EP1854547A1 - Pistol for cold gas spraying - Google Patents

Pistol for cold gas spraying Download PDF

Info

Publication number
EP1854547A1
EP1854547A1 EP06015704A EP06015704A EP1854547A1 EP 1854547 A1 EP1854547 A1 EP 1854547A1 EP 06015704 A EP06015704 A EP 06015704A EP 06015704 A EP06015704 A EP 06015704A EP 1854547 A1 EP1854547 A1 EP 1854547A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
spray gun
cold gas
gun according
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06015704A
Other languages
German (de)
French (fr)
Inventor
Peter Heinrich
Heinrich Prof .Dr. Kreye
Tobias Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1854547A1 publication Critical patent/EP1854547A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a cold gas spray gun, in particular a cold gas spray gun, which allows spraying with higher gas temperatures.
  • particles from 1 ⁇ m to 250 ⁇ m are accelerated in a gas stream to speeds of 200 m / s to 1600 m / s without melting or fusing, and sprayed onto the surface to be coated, the substrate. Only when it strikes the substrate does the temperature increase at the colliding interfaces due to plastic deformation under very high strain rates and leads to welding of the particle material with the substrate as well as with each other. For this, however, a minimum impact speed must be exceeded, the so-called critical speed.
  • the mechanism and quality of welding is comparable to explosive welding and also depends on the temperature of the particles at the moment of impact. It is therefore necessary to ensure that the particles have a sufficiently high speed and temperature on impact.
  • the particles are mixed in a cold gas spray gun, which has a mixing chamber and a nozzle in the mixing chamber a hot carrier gas, heated by this and accelerated and further accelerated through the nozzle and sprayed with the gas stream from the cold gas spray gun.
  • a cold gas spray gun which has a mixing chamber and a nozzle in the mixing chamber a hot carrier gas, heated by this and accelerated and further accelerated through the nozzle and sprayed with the gas stream from the cold gas spray gun.
  • Such spray guns are known for thermal spraying eg from the US 6,623,796 B1 ,
  • a spray gun is described with a Laval nozzle, consisting of an inlet cone and an outlet cone, which abut one another at a nozzle neck.
  • the Laval nozzle is supplied with air under high pressure via an air heater and a mixing chamber in which an air-particle mixture is mixed.
  • the particles are accelerated through the Laval nozzle as a supersonic nozzle and heated by the air heated in the air heater, without that they melt.
  • the temperature of the gas for example, with aluminum particles by 50 to 150 ° C, with water cooling even increase by 300 ° C, without that it comes to deposits on the inner wall of the nozzle.
  • the higher gas temperature also gives the particles a higher temperature, favoring their ability to deform on impact with the substrate, ie reducing the critical velocity required for adhesion.
  • the phenomenon of the accumulation of particles on the inner wall of the nozzle and the consequent limitation of the maximum usable gas temperature is found in all metallic materials as particles.
  • Nozzle cooling therefore has a favorable effect, in particular in the case of many metallic spray materials, such as in the case of steel, titanium, nickel, copper, tin and zinc, above all, there are considerable advantages with aluminum.
  • the cold gas spray gun according to the invention can also spray particles of materials which require higher gas temperatures, for example up to 1000 ° C., in order to achieve good layer properties by increasing the particle velocity and the particle temperature.
  • the nozzle is a Laval nozzle, which consists of a converging section, a nozzle throat and a diverging section.
  • the gas in the area of the nozzle throat can be accelerated to supersonic speed. Since the speed of sound increases with temperature, the higher temperature of a Laval nozzle thus increases the gas velocities that can be achieved when flowing through, and thus also the velocity of the particles. Since higher speeds are possible, coarser particles with particle sizes of up to 100 ⁇ m, even up to 250 ⁇ m, can be accelerated to the critical speed required for adhesion. The risk of material accumulation on the inner wall of the Laval nozzle is reduced by the cooling of the nozzle, which in turn supports the use of coarser powders. These coarser particles or powders are cheaper and can also be produced better and promote evenly. Moreover, layers sprayed with coarser particles, yet dense, have higher bond strength to the substrate and higher strength with respect to the bonding of the particles to each other than layers sprayed with finer particles.
  • the region of the nozzle neck can be cooled more strongly and the coolant flowing around the Laval nozzle in the region of the converging section axially to a nozzle outlet at the diverging section.
  • the nozzle can have cooling fins flowed around by the coolant and can be flowed around radially, axially or helically by the coolant.
  • the coolant is a gas, in particular compressed air.
  • the coolant may be water.
  • the nozzle may consist at least partly of hardened material, in particular hard metal or hardened steel.
  • cooling fins are attached to the nozzle, already sufficient cooling can be achieved by the convection of the ambient air. Especially in spray booths is through the suction and an air flow, which leads to a greater cooling effect of the cooling fins.
  • nozzle cooling allows the nozzle to be made of hardened material, otherwise the material would lose its strength.
  • the resistance to erosion is thereby greatly improved, since the particles accelerated by the gas have a very abrasive effect and hardened materials withstand the longer.
  • Fig. 1 shows schematically in detail cross section a nozzle of a cold gas spray gun according to the invention in the form of a Laval nozzle 8.
  • This consists of a converging section 7, a nozzle throat 9 and a diverging section 10.
  • the Laval nozzle 8 is surrounded by a cooling jacket 12, which is a coolant , here compressed air, in the direction indicated by the arrow is flowed through.
  • a cooling jacket 12 which is a coolant , here compressed air, in the direction indicated by the arrow is flowed through.
  • the area of the convergent section 7 and the nozzle throat 9 is cooled more strongly by the initially still cold compressed air.
  • the Laval nozzle 8 is traversed by a gas with particles in the same direction indicated by the arrow.
  • Fig. 2 shows schematically in cross section a cold gas spray gun according to the invention with the Laval nozzle 8, a pressure vessel 1, which has an insulation 2 on its inner side.
  • a heating element 3 is arranged, here in the form of a filament heater, which consists of a plurality of electrical heating wires.
  • the gas to be heated is supplied to the pressure vessel 1 via a gas supply line 4.
  • the pressure vessel 1 is a rotationally symmetrical body.
  • a gas outlet 5 directs the heated or further heated gas in a mixing chamber 6, in which a particle tube 11 can supply particles. In this case, the mouth of the particle tube 11 is aligned with the forming gas stream.
  • the gas flows through the pressure vessel 1 and with this linearly aligned mixing chamber 6 and Laval nozzle 8 as indicated by the arrows, wherein it is distributed uniformly over the cross section of the heating element 3. Due to the internal insulation 2 is achieved that only a few heat energy reaches the wall of the pressure vessel 1 and the mixing chamber 6. Since the pressure vessel 1 and the mixing chamber 6 at the same time give off heat to the environment, the pressure vessel 1 and the mixing chamber 6 is a considerably lower temperature than the heated gas has. The pressure vessel 1 and the mixing chamber 6 can therefore be relatively thin-walled and lightweight.
  • the particles to be sprayed are added to the heated gas via the particle tube 11. This is done by the particles are transported through the particle tube via a carrier gas stream.
  • the nozzle throat 9 On the distance between particle injection and the narrowest cross section of the Laval nozzle, the nozzle throat 9, the particles are heated.
  • a short mixing chamber and an extended converging section 7 may be used, because even with an elongated converging section 7, the distance between particle injection and nozzle throat is long enough to sufficiently heat the particles.
  • the diverging section 10 of the Laval nozzle 8 the expanding gas is accelerated to speeds above the speed of sound. The particles are strongly accelerated in this supersonic flow and reach speeds between 200 and 1500 m / s.
  • the surface temperature of the convergent section 7, the nozzle throat 9 and the diverging section 10 of the Laval nozzle 8 remains in a lower range, so that substantially higher gas temperatures can be used, which have an advantageous effect on the quality of the coating.
  • gas temperatures above 600 ° C and more resistant to abrasive wear materials for the Laval nozzle 8 can be used.

Abstract

The cold-gas spray gun has a mixing chamber (6), in which the particles of the gas are supplied by a particle supply (11). The laval nozzle (8) is cooled outside by a cooling agent and consists of and consists of a converging section (7), a nozzle throat (9) and a diverging section (10).

Description

Die Erfindung betrifft eine Kaltgasspritzpistole, insbesondere eine Kaltgasspritzpistole, die ein Spritzen mit höheren Gastemperaturen ermöglicht.The invention relates to a cold gas spray gun, in particular a cold gas spray gun, which allows spraying with higher gas temperatures.

Beim Kaltgasspritzen oder dem kinetischen Spritzen werden Partikel von 1 µm bis 250 µm in einem Gasstrom auf Geschwindigkeiten von 200 m/s bis 1600 m/s beschleunigt, ohne dabei an- oder aufzuschmelzen, und auf die zu beschichtende Fläche, das Substrat, gespritzt. Erst beim Aufprall auf das Substrat steigt durch plastische Verformung unter sehr hohen Dehnraten die Temperatur an den kollidierenden Grenzflächen und führt zu Verschweißungen des Partikelwerkstoffs mit dem Substrat sowie untereinander. Dazu muss jedoch eine Mindestaufprallgeschwindigkeit überschritten werden, die so genannte kritische Geschwindigkeit. Der Mechanismus und die Qualität der Verschweißung ist mit dem Explosivschweißen vergleichbar und hängt auch von der Temperatur der Partikel im Moment ihres Aufpralls ab. Man muss daher dafür sorgen, dass die Partikel eine ausreichend hohe Geschwindigkeit und Temperatur beim Aufprall haben. Hierzu werden die Partikel in einer Kaltgasspritzpistole, die eine Mischkammer und eine Düse aufweist, in der Mischkammer einem heißen Trägergas zugemischt, durch dieses erwärmt und beschleunigt sowie über die Düse weiter beschleunigt und mit dem Gasstrom aus der Kaltgasspritzpistole verspritzt. Bei vorgegebener Düsengeometrie ist es deshalb oft erforderlich, mit dem anlagentechnisch möglichen maximalen Gasdruck und möglichst hoher Gastemperatur zu arbeiten.In cold gas spraying or kinetic spraying, particles from 1 μm to 250 μm are accelerated in a gas stream to speeds of 200 m / s to 1600 m / s without melting or fusing, and sprayed onto the surface to be coated, the substrate. Only when it strikes the substrate does the temperature increase at the colliding interfaces due to plastic deformation under very high strain rates and leads to welding of the particle material with the substrate as well as with each other. For this, however, a minimum impact speed must be exceeded, the so-called critical speed. The mechanism and quality of welding is comparable to explosive welding and also depends on the temperature of the particles at the moment of impact. It is therefore necessary to ensure that the particles have a sufficiently high speed and temperature on impact. For this purpose, the particles are mixed in a cold gas spray gun, which has a mixing chamber and a nozzle in the mixing chamber a hot carrier gas, heated by this and accelerated and further accelerated through the nozzle and sprayed with the gas stream from the cold gas spray gun. For a given nozzle geometry, it is therefore often necessary to work with the system-technically possible maximum gas pressure and the highest possible gas temperature.

Dabei zeigt sich, dass es oberhalb einer von dem Werkstoff der Partikel abhängigen Gastemperatur zu Anlagerungen an der Innenwand der Düse kommt. Beim Spritzen von Aluminium liegt z.B. die maximal mögliche Gastemperatur im Bereich von 150 bis 300 °C. Durch diese Anlagerungen wird die Gasströmung in der Düse gestört und es wird die Funktionsfähigkeit der Kaltgasspritzpistole bis hin zum Verstopfen der Düse beeinträchtigt.It turns out that deposits on the inner wall of the nozzle occur above a gas temperature dependent on the material of the particles. When spraying aluminum, e.g. the maximum possible gas temperature in the range of 150 to 300 ° C. These deposits disrupt the flow of gas in the nozzle and affect the ability of the cold gas spray gun to clog the nozzle.

Bekannt sind solche Spritzpistolen für das thermische Spritzen z.B. aus der US 6,623,796 B1 . In dieser ist eine Spritzpistole mit einer Lavaldüse beschrieben, bestehend aus einem Eingangskonus und einem Ausgangskonus, die an einem Düsenhals aneinander stoßen. Der Lavaldüse wird Luft unter hohem Druck über einen Lufterhitzer und eine Mischkammer zugeführt, in der ein Luft-Partikelgemisch zugemischt wird. Die Partikel werden durch die Lavaldüse als Überschalldüse beschleunigt und durch die im Lufterhitzer erhitzte Luft erwärmt, ohne, dass sie schmelzen.Such spray guns are known for thermal spraying eg from the US 6,623,796 B1 , In this a spray gun is described with a Laval nozzle, consisting of an inlet cone and an outlet cone, which abut one another at a nozzle neck. The Laval nozzle is supplied with air under high pressure via an air heater and a mixing chamber in which an air-particle mixture is mixed. The particles are accelerated through the Laval nozzle as a supersonic nozzle and heated by the air heated in the air heater, without that they melt.

Es ist daher Aufgabe der Erfindung, eine Kaltgasspritzpistole, zur Verfügung zu stellen, die mit Gas unter beliebig hohen Temperaturen und unter hohen Drücken betrieben werden kann und bei der keine Materialanlagerungen des Partikelmaterials in der Düse auftreten.It is therefore an object of the invention to provide a cold gas spray gun, which can be operated with gas under arbitrarily high temperatures and under high pressures and in which no material deposits of the particulate material occur in the nozzle.

Diese Aufgabe wird durch eine Kaltgasspritzpistole mit den Merkmalen des unabhängigen Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Kaltgasspritzpistole werden durch die Unteransprüche angegeben.This object is achieved by a cold gas spray gun having the features of independent claim 1. Advantageous developments of the cold gas spray gun are specified by the subclaims.

Kühlt man die Außenseite der Düse durch ein Kühlmittel, so dass die Temperatur der Innenwand der Düse verringert ist, dann lässt sich die Temperatur des Gases z.B. bei Partikeln aus Aluminium um 50 bis 150 °C, mit Wasserkühlung sogar um 300°C erhöhen, ohne dass es zu Anlagerungen an der Innenwand der Düse kommt. Durch die höhere Gastemperatur erhalten auch die Partikel eine höhere Temperatur, wodurch ihre Verformungsfähigkeit beim Aufprall auf das Substrat begünstigt wird, d.h. die zum Haften erforderliche kritische Geschwindigkeit verringert wird. Das Phänomen der Anlagerung von Partikeln an der Innenwand der Düse und die dadurch bedingte Begrenzung der maximal nutzbaren Gastemperatur ist bei allen metallischen Werkstoffen als Partikel festzustellen. Eine Düsenkühlung wirkt sich daher insbesondere bei vielen metallischen Spritzwerkstoffen günstig aus, wie etwa bei Stahl, Titan, Nickel, Kupfer, Zinn und Zink, vor allem ergeben sich erhebliche Vorteile bei Aluminium. Durch die erfindungsgemäße Kaltgasspritzpistole können auch Partikel aus Werkstoffen verspritzt werden, die höhere Gastemperaturen, etwa bis 1000°C erfordern, um gute Schichteigenschaften durch die Steigerung der Partikelgeschwindigkeit und der Partikeltemperatur zu erreichen.If you cool the outside of the nozzle by a coolant, so that the temperature of the inner wall of the nozzle is reduced, then the temperature of the gas, for example, with aluminum particles by 50 to 150 ° C, with water cooling even increase by 300 ° C, without that it comes to deposits on the inner wall of the nozzle. The higher gas temperature also gives the particles a higher temperature, favoring their ability to deform on impact with the substrate, ie reducing the critical velocity required for adhesion. The phenomenon of the accumulation of particles on the inner wall of the nozzle and the consequent limitation of the maximum usable gas temperature is found in all metallic materials as particles. Nozzle cooling therefore has a favorable effect, in particular in the case of many metallic spray materials, such as in the case of steel, titanium, nickel, copper, tin and zinc, above all, there are considerable advantages with aluminum. The cold gas spray gun according to the invention can also spray particles of materials which require higher gas temperatures, for example up to 1000 ° C., in order to achieve good layer properties by increasing the particle velocity and the particle temperature.

In vorteilhafter Ausführung ist die Düse eine Lavaldüse, die aus einem konvergierenden Abschnitt, einem Düsenhals und einem divergierenden Abschnitt besteht.In an advantageous embodiment, the nozzle is a Laval nozzle, which consists of a converging section, a nozzle throat and a diverging section.

In einer Lavaldüse kann das Gas im Bereich des Düsenhalses auf Überschallgeschwindigkeit beschleunigt werden. Da die Schallgeschwindigkeit mit der Temperatur steigt, sind durch die höhere Temperatur somit bei einer Lavaldüse die beim Durchströmen erreichbaren Gasgeschwindigkeiten höher und damit auch die Geschwindigkeit der Partikel. Da höhere Geschwindigkeiten möglich sind, können gröbere Partikel mit Partikelgrößen von bis zu 100 µm, ja von bis zu 250 µm auf die zur Haftung erforderliche kritische Geschwindigkeit beschleunigt werden. Auch die Gefahr von Materialanlagerungen an der Innenwand der Lavaldüse verringert sich durch die Kühlung der Düse, was wiederum die Verwendung von gröberen Pulvern unterstützt. Diese gröberen Partikel oder Pulver sind kostengünstiger und lassen sich zudem besser herstellen und gleichmäßiger fördern. Überdies besitzen Schichten, die mit gröberen Partikeln gespritzt und dennoch dicht sind, eine höhere Haftfestigkeit auf dem Substrat und höhere Festigkeit im Hinblick auf die Bindung der Partikel untereinander als Schichten, die mit feineren Partikeln gespritzt wurden.In a Laval nozzle, the gas in the area of the nozzle throat can be accelerated to supersonic speed. Since the speed of sound increases with temperature, the higher temperature of a Laval nozzle thus increases the gas velocities that can be achieved when flowing through, and thus also the velocity of the particles. Since higher speeds are possible, coarser particles with particle sizes of up to 100 μm, even up to 250 μm, can be accelerated to the critical speed required for adhesion. The risk of material accumulation on the inner wall of the Laval nozzle is reduced by the cooling of the nozzle, which in turn supports the use of coarser powders. These coarser particles or powders are cheaper and can also be produced better and promote evenly. Moreover, layers sprayed with coarser particles, yet dense, have higher bond strength to the substrate and higher strength with respect to the bonding of the particles to each other than layers sprayed with finer particles.

In günstiger Ausführungsform kann der Bereich des Düsenhalses stärker gekühlt sein und das Kühlmittel die Lavaldüse im Bereich des konvergierenden Abschnitts zuströmend axial bis zu einem Düsenaustritt am divergierenden Abschnitt umströmen.In a favorable embodiment, the region of the nozzle neck can be cooled more strongly and the coolant flowing around the Laval nozzle in the region of the converging section axially to a nozzle outlet at the diverging section.

Eine stärkere Kühlung ist im Bereich des engsten Querschnittes der Düse und in Strömungsrichtung kurz dahinter vorteilhaft, da hier die Partikelbeschleunigung und die Partikeltemperaturen am höchsten sind und draus resultierend die Gefahr von Anlagerungen. Es ist daher vorteilhaft, das kalte Kühlmittel im rückwärtigen, konvergierenden Bereich in einen die Düse umgebenden Kühlraum einströmen und im Bereich des Düsenaustritts am Ende des divergierenden Abschnitts ausströmen zu lassen.Greater cooling is advantageous in the region of the narrowest cross-section of the nozzle and in the direction of flow shortly behind it, since here the particle acceleration and the particle temperatures are highest and, as a result, the risk of deposits. It is therefore advantageous to flow the cold coolant in the rear, converging region into a cooling space surrounding the nozzle and to let it flow out in the area of the nozzle exit at the end of the diverging section.

Die Düse kann von dem Kühlmittel umströmte Kühlrippen aufweisen und von dem Kühlmittel radial, axial oder spiralförmig umströmt werden.The nozzle can have cooling fins flowed around by the coolant and can be flowed around radially, axially or helically by the coolant.

Durch entsprechend geformten Kühlrippen kann eine bessere Wärmeabfuhr und gezielte Führung sowie gleichmäßige Verteilung des Kühlmittels erreicht werden.By appropriately shaped cooling fins better heat dissipation and targeted guidance and uniform distribution of the coolant can be achieved.

In günstiger Ausführungsform ist das Kühlmittel ein Gas, insbesondere Druckluft. Alternativ kann das Kühlmittel Wasser sein.In a favorable embodiment, the coolant is a gas, in particular compressed air. Alternatively, the coolant may be water.

Wenn das heiße Gas zum Beschleunigen der Partikel Druckluft ist, so steht auch oft kalte Druckluft für Kühlzwecke zur Verfügung. Weiter steht Druckluft generell in vielen Werkstätten zur Verfügung und ermöglicht einen einfachen Aufbau, da nach dem Kühlvorgang die Druckluft in die Umgebung abgeblasen werden kann und keine Rückführung des Kühlmittels erfordert. Wasser ist meist auch gut verfügbar und hat eine erheblich stärkere Kühlwirkung als Gase.When the hot gas is compressed air to accelerate the particles, cold air is often available for cooling purposes. Furthermore, compressed air is generally available in many workshops and allows a simple structure, since after the cooling process, the compressed air can be blown into the environment and requires no return of the coolant. Water is usually also readily available and has a much greater cooling effect than gases.

Die Düse kann zumindest zum Teil aus gehärtetem Material bestehen, insbesondere Hartmetall oder gehärtetem Stahl.The nozzle may consist at least partly of hardened material, in particular hard metal or hardened steel.

Vorteilhaft kann als Kühlmittel die Umgebungsluft dienen.Advantageously, serve as a coolant, the ambient air.

Wenn an der Düse Kühlrippen angebracht sind, ist eine bereits ausreichende Kühlung schon durch die Konvektion der Umgebungsluft zu erreichen. Vor allem in Spritzkabinen besteht durch die Absauganlagen auch eine Luftströmung, die zu einer stärkeren Kühlwirkung der Kühlrippen führt.If cooling fins are attached to the nozzle, already sufficient cooling can be achieved by the convection of the ambient air. Especially in spray booths is through the suction and an air flow, which leads to a greater cooling effect of the cooling fins.

Bei Gastemperaturen oberhalb von 600°C für WCCo (Wolfram-Carbid-Kobalt) bzw. 500°C bei gehärtetem Stahl ermöglicht eine Düsenkühlung, dass die Düse aus gehärtetem Material besteht, da ansonsten das Material seine Festigkeit verlieren würde. Bei der erfindungsgemäßen Kaltgasspritzpistole wird dadurch die Beständigkeit gegen Erosion stark verbessert, da die durch das Gas beschleunigten Partikel sehr abrasiv wirken und gehärtete Materialien dem länger stand halten.At gas temperatures above 600 ° C for WCCo (Tungsten Carbide Cobalt) or 500 ° C for hardened steel, nozzle cooling allows the nozzle to be made of hardened material, otherwise the material would lose its strength. In the case of the cold gas spray gun according to the invention, the resistance to erosion is thereby greatly improved, since the particles accelerated by the gas have a very abrasive effect and hardened materials withstand the longer.

Ein vorteilhaftes Ausführungsbeispiel der erfindungsgemäßen Kaltgasspritzpistole wird anhand der beigefügten Zeichnungen näher erläutert. Dabei zeigt

  • Fig. 1 schematisch im Detailquerschnitt eine Düse einer erfindungsgemäßen Kaltgasspritzpistole und
  • Fig. 2 schematisch im Querschnitt eine erfindungsgemäße Kaltgasspritzpistole.
An advantageous embodiment of the cold gas spray gun according to the invention will be explained in more detail with reference to the accompanying drawings. It shows
  • 1 schematically in detail cross-section of a nozzle of a cold gas spray gun according to the invention and
  • Fig. 2 shows schematically in cross section a cold gas spray gun according to the invention.

Die Fig. 1 zeigt schematisch im Detailquerschnitt eine Düse einer erfindungsgemäßen Kaltgasspritzpistole in Form einer Lavaldüse 8. Diese besteht aus einem konvergierenden Abschnitt 7, einem Düsenhals 9 und einem divergierenden Abschnitt 10. Die Lavaldüse 8 ist von einem Kühlmantel 12 umgeben, der von einem Kühlmittel, hier Druckluft, in der durch den Pfeil angedeuteten Richtung durchströmt wird. Dadurch wird der Bereich des konvergierenden Abschnitts 7 und des Düsenhalses 9 von der zunächst noch kalten Druckluft und somit stärker gekühlt. Dabei wird die Lavaldüse 8 von einem Gas mit Partikeln in derselben durch den Pfeil angegebenen Richtung durchströmt.Fig. 1 shows schematically in detail cross section a nozzle of a cold gas spray gun according to the invention in the form of a Laval nozzle 8. This consists of a converging section 7, a nozzle throat 9 and a diverging section 10. The Laval nozzle 8 is surrounded by a cooling jacket 12, which is a coolant , here compressed air, in the direction indicated by the arrow is flowed through. As a result, the area of the convergent section 7 and the nozzle throat 9 is cooled more strongly by the initially still cold compressed air. Here, the Laval nozzle 8 is traversed by a gas with particles in the same direction indicated by the arrow.

Fig. 2 zeigt schematisch im Querschnitt eine erfindungsgemäße Kaltgasspritzpistole mit der Lavaldüse 8, einem Druckbehälter 1, der auf seiner Innenseite eine Isolierung 2 aufweist. Im Inneren des Druckbehälters 1 ist ein Heizelement 3 angeordnet, hier in Form eines Filamentheizers, der aus einer Vielzahl von elektrischen Heizdrähten besteht. Das aufzuheizende Gas wird dem Druckbehälter 1 über eine Gaszuleitung 4 zugeführt. In dem vorliegenden Beispiel ist der Druckbehälter 1 ein rotationssymmetrischer Körper. Ein Gasaustritt 5 leitet das aufgeheizte oder weiter aufgeheizte Gas in eine Mischkammer 6, in der ein Partikelrohr 11 Partikel zuführen kann. Dabei ist die Mündung des Partikelrohrs 11 mit dem sich bildenden Gasstrom ausgerichtet.Fig. 2 shows schematically in cross section a cold gas spray gun according to the invention with the Laval nozzle 8, a pressure vessel 1, which has an insulation 2 on its inner side. Inside the pressure vessel 1, a heating element 3 is arranged, here in the form of a filament heater, which consists of a plurality of electrical heating wires. The gas to be heated is supplied to the pressure vessel 1 via a gas supply line 4. In the present example, the pressure vessel 1 is a rotationally symmetrical body. A gas outlet 5 directs the heated or further heated gas in a mixing chamber 6, in which a particle tube 11 can supply particles. In this case, the mouth of the particle tube 11 is aligned with the forming gas stream.

Das Gas durchströmt den Druckbehälter 1 und die mit diesem linear ausgerichtete Mischkammer 6 und Lavaldüse 8 wie durch die Pfeile angezeigt, wobei es sich gleichmäßig über den Querschnitt des Heizelements 3 verteilt. Durch die innen angebrachte Isolierung 2 wird erreicht, dass nur wenige Wärmeenergie die Wand des Druckbehälters 1 und der Mischammer 6 erreicht. Da der Druckbehälters 1 und die Mischammer 6 an die Umgebung zugleich Wärme abgeben, stellt sich beim Druckbehälter 1 und der Mischammer 6 eine erheblich niedrigere Temperatur ein, als das erhitzte Gas hat. Der Druckbehälter 1 und die Mischammer 6 können daher relativ dünnwandig und leicht gebaut sein. In der Mischkammer 6 werden dem erhitzten Gas über das Partikelrohr 11 die zu verspritzenden Partikel beigemischt. Dies erfolgt, indem über einen Trägergasstrom die Partikel durch das Partikelrohr befördert werden. Auf der Strecke zwischen Partikelinjektion und engstem Querschnitt der Lavaldüse, dem Düsenhals 9 werden die Partikel aufgeheizt. Anstelle der in Fig. 2 gezeigten langen Mischkammer 6 kann auch eine kurze Mischkammer und ein verlängerte konvergierender Abschnitt 7 verwendet werden, da auch bei einem verlängertem konvergierendem Abschnitt 7 die Strecke zwischen Partikelinjektion und Düsenhals lang genug ist, die Partikel ausreichend zu erwärmen. In dem divergierenden Abschnitt 10 der Lavaldüse 8 wird das expandierende Gas auf Geschwindigkeiten oberhalb der Schallgeschwindigkeit beschleunigt. Die Partikel werden in dieser Überschallströmung stark beschleunigt und erreichen Geschwindigkeiten zwischen 200 und 1500 m/s.The gas flows through the pressure vessel 1 and with this linearly aligned mixing chamber 6 and Laval nozzle 8 as indicated by the arrows, wherein it is distributed uniformly over the cross section of the heating element 3. Due to the internal insulation 2 is achieved that only a few heat energy reaches the wall of the pressure vessel 1 and the mixing chamber 6. Since the pressure vessel 1 and the mixing chamber 6 at the same time give off heat to the environment, the pressure vessel 1 and the mixing chamber 6 is a considerably lower temperature than the heated gas has. The pressure vessel 1 and the mixing chamber 6 can therefore be relatively thin-walled and lightweight. In the mixing chamber 6, the particles to be sprayed are added to the heated gas via the particle tube 11. This is done by the particles are transported through the particle tube via a carrier gas stream. On the distance between particle injection and the narrowest cross section of the Laval nozzle, the nozzle throat 9, the particles are heated. Instead of the long mixing chamber 6 shown in Fig. 2, a short mixing chamber and an extended converging section 7 may be used, because even with an elongated converging section 7, the distance between particle injection and nozzle throat is long enough to sufficiently heat the particles. In the diverging section 10 of the Laval nozzle 8, the expanding gas is accelerated to speeds above the speed of sound. The particles are strongly accelerated in this supersonic flow and reach speeds between 200 and 1500 m / s.

Durch den von Druckluft durchströmten Kühlmantel 12 bleibt die Oberflächentemperatur des konvergierenden Abschnitts 7, des Düsenhalses 9 und des divergierenden Abschnitts 10 der Lavaldüse 8 in einem niedrigeren Bereich, so dass wesentlich höhere Gastemperaturen verwendet werden können, die sich vorteilhaft auf die Qualität der Beschichtung auswirken. Insbesondere können auch Gastemperaturen oberhalb von 600°C und gegen abrasiven Verschleiß beständigere Materialien für die Lavaldüse 8 verwendet werden.As a result of the cooling jacket 12 through which compressed air flows, the surface temperature of the convergent section 7, the nozzle throat 9 and the diverging section 10 of the Laval nozzle 8 remains in a lower range, so that substantially higher gas temperatures can be used, which have an advantageous effect on the quality of the coating. In particular, gas temperatures above 600 ° C and more resistant to abrasive wear materials for the Laval nozzle 8 can be used.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Druckbehälterpressure vessel
22
Isolierunginsulation
33
Heizelementheating element
44
Gaszuleitunggas supply
55
Gasaustrittgas outlet
66
Mischkammermixing chamber
77
konvergierender Abschnittconverging section
88th
LavaldüseLaval
99
Düsenhalsnozzle throat
1010
divergierender Abschnittdiverging section
1111
Partikelrohrparticle pipe
1212
Kühlmantelcooling jacket

Claims (10)

Kaltgasspritzpistole zum Verspritzen von Partikeln in einem heißen Gasstrom mit einer Mischkammer (6), in der Partikel dem Gas durch eine Partikelzuführung (11) zugeführt werden können und einer Düse, dadurch gekennzeichnet, dass die Düse außen durch ein Kühlmittel gekühlt wird.Cold gas spray gun for spraying particles in a hot gas stream with a mixing chamber (6) in which particles can be supplied to the gas through a particle feed (11) and a nozzle, characterized in that the nozzle is cooled by a coolant outside. Kaltgasspritzpistole nach Anspruch 1, dadurch gekennzeichnet, dass die Düse eine Lavaldüse (8) ist, die aus einem konvergierenden Abschnitt (7), einem Düsenhals (9) und einem divergierenden Abschnitt (10) besteht.Cold gas spray gun according to claim 1, characterized in that the nozzle is a Laval nozzle (8), which consists of a converging section (7), a nozzle throat (9) and a diverging section (10). Kaltgasspritzpistole nach Anspruch 2, dadurch gekennzeichnet, dass der Bereich des Düsenhalses (9) stärker gekühlt ist.Cold gas spray gun according to claim 2, characterized in that the region of the nozzle throat (9) is more cooled. Kaltgasspritzpistole nach Anspruch 3, dadurch gekennzeichnet, dass das Kühlmittel die Lavaldüse (8) im Bereich des konvergierenden Abschnitts (7) zuströmend bis zu einem Düsenaustritt am divergierenden Abschnitt (10) axial umströmt.Cold gas spraying gun according to claim 3, characterized in that the coolant flows around the Laval nozzle (8) in the region of the convergent section (7) in an inflowing manner up to a nozzle outlet at the diverging section (10). Kaltgasspritzpistole nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Düse von dem Kühlmittel umströmte Kühlrippen auf weist.Cold gas spray gun according to one of the preceding claims, characterized in that the nozzle of the coolant flow around cooling fins has. Kaltgasspritzpistole nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Düse von dem Kühlmittel radial oder spiralförmig um strömt wird.Cold gas spray gun according to one of the preceding claims, characterized in that the nozzle is flowed around by the coolant radially or spirally. Kaltgasspritzpistole nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kühlmittel ein Gas, insbesondere Druckluft ist.Cold gas spray gun according to one of the preceding claims, characterized in that the coolant is a gas, in particular compressed air. Kaltgasspritzpistole nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kühlmittel Wasser ist.Cold gas spray gun according to one of the preceding claims, characterized in that the coolant is water. Kaltgasspritzpistole nach Anspruch 5, dadurch gekennzeichnet, dass als Kühlmittel die Umgebungsluft dient.Cold gas spray gun according to claim 5, characterized in that the ambient air is used as the coolant. Kaltgasspritzpistole nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Düse zumindest zum Teil aus gehärtetem Material besteht, insbesondere Hartmetall oder gehärtetem Stahl.Cold gas spray gun according to one of the preceding claims, characterized in that the nozzle consists at least partly of hardened material, in particular hard metal or hardened steel.
EP06015704A 2006-05-11 2006-07-27 Pistol for cold gas spraying Withdrawn EP1854547A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610022282 DE102006022282A1 (en) 2006-05-11 2006-05-11 Cold spray gun

Publications (1)

Publication Number Publication Date
EP1854547A1 true EP1854547A1 (en) 2007-11-14

Family

ID=37115587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06015704A Withdrawn EP1854547A1 (en) 2006-05-11 2006-07-27 Pistol for cold gas spraying

Country Status (2)

Country Link
EP (1) EP1854547A1 (en)
DE (1) DE102006022282A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052970A1 (en) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Kaltgasspritzdüse and cold gas spraying device with such a spray nozzle
WO2011057612A1 (en) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Method and device for coating components
CN112007777A (en) * 2020-08-21 2020-12-01 浙江工业大学 Hand-held laser-assisted low-pressure cold spraying device
US11662300B2 (en) 2019-09-19 2023-05-30 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing
US11898986B2 (en) 2012-10-10 2024-02-13 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016123814A1 (en) * 2016-12-08 2018-06-14 Air Liquide Deutschland Gmbh Arrangement and method for treating a surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010042508A1 (en) * 2000-05-03 2001-11-22 Albert Kay Advanced cold spray system
DE10207519A1 (en) * 2002-02-22 2003-09-11 Linde Ag Cold gas spraying nozzle used for accelerating gas and sprayed particles e.g. in flame spraying comprises a main body and a wear-resistant nozzle element arranged in the region of the nozzle throat to form the inner wall of the nozzle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010042508A1 (en) * 2000-05-03 2001-11-22 Albert Kay Advanced cold spray system
DE10207519A1 (en) * 2002-02-22 2003-09-11 Linde Ag Cold gas spraying nozzle used for accelerating gas and sprayed particles e.g. in flame spraying comprises a main body and a wear-resistant nozzle element arranged in the region of the nozzle throat to form the inner wall of the nozzle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052970A1 (en) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Kaltgasspritzdüse and cold gas spraying device with such a spray nozzle
WO2011057612A1 (en) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Method and device for coating components
US9040116B2 (en) 2009-11-12 2015-05-26 Mtu Aero Engines Gmbh Method and device for coating components
US11898986B2 (en) 2012-10-10 2024-02-13 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
US11662300B2 (en) 2019-09-19 2023-05-30 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing
CN112007777A (en) * 2020-08-21 2020-12-01 浙江工业大学 Hand-held laser-assisted low-pressure cold spraying device
CN112007777B (en) * 2020-08-21 2024-02-23 浙江工业大学 Handheld laser-assisted low-pressure cold spraying device

Also Published As

Publication number Publication date
DE102006022282A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
EP1999297B1 (en) Cold-gas spray gun
EP1854547A1 (en) Pistol for cold gas spraying
EP1390152B1 (en) Cold gas spraying method and device
CN102527544B (en) Cold spray device and method for preparing metal composite gradient quasicrystal coating
EP1579921A2 (en) Improved kinetic spray nozzle system design
EP1785679A1 (en) Device for heating gas under high pressure
EP1369498B1 (en) Method and apparatus for high-speed flame spraying
EP1857183B1 (en) Device for cold gas spraying
EP1630253A1 (en) Continuous in-line manufacturing process for high speed coating deposition via kinetic spray process
EP1775026B1 (en) Improved non-clogging powder injector for a kinetic spray nozzle system
EP1791645B1 (en) Method for cold gas spraying and cold gas spraying pistol with increased retention time for the powder in the gas stream
EP2110178A1 (en) Cold gas-dynamic spray nozzle
DE10319481A1 (en) Laval nozzle use for cold gas spraying, includes convergent section and divergent section such that portion of divergent section of nozzle has bell-shaped contour
EP1715080B1 (en) Process for coating the inner surface of a gun barrel
DE602004001638T2 (en) Gas collimator for a kinetic powder spray nozzle
WO2008104252A1 (en) Method for substrate coating by means of thermal or kinetic spraying
CN101218369B (en) Methods and apparatuses for material deposition
EP1903126A1 (en) Cold spray method
DE102015107876A1 (en) Apparatus and method for atomizing melts
EP2260119B1 (en) Cold gas spraying system
DE102009052946A1 (en) Method and device for component coating
EP2127759A1 (en) Cold gas spraying device and method for cold gas spraying
EP1506816B1 (en) Laval nozzle for thermal or kinetical spraying
DE102004001346A1 (en) Atomizer making powder or coatings from molten metal and ceramics, supplies melt continuously to feed chamber, to leave via concentric annular jet into atomization zone
DE102009052970A1 (en) Kaltgasspritzdüse and cold gas spraying device with such a spray nozzle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

18W Application withdrawn

Effective date: 20071023