JP2021161501A (en) Film deposition apparatus and manufacturing method of ceramic film
Chakravarthy et al. Development and characterization of single wire-arc-plasma sprayed coatings of nickel on carbon blocks and alumina tube substrates
WO2023028693A1 (en) Method and system for cold deposition of powdered materials on a substrate
US20170008135A1 (en) Systems and methods for refurbishing a plunger of a gas well system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018534880

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915392

Country of ref document: EP

Kind code of ref document: A1