WO2019202153A1 - Autoanticorps hautement sialylés et leurs utilisations - Google Patents

Autoanticorps hautement sialylés et leurs utilisations Download PDF

Info

Publication number
WO2019202153A1
WO2019202153A1 PCT/EP2019/060240 EP2019060240W WO2019202153A1 WO 2019202153 A1 WO2019202153 A1 WO 2019202153A1 EP 2019060240 W EP2019060240 W EP 2019060240W WO 2019202153 A1 WO2019202153 A1 WO 2019202153A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
antibody
fragment
mog
antibody according
Prior art date
Application number
PCT/EP2019/060240
Other languages
English (en)
Inventor
Céline MONNET
Leonardus MARS
Original Assignee
Laboratoire Français Du Fractionnement Et Des Biotechnologies
Institut National De La Sante Et De La Recherche Medicale (Inserm)
Université de Lille
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoire Français Du Fractionnement Et Des Biotechnologies, Institut National De La Sante Et De La Recherche Medicale (Inserm), Université de Lille filed Critical Laboratoire Français Du Fractionnement Et Des Biotechnologies
Priority to CN201980037962.5A priority Critical patent/CN112533949B/zh
Priority to JP2020558531A priority patent/JP2021522216A/ja
Priority to US17/049,093 priority patent/US20210238281A1/en
Priority to EP19719487.1A priority patent/EP3781595A1/fr
Publication of WO2019202153A1 publication Critical patent/WO2019202153A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/72Increased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]

Definitions

  • the present invention relates to an isotype G antibody directed against an autoantigen, preferably against the native myelin oligodendrocyte glycoprotein (MOG), comprising:
  • composition containing such an antibody, and to its uses in therapy, particularly in the prevention and / or treatment of multiple sclerosis.
  • T and B lymphocytes are common to all autoimmune diseases, and leads to deleterious cellular and humoral inflammatory responses. Because of the presence of T cell and B cell receptors, these responses are antigen specific, which, in the case of autoimmunity, imposes targeted aggression on tissue-derived autoantigens. In fact, the antibodies and T cells isolated from the lesions react easily to the autoantigens present in the inflamed tissue.
  • organ-specific autoimmune diseases are currently based on palliative approaches aimed at depleting immune cells, blocking their migration to tissue lesions, neutralizing effector cytokines, or the administration of intravenous immunoglobulins (IVIG). ).
  • IVIG intravenous immunoglobulins
  • MS Organ-specific autoimmune diseases include multiple sclerosis (MS).
  • MS is a disease of the central nervous system (CNS).
  • the CNS consists of the brain and spinal cord.
  • the central nervous system is mainly composed of astrocytes, oligodendrocytes responsible for myelination, and neurons, each of which consists of a cell body and an extension (axon), surrounded by a myelin sheath. .
  • This myelin sheath is used to isolate and protect nerve fibers, and also plays a role in the speed of propagation of nerve impulses carrying information along neurons.
  • MS is characterized by focal lesions in the white matter in both the brain and the spinal cord.
  • Pathological markers of the disease include demyelination, oligodendrocyte apoptosis, axonal scarring and finally neuronal loss. This tissue damage is caused by inflammation, as shown by the infiltration of lymphocytes and myeloid cells into the lesions. This physiopathology leads to a difficulty of conduction of nerve impulses within the axons, which causes motor, sensory and cognitive disturbances. In the more or less long term, these disorders can progress to irreversible disability.
  • MS begins with a recurrence-remission phase, during which periods of active clinical deficits are followed by prolonged periods of remission.
  • the inflammation disappears and repair mechanisms (remyelination) allow the patient to find a correct nerve conduction.
  • repair mechanisms remyelination
  • the mechanisms of remyelination are exceeded, and irreversible nerve impulse conduction disorders are established with corresponding neurological signs.
  • MS is considered an autoimmune disease.
  • the immune system attacks antigenic CNS targets, including myelin. All the components of the immune response participate: lymphocytes, myeloid cells, but also cytokines synthesized and released by the immune cells that sometimes favor the attack, sometimes moderate it.
  • the immune response in MS is not static, it is composite and evolves over time, both in terms of antigenic specificity and in pathogenic mechanisms.
  • the background treatments of MS used today act either directly on lymphocytes, either by depletion or by inhibiting their migration to the CNS, to limit the importance of inflammatory attack.
  • autoimmune diseases including organ-specific autoimmune diseases.
  • the present invention addresses this problem.
  • an isotype G antibody directed against an autoantigen comprising:
  • the inventors have identified a specific anti-MOG IgG antibody capable of curbing and / or reducing the progression of the disease.
  • This antibody is derived from pathogenic clone 8-18C5 (commercially available as MAB5680 by Merck Millipore); it is able to bind to the native native human or murine MOG protein, but not to the MOG 35.55 linear fragment.
  • this antibody has been modified with respect to pathogenic clone 8-18C5, in particular since it comprises a highly sialylated Fc fragment. More precisely, its Fc comprises a point deletion of glutamic acid at position 294 (the numbering being that of the EU index or equivalent in Kabat), which confers it an increased sialylation with respect to Fc which does not have this deletion .
  • This deletion notably confers on the variant reduced binding affinities to Fc ⁇ RIII and Fc ⁇ RIIB, whereas the binding to FcRn is not affected; and anti-aging properties inflammatory.
  • This antibody attenuates the severity of the disease in a mouse model of experimental autoimmune encephalomyelitis (EAE).
  • Fc fragment or “Fc region” is meant the constant region of an immunoglobulin (antibody) of total length excluding the first immunoglobulin constant region domain (i.e. CH1-CL).
  • the Fc fragment refers to a homodimer, each monomer comprising the last two constant domains of IgG (i.e. CH2 and CH3), and the flexible N-terminal hinge region of these domains.
  • the Fc fragment of the antibody according to the invention is preferably a human Fc fragment and may be chosen from Fc fragments of IgG1, IgG2, IgG3 and IgG4.
  • an Fc fragment of an IgG1 which consists of the N-terminal flexible hinge and CH2-CH3 domains, that is to say the portion from the amino acid, is used in the present invention.
  • C226 to the C-terminus the numbering being indicated according to the EU index or equivalent in Kabat.
  • an Fc fragment of a human IgG1 i.e. amino acids 226 to 447 according to the EU index or equivalent in Kabat
  • the lower hinge refers to positions 226 to 230
  • the CH2 domain refers to positions 231 to 340
  • the CH3 domain refers to positions 341-447 according to the EU index or equivalent in Kabat.
  • the Fc fragment used according to the invention may also comprise a part of the upper hinge region, upstream of the position 226.
  • a Fc fragment of a human IgG1 comprising part of the region is used. located between positions 216 to 226 (according to the EU index).
  • the Fc fragment of a human IgG1 refers to the portion from amino acid 216, 217, 218, 219, 220, 221, 222, 223, 224 or 225 to the C-terminus. - terminal.
  • the Fc fragment of the antibody according to the invention is the Fc fragment of a IgG1.
  • the Fc fragment of the antibody according to the invention is preferably human.
  • Fc residues are that of the EU index or equivalent in Kabat (Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991) ). This numbering is only suitable for human Fc fragments.
  • amino acid mutation is meant here a change in the amino acid sequence of a polypeptide.
  • a mutation is chosen in particular from a substitution, an insertion and a deletion.
  • substitution is meant the replacement of one or more amino acids at a particular position in a parent polypeptide sequence by the same number of other amino acids.
  • the substitution is punctual, i.e. it concerns only one amino acid.
  • the N434S substitution refers to a variant of a parent polypeptide, wherein the asparagine at position 434 of the Fc fragment according to the EU index or equivalent in Kabat is replaced by serine.
  • insertion is meant the addition of at least one amino acid at a particular position in a parent polypeptide sequence.
  • insertion G> 235-236 designates a glycine insertion between positions 235 and 236.
  • deletion is meant the removal of at least one amino acid at a particular position in a parent polypeptide sequence.
  • E294del refers to the removal of glutamic acid at position 294.
  • parent polypeptide and “parent antibody” is meant respectively an unmodified polypeptide or antibody which is subsequently modified to generate a variant.
  • the parent polypeptide or antibody may be of natural origin, a variant of a naturally occurring polypeptide or antibody, a modified version of a natural polypeptide or antibody, or a synthetic polypeptide or antibody.
  • the parent polypeptide or antibody comprises an Fc fragment selected from wild type Fc fragments, fragments and mutants thereof. Therefore, the parent polypeptide or antibody may optionally include pre-existing amino acid modifications in the Fc fragment relative to wild-type Fc fragments.
  • the Fc fragment of the parent polypeptide or antibody already comprises at least one additional mutation (ie pre-existing modification), preferably chosen from P230S, T256N, V259I, N315D, A330V, N361D, A378V, S383N, M428L. N434Y.
  • the Fc fragment of the parent polypeptide or antibody is chosen from the sequences SEQ ID NO: 1, 2, 3, 4 and 5.
  • the Fc fragment of the parent polypeptide or antibody has the sequence SEQ ID NO: 1.
  • sequences shown in SEQ ID NOs: 1, 2, 3, 4 and 5 are free of an N-terminal hinge region.
  • the sequences represented in SEQ ID NO: 6, 7, 8, 9 and 10 respectively correspond to the sequences represented in SEQ ID NOs: 1, 2, 3, 4 and 5 with their hinge regions at the N-terminal.
  • the Fc fragment of the parent polypeptide or antibody is chosen from the sequences SEQ ID NO: 6, 7, 8, 9 and 10.
  • the Fc fragment of the parent polypeptide or antibody has a sequence corresponding to the 1-232, 2-232, 3-232, 4-232, 5-232, 6-232, 7-232, 8-232, 9 positions. 232, 10-232 or 11-232 of the sequence SEQ ID NO: 6.
  • variant is meant a polypeptide sequence which is different from the parent polypeptide sequence by at least one amino acid modification.
  • the sequence of the variant has at least 80% identity with the sequence of the parent polypeptide, and more preferably at least 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%. , 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 99.5% identity.
  • percent identity between two amino acid sequences in the sense of the present invention is intended to denote a percentage of identical amino acid residues between the two sequences to be compared, obtained after the best alignment, this percentage being purely statistical and the differences between the two sequences being randomly distributed over their entire length.
  • best alignment or “optimal alignment” is meant the alignment for which the percentage of identity determined as hereinafter is the highest.
  • Sequence comparisons between two amino acid sequences are traditionally performed by comparing these sequences after optimally aligning them, said comparison being performed by segment or by "comparison window” to identify and compare the local regions of sequence similarity. .
  • the optimal alignment of the sequences for comparison can be realized, besides manually, by means of the local homology algorithm of Smith and Waterman (1981, J. Mol Evol., 18: 38-46), by means of the local homology algorithm of Neddleman and Wunsch (1970), using the similarity search method of Pearson and Lipman (1988, PNAS, 85: 2444-2448), using computer programs using these algorithms (GAP, BESTFIT, BLAST P, BLAST N, FASTA and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI).
  • the antibody according to the invention is chosen from IgG1, IgG2, IgG3 and IgG4, preferably IgG1.
  • the antibody according to the invention can be chimeric, humanized or human.
  • chimeric antibody an antibody which contains a naturally occurring variable (light chain and heavy chain) derived from an antibody of a given species in association with the constant light chain and heavy chain regions of an antibody of a heterologous species to said given species.
  • the antibody is chimeric, it comprises human constant regions.
  • a chimeric antibody can be prepared using genetic recombination techniques well known to those skilled in the art.
  • the chimeric antibody may be made by cloning for the heavy chain and the light chain a recombinant DNA comprising a promoter and a sequence coding for the variable region of the non-human antibody, and a sequence coding for the constant region of the a human antibody.
  • Verhoeyn et al Verhoeyn et al., BioEssays, 8:74, 1988.
  • humanized antibody is meant an antibody which contains complementarity determining regions (CDRs) derived from an antibody of non-human origin, the other parts of the antibody molecule being derived from one or more ) human antibodies.
  • CDRs complementarity determining regions
  • FRs framework residues
  • the humanized antibodies can be prepared by techniques known to those skilled in the art such as “CDR grafting”, “resurfacing”, “Human string content”, “FR libraries”, “Guided selection” technologies. ",” FR shuffling “and” Humaneering ", as summarized in the review by Almagro et al (Almagro et al Frontiers in Bioscience 13, 1619-1633, January 1, 2008).
  • human antibody is understood to mean an antibody whose entire sequence is of human origin, that is to say whose coding sequences have been produced by recombination of human genes coding for the antibodies. Indeed, it is now possible to produce transgenic animals (for example mice) which are capable, upon immunization, of producing a complete repertoire of human antibodies in the absence of endogenous production of immunoglobulin (see Jakobovits et al. Proc Natl Acad Sci USA 90: 2551 (1993), Jakobovits et al., Nature, 362: 255-258 (1993), Bruggermann et al, Year in Immuno, 7:33 (1993), Duchosal et al.
  • Human antibodies can also be obtained from phage display libraries (Hoogenboom et al., J. Mol Biol, 227: 381 (1991), Marks et al, J. Mol Biol, 222: 581-569 ( 1991), Vaughan et al Nature Biotech 14: 309 (1996).
  • the antibody according to the invention is directed against an autoantigen.
  • autoantigen is meant an antigen which, although a constituent of normal tissue, is the target of a humoral or cellular immune response, as in the case of an autoimmune disease (see definition in Miller-Keane encyclopedia).
  • the antibody according to the invention is directed against an autoantigen chosen from the native myelin oligodendrocyte glycoprotein (MOG), the catalytic subunit 2 of glucose-6 phosphatase (IGRP, encoded by the G6PC2 gene, Q9NQR9 in Uniprot), collagen type 2 and aquaporin-4 (P55087 in Uniprot).
  • MOG myelin oligodendrocyte glycoprotein
  • IGRP glucose-6 phosphatase
  • collagen type 2 and aquaporin-4
  • autoantigens are particularly relevant for the prevention and / or treatment of an autoimmune disease chosen from:
  • demyelinating diseases involving anti-MOG antibodies such as multiple sclerosis
  • NMO / NMOSD Optical Neuromyelitis of Deviance
  • AQP-4 aquaporin-4
  • MOG Optical Neuromyelitis of Deviance
  • IGRP glucose-6 phosphatase
  • Oligodendrocyte Myelin Glycoprotein is one of several myelin antigens and neurons to which immune reactivity is detected in MS. This glycoprotein is a minor component of the myelin sheath that isolates CNS axons.
  • the sequence of this native human protein is accessible in Uniprot with accession number Q16653.
  • the mature (native) human protein contains 218 amino acids (i.e. after cleavage of the 29 amino acid signal peptide).
  • the native mouse MOG sequence is accessible in Uniprot with the accession number Q61885.
  • the mature (native) mouse protein contains 218 amino acids (i.e. after cleavage of the 28 amino acid signal peptide).
  • the invention relates to an isotype G antibody directed against native MOG, comprising:
  • the native MOG epitope consists of three loops located on the distal side of the MOG membrane, and in particular at the residues 101 -108 of sequence SEQ ID NO: 26 (R101 DHSYQEE108, corresponding to residues 101-108 of the 218 of mature human MOG); these residues contain a loop which forms the upper edge of the putative ligand binding site.
  • the invention relates to an isotype G antibody directed against native MOG, comprising:
  • an Fab fragment capable of binding to native MOG, in particular to residues 101 -108 of sequence SEQ ID NO: 26.
  • the antibody according to the invention is directed against native MOG.
  • it comprises the 6 CDRs of the murine antibody 8-18C5.
  • it includes the following 6 CDRs:
  • H-CDR1 SEQ ID NO: 1 1
  • H-CDR2 SEQ ID NO: 12,
  • H-CDR3 SEQ ID NO: 13
  • L-CDR1 SEQ ID NO: 14
  • L-CDR2 GAS
  • L-CDR3 SEQ ID NO: 15.
  • the antibody directed against native MOG according to the invention is chimeric and comprises as VH the sequence SEQ ID NO: 16, and as VL the sequence SEQ ID NO: 17.
  • the antibody according to the invention is chimeric, and comprises as a heavy chain the sequence SEQ ID NO: 24 with the deletion of glutamic acid at position 294 in numbering of the EU index or equivalent in Kabat, and as a light chain the sequence SEQ ID NO: 25.
  • the present application also describes a murine antibody directed against native MOG; typically, it comprises as a heavy chain the sequence SEQ ID NO: 19, this sequence comprising the deletion of glutamic acid at position 171, and as a light chain the sequence SEQ ID NO: 20.
  • the position 171 on the murine Fc corresponds to position 294 on the human Fc with the numbering of the EU index or equivalent in Kabat.
  • variable region of each of the light chains of the antibody directed against native MOG according to the invention is coded by a sequence having at least 80%, preferably at least 85%, preferably at least 90%, of preferably at least 95%, preferably at least 99% identity with the murine sequence SEQ ID NO: 17, and the variable region of each of the heavy chains of the native MOG antibody according to the invention is encoded by a sequence having at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 99%, identity with the murine nucleic acid sequence SEQ ID NO : 16.
  • the antibodies of the invention also include any antibody directed against native MOG having the CDR (Complementary Determining Region) regions of the 8-18C5 antibody, associated with FR regions (framework, highly conserved regions of the variable regions, named also "frame”).
  • CDR Complementary Determining Region
  • FR regions frame, highly conserved regions of the variable regions, named also "frame”).
  • Such antibodies have a very comparable affinity and specificity, preferably identical, to the murine 8-18C5 antibody.
  • the antibody directed against native MOG according to the invention comprises the 6 CDRs of the murine 8-18C5 antibody.
  • it includes the following 6 CDRs:
  • H-CDR1 SEQ ID NO: 1 1
  • H-CDR2 SEQ ID NO: 12,
  • H-CDR3 SEQ ID NO: 13
  • L-CDR1 SEQ ID NO: 14
  • L-CDR2 GAS
  • L-CDR3 SEQ ID NO: 15.
  • the FR regions of the VL region of the antibody directed against native MOG according to the invention is coded by a sequence having at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 99% identity with the FR regions of the SEQ ID murine sequence NO: 17, and the FR regions of the VH region of the native MOG antibody according to the invention is encoded by a sequence having at least 80%, preferably at least 85%, preferably at least 90%, of preferably at least 95%, preferably at least 99% identity with the FR regions of the murine sequence SEQ ID NO: 16.
  • the antibody directed against native MOG comprises, as Fc region, a human Fc region, preferably chosen from SEQ ID NO: 1 to 10, preferably the Fc region coded by SEQ ID NO: 1, and comprising the deletion of glutamic acid at position 294 in numbering of the EU index or equivalent in Kabat.
  • the isotype G antibody directed against an autoantigen and in particular directed against the native myelin oligodendrocyte glycoprotein (MOG), according to the invention, can be obtained by selection on a phage library, such as in particular described in Nixon et al. , Drugs derived from phage display, From Candidate Identification to Practice, mAbs 6: 1, 73-85; January / February 2014.
  • a phage library such as in particular described in Nixon et al. , Drugs derived from phage display, From Candidate Identification to Practice, mAbs 6: 1, 73-85; January / February 2014.
  • the present invention also relates to an isotype G antibody composition as mentioned above, which comprises Fc fragments exhibiting high sialylation. This high sialylation on Fc is typically increased or improved over that of a parent antibody composition.
  • sialylation of the Fc of the antibody composition obtained is increased by at least 10%, preferably at least 15%, preferably at least 20%, preferably at least 25%, preferably at least 30%, preferably at least 35%, preferably at least 40%, preferably at least 45%, preferably at least 50%, preferably at least 55%, preferably preferably at least 60%, preferably at least 65%, preferably at least 70%, preferably at least 75%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, relative to the sialylation of Fc of said parent antibody composition.
  • Sialylation of a protein is a well known glycosylation mechanism (see especially Essentials of Glycobiology, 2 nd edition, Varki et al, 2009). It corresponds to a covalent addition of at least one sialic acid (ie N-acetylneuraminic acid and its derivatives, such as N-glycosylneuraminic acid, N-acetylglycosylneuraminic acid) in the glycosylated chain of the protein.
  • the sialylation on the Fc fragment is obtained by mutation of the latter.
  • the Fc fragment in particular human, is modified relative to that of a parent antibody and comprises at least one amino acid mutation chosen from amino acids in position 240 to 243, 258 to 267 and 290 to 305 of said fragment Fc, the numbering being that of the EU index or equivalent in Kabat.
  • the mutation is carried out on at least one amino acid of the Fc fragment located at position 240, 241, 242, 243, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 290, 291. , 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 or 305, the numbering being that of the EU index or equivalent in Kabat.
  • the mutation is selected from V262del, V263F, V263K, V263W, V264K, V264P, D265A, D265E, D265G, D265L, D265S, D265V, V266A, V266P, V266S, V266T, S267N, S267P, S267R, S267W, P291C. , P291V, P291Y, P291W, R292A, R292del,
  • the Fc fragment of the antibody according to the invention is modified relative to that of a parent antibody and comprises at least the E294del mutation, the numbering being that of the EU index or equivalent in Kabat.
  • the Fc fragment of the antibody according to the invention in particular human, is modified relative to that of a parent antibody and consists of the E294del mutation, the numbering being that of the EU index or equivalent in Kabat.
  • the Fc fragment of the antibody according to the invention is a mouse Fc, it is modified with respect to that of a parent antibody, in particular of sequence SEQ ID NO: 18, and consists of the mutation E171 del.
  • the Fc fragment of the antibody according to the invention in particular human, is modified relative to that of a parent antibody and consists of the Y300del mutation, the numbering being that of the EU index or equivalent in Kabat.
  • such an antibody is produced in HEK cells.
  • the antibody according to the invention has at least one effector activity mediated by said Fc fragment decreased relative to the effector activity of the parent antibody.
  • Fc fragment-mediated effector activity is meant, in particular, antibody-dependent cellular cytotoxicity (ADCC), complement dependent cytotoxicity (CDC or complement dependent cytotoxicity), cell-dependent cellular phagocytosis. antibodies (ADCP), endocytosis activity or secretion of cytokines.
  • ADCC antibody-dependent cellular cytotoxicity
  • CDC complement dependent cytotoxicity
  • ADCP antibody dependent cellular phagocytosis
  • the effector activity mediated by the Fc fragment considered in the invention is selected from antibody dependent cellular cytotoxicity (ADCC), complement dependent cytotoxicity (CDC) and antibody dependent cellular phagocytosis (ADCP) and the secretion of cytokines.
  • the antibody according to the invention may have at least one effector activity mediated by the abolished Fc fragment.
  • the antibody according to the invention has an effector activity mediated by the Fc region decreased, relative to that of the parent antibody, by at least 10%, preferably by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%.
  • the antibody according to the invention is devoid of any effector activity mediated by said Fc fragment.
  • the antibody according to the invention has an affinity mediated by the Fc fragment, decreased relative to the affinity of the parent antibody, for at least one of the Fc region receptors (FcR).
  • FcR Fc region receptors
  • Fc region receptor or “FcR” is meant in particular C1q and Fcy Receptors (FcyR).
  • Fc ⁇ receptors or “Fc ⁇ R” refer to the IgG receptors, called CD64 (Fc ⁇ RIII), CD32 (Fc ⁇ RI1), and CD16 (Fc ⁇ RIII), in particular to the five expressed Fc ⁇ RIa, Fc ⁇ RIla, Fc ⁇ RIIb, Fc ⁇ RIIIa and Fc ⁇ RIIIb receptors. All are effector cell activating receptors, except for human Fc ⁇ RIIb which is an inhibitory receptor for the activation of immune cells (Muta T et al., Nature, 1994, 368: 70-73).
  • the complement C1q is involved in the CDC activity.
  • the FcgRIIIa receptor (CD16a) is involved in the ADCC; it has a V / F polymorphism at position 158.
  • the FcgRIla receptor (CD32a) is involved in platelet activation and phagocytosis; it has an H / R polymorphism at position 131.
  • FcgRIIb receptor (CD32b) is involved in the inhibition of cellular activity.
  • the affinity is reduced, relative to that of the parent antibody comprising the Fc fragment, by at least 10%, preferably by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%.
  • the antibody according to the invention has an affinity mediated by said decreased Fc fragment relative to the affinity of the parent antibody, for at least one of the Fc region receptors (FcR) chosen from the complement C1 q and FcgRI 11a receptors (CD16a), FcgRIla (CD32a) and FcgRIIb (CD32b).
  • FcR Fc region receptors
  • the antibody according to the invention has an affinity mediated by said decreased Fc fragment relative to the affinity of the parent antibody, for the two C1q and CD16a receptors.
  • the affinity of an antibody comprising an Fc fragment for a FcR can be evaluated by methods well known in the art. For example, one skilled in the art can determine affinity (Kd) using, for example, surface plasmon resonance (SPR), or Octet® technology (BLI technology "Bio-Layer Interferometry", Pall). Alternatively, one skilled in the art can perform an appropriate ELISA test. An appropriate ELISA assay compares the binding forces of the parent Fc and the mutated Fc. The detected signals specific for the mutated Fc and the parent Fc are compared. Binding affinity can be indifferently determined by evaluating whole antibodies or evaluating isolated Fc regions thereof.
  • the IgG antibody according to the invention is directed against native MOG and comprises:
  • H-CDR1 SEQ ID NO: 1 1
  • H-CDR2 SEQ ID NO: 12,
  • H-CDR3 SEQ ID NO: 13
  • L-CDR1 SEQ ID NO: 14
  • L-CDR2 GAS
  • L-CDR3 SEQ ID NO: 15; and a modified human Fc fragment relative to that of a parent antibody, comprising at least one amino acid mutation chosen from amino acids at position 240 to 243, 258 to 267 and 290 to 305 of said Fc fragment, the numbering being that of the EU index or equivalent in Kabat; preferably a modified human Fc fragment relative to that of a parent antibody, comprising at least the E294del mutation (or at least the Y300del mutation), the numbering being that of the EU index or equivalent in Kabat.
  • the IgG antibody according to the invention is directed against native MOG and comprises:
  • H-CDR1 SEQ ID NO: 1 1
  • H-CDR2 SEQ ID NO: 12,
  • H-CDR3 SEQ ID NO: 13
  • L-CDR1 SEQ ID NO: 14
  • L-CDR2 GAS
  • L-CDR3 SEQ ID NO: 15;
  • mouse Fc fragment modified with respect to that of a parent antibody, comprising at least the E171 del mutation (which corresponds to E294del on the human Fc fragment with the numbering of the EU index or equivalent in Kabat).
  • the mouse Fc fragment has the sequence SEQ ID NO: 18 and comprises the E171 del mutation.
  • the IgG antibody as defined above is directed against native MOG and comprises:
  • variable domain of the heavy chain comprising or consisting of a sequence selected from the group consisting of the sequence SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45,
  • SEQ ID NO: 47 SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53,
  • SEQ ID NO: 55 SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69,
  • SEQ ID NO: 58 SEQ ID NO: 6, 0SEQ ID NO: 62, SEQ ID NO: 64,
  • SEQ ID NO: 66 SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80,
  • the IgG antibody as defined above is directed against native MOG and comprises a variable domain of the heavy chain and a variable domain of the light chain of sequences:
  • SEQ ID NO: 27 Sequence of the heavy chain of the recombinant murine 8-18C5 murine antibody of sequence SEQ ID NO: 19:
  • the present invention also relates to a process for obtaining an antibody according to the invention, comprising the following steps:
  • the nucleic sequence (polynucleotide or nucleotide sequence) encoding the IgG heavy chain comprises a Fc fragment having a mutation.
  • the nucleic acid coding sequence for the IgG heavy chain can be synthesized chemically (Young L and Dong, 2004, Nucleic Acids Res., Apr. 15, 32 (7), Hoover, DM and Lubkowski, J. 2002). , Nucleic Acids Res., 30, Villalobos A, et al., 2006. BMC Bioinformatics, Jun 6; 7: 285).
  • the nucleotide sequence encoding the IgG heavy chain can also be amplified by PCR using suitable primers.
  • the nucleotide sequence encoding the IgG heavy chain can also be cloned into an expression vector.
  • nucleic sequence SEQ ID NO: 27 (coding for the heavy chain SEQ ID NO: 19).
  • nucleic sequence provided in i) (polynucleotide), which encodes the parent polypeptide, is then modified to obtain a nucleic sequence encoding the variant.
  • This step is the actual mutation stage. It can be carried out by any method known from the prior art, in particular by directed mutagenesis.
  • amino acid substitutions and deletions are made by site-directed mutagenesis, using the assembly PCR technique using oligonucleotides corresponding to the inserted modifications (see, for example, Zoller and Smith, 1982, Nucl Acids Res. : 6487-6500, Kunkel, 1985, Proc Natl Acad Sci USA 82: 488).
  • step ii) a nucleic sequence coding for an IgG light chain is provided, said light chain comprising in the variable domain, the 3 binding CDRs of the same autoantigen as that targeted in i).
  • nucleic acid sequence SEQ ID NO: 28 (encoding the light chain SEQ ID NO: 20) can be used.
  • step iii) the nucleic sequences obtained in i) and ii) are expressed in a host cell, and the antibody thus obtained is recovered.
  • nucleic sequences obtained in i) and ii) can be inserted into a bicistronic vector.
  • the cellular host may be chosen from prokaryotic or eukaryotic systems, for example bacterial cells, but also yeast cells or cells animals, especially mammalian cells. Insect cells or plant cells can also be used.
  • the preferred host cells are the YB2 / 0 rat line, the CHO hamster line, in particular the CHO dhfr- and CHO Lec13 lines, the PER.C6 TM (Crucell) line and the HEK line in particular HEK293 (ATCC # CRL1573). , EB66, K562, NSO, SP2 / 0, BHK, HeLa, NIH / 3T3 or COS lines. More preferably, the YB2 / 0 rat line is used.
  • These host cells for example CHO cells, may be transfected with at least one gene coding for a sialyltransferase.
  • the Fc fragment of the antibody according to the invention in particular human, is modified relative to that of a parent antibody and consists of the Y300del mutation, it is produced in HEK cells such as HEK293 cells.
  • the polynucleotides encoding the heavy and light chains may also comprise optimized codons, in particular for its expression in certain cells (step iii)). Codon optimization aims to replace natural codons by codons whose transfer RNA (tRNA) carrying the amino acids are most common in the cell type considered. The mobilization of frequently encountered tRNAs has the major advantage of increasing the translation speed of the messenger RNAs (mRNA) and therefore of increasing the final titre (JM Carton et al., Protein Expr Purif, 2007). Codon optimization also plays on the prediction of mRNA secondary structures that could slow down reading by the ribosomal complex. Codon optimization also has an impact on the percentage of G / C that is directly related to the half-life of the mRNAs and therefore to their translation potential (Chechetkin, J. of Theoretical Biology 242, 2006 922-934).
  • Codon optimization can be done by substitution of natural codons using codon frequency (codon reading table) codons for mammals and more particularly for Homo sapiens.
  • codon frequency codon reading table
  • the polynucleotides encoding the heavy and light chains comprise codons optimized for expression in HEK cells, such as HEK293 cells, CHO cells, or YB2 / 0 cells. More preferably, the polynucleotides encoding the heavy and light chains comprise codons optimized for their expression in YB2 / 0 cells.
  • the subject of the invention is also a composition comprising, in a physiologically acceptable medium, monoclonal antibodies according to the invention.
  • monoclonal antibody or “monoclonal antibody composition”, or “mAb” for monoclonal Antibody, is meant a composition comprising antibody molecules having identical and unique antigenic specificity.
  • the antibody molecules present in the composition are all encoded by the same heavy and light chain sequences and therefore have the same protein sequence.
  • the subject of the invention is also the use of an antibody according to the invention, or the use of a composition as mentioned above, as a medicament.
  • the antibody of the invention may be combined with pharmaceutically acceptable excipients, and optionally extended release matrices, such as biodegradable polymers, to form a therapeutic composition.
  • the pharmaceutical composition may be administered orally, sublingually, subcutaneously, intramuscularly, intravenously, intraarterially, intrathecally, intraocularly, intracerebrally, transdermally, pulmonally, locally or rectally.
  • the active ingredient can then be administered in unit dosage form, in admixture with conventional pharmaceutical carriers.
  • Unit dosage forms include oral forms such as tablets, capsules, powders, granules and oral solutions or suspensions, sublingual and oral forms of administration, aerosols, subcutaneous implants, transdermal, topical, intraperitoneal, intramuscular, intravenous, subcutaneous, intrathecal, intranasal administration forms and rectal administration forms.
  • the pharmaceutical composition contains a pharmaceutically acceptable carrier for a formulation that can be injected.
  • a pharmaceutically acceptable carrier for a formulation that can be injected.
  • It may be in particular isotonic, sterile, saline solutions (with monosodium or disodium phosphate, sodium chloride, potassium chloride, calcium or magnesium chloride and the like, or mixtures of such salts), or freeze-dried compositions which, when adding sterilized water or physiological saline as appropriate, allow the constitution of injectable solutions.
  • Dosage forms suitable for injectable use include sterile aqueous solutions or dispersions, oily formulations, including sesame oil, peanut oil, and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
  • the form must be sterile and must be fluid to the extent that it must be injected by syringe. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
  • the dispersions according to the invention can be prepared in glycerol, liquid polyethylene glycols or mixtures thereof, or in oils. Under normal conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
  • the pharmaceutically acceptable carrier may be a solvent or dispersion medium containing, for example, water, ethanol, a polyol (eg, glycerine, propylene glycol, polyethylene glycol, and the like), suitable mixtures of these, and / or vegetable oils.
  • a surfactant such as lecithin.
  • Prevention of the action of microorganisms can be caused by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid or thimerosal. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride.
  • Prolonged absorption of the injectable compositions may be caused by the use in the compositions of agents delaying absorption, for example, aluminum monostearate or gelatin.
  • Sterile injectable solutions are prepared by incorporating the active ingredients in the required amount in the appropriate solvent with several of the other ingredients listed above, if appropriate, followed by sterilization by filtration.
  • the dispersions are prepared by incorporating the sterilized active ingredients into a sterile vehicle that contains the basic dispersion medium and the other required ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and lyophilization.
  • the solutions will be administered in a manner compatible with the dosage formulation and in a therapeutically effective amount.
  • the formulations are easily administered in a variety of dosage forms, such as the injectable solutions described above, but drug release capsules and the like can also be used.
  • aqueous solutions For parenteral administration in an aqueous solution for example, the solution should be suitably buffered and the liquid diluent rendered isotonic with sufficient saline or glucose.
  • aqueous solutions are particularly suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.
  • sterile aqueous media that can be used are known to those skilled in the art.
  • a dose may be dissolved in 1 ml of isotonic NaCl solution and then added to 1000 ml of appropriate liquid, or injected at the proposed site of the infusion. Certain dosage variations may be applied depending on the condition of the subject being treated.
  • the pharmaceutical composition of the invention can be formulated in a therapeutic mixture comprising about 0.0001 to 1.0 milligrams, about 0.001 to 0.1 milligrams, about 0.1 to 1.0 milligrams, or about 10 milligrams per dose or more. Multiple doses may also be administered.
  • the specific therapeutically effective dose level for a particular patient may depend on a variety of factors, including the disorder being treated and the severity of the disease, the activity of the specific compound employed, the specific composition used, the age the body weight, general health, sex and diet of the patient, the time of administration, the route of administration, the rate of excretion of the specific compound used, the duration of treatment, or the drugs used in parallel.
  • the present invention relates to the use of an antibody according to the invention in the prevention and / or treatment of an autoimmune disease. It also relates to the use of a composition comprising monoclonal antibodies according to the invention for preventing and / or treating an autoimmune disease.
  • the autoimmune disease is chosen from:
  • demyelinating diseases involving anti-MOG antibodies such as multiple sclerosis
  • NMO / NMOSD optic neuromyelitis
  • AQP-4 aquaporin-4
  • MOG metal-oxide-semiconductor
  • Type 1 diabetes particularly by targeting the catalytic subunit 2 of glucose-6 phosphatase (IGRP).
  • IGRP glucose-6 phosphatase
  • the IGRP is specific to islets of Langerhans;
  • the antibody or the composition according to the invention is used in the prevention and / or treatment of a demyelinating disease involving anti-MOG antibodies.
  • Such a disease is preferably selected from acute disseminated encephalomyelitis (ADEM), deviant optic neuromyelitis (NMO / NMOSD) and multiple sclerosis (MS).
  • ADAM acute disseminated encephalomyelitis
  • NMO / NMOSD deviant optic neuromyelitis
  • MS multiple sclerosis
  • Figure 1 Pilot experiment of variants treated with the 8-18C5 antibody in an EAE model with MOG35 55
  • the data are represented on average + / - SEM.
  • FIG. 4 Western blot using sialic acid-specific lectin (SNA) at A2.6 for the different antibodies: antibody 8-18C5-Del produced in YB2 / 0 cells ("Del (YB2 / 0)"), antibodies 8-18C5-WT produced in YB2 / 0 cells (“WT (YB2 / 0)”) and 8-18C5-WT antibody produced in HEK cells (“WT (HEK)”).
  • SNA sialic acid-specific lectin
  • Fc engineering was performed from a DNA vector encoding the IgGI recombinant mouse mAb 8-18C5 clone.
  • the inventors have created the in silico cloning construct by associating the sequences coding for a consensus constant domain with the variable domain (Fab) of mAb 8-18C5.
  • the crystallized structure of the Fab 8-18C5 fragment is available in PDB (Protein Data Bank) under accession number 1 PKQ.
  • PDB Protein Data Bank
  • the inventors have chosen a consensus sequence of a murine IgG1 (Mus musculus, IGHG1 * 01) listed in the IMGT online database (Immunogenetics).
  • Sequences corresponding to the heavy and light chains were synthesized in vitro and cloned into separate pCDNA3 vectors (eg, Geneart). Both sequences were then subcloned into a single mammalian bicistronic vector, allowing the production of murine mAb 8-18C5 (8-18C5-WT).
  • the inventors have created a deletion homologous to the human E294Del deletion (the numbering being that of the EU index or equivalent in Kabat): they have deleted the glutamic acid at position 171 of SEQ ID NO: 18 (constant region) of Recombinant mAb 8-18C5 to obtain the 8-18C5-Del variant.
  • Recombinant murine 8-18C5 murine antibody 8-18C5-WT was produced in HEK cells.
  • the recombinant 8-18C5 murine 8-18C5-WT and 8-18C5-Del variant murine antibodies were produced in YB2 / 0 cells to optimize the level of sialylation (50-90%).
  • the YB2 / 0 cell line makes it possible to obtain an 8-18C5-Del variant, with a very high level of sialylation.
  • the 8-18C5-WT and 8-18C5-Del antibodies were purified on protein G and characterized by SDS-PAGE and SEC, for validate their purity (> 97%) and their integrity (aggregated rates ⁇ 2%).
  • the binding of 8-18C5-WT and 8-18C5-Del antibodies to FcRn was measured by standard ELISA.
  • Maxisorp immunoplates were coated with recombinant human or murine FcRn proteins.
  • the 8-18C5-WT or 8-18C5-Del antibody solutions were added to each well at different concentrations (from 5ng / mL to 0.5pg / mL) and incubated. for 1 h 30 at 37 ° C.
  • F (ab ') 2 goat anti-human HRP IgG (or anti-mouse) were then incubated in a 1/2500 th for 1 h30 at 37 ° C.
  • the ELISA plates were then revealed with TMB (Pierce) and the absorbances read at 450 nm.
  • FCYRS human or murine
  • Table 1 Preliminary characterization of the 8-18C5-WT and 8-18C5-Del antibodies. Bonds were evaluated by ELISA on rMOG, and on FcRs of type I and FcRn murine. Since the murine IgGI isotype does not bind FcyRIA (CD64) and FcyRIV, this indicates that the 8-18C5-Del variant no longer binds any of the murine type I Fc (FcRs) receptors.
  • the increase in sialylation induced by the introduction of the "Del" mutation was confirmed by Western Blot using a lectin (SNA) specific for sialic acid in A2,6 (FIG. 4). For this, after the SDS-PAGE electrophoresis step, the antibodies were transferred to a nitrocellulose membrane and then subjected to an SNA Western Blot: the conditions were as follows:
  • An intact blood-brain barrier prevents the infiltration of antibodies into the CNS parenchyma. It is therefore essential to induce mild autoimmune inflammation in the CNS to "prime” the tissue. This allows the antibodies to enter the parenchyma and exert their immune function.
  • the experimental model of choice is experimental autoimmune encephalomyelitis ("Experimental Autoimmune Encephalomyelitis” or EAE), a disabling inflammatory autoimmune disease of the central nervous system. Since its description in 1933, it has served as a prototypical model of hypersensitivity (especially type IV) and preclinical model of multiple sclerosis (MS) in which most of the current disease-modifying treatments have been validated.
  • EAE Experimental autoimmune encephalomyelitis
  • MS preclinical model of multiple sclerosis
  • the most common form is active IAAE, in which a demyelinating disease is induced by immunization with the 35-55 linear peptide of the MOG protein in C57BI / 6 mice (Ramadan A, Lucca LE, Carrie N, Desbois S, Axisa PP).
  • the mAb 8-18C5 is specific for a conformational epitope of MOG (Breitmaschine C, Schafer B, Pellkofer H, Huber R, Linington C, Jacob U. Demyelinating myelin oligodendrocyte glycoprotein-specific autoantibody response is focused on one dominant conformational epitope region.
  • MAb 8-18C5 does not recognize the linear MOG35-55 peptide used for immunization, and only interacts with the intact native MOG protein present in the CNS.
  • the immune-mediated effects induced by mAb 8-18C5 are therefore a consequence of locally native MOG binding within inflammatory lesions.
  • each antibody was injected at a single dose of 50 ⁇ g / mouse.
  • This dose of 2.5 mg / kg of the 8-18C5 antibody is deliberately lower than the dose of IglV to treat the same disease (4 g / kg in total: 4 x 1 g / kg).
  • mice treated with the 8-18C5-WT (WT) antibody showed an aggravated EAE, which caused the death of all these mice 5-6 days after injection ( Figure 1B).
  • the 8-18C5-Del variant provides the opposite result: this variant not only lost its inherent pathogenicity (in this case, the severity of the disease would have been similar to that of PBS-treated mice), but it attenuated the severity of the disease. None of the mice treated with the 8-18C5-Del variant died, compared to 2 out of 4 mice for PBS ( Figure 1B), the severity of I ⁇ AE stagnant at a clinical score of 2 which reflects a delay in lightening . The most severe stages of paralysis (> 3) have never been reached (Figure 1 A).
  • the induction of moderate I ⁇ AE is carried out in C57BI / 6 mice by immunization with 100 ⁇ g of MOG35-55 in CFA (complete Freund's adjuvant) containing 100 ⁇ g of inactivated mycobacterium tuberculosis H37RA, followed by 2 injections of pertussis toxin at day 0 ( 200ng) and day 2 (200ng).
  • CFA complete Freund's adjuvant
  • pertussis toxin at day 0 ( 200ng) and day 2 (200ng).
  • mice treated with the antibody 8-18C5-WT showed an aggravated EAE, which caused the death of 38% of the mice approximately 15 days after immunization ( Figure 5B and Table 2)
  • the 8-18C5-Del (Del) variant lost its inherent pathogenicity (in this case, the severity of the disease would have been similar to that of the PBS-treated mice) and attenuated the severity of the disease.
  • the severity of I ⁇ AE stagnates at a score of 2 and the most severe stages of paralysis are never achieved (Figure 5A).
  • Table 2 Effects of treatments with PBS, 8-18C5WT 5YB2) and 8-18C5Del (Del) on mouse mortality and clinical recovery.
  • the 8-18C5-Del variant enhances I ⁇ AE at a single dose, which is 400-fold lower than IgG, and 40-fold lower than recombinant sialyl variant F241A (described in Fiebiger BM, Maamary J, Pincetic A, Ravetch JV Protection in antibody and cell mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs Proc Natl Acad Soi USA (2015) 12: E2385-E2394). The critical difference between these parameters is that the 8-18C5 antibody recognizes an autoantigen related to the disease.
  • the inventors isolated the mononuclear cells infiltrating the brain using a Percoll gradient, and analyzed the cellular composition of the immune infiltrate by flow cytometry.
  • the human scFv library (MG-UmAb) was expressed on the surface of bacteriophage M13 using standard procedures (Smith GP, Science 228: 1315 (1985)).
  • E. coli XL1 -Blue bacteria containing the library to be expressed cloned into the vector pMG72, were cultured in 60 ml of 2YT medium supplemented with 100 ⁇ g / ml ampicillin, 15 ⁇ g / ml tetracycline and 1% (pg / ml).
  • the phages were precipitated with PEG6000 using standard protocols, resuspended in 1 ml PBS buffer pH 7.4 and titrated by infecting XL1-Blue cells.
  • phages-scFv diluted in PBS / 4% skim milk / 0.1% Tween 20 were incubated in 8 wells of Maxisorp plates (1 -2x10 11 phage / well in 100mI final) prior coated with the recombinant human protein MOG or Biotinylated MOG (on streptavidin plate) and blocked with 4% skimmed milk in PBS. After incubation for 2 hours at 37 ° C, the wells were washed 10 times with PBS / 0.1% Tween 20 and 2 times with PBS.
  • the selected phages were then eluted by infection with XL1 -Blue bacteria in the exponential growth phase (2x150 ⁇ l / well, 20 min at 37 ° C without shaking). Infected bacteria were then plated on 2YT / ampicillin / glucose solid media. The next day, the cells were resuspended in 2YT medium with 15% glycerol, frozen and stored at -80 ° C until the next round of selection.
  • phages were first incubated with biotinylated human MOG recombinant protein for 1 hour at room temperature with gentle shaking. Streptavidin-coated magnetic beads (Dynal) previously blocked with 4% skim milk in PBS were then added to the phages for 30 minutes at room temperature. The phage-bead complexes were washed 10 times with PBS / 0.1% Tween 20 and 2 times with PBS using a magnet. The phage-bead complexes were then used to infect 5 ml of exponentially growing XL1-Blue bacteria, which were plated on 2YT / ampicillin / glucose solid media.
  • the binding characteristics of the scFvs expressed on the surface of isolated phages during screening were determined using an ELISA assay using the recombinant MOG (R & D System) protein.
  • MOG R & D System
  • the scFv-8-18C5 phage is expressed to serve as a positive control of the ELISA.
  • scFv-phage were produced as isolated clones on a 96-well plate in 800 mI of 2YT / ampicillin / glucose cultures infected with helper phage M13K07 (as previously described). Phage produced overnight at 26 ° C were then recovered from the supernatants after 30 minutes of centrifugation at 3000g.
  • the generated clones described above have a ratio greater than the ratio of the positive control 8-18C5; they therefore bind better to the MOG protein.
  • the inventors isolated the mononuclear cells infiltrating the brain using a Percoll gradient, and analyzed the cellular composition of the immune infiltrate by flow cytometry.
  • the amplitude of the responses of regulatory (Foxp3 +) and pathogenic (Th 1 / Th 17) T lymphocytes can be determined to formally show whether, in 8-18C5-Del treated mice, the contraction of the pathogenic response is correlated with the expansion of a response of regulatory T cells.
  • MHC tetramers and T cells express a transgenic TCR specific for MOG35-55, the specificity of the regulatory and pathogenic T cell response can be established.
  • the objective is to establish the central role of MOG autoantigen in mediating the therapeutic effect of monoclonal antibody 8-18C5.
  • the m8-18C5-Del variant (not bound to type I receptors) will bind to type II FcRs that include, inter alia, the CD209 receptor of type C (SIGN-R1) and CD23.
  • SIGN-R1 the CD209 receptor of type C
  • CD23 the CD209 receptor of type C
  • 8-18C5-Del and 8-18C5-WT are labeled with distinct fluorochromes, and flow cytometric cells infiltrating the brain that bind either or both antibodies are analyzed by flow cytometry.
  • the profile of the type I or II Fc receptor on immune cells invading the brain is established using a flow cytometry approach.
  • these approaches are performed at day 16 after immunization, by isolating the mononuclear cells infiltrating the brain using a Percoll gradient.
  • the tolerogenic subsets are co-cultured with transgenic TCR T cells to demonstrate that the presentation of the MOG antigen results in the expansion of the regulatory T cells.
  • neutralizing antibody approaches are used in vivo to delay the induction or function of the cells involved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

La présente invention se rapporte à un anticorps d'isotype G dirigé contre la glycoprotéine oligodendrocytaire de la myéline (MOG) native, comprenant : - un fragment Fc présentant une haute sialylation, et - un fragment Fab capable de se lier à l'autoantigène. Elle se rapporte également à une composition contenant un tel anticorps, et à leurs utilisations en thérapie.

Description

Autoanticorps hautement sialylés et leurs utilisations
La présente invention concerne un anticorps d’isotype G dirigé contre un autoantigène, de préférence contre la glycoprotéine oligodendrocytaire de la myéline (MOG) native, comprenant :
- un fragment Fc présentant une haute sialylation, et
- un fragment Fab capable de se lier à l’autoantigène.
Elle se rapporte également à une composition contenant un tel anticorps, et à ses utilisations en thérapie, notamment dans la prévention et/ou le traitement de la sclérose en plaques.
Les maladies auto-immunes surviennent lorsque la réponse immunitaire cible par erreur les constituants naturels des tissus et des organes. La réponse inflammatoire qui s'ensuit interfère avec la fonction naturelle des organes en causant de graves lésions tissulaires, ce qui entraîne les manifestations liées à la maladie. L'activation des lymphocytes T et B est commune à toutes les maladies auto-immunes, et conduit à des réponses inflammatoires cellulaires et humorales délétères. Du fait de la présence des récepteurs des lymphocytes T et des lymphocytes B, ces réponses sont spécifiques de l'antigène, ce qui, dans le cas de l'auto-immunité, impose une agression ciblée sur les autoantigènes dérivés de tissus. En effet, les anticorps et les lymphocytes T isolés des lésions réagissent facilement aux autoantigènes présents dans le tissu enflammé.
Le traitement des maladies auto-immunes spécifiques à un organe repose actuellement sur des approches palliatives qui visent à dépléter les cellules immunitaires, bloquer leur migration vers les lésions tissulaires, neutraliser les cytokines effectrices, ou encore sur l’administration d’immunoglobulines intraveineuses (IVIG). Cependant, même si ces traitements sont efficaces, le cours naturel de la maladie se rétablit une fois le traitement terminé.
Les futures thérapies visant à guérir les maladies inflammatoires à médiation immunitaire doivent augmenter leur efficacité pour persister au-delà de la durée du traitement. Dans le cas des maladies auto-immunes spécifiques à un organe, cela implique de rééduquer le système immunitaire pour restaurer une tolérance immunitaire.
Parmi les maladies auto-immunes spécifiques à un organe, figure la sclérose en plaques (SEP). La SEP est une maladie du système nerveux central (SNC). Le SNC est constitué du cerveau et de la moelle épinière. Au niveau microscopique, le système nerveux central est majoritairement composé d’astrocytes, d’oligodendrocytes responsables de la myélinisation, et des neurones, dont chacun est constitué par un corps cellulaire et par un prolongement (axone), entouré d’une gaine de myéline.
Cette gaine de myéline sert à isoler et à protéger les fibres nerveuses, et joue aussi un rôle dans la vitesse de propagation de l’influx nerveux transportant l’information le long des neurones.
La SEP est caractérisée par des lésions focales dans la substance blanche tant au niveau du cerveau qu’au niveau de la moelle épinière. Les marqueurs pathologiques de la maladie incluent la démyélinisation, l’apoptose des oligodendrocytes, des cicatrices d’axones et enfin une perte neuronale. Ce dommage tissulaire est causé par l’inflammation, comme montré par l’infiltration des lymphocytes et des cellules myéloïdes dans les lésions. Cette physiopathologie entraîne une difficulté de conduction de l’influx nerveux au sein des axones, ce qui provoque des perturbations motrices, sensitives et cognitives. A plus ou moins long terme, ces troubles peuvent progresser vers un handicap irréversible.
De façon la plus fréquente, la SEP débute par une phase de récurrence-rémission, durant laquelle des périodes de déficits cliniques actifs sont suivies par des périodes prolongées de rémission. Au sein des lésions, l’inflammation disparaît et des mécanismes de réparation (la remyélinisation) permettent au patient de retrouver une conduction nerveuse correcte. Mais malheureusement, dans certaines formes évoluées de SEP ou lors d’attaques inflammatoires sévères, les mécanismes de remyélinisation sont dépassés, et des troubles de conduction de l’influx nerveux irréversibles s’installent avec des signes neurologiques correspondants. Cliniquement, ces patients évoluent vers une évolution progressive secondaire caractérisée par une progression graduelle.
La SEP est considérée comme étant une maladie auto-immune. Dans la SEP, le système immunitaire attaque des cibles antigéniques du SNC, notamment la myéline. Tous les composants de la réponse immunitaire participent: les lymphocytes, les cellules myéloïdes, mais aussi des cytokines synthétisées et libérées par les cellules immunitaires qui, tantôt favorisent l’attaque, tantôt la modèrent. La réponse immunitaire dans la SEP n’est pas statique, elle est composite et évolue avec le temps, aussi bien au niveau de la spécificité antigénique que dans les mécanismes pathogènes. Les traitements de fond de la SEP utilisés aujourd’hui agissent soit directement sur les lymphocytes, soit par leur déplétion, soit en inhibant leur migration vers le SNC, pour limiter l’importance de l’attaque inflammatoire.
Cependant, si les traitements actuels permettent de réduire les poussées et améliorent la qualité de vie des patients, ils ont une efficacité insuffisante pour lutter contre la progression de la maladie.
Il existe donc un besoin pour un traitement efficace de la SEP, qui soit notamment capable de freiner et/ou diminuer la progression de la maladie.
Plus généralement, il existe un besoin pour un traitement efficace des maladies auto immunes, et notamment des maladies auto-immunes spécifiques à un organe.
La présente invention répond à ce problème.
Elle se rapporte à un anticorps d’isotype G dirigé contre un autoantigène, comprenant :
- un fragment Fc présentant une haute sialylation, et
- un fragment Fab capable de se lier à l’autoantigène.
Plus préférentiellement, elle se rapporte à un anticorps d’isotype G dirigé contre la glycoprotéine oligodendrocytaire de la myéline (MOG) native, comprenant :
- un fragment Fc présentant une haute sialylation, et
- un fragment Fab capable de se lier à MOG native.
En effet, comme démontré en exemples, les inventeurs ont identifié un anticorps IgG anti- MOG spécifique capable de freiner et/ou diminuer la progression de la maladie. Cet anticorps est dérivé du clone pathogène 8-18C5 (disponible commercialement sous la référence MAB5680 par Merck Millipore) ; il est capable de se lier à la protéine MOG humaine native ou murine native, mais pas au fragment linéaire MOG35.55.
En outre, cet anticorps a été modifié par rapport au clone pathogène 8-18C5, notamment car il comprend un fragment Fc hautement sialylé. Plus précisément, son Fc comprend une délétion ponctuelle de l’acide glutamique en position 294 (la numérotation étant celle de l’index EU ou équivalent dans Kabat), ce qui lui confère une sialylation augmentée par rapport au Fc qui ne présente pas cette délétion.
Cette délétion confère notamment au variant des affinités de liaison à FcyRIII et FcyRIIB réduites, alors que la liaison à FcRn n'est pas affectée ; et des propriétés anti- inflammatoires. Cet anticorps atténue la gravité de la maladie dans un modèle murin d'encéphalomyélite auto-immune expérimentale (EAE).
Les définitions utilisées dans la présente demande sont les suivantes :
Par « fragment Fc » ou « région Fc », on entend la région constante d'une immunoglobuline (anticorps) de longueur totale à l'exclusion du premier domaine de région constante d'immunoglobuline (i.e. CH1 -CL). Ainsi le fragment Fc fait référence à un homodimère, chaque monomère comprenant les deux derniers domaines constants des IgG (i.e. CH2 et CH3), et la région charnière flexible N-terminale de ces domaines. Le fragment Fc de l’anticorps selon l’invention est de préférence un fragment Fc humain et peut être choisi parmi les fragments Fc d’IgGI , d’lgG2, d’lgG3 et d’lgG4. De préférence, on utilise dans la présente invention un fragment Fc d’une lgG1 , qui se compose de la charnière flexible N-terminale et des domaines CH2-CH3, c’est-à-dire la portion à partir de l’acide aminé C226 jusqu’à l'extrémité C-terminale, la numérotation étant indiquée selon l’index EU ou équivalent dans Kabat. De préférence, on utilise un fragment Fc d’une lgG1 humaine (i.e. acides aminés 226 à 447 selon l’index EU ou équivalent dans Kabat). Dans ce cas, la charnière inférieure se réfère aux positions 226 à 230, le domaine CH2 fait référence aux positions 231 à 340 et le domaine CH3 se réfère aux positions 341 -447 selon l'index EU ou équivalent dans Kabat. Le fragment Fc utilisé selon l’invention peut comprendre en outre une partie de la région charnière supérieure, en amont de la position 226. Dans ce cas, de préférence, on utilise un fragment Fc d’une lgG1 humaine comprenant une partie de la région située entre les positions 216 à 226 (selon l’indice EU). Dans ce cas, le fragment Fc d’une lgG1 humaine fait référence à la portion à partir de l’acide aminé 216, 217, 218, 219, 220, 221 , 222, 223, 224 ou 225 jusqu’à l’extrémité C- terminale.
De préférence, le fragment Fc de l’anticorps selon l’invention est le fragment Fc d’une lgG1.
Le fragment Fc de l’anticorps selon l’invention est de préférence humain.
Dans la présente demande, la numérotation des résidus du fragment Fc est celle de l'index EU ou équivalent dans Kabat (Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991 )). Cette numérotation convient uniquement pour les fragments Fc humains.
L’équivalent de cette numérotation pour des fragments Fc murins (i.e. de souris ou de rat) est décrit dans Zauner et al, Molecular & Cellular Proteomics 12.4, 2013, by the American Society for Biochemistry and Molecular Biology. Cet article décrit notamment en figure 2 les différences de glycosylation entre les Fc humain et murin.
Par « mutation d'acide aminé », on entend ici un changement dans la séquence d'acides aminés d'un polypeptide. Une mutation est choisie notamment parmi une substitution, une insertion et une délétion.
Par «substitution», on entend le remplacement d'un ou plusieurs acides aminés, à une position particulière dans une séquence de polypeptide parent, par le même nombre d’autres acides aminés. De préférence, la substitution est ponctuelle, i.e. elle ne concerne qu’un seul acide aminé. Par exemple, la substitution N434S se réfère à un variant d’un polypeptide parent, dans lequel l'asparagine en position 434 du fragment Fc selon l’index EU ou équivalent dans Kabat est remplacé par la sérine.
Par « insertion », on entend l'addition d'au moins un acide aminé à une position particulière dans une séquence de polypeptide parent. Par exemple, l’insertion G>235- 236 désigne une insertion de glycine entre les positions 235 et 236.
Par « délétion », on entend l'élimination d'au moins un acide aminé à une position particulière dans une séquence de polypeptide parent. Par exemple, E294del désigne la suppression de l'acide glutamique en position 294.
Par «polypeptide parent» et « anticorps parent », on entend respectivement un polypeptide ou un anticorps non modifié qui est ensuite modifié pour générer un variant. Ledit polypeptide ou anticorps parent peut être d'origine naturelle, un variant d'un polypeptide ou anticorps d'origine naturelle, une version modifiée d'un polypeptide ou anticorps naturel ou un polypeptide ou anticorps synthétique. De préférence, le polypeptide ou anticorps parent comprend un fragment Fc choisi parmi les fragments Fc de type sauvage, leurs fragments et leurs mutants. Par conséquent, le polypeptide ou anticorps parent peut éventuellement comprendre des modifications pré-existantes d’acides aminés dans le fragment Fc par rapport aux fragments Fc de type sauvage. Ainsi de préférence, le fragment Fc du polypeptide ou anticorps parent comprend déjà au moins une mutation additionnelle (i.e. modification pré-existante), de préférence choisie parmi P230S, T256N, V259I, N315D, A330V, N361 D, A378V, S383N, M428L, N434Y.
De préférence, le fragment Fc du polypeptide ou anticorps parent est choisi parmi les séquences SEQ ID NO : 1 , 2, 3, 4 et 5. De préférence, le fragment Fc du polypeptide ou anticorps parent a pour séquence SEQ ID NO : 1 .
Les séquences représentées en SEQ ID NO : 1 , 2, 3, 4 et 5 sont exemptes de région charnière en N-terminal. Les séquences représentées en SEQ ID NO : 6, 7, 8, 9 et 10 correspondent respectivement aux séquences représentées en SEQ ID NO : 1 , 2, 3, 4 et 5 avec leurs régions charnières en N-terminal. Aussi, dans un mode de réalisation particulier, le fragment Fc du polypeptide ou anticorps parent est choisi parmi les séquences SEQ ID NO : 6, 7, 8, 9 et 10.
De préférence, le fragment Fc du polypeptide ou anticorps parent a une séquence correspondant aux positions 1 -232, 2-232, 3-232, 4-232, 5-232, 6-232, 7-232, 8-232, 9- 232, 10-232 ou 1 1 -232 de la séquence SEQ ID NO : 6.
Par «variant», on entend une séquence polypeptidique qui est différente de la séquence du polypeptide parent par au moins une modification d'acide aminé.
De préférence, la séquence du variant a au moins 80% d'identité avec la séquence du polypeptide parent, et plus préférentiellement au moins 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% ou 99,5% d'identité.
Dans toute la présente demande, par "pourcentage d'identité" entre deux séquences d'acides aminés au sens de la présente invention, on entend désigner un pourcentage de résidus d'acides aminés identiques entre les deux séquences à comparer, obtenu après le meilleur alignement, ce pourcentage étant purement statistique et les différences entre les deux séquences étant réparties au hasard et sur toute leur longueur. Par "meilleur alignement" ou "alignement optimal", on entend l'alignement pour lequel le pourcentage d'identité déterminé comme ci-après est le plus élevé. Les comparaisons de séquences entre deux séquences d'acides aminés sont traditionnellement réalisées en comparant ces séquences après les avoir alignées de manière optimale, ladite comparaison étant réalisée par segment ou par « fenêtre de comparaison » pour identifier et comparer les régions locales de similarité de séquence. L'alignement optimal des séquences pour la comparaison peut être réalisé, outre manuellement, au moyen de l'algorithme d'homologie locale de Smith et Waterman (1981 , J. Mol Evol., 18:38-46), au moyen de l'algorithme d'homologie locale de Neddleman et Wunsch (1970), au moyen de la méthode de recherche de similarité de Pearson et Lipman (1988, PNAS, 85: 2444-2448), au moyen de logiciels informatiques utilisant ces algorithmes (GAP, BESTFIT, BLAST P, BLAST N, FASTA et TFASTA dans le Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wl).
Plus préférentiellement, l’anticorps selon l’invention est choisi parmi les lgG1 , lgG2, lgG3 et lgG4, de préférence est une lgG1. L’anticorps selon l’invention peut être chimérique, humanisé ou humain.
Par anticorps « chimérique », on entend désigner un anticorps qui contient une région variable (chaîne légère et chaîne lourde) naturelle dérivée d'un anticorps d'une espèce donnée en association avec les régions constantes de chaîne légère et chaîne lourde d'un anticorps d'une espèce hétérologue à ladite espèce donnée. Avantageusement, si l’anticorps est chimérique, celui-ci comprend des régions constantes humaines. Partant d'un anticorps non humain (notamment murin), un anticorps chimérique peut être préparé en utilisant les techniques de recombinaison génétique bien connues de l'homme du métier. Par exemple, l'anticorps chimérique pourra être réalisé en clonant pour la chaîne lourde et la chaîne légère un ADN recombinant comportant un promoteur et une séquence codant pour la région variable de l'anticorps non humain, et une séquence codant pour la région constante d'un anticorps humain. Pour les méthodes de préparation d'anticorps chimériques, on pourra par exemple se référer au document Verhoeyn et al (Verhoeyn et al. BioEssays, 8 : 74, 1988).
Par anticorps « humanisé », on entend désigner un anticorps qui contient des régions déterminant la complémentarité (CDRs) dérivées d'un anticorps d'origine non humaine, les autres parties de la molécule d'anticorps étant dérivées d'un (ou de plusieurs) anticorps humains. En outre, certains des résidus des régions charpentes (ou « frameworks » ou « FR ») peuvent être modifiés pour conserver l'affinité de liaison (Jones et al. Nature, 321 : 522-525, 1986; Verhoeyen et al- 1988 ; Riechmann et al. Nature, 332 : 323-327, 1988). Les anticorps humanisés peuvent être préparés par des techniques connues de l'homme de l'art telles que les technologies de «CDR grafting», de « resurfacing », de « Human string content », de « FR libraries », de « Guided sélection », de « FR shuffling » et de « Humaneering », comme résumé dans la revue d’Almagro et al (Almagro ét al. Frontiers in Bioscience 1 3, 1619-1633, January 1 , 2008).
Par anticorps « humain », on entend un anticorps dont toute la séquence est d'origine humaine, c'est-à-dire dont les séquences codantes ont été produites par recombinaison de gènes humains codant pour les anticorps. En effet, il est maintenant possible de produire des animaux transgéniques (par exemple des souris) qui sont capables, sur immunisation, de produire un répertoire complet d'anticorps humains en l'absence de production endogène d'immunoglobuline (voir Jakobovits et al, Proc. Natl. Acad. Sci. USA. 90:2551 (1993); Jakobovits et al, Nature, 362:255-258 (1993); Bruggermann et al, Year in Immuno, 7: 33 (1993); Duchosal et al. Nature 355:258 (1992) ; brevets US5,591 ,669 ; US5,598,369 ; US5,545,806 ; US5,545,807 ; US6, 150,584). Les anticorps humains peuvent aussi être obtenus à partir de banques de présentation de phages (Hoogenboom et al, J. Mol. Biol, 227: 381 (1991 ); Marks et al, J. Mol. Biol, 222: 581 - 5 597 (1991 ); Vaughan et al. Nature Biotech 14: 309 (1996)).
L’anticorps selon l’invention est dirigé contre un autoantigène.
Par « autoantigène », on entend un antigène qui, bien qu’étant un constituant du tissu normal, est la cible d’une réponse immunitaire humorale ou cellulaire, comme dans le cas d’une maladie auto-immune (voir la définition dans l’encyclopédie Miller-Keane).
De préférence, l’anticorps selon l’invention est dirigé contre un autoantigène choisi parmi la glycoprotéine oligodendrocytaire de la myéline (MOG) native, la sous-unité catalytique 2 de la glucose-6 phosphatase (IGRP, codée par le gène G6PC2 ; Q9NQR9 dans Uniprot), le collagène de type 2 et l’aquaporine-4 (P55087 dans Uniprot).
Ces autoantigènes sont notamment pertinents pour la prévention et/ou le traitement d’une maladie auto-immune choisie parmi :
- les maladies démyélinisantes impliquant des anticorps anti-MOG, telle que la sclérose en plaques ;
- la neuromyélite optique de Dévie (NMO/NMOSD), en ciblant l’aquaporine-4 (AQP- 4) et/ou MOG ;
- le diabète de type 1 , en ciblant la sous-unité catalytique 2 de la glucose-6 phosphatase (IGRP). L’IGRP est spécifique des îlots de Langerhans ; et
- l’arthrite rhumatoïde, en ciblant le collagène de type 2.
La glycoprotéine oligodendrocytaire de la myéline (MOG) est l'un des divers antigènes de la myéline et des neurones auxquels la réactivité immunitaire est détectée dans la SEP. Cette glycoprotéine est un composant mineur de la gaine de myéline qui isole les axones du SNC.
La séquence de cette protéine native humaine est accessible dans Uniprot avec le numéro d’accession Q16653. La protéine mature (native) humaine contient 218 acides aminés (i.e. après clivage du peptide signal de 29 acides aminés).
De façon similaire, la séquence de MOG native de souris est accessible dans Uniprot avec le numéro d’accession Q61885. La protéine mature (native) de souris contient 218 acides aminés (i.e. après clivage du peptide signal de 28 acides aminés).
Les protéines MOG natives humaine et de souris sont identiques à 89%. De préférence, l’invention se rapporte à un anticorps d’isotype G dirigé contre MOG native, comprenant :
- un fragment Fc présentant une haute sialylation, et
- un fragment Fab capable de se lier à MOG native.
En particulier, comme détaillé dans Breithaupt et al, PNAS, August 5, 2003, vol.100, no.16, l’épitope de MOG native est constitué de trois boucles situées du côté distal de la membrane de MOG, et notamment au niveau des résidus 101 -108 de séquence SEQ ID NO : 26 (R101 DHSYQEE108, correspondant aux résidus 101 -108 sur les 218 de MOG humaine mature) ; ces résidus contiennent une boucle qui forme le bord supérieur du site de liaison du ligand putatif.
De préférence, l’invention se rapporte à un anticorps d’isotype G dirigé contre MOG native, comprenant :
- un fragment Fc présentant une haute sialylation, et
- un fragment Fab capable de se lier à MOG native, en particulier aux résidus 101 -108 de séquence SEQ ID NO : 26.
De préférence, l’anticorps selon l’invention est dirigé contre MOG native. Préférentiellement, il comprend les 6 CDRs de l’anticorps murin 8-18C5. Préférentiellement, il comprend les 6 CDRs suivants :
H-CDR1 : SEQ ID NO:1 1 ,
H-CDR2: SEQ ID NO:12,
H-CDR3: SEQ ID NO:13,
L-CDR1 : SEQ ID NO:14,
L-CDR2: GAS, et
L-CDR3: SEQ ID NO:15.
Selon un mode de réalisation particulier, l’anticorps dirigé contre MOG native selon l’invention est chimérique et comprend comme VH la séquence SEQ ID NO :16, et comme VL la séquence SEQ ID NO :17. Selon un mode de réalisation particulier, l’anticorps selon l’invention est chimérique, et comprend comme chaîne lourde la séquence SEQ ID NO :24 avec la délétion de l’acide glutamique en position 294 en numérotation de l’index EU ou équivalent dans Kabat, et comme chaîne légère la séquence SEQ ID NO :25. La présente demande décrit également un anticorps murin dirigé contre MOG native ; typiquement, il comprend comme chaîne lourde la séquence SEQ ID NO :19, cette séquence comprenant la délétion de l’acide glutamique en position 171 , et comme chaîne légère la séquence SEQ ID NO :20. La position 171 sur le Fc murin correspond à la position 294 sur le Fc humain avec la numérotation de l’index EU ou équivalent dans Kabat.
De manière avantageuse, la région variable de chacune des chaînes légères de l'anticorps dirigé contre MOG native selon l'invention est codée par une séquence possédant au moins 80%, de préférence au moins 85%, de préférence au moins 90%, de préférence au moins 95%, de préférence au moins 99%, d'identité avec la séquence murine SEQ ID NO: 17, et la région variable de chacune des chaînes lourdes de l'anticorps dirigé contre MOG native selon l'invention est codée par une séquence possédant au moins 80%, de préférence au moins 85%, de préférence au moins 90%, de préférence au moins 95%, de préférence au moins 99%, d'identité avec la séquence d'acide nucléique murine SEQ ID NO: 16.
Les anticorps de l'invention s'entendent aussi de tout anticorps dirigé contre MOG native possédant les régions CDR (Complementary Determining Région) de l'anticorps 8-18C5, associées à des régions FR (framework, régions très conservées des régions variables, nommées aussi "charpente"). De tels anticorps possèdent une affinité et une spécificité très comparables, de préférence identiques, à l'anticorps murin 8-18C5.
Préférentiellement, comme indiqué ci-dessus, l’anticorps dirigé contre MOG native selon l’invention comprend les 6 CDRs de l’anticorps murin 8-18C5. Préférentiellement, il comprend les 6 CDRs suivants :
H-CDR1 : SEQ ID NO:1 1 ,
H-CDR2: SEQ ID NO:12,
H-CDR3: SEQ ID NO:13,
L-CDR1 : SEQ ID NO:14,
L-CDR2: GAS, et
L-CDR3: SEQ ID NO:15.
De manière avantageuse, les régions FR de la région VL de l'anticorps dirigé contre MOG native selon l'invention est codée par une séquence possédant au moins 80%, de préférence au moins 85%, de préférence au moins 90%, de préférence au moins 95%, de préférence au moins 99%, d'identité avec les régions FR de la séquence murine SEQ ID NO: 17, et les régions FR de la région VH de l'anticorps dirigé contre MOG native selon l'invention est codée par une séquence possédant au moins 80%, de préférence au moins 85%, de préférence au moins 90%, de préférence au moins 95%, de préférence au moins 99%, d'identité avec les régions FR de la séquence murine SEQ ID NO: 16.
De manière avantageuse, l'anticorps dirigé contre MOG native selon l'invention comprend comme région Fc une région Fc humaine, de préférence choisie parmi SEQ ID NO :1 à 10, de préférence la région Fc codée par SEQ ID NO :1 , et comprenant la délétion de l’acide glutamique en position 294 en numérotation de l’index EU ou équivalent dans Kabat.
L’anticorps d’isotype G dirigé contre un autoantigène, et notamment dirigé contre la glycoprotéine oligodendrocytaire de la myéline (MOG) native, selon l’invention, peut être obtenu par sélection sur banque de phages, tel que notamment décrit dans Nixon et al, Drugs derived from phage display, From candidate identification to practice, mAbs 6:1 , 73-85; January/February 2014.
La présente invention se rapporte également à une composition d’anticorps d’isotype G tels que mentionnés précédemment, qui comprend des fragments Fc présentant une haute sialylation. Cette haute sialylation sur les Fc est typiquement augmentée ou améliorée par rapport à celle d’une composition d’anticorps parents.
Par « augmentation de la sialylation » ou « sialylation améliorée », on entend que la sialylation des Fc de la composition d’anticorps obtenue est augmentée d’au moins 10%, de préférence au moins 15%, de préférence au moins 20%, de préférence au moins 25%, de préférence au moins 30%, de préférence au moins 35%, de préférence au moins 40%, de préférence au moins 45%, de préférence au moins 50%, de préférence au moins 55%, de préférence au moins 60%, de préférence au moins 65%, de préférence au moins 70%, de préférence au moins 75%, de préférence au moins 80%, de préférence au moins 85%, de préférence au moins 90%, de préférence au moins 95%, par rapport à la sialylation des Fc de ladite composition d’anticorps parents.
La sialylation d’une protéine est un mécanisme de glycosylation bien connu (voir notamment Essentials of Glycobiology, 2nd édition, Varki et al, 2009). Elle correspond à un ajout, par liaison covalente, d’au moins un acide sialique (i.e. acide N-acétylneuraminique et ses dérivés, comme l’acide N-glycosylneuraminique, l’acide N- acétylglycosylneuraminique) dans la chaîne glycosylée de la protéine. De préférence, la sialylation sur le fragment Fc est obtenue par mutation de ce dernier. Ainsi, de préférence, le fragment Fc, notamment humain, est modifié par rapport à celui d’un anticorps parent et comprend au moins une mutation d’acide aminé choisi parmi les acides aminés en position 240 à 243, 258 à 267 et 290 à 305 dudit fragment Fc, la numérotation étant celle de l’index EU ou équivalent dans Kabat.
De préférence, la mutation est effectuée sur au moins un acide aminé du fragment Fc situé en position 240, 241 , 242, 243, 258, 259, 260, 261 , 262, 263, 264, 265, 266, 267, 290, 291 , 292, 293, 294, 295, 296, 297, 298, 299, 300, 301 , 302, 303, 304 ou 305, la numérotation étant celle de l’index EU ou équivalent dans Kabat.
De préférence, la mutation est choisie parmi V262del, V263F, V263K, V263W, V264K, V264P, D265A, D265E, D265G, D265L, D265S, D265V, V266A, V266P, V266S, V266T, S267N, S267P, S267R, S267W, P291 C, P291 V, P291Y, P291W, R292A, R292del,
R292T, R292V, R292Y, E293del, E293F, E293P, E293W, E293Y, E294del, E294D,
E294N, E294W, E294F, E293del/E294del, Q295D, Q295del, Q295F, Q295G, Q295K,
Q295N, Q295R, Q295W, Y296A, Y296C, Y296del, Y296E, Y296G, Y296Q, Y296R,
Y296V, S298del, S298E, S298F, S298G, S298L, S298M, S298N, S298P, S298R, S298T, S298W, S298Y, Y300D, Y300del, Y300G, Y300N, Y300P, Y300R, Y300S, R301A, R301 F, R301 G, R301 H, R301 I, R301 K, R301 Q, R301 V, R301W, R301 Y, V302del, V302A, V302F, V302G, V302P, V303A, V303C, V303P, V303L, V303S, V303Y, S304C, S304M, S304Q, S304T, V305F et V305L, la numérotation étant celle de l’index EU ou équivalent dans Kabat.
Plus préférentiellement, le fragment Fc de l’anticorps selon l’invention est modifié par rapport à celui d’un anticorps parent et comprend au moins la mutation E294del, la numérotation étant celle de l’index EU ou équivalent dans Kabat.
De préférence, le fragment Fc de l’anticorps selon l’invention, notamment humain, est modifié par rapport à celui d’un anticorps parent et consiste en la mutation E294del, la numérotation étant celle de l’index EU ou équivalent dans Kabat.
Selon l’invention, lorsque le fragment Fc de l’anticorps selon l’invention est un Fc de souris, il est modifié par rapport à celui d’un anticorps parent, notamment de séquence SEQ ID NO :18, et consiste en la mutation E171 del.
De préférence, le fragment Fc de l’anticorps selon l’invention, notamment humain, est modifié par rapport à celui d’un anticorps parent et consiste en la mutation Y300del, la numérotation étant celle de l’index EU ou équivalent dans Kabat. De préférence, un tel anticorps est produit dans des cellules HEK. De préférence, l’anticorps selon l’invention présente au moins une activité effectrice médiée par ledit fragment Fc diminuée par rapport à l’activité effectrice de l’anticorps parent.
Par « activité effectrice médiée par le fragment Fc », on entend notamment la cytotoxicité cellulaire dépendante des anticorps (ADCC ou Antibody-Dependent Cell-mediated Cytotoxicity), la cytotoxicité dépendante du complément (CDC ou Complément Dépendent Cytotoxicity), la phagocytose cellulaire dépendante des anticorps (ADCP), l'activité d'endocytose ou encore la sécrétion de cytokines. De préférence, l’activité effectrice médiée par le fragment Fc considérée dans l’invention est sélectionnée parmi la cytotoxicité cellulaire dépendante des anticorps (ADCC), la cytotoxicité dépendante du complément (CDC) et la phagocytose cellulaire dépendante des anticorps (ADCP) et la sécrétion de cytokines.
Par activité effectrice « diminuée » on entend une activité effectrice diminuée ou abolie. Ainsi, l’anticorps selon l’invention peut présenter au moins une activité effectrice médiée par le fragment Fc abolie. De préférence, l’anticorps selon l’invention présente une activité effectrice médiée par la région Fc diminuée, par rapport à celle de l’anticorps parent, d’au moins 10%, de préférence d’au moins 20 %, 30%, 40%, 50%, 60%, 70%, 80%, ou 90%.
De préférence, l’anticorps selon l’invention est dépourvu de toute activité effectrice médiée par ledit fragment Fc.
Selon un autre aspect, l’anticorps selon l’invention présente une affinité médiée par le fragment Fc, diminuée par rapport à l’affinité de l’anticorps parent, pour au moins un des récepteurs de la région Fc (FcR).
Par « récepteur de la région Fc » ou « FcR » on entend notamment le C1q et les Récepteurs Fcy (FcyR). Les « Récepteurs Fcy » ou « FcyR » se réfèrent aux récepteurs des IgG, appelés CD64 (FcyRI), CD32 (FcyRIl), et CD16 (FcyRIII), en particulier aux cinq récepteurs exprimés FcyRIa, FcyRIla, FcyRIIb, FcyRIIIa et FcyRIIIb. Tous sont des récepteurs activateurs des cellules effectrices, hormis le FcyRIIb humain qui est un récepteur inhibiteur de l’activation des cellules immunitaires (Muta T et al., Nature, 1994, 368 :70-73).
Le complément C1q est impliqué dans l’activité CDC.
Le récepteur FcgRIIIa (CD16a) est, quant à lui, impliqué dans l’ADCC ; il présente un polymorphisme V/F en position 158. Le récepteur FcgRIla (CD32a) est, quant à lui, impliqué dans l’activation plaquettaire et la phagocytose ; il présente un polymorphisme H/R en position 131.
Enfin, le récepteur FcgRIIb (CD32b) est impliqué dans l’inhibition de l’activité cellulaire.
Par affinité « diminuée » on entend une affinité diminuée ou abolie. Préférentiellement, l’affinité est diminuée, par rapport à celle de l’anticorps parent comprenant le fragment Fc, d’au moins 10%, de préférence d’au moins 20 %, 30%, 40%, 50%, 60%, 70%, 80%, ou 90%.
De préférence, l’anticorps selon l’invention présente une affinité médiée par ledit fragment Fc diminuée par rapport à l’affinité de l’anticorps parent, pour au moins un des récepteurs de la région Fc (FcR) choisi parmi le complément C1 q et les récepteurs FcgRI lia (CD16a), FcgRIla (CD32a) et FcgRIIb (CD32b). De préférence, l’anticorps selon l’invention présente une affinité médiée par ledit fragment Fc diminuée par rapport à l’affinité de l’anticorps parent, pour les deux récepteurs C1q et CD16a.
L'affinité d’un anticorps comprenant un fragment Fc pour un FcR peut être évaluée par des procédés bien connus de l'art antérieur. Par exemple, l'homme de l'art peut déterminer l’affinité (Kd) en utilisant par exemple la résonance plasmonique de surface (SPR), ou la technologie Octet® (technologie BLI « Bio-Layer Interferometry », Pall). Alternativement, l'homme de l'art peut effectuer un test ELISA approprié. Un dosage ELISA approprié permet de comparer les forces de liaison du Fc parent et du Fc muté. Les signaux détectés spécifiques du Fc muté et du Fc parent sont comparés. L'affinité de liaison peut être indifféremment déterminée en évaluant les anticorps entiers ou en évaluant les régions Fc isolées de ceux-ci.
De préférence, l’anticorps de type IgG selon l’invention est dirigé contre MOG native et comprend :
- les 6 CDRs suivants :
H-CDR1 : SEQ ID NO:1 1 ,
H-CDR2: SEQ ID NO:12,
H-CDR3: SEQ ID NO:13,
L-CDR1 : SEQ ID NO:14,
L-CDR2: GAS, et
L-CDR3: SEQ ID NO:15; et - un fragment Fc humain modifié par rapport à celui d’un anticorps parent, comprenant au moins une mutation d’acide aminé choisi parmi les acides aminés en position 240 à 243, 258 à 267 et 290 à 305 dudit fragment Fc, la numérotation étant celle de l’index EU ou équivalent dans Kabat ; de préférence un fragment Fc humain modifié par rapport à celui d’un anticorps parent, comprenant au moins la mutation E294del (ou au moins la mutation Y300del), la numérotation étant celle de l’index EU ou équivalent dans Kabat.
De préférence, l’anticorps de type IgG selon l’invention est dirigé contre MOG native et comprend :
- les 6 CDRs suivants :
H-CDR1 : SEQ ID NO:1 1 ,
H-CDR2: SEQ ID NO:12,
H-CDR3: SEQ ID NO:13,
L-CDR1 : SEQ ID NO:14,
L-CDR2: GAS, et
L-CDR3: SEQ ID NO:15; et
- un fragment Fc de souris modifié par rapport à celui d’un anticorps parent, comprenant au moins la mutation E171 del (qui correspond à E294del sur le fragment Fc humain avec la numérotation de l’index EU ou équivalent dans Kabat). De préférence, le fragment Fc de souris a pour séquence SEQ ID NO :18 et comprend la mutation E171 del.
Dans un mode de réalisation préféré, l’anticorps de type IgG tel que défini ci-dessus est dirigé contre MOG native et comprend :
- un domaine variable de la chaîne lourde comprenant ou consistant en une séquence sélectionnée dans le groupe consistant en la séquence SEQ ID NO: 29, SEQ ID NO: 31 , SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41 , SEQ ID NO: 43, SEQ ID NO: 45,
SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51 , SEQ ID NO: 53,
SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61 , SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69,
SEQ ID NO: 71 , SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77 SEQ ID NO: 79,
SEQ ID NO: 81 , SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91 , SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101 , SEQ ID NO: 103, SEQ ID NO: 105 and SEQ ID NO: 107, et/ou un domaine variable de la chaîne légère comprenant ou consistant en une séquence sélectionnée dans le groupe consistant en la séquence SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44 SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56,
SEQ ID NO: 58, SEQ ID NO: 6, 0SEQ ID NO: 62 , SEQ ID NO: 64,
SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80,
SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88,
SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106 and SEQ ID NO: 108.
Dans un mode de réalisation préféré, l’anticorps de type IgG tel que défini ci-dessus est dirigé contre MOG native et comprend un domaine variable de la chaîne lourde et un domaine variable de la chaîne légère de séquences:
- SEQ ID NO: 29 et SEQ ID NO: 30,
- SEQ ID NO: 31 et SEQ ID NO: 32,
- SEQ ID NO: 33 et SEQ ID NO: 34,
- SEQ ID NO: 35 et SEQ ID NO: 36,
- SEQ ID NO: 37 et SEQ ID NO: 38,
- SEQ ID NO: 39 et SEQ ID NO: 40,
- SEQ ID NO: 41 et SEQ ID NO: 42,
- SEQ ID NO: 43 et SEQ ID NO: 44,
- SEQ ID NO: 45 et SEQ ID NO: 46,
- SEQ ID NO: 47 et SEQ ID NO: 48,
- SEQ ID NO: 49 et SEQ ID NO: 50,
- SEQ ID NO: 51 et SEQ ID NO: 52,
- SEQ ID NO: 53 et SEQ ID NO: 54,
- SEQ ID NO: 55 et SEQ ID NO: 56,
- SEQ ID NO: 57 et SEQ ID NO: 58,
- SEQ ID NO: 59 et SEQ ID NO: 60,
- SEQ ID NO: 61 et SEQ ID NO: 62,
- SEQ ID NO: 63 et SEQ ID NO: 64,
- SEQ ID NO: 65 et SEQ ID NO: 66,
- SEQ ID NO: 67 et SEQ ID NO: 68, SEQ ID NO: 69 et SEQ ID NO: 70,
SEQ ID NO: 71 et SEQ ID NO: 72,
SEQ ID NO: 73 et SEQ ID NO: 74,
SEQ ID NO: 75 et SEQ ID NO: 76,
SEQ ID NO: 77 et SEQ ID NO: 78,
SEQ ID NO: 79 et SEQ ID NO: 80,
SEQ ID NO: 81 et SEQ ID NO: 82,
SEQ ID NO: 83 et SEQ ID NO: 84,
SEQ ID NO: 85 et SEQ ID NO: 86,
SEQ ID NO: 87 et SEQ ID NO: 88,
SEQ ID NO: 89 et SEQ ID NO: 90,
SEQ ID NO: 91 et SEQ ID NO: 92,
SEQ ID NO: 93 et SEQ ID NO: 94,
SEQ ID NO: 95 et SEQ ID NO: 96,
SEQ ID NO: 97 et SEQ ID NO: 98,
SEQ ID NO: 99 et SEQ ID NO: 100,
SEQ ID NO: 101 et SEQ ID NO: 102,
SEQ ID NO: 103 et SEQ ID NO: 104,
SEQ ID NO: 105 et SEQ ID NO: 106, ou
SEQ ID NO: 107 et SEQ ID NO: 108.
Les séquences décrites dans la présente demande peuvent être résumées comme suit (à titre informatif, l’acide glutamique du Fc en position 294 selon Kabat est indiqué en gras souligné dans les séquences humaines):
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
SEQ ID NO :27 = Séquence nucléique de la chaîne lourde de l’anticorps murin 8-18C5 recombinant de séquence SEQ ID NO :19 :
GAAGTGAAGCTGCACGAGTCTGGCGCCGGACTGGTGAAACCTGGCGCCAGCGTGG AAATCAGCTGCAAGGCCACCGGCTACACCTTCAGCAGCTTTTGGATCGAGTGGGTG AAACAGCGGCCTGGCCACGGCCTGGAATGGATCGGCGAGATCCTGCCCGGCAGAG GCCGG ACCAACT ACAACG AG AAGTT CAAGGGCAAGGCCACATT CACCGCCG AG ACA
Figure imgf000030_0001
La présente invention a également pour objet un procédé d’obtention d’un anticorps selon l’invention, comprenant les étapes suivantes :
i) on fournit une séquence nucléique codant pour une chaîne lourde d’IgG, ladite chaîne lourde comprenant (a) dans le domaine variable, les 3 CDRs de liaison à un autoantigène, et (b) dans le fragment Fc, une mutation d’acide aminé choisi parmi les acides aminés en position 240 à 243, 258 à 267 et 290 à 305, et de préférence au moins la mutation E294del ou Y300del, la numérotation étant celle de l’index EU ou équivalent dans Kabat ; ii) on fournit une séquence nucléique codant pour une chaîne légère d’IgG, ladite chaîne légère comprenant dans le domaine variable, les 3 CDRs de liaison du même autoantigène que celui ciblé en i); et
iii) on exprime les séquences nucléiques obtenues en i) et ii) dans une cellule hôte, et on récupère l’anticorps. La séquence nucléique (polynucléotide ou séquence nucléotidique) codant pour la chaîne lourde d’IgG comprend un fragment Fc ayant une mutation. La séquence nucléique codant pour la chaîne lourde d’IgG peut être synthétisée par voie chimique (Young L and Dong Q., 2004, Nucleic Acids Res., Apr 1 5;32(7), Hoover, D.M. and Lubkowski, J. 2002, Nucleic Acids Res., 30, Villalobos A, et al., 2006. BMC Bioinformatics, Jun 6;7:285). La séquence nucléotidique codant pour la chaîne lourde d’IgG peut être également amplifiée par PCR en utilisant des amorces adaptées. La séquence nucléotidique codant pour la chaîne lourde d’IgG peut également être clonée dans un vecteur d'expression.
Par exemple, on peut utiliser la séquence nucléique SEQ ID NO :27 (codant pour la chaîne lourde SEQ ID NO :19).
Ces techniques sont décrites en détails dans les manuels de référence : Molecular cloning : a laboratory manual, 3ieme édition-Sambrook and Russel eds. (2001 ) et Current Protocols in Molecular Biology - Ausubel et al. eds (2007).
La séquence nucléique fournie en i) (polynucléotide), qui code pour le polypeptide parent, est ensuite modifiée pour obtenir une séquence nucléique codant pour le variant.
Cette étape est l’étape de mutation à proprement parler. Elle peut être effectuée par toute méthode connue de l’art antérieur, notamment par mutagénèse dirigée.
De préférence, les substitutions et délétions d'acides aminés sont réalisées par mutagénèse dirigée, par la technique de PCR d’assemblage utilisant des oligonucléotides correspondants aux modifications insérées (voir, par exemple, Zoller et Smith, 1982, Nucl. Acids Res. 10:6487-6500; Kunkel, 1985, Proc. Natl. Acad. Sci USA 82:488).
A l’étape ii), on fournit une séquence nucléique codant pour une chaîne légère d’IgG, ladite chaîne légère comprenant dans le domaine variable, les 3 CDRs de liaison du même autoantigène que celui ciblé en i).
Par exemple, on peut utiliser la séquence nucléique SEQ ID NO :28 (codant pour la chaîne légère SEQ ID NO :20).
Enfin, dans l’étape iii), on exprime les séquences nucléiques obtenues en i) et ii) dans une cellule hôte, et on récupère l’anticorps ainsi obtenu.
Les séquences nucléiques obtenues en i) et ii) peuvent être insérées dans un vecteur bicistronique.
L'hôte cellulaire peut être choisi parmi des systèmes procaryotes ou eucaryotes, par exemple les cellules bactériennes mais également les cellules de levure ou les cellules animales, en particulier les cellules de mammifères. On peut également utiliser des cellules d'insectes ou des cellules de plantes.
Les cellules hôtes préférées sont la lignée de rat YB2/0, la lignée de hamster CHO, en particulier les lignées CHO dhfr- et CHO Lec13, la lignée PER.C6™ (Crucell), la lignée HEK notamment HEK293 (ATCC # CRL1573), les lignées EB66, K562, NSO, SP2/0, BHK, HeLa, NIH/3T3 ou COS. De préférence encore, on utilise la lignée de rat YB2/0. Ces cellules hôtes, par exemple les cellules CHO, peuvent être transfectées avec au moins un gène codant pour une sialyltransférase.
De préférence, lorsque le fragment Fc de l’anticorps selon l’invention, notamment humain, est modifié par rapport à celui d’un anticorps parent et consiste en la mutation Y300del, il est produit dans des cellules HEK telles que des cellules HEK293.
Les polynucléotides codant pour les chaînes lourde et légère peuvent également comprendre des codons optimisés, notamment pour son expression dans certaines cellules (étape iii)). L'optimisation de codon a pour but de remplacer les codons naturels par des codons dont les ARN de transfert (ARNt) portant les acides aminés sont les plus fréquents dans le type cellulaire considéré. Le fait de mobiliser des ARNt fréquemment rencontrés a pour avantage majeur d'accroître la vitesse de traduction des ARN messagers (ARNm) et donc d'augmenter le titre final (Carton JM et al, Protein Expr Purif, 2007). L'optimisation de codons joue aussi sur la prédiction des structures secondaires d'ARNm qui pourraient ralentir la lecture par le complexe ribosomal. L'optimisation de codons a également un impact sur le pourcentage de G/C qui est directement lié à la demi-vie des ARNm et donc à leur potentiel de traduction (Chechetkin, J. of Theoretical Biology 242, 2006 922-934).
L’optimisation de codons peut être faite par substitution des codons naturels en utilisant des tables de fréquence des codons (codon Lisage Table) pour mammifères et plus particulièrement pour Homo sapiens. Il existe des algorithmes présents sur internet et mis à disposition par les fournisseurs de gènes de synthèse (DNA2.0, GeneArt, MWG, Genscript) qui permettent de faire cette optimisation de séquence.
De préférence, les polynucléotides codant pour les chaînes lourde et légère comprennent des codons optimisés pour leur expression dans les cellules HEK, telles que des cellules HEK293, les cellules CHO, ou les cellules YB2/0. Plus préférentiellement, les polynucléotides codant pour les chaînes lourde et légère comprennent des codons optimisés pour leur expression dans les cellules YB2/0. L’invention a également pour objet une composition comprenant, dans un milieu physiologiquement acceptable, des anticorps monoclonaux selon l’invention.
Par « anticorps monoclonal » ou « composition d'anticorps monoclonal », ou « mAb » pour monoclonal Antibody, on entend une composition comprenant des molécules d'anticorps possédant une spécificité antigénique identique et unique. Les molécules d'anticorps présentes dans la composition sont toutes codées par les mêmes séquences de chaînes lourde et légère et ont donc la même séquence protéique.
L’invention a également pour objet l’utilisation d’un anticorps selon l’invention, ou bien l’utilisation d’une composition telle que précitée, comme médicament.
L’anticorps selon l’invention peut être combiné avec des excipients pharmaceutiquement acceptables, et éventuellement des matrices à libération prolongée, comme des polymères biodégradables, pour former une composition thérapeutique.
La composition pharmaceutique peut être administrée par voie orale, sublinguale, sous- cutanée, intramusculaire, intraveineuse, intra-artérielle, intrathécale, intra-oculaire, intra cérébrale, transdermique, pulmonaire, locale ou rectale. Le principe actif peut alors être administré sous forme unitaire d'administration, en mélange avec des supports pharmaceutiques classiques. Des formes unitaires d'administration comprennent les formes par voie orale telles que les comprimés, les gélules, les poudres, les granules et les solutions ou suspensions orales, les formes d'administration sublinguale et buccale, les aérosols, les implants sous-cutanés, transdermique, topique, intrapéritonéale, intramusculaire, intraveineuse, sous-cutanée, intrathécale, les formes d'administration par voie intranasale et les formes d'administration rectale.
De préférence, la composition pharmaceutique contient un véhicule pharmaceutiquement acceptable pour une formulation susceptible d'être injectée. Il peut s'agir en particulier de formules isotoniques, stériles, de solutions salines (avec phosphate monosodique ou disodique, chlorure de sodium, de potassium, de calcium ou de magnésium et analogues, ou des mélanges de tels sels), ou de compositions lyophilisées, qui, lors de l'addition d'eau stérilisée ou de sérum physiologique selon les cas, permettent la constitution de solutés injectables.
Les formes pharmaceutiques appropriées pour une utilisation injectable comprennent des solutions aqueuses stériles ou des dispersions, des formulations huileuses, y compris l'huile de sésame, l'huile d'arachide, et des poudres stériles pour la préparation extemporanée de solutions injectables stériles ou de dispersions. Dans tous les cas, la forme doit être stérile et doit être fluide dans la mesure où elle doit être injectée par seringue. Elle doit être stable dans les conditions de fabrication et de stockage et doit être préservée contre l'action contaminante de micro-organismes, comme les bactéries et les champignons.
Les dispersions selon l’invention peuvent être préparées dans du glycérol, des polyéthylèneglycols liquides ou leurs mélanges, ou dans des huiles. Dans des conditions normales de stockage et d'utilisation, ces préparations contiennent un conservateur pour empêcher la croissance des micro-organismes.
Le véhicule pharmaceutiquement acceptable peut être un solvant ou milieu de dispersion contenant, par exemple, l'eau, l'éthanol, un polyol (par exemple, la glycérine, le propylène glycol, le polyéthylène glycol, et analogues), des mélanges appropriés de ceux-ci, et/ou les huiles végétales. La fluidité convenable peut être maintenue, par exemple, par l'utilisation d'un tensioactif, tel que la lécithine. La prévention de l'action de micro organismes peut être provoquée par divers agents antibactériens et antifongiques, par exemple, des parabènes, le chlorobutanol, le phénol, l'acide sorbique ou encore le thimérosal. Dans de nombreux cas, il sera préférable d'inclure des agents isotoniques, par exemple, des sucres ou du chlorure de sodium. L'absorption prolongée des compositions injectables peut être provoquée par l'utilisation dans les compositions d'agents retardant l'absorption, par exemple, le monostéarate d'aluminium ou la gélatine.
Les solutions injectables stériles sont préparées en incorporant les substances actives en quantité requise dans le solvant approprié avec plusieurs des autres ingrédients énumérés ci-dessus, le cas échéant, suivie d'une stérilisation par filtration. En règle générale, les dispersions sont préparées en incorporant les ingrédients actifs stérilisés dans un véhicule stérile qui contient le milieu de dispersion basique et les autres ingrédients requis parmi ceux énumérés ci-dessus. Dans le cas de poudres stériles pour la préparation de solutions injectables stériles, les procédés de préparation préférés sont le séchage sous vide et la lyophilisation. Lors de la formulation, les solutions seront administrées d'une manière compatible avec la formulation posologique et en une quantité thérapeutiquement efficace. Les formulations sont facilement administrées dans une variété de formes galéniques, telles que les solutions injectables décrites ci-dessus, mais les capsules de libération de médicament et similaires peuvent également être utilisés. Pour l'administration parentérale dans une solution aqueuse par exemple, la solution doit être convenablement tamponnée et le diluant liquide rendu isotonique avec suffisamment de solution saline ou de glucose. Ces solutions aqueuses particulières conviennent particulièrement pour une administration intraveineuse, intramusculaire, sous-cutanée et intrapéritonéale. À cet égard, les milieux aqueux stériles qui peuvent être utilisés sont connus de l'homme de l'art. Par exemple, une dose peut être dissoute dans 1 ml de solution de NaCI isotonique puis ajoutée à 1000 ml de liquide approprié, ou injectée sur le site proposé de la perfusion. Certaines variations de posologie peuvent être appliquées en fonction de l'état du sujet traité.
La composition pharmaceutique de l'invention peut être formulée dans un mélange thérapeutique comprenant environ 0.0001 à 1.0 milligrammes, soit environ 0.001 à 0.1 milligrammes, soit environ de 0.1 à 1.0 milligrammes, voire environ 10 milligrammes par dose ou plus. Des doses multiples peuvent également être administrées. Le niveau de dose thérapeutiquement efficace spécifique pour un patient particulier peut dépendre d'une variété de facteurs, y compris le trouble qui est traité et la gravité de la maladie, l'activité du composé spécifique employé, la composition spécifique utilisée, l'âge, le poids corporel, la santé générale, le sexe et le régime alimentaire du patient, le moment de l'administration, la voie d'administration, le taux d'excrétion du composé spécifique utilisé, la durée du traitement, ou encore les médicaments utilisés en parallèle.
De préférence, la présente invention a pour objet l’utilisation d’un anticorps selon l’invention dans la prévention et/ou le traitement d’une maladie auto-immune. Elle a également pour objet l’utilisation d’une composition comprenant des anticorps monoclonaux selon l’invention pour prévenir et/ou traiter une maladie auto-immune.
De préférence, la maladie auto-immune est choisie parmi :
- les maladies démyélinisantes impliquant des anticorps anti-MOG, telle que la sclérose en plaques ;
- la neuromyélite optique de Dévie (NMO/NMOSD), notamment en ciblant l’aquaporine-4 (AQP-4) et/ou MOG ;
- le diabète de type 1 , notamment en ciblant la sous-unité catalytique 2 de la glucose-6 phosphatase (IGRP). L’IGRP est spécifique des îlots de Langerhans ; et
- l’arthrite rhumatoïde, notamment en ciblant le collagène de type 2.
De préférence, l’anticorps ou la composition selon l’invention est utilisé(e) dans la prévention et/ou le traitement d’une maladie démyélinisante impliquant des anticorps anti- MOG.
Une telle maladie est de préférence choisie parmi l'encéphalomyélite disséminée aiguë (ADEM), la neuromyélite optique de Dévie (NMO/NMOSD) et la sclérose en plaques (SEP). En effet, 40% des patients atteints d'encéphalomyélite disséminée aiguë (ADEM), qui survient principalement chez les enfants, sont séropositifs pour les anticorps anti-MOG. Dans la neuromyélite optique de Dévie (NMO/NMOSD), un sous-groupe de patients adultes séronégatifs pour les anti-aquaporine-4 (AQP-4) montre des titres élevés d’anticorps anti-MOG.
FIGURES
Figure 1 : Expérience pilote des variants traités avec l’anticorps 8-18C5 dans un modèle d’EAE avec MOG35 55
Les souris ont été injectées le jour 7 avec 50 pg d’anticorps 8-18C5-Del produit en cellules YB2/0 ((« Del », n = 4), 8-18C5-WT produit en cellules HEK ((« WT », n = 4), ou un équivolume de PBS ((« PBS », n = 4). A) Score clinique, B) Courbe de survie Kaplan Meier.
Figure 2 : Histogrammes du nombre absolu de macrophages infiltrant le SNC CD45hl CD11 bhl de souris traitées par l’anticorps 8-18C5-WT produit en cellules HEK (« WT », n = 3), le variant 8-18C5-Del produit en cellules YB2/0 (« Del ») (n = 2), ou un équivolume de PBS ((« PBS », n = 4).
Figure 3 : Histogrammes du nombre absolu de lymphocytes T régulateurs Foxp3+ activés infiltrant le SNC sur des cellules T CD4+ Th1.2+ viables de souris traitées par l’anticorps 8-18C5-WT produit en cellules HEK (« WT », n = 3), le variant 8-18C5-Del produit en cellules YB2/0 (« Del ») (n = 2), ou un équivolume de PBS ((« PBS », n = 4). Les données sont représentées en moyenne +/- SEM.
Figure 4 : Western Blot utilisant une lectine (SNA) spécifique de l'acide sialique en a2,6 pour les différents anticorps : anticorps 8-18C5-Del produit en cellules YB2/0 (« Del (YB2/0) »), anticorps 8-18C5-WT produit en cellules YB2/0 (« WT (YB2/0) ») et anticorps 8-18C5-WT produit en cellules HEK (« WT (HEK) »).
Figure 5 : Expérience pilote des variants traités avec l’anticorps 8-18C5 dans un modèle modéré d’EAE avec MOG35 55
Les souris ont été injectées le jour 9 avec 50 pg d’anticorps 8-18C5-Del (« Del », n=8), 8- 18C5-WT (« YB2 », n=8), ou un équivolume de PBS ((« PBS », n =7). A) Score clinique, B) Courbe de survie Kaplan Meier. EXEMPLES
Les exemples suivants sont donnés en vue d'illustrer divers modes de réalisation de l'invention.
Exemple 1 : Clonage et ingénierie Fc de l'anticorps monoclonal murin 8-18C5, et caractérisation des liaisons aux récepteurs Fc de type I, à FcRn et à son antigène
L’ingénierie de Fc a été réalisée à partir d’un vecteur d'ADN codant pour le clone murin recombinant mAb 8-18C5 d’IgGI . Les inventeurs ont créé la construction de clonage in silico en associant les séquences codant pour un domaine constant consensus avec le domaine variable (Fab) du mAb 8-18C5. La structure cristallisée du fragment Fab 8-18C5 est disponible dans PDB (Protein Data Bank) sous le numéro d'accession 1 PKQ. Pour le domaine constant, les inventeurs ont choisi une séquence consensus d'une lgG1 murine ( Mus musculus, IGHG1 *01 ) répertoriée dans la base de données en ligne IMGT (Immunogenetics). Les séquences correspondant aux chaînes lourde et légère ont été synthétisées in vitro et clonées dans des vecteurs pCDNA3 distincts (par exemple, Geneart). Les deux séquences ont ensuite été sous-clonées dans un seul vecteur bi- cistronique de mammifère, permettant la production du mAb 8-18C5 murin (8-18C5-WT).
Puis les inventeurs ont créé une délétion homologue à la délétion E294Del humaine (la numérotation étant celle de l’index EU ou équivalent dans Kabat) : ils ont délété l’acide glutamique en position 171 de SEQ ID NO :18 (région constante) du mAb 8-18C5 recombinant, afin d’obtenir le variant 8-18C5-Del.
L’anticorps murin 8-18C5 recombinant 8-18C5-WT a été produit dans des cellules HEK. Les anticorps murins 8-18C5 recombinants 8-18C5-WT et variant 8-18C5-Del ont été produits dans des cellules YB2/0 pour optimiser le niveau de sialylation (50-90%). De façon avantageuse, la lignée cellulaire YB2/0 permet d’obtenir un variant 8-18C5-Del, avec un niveau de sialylation très élevé.
Après production en cellules YB2/0 (ou également en cellules HEK pour 8-18C5-WT), les anticorps 8-18C5-WT et 8-18C5-Del ont été purifiés sur protéine G et caractérisés par SDS-PAGE et SEC, pour valider leur pureté (>97%) et leur intégrité (taux agrégés <2%).
Ils ont ensuite été caractérisés par ELISA sur le FcRn et sur les différents FcyRs : ELISA sur FcRn (humain ou murin) :
La liaison des anticorps 8-18C5-WT et 8-18C5-Del au FcRn a été mesurée par un test ELISA classique. Pour cela des immunoplaques Maxisorp ont été revêtues avec les protéines recombinantes FcRn humain ou murin. Après saturation des plaques en PBS- LE 5%, les solutions d’anticorps 8-18C5-WT ou 8-18C5-Del ont été ajoutées dans chaque puits à différentes concentrations (de 5ng/mL à 0,5pg/mL) et incubées pendant 1 h30 à 37°C. Les F(ab')2 d’IgG HRP de chèvre anti-humaines (ou anti-murine) ont ensuite été incubés au 1/2500eme pendant 1 h30 à 37°C. Les plaques ELISA ont ensuite été révélées avec du TMB (Pierce) et les absorbances ont été lues à 450 nm.
ELISA sur FCYRS (humains ou murins) :
La liaison des anticorps 8-18C5-WT et 8-18C5-Del aux FcyRs humains ou murins a été mesurée par ELISA après incubation, avec les F(ab')2 d’IgG HRP de chèvre anti humaines pendant 2h à température ambiante (à une concentration finale de 0,5pg/ml pour chaque molécule) sous faible agitation. Les IgG agrégées aux F(ab')2 ont ensuite été incubées sous agitation douce pendant 1 h à 30°C sur les immunoplaques Maxisorp ou NiNTA préalablement revêtues avec le FcyR et saturée en PBS-BSA 4%. Les plaques ELISA ont ensuite été révélées avec du TMB (Pierce) et les absorbances ont été lues à 450 nm.
La caractérisation ELISA des anticorps 8-18C5-WT et 8-18C5-Del a confirmé que l'introduction d'une délétion ponctuelle dans le domaine Fc n'affectait pas la reconnaissance de l'antigène (en utilisant la protéine MOG recombinante, rMOG). Comme le montre le tableau 1 ci-dessous, il est frappant de constater que la liaison à FcRn n'est pas affectée, alors que la liaison à FCYRII I et FcyRIIB est réduite :
Figure imgf000038_0001
Tableau 1 : caractérisation préliminaire des anticorps 8- 18C5-WT et 8- 18C5-Del. Les liaisons ont été évaluées par ELISA sur rMOG, et sur FcRs de type I et FcRn murins. Comme l'isotype d’IgGI murin ne se lie pas à FcyRIA (CD64) et FcyRIV, ceci indique que le variant 8-18C5-Del ne se lie plus à aucun des récepteurs Fc (FcRs) de type I murins. En outre, l'augmentation de la sialylation induite par l'introduction de la mutation « Del » a été confirmée par Western Blot en utilisant une lectine (SNA) spécifique de l'acide sialique en a2,6 (Figure 4). Pour cela, après l’étape d’électrophorèse SDS-PAGE, les anticorps ont été transférés sur membrane de nitrocellulose puis soumis à un Western Blot SNA : les conditions étaient les suivantes :
Saturation : TBS + BSA 1 % + Tween-20 0.05%, pendant 1 nuit à 4°C,
Lavages : Eau Phy + Tween-20 0.05%, 5 x 5 minutes,
1 ère incubation : SNA Biotinylées (VECTOR) au 1/1000e, 90 min à température ambiante 2ème incubation : Streptavidine péroxydase au 1 /2000e, 60 min à température ambiante Détection par Chimioluminescence
Exemple 2 : Impact de l’inaériierie Fc présente dans le variant mAb 8-18C5-Del sur la maladie auto-immune du cerveau
Une barrière hémato-encéphalique intacte empêche l'infiltration d'anticorps dans le parenchyme du SNC. Il est donc essentiel d'induire une légère inflammation auto-immune dans le SNC pour «amorcer» le tissu. Cela permet aux anticorps d'entrer dans le parenchyme et d'exercer leur fonction immunitaire.
Le modèle expérimental de choix est l'encéphalomyélite auto-immune expérimentale (« Experimental Autoimmune Encephalomyelitis » ou EAE), une maladie inflammatoire auto-immune invalidante du système nerveux central. Depuis sa description en 1933, il a servi de modèle prototypique d'hypersensibilité (notamment de type IV) et de modèle préclinique de la sclérose en plaques (SEP) dans lequel la plupart des traitements modificateurs de la maladie actuellement commercialisés ont été validés. La forme la plus courante est IΈAE active, dans laquelle une maladie démyélinisante est induite par immunisation avec le peptide 35-55 linéaire de la protéine MOG chez des souris C57BI/6 (Ramadan A, Lucca LE, Carrie N, Desbois S, Axisa PP, Hayder M, Bauer J, Liblau RS, Mars LT. In situ expansion of T cells that recognize distinct self-antigens sustains autoimmunity in the CNS. Brain (2016) 139: 1433-1446). Le mAb 8-18C5 est spécifique d'un épitope conformationnel de MOG (Breithaupt C, Schafer B, Pellkofer H, Huber R, Linington C, Jacob U. Demyelinating myelin oligodendrocyte glycoprotein-specific autoantibody response is focused on one dominant conformational epitope région in rodents. J Immunol (2008) 181 : 1255-1263) : Le mAb 8-18C5 ne reconnaît pas le peptide MOG35-55 linéaire utilisé pour l'immunisation, et n'interagit qu'avec la protéine MOG native intacte présente dans le SNC. Les effets à médiation immunitaire induits par le mAb 8-18C5 sont donc une conséquence de la liaison au MOG natif localement au sein des lésions inflammatoires.
L'impact des anticorps 8-18C5-WT (produits en HEK) et 8-18C5-Del sur la maladie paralytique encéphalomyélite auto-immune expérimentale (EAE) a été déterminé dans une expérience pilote dont les résultats sont présentés en figure 1 et 5.
• Essai 1 :
L’induction de IΈAE est réalisée chez des souris C57BI/6 par immunisation avec 50pg de MOG35-55 dans du CFA (Adjuvant complet de Freund) comprenant 600pg de Mycobacterium tuberculosis inactivé H37RA, suivi de 2 injections de toxine pertussique à jour 0 (200ng) et à jour 2 (400ng).
7 jours après l'immunisation, chaque anticorps a été injecté à une dose unique de 50 pg/souris. Cette dose de 2,5 mg/kg des anticorps 8-18C5 est délibérément inférieure à la dose d'IglV pour traiter la même maladie (4 g/kg au total: 4 x 1 g/kg).
Les résultats sont les suivants :
Par rapport aux souris témoins ayant reçu une injection de PBS, les souris traitées avec l’anticorps 8-18C5-WT (WT) ont montré une EAE aggravée, ce qui a provoqué la mort de toutes ces souris 5-6 jours après l'injection (figure 1 B).
Le variant 8-18C5-Del fournit le résultat inverse : ce variant a non seulement perdu son pouvoir pathogène inhérent (dans ce cas, la sévérité de la maladie aurait été similaire à celle des souris traitées au PBS), mais il a atténué la gravité de la maladie. Aucune des souris traitées par le variant 8-18C5-Del n'est morte, contre 2 souris sur 4 pour le PBS (figure 1 B), la sévérité de IΈAE stagnant à un score clinique de 2 qui reflète un retard de l'éclaircissement. Les stades les plus sévères de paralysie (> 3) n'ont jamais été atteints (figure 1 A).
• Essai 2 :
L’induction de IΈAE modérée est réalisée chez des souris C57BI/6 par immunisation avec 100pg de MOG35-55 dans du CFA (Adjuvant complet de Freund) comportant 100pg de Mycobacterium tuberculosis inactivé H37RA, suivi de 2 injections de toxine pertussique à jour 0 (200ng) et jour 2 (200ng). Au jour 9, deux jours avant l’induction de IΈAE au jour 1 1 , chaque anticorps (8-18C5 murin produits en cellules YB2/0 (YB2), variant porteur de la délétion E171 (Del) (correspondant à la délétion Del294 chez l’humain), est injecté à une dose unique de 50 pg/souris. Du PBS est injecté chez les souris témoins.
Les résultats sont les suivants :
Par rapport aux souris témoins ayant reçu une injection de PBS, les souris traitées avec l’anticorps 8-18C5-WT (YB2) ont montré une EAE aggravée, ce qui a provoqué la mort de 38% des souris environ 15 jours après immunisation (figure 5B et tableau 2)
Le variant 8-18C5-Del (Del) a perdu son pouvoir pathogène inhérent (dans ce cas, la sévérité de la maladie aurait été similaire à celle des souris traitées au PBS) et a atténué la gravité de la maladie. La sévérité de IΈAE stagne à un score de 2 et les stades les plus sévères de paralysie ne sont jamais atteints (Figure 5A).
Enfin, le variant 8-18C5-Del (Del) permet une récupération clinique complète de toutes les souris, alors que le traitement au PBS permet une récupération clinique de 57% des souris et que le traitement avec l’anticorps 8-18C5 permet la récupération clinique de seulement 38% des animaux (tableau 2).
Figure imgf000041_0001
Tableau 2 : Effets des traitements au PBS, 8-18C5WT 5YB2) et 8-18C5Del (Del) sur la mortalité des souris et leur récupération clinique.
Conclusion:
- Le variant 8-18C5-Del améliore IΈAE à une dose unique, qui est 400 fois plus faible que les IglV, et 40 fois plus faible que le variant sialylé recombinant F241A (décrit dans Fiebiger BM, Maamary J, Pincetic A, Ravetch JV. Protection in antibody- and T cell- mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs. Proc Natl Acad Soi U S A (2015) 1 12: E2385-E2394). La différence critique entre ces paramètres est que l’anticorps 8-18C5 reconnaît un autoantigène lié à la maladie.
- Le moment de l'injection, i.e. juste avant l'apparition de la maladie, montre fortement que le variant 8-18C5-Del a un effet sur les mécanismes pathologiques en cours. De plus, cet effet est susceptible de se produire localement dans le tissu objet de l’inflammation, car l’anticorps 8-18C5 reconnaît seulement la protéine MOG native, qui est exclusivement exprimée dans le système nerveux central.
Exemple 3 : Effet du variant 8-18C5-Del sur la
Figure imgf000042_0001
de l'infiltrat cellulaire dans le cerveau
La restauration de la tolérance immunitaire par des mécanismes induits par l'autoantigène à faible dose aboutit fréquemment à l'accumulation de cellules T régulatrices FoxP3+. Pour déterminer si le variant 8-18C5-Del peut promouvoir l'enrichissement en cellules T régulatrices FoxP3+, les inventeurs ont effectué une expérience au cours de laquelle ils ont évalué l'ampleur de la réponse des cellules T régulatrices FoxP3+ dans les cerveaux des souris traitées à l’exemple 2.
Au jour 16 après l'immunisation, les inventeurs ont isolé les cellules mononucléées infiltrant le cerveau en utilisant un gradient de Percoll, et ont analysé la composition cellulaire de l'infiltrat immunitaire par cytométrie de flux.
Comme le montre la figure 2, l'activité inflammatoire chez les souris traitées avec le variant 8-18C5-Del est réduite, étant donné la proportion inférieure et le nombre total de macrophages infiltrants par rapport au groupe témoin PBS.
Concomitamment à la réduction des macrophages, l'infiltration du SNC chez les souris traitées avec le variant 8-18C5-Del a montré une augmentation notable de la proportion et du nombre absolu de lymphocytes T régulateurs Foxp3+ activés par rapport aux souris EAE traitées avec du PBS (Figure 3).
Conclusion :
Ces études sont cohérentes avec un scénario au cours duquel le variant 8-18C5-Del rééduque le système immunitaire en pilotant l'expansion des lymphocytes T régulateurs spécifiques de l'antigène cible MOG. Ce mécanisme nécessite probablement que l’autoantigène MOG soit présenté par des cellules présentatrices d'antigènes (APC) tolérogènes, qui activent préférentiellement les cellules T régulatrices au détriment de la réponse pathogène des cellules T effectrices.
Ceci identifierait le variant 8-18C5-Del selon l’invention comme un vecteur unique pour transférer sélectivement l'autoantigène aux APC tolérogènes exprimant les récepteurs Fc de type II. Exemple 4 : Sélection des anticorps équivalant à 8-18C5 par phaqe displav
Sélection de la banque de scFv humain (MG-UmAb) :
Au cours des étapes de sélection, la banque de scFv humain (MG-UmAb) a été exprimée à la surface du bactériophage M13 en utilisant des procédures standards (Smith GP, Science 228: 1315 (1985)). Des bactéries E. coli XL1 -Blue, contenant la banque à exprimer clonée dans le vecteur pMG72, ont été cultivées dans 60 ml de milieu 2YT additionné de 100 pg/ml d'ampicilline, 15 pg/ml de tétracycline et 1% (p/v) de glucose à 30°C. Les cellules ont ensuite été infectées avec le phage auxiliaire M13 (M13K07, Biolabs, rapport bactéries / phages = 1/3) à 37°C pendant 20 min et la production de phage-scFv a été poursuivie pendant une nuit à 26°C, à 230rpm 2YT/ampicilline/glucose avec de l'IPTG 0,5 mM et 50 pg de kanamycine/ml. Le jour suivant, les phages ont été précipités avec du PEG6000 en utilisant des protocoles standards, remis en suspension dans 1 ml de tampon PBS à pH 7,4 et titrés en infectant des cellules XL1 -Blue.
Pour les sélections en phase solide, les phages-scFv dilués en PBS / 4% de lait écrémé / 0,1% de Tween 20 ont été incubés dans 8 puits de plaques Maxisorp (1 -2x1011 phages / puits dans 100mI final) préalablement revêtues avec la protéine recombinante humaine MOG ou MOG Biotinylée (sur plaque streptavidine) et bloqués avec 4% de lait écrémé en PBS. Après une incubation de 2 heures à 37°C, les puits ont été lavés 10 fois avec du PBS/0,1 % Tween 20 et 2 fois avec du PBS. Les phages sélectionnés ont ensuite été élués par infection avec des bactéries XL1 -Blue en phase de croissance exponentielle (2x150pl/puits, 20 min. à 37°C sans agitation). Les bactéries infectées ont ensuite été étalées sur milieu solide 2YT/ampicilline/glucose. Le jour suivant, les cellules ont été resuspendues en milieu 2YT avec 15% de glycérol, congelées et conservées à -80°C jusqu’au tour de sélection suivant.
Pour les sélections en phase liquide, 4x1011 phages ont été d'abord incubés avec de la protéine recombinante humaine MOG biotinylée pendant 1 heure à température ambiante sous faible agitation. Des billes magnétiques revêtues de streptavidine (Dynal) préalablement bloquée avec 4% de lait écrémé en PBS ont ensuite été ajoutées aux phages pendant 30 minutes à température ambiante. Les complexes phage-billes ont été lavés 10 fois avec du PBS/0,1 % Tween 20 et 2 fois avec du PBS en utilisant un aimant. Les complexes phages-billes ont ensuite été utilisés pour infecter 5 ml de bactéries XL1 - Blue en croissance exponentielle, qui ont été étalées sur milieu solide 2YT/ampicilline/glucose. Le jour suivant, les cellules ont été resuspendues en milieu 2YT avec 15% de glycérol, congelées et conservées à -80°C jusqu’au tour de sélection suivant. Pour s’assurer de sélectionner des scFv spécifiques, plusieurs tours de sélections dans différentes conditions (4-6 phase solide et/ou 4-6 phase liquide) ont été mises en oeuvre. Les concentrations de cible (protéine recombinante humaine MOG) ont progressivement été diminuées afin de sélectionner les scFv les plus affins. Des tours de sélection ont aussi été réalisés sur les protéines recombinantes MOG homologues murines et cynomolgus afin d’obtenir des scFv qui reconnaissent aussi ces protéines (conditions de criblage similaires à partir du 2 ou 3eme tour de sélection). Enfin, afin d’obtenir des scFv qui ciblent un épitope similaire à l’anticorps de référence 818-05, cet anticorps a été utilisé comme compétiteur direct dans des étapes avancées de sélection (à partir du 4eme tour de sélection).
Les séquences des scFv obtenues sont les suivantes :
Figure imgf000044_0001
Figure imgf000045_0001
Détermination de la liaison à la protéine MOG : Tests ELISA des phaaes-ScFv sur la protéine MOG (humaine et murine) :
Les caractéristiques de liaison des scFv exprimés à la surface des phages isolés pendant le criblage ont été déterminées à l’aide d’un test ELISA en utilisant la protéine recombinante MOG (R&D System). En parallèle des clones sélectionnés, le phage-scFv- 8-18C5 est exprimé afin de servir de contrôle positif de l’ELISA. En bref, les phage-scFv ont été produits sous forme de clones isolés sur une plaque de 96 puits dans 800 mI de cultures 2YT / ampicilline / glucose infectées par le phage auxiliaire M13K07 (comme décrit précédemment). Les phages produits pendant la nuit à 26°C ont ensuite été récupérés dans les surnageants après 30 minutes de centrifugation à 3000g. Ces surnageants ont été directement dilués au 1/2 en PBS / 4% de BSA / 0,1 % de Tween 20 et testés sur des immunoplaques Maxisorp préalablement coatées avec 0,5 pg de MOG humaine ou murine ou PBS (contrôle bruit de fond (bdf) en BSA)/ puits et bloquées avec 4% de BSA en PBS. Après incubation pendant 2 heures à 37 0 C, les puits ont été lavés 3 fois avec du PBS / 0,1% de Tween-20 et les phages-scfv liés ont été détectés avec un anticorps HRP anti-M13 (GE Healthcare). La plaque est lue à 450nm (DO) sur un lecteur de plaque (TECAN). Les résultats sont exprimés en ratio : DO sur cible/DO bdf (DO sur plaque non coatée et saturée en BSA) et les ratios sont comparés à celui obtenu pour le contrôle positif.
Résultats :
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000047_0002
Les clones générés décrits ci-dessus ont un ratio supérieur au ratio du contrôle positif 8- 18C5 ; ils se lient donc mieux à la protéine MOG.
En outre, les expériences suivantes peuvent être menées en complément:
Déterminer l'impact sur la réponse des cellules T :
Au jour 16 après l'immunisation, les inventeurs ont isolé les cellules mononucléées infiltrant le cerveau en utilisant un gradient de Percoll, et ont analysé la composition cellulaire de l'infiltrat immunitaire par cytométrie de flux. L'amplitude des réponses des lymphocytes T régulateurs (Foxp3+) et pathogènes (Th 1 /Th 17) peut être déterminée pour montrer formellement si, chez les souris traitées par 8-18C5-Del, la contraction de la réponse pathogène est corrélée avec l'expansion d'une réponse des cellules T régulatrices.
Déterminer la spécificité de la réponse des cellules T pathogène et immunorégulateur :
En utilisant des expériences de rappel d'antigène, des tétramères du CMH et des cellules T expriment un TCR transgénique spécifiques du MOG35-55, la spécificité de la réponse des lymphocytes T régulateurs et pathogènes peut être établie. L'objectif est d'établir le rôle central de l'auto-antigène MOG dans la médiation de l'effet thérapeutique de l'anticorps monoclonal 8-18C5.
Identifier le sous-ensemble myéloïde tolérogène qui interagit avec 8-18C5-Del :
Pendant l'amélioration de la maladie, il est concevable que le variant m8-18C5-Del (non lié aux récepteurs de type I) permette de se lier aux FcR de type II qui comprennent, entre autres, le récepteur CD209 de la lectine de type C (SIGN-R1 ) et CD23. Pour identifier les cellules cibles de l'anticorps 8-18C5-Del, 2 approches peuvent être avantageusement développées:
0 8-18C5-Del et 8-18C5-WT sont marqués avec des fluorochromes distincts et on analyse par cytométrie en flux les cellules immunitaires infiltrant le cerveau qui lient l'un ou l'autre ou les deux anticorps.
0 le profil du récepteur Fc de type I ou II sur les cellules immunitaires infiltrant le cerveau est établi en utilisant une approche de cytométrie de flux.
Une attention particulière est accordée aux macrophages DC-SIGN+/microglies immunorégulateurs et aux macrophages M2/microglies anti-inflammatoires Arg-1 + CD45+ CD1 1 B+ F4/80+ CD68+. Les cellules suppressives dérivées des myéloïdes et les DC plasmocytoïdes sont des candidats moindres car ils ont été signalés comme aggravant IΈAE.
Comme les stratégies mentionnées ci-avant, ces approches sont réalisées au jour 16 après l’immunisation, en isolant les cellules mononuclées infiltrant le cerveau en utilisant un gradient de Percoll.
Implication fonctionnelle du sous-ensemble myéloïde tolérogène identifié :
Après isolement du SNC, les sous-ensembles tolérogènes sont co-cultivés avec des cellules T à TCR transgénique pour démontrer que la présentation de l'antigène MOG entraîne l'expansion des cellules T régulatrices. Deuxièmement, des approches d'anticorps neutralisants sont utilisées in vivo pour retarder l'induction ou le fonctionnement des cellules impliquées.

Claims

REVENDICATIONS
1. Anticorps d’isotype G dirigé contre la glycoprotéine oligodendrocytaire de la myéline (MOG) native, comprenant :
- un fragment Fc présentant une haute sialylation, et
- un fragment Fab capable de se lier à l’autoantigène.
2. Anticorps selon la revendication 1 , dans lequel le fragment Fc est modifié par rapport à celui d’un anticorps parent, et comprend au moins une mutation d’acide aminé choisi parmi les acides aminés en position 240 à 243, 258 à 267 et 290 à 305 dudit fragment Fc, la numérotation étant celle de l’index EU ou équivalent dans Kabat.
3. Anticorps selon la revendication 2, dans lequel la mutation est choisie parmi V262del,
V263F, V263K, V263W, V264K, V264P, D265A, D265E, D265G, D265L, D265S, D265V, V266A, V266P, V266S, V266T, S267N, S267P, S267R, S267W, P291 C, P291 V, P291Y, P291W, R292A, R292del, R292T, R292V, R292Y, E293del, E293F, E293P, E293W, E293Y, E294del, E294D, E294N, E294W, E294F, E293del/E294del, Q295D, Q295del,
Q295F, Q295G, Q295K, Q295N, Q295R, Q295W, Y296A, Y296C, Y296del, Y296E,
Y296G, Y296Q, Y296R, Y296V, S298del, S298E, S298F, S298G, S298L, S298M,
S298N, S298P, S298R, S298T, S298W, S298Y, Y300D, Y300del, Y300G, Y300N,
Y300P, Y300R, Y300S, R301 A, R301 F, R301 G, R301 H, R301 I, R301 K, R301 Q, R301 V, R301W, R301 Y, V302del, V302A, V302F, V302G, V302P, V303A, V303C, V303P, V303L, V303S, V303Y, S304C, S304M, S304Q, S304T, V305F et V305L, la numérotation étant celle de l’index EU ou équivalent dans Kabat.
4. Anticorps selon l’une des revendications 1 à 3, dans lequel le fragment Fc est modifié par rapport à celui d’un anticorps parent et comprend au moins la mutation E294del, la numérotation étant celle de l’index EU ou équivalent dans Kabat.
5. Anticorps selon l’une des revendications 1 à 4, caractérisé en ce qu’il est dirigé contre MOG native et comprend les 6 CDRs suivants :
H-CDR1 : SEQ ID NO:1 1 ,
H-CDR2: SEQ ID NO:12,
H-CDR3: SEQ ID NO:13,
L-CDR1 : SEQ ID NO:14,
L-CDR2: GAS, et
6. Anticorps selon l’une des revendications 1 à 5, qui est choisi parmi les lgG1 , lgG2, lgG3 et lgG4 humaine, de préférence est une lgG1 .
7. Anticorps selon l’une des revendications 1 à 6, qui est chimérique, humanisé ou humain.
8. Anticorps selon l’une des revendications 1 à 6, qui comprend comme chaîne lourde la séquence SEQ ID NO :24, avec la délétion de l’acide glutamique en position 294 en numérotation de l’index EU ou équivalent dans Kabat, et comme chaîne légère la séquence SEQ ID NO :25.
9. Composition comprenant, dans un milieu physiologiquement acceptable, des anticorps monoclonaux selon l’une des revendications 1 à 8.
10. Anticorps selon l’une des revendications 1 à 8, ou composition selon la revendication 9, pour son utilisation comme médicament.
1 1. Anticorps selon l’une des revendications 1 à 8, ou composition selon la revendication 9, pour son utilisation pour prévenir et/ou traiter une maladie auto-immune.
12. Anticorps selon l’une des revendications 1 à 8, ou composition selon la revendication 9, pour son utilisation pour prévenir et/ou traiter une maladie démyélinisante impliquant des anticorps anti-MOG, de préférence choisie parmi l'encéphalomyélite disséminée aiguë, la neuromyélite optique de Dévie et la sclérose en plaques.
PCT/EP2019/060240 2018-04-20 2019-04-19 Autoanticorps hautement sialylés et leurs utilisations WO2019202153A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980037962.5A CN112533949B (zh) 2018-04-20 2019-04-19 高唾液酸化的自身抗体及其用途
JP2020558531A JP2021522216A (ja) 2018-04-20 2019-04-19 高度にシアル化された自己抗体およびその使用
US17/049,093 US20210238281A1 (en) 2018-04-20 2019-04-19 Highly sialylated autoantibodies and uses thereof
EP19719487.1A EP3781595A1 (fr) 2018-04-20 2019-04-19 Autoanticorps hautement sialylés et leurs utilisations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1853485 2018-04-20
FR1853485A FR3080376B1 (fr) 2018-04-20 2018-04-20 Autoanticorps hautement sialyles et leurs utilisations

Publications (1)

Publication Number Publication Date
WO2019202153A1 true WO2019202153A1 (fr) 2019-10-24

Family

ID=63407326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/060240 WO2019202153A1 (fr) 2018-04-20 2019-04-19 Autoanticorps hautement sialylés et leurs utilisations

Country Status (6)

Country Link
US (1) US20210238281A1 (fr)
EP (1) EP3781595A1 (fr)
JP (1) JP2021522216A (fr)
CN (1) CN112533949B (fr)
FR (1) FR3080376B1 (fr)
WO (1) WO2019202153A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022093694A1 (fr) * 2020-10-26 2022-05-05 A2 Biotherapeutics, Inc. Polypeptides ciblant des complexes peptide hpv-cmh et leurs méthodes d'utilisation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117683131B (zh) * 2024-01-24 2024-04-30 首都医科大学宣武医院 一种抗髓鞘少突胶质细胞糖蛋白(mog)抗体及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007096A1 (fr) * 1993-09-06 1995-03-16 La Trobe University Traitement de maladies auto-immunes
US5545807A (en) 1988-10-12 1996-08-13 The Babraham Institute Production of antibodies from transgenic animals
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5591669A (en) 1988-12-05 1997-01-07 Genpharm International, Inc. Transgenic mice depleted in a mature lymphocytic cell-type
US5598369A (en) 1994-06-28 1997-01-28 Advanced Micro Devices, Inc. Flash EEPROM array with floating substrate erase operation
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO2010109010A1 (fr) * 2009-03-27 2010-09-30 Deutsches Rheuma-Forschungszentrum Berlin (Drfz) Anticorps sialylés dirigés contre des antigènes spécifiques utilisés en traitement ou en prophylaxie de réactions immunitaires inflammatoires indésirables, et méthodes de production associées
WO2011149999A2 (fr) * 2010-05-27 2011-12-01 Merck Sharp & Dohme Corp. Méthode de synthèse d'anticorps présentant des propriétés améliorées
WO2012113863A1 (fr) * 2011-02-24 2012-08-30 Sanofi Procédé de production d'anticorps sialylés
WO2016016586A1 (fr) * 2014-08-01 2016-02-04 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Procédé de production de variants ayant un fc présentant une sialylation améliorée

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UY33492A (es) * 2010-07-09 2012-01-31 Abbott Lab Inmunoglobulinas con dominio variable dual y usos de las mismas
WO2013063095A1 (fr) * 2011-10-24 2013-05-02 Abbvie Inc. Agents de liaison immunologique dirigés contre la sclérostine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545807A (en) 1988-10-12 1996-08-13 The Babraham Institute Production of antibodies from transgenic animals
US5591669A (en) 1988-12-05 1997-01-07 Genpharm International, Inc. Transgenic mice depleted in a mature lymphocytic cell-type
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
WO1995007096A1 (fr) * 1993-09-06 1995-03-16 La Trobe University Traitement de maladies auto-immunes
US5598369A (en) 1994-06-28 1997-01-28 Advanced Micro Devices, Inc. Flash EEPROM array with floating substrate erase operation
WO2010109010A1 (fr) * 2009-03-27 2010-09-30 Deutsches Rheuma-Forschungszentrum Berlin (Drfz) Anticorps sialylés dirigés contre des antigènes spécifiques utilisés en traitement ou en prophylaxie de réactions immunitaires inflammatoires indésirables, et méthodes de production associées
WO2011149999A2 (fr) * 2010-05-27 2011-12-01 Merck Sharp & Dohme Corp. Méthode de synthèse d'anticorps présentant des propriétés améliorées
WO2012113863A1 (fr) * 2011-02-24 2012-08-30 Sanofi Procédé de production d'anticorps sialylés
WO2016016586A1 (fr) * 2014-08-01 2016-02-04 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Procédé de production de variants ayant un fc présentant une sialylation améliorée

Non-Patent Citations (34)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 2007
"Molecular cloning : a laboratory manual", 2001
ALMAGRO ET AL., FRONTIERS IN BIOSCIENCE, vol. 1, no. 3, 1 January 2008 (2008-01-01), pages 1619 - 1633
BREITHAUPT C; SCHAFER B; PELLKOFER H; HUBER R; LININGTON C; JACOB U: "Demyelinating myelin oligodendrocyte glycoprotein-specific autoantibody response is focused on one dominant conformational epitope region in rodents", J IMMUNOL, vol. 181, 2008, pages 1255 - 1263
BREITHAUPT ET AL., PNAS, vol. 1 00, no. 16, 5 August 2003 (2003-08-05)
BRUGGERMANN ET AL., YEAR IN IMMUNO, vol. 7, 1993, pages 33
CARTON JM ET AL., PROTEIN EXPR PURIF, 2007
CHECHETKIN, J. OF THEORETICAL BIOLOGY, vol. 242, 2006, pages 922 - 934
DUCHOSAL ET AL., NATURE, vol. 355, 1992, pages 258
F. MIMOTO ET AL: "Engineered antibody Fc variant with selectively enhanced FcyRIIb binding over both FcyRIIaR131 and FcyRIIaH131", PROTEIN ENGINEERING DESIGN AND SELECTION, vol. 26, no. 10, 5 June 2013 (2013-06-05), pages 589 - 598, XP055087986, ISSN: 1741-0126, DOI: 10.1093/protein/gzt022 *
FIEBIGER BM; MAAMARY J; PINCETIC A; RAVETCH JV: "Protection in antibody- and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type Il FcRs", PROC NATL ACAD SCI USA, vol. 112, 2015, pages E2385 - E2394, XP055262322, DOI: doi:10.1073/pnas.1505292112
HOOGENBOOM ET AL., J. MOL. BIOL, vol. 227, 1991, pages 381
HOOVER, D.M.; LUBKOWSKI, J., NUCLEIC ACIDS RES., 2002, pages 30
JAKOBOVITS ET AL., NATURE, vol. 362, 1993, pages 255 - 258
JAKOBOVITS ET AL., PROC. NATL. ACAD. SCI. USA., vol. 90, 1993, pages 2551
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525
KABAT: "Sequences of Proteins of Immunological Interest", 1991, PUBLIC HEALTH SERVICE, NATIONAL INSTITUTES OF HEALTH
KUNKEL, NATL. ACAD. SCI USA, vol. 82, 1985, pages 488
MARKS ET AL., J. MOL. BIOL, vol. 222, 1991
MUTA T ET AL., NATURE, vol. 368, 1994, pages 70 - 73
NIXON ET AL.: "Drugs derived from phage display, From candidate identification to practice", MABS, vol. 6, no. 1, January 2014 (2014-01-01), pages 73 - 85
PEARSON; LIPMAN, PNAS, vol. 85, 1988, pages 2444 - 2448
RAMADAN A; LUCCA LE; CARRIE N; DESBOIS S; AXISA PP; HAYDER M; BAUER J; LIBLAU RS; MARS LT: "In situ expansion of T cells that recognize distinct self-antigens sustains autoimmunity in the CNS", BRAIN, vol. 139, 2016, pages 1433 - 1446
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 327
SMITH GP, SCIENCE, vol. 228, 1985, pages 1315
SMITH; WATERMAN, J. MOL EVOL., vol. 18, 1981, pages 38 - 46
VARKI ET AL.: "Essentials of Glycobiology", 2009
VAUGHAN ET AL., NATURE BIOTECH, vol. 14, 1996, pages 309
VERHOEYN ET AL., BIOESSAYS, vol. 8, 1988, pages 74
VILLALOBOS A ET AL., BMC BIOINFORMATICS, vol. 7, 6 June 2006 (2006-06-06), pages 285
YOUNG L; DONG Q, NUCLEIC ACIDS RES., vol. 32, no. 7, 15 April 2004 (2004-04-15)
YUYA ISODA ET AL: "Importance of the Side Chain at Position 296 of Antibody Fc in Interactions with Fc[gamma]RIIIa and Other Fc[gamma] Receptors", PLOS ONE, vol. 10, no. 10, 7 October 2015 (2015-10-07), pages e0140120, XP055516183, DOI: 10.1371/journal.pone.0140120 *
ZAUNER ET AL.: "Molecular & Cellular Proteomics", vol. 12.4, 2013, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY
ZOLLER; SMITH, NUCL. ACIDS RES., vol. 10, 1982, pages 6487 - 6500

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022093694A1 (fr) * 2020-10-26 2022-05-05 A2 Biotherapeutics, Inc. Polypeptides ciblant des complexes peptide hpv-cmh et leurs méthodes d'utilisation

Also Published As

Publication number Publication date
FR3080376A1 (fr) 2019-10-25
FR3080376B1 (fr) 2022-12-09
JP2021522216A (ja) 2021-08-30
EP3781595A1 (fr) 2021-02-24
CN112533949B (zh) 2024-03-15
US20210238281A1 (en) 2021-08-05
CN112533949A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
US20210301028A1 (en) Composition and methods for anti-tnfr2 antibodies
US11958905B2 (en) Fusion proteins containing a BDNF and an anti-human transferrin receptor antibody
EP2931749B1 (fr) Utilisation d&#39;anticorps monoclonaux pour le traitement de l&#39;inflammation et d&#39;infections bacteriennes
WO2017006052A2 (fr) UTILISATION DE FRAGMENTS Fc MODIFIÉS EN IMMUNOTHÉRAPIE
JP6370349B2 (ja) 抗p−セレクチン抗体ならびにそれらの使用および同定方法
KR101787118B1 (ko) 항아밀로이드β 올리고머 인간화 항체
WO2019115773A1 (fr) Variants avec fragment fc ayant une affinité augmentée pour fcrn et une affinité augmentée pour au moins un récepteur du fragment fc
WO2016016586A1 (fr) Procédé de production de variants ayant un fc présentant une sialylation améliorée
EP3781595A1 (fr) Autoanticorps hautement sialylés et leurs utilisations
JP2021506773A (ja) 腎線維症および/または慢性腎臓疾患の治療におけるFXIIaインヒビターの使用
WO2018078138A1 (fr) Variants de polypeptide fc presentant une demi-vie augmentee
EP3985022A1 (fr) ANTICORPS BISPÉCIFIQUE DIRIGÉ CONTRE a-SYN/IGF1R ET UTILISATION ASSOCIÉE
JPWO2018047894A1 (ja) 自己免疫疾患治療用抗体
EP3063277B1 (fr) Proteine chimerique dans le traitement de l&#39;amylose
KR20230052279A (ko) 비-천연 발생 변형 fc 수용체에 특이적으로 결합하는 igg의 인간 비-천연 발생 변형 fc 영역
WO2022124247A1 (fr) Agent de prévention ou de traitement de la dégénérescence lobaire fronto-temporale
US20240132604A1 (en) Chemokine receptor 8 (ccr8) antibodies
WO2024086684A2 (fr) Anticorps du récepteur 8 de chimiokines (ccr8)
CA2936782A1 (fr) Immunoglobuline anti-toxine du charbon
CN115003694A (zh) 抗备解素抗体及其制备
WO2019070013A1 (fr) Composition pour déplétion de lymphocytes t cytotoxiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19719487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019719487

Country of ref document: EP