JP2015218353A - Nozzle and attachment - Google Patents

Nozzle and attachment Download PDF

Info

Publication number
JP2015218353A
JP2015218353A JP2014101900A JP2014101900A JP2015218353A JP 2015218353 A JP2015218353 A JP 2015218353A JP 2014101900 A JP2014101900 A JP 2014101900A JP 2014101900 A JP2014101900 A JP 2014101900A JP 2015218353 A JP2015218353 A JP 2015218353A
Authority
JP
Japan
Prior art keywords
nozzle
raw material
gas
outlet
throat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014101900A
Other languages
Japanese (ja)
Inventor
清水 政男
Masao Shimizu
政男 清水
茂 菊池
Shigeru Kikuchi
茂 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014101900A priority Critical patent/JP2015218353A/en
Publication of JP2015218353A publication Critical patent/JP2015218353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To further atomize raw material particles.SOLUTION: A nozzle comprises: an inlet through which raw material particles and gas flow in; an internal passage through which the raw material particles and gas having flown in pass; an outlet that injects the raw material particles and the gas through the internal passage; and a throat that has a flow passage cross section smaller than that of the outlet and is provided in the internal passage. The flow passage cross section of the internal passage becomes larger toward the outlet from the throat. Projections are provided on the inner surface of the nozzle between the throat and the outlet.

Description

本発明は、加速されたガス流とともに固相、半溶融状態の材料粉末粒子を基材に衝突させ、堆積させて皮膜を形成するノズルとアタッチメントに関する。   The present invention relates to a nozzle and an attachment that collide and deposit a solid, semi-molten material powder particle on a base material together with an accelerated gas flow to form a film.

塑性変形のある金属同士、セラミックス、半導体などの脆性材料と金属とを組合せて複合皮膜が幅広く製造されている。複合材料のうち、チタンと異種金属(モリブデン、ニッケル)との複合溶射皮膜、ニッケルとアルミの複合溶射皮膜等の複合皮膜は、機能材料として発展してきており、マトリックス中に粒子を分散したマクロ的な皮膜から、近年、より微細な粒子を分散した複合皮膜に脚光を浴びつつある。   Composite coatings are widely produced by combining metals with plastic deformation, brittle materials such as ceramics and semiconductors, and metals. Among composite materials, composite coatings such as composite sprayed coating of titanium and dissimilar metals (molybdenum, nickel), composite sprayed coating of nickel and aluminum, etc. have been developed as functional materials, and are macroscopically dispersed in a matrix. In recent years, attention has been focused on composite coatings in which finer particles are dispersed.

しかし、微粒粉末は高価であったり、表面の酸化を防止するために厳密な保存管理が必要であったりする。例えば特許文献1には、セラミックスや金属等の原料粒子をエアロゾル化し、複数のノズルから噴射するエアロゾルを基板表面から離れた空間で互いに衝突させ、エアロゾル化した原料粒子が粉砕されて微粒子化することが記載されている。   However, the fine powder is expensive and requires strict storage management to prevent surface oxidation. For example, in Patent Document 1, raw material particles such as ceramics and metal are aerosolized, aerosols injected from a plurality of nozzles are caused to collide with each other in a space away from the substrate surface, and the aerosolized raw material particles are pulverized into fine particles. Is described.

特開2009-249720号公報JP 2009-249720 JP

しかし、原料粒子はノズル内で加速され、ノズルから出ると減速していく。上記特許文献のものはノズル外で原料粒子が衝突するため、衝突速度が不十分となり、原料粒子の微粒子化には改良の余地がある。   However, the raw material particles are accelerated in the nozzle and decelerated as they exit the nozzle. In the above-mentioned patent document, since the raw material particles collide outside the nozzle, the collision speed becomes insufficient, and there is room for improvement in making the raw material particles fine.

本発明の目的は、原料粒子をより微粒子化することにある。   An object of the present invention is to make raw material particles finer.

上記目的は、請求項に記載の発明により達成される。   The above object can be achieved by the invention described in the claims.

本発明によれば、原料粒子をより微粒子化することができる。   According to the present invention, the raw material particles can be made finer.

ノズルの側断面図の一例である。It is an example of the sectional side view of a nozzle. ノズルの平面図の一例である。It is an example of the top view of a nozzle. ノズルの側断面図の他の例である。It is another example of the sectional side view of a nozzle. 複数のノズルを用いて成膜する様子を示す図である。It is a figure which shows a mode that it forms into a film using a some nozzle.

以下、本発明の実施形態について、詳細に説明する。なお、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to embodiment taken up here, A combination and improvement are possible suitably in the range which does not change a summary.

図1は本実施形態のノズルの側断面図の一例である。ノズル入口2に矢印の向きにガス及び原料粉末との混合物(ガスおよび粒子流G)が供給され、ノズル5内部で最も流路断面積が小さくなるスロート3を通過した後、ガスおよび粒子流Gはノズル出口1から噴射される。スロート3の断面積よりもノズル出口1の断面積の方が大きく、スロート3からノズル出口1にかけてガスおよび粒子流Gは加速される。   FIG. 1 is an example of a side sectional view of the nozzle of the present embodiment. A mixture of gas and raw material powder (gas and particle flow G) is supplied to the nozzle inlet 2 in the direction of the arrow, and after passing through the throat 3 having the smallest flow path cross-sectional area inside the nozzle 5, the gas and particle flow G Is ejected from the nozzle outlet 1. The cross-sectional area of the nozzle outlet 1 is larger than the cross-sectional area of the throat 3, and the gas and the particle flow G are accelerated from the throat 3 to the nozzle outlet 1.

本実施形態のノズルは、スロートとノズル出口との間の加速空間内であって、十分にガスおよび粒子流が加速されたノズル出口近傍の内面に凸部4を設ける。ノズル先端部の内側に凸部を設けることにより、粒子はノズル内での速度をほとんど落とすことなく、粒子間衝突および乱流が発生し、粒子の微細化が可能となる。凸部はノズルの周方向に複数個設けると、原料粉末が均等に微細化されやすく、堆積した皮膜も均質になりやすい。突出した凸部の背が高いと、粒子の凸部への付着によるノズルの閉塞が生じることから、凸部は粒子が付着しない程度の高さが望ましい。凸部の形状は特に限定しないが、図2に示すノズルを出口から見た平面図のように、(a)半球状、(b)錐状、(c)柱状と錐状、(d)柱状、(e)周方向に連続した凸部等でも良い。また、図1に示すように、凸部がノズルの軸方向に多段に設置されていてもよい。   In the nozzle of this embodiment, a convex portion 4 is provided on the inner surface in the vicinity of the nozzle outlet in the acceleration space between the throat and the nozzle outlet where the gas and particle flow are sufficiently accelerated. By providing a convex portion on the inner side of the nozzle tip, particles collide with each other and turbulent flow occurs without substantially reducing the velocity in the nozzle, and the particles can be miniaturized. When a plurality of convex portions are provided in the circumferential direction of the nozzle, the raw material powder is easily miniaturized and the deposited film is likely to be uniform. If the protruding protrusions are tall, the nozzles are clogged due to the adhesion of the particles to the protrusions. Therefore, the protrusions are desirably high enough to prevent particles from attaching. The shape of the convex part is not particularly limited, but (a) hemispherical, (b) conical, (c) columnar and conical, (d) columnar as shown in the plan view of the nozzle shown in FIG. (E) The convex part etc. which continued in the circumferential direction may be sufficient. Moreover, as shown in FIG. 1, the convex part may be installed in multiple stages in the axial direction of the nozzle.

スロート〜ノズル出口の長さをAとしたときに、ノズル出口からの長さがAの30%となる範囲Bに凸部を設置することにより、粒子は速度を極端に低下することなく凸部に衝突し、微細化してから基材に堆積し皮膜を形成できる。その理由は、次のように説明できる。800℃まで昇温させたガスをラバルノズル(一旦内径がすぼまってから広がる形状)により超音速流にし、その中に原料粉末を投入し、加速させて基材に衝突させ、皮膜を形成する。高温ガスは膨張により、スロート部付近で急激にガス流の速度が上昇し、ノズル出口を通過後、大気中ガスの粘性により徐々に低下する。このために、スロート部に凸部を設けると、ガス流速度の不十分のため十分に粉末を微細化できないばかりか、粉末が凸部に付着しやすく、やがてノズル孔が閉塞する。ノズル出口からスロートへ長さ30%の間のガス流速度は、ほぼ最高速度を維持しているため、ノズル出口からスロートへ長さ30%の間に凸部を設けることが望ましい。最高速度のガス流の粉末が凸部に衝突により、粉末の微細化が可能となる。また、凸部はノズル出口付近にあり、ノズル孔の閉塞の恐れはない。   When the length from the throat to the nozzle outlet is A, and the convex portion is installed in the range B in which the length from the nozzle outlet is 30% of A, the particle does not extremely decrease in speed. The film can be deposited on the substrate after being refined and formed into a film. The reason can be explained as follows. A gas heated up to 800 ° C is made into a supersonic flow by a Laval nozzle (a shape that expands once the inner diameter is reduced), and raw material powder is put into it and accelerated to collide with the substrate to form a film. . As the hot gas expands, the velocity of the gas flow increases rapidly in the vicinity of the throat, and after passing through the nozzle outlet, gradually decreases due to the viscosity of the atmospheric gas. For this reason, when a convex portion is provided in the throat portion, the powder cannot be sufficiently refined due to insufficient gas flow velocity, and the powder tends to adhere to the convex portion, and the nozzle hole is eventually closed. Since the gas flow velocity between the nozzle outlet and the throat at a length of 30% is maintained at a substantially maximum speed, it is desirable to provide a convex portion between the nozzle outlet and the throat at a length of 30%. The powder of the highest speed gas flow collides with the convex portion, so that the powder can be refined. Further, the convex portion is in the vicinity of the nozzle outlet, and there is no fear of blocking the nozzle hole.

凸部がノズル出口からスロート部へ長さ30%の間に設置する代わりに、ノズル先端部にガス供給部から供給されるガス圧力によって、噴射される材料粉末粒子間を衝突させて微細化し基材に堆積し、皮膜を形成できる。ガスを供給するガス供給部の位置は、ノズル入口から噴射するガス流速度を考慮し、ノズル出口からスロートへ長さ30%の間に設けることが好ましい。ガス供給部から供給されるガス圧力は、ノズル入口から噴射されるガス圧力より非常に低く、噴射される粉末粒子間の衝突ができる程度が好ましい。   Instead of installing the convex part from the nozzle outlet to the throat part with a length of 30%, the material powder particles to be injected collide with the gas pressure supplied from the gas supply part to the nozzle tip part and refined. It can be deposited on the material to form a film. The position of the gas supply unit for supplying the gas is preferably provided within a length of 30% from the nozzle outlet to the throat in consideration of the gas flow speed injected from the nozzle inlet. The gas pressure supplied from the gas supply unit is preferably much lower than the gas pressure injected from the nozzle inlet, so that collision between the injected powder particles is possible.

また図3に示すように、本実施形態の凸部14を備えた外付けノズル15を従来ノズル16に接続することにより、基材に微細組織複合皮膜を形成することができる。外付けの本実施形態ノズルは、凸部または、ガス供給部がノズル出口からスロートへ長さ30%の間に設置した長さに相当し、従来ノズルに外付け接続することにより、低コスト化のみならず、容易に交換および修理ができる。   In addition, as shown in FIG. 3, by connecting the external nozzle 15 provided with the convex portion 14 of the present embodiment to the conventional nozzle 16, a fine structure composite film can be formed on the substrate. The externally attached nozzle of this embodiment corresponds to the length of the convex part or the gas supply part installed between the nozzle outlet and the throat at a length of 30%. By connecting externally to the conventional nozzle, the cost is reduced. It can be easily replaced and repaired.

原料粉末には、皮膜を形成したい材料であれば特に限定されず、例えば金属やセラミック等が挙げられる。これらの複数種類を混合して用いても良い。従来の原料粉末は平均粒径が一般的に10〜100μmであり、本実施形態のノズルを用いると、より微細化された粉末が噴射され、形成された皮膜中の粒子がさらに微細化になる。本実施形態は、粉末の保存管理をしなくても、本実施形態のノズルにより微粒化し、微粒化した粉末を瞬時に基材に堆積し皮膜を形成するため、粒子表面の酸化が抑制される。   The raw material powder is not particularly limited as long as it is a material for which a film is to be formed, and examples thereof include metals and ceramics. You may mix and use these multiple types. Conventional raw material powders generally have an average particle diameter of 10 to 100 μm, and when the nozzle of this embodiment is used, a finer powder is injected, and the particles in the formed film are further refined. . In the present embodiment, the particle surface is atomized by the nozzle of the present embodiment without performing powder storage management, and the atomized powder is instantaneously deposited on the substrate to form a film, so that the oxidation of the particle surface is suppressed. .

以下、本発明の実施例を説明するが、本発明はこれらの実施例に限定されるものではない。
(皮膜の断面組織観察)
走査型電子顕微鏡(S-4300;日立ハイテクノロジー製)を用いて、皮膜の断面組織を観察し、得られた観察写真から微細化した粒子を採寸した。
(噴射条件)
微細組織皮膜の形成方法を以下に示す。キャリアガスには3.0MPaの窒素ガスを用い、噴射距離(ノズルの先端から皮膜形成面までの距離)が30mmおよびキャリアガス温度が700℃で、ニッケル基材表面に混合粉末をほぼ垂直に10パス(10回重ねて)噴射した。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
(Observation of cross-sectional structure of film)
Using a scanning electron microscope (S-4300; manufactured by Hitachi High-Technology), the cross-sectional structure of the film was observed, and fine particles were measured from the obtained observation photograph.
(Injection conditions)
The method for forming the microstructure film is shown below. The carrier gas is nitrogen gas of 3.0 MPa, the injection distance (distance from the tip of the nozzle to the film formation surface) is 30 mm, the carrier gas temperature is 700 ° C, and the mixed powder is passed almost vertically on the nickel substrate surface for 10 passes. Injected 10 times.

混合粉末には、ニッケル粉末(高純度化学研究所製;-63μm)、モリブデン粉末(高純度化学研究所製;-63μm)を用いた。
(ノズル)
ノズルの断面図および平面図は図1、2に示すものを用いた。ノズルおよび凸部の材質は、特に限定しないが、耐摩耗性、硬度のある材料かつ、付着しにくい材料が望ましい。例えば、炭素鋼、炭化ケイ素、炭化タングステン、アルミナ、ジルコニア等が望ましい。
(実施例)
ノズルの凸部形状を変えたコールドスプレーにより、皮膜を形成した。実施例1は図2の(a)の1段、実施例2は同様の形状で1段と周方向に45°ずらした2段、実施例3は図2の(b)の1段、実施例4は図2の(c)の3段、実施例5は図2の(d)の1段、実施例6は(e)の2段を用いた。
As the mixed powder, nickel powder (manufactured by High Purity Chemical Laboratory; -63 μm) and molybdenum powder (manufactured by High Purity Chemical Laboratory; -63 μm) were used.
(nozzle)
The cross-sectional view and plan view of the nozzle used were those shown in FIGS. The material of the nozzle and the convex portion is not particularly limited, but a material having wear resistance and hardness and a material that is difficult to adhere is desirable. For example, carbon steel, silicon carbide, tungsten carbide, alumina, zirconia and the like are desirable.
(Example)
A film was formed by cold spraying with the nozzle convex shape changed. Example 1 is the first stage in FIG. 2 (a), Example 2 is the same shape and the second stage is shifted by 45 ° in the circumferential direction, and Example 3 is the first stage in FIG. 2 (b). Example 4 uses three stages of (c) in FIG. 2, Example 5 uses one stage of (d) in FIG. 2, and Example 6 uses two stages of (e).

モリブデン原料粉末は凝集していたが、形成した皮膜にはモリブデン粉末粒子が直径10μm以下に微細化し分散していた。電子顕微鏡で観察したところ、皮膜中のモリブデン凝集体がほぐれて1次粒子となって分散していることを確認した。比較例として、従来のノズルを用いて皮膜を形成した結果、皮膜中のモリブデン粉末粒子の多くは50〜20μmであった。外付けノズルの凸部についても、実施例1〜6と同様の形態にした結果、皮膜中のモリブデン粉末粒子が直径10μm以下であった。   Although the molybdenum raw material powder was agglomerated, the molybdenum powder particles were refined and dispersed to a diameter of 10 μm or less in the formed film. When observed with an electron microscope, it was confirmed that the molybdenum aggregates in the film were loosened and dispersed as primary particles. As a comparative example, as a result of forming a film using a conventional nozzle, most of the molybdenum powder particles in the film were 50 to 20 μm. As for the convex part of the external nozzle, as a result of adopting the same form as in Examples 1 to 6, the molybdenum powder particles in the film had a diameter of 10 μm or less.

実施例7は図4に示す装置を用いた。右側のノズル46は、凸部の形状を図1(a)の1段とし、図2に示す外付けノズルを用いた。粉末はモリブデン粉末を用いた。左側のノズル46は従来のものを用い、ノズル出口と基材との間にメッシュ45を設けた。粉末はニッケル粉末を用いた。メッシュの線径は、超音速ガスおよび粒子流に耐えられる大きさが望ましい。メッシュの代わりにスリットを用いても良い。スリットやメッシュは、噴射される粒子間の衝突および、それによる乱流で粉末を微細化させるために用いられ、目開き、スリットをミクロンメータオーダにする必要はない。材質は特に特に限定しないが、耐摩耗性、硬度のある材料かつ、付着しにくい材料が望ましい。例えば、炭素鋼、炭化ケイ素、炭化タングステン、アルミナ、ジルコニア等が望ましい。その結果、皮膜中のモリブデン粉末粒子は10μm以下に微細分散していた。このように、本実施例のノズルと従来のノズルとを併用しても、微細粒子を堆積することができる。   In Example 7, the apparatus shown in FIG. 4 was used. The nozzle 46 on the right side has a convex shape in one stage in FIG. 1A, and an external nozzle shown in FIG. 2 was used. As the powder, molybdenum powder was used. A conventional nozzle 46 was used on the left side, and a mesh 45 was provided between the nozzle outlet and the substrate. Nickel powder was used as the powder. The wire diameter of the mesh is desirably large enough to withstand supersonic gas and particle flow. A slit may be used instead of the mesh. Slits and meshes are used to refine powders by collisions between ejected particles and the resulting turbulence, and there is no need for openings and slits on the order of micrometers. The material is not particularly limited, but a material having wear resistance and hardness and a material that is difficult to adhere is desirable. For example, carbon steel, silicon carbide, tungsten carbide, alumina, zirconia and the like are desirable. As a result, the molybdenum powder particles in the coating were finely dispersed to 10 μm or less. Thus, fine particles can be deposited even when the nozzle of this embodiment and the conventional nozzle are used in combination.

1…ノズル出口、2…ノズル入口、3…スロート、4、14…凸部、5…ノズル、G…ガスおよび粒子流、A…スロート〜ノズル出口の長さ、B…スロート〜ノズル出口の長さの30%範囲、15…外付けノズル、16…従来ノズル、41…基材、42…皮膜、43…原料粉末、44…微細化粉末、45…メッシュ、スリット、46…ノズル 1 ... Nozzle outlet, 2 ... Nozzle inlet, 3 ... Throat, 4, 14 ... Convex, 5 ... Nozzle, G ... Gas and particle flow, A ... Throat-nozzle outlet length, B ... Throat- nozzle outlet length 15 ... external nozzle, 16 ... conventional nozzle, 41 ... base material, 42 ... film, 43 ... raw powder, 44 ... fine powder, 45 ... mesh, slit, 46 ... nozzle

Claims (7)

原料粉末とガスとが流入する入口と、流入した前記原料粉末と前記ガスとが通る内部通路と、前記内部通路を通って前記原料粉末と前記ガスとが噴射される出口と、前記内部通路に設けられ前記出口よりも流路断面積が小さいスロートとを備えたノズルにおいて、
前記内部通路は前記スロートから前記出口に向かって流路断面積が大きくなり、前記スロートと前記出口との間の前記ノズル内面に凸部を備えることを特徴とするノズル。
An inlet through which the raw material powder and gas flow, an internal passage through which the raw material powder and the gas flow in, an outlet through which the raw material powder and the gas are injected through the internal passage, and an internal passage In a nozzle provided with a throat having a smaller channel cross-sectional area than the outlet,
The internal passage has a channel cross-sectional area that increases from the throat toward the outlet, and has a convex portion on the inner surface of the nozzle between the throat and the outlet.
請求項1において、前記凸部を前記ノズルの周方向に複数個備えることを特徴とするノズル。   The nozzle according to claim 1, comprising a plurality of the convex portions in a circumferential direction of the nozzle. 請求項1又は2において、前記凸部を前記ノズルの軸方向に多段に備えることを特徴とするノズル。   The nozzle according to claim 1, wherein the convex portion is provided in multiple stages in the axial direction of the nozzle. 請求項1乃至3の何れかにおいて、前記凸部を前記ノズルの前記出口から前記スロートまでの長さの30%の間に備えることを特徴とするノズル。   4. The nozzle according to claim 1, wherein the convex portion is provided between 30% of a length from the outlet of the nozzle to the throat. 5. 原料粉末とガスとが噴射されるノズルの先端に取り外し可能に取り付けられるアタッチメントにおいて、前記ノズルの先端から前記原料粉末と前記ガスとが流入する流入口と、流入した前記原料粉末と前記ガスとが通る内部空間と、前記内部空間を通って前記原料粉末と前記ガスとが噴射され前記流入口よりも流路断面積が大きい流出口と、前記流入口と前記流出口との間の前記アタッチメント内面に凸部を備えることを特徴とするアタッチメント。   In an attachment that is removably attached to the tip of a nozzle from which the raw material powder and gas are injected, an inlet through which the raw material powder and the gas flow from the tip of the nozzle, and the raw material powder and the gas that flow in An internal space between the inflow port and the outflow port, an outflow port in which the raw material powder and the gas are injected through the internal space and the flow passage cross-sectional area is larger than the inflow port. An attachment characterized by comprising a convex part. 請求項5において、前記凸部を前記アタッチメントの周方向に複数個備えることを特徴とするアタッチメント。   The attachment according to claim 5, wherein a plurality of the convex portions are provided in a circumferential direction of the attachment. 請求項5又は6において、前記凸部を前記アタッチメントの軸方向に多段に備えることを特徴とするアタッチメント。   The attachment according to claim 5 or 6, wherein the protrusion is provided in multiple stages in the axial direction of the attachment.
JP2014101900A 2014-05-16 2014-05-16 Nozzle and attachment Pending JP2015218353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014101900A JP2015218353A (en) 2014-05-16 2014-05-16 Nozzle and attachment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014101900A JP2015218353A (en) 2014-05-16 2014-05-16 Nozzle and attachment

Publications (1)

Publication Number Publication Date
JP2015218353A true JP2015218353A (en) 2015-12-07

Family

ID=54777994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014101900A Pending JP2015218353A (en) 2014-05-16 2014-05-16 Nozzle and attachment

Country Status (1)

Country Link
JP (1) JP2015218353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6404532B1 (en) * 2018-04-20 2018-10-10 株式会社特殊金属エクセル Nozzle for cold spray and cold spray device
WO2021177437A1 (en) * 2020-03-05 2021-09-10 タツタ電線株式会社 Spray nozzle, nozzle tip part, and thermal spraying device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6404532B1 (en) * 2018-04-20 2018-10-10 株式会社特殊金属エクセル Nozzle for cold spray and cold spray device
WO2019202720A1 (en) * 2018-04-20 2019-10-24 株式会社特殊金属エクセル Nozzle for cold spray and cold-splay device
WO2021177437A1 (en) * 2020-03-05 2021-09-10 タツタ電線株式会社 Spray nozzle, nozzle tip part, and thermal spraying device

Similar Documents

Publication Publication Date Title
US10808323B2 (en) Cold spray nozzles
KR101736214B1 (en) Nozzle for cold spray, and cold spray device using nozzle for cold spray
JP5736138B2 (en) Coating deposition apparatus and method
JP2019014929A (en) Cold spray gun and cold spray device including the same
EP3012350B1 (en) Cold spray manufacturing of maxmet composites
JP6817615B2 (en) Metal powder manufacturing method and metal powder manufacturing equipment
JP4982859B2 (en) Formation method of organic film
US20070278324A1 (en) Device for cold gas spraying
CN105500823A (en) Preparation method of complex of metal and resin
WO2016210064A1 (en) Directional cold spray nozzle
JP2007084924A (en) Film forming apparatus and jetting nozzle
JP2015218353A (en) Nozzle and attachment
JP5228149B2 (en) Nozzle for film formation, film formation method, and film formation member
JP6426647B2 (en) Spray nozzle, film forming apparatus, and method of forming film
JP2012031443A (en) Metal powder for cold spray
JP2007146266A (en) Corrosion protection-covered steel material and its production method
EP1854547A1 (en) Pistol for cold gas spraying
CN114054764A (en) Spray pipe atomizer for gas atomization powder preparation
JP2012000592A (en) Gas atomizer of high-temperature molten metal
US11925987B2 (en) Metal powder manufacturing device, and crucible apparatus and molten metal nozzle for metal powder manufacturing device
US20190152866A1 (en) Coating apparatus and coating method
US20140199516A1 (en) Resin coated member and method of resin coating
KR101986306B1 (en) Vacuum suspension plasma spray aparattus and vacuum suspension plasma spray method
WO2016181939A1 (en) High velocity oxy-fuel spraying device
JPH0873905A (en) Apparatus for producing fine metallic powder

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112