WO2019201221A1 - 改性淀粉及其制备方法和应用 - Google Patents

改性淀粉及其制备方法和应用 Download PDF

Info

Publication number
WO2019201221A1
WO2019201221A1 PCT/CN2019/082774 CN2019082774W WO2019201221A1 WO 2019201221 A1 WO2019201221 A1 WO 2019201221A1 CN 2019082774 W CN2019082774 W CN 2019082774W WO 2019201221 A1 WO2019201221 A1 WO 2019201221A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
group
substituted
unsubstituted
reaction
Prior art date
Application number
PCT/CN2019/082774
Other languages
English (en)
French (fr)
Inventor
王祥槐
张福山
李志军
胡维维
Original Assignee
瑞辰星生物技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810339075.0A external-priority patent/CN110387765B/zh
Priority claimed from CN201810339091.XA external-priority patent/CN110386988B/zh
Priority claimed from CN201810339077.XA external-priority patent/CN110387761B/zh
Application filed by 瑞辰星生物技术(广州)有限公司 filed Critical 瑞辰星生物技术(广州)有限公司
Publication of WO2019201221A1 publication Critical patent/WO2019201221A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/08Ethers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents

Definitions

  • the invention relates to the technical field of papermaking and starch modification, in particular to a modified starch and a preparation method and application thereof.
  • Starch is a natural polymer carbohydrate, widely distributed in plants, stems or roots. It is abundant in resources and low in price. It is widely used in industries such as industry, food, textile, paper, feed, medicine, construction, drilling, etc. . Starch is one of the most important raw materials in papermaking. By weight, it is often the fourth largest component of paper and board, second only to cellulose, inorganic fillers and moisture. Culture and packaging paper and paper are the main users of starch. The world's paper industry starch consumption is about 5 million tons. According to the world's total paper and paper production, starch consumption is about 1.6%.
  • starch there are many benefits to using starch on the papermaking process. The most obvious is the improvement of the dry strength of the paper and paper surface, including internal adhesion, tensile strength, bursting resistance, edge crush strength, compressive strength, ring compressive strength, and folding. Degree, multi-layer adhesion, stiffness, and surface strength is measured by its wear resistance, scratch resistance, printability and dustiness.
  • the advantages of using starch are: a) enhancing the paper machine running performance and reducing breakage; b) increasing the residence time of fines and fillers; c) improving the water repellency, thereby increasing the speed of the paper machine and reducing the performance of the paper.
  • the energy consumption of fiber refining is required to increase productivity; d) low-cost short fibers can be used to reduce cost and improve formability; e) the effect of alkaline sizing can be enhanced by using starch as an emulsifier; f) starch It can improve the wet end stability of the paper during the papermaking process. In short, as paper machines continue to widen and speed increases, the use of starch is becoming more important.
  • starches are available on papermaking depending on the starch source.
  • the rankings are: corn starch, tapioca starch, potato starch and wheat starch, which are the most commonly used starch sources in papermaking. Considering the price factor, it is generally used in a certain area, which is the most abundant source of starch. E.g. In North America, corn starch is used in the paper industry, and tapioca starch is used in papermaking in Southeast Asia. After the starch is separated from its original plant, it is utilized in the form of granules, and the shape and size of the starch depends on its plant source. The starch, starch, gelatinization temperature, bulk density and amylose ratio are also different.
  • Starch has different use effects and requirements in different parts of the papermaking process.
  • the main application areas are as follows:
  • wet section addition also known as in-slurry application, is to add the cooked starch to the slurry pan or thick pan (or to each of the two pans) as needed. Adding starch to the wet end has the following effects and advantages:
  • the strength properties of the paper can be improved.
  • the wet portion added starch can be used as an emulsifier for the fiber coating reaction, such as in the process of adding the wet ASA (Alknyl Succineic Anhydride) process and the AKD (Alkyl Ketene Dimer) process.
  • the starch provides a protective layer to the coating agent to prevent hydrolysis while helping the coating agent to distribute and enter the fibrous layer. Since the residence time of the coating material can be enhanced, the starch can not only improve the coating, but also reduce the precipitation and voids caused by the hydrolysis of the coating material, thereby improving productivity.
  • wet-end starch can also control the charge.
  • some plants use cationic starch as a flocculant to control system charge, ensure residence time and control sediment.
  • starch can be added to paper for surface sizing during the calendering process.
  • Calendering is carried out on dry paper or paper, by passing the paper through a set of hot iron rolls, or by soft pressing, through two high pressure rolls, the purpose of which is to improve the surface smoothness and increase the paper density. , reducing the thickness fluctuation of the paper.
  • Most of the paperboard or thick paper is subjected to a starch surface treatment by a calender to enhance the abrasion resistance of the surface, and the surface fibers and the particles are closely combined with the paper to improve the printing performance.
  • the concentration of cooked starch used is typically 5% in the inlet tank and the total starch usage is generally less than 1% by weight of the paper.
  • starch is used only on one side of the board to control the fluffing density of the board and is often used only on the coated side of the board.
  • Various starches for sizing can be used for calendering. Similar to pressure sizing applications, paper or paperboard needs to be dried after calendering is added to the starch.
  • cooked starch can be used as a binder and water-holding chemical.
  • natural or synthetic binders, pigments and other additives are coated with a gas jet knife, a metering applicator or a paddle. , coated on the surface of paper or cardboard.
  • Coated starch can improve paper optics and printing properties such as brightness, opacity, gloss, print fineness and luminosity.
  • Starch itself is a natural binder that binds pigment particles together and bonds the particles to the surface of the paper. Due to the viscosity of the cooked starch, it can increase the volume and help disperse the pigment, thereby reducing the precipitation of the coating color.
  • the starch In the coating process, the starch has water absorbing properties and serves as a flattening effect, thereby reducing uneven scars during coating.
  • the addition of starch to the coating improves the surface and internal strength, including hardness, and, in addition, the aesthetic and processing advantages mentioned above.
  • starch in the paper industry, the most technical challenge in the use of starch in the paper industry is the use of wet starch. It is well known that pulp fibers are negatively charged, most fillers are also negatively charged, while native starch is substantially uncharged; and because of the high solubility of starch, if the wet starch is used as raw starch, starch cannot be mixed with fiber or filler. The material reaction, its retention rate in paper is very low, most of the starch will be lost with white water; in addition, the gelatin starch will be dissolved or dispersed in water during the pulping process because of its high solubility. The use of virgin starch therefore does not really achieve the above-mentioned benefits of using starch on papermaking processes.
  • modified starch as the wet end starch of papermaking, which is mainly cationic starch. Due to the presence of zeta potential, when cationic starch is added to the pulp, the adsorption of starch onto the surface of the fiber or the chain by electrostatic attraction causes the potential of the negatively charged pulp to decrease, and the hydrogen bond and van der Waals force are enhanced, which not only improves the paper. Physical strength, as well as retention of fine fibers, fillers, and slurry filtration conditions.
  • the existing cationic starch is an amino group-containing starch etherified derivative obtained by etherification reaction of a hydroxyl group or an epoxy group-containing organic amine compound with a hydroxyl group in a starch molecule, and is currently a cationic starch.
  • the production is generally carried out by reacting 2,3-epoxypropyltrimethylammonium chloride with starch.
  • the hydrogen radical on the hydroxyl group in the starch is replaced by a chemical group, causing the starch to carry a positive charge.
  • the degree of substitution of the cationic starch is generally from 0.01 to 0.05, that is, among the one hundred glucose units, at most, a chemical group having five positive charges.
  • amphoteric starch is generally carried out by two denaturations, that is, the action of the starch and the cationic reactant, and then the starch and the anion phosphate group (mostly heated by the tripolyphosphate), thus The starch has both cationic and anionic groups.
  • the production of cationic starch mainly has the following four methods: (1) wet method using water as medium, (2) dry method, (3) semi-dry method, and (4) organic solvent method. All of the above methods have disadvantages, in which the cationic starch produced by the wet method not only has a large amount of water, but also the discharged sewage has a large pollution pollution to the environment, the wastewater is difficult to be treated, and the alkaline chemical used can cause degradation and conversion of starch. The rate is low.
  • the dry process is to mix the starch with the reaction chemical reagent, and after drying to substantially anhydrous, the reaction is carried out at 120-150 ° C.
  • the organic solvent method uses a large amount of water-soluble organic solvents (such as methanol, ethanol, isopropanol, etc.) in the preparation process.
  • the starch is dispersed therein to form a slurry, and reacted with a cationizing agent to prepare a cationic starch. Due to the use of a large amount of organic solvents, this method has disadvantages such as high production cost, poor safety, and easy environmental pollution, and is rarely used in industry. Therefore, the paper industry is in need of a new starch modification technology that is more advantageous than current production methods.
  • China's paper industry wastewater discharge and COD emissions rank first in all kinds of industrial emissions in China.
  • the pollution of water environment is not only the primary problem of pollution prevention and control of China's paper industry, but also the primary problem of national industrial wastewater treatment.
  • China's paper and paper products industry wastewater discharge accounts for 18.6% of the country's total industrial emissions
  • COD in wastewater discharge accounts for 44.0% of the country's total industrial COD emissions, of which the treated discharges account for the total discharge of paper industry wastewater. 49% of the amount.
  • Papermaking wastewater has high COD concentration and large BOD content.
  • Its treatment method is different from general industrial wastewater.
  • the treatment methods of papermaking wastewater mainly include physical method, chemical method, biological method and physical chemical method, among which biological method is most widely used. It has become one of the main methods for secondary treatment of papermaking wastewater.
  • starch surface sizing to improve various performance indexes of paper and paperboard, including paper strength such as burst strength, ring crush strength, tensile strength, and folding resistance. Degree, etc., air permeability, smoothness, printability, water resistance, and grease/oil resistance.
  • the amount of starch used in the surface sizing of starch is 30-80 kg/ton of paper.
  • the main pollutants in the wastewater mainly include dissolved starch, hemicellulose, lignin and its derivatives, fine fibers, inorganic fillers, inks, dyes and other pollutants.
  • starch, lignin and its derivatives, and hemicellulose are the main components for the formation of COD and BOD.
  • the surface gelatin starch is mostly dissolved or dispersed in water during the pulping process, resulting in a high COD concentration of the wastewater. According to the typical OCC paper mill production data in China, 30-70% of wastewater COD comes from starch.
  • U.S. Patent No. 909,1024 describes a method for controlling amylase using sodium hypochlorite and chloramine.
  • U.S. Patent No. 8,875,562 describes the use of a weakly oxidizing bactericide, bromoamine, and an organic bactericide to control microorganisms, and two different molecular weight and charge density fixing agents are used to immobilize the starch on the fibers.
  • WO 2012/025228 Al Kemira describes a method for synergistic control of microorganisms and amylases using a weakly oxidizing biocide, bromoamine and zinc ions.
  • one of the objects of the present invention is to provide a novel starch modification technique while obtaining a novel modified starch.
  • a second object of the present invention is to provide a novel papermaking process using the starch modification technology provided by the present invention to reduce COD emissions in papermaking wastewater.
  • the third object of the present invention is to provide a method for recovering free starch in papermaking white water by using the starch modification technology provided by the present invention.
  • the present invention provides a novel modified starch which can simultaneously obtain cationization and hydrophobization properties, and the modified starch can be used for papermaking to greatly enhance the adsorption of starch on the fiber surface or pulp.
  • the rate which increases the retention of starch in the paper, can increase the strength of the paper, and reduce or even eliminate the loss of starch in the pulp and paper process, thereby reducing COD emissions.
  • modified starch prepared mainly from starch and a cationic starch complexing agent
  • the chemical structure of the cationic starch complexing agent consists of the following components:
  • hydrophobic groups i) one or more hydrophobic groups, wherein at least one of the hydrophobic groups is capable of reacting with the starch to form an inclusion complex
  • hydrophilic groups one or more hydrophilic groups, wherein at least one of the hydrophilic groups is a cationic hydrophilic group
  • hydrophobic group and the hydrophilic group are respectively at both ends of the same molecular structure and are connected by a chemical bond to form an asymmetric, polar structure;
  • the hydrophobic group is a non-polar group selected from the group consisting of a linear aliphatic hydrocarbon group, a branched aliphatic hydrocarbon group, an aromatic hydrocarbon group, a mixed aliphatic hydrocarbon group, and at least one of a fluorine-containing hydrocarbon group;
  • the hydrophilic group is a polar group selected from the group consisting of an ester group, a haloformyl group, a carbamoyl group, a cyano group, an aldehyde group, a carbonyl group, an ether group, an alcohol group, a phenol group, a thiol group, a thioether group, and an amine group. At least one of a base, a quaternary ammonium salt, and a thiol group;
  • the cationic starch complexing agent forms a hydrophobic cation after ionization in water.
  • the hydrophobic cation formed after the cationic starch complexing agent is ionized in water is selected from the group consisting of an amine salt type cation, a quaternary ammonium salt type cation, a phosphonium salt type cation, a phosphonium salt type cation, and a phosphorus salt. At least one of a type cation and an arsenic salt type cation.
  • the cationic starch complexing agent is selected from the group consisting of an amine compound or a salt thereof, a hydrazine compound or a salt thereof, a substituted or unsubstituted nitrogen atom-containing heterocyclic hydrocarbon or a salt thereof, a substituted or a non-substituted At least one of a substituted nitrogen-containing heterocyclic aromatic hydrocarbon or a salt thereof or a cationic phosphonium salt.
  • the amine compound or a salt thereof is selected from the group consisting of a primary amine or a salt thereof, a secondary amine or a salt thereof, a tertiary amine or a salt thereof, a quaternary ammonium salt, a polyamine or a salt thereof, and a polyquaternary ammonium salt.
  • a polymer-substituted aliphatic amine or a salt thereof, and a polymer-substituted quaternary ammonium salt is selected from at least one of a polyethylene oxide group and a polypropylene oxide group. ;
  • the structural formula of the primary amine is RNH 2 ;
  • the structural formula of the secondary amine is R 1 R 2 NH;
  • the tertiary amine has a configuration of R 1 R 2 NR 3 ;
  • the structural formula of the quaternary ammonium salt is R 1 R 2 R 3 R 4 NX;
  • the polyamine has the formula R 5 (CH 2 CH 2 CH 2 NR) n H;
  • the structural formula of the polyquaternary ammonium salt is R 5 (CH 2 CH 2 CH 2 N(CH 3 ) 2 ) n CH 3 X n ;
  • R, R 1 , R 2 , R 3 , R 4 , R 5 is independently selected from: substituted or unsubstituted linear alkyl, substituted or unsubstituted branched alkyl, substituted or unsubstituted alkenyl a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group;
  • a substituted or unsubstituted linear alkyl group a substituted or unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, and a substituent in a substituted or unsubstituted aryl group
  • Each is independently selected from one or more of the following groups: ether group, ester group, amide group, aryl group, substituted aryl group, alkyl group, alkenyl group, amino group, siloxane group, thiol group, hydroxy group, halogen, thioether Base, alkoxy group;
  • R 6 , R 7 and R 8 are each independently selected from the group consisting of: H, C1-C4 alkyl, polyethylene oxide having a degree of polymerization greater than 1, polyoxypropylene groups having a degree of polymerization greater than 1, and R 6 , R At least one of 7 is selected from a polyethylene oxide group having a degree of polymerization greater than 1 or a polypropylene oxide group having a degree of polymerization greater than 1;
  • R 9 and R 10 are each independently selected from the group consisting of: H, C1-C4 alkyl;
  • n is selected from an integer not less than 1;
  • X is an anion attached to the nitrogen atom through an ionic bond.
  • the R, R 1 , R 2 , R 3 , R 4 , R 5 are each independently selected from: substituted or unsubstituted C1-C40 linear alkyl, substituted or unsubstituted C3 -C40 branched alkyl, substituted or unsubstituted C2-C40 alkenyl, substituted or unsubstituted C6-C10 aryl;
  • a substituted or unsubstituted linear alkyl group a substituted or unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, and a substituent in a substituted or unsubstituted aryl group
  • Each of them is independently selected from one or more of the following groups: an ether group, a C2-C24 ester group, a phenyl group, a naphthyl group, a C1-C20 alkoxy-substituted naphthyl group, a C1-C40 alkyl group, a C2-C16 alkenyl group.
  • R, R 5 are each independently selected from C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14-C20 alkoxy substituted C6 -C14 alkyl, C14-C20 alkoxy substituted C6-C10 aryl; C10-C20 alkyl substituted C6-C10 aryl;
  • At least one of R 1 and R 2 in the secondary amine is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14-C20 alkoxy substituted a C6-C14 alkyl group, a C14-C20 alkoxy substituted C6-C10 aryl group;
  • At least one of R 1 , R 2 and R 3 in the tertiary amine is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14-C20 alkoxy a substituted C6-C14 alkyl group, a C14-C20 alkoxy substituted C6-C10 aryl group;
  • At least one of R 1 , R 2 , R 3 and R 4 in the quaternary ammonium salt is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14 a C20 alkoxy-substituted C6-C14 alkyl group, a C14-C20 alkoxy-substituted C6-C10 aryl group.
  • X is selected from the group consisting of: a halogen anion, HSO 4 - , SO 4 2- , CH 3 SO 4 - , SCN - , CH 3 CO 2 - or OH - .
  • n in the polyamine salt structural formula is selected from an integer between 2 and 5; the degree of polymerization of the polyethylene oxide group and the polypropylene oxide group is selected from 1 to 30, respectively. An integer between.
  • the degree of polymerization of the polyethylene oxide group and the polypropylene oxide group are each selected from an integer between 1 and 15.
  • the quinone compound or a salt thereof is selected from the group consisting of: monoterpene or a salt thereof, biguanide or a salt thereof, at least one of a polysaccharide or a salt thereof;
  • the structural formula of the monoterpene salt is:
  • the structural formula of the biguanide is:
  • R, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are each independently selected from: hydrogen, substituted or unsubstituted linear alkyl, substituted or unsubstituted branched alkyl, substituted Or an unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, and the at least one substituent of each of the structural formulae has a carbon number greater than 6;
  • Z is selected from the group consisting of: substituted or unsubstituted alkylene, substituted or unsubstituted aryl;
  • the substituents in the substituted alkylene group are each independently selected from one or more of the following groups: an ether group, an ester group, an amide group, an aryl group, a substituted aryl group, an alkyl group, an alkenyl group, an amino group, a siloxane group. , mercapto, hydroxy, halogen, thioether, alkoxy;
  • X is an anion attached to the nitrogen atom through an ionic bond.
  • At least one of R, R 1 , R 2 , R 3 and R 4 in the monoterpene is selected from the group consisting of C7-C30 linear alkyl, C7-C30 branched alkyl, C7 -C30 alkenyl, C6-C10 aryl, the remainder are hydrogen;
  • At least one of R, R 1 , R 2 , R 3 and R 4 in the monosulfonium salt is selected from the group consisting of C7-C30 linear alkyl, C7-C30 branched alkyl, C7-C30 alkenyl, C7 -C10 aryl group, the others are all hydrogen;
  • At least one of R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the biguanide or a salt thereof is selected from the group consisting of C7-C30 linear alkyl groups, C7-C30 branched alkyl groups, C7-C30 alkenyl, C6-C10 aryl, the others are hydrogen;
  • At least one of R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the polysaccharide or a salt thereof is selected from the group consisting of C7-C30 linear alkyl group and C7-C30 branched alkyl group. , C7-C30 alkenyl, C6-C10 aryl, the others are hydrogen;
  • Z is selected from the group consisting of: C1-C8 alkylene
  • X is selected from the group consisting of halogen anions, HSO 4 - , SO 4 2- , CH 3 SO 4 - , CH 3 CO 2 - or OH - .
  • the cationic phosphonium salt has the formula R 1 R 2 R 3 SX, wherein R 1 , R 2 , R 3 are each independently selected from: substituted or unsubstituted linear alkyl, substituted or An unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group;
  • a substituted or unsubstituted linear alkyl group a substituted or unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, and a substituent in a substituted or unsubstituted aryl group
  • Each is independently selected from one or more of the following groups: ether group, ester group, amide group, aryl group, substituted aryl group, alkyl group, alkenyl group, amino group, siloxane group, thiol group, hydroxy group, halogen, thioether Base, alkoxy group;
  • X is an anion attached to a sulfur atom through an ionic bond.
  • At least one of R 1 , R 2 and R 3 in the cationic phosphonium salt is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 Ester group, C14-C20 alkoxy substituted C6-C14 alkyl group, C14-C20 alkoxy substituted C6-C10 aryl group.
  • the heterocyclic hydrocarbon is selected from the group consisting of at least one of tetrahydropyrrole, morpholine, piperazine, and dihydroimidazole;
  • the heterocyclic aromatic hydrocarbon is selected from the group consisting of at least one of pyridine, imidazole, 1,3,5-triazine, azine, pyrimidine, pyrazine, quinoline, and pyrrole;
  • a substituted or unsubstituted nitrogen atom-containing heterocyclic aromatic hydrocarbon or a salt thereof is selected from one or more of the following groups: alkoxy group , ester, amide, phenyl, alkyl, hydroxy substituted alkyl, alkenyl substituted alkyl, halogen substituted alkyl, alkoxy substituted alkyl, alkenyl, amino, siloxane, Mercapto group, hydroxyl group, halogen, amine group.
  • the heterocyclic hydrocarbon is selected from the group consisting of at least one of tetrahydropyrrole, morpholine, and dihydroimidazole; and the heterocyclic aromatic hydrocarbon is selected from the group consisting of pyridine, quinoline, imidazole, and 1,3. At least one of 5-triazine;
  • the substituent in the substituted or unsubstituted nitrogen atom-containing heterocyclic hydrocarbon or a salt thereof, a substituted or unsubstituted nitrogen atom-containing heterocyclic aromatic hydrocarbon or a salt thereof is selected from one or more of the following groups: C1-C20 Alkyl, C1-C20 alkoxy, C1-C6 alkyl-substituted amine, hydroxy-substituted C1-C20 alkyl, C2-C20 alkenyl-substituted C1-C20 alkyl, C1-C20 alkoxy substituted C1-C20 alkyl.
  • the substituted or unsubstituted nitrogen atom-containing heterocyclic hydrocarbon or a salt thereof, a substituted or unsubstituted nitrogen atom-containing heterocyclic aromatic hydrocarbon or a substituent thereof is selected from one or more The following groups are: C10-C20 alkyl, C10-C20 alkoxy.
  • the cationic starch complexing agent is selected from at least one of the following compounds: cetyltrimethylammonium chloride, dodecyltrimethylammonium chloride, octadecylamine, Oleamine, hexadecylamine, octadecyltrimethylammonium chloride, cetylpyridinium chloride, octadecyl-N,N-dimethylbenzylammonium chloride, oil-N,N - dimethylbenzylammonium chloride, octadecylmethylammonium chloride, benzylhexadecyldimethylammonium chloride, behenylamine, tallowamine, tallow propylene diamine, tallow Methyl propylene diamine, N-tallow-N,N,N',N',N' pentamethylpropionic diammonium hydrochloride, dipropylamine-
  • the starch is selected from the group consisting of at least one of corn starch, tapioca starch, sweet potato starch, wheat starch, and oxidized modified starch; the oxidized modified starch is oxidized modified corn starch, Oxidatively modified tapioca starch, oxidized modified sweet potato starch or oxidatively modified wheat starch.
  • the method for preparing the oxidized modified starch comprises the steps of: preparing starch into an aqueous solution, heating to 80-100 ° C, adding ammonium persulfate reaction until the viscosity is stable, and then cooling to 60-70 °C, that is.
  • the mass ratio of the starch to the cationic starch complexing agent is 1-200:1.
  • the mass ratio of the starch to the cationic starch complexing agent is from 20 to 120:1.
  • the mass ratio of the starch to the cationic starch complexing agent is from 20 to 60:1.
  • the mass ratio of the starch to the cationic starch complexing agent is from 20 to 36:1.
  • the preparation of the modified starch further includes a synergist capable of flocculation of fine fibers or other substances in the pulp (such as fillers, minerals, sizing agents, etc.). Flocculation brings together these materials, increasing the interaction between each other and increasing retention on the paper machine.
  • synergists which can be classified into inorganic substances and organic high molecular polymers according to their structure and physical properties.
  • inorganic polymers are mainly polyaluminium chloride (PAC), polyaluminum sulphate and polyferric sulphate;
  • Synergists for organic high molecular polymers include polymeric organic ammonium salts of cationic high polymers (eg, polydiallyldimethylammonium chloride, PolyDADMAC), polyoxyethylene (PEO), and polyacrylamide (PAM).
  • the mass ratio of the synergist to the cationic starch complexing agent is from 1:1 to 35.
  • the present invention also provides a process for the preparation of the above modified starch.
  • the preparation method not only has simple process, no pollution of three wastes (waste water, waste gas and solid waste), can greatly improve the environmental protection benefit of starch modification, and has low cost and is easy to be prepared at the papermaking site, and solves many problems of the current modified starch production technology. Disadvantages.
  • the preparation process of the preparation method is very simple, and after the existing starch cooking is completed, or in the white water/pulp containing starch, the starch binder of the invention is directly added, and the modified starch is obtained after a certain reaction; therefore, the present invention
  • the starch modification technology does not require special place to place modified production equipment, nor does it require special reactants or additives (such as halogen-containing organic solvents) or severe reaction conditions (such as high temperature and high pressure, high alkalinity, etc.).
  • special reactants or additives such as halogen-containing organic solvents
  • severe reaction conditions such as high temperature and high pressure, high alkalinity, etc.
  • a method for preparing the above modified starch comprising the following steps:
  • the cationic starch complexing agent is added to the aqueous starch solution to carry out a reaction.
  • the method for preparing the modified starch comprises the following steps:
  • a synergist is added to the reaction solution, and the mixture is obtained.
  • the starch concentration in the aqueous starch solution is from 300 to 3200 mg/L.
  • the temperature of the reaction is from 10 to 90 °C.
  • the reaction is from 1 min to 20 h.
  • the reaction is carried out for a period of from 5 min to 1 h.
  • the pH of the reaction is 4-11.
  • the pH of the reaction is 5-7.
  • the invention also provides the use of the above modified starch or cationic starch complexing agent.
  • the above cationic starch complexing agent is used for reducing the COD concentration of papermaking wastewater.
  • the above cationic starch complexing agent is used as a detergent or bactericide in paper production.
  • the above cationic starch complexing agent is used in the modification of starch.
  • the above cationic starch complexing agent is used as a paper strength enhancer in paper production.
  • the above modified starch is used as a paper strength enhancer in paper production.
  • the present invention also provides a novel papermaking process using the modified starch or cationic starch complexing agent described above.
  • the papermaking method can improve the adsorption rate of starch on the surface of the fiber or the pulp, thereby increasing the retention rate of the starch in the paper, thereby reducing or even eliminating the loss of the starch in the pulping and papermaking process, thereby reducing the COD emission and solving the papermaking from the source.
  • the problem of wastewater treatment can effectively reduce the starch dissolution of the recycled pulp or fiber during the papermaking utilization process, and improve the starch recovery utilization rate.
  • a papermaking method comprising the following steps:
  • the papermaking method comprises the following steps:
  • the chemical structure of the cationic starch complexing agent consists of the following components:
  • hydrophobic groups i) one or more hydrophobic groups, wherein at least one of the hydrophobic groups is capable of reacting with the starch to form an inclusion complex
  • hydrophilic groups one or more hydrophilic groups, wherein at least one of the hydrophilic groups is a cationic hydrophilic group
  • hydrophobic group and the hydrophilic group are respectively at both ends of the same molecular structure and are connected by a chemical bond to form an asymmetric, polar structure;
  • the hydrophobic group is a non-polar group selected from the group consisting of a linear aliphatic hydrocarbon group, a branched aliphatic hydrocarbon group, an aromatic hydrocarbon group, a mixed aliphatic hydrocarbon group, and at least one of a fluorine-containing hydrocarbon group;
  • the hydrophilic group is a polar group selected from the group consisting of an ester group, a haloformyl group, a carbamoyl group, a cyano group, an aldehyde group, a carbonyl group, an ether group, an alcohol group, a phenol group, a thiol group, a thioether group, and an amine group. At least one of a base, a quaternary ammonium salt, and a thiol group;
  • the cationic starch complexing agent forms a hydrophobic cation after ionization in water.
  • the hydrophobic cation formed after the cationic starch complexing agent is ionized in water is selected from the group consisting of an amine salt type cation, a quaternary ammonium salt type cation, a phosphonium salt type cation, a phosphonium salt type cation, and a phosphorus salt. At least one of a type cation and an arsenic salt type cation.
  • the cationic starch complexing agent is selected from the group consisting of an amine compound or a salt thereof, a hydrazine compound or a salt thereof, a substituted or unsubstituted nitrogen atom-containing heterocyclic hydrocarbon or a salt thereof, a substituted or a non-substituted At least one of a substituted nitrogen-containing heterocyclic aromatic hydrocarbon or a salt thereof or a cationic phosphonium salt.
  • the amine compound or a salt thereof is selected from the group consisting of a primary amine or a salt thereof, a secondary amine or a salt thereof, a tertiary amine or a salt thereof, a quaternary ammonium salt, a polyamine or a salt thereof, and a polyquaternary ammonium salt.
  • a polymer-substituted aliphatic amine or a salt thereof, and a polymer-substituted quaternary ammonium salt is selected from at least one of a polyethylene oxide group and a polypropylene oxide group. ;
  • the structural formula of the primary amine is RNH 2 ;
  • the structural formula of the secondary amine is R 1 R 2 NH;
  • the tertiary amine has a configuration of R 1 R 2 NR 3 ;
  • the structural formula of the quaternary ammonium salt is R 1 R 2 R 3 R 4 NX;
  • the polyamine has the formula R 5 (CH 2 CH 2 CH 2 NR) n H;
  • the structural formula of the polyquaternary ammonium salt is R 5 (CH 2 CH 2 CH 2 N(CH 3 ) 2 ) n CH 3 X n ;
  • R, R 1 , R 2 , R 3 , R 4 , R 5 is independently selected from: substituted or unsubstituted linear alkyl, substituted or unsubstituted branched alkyl, substituted or unsubstituted alkenyl a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group;
  • a substituted or unsubstituted linear alkyl group a substituted or unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, and a substituent in a substituted or unsubstituted aryl group
  • Each is independently selected from one or more of the following groups: ether group, ester group, amide group, aryl group, substituted aryl group, alkyl group, alkenyl group, amino group, siloxane group, thiol group, hydroxy group, halogen, thioether Base, alkoxy group;
  • R 6 , R 7 and R 8 are each independently selected from the group consisting of: H, C1-C4 alkyl, polyethylene oxide having a degree of polymerization greater than 1, polyoxypropylene groups having a degree of polymerization greater than 1, and R 6 , R At least one of 7 is selected from a polyethylene oxide group having a degree of polymerization greater than 1 or a polypropylene oxide group having a degree of polymerization greater than 1;
  • R 9 and R 10 are each independently selected from the group consisting of: H, C1-C4 alkyl;
  • n is selected from an integer not less than 1;
  • X is an anion attached to the nitrogen atom through an ionic bond.
  • the R, R 1 , R 2 , R 3 , R 4 , R 5 are each independently selected from: substituted or unsubstituted C1-C40 linear alkyl, substituted or unsubstituted C3 -C40 branched alkyl, substituted or unsubstituted C2-C40 alkenyl, substituted or unsubstituted C6-C10 aryl;
  • a substituted or unsubstituted linear alkyl group a substituted or unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, and a substituent in a substituted or unsubstituted aryl group
  • Each of them is independently selected from one or more of the following groups: an ether group, a C2-C24 ester group, a phenyl group, a naphthyl group, a C1-C20 alkoxy-substituted naphthyl group, a C1-C40 alkyl group, a C2-C16 alkenyl group.
  • R, R 5 are each independently selected from C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14-C20 alkoxy substituted C6 -C14 alkyl, C14-C20 alkoxy substituted C6-C10 aryl; C10-C20 alkyl substituted C6-C10 aryl;
  • At least one of R 1 and R 2 in the secondary amine is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14-C20 alkoxy substituted a C6-C14 alkyl group, a C14-C20 alkoxy substituted C6-C10 aryl group;
  • At least one of R 1 , R 2 and R 3 in the tertiary amine is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14-C20 alkoxy a substituted C6-C14 alkyl group, a C14-C20 alkoxy substituted C6-C10 aryl group;
  • At least one of R 1 , R 2 , R 3 and R 4 in the quaternary ammonium salt is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14 a C20 alkoxy-substituted C6-C14 alkyl group, a C14-C20 alkoxy-substituted C6-C10 aryl group.
  • X is selected from the group consisting of: a halogen anion, HSO 4 - , SO 4 2- , CH 3 SO 4 - , SCN - , CH 3 CO 2 - or OH - .
  • n in the polyamine salt structural formula is selected from an integer between 2 and 5; the degree of polymerization of the polyethylene oxide group and the polypropylene oxide group is selected from 1 to 30, respectively. An integer between.
  • the degree of polymerization of the polyethylene oxide group and the polypropylene oxide group are each selected from an integer between 1 and 15.
  • the quinone compound or a salt thereof is selected from the group consisting of: monoterpene or a salt thereof, biguanide or a salt thereof, at least one of a polysaccharide or a salt thereof;
  • the structural formula of the monoterpene salt is:
  • the structural formula of the biguanide is:
  • R, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are each independently selected from: hydrogen, substituted or unsubstituted linear alkyl, substituted or unsubstituted branched alkyl, substituted Or an unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, and the at least one substituent of each of the structural formulae has a carbon number greater than 6;
  • Z is selected from the group consisting of: substituted or unsubstituted alkylene, substituted or unsubstituted aryl;
  • the substituents in the substituted alkylene group are each independently selected from one or more of the following groups: ether group, ester group, amide group, aryl group, substituted aryl group, alkyl group, alkenyl group, amino group, siloxane group , mercapto, hydroxy, halogen, thioether, alkoxy;
  • X is an anion attached to the nitrogen atom through an ionic bond.
  • At least one of R, R 1 , R 2 , R 3 and R 4 in the monoterpene is selected from the group consisting of C7-C30 linear alkyl, C7-C30 branched alkyl, C7 -C30 alkenyl, C6-C10 aryl, the remainder are hydrogen;
  • At least one of R, R 1 , R 2 , R 3 and R 4 in the monosulfonium salt is selected from the group consisting of C7-C30 linear alkyl, C7-C30 branched alkyl, C7-C30 alkenyl, C7 -C10 aryl group, the others are all hydrogen;
  • At least one of R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the biguanide or a salt thereof is selected from the group consisting of C7-C30 linear alkyl groups, C7-C30 branched alkyl groups, C7-C30 alkenyl, C6-C10 aryl, the others are hydrogen;
  • At least one of R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the polysaccharide or a salt thereof is selected from the group consisting of C7-C30 linear alkyl group and C7-C30 branched alkyl group. , C7-C30 alkenyl, C6-C10 aryl, the others are hydrogen;
  • Z is selected from the group consisting of: C1-C8 alkylene
  • X is selected from the group consisting of halogen anions, HSO 4 - , SO 4 2- , CH 3 SO 4 - , CH 3 CO 2 - or OH - .
  • the cationic phosphonium salt has the formula R 1 R 2 R 3 SX, wherein R 1 , R 2 , R 3 are each independently selected from: substituted or unsubstituted linear alkyl, substituted or An unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group;
  • a substituted or unsubstituted linear alkyl group a substituted or unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, and a substituent in a substituted or unsubstituted aryl group
  • Each is independently selected from one or more of the following groups: ether group, ester group, amide group, aryl group, substituted aryl group, alkyl group, alkenyl group, amino group, siloxane group, thiol group, hydroxy group, halogen, thioether Base, alkoxy group;
  • X is an anion attached to a sulfur atom through an ionic bond.
  • At least one of R 1 , R 2 and R 3 in the cationic phosphonium salt is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 Ester group, C14-C20 alkoxy substituted C6-C14 alkyl group, C14-C20 alkoxy substituted C6-C10 aryl group.
  • the heterocyclic hydrocarbon is selected from the group consisting of at least one of tetrahydropyrrole, morpholine, piperazine, and dihydroimidazole;
  • the heterocyclic aromatic hydrocarbon is selected from the group consisting of at least one of pyridine, imidazole, 1,3,5-triazine, azine, pyrimidine, pyrazine, quinoline, and pyrrole;
  • a substituted or unsubstituted nitrogen atom-containing heterocyclic aromatic hydrocarbon or a salt thereof is selected from one or more of the following groups: alkoxy group , ester, amide, phenyl, alkyl, hydroxy substituted alkyl, alkenyl substituted alkyl, halogen substituted alkyl, alkoxy substituted alkyl, alkenyl, amino, siloxane, Mercapto group, hydroxyl group, halogen, amine group.
  • the heterocyclic hydrocarbon is selected from the group consisting of at least one of tetrahydropyrrole, morpholine, and dihydroimidazole; and the heterocyclic aromatic hydrocarbon is selected from the group consisting of pyridine, quinoline, imidazole, and 1,3. At least one of 5-triazine;
  • the substituent in the substituted or unsubstituted nitrogen atom-containing heterocyclic hydrocarbon or a salt thereof, a substituted or unsubstituted nitrogen atom-containing heterocyclic aromatic hydrocarbon or a salt thereof is selected from one or more of the following groups: C1-C20 Alkyl, C1-C20 alkoxy, C1-C6 alkyl-substituted amine, hydroxy-substituted C1-C20 alkyl, C2-C20 alkenyl-substituted C1-C20 alkyl, C1-C20 alkoxy substituted C1-C20 alkyl.
  • the substituted or unsubstituted nitrogen atom-containing heterocyclic hydrocarbon or a salt thereof, a substituted or unsubstituted nitrogen atom-containing heterocyclic aromatic hydrocarbon or a substituent thereof is selected from one or more The following groups are: C10-C20 alkyl, C10-C20 alkoxy.
  • the cationic starch complexing agent is selected from at least one of the following compounds: cetyltrimethylammonium chloride, dodecyltrimethylammonium chloride, octadecylamine, Oleamine, hexadecylamine, octadecyltrimethylammonium chloride, cetylpyridinium chloride, octadecyl-N,N-dimethylbenzylammonium chloride, oil-N,N - dimethylbenzylammonium chloride, octadecylmethylammonium chloride, benzylhexadecyldimethylammonium chloride, behenylamine, tallowamine, tallow propylene diamine, tallow Methyl propylene diamine, N-tallow-N,N,N',N',N' pentamethylpropionic diammonium hydrochloride, dipropylamine-
  • the starch is selected from the group consisting of at least one of corn starch, tapioca starch, sweet potato starch, wheat starch, and oxidized modified starch; and the oxidized modified starch is oxidized modified corn starch , oxidized modified tapioca starch, oxidized modified sweet potato starch or oxidized modified wheat starch.
  • the method for preparing the oxidized modified starch comprises the steps of: preparing starch into an aqueous solution, heating to 80-100 ° C, adding a starch oxidizing agent or amylase reaction until the viscosity is stable, and then cooling to 60 -70 ° C, that is.
  • the mass ratio of starch to the cationic starch complexing agent in the aqueous starch solution is from 1 to 200:1.
  • the mass ratio of starch to the cationic starch complexing agent in the aqueous starch solution is from 20 to 120:1.
  • the mass ratio of starch to the cationic starch complexing agent in the aqueous starch solution is from 20 to 60:1.
  • the mass ratio of starch to the cationic starch complexing agent in the aqueous starch solution is from 20 to 36:1.
  • the starch concentration in the aqueous starch solution is from 300 to 3200 mg/L.
  • the solids concentration of the fibers or pulp in the treated slurry is from 1% to 10%.
  • the weight ratio of the cationic starch complexing agent to the dry weight of the fiber or pulp is from 0.02 to 20 kg/T.
  • the weight ratio of the cationic starch complexing agent to the dry weight of the fiber or pulp is from 0.15 to 2 kg/T.
  • the papermaking method further comprises the step of adding a synergist, specifically comprising:
  • the papermaking method comprises the following steps:
  • the synergist is selected from the group consisting of polyaluminum chloride, polyaluminum sulfate, polyferric sulfate, polydiallyldimethylammonium chloride, polyoxyethylene, polyacrylamide, and polyacrylamide-polyacrylic anionic copolymerization. At least one of the substances.
  • the mass ratio of the synergist to the cationic starch complexing agent is from 1:1 to 35.
  • the mass ratio of the synergist to the cationic starch complexing agent is 1:2-10.
  • the temperature of the reaction of step a) is from 10 to 90 ° C
  • the temperature of the adsorption reaction of step b) is from 10 to 90 ° C
  • the temperature of the reaction of step 1) is from 10 to 90 ° C.
  • the reaction of step a) is for a period of from 1 min to 20 h.
  • the time of the reaction of step a) is from 5 min to 1 h.
  • the reaction of step b) is from 1 min to 120 min.
  • the time of the reaction of step b) is from 5 min to 30 min.
  • the pH of the reaction of steps a) and b) is 4-11.
  • the pH of the reaction of steps a) and b) is 5-7.
  • the present invention also provides a method of recovering free starch in papermaking white water.
  • the method can effectively reduce the free starch content in the papermaking white water, thereby reducing the COD emission of the papermaking wastewater.
  • a method for recovering free starch in papermaking white water comprising the steps of (a): reacting a cationic starch complexing agent with free starch in papermaking white water to modify the free starch;
  • the chemical structure of the cationic starch complexing agent consists of the following components:
  • the chemical structure of the cationic starch complexing agent consists of the following components:
  • hydrophobic groups i) one or more hydrophobic groups, wherein at least one of the hydrophobic groups is capable of reacting with the starch to form an inclusion complex
  • hydrophilic groups one or more hydrophilic groups, wherein at least one of the hydrophilic groups is a cationic hydrophilic group
  • hydrophobic group and the hydrophilic group are respectively at both ends of the same molecular structure and are connected by a chemical bond to form an asymmetric, polar structure;
  • the hydrophobic group is a non-polar group selected from the group consisting of a linear aliphatic hydrocarbon group, a branched aliphatic hydrocarbon group, an aromatic hydrocarbon group, a mixed aliphatic hydrocarbon group, and at least one of a fluorine-containing hydrocarbon group;
  • the hydrophilic group is a polar group selected from the group consisting of an ester group, a haloformyl group, a carbamoyl group, a cyano group, an aldehyde group, a carbonyl group, an ether group, an alcohol group, a phenol group, a thiol group, a thioether group, and an amine group. At least one of a base, a quaternary ammonium salt, and a thiol group;
  • the cationic starch complexing agent forms a hydrophobic cation after ionization in water.
  • the hydrophobic cation formed after the cationic starch complexing agent is ionized in water is selected from the group consisting of an amine salt type cation, a quaternary ammonium salt type cation, a phosphonium salt type cation, a phosphonium salt type cation, and a phosphorus salt. At least one of a type cation and an arsenic salt type cation.
  • the cationic starch complexing agent is selected from the group consisting of an amine compound or a salt thereof, a hydrazine compound or a salt thereof, a substituted or unsubstituted nitrogen atom-containing heterocyclic hydrocarbon or a salt thereof, a substituted or a non-substituted At least one of a substituted nitrogen-containing heterocyclic aromatic hydrocarbon or a salt thereof or a cationic phosphonium salt.
  • the amine compound or a salt thereof is selected from the group consisting of a primary amine or a salt thereof, a secondary amine or a salt thereof, a tertiary amine or a salt thereof, a quaternary ammonium salt, a polyamine or a salt thereof, and a polyquaternary ammonium salt.
  • a polymer-substituted aliphatic amine or a salt thereof, and a polymer-substituted quaternary ammonium salt is selected from at least one of a polyethylene oxide group and a polypropylene oxide group. ;
  • the structural formula of the primary amine is RNH 2 ;
  • the structural formula of the secondary amine is R 1 R 2 NH;
  • the tertiary amine has a configuration of R 1 R 2 NR 3 ;
  • the structural formula of the quaternary ammonium salt is R 1 R 2 R 3 R 4 NX;
  • the polyamine has the formula R 5 (CH 2 CH 2 CH 2 NR) n H;
  • the structural formula of the polyquaternary ammonium salt is R 5 (CH 2 CH 2 CH 2 N(CH 3 ) 2 ) n CH 3 X n ;
  • R, R 1 , R 2 , R 3 , R 4 , R 5 is independently selected from: substituted or unsubstituted linear alkyl, substituted or unsubstituted branched alkyl, substituted or unsubstituted alkenyl a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group;
  • a substituted or unsubstituted linear alkyl group a substituted or unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, and a substituent in a substituted or unsubstituted aryl group
  • Each is independently selected from one or more of the following groups: ether group, ester group, amide group, aryl group, substituted aryl group, alkyl group, alkenyl group, amino group, siloxane group, thiol group, hydroxy group, halogen, thioether Base, alkoxy group;
  • R 6 , R 7 and R 8 are each independently selected from the group consisting of: H, C1-C4 alkyl, polyethylene oxide having a degree of polymerization greater than 1, polyoxypropylene groups having a degree of polymerization greater than 1, and R 6 , R At least one of 7 is selected from a polyethylene oxide group having a degree of polymerization greater than 1 or a polypropylene oxide group having a degree of polymerization greater than 1;
  • R 9 and R 10 are each independently selected from the group consisting of: H, C1-C4 alkyl;
  • n is selected from an integer not less than 1;
  • X is an anion attached to the nitrogen atom through an ionic bond.
  • the R, R 1 , R 2 , R 3 , R 4 , R 5 are each independently selected from: substituted or unsubstituted C1-C40 linear alkyl, substituted or unsubstituted C3 -C40 branched alkyl, substituted or unsubstituted C2-C40 alkenyl, substituted or unsubstituted C6-C10 aryl;
  • a substituted or unsubstituted linear alkyl group a substituted or unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, and a substituent in a substituted or unsubstituted aryl group
  • Each of them is independently selected from one or more of the following groups: an ether group, a C2-C24 ester group, a phenyl group, a naphthyl group, a C1-C20 alkoxy-substituted naphthyl group, a C1-C40 alkyl group, a C2-C16 alkenyl group.
  • R, R 5 are each independently selected from C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14-C20 alkoxy substituted C6 -C14 alkyl, C14-C20 alkoxy substituted C6-C10 aryl; C10-C20 alkyl substituted C6-C10 aryl;
  • At least one of R 1 and R 2 in the secondary amine is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14-C20 alkoxy substituted a C6-C14 alkyl group, a C14-C20 alkoxy substituted C6-C10 aryl group;
  • At least one of R 1 , R 2 and R 3 in the tertiary amine is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14-C20 alkoxy a substituted C6-C14 alkyl group, a C14-C20 alkoxy substituted C6-C10 aryl group;
  • At least one of R 1 , R 2 , R 3 and R 4 in the quaternary ammonium salt is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 ester, C14 a C20 alkoxy-substituted C6-C14 alkyl group, a C14-C20 alkoxy-substituted C6-C10 aryl group.
  • X is selected from the group consisting of: a halogen anion, HSO 4 - , SO 4 2- , CH 3 SO 4 - , SCN - , CH 3 CO 2 - or OH - .
  • n in the polyamine salt structural formula is selected from an integer between 2 and 5; the degree of polymerization of the polyethylene oxide group and the polypropylene oxide group is selected from 1 to 30, respectively. An integer between.
  • the degree of polymerization of the polyethylene oxide group and the polypropylene oxide group are each selected from an integer between 1 and 15.
  • the quinone compound or a salt thereof is selected from the group consisting of: monoterpene or a salt thereof, biguanide or a salt thereof, at least one of a polysaccharide or a salt thereof;
  • the structural formula of the monoterpene salt is:
  • the structural formula of the biguanide is:
  • R, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are each independently selected from: hydrogen, substituted or unsubstituted linear alkyl, substituted or unsubstituted branched alkyl, substituted Or an unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, and the at least one substituent of each of the structural formulae has a carbon number greater than 6;
  • Z is selected from the group consisting of: substituted or unsubstituted alkylene, substituted or unsubstituted aryl;
  • the substituents in the substituted alkylene group are each independently selected from one or more of the following groups: an ether group, an ester group, an amide group, an aryl group, a substituted aryl group, an alkyl group, an alkenyl group, an amino group, a siloxane group. , mercapto, hydroxy, halogen, thioether, alkoxy;
  • X is an anion attached to the nitrogen atom through an ionic bond.
  • At least one of R, R 1 , R 2 , R 3 and R 4 in the monoterpene is selected from the group consisting of C7-C30 linear alkyl, C7-C30 branched alkyl, C7 -C30 alkenyl, C6-C10 aryl, the remainder are hydrogen;
  • At least one of R, R 1 , R 2 , R 3 and R 4 in the monosulfonium salt is selected from the group consisting of C7-C30 linear alkyl, C7-C30 branched alkyl, C7-C30 alkenyl, C7 -C10 aryl group, the others are all hydrogen;
  • At least one of R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the biguanide or a salt thereof is selected from the group consisting of C7-C30 linear alkyl groups, C7-C30 branched alkyl groups, C7-C30 alkenyl, C6-C10 aryl, the others are hydrogen;
  • At least one of R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the polysaccharide or a salt thereof is selected from the group consisting of C7-C30 linear alkyl group and C7-C30 branched alkyl group. , C7-C30 alkenyl, C6-C10 aryl, the others are hydrogen;
  • Z is selected from the group consisting of: C1-C8 alkylene
  • X is selected from the group consisting of halogen anions, HSO 4 - , SO 4 2- , CH 3 SO 4 - , CH 3 CO 2 - or OH - .
  • the cationic phosphonium salt has the formula R 1 R 2 R 3 SX, wherein R 1 , R 2 , R 3 are each independently selected from: substituted or unsubstituted linear alkyl, substituted or An unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group;
  • a substituted or unsubstituted linear alkyl group a substituted or unsubstituted branched alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, and a substituent in a substituted or unsubstituted aryl group
  • Each is independently selected from one or more of the following groups: ether group, ester group, amide group, aryl group, substituted aryl group, alkyl group, alkenyl group, amino group, siloxane group, thiol group, hydroxy group, halogen, thioether Base, alkoxy group;
  • X is an anion attached to a sulfur atom through an ionic bond.
  • At least one of R 1 , R 2 and R 3 in the cationic phosphonium salt is selected from the group consisting of C14-C32 alkyl, C8-C12 alkenyl substituted C6-C14 alkyl, C14-C24 Ester group, C14-C20 alkoxy substituted C6-C14 alkyl group, C14-C20 alkoxy substituted C6-C10 aryl group.
  • the heterocyclic hydrocarbon is selected from the group consisting of at least one of tetrahydropyrrole, morpholine, piperazine, and dihydroimidazole;
  • the heterocyclic aromatic hydrocarbon is selected from the group consisting of at least one of pyridine, imidazole, 1,3,5-triazine, azine, pyrimidine, pyrazine, quinoline, and pyrrole;
  • a substituted or unsubstituted nitrogen atom-containing heterocyclic aromatic hydrocarbon or a salt thereof is selected from one or more of the following groups: alkoxy group , ester, amide, phenyl, alkyl, hydroxy substituted alkyl, alkenyl substituted alkyl, halogen substituted alkyl, alkoxy substituted alkyl, alkenyl, amino, siloxane, Mercapto group, hydroxyl group, halogen, amine group.
  • the heterocyclic hydrocarbon is selected from the group consisting of at least one of tetrahydropyrrole, morpholine, and dihydroimidazole; and the heterocyclic aromatic hydrocarbon is selected from the group consisting of pyridine, quinoline, imidazole, and 1,3. At least one of 5-triazine;
  • the substituent in the substituted or unsubstituted nitrogen atom-containing heterocyclic hydrocarbon or a salt thereof, a substituted or unsubstituted nitrogen atom-containing heterocyclic aromatic hydrocarbon or a salt thereof is selected from one or more of the following groups: C1-C20 Alkyl, C1-C20 alkoxy, C1-C6 alkyl-substituted amine, hydroxy-substituted C1-C20 alkyl, C2-C20 alkenyl-substituted C1-C20 alkyl, C1-C20 alkoxy substituted C1-C20 alkyl.
  • the substituted or unsubstituted nitrogen atom-containing heterocyclic hydrocarbon or a salt thereof, a substituted or unsubstituted nitrogen atom-containing heterocyclic aromatic hydrocarbon or a substituent thereof is selected from one or more The following groups are: C10-C20 alkyl, C10-C20 alkoxy.
  • the cationic starch complexing agent is selected from at least one of the following compounds: cetyltrimethylammonium chloride, dodecyltrimethylammonium chloride, octadecylamine, Oleamine, hexadecylamine, octadecyltrimethylammonium chloride, cetylpyridinium chloride, octadecyl-N,N-dimethylbenzylammonium chloride, oil-N,N - dimethylbenzylammonium chloride, octadecylmethylammonium chloride, benzylhexadecyldimethylammonium chloride, behenylamine, tallowamine, tallow propylene diamine, tallow Methyl propylene diamine, N-tallow-N,N,N',N',N' pentamethylpropionic diammonium hydrochloride, dipropylamine-
  • the free starch is selected from the group consisting of at least one of corn starch, tapioca starch, sweet potato starch, wheat starch, and oxidized modified starch; and the oxidized modified starch is oxidized modified corn.
  • the method for preparing the oxidized modified starch comprises the steps of: preparing starch into an aqueous solution, heating to 80-100 ° C, adding a starch oxidizing agent or amylase reaction until the viscosity is stable, and then cooling to 60 -70 ° C, that is.
  • the method of recovering free starch in papermaking white water comprises the steps of:
  • the fiber or pulp has a solids concentration of from 1% to 10%.
  • the weight ratio of the cationic starch complexing agent to the dry weight of the fiber or pulp is from 0.02 to 20 kg/T.
  • the weight ratio of the cationic starch complexing agent to the dry weight of the fiber or pulp is from 0.15 to 2 kg/T.
  • the method for recovering free starch in papermaking white water further comprises the step of adding a synergist, specifically comprising:
  • the synergist is selected from the group consisting of polyaluminum chloride, polyaluminum sulfate, polyferric sulfate, polydiallyldimethylammonium chloride, polyoxyethylene, polyacrylamide, and polyacrylamide-polyacrylic anionic copolymerization. At least one of the substances.
  • the mass ratio of the synergist to the cationic starch complexing agent is from 1:1 to 35.
  • the temperature of the reaction of step a) is from 10 to 90 ° C
  • the temperature of the adsorption reaction of step b) is from 10 to 90 ° C.
  • the reaction of step a) is for a period of from 1 min to 20 h.
  • the time of the reaction of step a) is from 5 min to 1 h.
  • the adsorption reaction of step b) is from 1 min to 120 min.
  • the time of the adsorption reaction of step b) is from 5 min to 30 min.
  • the pH of the reaction of steps a) and b) is 4-11.
  • the pH of the reaction of steps a) and b) is 5-7.
  • the invention adopts a compound having a special complexing effect on starch to modify the starch, and reacts with the starch to produce an "inclusion complex" of the "starch-compound", thereby changing the physical and chemical properties of the starch to obtain a modified starch.
  • the use of the modified starch for papermaking can greatly increase the adsorption rate of starch on the surface of the fiber or the pulp, thereby increasing the retention rate of the starch in the paper, thereby greatly reducing or even eliminating the loss of starch in the pulping and papermaking process, thereby reducing COD emissions, solve the problem of papermaking wastewater treatment from the source.
  • the results will have many beneficial effects, including: (1) reducing the COD concentration of papermaking drainage, reducing organic pollution, improving environmental protection (2) increasing the utilization rate of starch raw materials, which can significantly reduce the consumption of raw materials for papermaking and reduce production costs; (3) Significantly improve the physical strength of paper and reduce the use of chemical enhancers; (4) Reduce starch consumption in the paper industry and increase food safety in the country; (5) By optimizing the structure of the starch complexing agent, starch can be obtained in one step.
  • the cationization and hydrophobization properties improve the hydrophobicity of the paper surface while improving the strength of the paper, so that the prepared paper has better water and moisture resistance; (6) It has a clean and bactericidal effect on the white water system. .
  • the papermaking method of the invention can directly use the recycled pulp or fiber for papermaking, can effectively reduce the starch dissolution of the recycled pulp or fiber during the papermaking process, improve the recovery rate of the starch and the physical strength of the paper.
  • the principle of modifying the starch by using the cationic complexing agent of the invention by reacting the starch complexing agent with special complexing effect on the starch in the papermaking white water to react with the starch in the papermaking white water to produce a "starch-compound” "Inclusion complex", thereby changing the physical and chemical properties of starch in papermaking white water, reducing its solubility in papermaking white water, so as to achieve the purpose of recovering free starch in papermaking wastewater, greatly reducing the free starch content in papermaking white water To reduce COD emissions from papermaking wastewater.
  • Further adding fiber or pulp to the white water treated by the cationic complexing agent of the present invention can precipitate or adsorb the starch in the fiber or pulp, thereby further reducing the free starch content in the white water, and preparing the white water by the recovery.
  • the fiber or pulp adsorbed with starch can be directly used for papermaking, which greatly improves the recovery rate of starch and the utilization rate in papermaking. Therefore, the method for recovering free starch in papermaking white water of the invention has various beneficial effects, including: (1) reducing the COD concentration of papermaking drainage, reducing organic pollution, improving environmental protection; and (2) improving the recovery rate of starch, Reduce production costs; (3) reduce starch consumption in the paper industry and increase food safety in the country.
  • modified starch of the present invention the papermaking method, and the method of recovering free starch in papermaking white water are of great significance to the papermaking production industry.
  • the modified starch of the invention can be prepared by a very simple preparation process, and can be directly modified from the original starch to maintain the integrity of the starch, so that the prepared modified starch can be more remarkable than the traditional modified starch.
  • the preparation method provided by the invention not only has simple process, no pollution of three wastes (waste water, waste gas and solid waste), can greatly improve the environmental protection benefit of starch modification, and has low cost, is easy to be prepared at the papermaking site, and solves the current modified starch production. Many shortcomings of technology.
  • Figure 1 shows the effect of reaction time on the reaction of starch complexing agents C2, C5, C10 and C12 with starch;
  • Figure 2 is the effect of reaction time on the adsorption of BKP in chemical pulp (retention rate) of starch modified by starch complexing agents C2, C5, C10 and C12;
  • Figure 3 is the effect of reaction time on the adsorption of starch after modification of starch complexing agent C7;
  • Figure 4 is the effect of temperature on the reaction of starch binder C7 with starch and starch retention
  • Figure 5 is the effect of temperature on the reaction of starch binder C7 with starch to reduce dissolved COD
  • Figure 6 is the effect of pH on the reaction of cationic starch binder C7 with starch
  • Figure 7 is the effect of pH on the reaction of cationic starch binder C12 with starch
  • Figure 8 shows the effect of BKP usage on starch retention and COD removal
  • Figure 9 shows the effect of different slurries (enzymatic clean OCC pulp (E-OCC), untreated OCC and chemical pulp BKP) on starch adsorption;
  • Figure 10 shows the effect of different ratios on the retention of starch when the two cationic starch binders C55 and C57 are used in combination;
  • Figure 11 is a graph showing the effect of cationic starch binder C7 modified starch (corn starch) on the physical strength (tensile index and burst index) of chemical pulp BKP;
  • Figure 12 is a graph showing the effect of cationic starch binder C7 and C14 treated OCC pulp on starch retention and white water COD concentration;
  • Figure 13 is the effect of cationic starch binder C7 and C14 treated OCC pulp on the physical strength (tensile index and burst index) of OCC papermaking;
  • Figure 14 is a photograph of colony growth of white water after treatment with different cationic starch binders
  • Figure 15 is a flow chart of pulping for producing ordinary cattle cardboard using OCC waste paper.
  • Starch Binding, Starch Complexation, and Starch Modification refer to the reaction of starch with a certain affinity for starch in an aqueous phase to form a spiral of starch. And the inclusion of the reactants within the helix "Inclusion Complex”. These names are used interchangeably in the techniques of the present invention.
  • the resulting “comprising complex” is referred to as "modified starch”, or “modified starch”, ie, "modified starch” and “modified starch” have the same meaning in the art of the present invention and are used interchangeably.
  • the reactants having a special affinity for starch are called Starch Binding Agents, or Starch Complexing Agents, and the reactants can react with starch to form an inclusion complex.
  • Starch Binding Agents or Starch Complexing Agents
  • the reactants can react with starch to form an inclusion complex. Its chemical structure consists of the following:
  • One or more hydrophobic groups at least one of which has a strong affinity for starch, which reacts with the starch to form an "Inclusion Complex" of the starch-compound, and
  • the above two groups of structures with opposite properties are at the opposite ends of the same molecular structure and are connected by chemical bonds to form an asymmetric, polar structure.
  • the hydrophobic group is a non-polar group, classified according to a hydrophobic structure, and can be divided into a linear/branched aliphatic hydrocarbon, an aromatic hydrocarbon, a mixed aliphatic and aromatic hydrocarbon, a weakly hydrophilic group, and a perfluorohydrocarbon group. And a fluorine-containing mixed hydrocarbon group.
  • the hydrophilic group is a polar group, and is classified into a hydroxyl group, an aldehyde group, a carboxylate, a sulfate, a sulfonate, a phosphate, an amine group, a quaternary ammonium salt, a PEO derivative according to a structure or a chemical property. Lactone, amino acid, amide group, ether bond, and the like.
  • the above starch binder may also be referred to as a starch modifier, a starch crystallizing agent, a starch precipitation agent, a starch aggregating agent, a starch crosslinking agent (starch binder). ), a starch absorber, a starch solidifier, a starch fixative, a starch fibrillation agent.
  • the starch binders of the present invention have the structural characteristics of "cationic surfactants", referred to as Cationic Starch Binding Agents or Cationic Starch Complexing Agents.
  • Such starch binders form hydrophobic cations after ionization in water, the cation structure of which predominantly contains at least one nitrogen, sulfur, phosphorus or arsenic atom.
  • the cationic starch binder is usually a derivative of an organic nitrogen compound, and its positive ion charge is carried by a nitrogen atom. According to its chemical structure, it can be mainly classified into an amine salt type, a quaternary ammonium salt type, a heterocyclic type, and a phosphonium salt type.
  • Amine salt type cationic starch binders include primary amines (structure formula RNH 2 ), secondary amines (structural formula R 1 R 2 NH), and tertiary amines (structural formula R 1 R 2 NR 3 A general term for surfactants, wherein R, R 1 , R 2 and R 3 are aliphatic hydrocarbon groups.
  • Such binders are mainly salts of fatty amines with inorganic acids (hydrochloric acid, bromic acid, acetic acid or sulfuric acid), which are only soluble in acidic solutions and are positively charged. Under alkaline conditions, the amine salt readily reacts with a base to form a free amine.
  • Aromatic amines When one or more aliphatic hydrocarbon groups in the above aliphatic amine are replaced with an aryl group, it is an aromatic amine.
  • the structural formula of long-chain alkyl aniline is:
  • R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 represent H, substituted or unsubstituted alkyl.
  • the quaternary ammonium salt (also known as the quaternary ammonium salt) is a salt of a quaternary ammonium cation formed by the substitution of four hydrogen ions in the ammonium ion by a hydrocarbon group, and the quaternary ammonium salt has four carbon atoms directly connected to the nitrogen atom through a covalent bond.
  • R 1 R 2 R 3 R 4 NX the structural formula R 1 R 2 R 3 R 4 NX, wherein R 1 , R 2 , R 3 , R 4 are the same or different hydrocarbyl, substituted or unsubstituted, saturated or unsaturated, It may or may not have a branch, a cyclic structure or a linear structure, and may contain an ether, an ester, an amide, or an aromatic or aromatic substituent; X is bonded to a nitrogen atom through an ionic bond, and is mostly a halogen anion (F - , Cl - , Br - , I - ) or HSO 4 - , CH 3 CO 2 - and OH - .
  • the properties of the quaternary ammonium salt type starch binder are different from those of the amine salt type. These substances are soluble in both acidic and alkaline solutions, and their cationic properties are not affected by the pH of the solution.
  • the structure of the polyamine salt type cationic starch binder is composed of two or more nitrogen atoms.
  • the most common polyamine is a plurality of propyl groups, and the formula is R(CH 2 CH 2 CH 2 N)n H Wherein R is an aliphatic hydrocarbon. n is an integer from 1 to 10.
  • a fatty propylene diquaternium has a structure of:
  • the structure is formed by linking two hydrophobic chains and two polar head groups through a linking group to form a double hydrophobic group.
  • Cationic starch binder For example, a bis-cation containing a dodecyl group, the structure is:
  • Polyoxyethylene fatty amine salt The polyoxyethylated fatty amine cationic starch binder is obtained by substituting an amine hydrogen atom in a structure of a fatty amine with a polyoxyethylene group to obtain a nonionic-cation mixed surfactant.
  • Fatty amine polyoxyethylene ethers have both nonionic and cationic properties, exhibit cationic surfactant properties in acidic solutions, and nonionic active agents in alkaline or neutral solutions.
  • the chemical structure of polyoxyethylene fatty monoamine is:
  • the corresponding polyoxyethylene fatty diamine is a polyoxyethylene substitution of a hydrogen atom at the terminal amine group based on the structure of the aliphatic diamine.
  • the exemplary chemical structural formula is:
  • diamine group is substituted to form a polyoxyethylene fatty diamine, the exemplary structure of which is:
  • An exemplary structure of the double quaternary ammonium salt is:
  • R in the above polyoxyethylene fatty amine salt is an aliphatic hydrocarbon.
  • Polyoxypropylene fatty amine salt refers to a mixed surfactant obtained by substituting a hydrogen atom on a terminal amine group with a polypropylene oxide to obtain a nonionic-cation based on the structure of the aliphatic amine.
  • Fatty amine polyoxypropylene ethers have both nonionic and cationic properties, exhibit cationic surfactant properties in acidic solutions, and nonionic active agents in alkaline or neutral solutions.
  • the chemical structure of polyoxypropylene fatty monoamine is:
  • the corresponding polyoxypropylene aliphatic diamine is based on the structure of the aliphatic diamine, and the polyoxypropylene group is substituted at the terminal amino group hydrogen atom.
  • the exemplary chemical structural formula is:
  • the above R in the polyoxypropylene fatty amine salt is an aliphatic hydrocarbon.
  • R 1 , R 2 , R 3 , R 4 , and R 5 are H and R is dodecyl group
  • dodecylfluorene is obtained, and its structural formula is:
  • Long-chain alkyl biguanidine The structure of the long chain alkyl biguanide type starch binder is:
  • R is a substituted or unsubstituted alkyl or aryl group having a carbon number of more than 6,
  • 1-octadecyl biguanide monohydrochloride (English name: 1-(diaminomethylidene)-2-octadecylguanidine hydrochloride; 1-Octadecylbiguanide monohydrochloride; CAS number: 23604-20-8)
  • the structural formula is:
  • R is a dodecyl group
  • a dodecylbiguanide is obtained, the structural formula of which is:
  • Long-chain alkyl diterpene (polysaccharide) type The structural formula of the long-chain alkyl polycyclic starch binder is:
  • R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 represent H, an alkyl group or an aryl group, and Z represents a substituted or unsubstituted alkylene group or aryl group.
  • R, R 1 , R 2 , R 4 , R 5 , and R 6 are H, Z is a propane group, and R 3 is a coconut oil group, a cocoyl-propylene diamine bismuth is obtained (English: Cocoyl-propylenediamine-1) ,5-bis-guanidinine):
  • Z is a dodecyloxyphenyl group
  • 2-[5-(diaminomethyleneamino)-2-dodecyloxyphenyl]phosphonium dihydrochloride is synthesized.
  • alkyl substituted nitrogen heterocycle or a quaternary ammonium salt thereof Such starch binders are compounds containing a saturated nitrogen heterocycle, an unsaturated non-aromatic nitrogen heterocycle or an aromatic nitrogen heterocycle, or a quaternary ammonium salt thereof, including alkylpyridines, alkylmorpholines, long-chain alkylimidazoles (alkyl Imidazoline), etc., the chemical structural formula of the alkylpyridine quaternary ammonium salt is:
  • R represents an alkyl group or a substituted alkyl group.
  • cetylpyridinium hydrochloride is as follows:
  • Otinidine dihydrochloride (Chinese alias: octenidine hydrochloride; English name: Octenidine Dihydrochloride; N, N'-(decane-1, 10-diyldi-1(4H)-pyridyl-4-ylidene)bis (octylammonium) dichloride; CAS number: 70775-75-6)
  • the structural formula is:
  • R 1 , R 2 , R 3 , R 4 represent H or an alkyl group (carbon chain length is C1 - C4), and R represents a long carbon chain alkyl group (carbon chain greater than 6).
  • R 1 , R 2 , R 3 , R 4 represent H or an alkyl group (carbon chain length is C1 - C4), and R represents a long carbon chain alkyl group (carbon chain greater than 6).
  • 2,6-dimethyl-4-tridecylmorpholine has the following structural formula:
  • R 1 , R 2 , R 3 , R 4 and R 5 represent a substituted or unsubstituted alkyl group.
  • a bromide salt of 1-tetradecyl-3-methylimidazole (English name: 1-Tetradecyl-3-Methylimidazolium Bromide; Chinese alias): 1-tetradecyl-3-methylimidazolium bromide)
  • the structural formula is:
  • 2-mercaptobenzimidazole (English name: 2-nonyl-1H-benzimidazole; 2-nonyl-1H-1,3-benzodiazole; 2-Nonyl benzimidazole; CAS No.: 5851-50-3) is :
  • R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 represent H, substituted or unsubstituted alkyl.
  • a long-chain alkyl quinoline (or benzo-pyridine) quaternary ammonium salt having the structural formula:
  • the cationic phosphonium salt has the formula R 1 R 2 R 3 R 4 PX, wherein R 1 , R 2 , R 3 , R 4 are the same or different hydrocarbyl group, substituted or unsubstituted, saturated or unsaturated, It may also have a branch or no branch, a cyclic structure or a linear structure, and may contain an ether, an ester, an amide, or an aromatic or aromatic substituent; X is bonded to a nitrogen atom through an ionic bond, and is mostly a halogen anion (F -, Cl-, Br-, I-) or HSO4-, CH3CO2- and OH-.
  • tri(dodecyl)phosphine tridodecyl phosphine
  • heteroatom-containing quaternary ammonium salt generally refers to a quaternary ammonium salt containing a hetero atom such as O, N, S or the like in a hydrophobic hydrocarbon chain, that is, an amide bond, an ether bond, an ester bond or A thioether bond surfactant.
  • the hydrophilic group quaternary ammonium cation and the alkyl hydrophobic group are linked by a group such as an amide, an ester, an ether or a thioether, rather than being directly bonded together.
  • 2-(dodecylthio)-acetamide (English name: 2-dodecylsulfanylacetamide; Acetamide, 2-(dodecylthio); 2-(Dodecylthio)acetamide; CAS No.: 10220-53-8) has the structural formula:
  • Gemini cationic starch binders are quaternary ammonium salt type, pyridinium salt type and sulfhydryl type starch binder.
  • Gemini This type of starch binder is a class of compounds with two hydrophobic chains, two hydrophilic groups and one bridging group, similar to two cationic starch binder molecules linked together by a bridge. The shape of the molecule is like a conjoined twin baby, and its cations may be quaternary ammonium salt type, pyridinium salt type, and sulfhydryl type.
  • the hydrophobic group may be a saturated carbon chain type, an unsaturated carbon chain type, an ether group type, an ester type, an aromatic type, and an asymmetric type in which the two carbon chains are not equal in length.
  • the linking group can be either hydrophobic or hydrophilic; it can be short or long; it can be either rigid or flexible.
  • the former includes shorter hydrocarbon chains, xylylene, p-diphenylvinyl, etc., the latter including longer hydrocarbon chains, polyoxyethylene chains, heteroatoms, and the like.
  • the structural formula of dioctadecyldimethyl-polyamine-diammonium chloride salt is:
  • Dendrimer type starch binder Dendrimer is a dendrimer, which is a structure that is extended from a central core molecule by a branching monomer, or by a central nucleus, a number of branching units, and a peripheral group. .
  • the characteristics of dendrimers are that their molecular structure is regular, molecular volume, shape and terminal functional groups can be designed and controlled at the molecular level, and their end groups are modified as required to obtain corresponding dendrimer surfactants.
  • the hydrophobic group of all of the above starch binders may be a fluorine-containing hydrophobic group, that is, the hydrophobic group is a mixed hydrophobic group composed of two elements of carbon and fluorine, or a part of hydrogen atoms substituted by a fluorine atom. Since the fluorine atom replaces the hydrogen atom on the hydrophobic group, the structure of the CH bond is converted into the form of a CF bond, so it exhibits some excellent properties peculiar to the fluorocarbon hydrocarbon, namely high surface activity, high heat stability and High chemical stability, fluorine-containing hydrocarbon base is both hydrophobic and oil-repellent. For example, all hydrogen atoms in the structure of perfluoroammonia are completely replaced by fluorine, and the structural formula is:
  • Fluorine may partially replace a hydrogen atom, for example, a hydrogen atom of five carbon atoms of a sunflower amine is substituted to obtain (5,5,6,6,7,7,8,8,9,9,10,10)- eleven Fluoramide, its structure is:
  • Starch is a polysaccharide whose molecular formula (C 6 H 10 O 5 )n, which can be regarded as a high polymer of glucose. Starch has two types of amylose and amylopectin. Amylose contains several hundred glucose units, and amylopectin contains several thousand glucose units; thus the molecular weight of amylose is relatively small, around 50,000, the molecular weight of amylopectin is much larger than that of amylose, around 60,000.
  • the composition of plant starch generally consists of 10% to 30% amylose and 70% to 90% amylopectin.
  • Starch has the property of iodine and blue, which is determined by the structural characteristics of the starch itself.
  • the water-soluble amylose is curled into a spiral by means of intramolecular hydrogen bonds. If iodine is added, the iodine molecules in the iodine solution are embedded in the voids of the helical structure and are linked to the amylose by means of van der Waals forces to form a complex.
  • the complex can absorb the visible light other than blue light (wavelength range is 400-750nm), so that the amylose is blue in the iodine, the amylopectin is purple-red in the iodine, and the dextrin is in the iodine. Blue purple, purple, orange and other colors.
  • the starch content of all kinds of plants is high.
  • the starch contains 62%-86% of starch, the wheat contains 57%-75% starch, the corn starch contains 65%-72%, and the potato contains more than 90% starch.
  • Modified Starch In order to improve the performance of starch and expand its application range, physical, chemical or enzymatic treatment is used to introduce new functional groups on starch molecules or to change the size of starch molecules and the properties of starch granules, thereby changing the natural characteristics of starch (eg, gelatinization temperature). , thermal viscosity and its stability, freeze-thaw stability, gel strength, film formation, transparency, etc., making it more suitable for certain application requirements.
  • This type of starch which has undergone secondary processing and changes its properties, is collectively referred to as modified starch.
  • modified starch which has undergone secondary processing and changes its properties
  • the classification of modified starches is generally carried out according to the treatment.
  • Chemical denaturation The resulting modified starch is treated with various chemical agents. There are two major categories: one is to reduce the molecular weight of starch, such as acid-stained starch, oxidized starch, baked dextrin, etc.; the other is to increase the molecular weight of starch, such as cross-linked starch, esterified starch, etherified starch, and Star starch and so on.
  • Enzymatic denaturation (biomodification): Various enzymes treat starch. Such as ⁇ , ⁇ , ⁇ -cyclodextrin, maltodextrin, amylose and the like.
  • Modified starch obtained by two or more treatment methods Such as oxidized cross-linked starch, cross-linked esterified starch and the like.
  • the modified starch obtained by compound denaturation has the respective advantages of two modified starches.
  • modified starch can also be classified according to the production route, such as dry method (such as phosphate starch, acid starch, cationic starch, carboxymethyl starch, etc.), wet method, organic solvent method (such as the preparation of carboxyl starch generally using ethanol As solvent), extrusion method and drum drying method (such as natural starch or modified starch as raw material to produce pre-gelatinized starch).
  • dry method such as phosphate starch, acid starch, cationic starch, carboxymethyl starch, etc.
  • organic solvent method such as the preparation of carboxyl starch generally using ethanol As solvent
  • extrusion method and drum drying method such as natural starch or modified starch as raw material to produce pre-gelatinized starch.
  • Pre-gelatinized starch (Pre-Geletinized Starch).
  • Gelatinization of starch The effect of starch granules swelling, splitting, and forming a homogeneous paste-like solution in water at a suitable temperature (different temperatures of starch from various sources, generally 60-80 ° C) is called gelatinization.
  • the essence of gelatinization is the hydrogen bond break between the ordered and disordered (crystalline and amorphous) starch molecules in the starch granules, which is dispersed in water to form a colloidal solution.
  • the process of gelatinization can be divided into three stages: (1) reversible water absorption stage, moisture enters the amorphous part of the starch granules, and the volume expands slightly. At this time, the particles are cooled and dried, the particles can be restored, and the phenomenon of birefringence is unchanged; 2) Irreversible water absorption stage, as the temperature rises, water enters the gap of starch crystallites, irreversibly absorbs a large amount of water, and the phenomenon of birefringence gradually blurs and disappears. It is also called “dissolution” of crystals, and the starch granules swell to 50-100 times of the original volume. (3) The starch granules finally disintegrate, and the starch molecules all enter the solution.
  • Acid-modified starch refers to a type of modified starch obtained by treating natural starch with a mineral acid below the gelatinization temperature and changing its properties.
  • the acid-modified starch is usually prepared under the conditions of a starch emulsion concentration of 36% to 40%, a temperature lower than the gelatinization reaction temperature (35 to 60 ° C), and a reaction time of 0.5 to several hours.
  • a starch emulsion concentration 36% to 40%
  • a temperature lower than the gelatinization reaction temperature 35 to 60 ° C
  • a reaction time 0.5 to several hours.
  • Temperature reaction temperature is the main factor affecting the performance of acid-modified starch. When the temperature is 40-55 °C, the viscosity changes toward temperature, and the temperature has been gelatinized when the temperature rises to 70 °C. Therefore, the reaction temperature is usually selected in the range of 40 to 55 °C.
  • the type of acid and the amount of acid used as a catalyst without participating in the reaction Different acid catalysis is different, hydrochloric acid is the strongest, sulfuric acid and nitric acid are similar, when the temperature is high, and the acid dosage is large, the nitrate modified starch is light yellow due to the side reaction, so it is rarely used in actual production.
  • the catalysis of the acid is related to the amount of acid used. If the amount of acid is large, the reaction is severe.
  • Starch milk concentration The concentration of starch milk should be controlled at about 40%.
  • Esterified starch (Acetylated Starch).
  • the esterified starch refers to a type of modified starch obtained by esterification of starch milk with an organic acid anhydride (acetic anhydride, succinic anhydride, etc.) under a certain temperature below the gelatinization temperature.
  • an organic acid anhydride acetic anhydride, succinic anhydride, etc.
  • Acetylated series of modified starch in the glucose unit C6 is connected to the acetyl group, the acetyl group is a hydrophilic group, which greatly improves the binding ability of starch to water, thereby improving the water swell of the starch granules and reducing the paste.
  • the temperature is increased, the peak viscosity, the acetic acid esterified series of modified starch protein, the fat content is very low, so the color is white, with natural fluorescence, can effectively improve the color of the face, and the gelatinization temperature is lower than the original starch in the flour, In the dough cooking process, the starch is gelatinized before the original starch, shortening the cooking time.
  • Oxidized Starch Many chemical oxidants oxidize starch, but the most commonly used in industrial production is alkaline hypochlorite.
  • Cross-linked Starch The concept of cross-linked starch is that the alcoholic hydroxyl group of the starch forms a diether bond or a diester bond with the polyfunctional group of the cross-linking agent, so that two or more starch molecules are "bridged" together in a multidimensional network structure.
  • the reaction is called a cross-linking reaction.
  • Cross-linking refers to the formation of chemical bonds between molecules, which enhances the hydrogen bond between molecules.
  • the hydrogen bond can be weakened or even destroyed.
  • the starch particles will remain unchanged to varying degrees.
  • cross-linking agents The most commonly used cross-linking agents in China are: sodium trimetaphosphate, sodium tripolyphosphate, formaldehyde, phosphorus oxychloride, and epichlorohydrin.
  • Resistant Starch also known as anti-enzymatic starch and indigestible starch, cannot be digested in the small intestine, but can be fermented with volatile fatty acids in the human gastrointestinal colon.
  • Resistant starch is present in certain natural foods, such as potato, banana, rice, etc., which contain resistant starch, especially high amylose corn starch containing resistant starch up to 60%. This starch is more difficult to degrade than other starches, it is slowly digested in the body, and it is slow to absorb and enter the blood. Its properties are similar to dissolved fibers and have a certain slimming effect.
  • Amylose is a long-helical spiral that is condensed by ⁇ -glucose molecules, and each glucose unit still has a hydroxyl group exposed outside the helix.
  • the iodine molecule interacts with these hydroxyl groups to cause the iodine molecule to be embedded in the axial portion of the starch helix. This effect of iodine and starch is called inclusion, and the product is called a clathrate.
  • each iodine molecule is coordinated with 6 glucose units, and the starch chain is spiraled at a diameter of 0.13 pm, and the iodine molecule is located at the axial center of the spiral.
  • the color of the inclusion complex formed by starch and iodine is related to the degree of polymerization or relative molecular mass of the starch.
  • degree of polymerization or relative molecular mass As the degree of polymerization or relative molecular mass increases, the color of the clathrate changes from colorless, orange, reddish, purple to blue.
  • degree of polymerization of amylose is 200 to 980 or the relative molecular mass ranges from 32 000 to 160 000
  • the color of the clathrate is blue.
  • Dextrin has a lower degree of polymerization, and is reddish brown, red, reddish, and the like.
  • Amylase is an enzyme that hydrolyzes ⁇ -1,4-glycosidic bonds by acting on ⁇ -1,4-glucan such as soluble starch, amylose, and glycoside. According to the isotype of the enzymatic hydrolysate, it can be divided into ⁇ -amylase (EC 3.2.1.1) and ⁇ -amylase (EC 3.2.1.2).
  • Alpha-amylase ( ⁇ -Amylase), the system name is 1,4- ⁇ -D-glucan glucan hydrolase, (1,4- ⁇ -D-Glucan-glucanohydrolase).
  • the ⁇ -amylase can hydrolyze the ⁇ -1,4-glycosidic bond inside the starch, and the hydrolyzed product is dextrin, oligosaccharide and monosaccharide. After the enzyme acts, the viscosity of the gelatinized starch can be rapidly reduced and become liquefied starch. Also known as liquefied amylase, liquefaction enzyme, ⁇ -1,4-dextrinase.
  • the reaction is generally carried out in two stages.
  • the amylopectin degrades rapidly, producing oligosaccharides.
  • the viscosity of the chain starch and its ability to react with iodine react rapidly.
  • the second stage of the reaction is much slower than the first stage, including slow hydrolysis of the oligosaccharides to produce the final product glucose and maltose.
  • Alpha-amylase acts on amylopectin to produce glucose, maltose and a series of limiting dextrins (constituting oligosaccharides from 4 or more glucosyl groups), both of which contain alpha-1,6-glycosidic linkages.
  • the alpha-amylase molecule contains a well-bound calcium ion. This calcium ion is not directly involved in the formation of the enzyme-substrate complex. Its function is to maintain the structure of the enzyme, giving the enzyme maximum stability and highest active.
  • thermostable alpha-amylase enzyme preparations produced by Bacillus licheniformis and Bacillus licheniformis have been widely used in food processing. Temperature has different effects on the viability of these two enzymes.
  • the optimum temperature of Bacillus licheniformis-amylase is 92 °C, and the optimum temperature of Bacillus licheniformis-amylase is only 70%. Except for the difference in thermal stability, this The end products of the two enzymes acting on the starch are also different.
  • ⁇ -amylase also known as ⁇ -1,4-glucan maltohydrolase, is one of the amylases that breaks down amylose into maltose.
  • Amylase The only product of beta-amylase is maltose, not glucose.
  • the ⁇ -amylase is an exo-amylase which, when applied to starch, sequentially cuts apart ⁇ -1,4 bonds from the non-reducing end, and the hydrolysate is all maltose. Since the amylase converts the configuration of C1 in the hydrolysate maltose molecule from ⁇ type to ⁇ type during hydrolysis, it is called ⁇ -amylase.
  • ⁇ -amylase is mainly found in higher plants, especially in cereals, such as barley, wheat, etc., and is also present in sweet potatoes and soybeans, and is not present in animals.
  • the ⁇ -amylase active center contains a thiol group (-SH), so some oxidants, heavy metal ions, and sulfhydryl reagents can inactivate it, while reducing glutathione and cysteine protect it.
  • -SH thiol group
  • the ⁇ -amylase cannot hydrolyze the ⁇ -1,6 bond of amylopectin, nor can it continue to hydrolyze across the branch point. Therefore, the hydrolysis of amylopectin is incomplete and the ⁇ -limit dextrin of the macromolecule remains.
  • ⁇ -amylase hydrolyzes amylose, if the starch molecule consists of an even number of glucose units, the final hydrolysate is all maltose; if the starch molecule consists of an odd number of glucose units, the final hydrolysate has a small amount of glucose in addition to maltose. .
  • ⁇ -amylase hydrolyzes starch, since there are always macromolecules from the end of the molecule, the viscosity decreases slowly and cannot be used as a liquefaction enzyme, and ⁇ -amylase hydrolyzes starch hydrolysates such as maltodextrin and malto-oligosaccharide. When the hydrolysis rate is fast, it is used as a saccharification enzyme.
  • ⁇ -amylase ( ⁇ -amylase). No. E.C.3.2.1.3.
  • ⁇ -amylase is an exonuclease that cleaves ⁇ (1 ⁇ 4)-chain glycosidic bonds and ⁇ (1 ⁇ 6)-chain glycosidic bonds from the non-reducing end of starch molecules, and cuts glucose residues one by one, and free half-shrinkage by hydrolysis.
  • the aldehyde hydroxyl group is translocated to release ⁇ -glucose. Therefore, whether acting on amylose or amylopectin, the final product is glucose. Therefore, it is also known as glucoamylase, glucoamylase.
  • Isoamylase No. E.C.3.2.1.33. Isoamylase hydrolyzes the a-1,6-glycosidic linkage of amylopectin or glycogen, hydrolyzes only the -1,6 glycosidic chain of glycogen or amylopectin branching points, and cuts the entire side branch to form a straight length Chain starch. Therefore, isoamylase is also known as starch-1,6-glucosidase. Animals, plants, and microorganisms all produce isoamylases. Different sources, different names, such as: debranching enzyme, Q enzyme, R enzyme, pullulan, fungus polysaccharide enzyme.
  • Cyclodextrin Glucosyltransferase CCT
  • Cyclodextrins CDs are a class of D-glucopyranose units produced by starch or polysaccharides under the action of cyclodextrin glucosyltransferases linked end to end by ⁇ -1,4-glycosidic bonds.
  • a general term for cyclic compounds usually composed of 6-12 D-glucopyranose units. Therefore, according to the number of glucose units in the ring, the molecules with 6, 7, and 8 glucose units are commonly referred to as ⁇ -, -- and ⁇ -cyclodextrin.
  • the most important feature of cyclodextrin glucosyltransferases is their ability to catalyze the formation of cyclodextrins from linear starch oligosaccharide chains.
  • the CGT cyclization reaction is a special form of the transglycoside reaction, which uses the non-reducing end of the donor chain as a receptor to form a cyclized product.
  • Chemical Oxygen Demand COD definition: Under certain conditions, the amount of oxidant consumed by the reducing substance in the oxidation of 1 liter of water sample is used as an index, and is converted into the number of milligrams of oxygen required per liter of water sample after oxidation, in mg/ L (ppm) is indicated. It reflects the degree of contamination by reducing substances in water. As one of the comprehensive indicators of the relative content of organic matter, it is an important and relatively fast-measured organic pollution parameter. Therefore, chemical oxygen demand (COD) is often used as an indicator to measure the amount of organic matter in water. The greater the chemical oxygen demand, the more serious the water is contaminated by organic matter.
  • the measurement of chemical oxygen demand (COD) varies depending on the amount of reducing substance in the water sample and the measurement method.
  • the most common application at present is the acidic potassium permanganate oxidation method and the potassium dichromate oxidation method.
  • the potassium permanganate (KMnO 4 ) method has a low oxidation rate, but is relatively simple.
  • the potassium dichromate (K 2 Cr 2 O 7 ) method can be used for oxidation. High rate and good reproducibility, suitable for determining the total amount of organic matter in water samples.
  • Starch Binding Agent Table 1 lists the detailed information of the starch binder material tested in the present invention, including Chinese and English names, chemical structural formulas and material numbers. All starch binders are commercially available products, and their effective compositions range in purity from reagent to drug. In all examples, all starch binders were used directly as sold (as-is) without further purification.
  • Corn starch is “Xingmao” edible corn starch, purchased from Zhucheng Xingmao Corn Development Co., Ltd.; tapioca starch, wheat starch, sweet potato starch purchased from Shenzhen Zero Biotech Co., Ltd., corn of Table 13 in Example 11 Modified starch, cassava oxidized starch - commercial, cassava modified starch - commercial, potato acetate starch - commercial purchased from Wuhan Yuancheng Technology Co., Ltd., codenamed YC-20170701.
  • Bleached chemical pulp was taken from Dongguan White Swan Paper Co., Ltd. (BKP).
  • Unbleached chemical pulp was taken from Zhejiang Rongcheng Paper Co., Ltd., which is imported from North America native needle chemical pulp (UKP).
  • OCC waste paper The original paper is taken from Dongguan Junye Paper Co., Ltd., which is made of 100% OCC waste paper.
  • the surface sizing amount of starch is about 40-60kg/T paper.
  • CPO1A-3A paper sheet former Dongguan Inteon Precision Instrument Co., Ltd.
  • COD digestion instrument XJ-IIICOD TP TN digestion device produced by Shaoguan Today Environmental Protection Instrument Co., Ltd.
  • UVmini-1240 UV-Vis spectrophotometer manufactured by Shimadzu Corporation.
  • TDL-80-2B Shanghai Anting Scientific Instrument Factory.
  • Standard iodine solution preparation Weigh 11g of iodine and 22g of potassium iodide, completely dissolve the iodine with a small amount of distilled water, and finally make up to 500ml, and store it in a brown bottle.
  • Preparation of dilute iodine solution Weigh 10g of potassium iodide, dissolve it with a small amount of water, draw 2ml of concentrated iodine solution, dilute to 100ml volumetric flask with distilled water, and store in brown bottle.
  • Native starch solution preparation (1) Take starch samples to be formulated 7% starch solution; (2) the starch solution was heated to 95 degrees (°C), the reaction viscosity stabilized; (3) cooling to 65 °C, in water bath Keep the starch solution and set aside. In the following examples, unless otherwise specified, the starch samples taken were all original starches, and the 7% "standard starch solution" was prepared in this manner.
  • oxidized starch solution Take 465g of deionized water and place it in a magnetic water bath at 97 ° C, slowly add 35g of starch, then add 0.14g of ammonium persulfate (ie equivalent to 0.4%), cook for 40 minutes, then cool down to At 65 ° C, the starch solution was kept at 60 ° C to prepare a 7% "standard" starch solution (having a viscosity of about 30 mPa.s), and stored for later use.
  • Chemical pulp slurry preparation take a certain amount of bleached or unbleached chemical pulp board, tear it into small pieces, weigh 300g small pieces of slurry, add 45 °C warm water to 2307g, the pulp concentration is 13%, after soaking for several minutes Pour into the PL12-00 high-concentration hydraulic pulper, grind the pulp for 15 minutes, then wring the water and store it for later use.
  • OCC waste paper pulp and white water preparation take 300g of waste paper, tear it into small pieces, then dilute it to 13% concentration with tap water, soak for 5-10min, pour into PL12-00 high concentration hydraulic pulper, pulp for 15 minutes, remove the crushed pulp good, then diluted with water to a concentration of 3%; white water bag and then separating pulp, used paper pulp obtained OCC OCC used paper pulp and white water, respectively, for use.
  • Starch complexation reaction step (1) Take 500ml of the above prepared starch solution or starch-containing OCC waste paper pulp white water, place it in a constant temperature water bath (reaction temperature is set as needed), stir at a constant speed to reach equilibrium, and adjust as needed The pH of the solution; (2) adding a starch complexing agent according to the designed amount, carrying out the reaction, taking the solution at a reaction time of 5, 10, 15, 30, 60, 90 or 120 minutes, placing it in a 30 mL test tube, and then The mixture was centrifuged (x4000 g. 5 minutes), and finally the supernatant was analyzed for starch or COD concentration.
  • Adsorption/retention test of starch in pulp fiber (1) Take 800ml of the above prepared starch solution or starch-containing OCC waste paper pulp white water, place it in a constant temperature water bath (the reaction temperature is set as needed), stir at a constant speed to reach equilibrium.
  • Test procedure for chemical pulp paper (1) Take 300g of bleached or unbleached chemical pulp, tear it into small pieces, then dilute it to 13% concentration with tap water, soak for 5-10min, pour into PL12-00 type high concentration hydraulic power Pulping machine, pulping for 15 minutes, taking out the broken pulp and storing it for later use; (2) taking the prepared starch solution or OCC waste paper pulp white water 800g, adding test reagent (starch complexing agent) for 30min; (3) After reacting for 30 min, the synergist was added to stir the reaction for 2-3 min, the chemical slurry was added, and the total reaction time was stirred for 10 min.
  • the slurry was placed in a 30 mL test tube, and after centrifugation, the starch concentration and COD of the supernatant were tested. (5) The remaining slurry is immediately poured into the fiber standard dissociator to dissipate 1500r. After the disintegration, the water is diluted to 0.5% concentration, and the slurry of 0.5% concentration is weighed 640g. Paper is used for papermaking (paper ration) (6) After the paper is finished, the paper is placed in a constant temperature and humidity chamber at 25 ° C and 50% moisture for 16 hours, and then the physical properties of the paper and the starch content of the paper are tested.
  • OCC waste paper white water separation separately and then paper test steps (1) take OCC waste paper 300g, tear it into small pieces, then add tap water to 13% concentration, soak for 5-10min, pour into PL12-00 type High-concentration hydraulic pulper, pulping for 15 minutes, taking out the broken pulp, adding tap water to 3% concentration, then separating the white water and the pulp with a filter bag and storing them separately; (2) taking the prepared white water 800g, adding test reagent (starch complexing agent) for 30min; (3) after reacting for 30min, adding synergist to stir the reaction for 2-3min, adding the above prepared OCC slurry, stirring the total reaction time for 10min; (4) taking the slurry Place in a 30mL test tube, test the starch concentration and COD content of the supernatant after centrifugation; (5) immediately pour the remaining slurry into the fiber standard dissociator to dissipate 1500r, after the disintegration, dilute with water to 0.5% concentration, weigh 730 g of slurry with 0.
  • OCC waste paper pulp paper test steps (1) Take 300g of waste paper, tear it into small pieces, then dilute it to 13% concentration with tap water, soak for 5-10min, pour into PL12-00 type high concentration hydrocrush Slurry, pulp for 15 minutes, remove the broken pulp, add tap water to 3% concentration, save for later; (2) take the above 3% OCC puree 800g, add test reagent (starch complexing agent) reaction for 30min; (3) After reacting for 30 min, add the synergist to stir the reaction for 10 min; (4) take the slurry and place it in a 30 mL test tube, and test the starch concentration and COD content of the supernatant after centrifugation; (5) The remaining slurry is immediately poured.
  • test reagent starch complexing agent
  • Iodine coloring starch test method Take 0.5 ml of the sample after centrifugation, add 4 ml of dilute iodine solution, measure the absorbance at 600 nm, and determine the starch concentration according to the absorbance concentration line.
  • Digestion test COD content accurately transfer 3.00mL of the sample to be tested in the digestion tube, accurately add 1.00mL masking agent (water sample without chloride ion plus 10% sulfuric acid 1.00mL), then add 3.00mL digestive juice, 5.00 mL catalyst, screw tight seal (water sample containing no chloride ion and low boiling organic matter, can be tested by open tube, the same method).
  • the digestion tube was placed in a digestion apparatus with a temperature of 160 ° C and digested for 25 minutes. After the digestion process is completed, after the cooling is completed, the digestion tubes are taken out in order, and the COD value is measured by a colorimetric method.
  • Test method for paper starch content (1) Take paper sample, place it in oven for 15min, dry it, smash the paper sample with plant micro-pulverizer, and then put the pulverized paper sample in oven for 15min; (2) take 1g for baking The dried pulverized paper sample is placed in a 100 ml beaker, and after adding 70-80 ml of boiling water, it is placed in a constant temperature water bath at 100 ° C for 40 min; (3) 40 min after taking out, adding water to 100 g, taking the slurry and centrifuging to test the starch content of the supernatant. .
  • the starch retention rate (also known as starch precipitation rate) refers to the percentage of starch retention in the total amount of initial starch, ie
  • the amount of COD degradation refers to the difference between the COD concentration (COD1) and the initial COD concentration (CODo) in the solution after the reaction of the starch solution with the starch complexing agent, ie
  • COD degradation CODo-COD1 (mg / L)
  • the COD reduction rate (also known as COD precipitation rate) refers to the percentage of starch retention in the total amount of initial starch, ie
  • COD reduction rate (%) (CODo-COD1) / CODo ⁇ 100.
  • Example 1 Effect of cationic starch binder Cetylpyridine hydrochloride (No. C7) on starch dissolution and fiber surface adsorption after binding with starch
  • the C7 complexing agent has a strong ability to react with starch.
  • the initial starch concentration was 850 mg/L
  • 30 mg/L of C7 was added, and more than 700 mg/L of starch was reacted and adsorbed onto the surface of the fiber, i.e., 77% of the total starch was adsorbed out of the solution.
  • the initial starch concentration was increased to 1450 mg/L
  • the C7 complex was added at 30 mg/L, and the starch concentration in the solution was reduced by 1116 mg/L, which was equivalent to 75% removal.
  • the initial concentration of starch was 3000 mg/L
  • the starch concentration of the solution decreased by 1785 mg/L, that is, the removed starch was 60 times that of the complexing agent C7 itself.
  • the experimental steps of starch reaction (1) first prepare 7% "standard starch solution" for corn starch sample; (2) dilute the appropriate amount of standard starch solution with deionized water to a starch concentration of about 1800 mg / L (or other desired concentration) (3) Take 500mL of the prepared concentration of starch solution or OCC white water, place it in a beaker, and put it into a constant temperature water bath at 45 °C, and equilibrate to the specified temperature; (4) Add 30mg/L starch binder as needed. When the reaction reached 1, 3, 5, 10, 30, 60, 90, 120, 300, 600 and 1200 minutes, the sample was centrifuged (4000 x g) for 5 minutes, and the supernatant was taken to test the starch content and COD concentration;
  • Test procedure for starch adsorption reaction time Steps (1)-(4) Same as above, (5) When the starch reaction reaches 60 minutes, add 3% chemical pulp (BKP) according to the required pulp concentration, stir and start the adsorption reaction. (6) When the adsorption reaction reaches 10, 30, 60 or 120 minutes, the slurry is taken and placed in a 30 mL test tube; (7) All the taken solutions are centrifuged (x4000 g. 5 minutes) for analysis, and the supernatant is taken. The liquid was analyzed for its starch or COD concentration.
  • BKP chemical pulp
  • Table 4 shows the effect of reaction time on starch retention (i.e., amount of change) after the addition of starch binder C14. It can be seen that for the pure starch solution, the starch binder C14 reacts very rapidly on the starch, and basically completes 70% or more within 10 minutes, and then the reaction proceeds further as time continues, but the speed is much slower. For the starch prepared from OCC pulp, the starch retention rate after the starch binder C14 modified white water starch is relatively low. It seems that the reaction between C14 and OCC starch is not as strong as that of pure starch; in fact, this is because the OCC white water contains interfering substances. Part of C14 is consumed. When a certain anti-interference chemical slurry (ie, synergist) is added to shield the interfering substances, the effect of the starch binder is greatly improved.
  • a certain anti-interference chemical slurry ie, synergist
  • Figure 4 shows the effect of cationic starch binder C7 and starch reaction on the retention of starch in chemical pulp at various temperatures. It can be seen that under the blank condition, the adsorption of starch on the pulp surface decreases with the increase of temperature; after reacting with the cationic starch binder, the adsorption of the modified starch on the fiber surface is basically unchanged within the tested temperature range. .
  • Figure 5 shows the effect of starch binder on dissolved COD at different temperatures. It can be seen that after the reaction of the tested cationic starch binder with starch, the dissolved COD decreased significantly. However, raising the temperature has a slight negative impact on the rate of COD decline.
  • Figures 6 and 7 show the results of reaction of cationic starch binders C7 and C12 with starch and starch retention in chemical pulp fibers at various pHs. It can be seen that the reaction of the binder C7 with starch is basically not affected by the pH; the reaction of the binder C12 with starch is not affected under acidic conditions, but as the pH exceeds 7, the starch retention rate decreases with increasing pH, indicating an increase pH has a negative effect on starch retention.
  • the main reason for the guess is that the pulp itself contains a lot of starch, and some of the fiber surface has been covered by starch, so the starch binder is The adsorption of the reaction product is not significant; in addition, the starch itself may dissolve and desorb into the solution, increasing the total concentration of starch in the system (ie higher than the initial starch concentration), thus interfering with the test of "real" starch The amount of adsorption of the reaction product.
  • the 1% concentration of OCC pulp is heated to 70-75 ° C, and the amylase is added in an amount of 1000 g / T (dry pulp) for 60 minutes; the pulp is placed in a filter bag, and centrifuged to 30% solids. Concentration; then adding purified water to a pulp concentration of 1%, heating the pulp to boil for 60 minutes, again using a filter bag and centrifuging to dry; preparing an enzyme-cleaned OCC pulp (enzyme treated OCC), numbered E-OCC.
  • Table 7 compares the effect of the original OCC pulp, enzyme clean OCC pulp (E-OCC) and bleached chemical pulp (BKP) on the binder treatment of starch. It can be seen that the concentration of starch and COD of E-OCC after C7-starch reaction is much lower than that of OCC. Figure 9 shows that the starch adsorption rate of E-OCC is 50%, which is significantly higher than that of OCC (29%).
  • Binding agent number Bonding hydrophobic carbon chain structure Starch retention (mg/L) Relative retention rate (%) C2 Saturated linear 12 carbon 736 46 C5 Saturated linear 16 carbon 944 59 C3 Saturated linear 18 carbon 1072 67 C4 Unsaturated linear 18 carbon 1120 70 C12 Saturated linear 22 carbon 1472 92 C25 Saturated linear 32 carbon 960 60 C21 Double saturated linear 18 carbon 1200 75
  • the data in Table 8 shows that the reaction strength of the starch binder and starch is directly related to the structure of the hydrophobic group according to the starch retention rate parameter.
  • the strength of the reaction between the binder and the starch increases with increasing carbon chain up to the carbon chain to 22 carbon; when the carbon chain length exceeds 22, the reaction strength of the binder with starch decreases.
  • OCC waste paper pulp and white water preparation take 300g of waste paper, tear it into small pieces, then dilute it to 13% concentration with tap water, soak for 5-10min, pour into PL12-00 high concentration hydraulic pulper, pulp After 15 minutes, the crushed pulp was taken out and diluted with tap water to a concentration of 3%. Then, the white water and the pulp were separated by a filter bag to prepare OCC white water and OCC pulp, which were separately stored.
  • Agent Y1 Polymeramide-polydiallyldimethylammonium chloride copolymer, High molecular weight comopolymer of cationic acrylamide-DADMAC (diallyldimethylammonium chloride), purchased from: SNF Floeger, USA), and then mixed; Add the prepared OCC slurry or BKP slurry according to 2.5% pulp solid concentration, stir and mix; (5) react for 10 minutes, centrifuge (4000x g) for 5 minutes, and take the supernatant to test the starch concentration and COD concentration in white water. .
  • the starch concentration increased from 682 mg/L to 715-776 mg/L (depending on the amount of Y1); after C19 modified starch, the modified starch was adsorbed to the surface of the OCC slurry in a large amount, and the dissolved starch concentration was greatly reduced, and it was reduced.
  • the dissolved COD also decreased significantly, and decreased with the increase of the amount of synergist, indicating that the addition of synergist has a significant strengthening effect on the adsorption of C19-modified starch in OCC pulp.
  • Table 10 compares the adsorption of C7-modified starch on OCC pulp and BKP pulp by synergist Y1. It can be seen that the starch binder C7 and the synergist Y1 have a very significant "synergism", and Y1 can greatly improve the retention of the C7-modified starch in the pulp, thereby greatly reducing the dissolved COD content.
  • initial starch concentration 563 mg / L
  • initial COD concentration 710 mg / L.
  • Table 11 summarizes the effect of the dosing sequence and the different combinations of binders on starch retention. It can be seen that the combined use of two cationic starch binders is better than that of a single use, and the starch retention rate is significantly higher than when each binder is used alone, especially when the hydrophobic groups of the two starch binders are When the carbon chains are different in length, the combined use has a significant synergistic effect (Synergy).
  • Figure 10 shows the effect of different combinations of C55 and C57 binders on starch retention. It can be seen that although the effect of C57 is much better than that of C55 when used alone, the combination of C55 and C57 in a certain ratio is better than that of C57 alone.
  • starch solution (1) Take 465g of deionized water and place it in a magnetic water bath at 97 °C, slowly add 35g of corn starch; (2) Add the quantitative persulfuric acid according to the viscosity (degradability) of the desired starch Ammonium, the ammonium persulfate corresponding to the weight percentage of starch is 0-0.5%; (3) boiling for 40 minutes, and then cooling to 65 ° C, keeping the starch solution at 60 ° C, to obtain 7% "standard" starch solution, Save spare.
  • Starch modification modification reaction and test procedure (1) Take the above prepared 7% starch solution, add deionized water to dilute to a starch concentration of about 1600 mg / L; (2) take 500mL of the prepared concentration of starch solution, placed in a beaker, And put into a constant temperature water bath set at 45 ° C; (3) adding starch binder C14, reaction for 30 minutes, to obtain a modified starch solution; (4) sampling and centrifugation (4000 x g) for 5 minutes, taking the supernatant test Starch content and COD concentration; (5) Add chemical pulp (BKP) to the remaining modified starch solution according to 2.5% pulp solid concentration, keep stirring; (6) react for 10 minutes, centrifuge (4000x g) for 5 minutes. The supernatant was taken to test the starch concentration and COD concentration in the white water.
  • BKP chemical pulp
  • Table 12 compares the retention of starch solutions of different molecular chain lengths formulated with different amounts of oxidizing agents in BKP fibers. It can be seen that all starches including native starch have extremely limited retention ( ⁇ 25%) on the surface of BKP fibers before reaction with starch binder C14, and their dissolved COD is substantially unchanged. However, after modification by the C14 reaction, all starches have a BKP retention rate of more than 80%; since the starch is retained from the solution by adsorption, the remaining starch in the white water is greatly reduced, and the COD concentration is lowered, and the rate of decline is as high as 40- 86%. These data demonstrate that the starch binder of the present invention is highly efficient in removing starch molecules of different sizes, and that the greater the molecular chain length of the starch (the higher the degree of polymerization), the higher the retention efficiency of the starch binder.
  • the original starch solution preparation steps (1) taking a starch sample to prepare a 7% starch solution; (2) heating the starch solution to 95 degrees (° C.), the reaction is stable until the viscosity is reached; (3) cooling to 65 ° C, in a constant temperature water bath Maintain the starch solution.
  • the commercial oxidized starch solution is prepared as above.
  • Oxidized starch solution preparation (1) Take 465g of deionized water and place it in a magnetic water bath at 97 ° C, slowly add 35g of raw starch; (2) add a certain amount of ammonium persulfate, the ammonium persulfate is equivalent to the weight of starch The percentages were 0.5% respectively; (3) boiling for 40 minutes, then cooling to 65 ° C, keeping the starch solution at 60 ° C, and preparing 7% "oxidized starch solution", and storing for later use.
  • This difference may be related to the structure of corn starch and tapioca starch, the former having a higher proportion of amylose (>25%), while the latter generally has a maximum amylose content of only 17%.
  • the amylopectin was broken into amylose, and the oxidized starch itself did not improve the retention rate of BKP.
  • the retention rate of all oxidized starch was greatly improved, especially the tapioca starch.
  • the retention rate increased to 72%, and accordingly, the retention rate of corn starch reached 96%.
  • the retention rate of commercial starch is also greatly improved in BKP retention after reacting with C7.
  • Test procedure for chemical pulp paper (1) Take 300g of bleached chemical pulp, tear it into small pieces, then dilute it to 13% concentration with tap water, soak for 5-10min, pour into PL12-00 high concentration hydraulic pulper , pulping for 15 minutes, remove the broken pulp, save for use; (2) take corn starch according to the standard starch solution preparation method, configure 7% "standard starch solution”800mL; (3) add starch binder as needed, The reaction was carried out for 30 minutes to obtain a modified starch solution; (4) BKP was added to the modified starch solution, and the reaction was stirred for 10 minutes; (5) the slurry was placed in a 30 mL test tube, and after centrifugation, the starch concentration of the supernatant was tested.
  • Table 14 compares the effects of starch binder C14 on starch retention, COD reduction and paper physical properties under various reaction conditions. Taking 1% pulp concentration as an example, under blank conditions (ie, without adding starch, only 15 mg/L of C14), the tensile index and bursting index of the paper are 19.7 mN/g and 1.7 kPa.m 2 / respectively.
  • Formulated corn starch viscosity 30 mPa.S.
  • OCC waste paper pulping and papermaking test steps (1) Take 300g of waste paper, tear it into small pieces, then dilute it to 13% concentration with tap water, soak for 5-10min, pour into PL12-00 type high concentration hydraulic power Pulping machine, pulping for 15 minutes; (2) taking out the broken pulp, adding tap water to 3% concentration, and storing for later use; (3) taking the above 3% OCC puree 800g, adding test reagent (starch binder) reaction 30min; (4) According to the test needs, add synergist Y2 (polydiallyldimethylammonium chloride, PolyDADMAC), stir and mix for 10min; (5) take the slurry and put it in 30mL test tube, centrifuge After the test, the starch concentration and COD content of the supernatant were tested; (6) the remaining slurry was immediately poured into the fiber standard dissociator to dissipate 1500r.
  • synergist Y2 polydiallyldimethylammonium chloride, PolyDADMAC
  • the water was diluted to 0.5% concentration, and the slurry of 0.5% concentration was weighed 730g.
  • Paper sheet forming machine for papermaking paper weight about 100g
  • the paper sample is placed in a constant temperature and humidity chamber at 25 ° C and 50% moisture for 16 hours, and then the paper physical properties and paper starch content are tested. .
  • Figure 13 shows that after the addition of C7 and C14, the paper's tensile index and burst index were significantly improved.
  • OCC waste paper pulping and papermaking test steps (1) Take 300g of waste paper, tear it into small pieces, then add tap water to the desired pulp concentration of 13% concentration, soak for 5-10min, pour into PL12- 00 type high concentration hydraulic pulper, according to the test needs to add starch binder, pulp for 15 minutes; (2) remove the broken pulp, add tap water to 3% concentration, save for use; (3) take the above 3% OCC 800g of puree, add the desired starch binder, then add synergist Y2 (polydiallyldimethylammonium chloride, PolyDADMAC), stir and mix for 10min; (4) take the slurry and put it in 30mL test tube After centrifugation, the starch concentration and COD content of the supernatant were tested; (5) the remaining slurry was immediately poured into the fiber standard dissociator to dissipate 1500r.
  • synergist Y2 polydiallyldimethylammonium chloride, PolyDADMAC
  • the water was diluted to 0.5% concentration, and the 0.5% concentration slurry was weighed. 730g was used for papermaking with a sheet former (paper weight is about 100g); (6) After paper was finished, the paper was placed in a constant temperature and humidity chamber at 25 ° C and 50% moisture for 16 hours, and then the physical properties of the paper were tested. Paper starch content.
  • Example 15 Effect of cationic starch binder on retention of starch, paper strength and paper water resistance during OCC recovery
  • OCC waste paper pulping and papermaking experiment steps (1) Take 300g of waste paper, tear it into small pieces, then dilute it to 13% concentration with tap water, soak for 5-10min, pour into PL12-00 type high concentration hydraulic power Pulping machine, pulping for 15 minutes; (2) taking out the broken pulp, adding tap water to 3% concentration, and storing for later use; (3) taking 800g of the above 3% OCC puree, adding test reagent (starch binder C56, C24, C40, C63) reaction for 30 min; (4) add 500 g / T synergist Y2 (polydiallyldimethylammonium chloride, PolyDADMAC), stir and mix for 10 min; (5) take the slurry and set In the 30mL test tube, the starch concentration and COD content of the supernatant were tested after centrifugation; (6) The remaining slurry was immediately poured into the fiber standard dissociator to dissipate 1500r.
  • test reagent starch binder C56, C24, C
  • the water was diluted to 0.5% concentration and weighed 0.5. 730 g of the slurry of % concentration was paper-made with a sheet former (paper weight was about 100 g); (7) After paper was finished, the paper sample was placed in a constant temperature and humidity chamber at 25 ° C and 50% moisture for 16 hours, and then the paper was tested. Physical properties and paper starch content.
  • the results show that after the modification of the starch binder, the starch in the OCC waste paper can be effectively retained, reducing the COD content of the white water, not only improving the physical strength of the paper, but also greatly reducing the Cobb value of the paper, that is, improving the water resistance of the paper. performance. This is impossible with traditional starch modification technology.
  • Antibacterial/sterilization test Take 50 ml of the slurry which was reacted in the above step in a centrifuge tube After centrifugation at 6000 r/min for 5 min, 15 ml of the supernatant was taken for use; 0.1 ml of the supernatant was applied to the agar medium, uniformly coated, placed in an incubator at 37 ° C for 12 h, and the number of colonies was counted.
  • Table 19 shows several typical test conditions and their test results
  • Fig. 14 is a photograph of growth at 12 hours of bacterial culture (the numbers in the figure correspond to the test numbers in Table 19). It can be seen that the pulp white water contains a large amount of starch and other nutrients, and the bacteria grow rapidly, and the total number of colonies reaches 76. However, bacterial growth was greatly reduced after the addition of the starch binder. Especially when used together with the synergist Y2, bacterial growth is almost completely inhibited.
  • the starch binder of the present invention not only has the effects of modifying starch and retaining starch, but also has a good effect of cleaning, bacteriostatic or sterilizing on the papermaking white water system. When the bacterial growth of the system is effectively controlled, the amylolytic enzymes of white water will also be greatly reduced, thereby further promoting the efficient retention of starch and increasing the yield of waste paper recycling.
  • Pulp production process and paper machine production overview The plant is located in the eastern part of Zhejiang Province, using 100% recycled OCC waste paper to produce universal cattle cardboard with a quantitative range of 140gsm-250gsm, with a daily output of 1300-1500 tons/day.
  • the pulping process is shown in Figure 15.
  • the paper machine has a width of 6600mm, a three-layer net forming device in the wet part, a hard roll press in the pressing part, a shoe press press in the second press, and a film transfer type sizing on the surface of the paper machine.
  • Test arrangement The specific arrangements for this test are as follows:
  • Test product The cationic starch complexing agent used in this test was C19 (industrial grade) in Table 1.
  • Dosing point directly use the chemical metering pump to be added to the pulper, and thoroughly mix with the slurry by the stirring action of the pulper to fully react with the white water and the starch in the pulp.
  • Dosing amount The amount of C19 is in the range of 1000-2000 g/ton of paper. In order to allow the entire test to proceed smoothly, the product addition starts with a low dosage (1000 g/T) and gradually increases the amount during the test, up to 2000 g/T.
  • Test process Half a month before the test (ie before the addition of cationic starch complexing agent), the production process, physical and chemical conditions and paper indicators of the plant were systematically tested and tracked. The test lasted for a total of eight days. During the entire test period, the paper machine produced the same variety, and only the paper weight was different.
  • Test data analysis In order to compare the results before and after the test, the data were statistically analyzed under the conditions that the raw material ratios before and during the test were basically the same.
  • Test results According to the various production data provided by the factory, combined with the white water chemical parameters tracked by this test, systematic statistical analysis was carried out on various changes before and after the test. The main results are shown in Table 20 and Table 21.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明涉及一种改性淀粉及其制备方法和应用,主要由淀粉和阳离子淀粉络合剂制备得到;所述阳离子淀粉络合剂的化学结构由以下部分构成:i)一个或多个疏水基团,其中至少一个疏水基团能与淀粉反应生成包合络合物,和ii)一个或多个亲水基团,其中至少一个亲水基团为阳离子型亲水基团;所述疏水基团与所述亲水基团分别处于同一分子结构的两端并以化学键相连接,形成一种不对称的、极性的结构。将该改性淀粉用于造纸可以大大提高淀粉在纤维表面或纸浆中的吸附率,从而提高淀粉在纸张中的保留率,从而可以提高纸张强度,并且降低甚至消除淀粉在制浆造纸过程中的流失,从而降低COD排放。

Description

改性淀粉及其制备方法和应用 技术领域
本发明涉及造纸以及淀粉改性技术领域,特别是涉及一种改性淀粉及其制备方法和应用。
背景技术
淀粉是一种天然高分子碳水化合物,广泛存在与植物的种子,茎杆或根块中,资源充沛,价格低廉,广泛应用于工业、食品、纺织、造纸、饲料、医药、建筑、钻井等行业。淀粉是造纸上最重要的原料之一。从重量上说,它常常是纸和纸板的第四大组份,仅次于纤维素、无机填料和水分。文化与包装用纸与纸版是淀粉的主要用户。世界上造纸工业淀粉的消费量约为500万吨,按世界造纸与纸版总产量计,淀粉消费量约为其1.6%。
中国的造纸生产在过去三十多年中一直保持高速发展,由于生产原料以废纸和农业废纤维,其强度比一般的木质纤维差,因此,需要加入更多的淀粉以保证纸的质量,所以中国造纸企业需要更多的淀粉。
造纸工艺上使用淀粉有许多益处,最明显的是可以提高纸张与纸张表面的干强度,包括内粘合、抗张强度、耐破度、边缘压溃强度、平压强度、环压强度、折叠度、多层粘合性、挺度,而表面强度则是测定其耐磨度、耐擦性、适印性以及尘埃度等。此外使用淀粉的优点还有:a)增强纸张的纸机运转性能,减少破损;b)增加细料与填料的滞留时间;c)改进滤水性,从而可以提高纸机车速,减少保持纸张性能所需的纤维精制的能耗,从而提高生产率;d)可以使用低价的短纤维,从而降低成本,改进成形性能;e)使用淀粉作乳化剂时可以加强碱性施胶的效果;f)淀粉可以提高造纸过程中纸的湿部稳定性。总之,随着造纸机的不断加宽与车速提高,淀粉的添加使用更日显重要。
对于造纸工艺来说,按照淀粉来源有几种淀粉在造纸上可用。在世界范围内,其排序为:玉米淀粉、木薯淀粉、马铃薯淀粉与小麦淀粉,这四种是造纸上最常用的淀粉来源。考虑价格因素,一般在一定的地区内,都是取资源最丰富的淀粉源来用。例如。在北美,玉米淀粉在造纸工业上用得很多,而木薯淀粉则大量用于东南亚的造纸上。淀粉从其原本植物中分离出来后,以颗粒形式被利用,而淀粉的颗粒形状与大小则取决于其植物来源。淀粉与淀粉之间,糊化温度,容重与直链淀粉的比例等也不相同。
淀粉在造纸工艺中不同部位有不同的使用效果和要求。其主要应用部位如下:
一、湿部添加。湿部添加又称浆内施加,是将蒸煮好的淀粉按照所需的用量加到稀浆盘或浓浆盘中(或分别加入两个盘)。湿部添加淀粉具有如下的效果和优势:
(1)可以改进纸张的强度性能、纸张的干强度(如内粘合、抗张强度度、耐破度、边缘压溃强度、平压强度、环压强度等)。
(2)在碱性造纸工艺中,湿部添加淀粉可以用于纤维涂布反应的乳化剂,如在添加湿强ASA(Alknyl Succineic Anhydride)工艺与AKD(Alkyl Ketene Dimer)工艺中。这里淀粉可以对涂布剂提供一种保护层,防止水解,同时帮助涂布剂分布与进入纤维层。由于可以增强涂布料的滞留时间,淀粉不仅可以改进涂布,还可以减少因涂布料水解造成的沉淀与空洞,提高生产率。
(3)湿部淀粉的使用还可以控制电荷。例如一些工厂使用阳离子淀粉作为凝絮剂,控制系统电荷,保证滞留时间与控制沉淀物。
(4)成形—使用淀粉可以改进纸张的强度性质,从而可以提高纸强度的短纤维的添加比例,使纸张的成形得到改善。从而可以使强度更提高,并使它具有更好的性质。
(5)印刷性能—由于淀粉粘结其他造纸内部填充成份的结果,减少了纸张表面的绒毛、尘粒,使印刷性能得到改善。
(二)喷淋添加。多数情况下,将比例高达纸重的5%的未蒸煮的天然淀粉浆,喷雾在长网纸机生产线上,或加到双层纸版的层间。这种方法特别适用于造纸时不能使用蒸煮器可压力施胶,或是希望通过喷雾向层间加入淀粉并在干燥时糊化以改进多层纸版性能时。淀粉的喷雾应用相对比较简单,可以通过在长网纸机上改变喷雾位置的方法,分别改进其内部或表面强度。
(三)压力施胶应用。大部分造纸用淀粉,占纸张重的3-7%,在这一阶段加入到造纸中。施胶淀粉可以改进其内部与表面强度、不透水性、光滑度、密度、硬度与印刷性能。加入的方法一般是将干燥后的纸张通过两个涂有蒸煮淀粉浆的辊筒加入,目前有浸泡式和膜转移式两种技术。近十多年来,施胶时已经倾向于将计量辊筒上的蒸煮淀粉膜涂到纸页上。由于纸机转速越来越快,要求蒸煮淀粉浆从压力施胶辊上高速转移,就必须采用计量施胶压辊的方法。而且随着纸机速度越来越快,要求淀粉的粘度也要较低。
(四)压光辊上应用。有时,可以在压光工艺时,将淀粉加入纸中进行表面施胶。压光是在干纸或纸版上进行的,通过将纸张通过一组热铁辊,或在软压光时,通过高压的两个压辊,目的是改进其表面光滑度,增加其纸张密度,减少纸张的厚度波动。大部分纸板或厚纸都要经过压光机进行淀粉表面处理,以加强表面的耐磨性,并使表面纤维与颗粒与纸紧密结合,改善印刷性能。使用的蒸煮淀粉的浓度,在进水箱中一般为5%,总淀粉用量一般少于纸张重量的1%。有时,淀粉仅仅用在纸板的一面,以控制纸板的起毛密度,也常常只用于纸板涂布的一面。用于施胶的各种淀粉都可以用于压光。同压力施胶应用相似,纸或纸板在压光加入淀粉后,需要干燥。
(五)涂布淀粉的应用。在涂布工艺中,蒸煮淀粉可作为粘合剂与持水化学剂,在此工艺中,天然或合成的粘结剂、色素与其他添加物用气流刀、计量涂布器或浆叶涂布器,涂布在纸或纸板的表面。涂布淀粉可以改进纸光学与印刷性能,例如亮度、不透明性、光泽性、印刷细度与光度。淀粉本身是一种天然的粘结剂,它可以将色素颗粒粘合在一起,并将这些颗粒粘合在纸张表面。由于蒸煮的淀粉的有粘度,它可以增加容积,帮助分散色素,从而减少涂布颜色的沉淀。在涂布工艺中,淀粉有吸水性能,起到涂平的效果,从而减少了涂布时的不平疤痕。淀粉加到涂布中,可以改进表面与内部的强度,包括硬度,另外,还可以得到上面提到过的美学的与加工工艺上的优点。
目前造纸工业淀粉使用的技术挑战性最大就是湿部淀粉的使用。众所周知,纸浆纤维是带负电荷的,大多数填料也带负电荷,而原生淀粉是基本不带电性的;又由于淀粉的溶解度高,如果湿部淀粉使用原淀粉,淀粉不能与纤维或填料等物质反应,其在纸张中的保留率非常低,大部分淀粉会随着白水流失;另外表胶淀粉在制浆过程中也会因为溶解度高,大部分被溶解或分散在水中。因此使用原生淀粉并不能真正达到造纸工艺上使用淀粉的上述诸多益处。
因此,一种有效的淀粉保留技术对造纸生产具有重大的意义。现有技术中,改进该问题的方法是使用改性淀粉作为作为造纸湿部淀粉,该改性淀粉主要是阳离子淀粉。由于Zeta电位的存在,当在纸浆中添加阳离子淀粉时,受静电引力作用,淀粉吸附到纤维或条链表面,使带负电荷的纸浆电位下降,氢键和范德华力增强,不仅改善了纸张的物理强度,而且细小纤维、填料的留着和浆料滤水状况都得以改善。
现有的阳离子淀粉是用各种含卤代基或环氧基的有机胺类化合物,与淀粉分子中的羟基进行醚化反应而成的一种含有氨基的淀粉醚化衍生物,目前阳离子淀粉的生产一般是用氯化2,3-环氧丙基三甲基铵与淀粉反应制造的。在反应中,淀粉中的羟基上的氢根被化学基团取代,使淀粉带上正电荷。阳离子淀粉的取代度一般为0.01到0.05,也就是说,一百个葡萄糖单元中,最多就是带有5个正电荷的化学基团。而两性淀粉的制造,一般要通过两次变性,即先将淀粉与阳离子反应剂作用,然后再让淀粉与阴离子的磷酸基团作用(多数是用三聚磷酸盐加热反应),这样,这种淀粉上就同时具有阳离子与阴离子基团。
从工艺来看,阳离子淀粉的生产主要有如下四种方法:(1)以水为介质的湿法,(2)干法,(3)半干法,和(4)有机溶剂法。以上这几种方法都有缺点,其中湿法生产的阳离子淀粉不但用水量大,排出的污水对环境造成污染污染大,废水很难处理,而且所使用的碱性化学药剂能导致淀粉降解,转化率低。干法生产是将淀粉与反应化学试剂掺和,干燥至基本无水后在120-150℃反应,虽然污染较少,但缺点是反应转化率低、对设备工艺要求比较高,生产成本较高,生产条件难以控制,淀粉产品容易过糊化,影响产品质量,而且反应周期长,能耗高;有机溶剂法在制备过程中使用大量的水溶性有机溶剂(如甲醇、乙醇、异丙醇等),使淀粉分散在其中形成浆状,并与阳离子化试剂反应制得阳离子淀粉。此法由于使用了大量的有机溶剂,存在着生产成本高,安全性差,容易污染环境等缺点,工业极少使用。因此,造纸工业很需要一种比目前生产方法更具有优势的新型淀粉改性技术。
另外,制浆造纸工业的整个生产过程,包括从备料到成纸、化学品回收、纸张的加工等都需要大量的水,用于输送、洗涤、分散物料及冷却设备等。虽然生产过程中也有回收、处理、再用,但仍有大量的废水排入水体,造成了水环境严重污染。在世界范围内,造纸工业废水是重要的污染源,如日本、美国分别将造纸工业废水列为六大公害和五大公害之一。
目前我国造纸工业废水排放量及COD排放量均居我国各类工业排放量的首位,对水环境的污染不但是我国造纸工业污染防治的首要问题,也是全国工业废水进行达标处理的首要问题。据统计,我国造纸及纸制品工业废水排放量占全国工业总排放量的18.6%,排放废水中COD约占全国工业COD总排放量的44.0%,其中经处理达标排放量占造纸工业废水总排放量的49%。造纸废水COD浓度高,BOD含量大,其处理方法较一般工业废水有所不同,目前,造纸废水的处理方法主要有物理法、化学法、生物法和物理化学法,其中生物法的应用最为广泛,已成为造纸废水二级处理的主要方法之一。
近年来随着对保护森林资源和改善生态的重视,废纸回收行业得到迅猛发展。据中国造纸协会2017年5月出版的“2016年中国造纸年报”,2016年中国纸和纸板总产量为10855万吨,其中包装纸、白板纸、箱板纸和瓦楞纸等四大类工业用纸为6655万吨,占总产量的61%,而且目前这四大类纸产品的生产的原料组成中,回收废纸占80%以上。由于中国这种多次重复利用的废纸品原料所生产的纸张强度低,质量差。为了满足用户对纸张强度和其他性能的需求,一般造纸企业采用淀粉表面施胶,以提高纸和纸板的各种性能指标,包括纸张强度如耐破度、环压强度、抗张强度、耐折度等,透气度、平滑度、印 刷性、抗水性、以及耐脂/耐油性能等。淀粉表面施胶中的淀粉用量在30-80公斤/吨纸。
当这些纸产品再次回收使用时,经过碎纸、净化、筛选、浓缩、贮浆、打浆、上网等工艺流程,产生大量的废水。经分析,废水中的主要污染物主要包括溶解淀粉、半纤维素、木素及其衍生物、细小纤维、无机填料、油墨、染料等污染物。其中,淀粉、木质素及其衍生生物、和半纤维素是形成COD及BOD的主要成分。特别是表胶淀粉,在制浆过程中大部分被溶解或分散在水中,导致废水的高COD浓度。根据国内典型的OCC纸厂生产数据估计,废水COD的30-70%来自于淀粉。这些溶解或胶体淀粉,进一步被来自系统中微生物产生的淀粉酶降解,致使淀粉链变短,甚至成为单糖,很难被纸机湿部添加的固着剂固定在纤维上,从而进一步导致白水中的COD污染浓度增加。目前,中国很多使用OCC生产的企业的造纸排水COD超过10000ppm,i.e.,1%的浓度。此外,被降解的淀粉在白水封闭循环过程中还会增加白水微生物活性,产生更多的VFA,造成纸厂气味污染。
因此,一种有效的淀粉保留和回收的技术对造纸生产具有重大的意义。美国专利US9091024介绍了一种使用次氯酸钠和氯胺来控制淀粉酶的方法。美国专利US8758562介绍了使用弱氧化型杀菌剂溴胺和有机杀菌剂控制微生物的方法,并添加两种不同分子量和电荷密度的固着剂将淀粉固定在纤维上。WO 2012/025228 Al凯米拉介绍了一种使用弱氧化型杀菌剂溴胺和锌离子协同控制微生物和淀粉酶的方法。
但是上述技术均存在一些不足:为防止淀粉链变短,必须充分很有效的控制微生物,防止其分泌淀粉酶,这些方法需要添加大量的杀菌剂,会对后续废水生物处理造成影响。此外,由于造纸白水的淀粉主要来源于表面施胶,其淀粉分子量较低,不带电荷,很难保留到纸张里,从而导致大量的淀粉滞留在制浆和抄纸系统中,这些淀粉不仅作为微生物的营养物质会增加微生物的生长,而且淀粉累计会最终引发“淀粉胶粘物”沉积问题,导致纸病和断头,影响运行效率。
到目前为止,还没有一种真正有效解决造纸白水中溶解淀粉的回收利用问题。而造纸工业非常渴望开发一种经济有效的技术来降低回收纤维利用过程中的淀粉溶解、提高淀粉回收利用率从而降低COD排放这些造纸生产中近百年的难题。
发明内容
基于此,本发明的目的之一在于提供一种新型的淀粉改性技术,同时获得一种新型的改性淀粉。
本发明的目的之二在于利用本发明提供的淀粉改性技术,提供一种新型的造纸方法,以降低造纸废水中的COD排放。
本发明的目的之三在于利用本发明提供的淀粉改性技术,提供一种回收造纸白水中游离淀粉的方法。
一方面,本发明提供了一种新型的改性淀粉,该改性淀粉可以同时获得阳离子化和疏水化的性质,将该改性淀粉用于造纸可以大大提高淀粉在纤维表面或纸浆中的吸附率,从而提高淀粉在纸张中的保留率,从而可以提高纸张强度,并且降低甚至消除淀粉在制浆造纸过程中的流失,从而降低COD排放。
具体技术方案如下:
一种改性淀粉,主要由淀粉和阳离子淀粉络合剂制备得到;
所述阳离子淀粉络合剂的化学结构由以下部分构成:
i)一个或多个疏水基团,其中至少一个疏水基团能与淀粉反应生成包合络合物,和
ii)一个或多个亲水基团,其中至少一个亲水基团为阳离子型亲水基团;
所述疏水基团与所述亲水基团分别处于同一分子结构的两端并以化学键相连接,形成一种不对称的、极性的结构;
所述疏水基团为非极性基团,选自直链脂肪烃基,支链脂肪烃基,芳香烃基,脂肪和芳香混合烃基,以及含氟烃基中的至少一种;
所述亲水基团为极性基团,选自酯基、卤基甲酰基、氨基甲酰基、氰基、醛基、羰基、醚基、醇基、酚基、巯基、硫醚基、胺基、季铵盐、胍基中的至少一种;
并且,所述阳离子淀粉络合剂在水中电离之后生成疏水性阳离子。
在其中一些实施例中,所述阳离子淀粉络合剂在水中电离之后生成的所述疏水性阳离子选自胺盐型阳离子、季铵盐型阳离子、胍盐型阳离子、锍盐型阳离子、磷盐型阳离子、砷盐型阳离子中的至少一种。
在其中一些实施例中,所述阳离子淀粉络合剂选自:胺类化合物或其盐、胍类化合物或其盐、取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐、阳离子锍盐中的至少一种。
在其中一些实施例中,所述胺类化合物或其盐选自:伯胺或其盐、仲胺或其盐、叔胺或其盐、季铵盐、多胺或其盐、多季铵盐、聚合物基取代的脂肪胺或其盐、聚合物基取代的季铵盐中的至少一种;所述聚合物基选自聚环氧乙烷基、聚环氧丙烷基中的至少一种;
所述伯胺的结构式为RNH 2
所述仲胺的结构式为R 1R 2NH;
所述叔胺的构式为R 1R 2NR 3
所述季铵盐的结构式为R 1R 2R 3R 4NX;
所述多胺的结构式为R 5(CH 2CH 2CH 2NR) n H;
所述多季铵盐的结构式为R 5(CH 2CH 2CH 2N(CH 3) 2) n CH 3X n
所述聚合物基取代的脂肪胺的结构式为
Figure PCTCN2019082774-appb-000001
所述聚合物基取代的季铵盐的结构式为
Figure PCTCN2019082774-appb-000002
各R、R 1,R 2,R 3,R 4,R 5分别独立地选自:取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
R 6、R 7和R 8分别独立地选自:H、C1-C4烷基、聚合度大于1的聚环氧乙烷基、聚合度大于1的聚环氧丙烷基,并且R 6、R 7中至少一个选自聚合度大于1的聚环氧乙烷基或聚合度大于1的聚环氧丙烷基;
R 9、R 10分别独立地选自:H、C1-C4烷基;
a选自1-6之间的整数,b选自0-4之间的整数,c=b+1;
n选自不小于1的整数;
X为通过离子键与氮原子相连的阴离子。
在其中一些实施例中,所述R、R 1,R 2,R 3,R 4,R 5分别独立地选自:取代或非取代的C1-C40直链烷基、取代或非取代的C3-C40支链烷基、取代或非取代的C2-C40烯基、取代或非取代的C6-C10芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、C2-C24酯基、苯基、萘基、C1-C20烷氧基取代的萘基、C1-C40烷基、C2-C16烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、C1-C20烷氧基。
在其中一些实施例中,R、R 5分别独立地选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;C10-C20烷基取代的C6-C10芳基;
所述仲胺中的R 1和R 2中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;
所述叔胺中的R 1、R 2和R 3中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;
所述季铵盐中的R 1、R 2、R 3和R 4中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基。
在其中一些实施例中,X选自:卤素阴离子、HSO 4 -、SO 4 2-、CH 3SO 4 -、SCN -、CH 3CO 2 -或OH -
在其中一些实施例中,所述多胺盐结构式中的n选自2-5之间的整数;所述聚环氧乙烷基和聚环氧丙烷基的聚合度分别选自1-30之间的整数。
在其中一些实施例中,所述聚环氧乙烷基和聚环氧丙烷基的聚合度分别选自1-15之间的整数。
所述胍类化合物或其盐选自:单胍或其盐、双胍或其盐、多胍或其盐中的至少一种;
所述单胍的结构式为:
Figure PCTCN2019082774-appb-000003
所述单胍盐的结构式为:
Figure PCTCN2019082774-appb-000004
所述双胍的结构式为:
Figure PCTCN2019082774-appb-000005
所述多胍的结构式为:
Figure PCTCN2019082774-appb-000006
式中R、R 1、R 2、R 3、R 4、R 5、R 6分别独立地选自:氢、取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基,并且所述胍类化合物的每个结构式中至少有一个取代基的碳原子数大于6;
Z选自:取代或非取代的亚烷基、取代或非取代的芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基和取代或非取代的亚烷基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
X为通过离子键与氮原子相连的阴离子。
在其中一些实施例中,所述单胍中的R、R 1、R 2、R 3和R 4中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
所述单胍盐中的R、R 1、R 2、R 3和R 4中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C7-C10芳基,其余几个均为氢;
所述双胍或其盐中的R、R 1、R 2、R 3、R 4、R 5和R 6中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
所述多胍或其盐中的R、R 1、R 2、R 3、R 4、R 5和R 6中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
Z选自:C1-C8亚烷基;
X选自:卤素阴离子、HSO 4 -、SO 4 2-、CH 3SO 4 -、CH 3CO 2 -或OH -
在其中一些实施例中,所述阳离子锍盐的结构式为R 1R 2R 3SX,其中R 1,R 2,R 3分别独立地选自:取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
X为通过离子键与硫原子相连的阴离子。
在其中一些实施例中,所述阳离子锍盐中的R 1、R 2和R 3中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基。
在其中一些实施例中,所述杂环烃选自:四氢吡咯、吗啉、哌嗪、二氢咪唑中的至少一种;
所述杂环芳烃选自:吡啶、咪唑、1,3,5-三嗪、达嗪、嘧啶、吡嗪、喹啉、吡咯中的至少一种;
所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:烷氧基、酯基、酰胺基、苯基、烷基、羟基取代的烷基,烯基取代的烷基、卤素取代的烷基、烷氧基取代的烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、胺基。
在其中一些实施例中,所述杂环烃选自:四氢吡咯、吗啉、二氢咪唑中的至少一种;所述杂环芳烃选自:吡啶、喹啉、咪唑和1,3,5-三嗪中的至少一种;
所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:C1-C20烷基、C1-C20烷氧基、C1-C6烷基取代的胺基、羟基取代的C1-C20烷基、C2-C20烯基取代的C1-C20烷基、C1-C20烷氧基取代的C1-C20烷基。
在其中一些实施例中,所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:C10-C20烷基、C10-C20烷氧基。
在其中一些实施例中,所述阳离子淀粉络合剂选自如下化合物中的至少一种:十六烷基三甲基氯化铵、十二烷基三甲基氯化铵、十八胺、油胺、十六胺、十八烷基三甲基氯化铵、氯化十六烷基吡啶、十八烷基-N,N-二甲基苄基氯化铵、油基-N,N-二甲基苄基氯化铵、十八烷基甲基氯化铵、苄基十六烷基二甲基氯化铵、二十二胺、牛脂基胺、牛脂基丙撑二胺、牛脂基甲基丙撑二胺、N-牛脂基-N,N,N’,N’,N’五甲基丙撑二铵盐酸、双丙胺-牛脂基叔胺、硬脂酸乙烷基-N,N,N’,N’,N’五甲基丙撑二铵盐酸、油基1,3丙撑二胺、N-油基丙撑1,3三胺、双十八烷基二甲基氯化铵、氯化苄乙氧铵、十四烷基三甲基硅氧氯化铵、二甲基十八烷基[3-(三甲氧基硅基)丙基]氯化铵、三十二烷基胺、三十二烷基三甲基氯化铵、十二烷氧基丙胺、十二烷氧基-1,3-丙撑二胺、十二烷基-二丙胺基仲胺、十二烷基-N,N,-双(三聚合氧化乙烯)氯化铵、十八烷基-N,N,-双(三聚合氧化乙烯)氯化铵、N-牛脂基-N,N’,N’—三(聚氧乙烯)丙撑二胺、双丙胺-牛脂基叔胺、巯基-十六胺酸盐、巯基-十一烷基三甲基溴化铵、邻位油基-丙羟基-咪唑、十八烷基咪唑、1-十二烷基-3-甲基咪唑碘化物、癸基甲基氯化咪唑、1,3-二癸基-2-甲基氯咪唑啉、N-牛脂氧基-N,N’,N’—二(聚氧乙烯)-甲基丙基氯化铵、3-氨基-1-丙醇双(十六烷氧醚)、十八烷氧基吡啶、十八烷氧基氯化苯胺、N-苯甲基-N,N-二甲基-十八烷氧基-氧化乙醇氯化铵、2-十八烷氧基-N,N,N-三甲基-2-氧化乙醇氯化铵、N,N’-二乙基-6-十八烷氧基-(1,3,5)三嗪-2,4-二胺、3-(2-十八烷氧基-1-萘基)丙胺、1-(2-十二烷氧基)乙基吡咯盐酸、2-(2-十二烷氧基)丙氧基丙胺、4-十二烷氧基苯、1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-二十一氟葵胺、5,5,6,6,7,7,8,8,9,9,10,10,10-十一氟葵胺、双十八烷基二甲基羟丙基多铵、十八烷基-N,N,N-甲基双(聚合氧化丙烯)氯化铵、N,N,N,N’,N’—甲基-三(聚氧乙烯)丙撑二胺十八烷基季铵盐酸、十二烷基胍盐酸盐、十二烷基N,N’-丙撑二胺-双规盐酸盐、十三烷基2,4-甲基吗啉、十二烷基苯胺、十四烷基喹啉盐酸、1-十八烷基双胍单盐酸盐、奥替尼啶双盐酸盐、月桂基羟乙基咪唑啉。
在其中一些实施例中,所述淀粉选自:玉米淀粉、木薯淀粉、红薯淀粉、小麦淀粉、氧化改性的淀粉中至少一种;所述氧化改性的淀粉为氧化改性的玉米淀粉、氧化改性的木薯淀粉、氧化改性的红薯淀粉或氧化改性的小麦淀粉。
在其中一些实施例中,所述氧化改性的淀粉的制备方法包括以下步骤:取淀粉配制成水溶液,加热至80-100℃,加入过硫酸铵反应至粘度达到稳定,再降温至60-70℃,即得。
在其中一些实施例中,所述淀粉与所述阳离子淀粉络合剂的质量比为1-200:1。
在其中一些实施例中,所述淀粉与所述阳离子淀粉络合剂的质量比为20-120:1。
在其中一些实施例中,所述淀粉与所述阳离子淀粉络合剂的质量比为20-60:1。
在其中一些实施例中,所述淀粉与所述阳离子淀粉络合剂的质量比为20-36:1。
在其中一些实施例中,所述的改性淀粉的制备原料中还包括增效剂,所述增效剂能够将细小纤维或纸浆中其它物质(如填料、矿物、施胶剂等)通过絮凝作用(flocculation)使这些物质聚合在一起,增加相互之间的作用,提高在纸机上的保留。增效剂的种类很多,根据其结构和物性可分为无机物和有机高分子聚合物,其中无机聚合物主要是聚合氯化铝(Polyaluminium  chloride,PAC)、聚合硫酸铝和聚合硫酸铁等;有机高分子聚合物的增效剂包括聚合有机铵盐类阳离子高聚物(例如聚二烯丙基二甲基氯化铵,PolyDADMAC)、聚氧乙烯(PEO)和聚丙烯酰胺(PAM)类非离子高聚物、以及聚丙烯酰胺-聚丙烯酸类阴离子共聚物。
在其中一些实施例中,所述增效剂与所述阳离子淀粉络合剂的质量比为1:1-35。
另一方面,本发明还提供了上述改性淀粉的制备方法。该制备方法不仅工艺简单,无三废(废水、废气和固废)污染,能极大改善淀粉改性的环保效益,而且成本低,易于在造纸现场制备,解决了目前改性淀粉生产技术的诸多缺点。该制备方法的制备过程非常简单,在现有淀粉蒸煮完成之后,或者在含有淀粉的白水/纸浆中,直接加入本发明所述的淀粉结合剂,反应一定时间即得到改性淀粉;因此,本淀粉改性技术无需专门的地方放置改性的制作设备,也不需要特别的反应剂或助剂(如含卤素有机溶剂等)或严厉的反应条件(如高温高压,高碱性等等),不仅制备成本低,绿色环保,而且可以在造纸现场制备,无需大型设备投资。
具体技术方案如下:
一种上述的改性淀粉的制备方法,包括如下步骤:
配制淀粉水溶液;
在所述淀粉水溶液中加入所述阳离子淀粉络合剂进行反应,即得。
在其中一些实施例中,所述改性淀粉的制备方法,包括如下步骤:
配制淀粉水溶液;
在所述淀粉水溶液中加入所述阳离子淀粉络合剂进行反应,得反应溶液;
在所述反应溶液中加入增效剂,混匀,即得。
在其中一些实施例中,所述淀粉水溶液中的淀粉浓度为300-3200mg/L。
在其中一些实施例中,所述反应的温度为10-90℃。
在其中一些实施例中,所述反应的时间为1min-20h。
在其中一些实施例中,所述反应的时间为5min-1h。
在其中一些实施例中,所述反应的pH为4-11。
在其中一些实施例中,所述反应的pH为5-7。
第三个方面,本发明还提供了上述改性淀粉或阳离子淀粉络合剂的应用。
具体技术方案如下:
上述的阳离子淀粉络合剂在回收造纸废水中的游离淀粉中的应用。
上述的阳离子淀粉络合剂在降低造纸废水的COD浓度中的应用。
上述的阳离子淀粉络合剂在造纸生产中作为清洁剂或者杀菌剂的应用。
上述的阳离子淀粉络合剂在对淀粉进行改性中的应用。
上述的阳离子淀粉络合剂在造纸生产中作为纸张强度增强剂的应用。
上述的改性淀粉在造纸生产中作为纸张强度增强剂的应用。
第四个方面,本发明还利用上述改性淀粉或阳离子淀粉络合剂,提供了一种新型的造纸方法。该造纸方法可以提高淀粉在纤维表面或纸浆中的吸附率,从而提高淀粉在纸张中的保留率,从而降低甚至消除淀粉在制浆造纸过程中的流失,从而降低COD排放,从源头上解决造纸废水处理的问题。并且该方法可以有效降低回收纸浆或纤维在造纸利用过程中的淀粉溶解、提高淀粉回收利用率。
具体技术方案如下:
一种造纸方法,所述造纸方法包括如下步骤:
a)在含有淀粉的制浆白水或者淀粉水溶液中加入阳离子淀粉络合剂进行反应,得改性淀粉溶液;
b)在所述改性淀粉溶液中加入纤维或纸浆,搅拌,进行吸附反应,得反应后的浆料;
c)将所述反应后的浆料制备成纸产品;
或者所述造纸方法包括如下步骤:
1)在含有淀粉的造纸浆料中加入阳离子淀粉络合剂进行反应,得反应后的浆料;
2)将所述反应后的浆料制备成纸产品;
所述阳离子淀粉络合剂的化学结构由以下部分构成:
i)一个或多个疏水基团,其中至少一个疏水基团能与淀粉反应生成包合络合物,和
ii)一个或多个亲水基团,其中至少一个亲水基团为阳离子型亲水基团;
所述疏水基团与所述亲水基团分别处于同一分子结构的两端并以化学键相连接,形成一种不对称的、极性的结构;
所述疏水基团为非极性基团,选自直链脂肪烃基,支链脂肪烃基,芳香烃基,脂肪和芳香混合烃基,以及含氟烃基中的至少一种;
所述亲水基团为极性基团,选自酯基、卤基甲酰基、氨基甲酰基、氰基、醛基、羰基、醚基、醇基、酚基、巯基、硫醚基、胺基、季铵盐、胍基中的至少一种;
并且,所述阳离子淀粉络合剂在水中电离之后生成疏水性阳离子。
在其中一些实施例中,所述阳离子淀粉络合剂在水中电离之后生成的所述疏水性阳离子选自胺盐型阳离子、季铵盐型阳离子、胍盐型阳离子、锍盐型阳离子、磷盐型阳离子、砷盐型阳离子中的至少一种。
在其中一些实施例中,所述阳离子淀粉络合剂选自:胺类化合物或其盐、胍类化合物或其盐、取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐、阳离子锍盐中的至少一种。
在其中一些实施例中,所述胺类化合物或其盐选自:伯胺或其盐、仲胺或其盐、叔胺或其盐、季铵盐、多胺或其盐、多季铵盐、聚合物基取代的脂肪胺或其盐、聚合物基取代的季铵盐中的至少一种;所述聚合物基选自聚环氧乙烷基、聚环氧丙烷基中的至少一种;
所述伯胺的结构式为RNH 2
所述仲胺的结构式为R 1R 2NH;
所述叔胺的构式为R 1R 2NR 3
所述季铵盐的结构式为R 1R 2R 3R 4NX;
所述多胺的结构式为R 5(CH 2CH 2CH 2NR) n H;
所述多季铵盐的结构式为R 5(CH 2CH 2CH 2N(CH 3) 2) n CH 3X n
所述聚合物基取代的脂肪胺的结构式为
Figure PCTCN2019082774-appb-000007
所述聚合物基取代的季铵盐的结构式为
Figure PCTCN2019082774-appb-000008
各R、R 1,R 2,R 3,R 4,R 5分别独立地选自:取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
R 6、R 7和R 8分别独立地选自:H、C1-C4烷基、聚合度大于1的聚环氧乙烷基、聚合度大于1的聚环氧丙烷基,并且R 6、R 7中至少一个选自聚合度大于1的聚环氧乙烷基或聚合度大于1的聚环氧丙烷基;
R 9、R 10分别独立地选自:H、C1-C4烷基;
a选自1-6之间的整数,b选自0-4之间的整数,c=b+1;
n选自不小于1的整数;
X为通过离子键与氮原子相连的阴离子。
在其中一些实施例中,所述R、R 1,R 2,R 3,R 4,R 5分别独立地选自:取代或非取代的C1-C40直链烷基、取代或非取代的C3-C40支链烷基、取代或非取代的C2-C40烯基、取代或非取代的C6-C10芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、C2-C24酯基、苯基、萘基、C1-C20烷氧基取代的萘基、C1-C40烷基、C2-C16烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、C1-C20烷氧基。
在其中一些实施例中,R、R 5分别独立地选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;C10-C20烷基取代的C6-C10芳基;
所述仲胺中的R 1和R 2中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;
所述叔胺中的R 1、R 2和R 3中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;
所述季铵盐中的R 1、R 2、R 3和R 4中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基。
在其中一些实施例中,X选自:卤素阴离子、HSO 4 -、SO 4 2-、CH 3SO 4 -、SCN -、CH 3CO 2 -或OH -
在其中一些实施例中,所述多胺盐结构式中的n选自2-5之间的整数;所述聚环氧乙烷基和聚环氧丙烷基的聚合度分别选自1-30之间的整数。
在其中一些实施例中,所述聚环氧乙烷基和聚环氧丙烷基的聚合度分别选自1-15之间的整数。
所述胍类化合物或其盐选自:单胍或其盐、双胍或其盐、多胍或其盐中的至少一种;
所述单胍的结构式为:
Figure PCTCN2019082774-appb-000009
所述单胍盐的结构式为:
Figure PCTCN2019082774-appb-000010
所述双胍的结构式为:
Figure PCTCN2019082774-appb-000011
所述多胍的结构式为:
Figure PCTCN2019082774-appb-000012
式中R、R 1、R 2、R 3、R 4、R 5、R 6分别独立地选自:氢、取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基,并且所述胍类化合物的每个结构式中至少有一个取代基的碳原子数大于6;
Z选自:取代或非取代的亚烷基、取代或非取代的芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基和取代或非取代的亚烷基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、 烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
X为通过离子键与氮原子相连的阴离子。
在其中一些实施例中,所述单胍中的R、R 1、R 2、R 3和R 4中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
所述单胍盐中的R、R 1、R 2、R 3和R 4中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C7-C10芳基,其余几个均为氢;
所述双胍或其盐中的R、R 1、R 2、R 3、R 4、R 5和R 6中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
所述多胍或其盐中的R、R 1、R 2、R 3、R 4、R 5和R 6中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
Z选自:C1-C8亚烷基;
X选自:卤素阴离子、HSO 4 -、SO 4 2-、CH 3SO 4 -、CH 3CO 2 -或OH -
在其中一些实施例中,所述阳离子锍盐的结构式为R 1R 2R 3SX,其中R 1,R 2,R 3分别独立地选自:取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
X为通过离子键与硫原子相连的阴离子。
在其中一些实施例中,所述阳离子锍盐中的R 1、R 2和R 3中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基。
在其中一些实施例中,所述杂环烃选自:四氢吡咯、吗啉、哌嗪、二氢咪唑中的至少一种;
所述杂环芳烃选自:吡啶、咪唑、1,3,5-三嗪、达嗪、嘧啶、吡嗪、喹啉、吡咯中的至少一种;
所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:烷氧基、酯基、酰胺基、苯基、烷基、羟基取代的烷基,烯基取代的烷基、卤素取代的烷基、烷氧基取代的烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、胺基。
在其中一些实施例中,所述杂环烃选自:四氢吡咯、吗啉、二氢咪唑中的至少一种;所述杂环芳烃选自:吡啶、喹啉、咪唑和1,3,5-三嗪中的至少一种;
所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:C1-C20烷基、C1-C20烷氧基、C1-C6烷基取代的胺基、羟基取代的C1-C20烷基、C2-C20烯基取代的C1-C20烷基、C1-C20烷氧基取代的C1-C20烷基。
在其中一些实施例中,所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:C10-C20烷基、C10-C20烷氧基。
在其中一些实施例中,所述阳离子淀粉络合剂选自如下化合物中的至少一种:十六烷基三甲基氯化铵、十二烷基三甲基氯化铵、十八胺、油胺、十六胺、十八烷基三甲基氯化铵、氯化十六烷基吡啶、十八烷基-N,N-二甲基苄基氯化铵、油基-N,N-二甲基苄基氯化铵、十八烷基甲基氯化铵、苄基十六烷基二甲基氯化铵、二十二胺、牛脂基胺、牛脂基丙撑二胺、牛脂基甲基丙撑二胺、N-牛脂基-N,N,N’,N’,N’五甲基丙撑二铵盐酸、双丙胺-牛脂基叔胺、硬脂酸乙烷基-N,N,N’,N’,N’五甲基丙撑二铵盐酸、油基1,3丙撑二胺、N-油基丙撑1,3三胺、双十八烷基二甲基氯化铵、氯化苄乙氧铵、十四烷基三甲基硅氧氯化铵、二甲基十八烷基[3-(三甲氧基硅基)丙基]氯化铵、三十二烷基胺、三十二烷基三甲基氯化铵、十二烷氧基丙胺、十二烷氧基-1,3-丙撑二胺、十二烷基-二丙胺基仲胺、十二烷基-N,N,-双(三聚合氧化乙烯)氯化铵、十八烷基-N,N,-双(三聚合氧化乙烯)氯化铵、N-牛脂基-N,N’,N’—三(聚氧乙烯)丙撑二胺、双丙胺-牛脂基叔胺、巯基-十六胺酸盐、巯基-十一烷基三甲基溴化铵、邻位油基-丙羟基-咪唑、十八烷基咪唑、1-十二烷基-3-甲基咪唑碘化物、癸基甲基氯化咪唑、1,3-二癸基-2-甲基氯咪唑啉、N-牛脂氧基-N,N’,N’—二(聚氧乙烯)-甲基丙基氯化铵、3-氨基-1-丙醇双(十六烷氧醚)、十八烷氧基吡啶、十八烷氧基氯化苯胺、N-苯甲基-N,N-二甲基-十八烷氧基-氧化乙醇氯化铵、2-十八烷氧基-N,N,N-三甲基-2-氧化乙醇氯化铵、N,N’-二乙基-6-十八烷氧基-(1,3,5)三嗪-2,4-二胺、3-(2-十八烷氧基-1-萘基)丙胺、1-(2-十二烷氧基)乙基吡咯盐酸、2-(2-十二烷氧基)丙氧基丙胺、4-十二烷氧基苯、1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-二十一氟葵胺、5,5,6,6,7,7,8,8,9,9,10,10,10-十一氟葵胺、双十八烷基二甲基羟丙基多铵、十八烷基-N,N,N-甲基双(聚合氧化丙烯)氯化铵、N,N,N,N’,N’—甲基-三(聚氧乙烯)丙撑二胺十八烷基季铵盐酸、十二烷基胍盐酸盐、十二烷基N,N’-丙撑二胺-双规盐酸盐、十三烷基2,4-甲基吗啉、十二烷基苯 胺、十四烷基喹啉盐酸、1-十八烷基双胍单盐酸盐、奥替尼啶双盐酸盐、月桂基羟乙基咪唑啉。
在其中一些实施例中,所述淀粉选自:玉米淀粉、木薯淀粉、红薯淀粉、小麦淀粉、氧化改性的淀粉中的至少一种;所述氧化改性的淀粉为氧化改性的玉米淀粉、氧化改性的木薯淀粉、氧化改性的红薯淀粉或氧化改性的小麦淀粉。
在其中一些实施例中,所述氧化改性的淀粉的制备方法包括以下步骤:取淀粉配制成水溶液,加热至80-100℃,加入淀粉氧化剂或淀粉酶反应至粘度达到稳定,再降温至60-70℃,即得。
在其中一些实施例中,所述淀粉水溶液中的淀粉与所述阳离子淀粉络合剂的质量比为1-200:1。
在其中一些实施例中,所述淀粉水溶液中的淀粉与所述阳离子淀粉络合剂的质量比为20-120:1。
在其中一些实施例中,所述淀粉水溶液中的淀粉与所述阳离子淀粉络合剂的质量比为20-60:1。
在其中一些实施例中,所述淀粉水溶液中的淀粉与所述阳离子淀粉络合剂的质量比为20-36:1。
在其中一些实施例中,所述淀粉水溶液中的淀粉浓度为300-3200mg/L。
在其中一些实施例中,所述反应后的浆料中纤维或纸浆的固体浓度为1%-10%。
在其中一些实施例中,所述阳离子淀粉络合剂与所述纤维或纸浆的干重的重量比为0.02-20kg/T。
在其中一些实施例中,所述阳离子淀粉络合剂与所述纤维或纸浆的干重的重量比为0.15-2kg/T。
在其中一些实施例中,所述造纸方法还包括加入增效剂的步骤,具体包括:
a)在含有淀粉的制浆白水或者淀粉水溶液中加入阳离子淀粉络合剂进行反应,得改性淀粉溶液;
b)在所述改性淀粉溶液中加入增效剂,混匀,再加入纤维或纸浆,搅拌,进行吸附反应,得反应后的浆料;
c)将所述反应后的浆料制备成纸产品;
或者所述造纸方法包括如下步骤:
1)在含有淀粉的造纸浆料中加入阳离子淀粉络合剂和增效剂进行反应,得反应后的浆料;
2)将所述反应后的浆料制备成纸产品;
所述增效剂选自:聚合氯化铝、聚合硫酸铝、聚合硫酸铁、聚二烯丙基二甲基氯化铵、聚氧乙烯、聚丙烯酰胺和聚丙烯酰胺-聚丙烯酸类阴离子共聚物中的至少一种。
在其中一些实施例中,所述增效剂与所述阳离子淀粉络合剂的质量比为1:1-35。
在其中一些实施例中,所述增效剂与所述阳离子淀粉络合剂的质量比为1:2-10。
在其中一些实施例中,步骤a)所述反应的温度为10-90℃,步骤b)所述吸附反应的温度为10-90℃,步骤1)所述反应的温度为10-90℃。
在其中一些实施例中,步骤a)所述反应的时间为1min-20h。
在其中一些实施例中,步骤a)所述反应的时间为5min-1h。
在其中一些实施例中,步骤b)所述反应的时间为1min-120min。
在其中一些实施例中,步骤b)所述反应的时间为5min-30min。
在其中一些实施例中,步骤a)和步骤b)所述反应的pH为4-11。
在其中一些实施例中,步骤a)和步骤b)所述反应的pH为5-7。
第五个方面,本发明还提供了一种回收造纸白水中游离淀粉的方法。该方法可以有效降低造纸白水中的游离淀粉含量,从而降低造纸废水的COD排放量。
具体技术方案如下:
一种回收造纸白水中游离淀粉的方法,包括步骤(a):使阳离子淀粉络合剂与造纸白水中的游离淀粉进行反应以使所述游离淀粉发生改性;
所述阳离子淀粉络合剂的化学结构由以下部分构成:
所述阳离子淀粉络合剂的化学结构由以下部分构成:
i)一个或多个疏水基团,其中至少一个疏水基团能与淀粉反应生成包合络合物,和
ii)一个或多个亲水基团,其中至少一个亲水基团为阳离子型亲水基团;
所述疏水基团与所述亲水基团分别处于同一分子结构的两端并以化学键相连接,形成一种不对称的、极性的结构;
所述疏水基团为非极性基团,选自直链脂肪烃基,支链脂肪烃基,芳香烃基,脂肪和芳香混合烃基,以及含氟烃基中的至少一种;
所述亲水基团为极性基团,选自酯基、卤基甲酰基、氨基甲酰基、氰基、醛基、羰基、醚基、醇基、酚基、巯基、硫醚基、胺基、季铵盐、胍基中的至少一种;
并且,所述阳离子淀粉络合剂在水中电离之后生成疏水性阳离子。
在其中一些实施例中,所述阳离子淀粉络合剂在水中电离之后生成的所述疏水性阳离子选自胺盐型阳离子、季铵盐型阳离子、胍盐型阳离子、锍盐型阳离子、磷盐型阳离子、砷盐型阳离子中的至少一种。
在其中一些实施例中,所述阳离子淀粉络合剂选自:胺类化合物或其盐、胍类化合物或其盐、取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐、阳离子锍盐中的至少一种。
在其中一些实施例中,所述胺类化合物或其盐选自:伯胺或其盐、仲胺或其盐、叔胺或其盐、季铵盐、多胺或其盐、多季铵盐、聚合物基取代的脂肪胺或其盐、聚合物基取代的季铵盐中的至少一种;所述聚合物基选自聚环氧乙烷基、聚环氧丙烷基中的至少一种;
所述伯胺的结构式为RNH 2
所述仲胺的结构式为R 1R 2NH;
所述叔胺的构式为R 1R 2NR 3
所述季铵盐的结构式为R 1R 2R 3R 4NX;
所述多胺的结构式为R 5(CH 2CH 2CH 2NR) n H;
所述多季铵盐的结构式为R 5(CH 2CH 2CH 2N(CH 3) 2) n CH 3X n
所述聚合物基取代的脂肪胺的结构式为
Figure PCTCN2019082774-appb-000013
所述聚合物基取代的季铵盐的结构式为
Figure PCTCN2019082774-appb-000014
各R、R 1,R 2,R 3,R 4,R 5分别独立地选自:取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
R 6、R 7和R 8分别独立地选自:H、C1-C4烷基、聚合度大于1的聚环氧乙烷基、聚合度大于1的聚环氧丙烷基,并且R 6、R 7中至少一个选自聚合度大于1的聚环氧乙烷基或聚合度大于1的聚环氧丙烷基;
R 9、R 10分别独立地选自:H、C1-C4烷基;
a选自1-6之间的整数,b选自0-4之间的整数,c=b+1;
n选自不小于1的整数;
X为通过离子键与氮原子相连的阴离子。
在其中一些实施例中,所述R、R 1,R 2,R 3,R 4,R 5分别独立地选自:取代或非取代的C1-C40直链烷基、取代或非取代的C3-C40支链烷基、取代或非取代的C2-C40烯基、取代或非取代的C6-C10芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、C2-C24酯基、苯基、萘基、C1-C20烷氧基取代的萘基、C1-C40烷基、C2-C16烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、C1-C20烷氧基。
在其中一些实施例中,R、R 5分别独立地选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;C10-C20烷基取代的C6-C10芳基;
所述仲胺中的R 1和R 2中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;
所述叔胺中的R 1、R 2和R 3中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20 烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;
所述季铵盐中的R 1、R 2、R 3和R 4中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基。
在其中一些实施例中,X选自:卤素阴离子、HSO 4 -、SO 4 2-、CH 3SO 4 -、SCN -、CH 3CO 2 -或OH -
在其中一些实施例中,所述多胺盐结构式中的n选自2-5之间的整数;所述聚环氧乙烷基和聚环氧丙烷基的聚合度分别选自1-30之间的整数。
在其中一些实施例中,所述聚环氧乙烷基和聚环氧丙烷基的聚合度分别选自1-15之间的整数。
所述胍类化合物或其盐选自:单胍或其盐、双胍或其盐、多胍或其盐中的至少一种;
所述单胍的结构式为:
Figure PCTCN2019082774-appb-000015
所述单胍盐的结构式为:
Figure PCTCN2019082774-appb-000016
所述双胍的结构式为:
Figure PCTCN2019082774-appb-000017
所述多胍的结构式为:
Figure PCTCN2019082774-appb-000018
式中R、R 1、R 2、R 3、R 4、R 5、R 6分别独立地选自:氢、取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基,并且所述胍类化合物的每个结构式中至少有一个取代基的碳原子数大于6;
Z选自:取代或非取代的亚烷基、取代或非取代的芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基和取代或非取代的亚烷基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
X为通过离子键与氮原子相连的阴离子。
在其中一些实施例中,所述单胍中的R、R 1、R 2、R 3和R 4中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
所述单胍盐中的R、R 1、R 2、R 3和R 4中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C7-C10芳基,其余几个均为氢;
所述双胍或其盐中的R、R 1、R 2、R 3、R 4、R 5和R 6中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
所述多胍或其盐中的R、R 1、R 2、R 3、R 4、R 5和R 6中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
Z选自:C1-C8亚烷基;
X选自:卤素阴离子、HSO 4 -、SO 4 2-、CH 3SO 4 -、CH 3CO 2 -或OH -
在其中一些实施例中,所述阳离子锍盐的结构式为R 1R 2R 3SX,其中R 1,R 2,R 3分别独立地选自:取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基;
所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
X为通过离子键与硫原子相连的阴离子。
在其中一些实施例中,所述阳离子锍盐中的R 1、R 2和R 3中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基。
在其中一些实施例中,所述杂环烃选自:四氢吡咯、吗啉、哌嗪、二氢咪唑中的至少一种;
所述杂环芳烃选自:吡啶、咪唑、1,3,5-三嗪、达嗪、嘧啶、吡嗪、喹啉、吡咯中的至少一种;
所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:烷氧基、酯基、酰胺基、苯基、烷基、羟基取代的烷基,烯基取代的烷基、卤素取代的烷基、烷氧基取代的烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、胺基。
在其中一些实施例中,所述杂环烃选自:四氢吡咯、吗啉、二氢咪唑中的至少一种;所述杂环芳烃选自:吡啶、喹啉、咪唑和1,3,5-三嗪中的至少一种;
所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:C1-C20烷基、C1-C20烷氧基、C1-C6烷基取代的胺基、羟基取代的C1-C20烷基、C2-C20烯基取代的C1-C20烷基、C1-C20烷氧基取代的C1-C20烷基。
在其中一些实施例中,所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:C10-C20烷基、C10-C20烷氧基。
在其中一些实施例中,所述阳离子淀粉络合剂选自如下化合物中的至少一种:十六烷基三甲基氯化铵、十二烷基三甲基氯化铵、十八胺、油胺、十六胺、十八烷基三甲基氯化铵、氯化十六烷基吡啶、十八烷基-N,N-二甲基苄基氯化铵、油基-N,N-二甲基苄基氯化铵、十八烷基甲基氯化铵、苄基十六烷基二甲基氯化铵、二十二胺、牛脂基胺、牛脂基丙撑二胺、牛脂基甲基丙撑二胺、N-牛脂基-N,N,N’,N’,N’五甲基丙撑二铵盐酸、双丙胺-牛脂基叔胺、硬脂酸乙烷基-N,N,N’,N’,N’五甲基丙撑二铵盐酸、油基1,3丙撑二胺、N-油基丙撑1,3三胺、双十八烷基二甲基氯化铵、氯化苄乙氧铵、十四烷基三甲基硅氧氯化铵、二甲基十八烷基[3-(三甲氧基硅基)丙基]氯化铵、三十二烷基胺、三十二烷基三甲基氯化铵、十二烷氧基丙胺、十二烷氧基-1,3-丙撑二胺、十二烷基-二丙胺基仲胺、十二烷基-N,N,-双(三聚合氧化乙烯)氯化铵、十八烷基-N,N,-双(三聚合氧化乙烯)氯化铵、N-牛脂基-N,N’,N’—三(聚氧乙烯)丙撑二胺、双丙胺-牛脂基叔胺、巯基-十六胺酸盐、巯基-十一烷基三甲基溴化铵、邻位油基-丙羟基-咪唑、十八烷基咪唑、1-十二烷基-3-甲基咪唑碘化物、癸基甲基氯化咪唑、1,3-二癸基-2-甲基氯咪唑啉、N-牛脂氧基-N,N’,N’—二(聚氧乙烯)-甲基丙基氯化铵、3-氨基-1-丙醇双(十六烷氧醚)、十八烷氧基吡啶、十八烷氧基氯化苯胺、N-苯甲基-N,N-二甲基-十八烷氧基-氧化乙醇氯化铵、2-十八烷氧基-N,N,N-三甲基-2-氧化乙醇氯化铵、N,N’-二乙基-6-十八烷氧基-(1,3,5)三嗪-2,4-二胺、3-(2-十八烷氧基-1-萘基)丙胺、1-(2-十二烷氧基)乙基吡咯盐酸、2-(2-十二烷氧基)丙氧基丙胺、4-十二烷氧基苯、1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-二十一氟葵胺、5,5,6,6,7,7,8,8,9,9,10,10,10-十一氟葵胺、双十八烷基二甲基羟丙基多铵、十八烷基-N,N,N-甲基双(聚合氧化丙烯)氯化铵、N,N,N,N’,N’—甲基-三(聚氧乙烯)丙撑二胺十八烷基季铵盐酸、十二烷基胍盐酸盐、十二烷基N,N’-丙撑二胺-双规盐酸盐、十三烷基2,4-甲基吗啉、十二烷基苯胺、十四烷基喹啉盐酸、1-十八烷基双胍单盐酸盐、奥替尼啶双盐酸盐、月桂基羟乙基咪唑啉。
在其中一些实施例中,所述游离淀粉选自:玉米淀粉、木薯淀粉、红薯淀粉、小麦淀粉、氧化改性的淀粉中的至少一种;所述氧化改性的淀粉为氧化改性的玉米淀粉、氧化改性的木薯淀粉、氧化改性的红薯淀粉或氧化改性的小麦淀粉。
在其中一些实施例中,所述氧化改性的淀粉的制备方法包括以下步骤:取淀粉配制成水溶液,加热至80-100℃,加入淀粉氧化剂或淀粉酶反应至粘度达到稳定,再降温至60-70℃,即得。
在其中一些实施例中,所述回收造纸白水中游离淀粉的方法包括以下步骤:
(a)在造纸白水中加入所述阳离子淀粉络合剂,使所述阳离子淀粉络合剂与造纸白水中的游离淀粉进行反应以使所述游离淀粉发生改性,得改性淀粉;
(b)再加入纤维或者纸浆,进行吸附反应,以吸附所述改性淀粉。
在其中一些实施例中,所述纤维或纸浆的固体浓度为1%-10%。
在其中一些实施例中,所述阳离子淀粉络合剂与所述纤维或纸浆的干重的重量比为0.02-20kg/T。
在其中一些实施例中,所述阳离子淀粉络合剂与所述纤维或纸浆的干重的重量比为0.15-2kg/T。
在其中一些实施例中,所述的回收造纸白水中游离淀粉的方法还包括加入增效剂的步骤,具体包括:
(a)在造纸白水中加入阳离子淀粉络合剂,使所述阳离子淀粉络合剂与造纸白水中的游离淀粉进行反应以使所述游离淀粉发生改性,得改性淀粉;
(b)再加入纤维或纸浆以及增效剂,进行吸附反应,以吸附所述改性淀粉;
所述增效剂选自:聚合氯化铝、聚合硫酸铝、聚合硫酸铁、聚二烯丙基二甲基氯化铵、聚氧乙烯、聚丙烯酰胺和聚丙烯酰胺-聚丙烯酸类阴离子共聚物中的至少一种。
在其中一些实施例中,所述增效剂与所述阳离子淀粉络合剂的质量比为1:1-35。
在其中一些实施例中,步骤a)所述反应的温度为10-90℃,步骤b)所述吸附反应的温度为10-90℃。
在其中一些实施例中,步骤a)所述反应的时间为1min-20h。
在其中一些实施例中,步骤a)所述反应的时间为5min-1h。
在其中一些实施例中,步骤b)所述吸附反应的时间为1min-120min。
在其中一些实施例中,步骤b)所述吸附反应的时间为5min-30min。
在其中一些实施例中,步骤a)和步骤b)所述反应的pH为4-11。
在其中一些实施例中,步骤a)和步骤b)所述反应的pH为5-7。
本发明的改性淀粉及其制备方法和应用具有以下优点和有益效果:
由于淀粉颗粒的表面电性十分微弱,现有的助留剂,不管是阴离子型还是阳离子型,对颗粒淀粉基本无明显的保留效果,对溶解淀粉根本无法保留到纸张之中。因此,目前全世界的制浆造纸厂都只能让淀粉流失到排水中,成为造纸厂的主要COD污染物。并且由于淀粉流失过多,在纸张中的保留率低,导致纸张的物理强度不够理想。本发明采用对淀粉具有特殊络合作用的化合物对淀粉进行改性,与淀粉反应产生“淀粉-化合物”的“内包络合物”,从而改变淀粉的物理和化学性质,得到改性淀粉。将该改性淀粉用于造纸可以大大提高淀粉在纤维表面或纸浆中的吸附率,从而提高淀粉在纸张中的保留率,从而可以大大降低甚至消除淀粉在制浆造纸过程中的流失,从而降低COD排放,从源头上解决造纸废水处理的问题。其结果会产生多方面的有益效果,包括:(1)降低造纸排水的COD浓度,减少有机污染,改善环保(2)提高淀粉原料的利用率,可以显著降低造纸的原料消耗,降低生产成本;(3)显著改善纸张的物理强度,减少化学增强剂的使用;(4)减少造纸工业的淀粉消耗,增加国家的食品安全;(5)通过优化淀粉络合剂的结构,可以一步反应获得淀粉的阳离子化和疏水化的性质,在改善纸张的强度的同时提高纸张表面的疏水性,从而使所制备的纸张具有更好的抗水和防潮功能;(6)对白水系统具有清洁和杀菌作用。
并且本发明的造纸方法可以直接利用回收纸浆或纤维进行造纸,可以有效降低回收纸浆或纤维在造纸利用过程中的淀粉溶解、提高淀粉的回收利用率以及纸张的物理强度。
利用本发明的阳离子络合剂对淀粉进行改性的原理,通过在造纸白水中加入对淀粉具有特殊络合作用的阳离子络合剂与造纸白水中的淀粉进行反应,产生“淀粉-化合物”的“内包络合物”,从而改变造纸白水中的淀粉的物理和化学性质,降低其在造纸白水中的溶解度,从而可以达到回收造纸废水中游离淀粉的目的,大大降低造纸白水中的游离淀粉含量,降低造纸废水的COD排放量。在经过本发明的阳离子络合剂处理后的白水中进一步添加纤维或者纸浆,可以使淀粉沉淀或吸附在纤维或纸浆中,从而可以进一步降低白水中的游离淀粉含量,并且以该回收白水制备的吸附有淀粉的纤维或者纸浆可直接用于造纸,大大提高了淀粉的回收率和在造纸中的利用率。因此,本发明的回收造纸白水中游离淀粉的方法会产生多方面的有益效果,包括:(1)降低造纸排水的COD浓度,减少有机污染,改善环保;(2)提高淀粉的回收利用率,降低生产成本;(3)减少造纸工业的淀粉消耗,增加国家的食品安全。
因此,可以预见,本发明的改性淀粉、造纸方法以及回收造纸白水中游离淀粉的方法对造纸生产产业具有十分重要意义。
另外,本发明的改性淀粉用非常简单的制备工艺即可制备得到,可以从原淀粉直接改性,保持淀粉的完整性,从而使制备得到的改性淀粉能比传统的改性淀粉更显著改善纸张的物理强度,减少化学增强剂的使用。本发明提供的制备方法不仅工艺简单,无三废(废水、废气和固废)污染,能极大改善淀粉改性的环保效益,而且成本低,易于在造纸现场制备,解决了目前改性淀粉生产技术的诸多缺点。
附图说明
图1为反应时间对淀粉络合剂C2、C5、C10和C12与淀粉反应的影响;
图2为反应时间对淀粉络合剂C2、C5、C10和C12改性后的淀粉在化学浆BKP吸附(保留率)的影响;
图3为反应时间对淀粉络合剂C7改性后的淀粉吸附的影响;
图4为温度对淀粉结合剂C7与淀粉反应和淀粉保留的影响;
图5为温度对淀粉结合剂C7与淀粉反应降低溶解COD的影响;
图6为pH对阳离子淀粉结合剂C7与淀粉反应的影响;
图7为pH对阳离子淀粉结合剂C12与淀粉反应的影响;
图8为BKP使用量对淀粉保留和COD去除的影响;
图9为不同浆料(酶法洁净OCC纸浆(E-OCC)、未处理OCC和化学浆BKP)对淀粉吸附的影响;
图10为两种结构不同的阳离子淀粉结合剂C55和C57组合使用时不同用量比例对淀粉保留量的影响;
图11为阳离子淀粉结合剂C7改性淀粉(玉米淀粉)对化学浆BKP的物理强度(抗张指数和耐破指数)的影响;
图12为阳离子淀粉结合剂C7和C14处理OCC纸浆对淀粉保留和白水COD浓度的影响;
图13为阳离子淀粉结合剂C7和C14处理OCC纸浆对OCC抄纸的物理强度(抗张指数和耐破指数)的影响;
图14为不同阳离子淀粉结合剂处理后白水的菌落生长照片;
图15为用OCC废纸生产普通牛卡纸的制浆流程图。
具体实施方式
本发明中的技术术语的定义和含义包括如下。
本发明中,淀粉结合反应(Starch Binding),淀粉络合反应(Starch Complexation),和淀粉修饰(Starch Modification)是指淀粉与某一对淀粉有亲和力的物质在水相中反应,使淀粉形成螺旋状并将该反应物包含在螺旋之内的“包含络合物”(Inclusion Complex)。这些名称在本发明技术中会被交互使用。所形成的“包含络合物”称为“改性淀粉”,或者“修饰淀粉”,即“改性淀粉”和“修饰淀粉”在本发明技术中具有相同的含义,会被交互使用。
在上述反应中,对淀粉具有特殊亲和力的反应物被称为淀粉结合剂(Starch Binding Agents),或称淀粉络合剂(Starch Complexing Agents),该反应物能与淀粉反应生成内包络合物,其化学结构由以下部分构成:
一个或多个疏水基团,其中至少一个对淀粉有较强亲和力,能与淀粉反应生成淀粉-化合物的“包合络合物”(Inclusion Complex),和
ii)一个或多个亲水基团,使化合物本身达到足够的水相溶解度;
以上两类结构与性能截然相反的基团分处于同一分子结构的两端并以化学键相连接,形成了一种不对称的、极性的结构。
其中所述疏水基团为非极性基团,根据疏水基结构进行分类,可以分直链/支链脂肪烃,芳香烃,脂肪和芳香混合烃,带有弱亲水性基、全氟烃基,以及含氟混合烃基。
其中所述亲水基团为极性基团,根据结构或化学性质分为羟基、醛基、羧酸盐、硫酸盐、磺酸盐、磷酸盐、胺基、季铵盐、PEO衍生物、内酯、氨基酸、酰胺基、醚键等。
上述淀粉结合剂也可以称为淀粉修饰剂(starch modifier)、淀粉结晶剂(starch crystallizing agent)、淀粉沉淀剂(starch precipitation agent)、淀粉凝聚剂(starch aggregating agent)、淀粉交联剂(starch binder)、淀粉吸附剂(starch absorber)、淀粉固化剂(starch solidifier)、淀粉固着剂(starch fixative)、淀粉微纤化剂(starch fibrillation agent)。
本发明的淀粉结合剂具有“阳离子表面活性剂”的结构特征,称为阳离子型淀粉结合剂(Cationic Starch Binding Agents)或阳离子型淀粉络合剂(Cationic Starch Complexing Agents)。该类淀粉结合剂在水中电离之后生成疏水性阳离子,其阳离子的结构主要部分含有由至少一个氮、硫、磷或砷原子。其中阳离子型淀粉结合剂通常是有机氮化合物的衍生物,其正离子电荷由氮原子携带,按照化学结构,主要可分为胺盐型、季铵盐型、杂环型和啰盐型等。
脂肪胺。胺盐型阳离子淀粉结合剂包括伯胺盐(primary amines,结构式为RNH 2)、仲胺盐(secondary amines,结构式 R 1R 2NH)和叔胺盐(tertiary amines,结构式R 1R 2NR 3)表面活性剂的总称,式中R,R 1,R 2和R 3为脂肪烃基。这类结合剂主要是脂肪胺与无机酸(盐酸、溴酸、醋酸或硫酸)形成的盐,只溶于酸性溶液中,带正电。而在碱性条件下,胺盐容易与碱作用生成游离胺。
芳香胺。当将上述脂肪胺中一个或多个脂肪烃基替换为芳基时,即为芳香胺。例如长链烷基苯胺(alkyl aniline)的结构式为:
Figure PCTCN2019082774-appb-000019
式中R、R 1、R 2、R 3、R 4、R 5、R 6代表H、取代或未取代的烷基。
季铵盐型(quaternary ammonium)。季铵盐(又称四级铵盐)是铵离子中的4个氢离子都被烃基取代后形成的季铵阳离子的盐,季铵盐有4个碳原子通过共价键直接与氮原子相连,其结构通式R 1R 2R 3R 4NX,式中R 1,R 2,R 3,R 4为相同或不同的烃基、取代的或非取代的、饱和的或不饱和的,也可以有分支或没有分支、环状结构或直链结构,可以包含醚、酯、酰胺,也可以是芳香族或芳香族取代物;X通过离子键与氮原子相连,多为卤素阴离子(F 、Cl 、Br 、I )或为HSO 4 -,CH 3CO 2 -及OH -。季铵盐型淀粉结合剂的性质与胺盐型不同,此类物质既可溶于酸性溶液,又可溶于碱性溶液,其阳离子电性不受溶液pH影响。
多阳离子型淀粉结合剂(Starch Binding Polyamines)。多胺盐型阳离子淀粉结合剂的结构有两个或两个以上的氮原子组成,最常见的多胺是由多个撑丙基本连接,结构式为R(CH 2CH 2CH 2N)n H,式中R为脂肪烃。n为1-10的整数。例如,脂肪撑丙二季铵,其结构为:
Figure PCTCN2019082774-appb-000020
当末端(第二个)胺基的氢原子被一个长链脂肪烃基取代时,其结构则由两个疏水链和两个极性头基通过连接基团连接而成,成为双疏水基的双阳离子淀粉结合剂。例如,含有双十二烷基的双阳离子,结构为:
Figure PCTCN2019082774-appb-000021
聚氧化乙烯脂肪胺盐。聚氧乙烯化的脂肪胺阳离子型淀粉结合剂是在脂肪胺的结构中的胺基氢原子被聚氧化乙烯基取代,得到非离子-阳离子的混合型表面活性剂。脂肪胺聚氧乙烯醚同时具有非离子和阳离子特性,在酸性溶液中表现为阳离子表面活性剂特性,而在碱性或中性溶液中表现为非离子活性剂。聚氧化乙烯脂肪单胺的化学结构式为:
Figure PCTCN2019082774-appb-000022
其盐的结构为:
Figure PCTCN2019082774-appb-000023
在聚氧化乙烯脂肪胺的胺基上进行甲基加成,生成季铵,其季铵盐的结构式为
Figure PCTCN2019082774-appb-000024
相应的聚氧化乙烯脂肪二胺是在脂肪二胺的结构基础上,对在末端的胺基的氢原子进行聚氧化乙烯基取代,其示例性化学结构式为:
Figure PCTCN2019082774-appb-000025
其盐的结构为:
Figure PCTCN2019082774-appb-000026
其季铵盐的示例性结构式为:
Figure PCTCN2019082774-appb-000027
进一步对二胺基进行取代,生成聚氧化乙烯脂肪二胺,其示例性结构为:
Figure PCTCN2019082774-appb-000028
其双季铵盐的示例性结构为:
Figure PCTCN2019082774-appb-000029
以上聚氧化乙烯脂肪胺盐中的R均为脂肪烃。
聚氧化丙烯脂肪胺盐。聚氧丙烯化的脂肪胺阳离子型淀粉结合剂是指在脂肪胺的结构基础上,对末端胺基上用聚环氧丙烷取代氢原子,得到非离子-阳离子的混合型表面活性剂。脂肪胺聚氧丙烯醚同时具有非离子和阳离子特性,在酸性溶液中表现为阳离子表面活性剂特性,而在碱性或中性溶液中表现为非离子活性剂。聚氧化丙烯脂肪单胺的化学结构式为:
Figure PCTCN2019082774-appb-000030
其盐的结构为:
Figure PCTCN2019082774-appb-000031
其季铵盐的示例性结构式为:
Figure PCTCN2019082774-appb-000032
相应的聚氧化丙烯脂肪二胺是在脂肪二胺的结构基础上,对在末端的胺基的氢原子进行聚氧化丙烯基取代,其示例性化学结构式为:
Figure PCTCN2019082774-appb-000033
其盐的结构为:
Figure PCTCN2019082774-appb-000034
其季铵盐结构式为:
Figure PCTCN2019082774-appb-000035
Figure PCTCN2019082774-appb-000036
以上聚氧化丙烯脂肪胺盐中的R均为脂肪烃。
长链烷基胍。长链烷基胍型淀粉结合剂的结构通式如下:
Figure PCTCN2019082774-appb-000037
其对应的胍盐结构式为:
Figure PCTCN2019082774-appb-000038
式中R为碳原子数大于6的取代或未取代的烷基或芳基,R 1、R 2、R 3、R 4、R 5代表H、烷基、芳基,C(=NH)NH 2、-CONH 2、-C(=S)NH 2等。
例如,当R 1、R 2、R 3、R 4、R 5为H,R为十二烷基时,得到十二烷基胍,其结构式为:
Figure PCTCN2019082774-appb-000039
对应的十二烷基胍盐酸盐的结构式为:
Figure PCTCN2019082774-appb-000040
当R 1、R 2、R 3、R 4、R 5为H,R为十二烷基酰胺聚乙二胺(n=4)时,得到如下结构的化合物:
Figure PCTCN2019082774-appb-000041
长链烷基双胍(alkyl biguanidine)。长链烷基双胍型淀粉结合剂的结构为:
Figure PCTCN2019082774-appb-000042
式中R为碳原子数大于6的取代房或未取代的烷基或芳基、R 1、R 2、R 3、R 4、R 5、R 6代表H、烷基、芳基,-C(=NH)NH 2、-CONH 2、-C(=S)NH 2等。
例如,当R 1、R 2、R 3、R 4、R 5为H时,得到烷基双胍的结构式为:
Figure PCTCN2019082774-appb-000043
比如:1-十八烷基双胍单盐酸盐(英文名称:1-(diaminomethylidene)-2-octadecylguanidine hydrochloride;1-Octadecylbiguanide monohydrochloride;CAS号:23604-20-8)结构式为:
Figure PCTCN2019082774-appb-000044
当上式中R为苯乙烷时,得到苯乙双胍(Phenformin),其结构式为:
Figure PCTCN2019082774-appb-000045
当R为十二烷基时,得到十二烷基双胍,其结构式为:
Figure PCTCN2019082774-appb-000046
长链烷基二胍(多胍)型。长链烷基多胍型淀粉结合剂的结构式为:
Figure PCTCN2019082774-appb-000047
式中R、R 1、R 2、R 3、R 4、R 5、R 6代表H、烷基、芳基,Z代表取代或未取代的亚烷基或芳基等。
例如,己联双辛胍(英文名称:1,1'-Hexamethylene-bis[5-(2-ethylhexyl)biguanide dihydrochloride;CAS号:22573-93-9])结构式为:
Figure PCTCN2019082774-appb-000048
当R、R 1、R 2、R 4、R 5、R 6为H,Z为亚丙烷基,R 3为椰油基时,得到椰油基丙二胺双胍(英文:Cocoyl-propylenediamine-1,5-bis-guanidinine):
Figure PCTCN2019082774-appb-000049
再比如,当Z为十二烷氧基苯基时,合成得到2-[5-(二氨基亚甲基氨基)-2-十二烷氧基苯基]胍二盐酸盐(英文名称:2-[3-(diaminomethylideneamino)-4-dodecoxyphenyl]guanidine dihydrochloride;
N,N”'-(4-dodecyloxy-m-phenylene)-di-guanidine,dihydrochloride;N,N”'-[4-(dodecyloxy)-1,3-phenylene]bisguanidine dihydrochloride;CAS号:135-42-2)结构式为:
Figure PCTCN2019082774-appb-000050
烷基取代的氮杂环或其季铵盐。这类淀粉结合剂是含有饱和氮杂环、不饱和非芳香氮杂环或者芳香氮杂环的化合物,或其季铵盐,包括烷基吡啶、烷基吗啉、长链烷基咪唑(alkyl imidazoline)等,烷基吡啶季胺盐的化学结构式为:
Figure PCTCN2019082774-appb-000051
式中R代表烷基或者取代的烷基。
例如,十六烷基吡啶盐酸的结构如下:
Figure PCTCN2019082774-appb-000052
2-(十八烷基氧甲基)吡啶(英文名称:2-((Octadecyloxy)methyl)pyridine;CAS号:
1228182-56-6)的结构式为:
Figure PCTCN2019082774-appb-000053
4-(4-双十五烷基氨基苯乙烯)-N-甲基碘化吡啶(英文名称:
4-[2-(1-methylpyridin-1-ium-4-yl)ethenyl]-N,N-di(pentadecyl)aniline,iodide;
Pyridinium,4-[2-[4-(dipentadecylamino)phenyl]ethenyl]-1-methyl-,iodide(1:1);
Pyridinium,4-[2-[4-(dipentadecylamino)phenyl]ethenyl]-1-methyl-,iodide(9CI);CAS号:135288-72-1)结构式为:
Figure PCTCN2019082774-appb-000054
奥替尼啶双盐酸盐(中文别名:盐酸奥替尼啶;英文名称:Octenidine Dihydrochloride;N,N'-(decane-1,10-diyldi-1(4H)-pyridyl-4-ylidene)bis(octylammonium)dichloride;CAS号:70775-75-6)结构式为:
Figure PCTCN2019082774-appb-000055
长链烷基吗啉(alkyl morpholine),其结构式为
Figure PCTCN2019082774-appb-000056
式中R 1、R 2、R 3、R 4代表H或烷基(碳链长为C1-C4)、R代表长碳链烷基(碳链大于6)。例如,2,6-二甲基-4-十三烷基吗啉,其结构式如下:
Figure PCTCN2019082774-appb-000057
长链烷基咪唑(alkyl imidazoline)季胺盐的结构式为:
Figure PCTCN2019082774-appb-000058
式中R 1、R 2、R 3、R 4、R 5代表取代或未取代的烷基。
例如,1-十四烷基-3-甲基咪唑的溴化盐(英文名称:1-Tetradecyl-3-Methylimidazolium Bromide;中文别名]:溴化1-十四烷基-3-甲基咪唑)的结构式为:
Figure PCTCN2019082774-appb-000059
例如:2-壬基苯并咪唑(英文名称:2-nonyl-1H-benzimidazole;2-nonyl-1H-1,3-benzodiazole;2-Nonyl benzimidazole;CAS号:5851-50-3)的结构式为:
Figure PCTCN2019082774-appb-000060
月桂基羟乙基咪唑啉(中文别名:2-十一烷基-2-咪唑-1-乙醇;英文名称:4,5-dihydro-2-undecyl-1H-imidazole-1-ethanol;1-(2-Hydroxyethyl)-2-undecylimidazoline;2-Undecyl-2-imidazoline-1-ethanol;2-Undecyl-4,5-dihydro-1H-imidazole-1-ethanol;1-(2-Hydroxyethyl)-2-undecylimadazoline;1H-Imidazole-1-ethanol,4,5-dihydro-2-undecyl;CAS号:136-99-2)结构式为:
Figure PCTCN2019082774-appb-000061
长链烷基哌嗪(alkyl-piperazine),其结构通式为:
Figure PCTCN2019082774-appb-000062
式中R、R 1、R 2、R 3、R 4、R 5、R 6代表H、取代或未取代的烷基。
长链烷基喹啉(alkyl quinoline,or benzo-pyridine)季胺盐,其结构通式为:
Figure PCTCN2019082774-appb-000063
长链烷基吡咯(alkyl pyrrolidinium),其结构式为:
Figure PCTCN2019082774-appb-000064
其它盐型。除了以上的氮原子类阳离子淀粉结合剂外,还有其它带正电的阳离子结合剂,分别为含N、P、As、S、I、Si等元素的表面活性剂。阳离子膦盐的结构式为R 1R 2R 3R 4PX,式中R 1,R 2,R 3,R 4为相同或不同的烃基、取代的或非取代的、饱和的或不饱和的,也可以有分支或没有分支、环状结构或直链结构,可以包含醚、酯、酰胺,也可以是芳香族或芳香族取代物;X通过离子键与氮原子相连,多为卤素阴离子(F-、Cl-、Br-、I-)或为HSO4-,CH3CO2-及OH-。例如,三(十二烷基)膦(英文tridodecyl phosphine)的结构为P(C 12H 25) 3,CAS号:6411-24-1。
非极性基团含杂原子的胺盐和季铵盐。这里所谓的含杂原子的季铵盐一般是指疏水性碳氢链中含有O、N、S等杂原子的季铵盐,也就是指亲油基中含有酰胺键、醚键、酯键或硫醚键的表面活性剂。亲水基团季铵阳离子与烷基疏水基是通过酰胺、酯、醚或硫醚等基团相连,而不是直接连接在一起。例如:当氧原子O取代烷基之中的一个C时,生成烷氧基。例如,3-(辛基氧基)丙胺(英文名称:3-(octyloxy)-1-Propanamine,CAS号:15930-66-2)的结构式为:
Figure PCTCN2019082774-appb-000065
当硫原子S取代一个碳原子时,生成烷硫基。例如,2-(十二烷基硫代)-乙酰胺(英文名称:2-dodecylsulfanylacetamide;Acetamide,2-(dodecylthio);2-(Dodecylthio)acetamide;CAS号:10220-53-8)结构式为:
Figure PCTCN2019082774-appb-000066
双子座阳离子淀粉结合剂有季铵盐型、吡啶盐型和胍基型淀粉结合剂。双子座(Gemini)此类淀粉结合剂是一类带有两个疏水链、两个亲水基团和一个桥连基团的化合物,类似于两个阳离子淀粉结合剂分子通过一个桥梁连接在一起,分子的形状如同连体的孪生婴儿,其阳离子可以为季铵盐型、吡啶盐型和胍基型。疏水基团可以为饱和碳链型、不饱和碳链型、醚基型、酯基型、芳香型以及两个碳链不等长的不对称型。连接基团可以是疏水的、也可以是亲水的;可以很短,也可以很长;可以是刚性的,也可以是柔性的。前者包括较短的碳氢链,亚二甲苯基、对二苯代乙烯基等,后者包括较长的碳氢链、聚氧乙烯链、杂原子等。例如,双十八烷基二甲基-多胺-双氯化铵盐的结构式为:
Figure PCTCN2019082774-appb-000067
Dendrimer型淀粉结合剂。Dendrimer就是树枝状大分子,它是从一个中心核分子出发,由支化单体逐级扩散伸展开来的结构,或者由中心核、数层支化单元和外围基团通过化学键连接而成的。已经有聚醚、聚酯、聚酰胺、聚芳烃、聚有机硅等类型。树枝状大分子的特性是其分子结构规整,分子体积、形状和末端官能团可在分子水平上设计与控制,按照需求对其端基进行改性,就得到相应的树枝状大分子表面活性剂。
此外,以上所有的淀粉结合剂的疏水基可以为含氟的疏水基,即疏水基是由碳和氟两种元素组成,或者由氟原子取代部分氢原子的混合疏水基团。由于氟原子取代了疏水基团上的氢原子,把C-H键的结构转变为C-F键的形式,因此它显示出氟碳烃所特有的一些优良性能,即高表面活性、高耐热稳定性及高化学稳定性,含氟烃基既憎水又憎油的特性。例如,全氟葵胺的结构中所有氢原子全部被氟取代,结构式为:
Figure PCTCN2019082774-appb-000068
氟可以部分取代氢原子,例如葵胺其中五个碳原子的氢原子被取代,得到(5,5,6,6,7,7,8,8,9,9,10,10)-十一氟葵胺,其结构为:
Figure PCTCN2019082774-appb-000069
本发明所述化合物中,当任何变量(例如R 1、R等)在任何组分中出现超过一次,则其每次出现的定义独立于其它每次出现的定义。同样,允许取代基及变量的组合,只要这种组合使化合物稳定。
淀粉。淀粉是一种多糖,其分子式(C 6H 10O 5)n,淀粉可以看作是葡萄糖的高聚体。淀粉有直链淀粉和支链淀粉两类。直链淀粉含几百个葡萄糖单元,支链淀粉含几千个葡萄糖单元;因而直链淀粉分子量较小,在50000左右,支链淀粉分子量比直链淀粉大得多,在60000左右。植物淀粉的组成一般由10%~30%的直链淀粉和70%~90%的支链淀粉组成。
淀粉具有遇碘变蓝的特性,这是由淀粉本身的结构特点决定的。溶于水的直链淀粉借助分子内的氢键卷曲成螺旋状。如果加入碘液,碘液中的碘分子便嵌入到螺旋结构的空隙处,并且借助范德华力与直链淀粉联系在一起,形成了一种络合物。这种络合物能够比较均匀地吸收除了蓝光以外的其他可见光(波长范围为400~750nm),从而使直链淀粉遇碘呈蓝色,支链淀粉遇碘呈紫红色,糊精遇碘呈蓝紫、紫、橙等颜色。
各类植物中的淀粉含量都较高,大米中含淀粉62%~86%,麦子中含淀粉57%~75%,玉蜀黍中含淀粉65%~72%,马 铃薯中则含淀粉超过90%。
变性淀粉(Modified Starch)。为改善淀粉的性能、扩大其应用范围,利用物理、化学或酶法处理,在淀粉分子上引入新的官能团或改变淀粉分子大小和淀粉颗粒性质,从而改变淀粉的天然特性(如:糊化温度、热粘度及其稳定性、冻融稳定性、凝胶力、成膜性、透明性等),使其更适合于一定应用的要求。这种经过二次加工,改变性质的淀粉统称为变性淀粉。目前,变性淀粉的分类一般是根据处理方式来进行。
物理变性:预糊化(α-化)淀粉、γ射线、超高频辐射处理淀粉、机械研磨处理淀粉、湿热处理淀粉等。
化学变性:用各种化学试剂处理得到的变性淀粉。其中有两大类:一类是使淀粉分子量下降,如酸解淀粉、氧化淀粉、焙烤糊精等;另一类是使淀粉分子量增加,如交联淀粉、酯化淀粉、醚化淀粉、接枝淀粉等。
酶法变性(生物改性):各种酶处理淀粉。如α、β、γ-环状糊精、麦芽糊精、直链淀粉等。
复合变性:采用两种以上处理方法得到的变性淀粉。如氧化交联淀粉、交联酯化淀粉等。采用复合变性得到的变性淀粉具有两种变性淀粉的各自优点。
另外,变性淀粉还可按生产工艺路线进行分类,有干法(如磷酸酯淀粉、酸解淀粉、阳离子淀粉、羧甲基淀粉等)、湿法、有机溶剂法(如羧基淀粉制备一般采用乙醇作溶剂)、挤压法和滚筒干燥法(如天然淀粉或变性淀粉为原料生产预糊化淀粉)等。
预糊化淀粉(Pre-Geletinized Starch)。淀粉的糊化:淀粉粒在适当温度下(各种来源的淀粉所需温度不同,一般60~80℃)在水中溶胀、分裂、形成均匀糊状溶液的作用称为糊化作用。糊化作用的本质是淀粉粒中有序及无序(晶质与非晶质)态的淀粉分子之间的氢键断开,分散在水中成为胶体溶液。
糊化作用的过程可分为三个阶段:(1)可逆吸水阶段,水分进入淀粉粒的非晶质部分,体积略有膨胀,此时冷却干燥,颗粒可以复原,双折射现象不变;(2)不可逆吸水阶段,随着温度升高,水分进入淀粉微晶间隙,不可逆地大量吸水,双折射现象逐渐模糊以至消失,亦称结晶“溶解”,淀粉粒胀至原始体积的50~100倍;(3)淀粉粒最后解体,淀粉分子全部进入溶液。
淀粉糊化作用的测定方法:有光学显微镜法,电子显微镜法,光传播法,粘度测定法,溶胀和溶解度的测定,酶的分析,核磁共振,激光光散射法等。工业上常用粘度测定法,溶胀和溶解度的测定。
酸变性淀粉(Acidified Starch)。酸变性淀粉引是指在糊化温度以下将天然淀粉用无机酸进行处理,改变其性质而得到的一类变性淀粉。
通常制备酸变性淀粉的条件是:淀粉乳浓度为36%~40%,温度低于糊化反应温度(35~60℃),反应时间为0.5h至数小时。当达到所需要的粘度或转化度时,中和、过滤、洗涤、干燥即得产品。
反应条件对酸变性淀粉性能的影响:
1.温度反应温度是影响酸变性淀粉性能的主要因素,当温度在40~55℃时,粘度变化趋于温度,温度升至70℃时已经糊化。因此反应温度一般选在40~55℃范围内。
2.酸的种类及用量酸作为催化剂而不参与反应。不同的酸催化作用不同,盐酸最强,硫酸和硝酸相仿、当温度较高,酸用量较大时,硝酸变性淀粉因发生副反应而使产品呈浅黄色,所以实际生产中很少使用。酸的催化作用与酸的用量有关,酸用量大,则反应剧烈。
3.淀粉乳浓度淀粉乳浓度应控制在40%左右。
酯化淀粉(Acetylated Starch)。酯化淀粉是指在糊化温度以下淀粉乳与有机酸酐(醋酸酐,丁二酸酐等)在一定条件下进行酯化反应而得到的一类变性淀粉。
乙酸酯化系列变性淀粉在葡萄糖单元的C6接入乙酰基团,乙酰基团属于亲水基团,大大提高了淀粉与水的结合能力,因而提高了淀粉颗粒的吸水膨胀度,降低了糊化温度,提高了峰值粘度、乙酸酯化系列变性淀粉蛋白质,脂肪的含量非常低,所以颜色洁白,具有天然荧光,能有效改善面体的色泽,同时其糊化温度较面粉中原淀粉的低,在面饼蒸煮工序中先于原淀粉糊化,缩短了蒸煮时间,由于乙酰基的存在及变性淀粉在面条表面的成膜性,能有效地阻隔油与面饼附着,降低了吸油率,变性淀粉的高峰值粘度表明其淀粉颗粒吸水膨胀程度大,这对方便面的复水性有很大的帮助。
氧化淀粉(Oxidized Starch)。许多化学氧化剂都能氧化淀粉,但工业生产中最常用的是碱性次氯酸盐。
交联淀粉(Cross-linked Starch)。交联淀粉的概念是,淀粉的醇羟基与交联剂的多元官能团形成二醚键或二酯键,使两个或两个以上的淀粉分子之间“架桥”在一起,呈多维网络结构的反应,称为交联反应。
交联作用是指在分子之间架桥形成化学键,加强了分子之间氢键的作用。当交联淀粉在水中加热时,可以使氢键变弱甚至破坏,然而由于化学架桥的存在,淀粉的颗粒将不同程度地保持不变。
国内最常用的交联剂有:三偏磷酸钠、三聚磷酸钠、甲醛、三氯氧磷、环氧氯丙烷。
抗性淀粉(Resistant Starch),又称抗酶解淀粉及难消化淀粉,在小肠中不能被酶解,但在人的肠胃道结肠中可以与挥发性脂肪酸起发酵反应。抗性淀粉存在于某些天然食品中,如马铃薯、香蕉、大米等都含有抗性淀粉,特别是高直链淀粉的玉米淀粉含抗性淀粉高达60%。这种淀粉较其他淀粉难降解,在体内消化缓慢,吸收和进入血液都较缓慢。其性质类似溶解性纤维,具有一定的瘦身效果。
淀粉-碘包合物(Starch-Iodine Inclusion Complex)。直链淀粉是由α-葡萄糖分子缩合而成螺旋状的长长的螺旋体,每个葡萄糖单元都仍有羟基暴露在螺旋外。碘分子跟这些羟基作用,使碘分子嵌入淀粉螺旋体的轴心部位。碘跟淀粉的这种作用叫做包合作用,生成物叫做包合物。
在淀粉跟碘生成的包合物中,每个碘分子跟6个葡萄糖单元配合,淀粉链以直径0.13pm绕成螺旋状,碘分子处在螺旋的轴心部位。
淀粉跟碘生成的包合物的颜色,跟淀粉的聚合度或相对分子质量有关。在一定的聚合度或相对分子质量范围内,随聚合度或相对分子质量的增加,包合物的颜色的变化由无色、橙色、淡红、紫色到蓝色。例如,直链淀粉的聚合度是200~980或相对分子质量范围是32 000~160 000时,包合物的颜色是蓝色。分支很多的支链淀粉,在支链上的直链平均聚合度20~28,这样形成的包合物是紫色的。糊精的聚合度更低,显棕红色、红色、淡红色等。
淀粉酶(Amylase)。淀粉酶是作用于可溶性淀粉、直链淀粉、糖元等的α-1,4-葡聚糖而使α-1,4-糖苷键水解的酶。根据酶水解产物异构类型的不同,可分为α-淀粉酶(EC3.2.1.1)与β-淀粉酶(EC3.2.1.2)。
α-淀粉酶(α-Amylase),系统名称为1,4-α-D-葡聚糖葡聚糖水解酶,(1,4-α-D-Glucan-glucanohydrolase)。α-淀粉酶可以水解淀粉内部的α-1,4-糖苷键,水解产物为糊精、低聚糖和单糖,酶作用后可使糊化淀粉的黏度迅速降低,变成液化淀粉,故又称为液化淀粉酶、液化酶、α-1,4-糊精酶。
α-淀粉酶以链淀粉为底物时,反应一般按两阶段进行。首先,链淀粉快速地降解,产生低聚糖,此阶段链淀粉的黏度及与碘发生呈色反应的能力迅速下降。第二阶段的反应比第一阶段慢很多,包括低聚糖缓慢水解生成最终产物葡萄糖和麦芽糖。α-淀粉酶作用于支淀粉时产生葡萄糖、麦芽糖和一系列限制糊精(由4个或更多个葡萄糖基构成低聚糖),后者都含有α-1,6-糖苷键。
α-淀粉酶分子中含有一个结合得相当牢固的钙离子,这个钙离子不直接参与酶-底物络合物的形成,其功能是保持酶的结构,使酶具有最大的稳定性和最高的活性。
根据α-淀粉酶的热稳定性可分为耐高温α-淀粉酶和中温-淀粉酶。在耐高温α-淀粉酶中,由淀粉液化芽孢杆菌和地衣芽孢杆菌产生的酶制剂已被广泛地应用于食品加工中。温度对这两种酶的活力影响不同,地衣芽孢杆菌-淀粉酶最适温度为92℃,而淀粉液化芽孢杆菌-淀粉酶的最适温度仅为70%,除热稳定性存在差别外,这两种酶作用于淀粉的终产物也不相同。
β-淀粉酶(β-amylase),又称淀粉β-1,4-麦芽糖苷酶(α-1,4-glucan maltohydrolase),是淀粉酶类中的一种,能将直链淀粉分解成麦芽糖的淀粉酶。β-淀粉酶的唯一产物是麦芽糖,不是葡萄糖。β-淀粉酶是一种外切型淀粉酶,它作用于淀粉时从非还原性末端依次切开相隔的α-1,4键,水解产物全为麦芽糖。由于该淀粉酶在水解过程中将水解产物麦芽糖分子中C1的构型由α型转变为β型,所以称为β-淀粉酶。
β-淀粉酶主要存在于高等植物中,特别是谷物中,如大麦、小麦等,在甘薯、大豆中也有存在,在动物体内不存在。β-淀粉酶活性中心含有巯基(-SH),因此,一些氧化剂、重金属离子以及巯基试剂均可使其失活,而还原性的谷胱甘肽、半胱氨酸对其有保护作用。
β-淀粉酶不能水解支链淀粉的α-1,6键,也不能跨过分支点继续水解,故水解支链淀粉是不完全的,残留下大分子的β-极限糊精。β-淀粉酶水解直链淀粉时,如淀粉分子由偶数个葡萄糖单位组成,则最终水解产物全部是麦芽糖;如淀粉分子由奇数个葡萄糖单位组成,则最终水解产物除麦芽糖外,还有少量葡萄糖。β-淀粉酶水解淀粉时,由于从分子末端开始,总有大分子存在,因此黏度下降很慢,不能作为液化酶使用,而β-淀粉酶水解淀粉水解产物如麦芽糊精、麦芽低聚糖时,水解速度很快,故作为糖化酶使用。
γ-淀粉酶(γ-amylase)。编号E.C.3.2.1.3。γ-淀粉酶是外切酶,从淀粉分子非还原端依次切割α(1→4)链糖苷键和α(1→6)链糖苷键,逐个切下葡萄糖残基,水解产生的游离半缩醛羟基发生转位作用,释放β-葡萄糖。所以,无论作用于直链淀粉还是支链淀粉,最终产物均为葡萄糖。因此,又称为葡萄糖淀粉酶,糖化酶。
异淀粉酶(isoamylase)。编号E.C.3.2.1.33。异淀粉酶水解支链淀粉或糖原的α-1,6-糖苷键,只水解糖原或支链淀粉分枝点的-1,6糖苷链,切下整个侧枝,形成长短不一的直链淀粉。因此,异淀粉酶也称为淀粉-1,6-葡萄糖苷酶。动物、植物、微生物都产生异淀粉酶。来源不同,名称也不同,如:脱支酶、Q酶、R酶、普鲁蓝酶、茁霉多糖酶等。
环糊精葡萄糖基转移酶(Cyclodextrin Glucosyltransferase,CGT)。环糊精(Cyclodextrins,通常简称为CD),是一类由淀粉或多糖在环糊精葡萄糖基转移酶作用下生成的由D-吡喃葡萄糖单元通过α-1,4-糖苷键首尾相连的环状化合物的总称,通常由6-12个D-吡喃葡萄糖单元组成,因此,根据环中葡萄糖单元的数量,常见的有6、7和8个葡萄糖单元的分子,分别称为α-、β-和γ-环糊精。环糊精葡萄糖基转移酶最重要的特征就是具有催化直线型淀粉低聚糖链生成环糊精的能力。CGT环化反应是转糖苷反应的一种特殊形式,它是以供体链的非还原末端作为受体,从而形成环化产品。
化学需氧量(Chemical Oxygen Demand,COD)。COD定义:水样在一定条件下,以氧化1升水样中还原性物质所消耗的氧化剂的量为指标,折算成每升水样全部被氧化后,需要的氧的毫克数,以mg/L(ppm)表示。它反映了水中受还原性物质污染的程度,作为有机物相对含量的综合指标之一,是一个重要的而且能较快测定的有机物污染参数。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。
化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。目前应用最普遍的是酸性高锰酸钾氧化法与重铬酸钾氧化法。高锰酸钾(KMnO 4)法,氧化率较低,但比较简便,在测定水样中有机物含量的相对值比较大时,可以采用重铬酸钾(K 2Cr 2O 7)法,氧化率高,再现性好,适用于测定水样中有机物的总量。
以下实施例中所用实验材料、实验仪器以及通用实验方法如下。
实验材料:
淀粉结合剂:表1列举了本发明所测试的淀粉结合剂材料的详细信息,包括中英文名称、化学结构式和材料编号。所有淀粉结合剂均为商业销售产品,其有效组成的纯度范围为试剂纯至药物纯。在所有实施例中,所有淀粉结合剂按照其所售(as-is)直接使用,没有进一步提纯。
表1
Figure PCTCN2019082774-appb-000070
Figure PCTCN2019082774-appb-000071
Figure PCTCN2019082774-appb-000072
Figure PCTCN2019082774-appb-000073
Figure PCTCN2019082774-appb-000074
Figure PCTCN2019082774-appb-000075
Figure PCTCN2019082774-appb-000076
Figure PCTCN2019082774-appb-000077
Figure PCTCN2019082774-appb-000078
淀粉:玉米淀粉为“兴贸”食用玉米淀粉,从诸城兴贸玉米开发有限公司采购;木薯淀粉,小麦淀粉,红薯淀粉从深圳零零壹生物技术有限公司采购,实施例11表13中的玉米变性淀粉,木薯氧化淀粉—商业、木薯变性淀粉-商业、马铃薯醋酸酯淀粉—商业从武汉远成共创科技有限公司采购,代号为YC-20170701。
漂白化学浆:漂白化学浆取自东莞白天鹅纸业有限公司(BKP)。
未漂化学浆:未漂化学浆取自浙江荣成纸业有限公司,为进口北美原生针叶化学浆(UKP)。
OCC废纸:原纸取自东莞骏业纸业有限公司,是采用100%的OCC国废生产的瓦楞纸,淀粉表面施胶量大约在40-60kg/T纸。
试验仪器:
CBJ-A型纤维标准解离器:长春市月明小型试验机有限责任公司。
CPO1A-3A纸页成型器:东莞市英特耐森精密仪器有限公司。
BS-30KA电子天平:上海友声衡器有限公司。
COD消解仪:韶关明天环保仪器有限公司生产的XJ-ⅢCOD TP TN消解装置。
紫外-可见光分光光度计:日本岛津仪器公司制造的UVmini-1240紫外可见分光光度计。
DHG-9070A电热恒温鼓风干燥箱:上海齐欣科学仪器有限公司
TDL-80-2B:上海安亭科学仪器厂。
试验方法
标准碘液配制:称取11g碘和22g碘化钾,用少量蒸馏水使碘完全溶解,最后定容至500ml,储存于棕色瓶中。
稀碘液配制:称取10g碘化钾,用少量水溶解,吸取2ml浓碘液,用蒸馏水定容至100ml容量瓶,存储于棕色瓶中。
原淀粉溶液 配制:(1)取淀粉样品先配制7%淀粉溶液;(2)将淀粉溶液加热至95度(℃),反应到粘度达到稳定;(3)降温至65℃,在恒温水浴中保持淀粉溶液,备用。以下实施例中如无特殊说明,所取淀粉样品均为原淀粉,所述7%“标准淀粉溶液”都是按此方法进行制备得到的。
氧化淀粉溶液配制:取465g去离子水将其置于97℃的磁力水浴锅中,缓慢加入35g淀粉,再加入0.14g过硫酸铵(即相当于0.4%),煮制40分钟,而后降温至65℃,保持淀粉溶液在60℃,制得7%的“标准”淀粉溶液(其粘度在30mPa.s左右),保存备用。
化学浆浆料制取:取一定量漂白或者未漂化学浆板,将其撕成小块,称取300g小块浆料,加45℃温水至2307g,浆浓为13%,浸泡数分钟后,倒入PL12-00型高浓水力碎浆机,碎浆15分钟,之后拧干水分保存备用。
OCC废纸纸浆和白水制取:取废纸300g,将其撕成小块,然后加自来水稀释至13%浓度,浸泡5-10min,倒入PL12-00型高浓水力碎浆机,碎浆15分钟,取出碎好的浆,再加自来水稀释至3%浓度;然后用滤袋将白水和浆分离,制得OCC 废纸 纸浆白水和OCC 废纸纸浆,分别保存备用。
淀粉络合反应步骤:(1)取上述配制的淀粉溶液或含淀粉的OCC废纸纸浆白水500mL,放置到恒温水浴中(反应温度按需要设定),匀速搅拌,达到平衡,并视需要调节其溶液pH;(2)按照所设计的用量加入淀粉络合剂,进行反应,在反应时间达到5,10,15,30,60,90或120分钟时取溶液,置于30mL试管中,然后离心分离(x4000g.5分钟),最后取上清液分析其淀粉或COD浓度。
淀粉在纸浆纤维的吸附/保留试验:(1)取上述配制的淀粉溶液或含淀粉的OCC废纸纸浆白水800mL,放置到恒温水浴中(反应温度按需要设定),匀速搅拌,达到平衡,并视需要调节其溶液pH;(2)按照所设计的用量加入淀粉络合剂,进行反应,达到30,60或120分钟时取溶液并将其置于30mL试管中;(3)按照所需要的纸浆浓度加入化学浆或者OCC浆,搅拌进行吸附反应;(4)反应达到10、30、60或120分钟时,取浆液并将其置于30mL试管中;(5)对所有所取的溶液进行离心(x4000g.5分钟)分析,取上清液分析其淀粉或COD浓度。
化学浆抄纸的试验步骤:(1)取漂白或未漂化学浆300g,将其撕成小块,然后加自来水稀释至13%浓度,浸泡5-10min,倒入PL12-00型高浓水力碎浆机,碎浆15分钟,取出碎好的浆,保存备用;(2)取上述制好的淀粉溶液或OCC废纸浆白水800g,加入试验试剂(淀粉络合剂)反应30min;(3)反应30min后,加入增效剂搅拌反应2-3min,加入化学浆,搅拌反应总时间10min;(4)取浆料置于30mL试管中,并离心处理后,测试上清液的淀粉浓度和COD含量;(5)剩余浆料立即倒入纤维标准解离器疏解1500r,疏解完后,加水稀释至0.5%浓度,称取0.5%浓度的浆料640g用纸页成型器进行抄纸(纸张定量100g左右);(6)抄完纸后,将纸样放置在25℃、水分50%的恒温恒湿室平衡16h,然后测试纸张物理性能和成纸淀粉含量。
OCC废纸白水分离分别处理然后抄纸的试验步骤:(1)取OCC废纸300g,将其撕成小块,然后加自来水稀释至13%浓度,浸泡5-10min,倒入PL12-00型高浓水力碎浆机,碎浆15分钟,取出碎好的浆,再加自来水稀释至3%浓度,然后用滤袋将白水和浆分离,分别保存备用;(2)取上述制好的白水800g,加入试验试剂(淀粉络合剂)反应30min;(3)反应30min后,加入增效剂搅拌反应2-3min,加入上面配制的OCC浆,搅拌反应总时间10min;(4)取浆料置于30mL试管中,离心处理后测试上清液的淀粉浓度和COD含量;(5)剩余浆料立即倒入纤维标准解离器疏解1500r,疏解完后,加水稀释至0.5%浓度,称取0.5%浓度的浆料730g用纸页成型器进行抄纸(纸张定量100g左右);(6)抄完纸后,将纸样放置在25℃、水分50%的恒温恒湿室平衡16h,然后测试纸张物理性能和成纸淀粉含量。
OCC废纸的原浆抄纸实验步骤:(1)取废纸300g,将其撕成小块,然后加自来水稀释至13%浓度,浸泡5-10min,倒入PL12-00型高浓水力碎浆机,碎浆15分钟,取出碎好的浆,再加自来水稀释至3%浓度,保存备用;(2)取上述3%OCC原浆800g,加入试验试剂(淀粉络合剂)反应30min;(3)反应30min后,加入增效剂搅拌反应10min;(4)取浆料并置于30mL试管中,离心处理后测试上清液的淀粉浓度和COD含量;(5)剩余浆料立即倒入纤维标准解离器疏解1500r,疏解完后,加水稀释至0.5%浓度,称取0.5%浓度的浆料730g用纸页成型器进行抄纸(纸张定量100g左右);(6)抄完纸后,将纸样放置在25℃、水分50%的恒温恒湿室平衡16h,然后测试纸张物理性能和成纸淀粉含量。
碘显色淀粉测试方法:取0.5ml离心后样品,加入4ml稀碘液,在600nm下测定吸光度,根据吸光度浓度标线确定淀粉 浓度。
消解法测试COD含量:准确移取3.00mL待测样品于消解管,准确加入1.00mL掩蔽剂(不含氯离子的水样改加10%的硫酸1.00mL),再加入3.00mL消化液,5.00mL催化剂,旋紧密封盖(不含氯离子和低沸点有机物的水样,可用开管测试,方法相同)依次将消解管放入温度160.C的消解装置中,消解25分钟。消解过程完毕,待冷却后,将消解管按顺序取出,用比色法测定COD值。
成纸淀粉含量测试方法:(1)取成纸纸样,放置烘箱烘干15min,烘干后用植物微型粉碎机粉碎纸样,再将粉碎后的纸样放置烘箱烘干15min;(2)取1g烘干的粉碎纸样放置100ml烧杯中,加入70-80ml开水后,放置于100℃恒温水浴锅40min;(3)40min后取出,加水至100g,取浆料并离心处理后测试上清液的淀粉含量。
淀粉下降量(又称淀粉沉出量,或淀粉保留量)是指淀粉溶液与淀粉络合剂反应之后,溶液中淀粉浓度(St)与初始淀粉浓度(So)的差别,即淀粉保留量=So-St(mg/L)。
淀粉保留率(又称淀粉沉出率)是指淀粉保留量占初始淀粉总量的百分比,即
淀粉保留率(%)=(So-St)/So×100
COD降解量(又称COD沉出量)是指淀粉溶液与淀粉络合剂反应之后,溶液中COD浓度(COD1)与初始COD浓度(CODo)的差别,即
COD降解量=CODo-COD1(mg/L)
COD下降率(又称COD沉出率)是指淀粉保留量占初始淀粉总量的百分比,即
COD下降率(%)=(CODo-COD1)/CODo×100。
实施例1阳离子淀粉结合剂十六烷基吡啶盐酸(编号C7)与淀粉结合反应后对淀粉溶解和纤维表面吸附的影响
实验步骤:(1)取玉米淀粉样品先配制7%“标准淀粉溶液”;(2)取适量标准淀粉溶液加去离子水稀释到所需的淀粉溶液的浓度;(3)取所配制浓度的淀粉溶液500mL,放置烧杯中,并放入到45℃恒温水浴中,平衡到指定温度;(4)按照所需的浓度加入C7,反应60分钟,得改性淀粉溶液;(5)取样离心(4000x g)5分钟,取上清液测试淀粉浓度;(6)往剩余改性淀粉溶液中按照1%固体浓度加入漂白化学浆(BKP),保持搅拌时间10分钟;(7)反应完毕,取浆液离心(4000x g)5分钟,取上清液测试白水中淀粉浓度。
结果如下表2和表3所示。可见,C7络合剂对淀粉的反应能力很强。当初始淀粉的浓度为850mg/L时,加入30mg/L的C7,有超过700mg/L的淀粉被反应并被吸附到纤维表面,即相当于77%的总淀粉被从溶液中吸附出去。当初始淀粉的浓度增加到1450mg/L时,加入C7络合物30mg/L,溶液中淀粉浓度降低了1116mg/L,相当于移走75%。而当淀粉初始浓度为3000mg/L时,溶液的淀粉浓度下降了1785mg/L,即所移走的淀粉是络合剂C7本身的60倍。
表2淀粉结合剂C7浓度在不同初始淀粉浓度时对淀粉反应的影响
Figure PCTCN2019082774-appb-000079
表3淀粉结合剂C7用量与淀粉保留率的关系
Figure PCTCN2019082774-appb-000080
实施例2反应时间对淀粉结合反应的影响
淀粉反应的实验步骤:(1)取玉米淀粉样品先配制7%“标准淀粉溶液”;(2)取适量标准淀粉溶液加去离子水稀释到淀粉浓度大约1800mg/L(或其它所需浓度);(3)取所配制浓度的淀粉溶液500mL或者OCC白水,放置烧杯中,并放入到45℃恒温水浴中,平衡到指定温度;(4)按照所需加入30mg/L淀粉结合剂,在反应达到1,3,5,10,30,60,90,120,300,600和1200分钟时,取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;
淀粉吸附反应时间的试验步骤:步骤(1)-(4)同上,(5)在淀粉反应达到60分钟时,按照所需要的纸浆浓度加入3%化学浆(BKP),搅拌并开始进行吸附反应;(6)吸附反应达到10、30、60或120分钟时,取浆液并将其置于30mL试管中;(7)对所有所取的溶液进行离心(x4000g.5分钟)分析,取上清液分析其淀粉或COD浓度。
测试了五种阳离子淀粉络合剂,其测试结果总结如图1、图2、图3以及表4所示。从图1可见,此类淀粉络合剂和淀粉的反应速度非常快,即在10分钟之内,反应基本达到平衡状态的90%以上;超过30分钟之后,反应趋于平衡。同样,图2显示与淀粉络合剂反应后的改性淀粉与纸浆的吸附反应速度也十分快,在十分钟后达到平衡或最大值,超过10分钟之后,淀粉吸附达到饱和,延长反应时间可能会导致部分已经吸附的淀粉脱附。图3结果显示淀粉络合剂C7与淀粉的反应极为迅速,在第一分钟就有3%的淀粉被反应,在10分钟之内50%的淀粉已经被反应,随反应时间的延续,淀粉保留率继续增加,在超过30分钟之后,其保留率的增加速度放缓,在20小时时,保留率达到70%。
表4显示添加淀粉结合剂C14之后反应时间对淀粉保留(即变化量)的影响。可见,对于纯淀粉溶液,淀粉结合剂C14于淀粉的反应十分快速,基本在10分钟之内完成70%以上,之后随着时间的延续,反应有进一步进行,但速度要慢很多。对于从OCC纸浆中制得的淀粉,淀粉结合剂C14改性白水淀粉之后的淀粉保留率比较低,似乎C14与OCC淀粉反应不如与纯淀粉那么强烈;其实这是由于OCC白水中含有干扰物质,消耗了部分C14。当添加一定的抗干扰化学浆(即增效剂)屏蔽干扰物质之后,淀粉结合剂的效果会大大提高。
表4淀粉结合剂C14与淀粉结合反应与反应时间的关系
Figure PCTCN2019082774-appb-000081
Figure PCTCN2019082774-appb-000082
实施例3反应温度对淀粉结合反应以及对改性淀粉吸附效果的影响
实验步骤:(1)取玉米淀粉样品配制7%“标准淀粉溶液”;(2)取适量标准淀粉溶液加去离子水稀释到淀粉浓度大约600mg/L;(3)取所配制浓度的淀粉溶液500mL,放置烧杯中,并放入到预先设定所需测试温度的恒温水浴中,平衡到指定温度;(4)按照测试所需,加入30mg/L阳离子淀粉结合剂C7,反应60分钟,得改性淀粉溶液;(5)取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;(6)往剩余改性淀粉溶液中按照2.5%的纸浆固体浓度加入化学浆(BKP)(注:淀粉结合剂用量相当于1000g/T绝干浆),保持搅拌;(7)反应10分钟,取浆液离心(4000x g)5分钟,取上清液测试白水中淀粉浓度及COD浓度。
图4显示在不同温度下,阳离子淀粉结合剂C7和与淀粉反应对淀粉在化学浆的保留的影响。可见,空白条件下,淀粉在纸浆表面的吸附随着温度的升高而下降;在与阳离子淀粉结合剂反应后,修饰淀粉在纤维表面的吸附在所测试的温度范围之内,基本保持不变。
图5显示了不同温度下,淀粉结合剂对溶解COD的影响。可见,所测试的阳离子淀粉结合剂与淀粉反应之后,溶解COD下降显著。但是,升高温度,对COD的下降率稍有负面影响。
实施例4反应pH对淀粉结合剂与淀粉的反应以及对改性淀粉的吸附效果的影响
实验步骤:(1)取玉米淀粉样品先配制7%“标准淀粉溶液”;(2)取适量标准淀粉溶液加去离子水稀释到淀粉浓度大约600mg/L;(3)取所配制浓度的淀粉溶液500mL,放置烧杯中,并放入到预先设定45℃的恒温水浴中,通过加入盐酸或者氢氧化钠调节淀粉溶液的pH;(4)加入30mg/L阳离子淀粉结合剂C7或C12,反应60分钟,得改性淀粉溶液;(5)取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;(6)往剩余改性淀粉溶液中按照2.5%的纸浆固体浓度加入化学浆(BKP),保持搅拌;(7)反应10分钟,取浆液离心(4000x g)5分钟,取上清液测试白水中淀粉浓度及COD浓度。
图6和图7显示了不同pH下,阳离子淀粉结合剂C7和C12与淀粉反应以及在化学浆纤维的淀粉保留的结果。可见,结合剂C7与淀粉的反应基本不受pH影响;结合剂C12与淀粉的反应在酸性条件下不受影响,但随着pH超过7时,随着pH上升淀粉保留率下降,说明升高pH对淀粉保留率有负面影响。
实施例5纸浆用量(表面积)对淀粉溶解和吸附的效果
实验步骤:(1)取玉米淀粉样品先配制7%“标准淀粉溶液”;(2)取适量标准淀粉溶液加去离子水稀释到淀粉浓度大约1500mg/L;(3)取所配制浓度的淀粉溶液500mL,放置烧杯中,并放入到45℃恒温水浴中,平衡到指定温度;(4)按照所需的浓度加入C7,反应60分钟,得改性淀粉溶液;(5)取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;(6)往剩余改性淀粉溶液中按照所需的纸浆固体浓度加入化学浆,保持搅拌时间10分钟;(7)反应完毕,取浆液离心(4000x g)5分钟,取上清液测试白水中淀粉含量及COD浓度。
结果如表5所示。可见,淀粉本身在漂白化学浆(BKP)纤维表面的吸附非常微小。经过与C7反应之后,淀粉在纤维表面的吸附极大地增加;并且随着纤维的表面积增加,淀粉的吸附量显著增加。例如,当C7的用量为30mg/L时,BKP用量从1%增加到5%,溶解淀粉的浓度从420mg/L下降到178mg/L,降低了58%;对应的COD浓度从1042mg/L下降到638mg/L,下降了39%。按照吸附前后的浓度变化,当BKP用量为5%时,溶解淀粉浓度下降了412mg/L,COD浓度则下降了404mg/L,显示淀粉的吸附与COD下降有直接的线性关系。图8对比了在两种不同的C7用量下,BKP使用量对淀粉保留量和COD去除量的关系。
表5不同化学浆(BKP)浓度对淀粉与C7反应的影响
Figure PCTCN2019082774-appb-000083
Figure PCTCN2019082774-appb-000084
实施例6不同纸浆类型对淀粉结合剂修饰后的淀粉吸附效果的对比
实验步骤:(1)取玉米淀粉样品先配制7%“标准淀粉溶液”;(2)取适量标准淀粉溶液加去离子水稀释到所需淀粉浓度(1500mg/L);(3)取所配制浓度的淀粉溶液500mL,放置烧杯中,并放入到45℃恒温水浴中,平衡到指定温度;(4)按照所需加入30mg/L淀粉结合剂C14或一定量的C7,反应60分钟,得改性淀粉溶液;(5)取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;(6)往剩余改性淀粉溶液中按照2.5%的纸浆固体浓度加入纸浆,保持搅拌;(7)反应10分钟,取浆液离心(4000x g)5分钟,取上清液测试白水中淀粉浓度及COD浓度。
试验结果总结于表6。可见,不同类型的纸浆对于淀粉结合剂-淀粉的反应产物的吸附具有较大的差别。漂白化学浆(BKP)的吸附能力最强,未漂化学浆(UBKP)比BKP稍差,而回收废纸OCC浆最差。回收OCC纸浆对于所有测试的淀粉结合剂与淀粉的反应产物的吸附都是最低的,猜测主要原因很可能是该纸浆本身含有大量的淀粉,部分纤维表面已经被淀粉覆盖,因而对淀粉结合剂的反应产物的吸附力不大;此外,本身所带的淀粉可能溶解和脱附到溶液中去,增加系统中的淀粉总浓度(即比初始淀粉浓度要高),因而干扰测试“真正”的淀粉反应产物吸附量。
表6不同纸浆类型对淀粉保留的影响
Figure PCTCN2019082774-appb-000085
为证实OCC浆带入淀粉对淀粉结合产物吸附的影响,决定先对OCC浆进行如下预处理。先将1%浓度的OCC纸浆加热到70-75℃,按照1000g/T(绝干浆)的用量加入淀粉酶,反应60分钟;将纸浆装入过滤袋中,离心甩干到30%的固体浓度;然后加入纯净水到1%的浆浓度,加热纸浆沸腾60分钟,再次用过滤袋装并离心甩干;制得用酶洁净的OCC纸浆(enzyme treated OCC),编号E-OCC。
表7对比了原OCC浆,酶洁净OCC浆(E-OCC)和漂白化学浆(BKP)对结合剂处理淀粉反应的影响。可见,E-OCC对C7-淀粉反应后的淀粉和COD浓度都比OCC要低得多。图9显示,E-OCC的淀粉吸附率达到50%,比OCC的吸附率(29%)要明显提高。
表7不同纸浆类型对C7-淀粉络合物吸附的影响
Figure PCTCN2019082774-appb-000086
Figure PCTCN2019082774-appb-000087
实施例7淀粉结合剂疏水基团结构对结合剂与淀粉反应的影响
实验步骤:(1)取玉米淀粉样品先配制7%“标准淀粉溶液”;(2)取适量标准淀粉溶液加去离子水稀释到淀粉浓度大约1600mg/L;(3)取所配制浓度的淀粉溶液500mL,放置烧杯中,并放入到预先设定45℃的恒温水浴中;(4)加入30mg/L淀粉结合剂,反应30分钟,得改性淀粉溶液;(5)取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;(6)往剩余改性淀粉溶液中按照2.5%的纸浆固体浓度加入化学浆(BKP),保持搅拌;(7)反应10分钟,取浆液离心(4000x g)5分钟,取上清液测试白水中淀粉浓度及COD浓度。
表8阳离子型淀粉结合剂的疏水基团结构对淀粉保留的影响
结合剂编号 结合剂疏水碳链结构 淀粉保留量(mg/L) 相对保留率(%)
C2 饱和直链12碳 736 46
C5 饱和直链16碳 944 59
C3 饱和直链18碳 1072 67
C4 非饱和直链18碳 1120 70
C12 饱和直链22碳 1472 92
C25 饱和直链32碳 960 60
C21 双饱和直链18碳 1200 75
表8数据显示,依淀粉保留率为参数,淀粉结合剂与淀粉的反应强度与疏水基团结构有直接关系。对于阳离子型淀粉结合剂,结合剂与淀粉的反应强度随着碳链增长而增加,一直到碳链到22碳;当碳链长超过22时,结合剂与淀粉的反应强度有下降。
实施例8增效剂对淀粉吸附效果的影响
OCC废纸纸浆和白水制取:取废纸300g,将其撕成小块,然后加自来水稀释至13%浓度,浸泡5-10min,倒入PL12-00型高浓水力碎浆机,碎浆15分钟,取出碎好的浆,再加自来水稀释至3%浓度;然后用滤袋将白水和浆分离,制得OCC白水和OCC纸浆,分别保存备用。
淀粉结合剂与白水中溶解淀粉反应的实验步骤:(1)从以上所配制OCC白水中取500mL,放置烧杯中,并放入到45℃恒温水浴中,平衡到指定温度;(2)按照所需的浓度加入C7或C19,反应60分钟;(3)取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;(4)往剩余溶液中,加入所需浓度的增效剂Y1(聚丙烯酰胺-聚二烯丙基二甲基氯化铵高分子共聚物,High molecular weight comopolymer of cationic acrylamide-DADMAC(diallyldimethylammonium chloride),购自:美国SNF Floeger公司),混匀;然后按照2.5%的纸浆固体浓度加入所配制的OCC浆或者BKP浆,搅拌混匀;(5)反应10分钟,取浆液离心(4000x g)5分钟,取上清液测试白水中淀粉浓度及COD浓度。
测试结果如表9所示。可见,增效剂Y1对于未经修饰的白水溶解淀粉在OCC浆的吸附没有显著影响;由于OCC浆还带有大量淀粉,加入到白水之中,其表面淀粉进行二次溶解和脱附,导致溶液中的溶解淀粉浓度和COD浓度都比添加纸浆之前更高。但是,在淀粉结合剂C19与淀粉反应之后,溶解淀粉的浓度从758mg/L左右下降到280mg/L,表明经过C19反应后的修饰淀粉显著改变淀粉的可溶性;在添加OCC纸浆后,未添加C19时,淀粉浓度从682mg/L提升到715-776mg/L(视Y1的用量而定);C19修饰淀粉后,改性淀粉大量被吸附到OCC浆表面而使溶解淀粉浓度大幅度下降,下降到了360mg/L-202 mg/L,溶解COD也有明显下降,并且随着增效剂的用量增加而递减,说明增效剂的添加对C19-修饰淀粉在OCC浆吸附有明显的加强效果。当增效剂用量达到12mg/L时,白水的终点淀粉浓度下降到了202mg/L,同时COD下降到了472mg/L;相应地,比未经处理白水的初始淀粉浓度和COD浓度分别降低了73%和58%。这些结果说明Y1对于C19-修饰淀粉在OCC纤维的保留有明显的促进作用。
表10对比了增效剂Y1对C7-修饰淀粉在OCC浆和BKP浆的吸附。可见,淀粉结合剂C7与增效剂Y1具有非常显著的“强强联合效应”(synergism),Y1能大大提高C7-修饰淀粉在纸浆的保留,进而大幅度降低溶解COD含量。
表9增效剂Y1对修饰淀粉在OCC浆吸附的影响
Figure PCTCN2019082774-appb-000088
表10增效剂Y1对修饰淀粉在OCC浆和BKP浆吸附的影响
Figure PCTCN2019082774-appb-000089
注:初始淀粉浓度=563mg/L;初始COD浓度=710mg/L。
实施例9混合淀粉络合剂处理淀粉溶液对淀粉保留的效果
实验步骤:(1)取玉米淀粉样品先配制7%“标准淀粉溶液”;(2)取适量标准淀粉溶液加去离子水稀释到淀粉浓度大约1600mg/L;(3)取所配制浓度的淀粉溶液500mL,放置烧杯中,并放入到预先设定45℃的恒温水浴中;(4)加入淀粉结合剂1,反应15分钟之后,再加入淀粉结合剂2,再反应15分钟,得改性淀粉溶液;(5)取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;(6)往剩余改性淀粉溶液中按照2.5%的纸浆固体浓度加入化学浆(BKP),保持搅拌;(7)反应10分钟,取浆液离心(4000x g)5分钟,去上清液测试白水中淀粉浓度及COD浓度。
表11总结了加药顺序以及不同的结合剂组合使用对淀粉保留的影响。可见,两种阳离子淀粉结合剂的组合使用比一种单独使用的效果更好,淀粉保留率都比每个结合剂单独使用时要显著提高,特别是当两个淀粉结合剂的疏水基团的碳链不同长时,组合使用有明显的协同效应(Synergy)。图10显示C55和C57两个结合剂不同配比组合使用对淀粉保留量的影响。可见,虽然单独使用时,C57的效果比C55要好得多,但C55与C57以一定比例组合使用比C57单独使用的效果更好。
表11双组分阳离子淀粉结合剂及其添加顺序对溶解淀粉的保留量的影响
Figure PCTCN2019082774-appb-000090
实施例10淀粉聚合度(粘度)对修饰淀粉反应的影响
淀粉溶液配制:(1)取465g去离子水将其置于97℃的磁力水浴锅中,缓慢加入35g玉米淀粉;(2)按照所需配置淀粉的粘度(降解度),加入定量的过硫酸铵,其过硫酸铵相当于淀粉的重量百分比分别为0—0.5%;(3)煮沸40分钟,而后降温至65℃,保持淀粉溶液在60℃,制得7%的“标准”淀粉溶液,保存备用。
淀粉修饰改性反应和测试步骤:(1)取上述配制的7%淀粉溶液,加去离子水稀释到淀粉浓度大约1600mg/L;(2)取所配制浓度的淀粉溶液500mL,放置烧杯中,并放入到预先设定45℃的恒温水浴中;(3)加入淀粉结合剂C14,反应30分钟,得改性淀粉溶液;(4)取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;(5)往剩余改性淀粉溶液中按照2.5%的纸浆固体浓度加入化学浆(BKP),保持搅拌;(6)反应10分钟,取浆液离心(4000x g)5分钟,取上清液测试白水中淀粉浓度及COD浓度。
表12对比了用不同用量的氧化剂所配制的不同分子链长的淀粉溶液在BKP纤维的保留结果。可见,包括原生淀粉在内所有的淀粉,在与淀粉结合剂C14反应之前,在BKP纤维表面的保留极其有限(<25%),其溶解COD基本不变。但是,经过C14反应修饰之后,所有的淀粉在BKP保留率提高到80%以上;由于淀粉通过吸附从溶液中被保留,白水中剩余的淀粉大大降低,从而COD浓度下降,其下降率高达40-86%。这些数据说明本发明的淀粉结合剂在去除不同大小的淀粉分子都是十分高效的,且淀粉的分子链长越大(聚合度越高),淀粉结合剂的保留效率也越高。
表12淀粉聚合度(分子大小)与淀粉结合剂反应的效率关系
Figure PCTCN2019082774-appb-000091
Figure PCTCN2019082774-appb-000092
实施例11阳离子淀粉结合剂与不同来源/类型的淀粉反应对淀粉保留率的影响
原淀粉溶液制作步骤:(1)取淀粉样品先配制7%淀粉溶液;(2)将淀粉溶液加热至95度(℃),反应到粘度达到稳定;(3)降温至65℃,在恒温水浴中保持淀粉溶液。
商用氧化淀粉溶液的配制同上。
氧化淀粉溶液配制:(1)取465g去离子水将其置于97℃的磁力水浴锅中,缓慢加入35g原淀粉;(2)加入定量的过硫酸铵,其过硫酸铵相当于淀粉的重量百分比分别为0.5%;(3)煮沸40分钟,而后降温至65℃,保持淀粉溶液在60℃,制得7%的“氧化淀粉溶液”,保存备用。
实验反应步骤:(1)按照标准淀粉配制的溶液或氧化淀粉溶液,加去离子水稀释到淀粉浓度大约1200mg/L;(2)取所配制淀粉浓度的淀粉溶液500mL,放置烧杯中,并放入到45℃恒温水浴中,平衡到指定温度;(3)按照所需的浓度加入C7,反应30分钟,得改性淀粉溶液;(4)取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;(5)往剩余改性淀粉溶液中按照3%纸浆固体浓度加入化学浆,保持搅拌时间10分钟;(6)反应完毕,取浆液离心(4000x g)5分钟,取上清液测试白水中淀粉含量及COD浓度。
结果如表13:可见,不同来源的淀粉本身在漂白化学浆(BKP)纤维表面的保留很小;氧化淀粉和商业改性淀粉在BKP的保留率也同样很低。经过与C7反应之后,所有淀粉在纤维表面的吸附均有极大地增加,但每一种淀粉的改善程度相差较大。例如,当C7的用量为30mg/L时,玉米淀粉在BKP的保留率增加至82%,而木薯淀粉的保留率只有43%。这种差别可能跟玉米淀粉与木薯淀粉的结构相关,前者直链淀粉的比例较高(>25%),而后者一般直链淀粉含量最高只占17%。经过氧化处理之后,支链淀粉被打断成直链淀粉,氧化淀粉本身在BKP的保留率改善不大;但在与C7反应之后,所有氧化淀粉的保留率大幅度提高,特别是木薯淀粉的保留率增加到72%,相应地,玉米淀粉的保留率达到96%。商业淀粉的保留率在与C7反应后,其在BKP的保留率也大大提高。
表13不同类型原淀粉和改性淀粉与阳离子淀粉结合剂反应对淀粉保留的影响
Figure PCTCN2019082774-appb-000093
Figure PCTCN2019082774-appb-000094
实施例12阳离子淀粉结合剂修饰淀粉对漂白化学浆(BKP)纸张强度的影响
化学浆抄纸的试验步骤:(1)取漂白化学浆300g,将其撕成小块,然后加自来水稀释至13%浓度,浸泡5-10min,倒入PL12-00型高浓水力碎浆机,碎浆15分钟,取出碎好的浆,保存备用;(2)取玉米淀粉按照标准的淀粉溶液制取方法,配置7%“标准淀粉溶液”800mL;(3)按需要加入淀粉结合剂,反应30min,得改性淀粉溶液;(4)在改性淀粉溶液中加入BKP,搅拌反应10min;(5)取浆料置于30mL试管中,并离心处理后,测试上清液的淀粉浓度和COD含量;(6)剩余浆料立即倒入纤维标准解离器疏解1500r,疏解完后,加水稀释至0.5%浓度,称取0.5%浓度的浆料640g用纸页成型器进行抄纸(纸张定量100g左右);(7)抄完纸后,将纸样放置在25℃、水分50%的恒温恒湿室平衡16h,然后测试纸张物理性能和成纸淀粉含量。
表14对比了多种反应条件下,淀粉结合剂C14对淀粉保留、降低COD和纸张物理指标的影响结果。以1%的浆浓为例,在空白条件下(即不添加淀粉,只加15mg/L的C14),纸张的抗张指数和耐破指数分别为19.7m.N/g和1.7kPa.m 2/g;当把纸浆和淀粉溶液(注:浓度为890mg/L,如果100%保留,则纸张的淀粉含量相当于8.9%)进行混合10分钟之后,其白水的淀粉含量从890mg/L下降到722mg/L(相当于18.9%保留率),COD从722mg/L下降到605mg/L(相当于下降16%);纸张的抗张指数提高到28.6mN/g,耐破指数提高到2.5kPa.m 2/g,分别提高了45%和47%;淀粉分析显示纸张的淀粉含量达到1.8%。在先添加15mg/L(注:相当于1.5kg/吨纸)淀粉结合剂C14,反应之后再添加BKP,白水的淀粉浓度和COD浓度分别为170和487mg/L,即淀粉保留率为80.9%,COD下降率32.5%。相应地,纸张的抗张和耐破指数分别达到了36.8mN/g和3.7kPa.m 2/g,是空白指标的187%和218%,比对比条件(即只有淀粉)分别高出29%和48%。其它反应添加的结果与以上的趋势一致,唯有改变幅度不一样。
图11显示使用淀粉结合剂C7(用量=1.5kg/T纸)对淀粉改性之后再添加BKP对抄片物理强度的影响。可见,C7和淀粉结合使用对抗张指数和耐破指数的改善与C14非常相似。
这些结果显示,经过淀粉结合剂反应修饰之后,淀粉在BKP的保留大大改善,从而极大地提高纸张的物理强度。
表14淀粉结合剂用量和纸浆浓度对BKP的纸张强度的影响
Figure PCTCN2019082774-appb-000095
Figure PCTCN2019082774-appb-000096
注:初始淀粉浓度=889mg/L;初始COD浓度=722mg/L。配制玉米淀粉粘度=30mPa.S。
实施例13阳离子淀粉结合剂及其组合对OCC回收过程中保留淀粉、降低COD以及纸张强度的影响
OCC废纸的碎浆和抄纸实验步骤:(1)取废纸300g,将其撕成小块,然后加自来水稀释至13%浓度,浸泡5-10min,倒入PL12-00型高浓水力碎浆机,碎浆15分钟;(2)取出碎好的浆,加自来水稀释至3%浓度,保存备用;(3)取上述3%OCC原浆800g,加入试验试剂(淀粉结合剂)反应30min;(4)按照试验需要,加入增效剂Y2(聚二烯丙基二甲基氯化铵,PolyDADMAC),搅拌混合均匀10min;(5)取浆料并置于30mL试管中,离心处理后测试上清液的淀粉浓度和COD含量;(6)剩余浆料立即倒入纤维标准解离器疏解1500r,疏解完后,加水稀释至0.5%浓度,称取0.5%浓度的浆料730g用纸页成型器进行抄纸(纸张定量100g左右);(7)抄完纸后,将纸样放置在25℃、水分50%的恒温恒湿室平衡16h,然后测试纸张物理性能和成纸淀粉含量。
图12显示淀粉结合剂C7和C14(用量=1.5kg/吨绝干浆)对OCC白水淀粉留着的影响,可见,添加C7和C14到OCC制浆过程中,淀粉在纸张的保留率大幅度提高,白水的淀粉浓度显著下降,相应的溶解COD浓度下降。
图13表明,添加C7和C14之后,纸张的抗张指数和耐破指数获得显著改善。
这些结果显示,经过淀粉结合剂的反应修饰之后,OCC废纸中的淀粉可以大部分甚至全部保留下来,不仅能提高废纸资源的综合利用,提高纸张的物理强度,而且能大大改善废纸制浆造纸的环保效益。
实施例14阳离子淀粉结合剂分段加入对淀粉修饰与保留淀粉的影响
OCC废纸的碎浆和抄纸实验步骤:(1)取废纸300g,将其撕成小块,然后加自来水稀释至所需的纸浆浓度13%浓度,浸泡5-10min,倒入PL12-00型高浓水力碎浆机,按照试验需要加入淀粉结合剂,碎浆15分钟;(2)取出碎好的浆,加自来水稀释至3%浓度,保存备用;(3)取上述3%OCC原浆800g,加入所需淀粉结合剂,再加入增效剂Y2(聚二烯丙基二甲基氯化铵,PolyDADMAC),搅拌混合均匀10min;(4)取浆料并置于30mL试管中,离心处理后测试上清液的淀粉浓度和COD含量;(5)剩余浆料立即倒入纤维标准解离器疏解1500r,疏解完后,加水稀释至0.5%浓度,称取0.5%浓度的浆料730g用纸页成型器进行抄纸(纸张定量100g左右);(6)抄完纸后,将纸样放置在25℃、水分50%的恒温恒湿室平衡16h,然后测试纸张物理性能和成纸淀粉含量。
结果如表15和表16所示。可见,加入淀粉结合剂后,初始淀粉浓度能显著降低,从各种指标来看,分段加入比单段加入的效果要更显著一些。
表15阳离子淀粉结合剂分段加入对淀粉保留的影响
Figure PCTCN2019082774-appb-000097
Figure PCTCN2019082774-appb-000098
表16阳离子淀粉结合剂分段加入对纸张物理指标的影响
Figure PCTCN2019082774-appb-000099
实施例15阳离子淀粉结合剂对OCC回收过程中保留淀粉、纸张强度和纸张抗水性的影响
OCC废纸的碎浆和抄纸实验步骤:(1)取废纸300g,将其撕成小块,然后加自来水稀释至13%浓度,浸泡5-10min,倒入PL12-00型高浓水力碎浆机,碎浆15分钟;(2)取出碎好的浆,加自来水稀释至3%浓度,保存备用;(3)取上述3%OCC原浆800g,加入试验试剂(淀粉结合剂C56,C24,C40,C63)反应30min;(4)再加入500g/T增效剂Y2(聚二烯 丙基二甲基氯化铵,PolyDADMAC),搅拌混合均匀10min;(5)取浆料并置于30mL试管中,离心处理后测试上清液的淀粉浓度和COD含量;(6)剩余浆料立即倒入纤维标准解离器疏解1500r,疏解完后,加水稀释至0.5%浓度,称取0.5%浓度的浆料730g用纸页成型器进行抄纸(纸张定量100g左右);(7)抄完纸后,将纸样放置在25℃、水分50%的恒温恒湿室平衡16h,然后测试纸张物理性能和成纸淀粉含量。
表17显示淀粉结合剂(用量=1.5kg/吨绝干浆)对OCC白水淀粉浓度、COD浓度、纸张抗张指数和抗水值(Cobb值)的影响。结果显示,经过淀粉结合剂的反应修饰之后,OCC废纸中的淀粉可以有效保留下来,降低白水COD含量,不仅提高纸张的物理强度,而且能大大降低纸张的Cobb值,即改善纸张的抗水性能。这是传统的淀粉改性技术不可能达到的。
表17阳离子淀粉结合剂对改善纸张物理强度指标和抗水性的结果
Figure PCTCN2019082774-appb-000100
实施例16不同阳离子淀粉结合剂与淀粉结合反应的结果
实验步骤:(1)取玉米淀粉样品先配制7%“标准淀粉溶液”;(2)取适量标准淀粉溶液加去离子水稀释到淀粉浓度大约1600mg/L;(3)取所配制浓度的淀粉溶液500mL,放置烧杯中,并放入到预先设定45℃的恒温水浴中;(4)加入30mg/L的淀粉结合剂,反应30分钟,得改性淀粉溶液;(5)取样离心(4000x g)5分钟,取上清液测试淀粉含量及COD浓度;(6)往剩余改性淀粉溶液中按照2.5%的纸浆固体浓度加入化学浆(BKP),保持搅拌;(7)反应10分钟,取浆液离心(4000x g)5分钟,取上清液测试白水中淀粉浓度及COD浓度。根据淀粉浓度差计算淀粉在纸浆的保留率。
结果如表18所示。
表18阳离子淀粉结合剂与淀粉结合反应的结果
Figure PCTCN2019082774-appb-000101
Figure PCTCN2019082774-appb-000102
Figure PCTCN2019082774-appb-000103
Figure PCTCN2019082774-appb-000104
Figure PCTCN2019082774-appb-000105
实例17淀粉修饰后对白水系统的杀菌和保洁的影响
本实施例观察和测试了不同条件下的白水的细菌生长,以考察淀粉结合剂修饰淀粉之后对系统的保洁和杀菌的影响。
实验方法:1.制备淀粉:将800g的4%玉米淀粉溶液放入95℃水浴中煮60分钟后配制成7%“标准淀粉溶液”,降温到60℃保温,待用;2.制备浆料:称取400g美废AOCC,加45℃水到3077g(13%浓度),浸泡5分钟后将其倒入碎浆机中,碎浆15分钟;3.药品制备:用去离子水将淀粉结合剂C57和C64,修饰淀粉保留增效剂(Y2),分别配制成1%的溶液;4.浆料及淀粉溶液处理:(a)称取步骤1中制备的7%淀粉溶液加去离子水稀释1%,(b)在步骤(a)处理后的淀粉溶液与步骤2中制备的3%的浆料按照10kg淀粉/吨绝干浆的比例混合,加去离子水稀释到1%;(c)倒入纤维疏解机进行疏解(5000转),得到叩解度为30°SR浆料,(d)按照所需用量加入淀粉结合剂C57或C64,搅拌3min后,按照所需添加增效剂Y2(聚二烯丙基二甲基氯化铵,PolyDADMAC),继续搅拌27min;5.抑菌/杀菌试验:取上述步骤反应好的浆料50ml于离心管,在6000r/min转速下离心5min,取上清液15ml备用;0.1ml上清液于琼脂培养基中,涂布均匀,放置在37℃的培养箱中培养12h,统计菌落数。
实验结果:表19显示几种典型的测试条件及其试验结果,图14是细菌培养12小时时的生长照片(图中编号对应于表19中的实验序号)。可见,纸浆白水因含有大量的淀粉和其它营养物,细菌生长快速,菌落总数达到76。但是,在加入淀粉结合剂之后,细菌生长大幅度下降。特别是与增效剂Y2一起使用时,细菌生长几乎被完全抑制。这些结果说明,本发明的淀粉结合剂不仅具有修饰淀粉和保留淀粉的作用,而且对造纸白水系统具有保洁、抑菌或杀菌的良好效果。当系统的细菌生长得到有效控制后,白水的淀粉分解生物酶也将大大下降,从而进一步促进淀粉的高效保留,提高废纸回收使用的得率。
表19淀粉结合剂及其组合处理AOCC纸浆后对白水系统细菌生长的影响
Figure PCTCN2019082774-appb-000106
实施例18大规模纸机生产的工业试验
纸浆生产流程和纸机生产概况:该厂位于浙江省东部,使用100%回收OCC废纸生产定量范围在140gsm—250gsm的普 通牛卡纸,日产量在1300-1500吨/天。其制浆流程如图15所示。纸机抄纸幅宽6600mm,湿部采用三叠网成形设备,压部一压采用硬辊压榨,二压采用靴压压榨,纸机表面施胶采用膜转移式施胶。
试验安排:本次试验的具体安排如下:
(1)试验产品:本次试验所使用的阳离子淀粉络合剂为表1中的C19(工业级)。
(2)加药点:直接使用化学药剂计量泵加入到碎浆机,通过碎浆机的搅拌作用,与浆料充分混合,使之与白水和纸浆中的淀粉进行充分反应。
(3)加药量:C19用量在1000-2000g/吨纸范围。为了让整个试验能够平稳进行,产品添加从低用量(1000g/T)开始,在试验进行过程中逐步增加用量,最高到2000g/T。
试验过程:试验前(即在添加阳离子淀粉络合剂前)的半个月,开始对该厂的生产过程、理化条件和纸张指标等进行系统的测试和跟踪。试验持续进行了总共八天,整个试验期间纸机生产了同类品种,只有纸张的克重不一样。
试验数据分析:为了对比试验前后的结果,选择了试验前和试验期间的原料配比基本相同的条件下,对数据进行统计分析。
试验结果:根据厂方所提供的多种生产数据,结合本次试验跟踪的白水化学参数,对试验前后的各种变化进行了系统的统计分析。主要结果如表20和表21所示。
添加C19之后,白水系统中各部位的淀粉浓度和纸机排水的淀粉浓度都随着C19的用量递增而下降,同时整个白水系统的pH渐渐上升,例如碎浆机出口的浆料pH平均从试验前的6.3上升到了6.7,纸机排水pH由6.4提升到7.0。这显示C19不仅提高了淀粉在纤维/纸张的保留(18.6%,表20),同时还控制了白水中淀粉的降解和由其带来的酸化,说明C19具有控制白水中淀粉消耗细菌的生长的功能,其详细生化机理有待进一步研究。通过C19对淀粉的有效保留和降解抑制,水中溶解COD浓度显著下降,纸机系统显著变得干净,纸机用水可以更多被循环使用,从而纸机的排水下降(表20),而且纸机排水COD浓度下降了8.8%,综合效果使得吨纸COD排放从试验前的37.2kg/T下降到24.7kg/T,降幅达33%。由于淀粉和灰分的有效保留,原料得到更加充分的利用,吨纸生产原料的单耗从1.16T/T下降到1.09T/T,相当于得率提高了5.8%。此外,由于废纸中淀粉得到保留利用,生产中添加的喷淋淀粉和表胶淀粉也明显降低。
以上大规模工业试验的综合效果充分证实了本发明的阳离子淀粉络合剂的高效性和经济可行性。
表20试验前与试验期间纸产品和纸机排水的指标对比
Figure PCTCN2019082774-appb-000107
表21试验前与试验期间的纸机生产指标的对比
Figure PCTCN2019082774-appb-000108
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (76)

  1. 一种改性淀粉,其特征在于,主要由淀粉和阳离子淀粉络合剂制备得到;
    所述阳离子淀粉络合剂的化学结构由以下部分构成:
    i)一个或多个疏水基团,其中至少一个疏水基团能与淀粉反应生成包合络合物,和
    ii)一个或多个亲水基团,其中至少一个亲水基团为阳离子型亲水基团;
    所述疏水基团与所述亲水基团分别处于同一分子结构的两端并以化学键相连接,形成一种不对称的、极性的结构;
    所述疏水基团为非极性基团,选自直链脂肪烃基,支链脂肪烃基,芳香烃基,脂肪和芳香混合烃基,以及含氟烃基中的至少一种;
    所述亲水基团为极性基团,选自酯基、卤基甲酰基、氨基甲酰基、氰基、醛基、羰基、醚基、醇基、酚基、巯基、硫醚基、胺基、季铵盐、胍基中的至少一种;
    并且,所述阳离子淀粉络合剂在水中电离之后生成疏水性阳离子。
  2. 根据权利要求1所述的改性淀粉,其特征在于,所述阳离子淀粉络合剂在水中电离之后生成的所述疏水性阳离子选自胺盐型阳离子、季铵盐型阳离子、胍盐型阳离子、锍盐型阳离子、磷盐型阳离子、砷盐型阳离子中的至少一种。
  3. 根据权利要求1所述的改性淀粉,其特征在于,所述阳离子淀粉络合剂选自:胺类化合物或其盐、胍类化合物或其盐、取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐、阳离子锍盐中的至少一种。
  4. 根据权利要求3所述的改性淀粉,其特征在于,所述胺类化合物或其盐选自:伯胺或其盐、仲胺或其盐、叔胺或其盐、季铵盐、多胺或其盐、多季铵盐、聚合物基取代的脂肪胺或其盐、聚合物基取代的季铵盐中的至少一种;所述聚合物基选自聚环氧乙烷基、聚环氧丙烷基中的至少一种;
    所述伯胺的结构式为RNH 2
    所述仲胺的结构式为R 1R 2NH;
    所述叔胺的构式为R 1R 2NR 3
    所述季铵盐的结构式为R 1R 2R 3R 4NX;
    所述多胺的结构式为R 5(CH 2CH 2CH 2NR) nH;
    所述多季铵盐的结构式为R 5(CH 2CH 2CH 2N(CH 3) 2) nCH 3X n
    所述聚合物基取代的脂肪胺的结构式为
    Figure PCTCN2019082774-appb-100001
    所述聚合物基取代的季铵盐的结构式为
    Figure PCTCN2019082774-appb-100002
    各R、R 1,R 2,R 3,R 4,R 5分别独立地选自:取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基;
    所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
    R 6、R 7和R 8分别独立地选自:H、C1-C4烷基、聚合度大于1的聚环氧乙烷基、聚合度大于1的聚环氧丙烷基,并且R 6、R 7中至少一个选自聚合度大于1的聚环氧乙烷基或聚合度大于1的聚环氧丙烷基;
    R 9、R 10分别独立地选自:H、C1-C4烷基;
    a选自1-6之间的整数,b选自0-4之间的整数,c=b+1;
    n选自不小于1的整数;
    X为通过离子键与氮原子相连的阴离子。
  5. 根据权利要求4所述的改性淀粉,其特征在于,所述R、R 1,R 2,R 3,R 4,R 5分别独立地选自:取代或非取代的C1-C40直链烷基、取代或非取代的C3-C40支链烷基、取代或非取代的C2-C40烯基、取代或非取代的C6-C10芳基;
    所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、C2-C24酯基、苯基、萘基、C1-C20烷氧基取代的萘基、C1-C40烷基、C2-C16烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、C1-C20烷氧基。
  6. 根据权利要求5所述的改性淀粉,其特征在于,R、R 5分别独立地选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;C10-C20烷基取代的C6-C10芳基;
    所述仲胺中的R 1和R 2中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;
    所述叔胺中的R 1、R 2和R 3中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基;
    所述季铵盐中的R 1、R 2、R 3和R 4中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基。
  7. 根据权利要求4所述的改性淀粉,其特征在于,X选自:卤素阴离子、HSO 4 -、SO 4 2-、CH 3SO 4 -、SCN -、CH 3CO 2 -或OH -
  8. 根据权利要求4所述的改性淀粉,其特征在于,所述多胺盐结构式中的n选自2-5之间的整数;所述聚环氧乙烷基和聚环氧丙烷基的聚合度分别选自1-30之间的整数。
  9. 根据权利要求8所述的改性淀粉,其特征在于,所述聚环氧乙烷基和聚环氧丙烷基的聚合度分别选自1-15之间的整数。
  10. 根据权利要求3所述的改性淀粉,其特征在于,所述胍类化合物或其盐选自:单胍或其盐、双胍或其盐、多胍或其盐中的至少一种;
    所述单胍的结构式为:
    Figure PCTCN2019082774-appb-100003
    所述单胍盐的结构式为:
    Figure PCTCN2019082774-appb-100004
    所述双胍的结构式为:
    Figure PCTCN2019082774-appb-100005
    所述多胍的结构式为:
    Figure PCTCN2019082774-appb-100006
    式中R、R 1、R 2、R 3、R 4、R 5、R 6分别独立地选自:氢、取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基,并且所述胍类化合物的每个结构式中至少有一个取代基的碳原子数大于6;
    Z选自:取代或非取代的亚烷基、取代或非取代的芳基;
    所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基和取代或非取代的亚烷基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
    X为通过离子键与氮原子相连的阴离子。
  11. 根据权利要求10所述的改性淀粉,其特征在于,所述单胍中的R、R 1、R 2、R 3和R 4中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
    所述单胍盐中的R、R 1、R 2、R 3和R 4中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C7-C10芳基,其余几个均为氢;
    所述双胍或其盐中的R、R 1、R 2、R 3、R 4、R 5和R 6中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
    所述多胍或其盐中的R、R 1、R 2、R 3、R 4、R 5和R 6中至少有一个选自:C7-C30直链烷基、C7-C30支链烷基、C7-C30烯基、C6-C10芳基,其余几个均为氢;
    Z选自:C1-C8亚烷基;
    X选自:卤素阴离子、HSO 4 -、SO 4 2-、CH 3SO 4 -、CH 3CO 2 -或OH -
  12. 根据权利要求3所述的改性淀粉,其特征在于,所述阳离子锍盐的结构式为R 1R 2R 3SX,其中R 1,R 2,R 3分别独立地选自:取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基、取代或非取代的芳基;
    所述取代或非取代的直链烷基、取代或非取代的支链烷基、取代或非取代的烯基、取代或非取代的环烷基和取代或非取代的芳基中的取代基分别独立地选自一个或多个如下基团:醚基、酯基、酰胺基、芳基、取代芳基、烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、硫醚基、烷氧基;
    X为通过离子键与硫原子相连的阴离子。
  13. 根据权利要求12所述的改性淀粉,其特征在于,所述阳离子锍盐中的R 1、R 2和R 3中至少有一个选自C14-C32烷基、C8-C12烯基取代的C6-C14烷基、C14-C24酯基、C14-C20烷氧基取代的C6-C14烷基、C14-C20烷氧基取代的C6-C10芳基。
  14. 根据权利要求3所述的改性淀粉,其特征在于,所述杂环烃选自:四氢吡咯、吗啉、哌嗪、二氢咪唑中的至少一种;
    所述杂环芳烃选自:吡啶、咪唑、1,3,5-三嗪、达嗪、嘧啶、吡嗪、喹啉、吡咯中的至少一种;
    所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:烷氧基、酯基、酰胺基、苯基、烷基、羟基取代的烷基,烯基取代的烷基、卤素取代的烷基、烷氧基取代的烷基、烯基、氨基、硅氧烷基、巯基、羟基、卤素、胺基。
  15. 根据权利要求14所述的改性淀粉,其特征在于,所述杂环烃选自:四氢吡咯、吗啉、二氢咪唑中的至少一种;所述杂环芳烃选自:吡啶、喹啉、咪唑和1,3,5-三嗪中的至少一种;
    所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:C1-C20烷基、C1-C20烷氧基、C1-C6烷基取代的胺基、羟基取代的C1-C20烷基、C2-C20烯基取代的C1-C20烷基、C1-C20烷氧基取代的C1-C20烷基。
  16. 根据权利要求15所述的改性淀粉,其特征在于,所述取代或非取代的含氮原子的杂环烃或其盐、取代或非取代的含氮原子的杂环芳烃或其盐中的取代基选自一个或多个如下基团:C10-C20烷基、C10-C20烷氧基。
  17. 根据权利要求1所述的改性淀粉,其特征在于,所述阳离子淀粉络合剂选自如下化合物中的至少一种:十六烷基三甲基氯化铵、十二烷基三甲基氯化铵、十八胺、油胺、十六胺、十八烷基三甲基氯化铵、氯化十六烷基吡啶、十八烷基-N,N-二甲基苄基氯化铵、油基-N,N-二甲基苄基氯化铵、十八烷基甲基氯化铵、苄基十六烷基二甲基氯化铵、二十二胺、牛脂基胺、牛脂基丙撑二胺、牛脂基甲基丙撑二胺、N-牛脂基-N,N,N’,N’,N’五甲基丙撑二铵盐酸、双丙胺-牛脂基叔胺、硬脂酸乙烷基-N,N,N’,N’,N’五甲基丙撑二铵盐酸、油基1,3丙撑二胺、N-油基丙撑1,3三胺、双十八烷基二甲基氯化铵、氯化苄乙氧铵、十四烷基三甲基硅氧氯化铵、二甲基十八烷基[3-(三甲氧基硅基)丙基]氯化铵、三十二烷基胺、三十二烷基三甲基氯化铵、十二烷氧基丙胺、十二烷氧基-1,3-丙撑二胺、十二烷基-二丙胺基仲胺、十二烷基-N,N,-双(三聚合氧化乙烯)氯化铵、十八烷基-N,N,-双(三聚合氧化乙烯)氯化铵、N-牛脂基-N,N’,N’—三(聚氧乙烯)丙撑二胺、双丙胺-牛脂基叔胺、巯基-十六胺酸盐、巯基-十一烷基三甲基溴化铵、邻位油基-丙羟基-咪唑、十八烷基咪唑、1-十二烷基-3-甲基咪唑碘化物、癸基甲基氯化咪唑、1,3-二癸基-2-甲基氯咪唑啉、N-牛脂氧基-N,N’,N’—二(聚氧乙烯)-甲基丙基氯化铵、3-氨基-1-丙醇双(十六烷氧醚)、十八烷氧基吡啶、十八烷氧基氯化苯胺、N-苯甲基-N,N-二甲基-十八烷氧基-氧化乙醇氯化铵、2-十八烷氧基-N,N,N-三甲基-2-氧化乙醇氯化铵、N,N’-二乙基-6-十八烷氧基-(1,3,5)三嗪-2,4-二胺、3-(2-十八烷氧基-1-萘基)丙胺、1-(2-十二烷氧基)乙基吡咯盐酸、2-(2-十二烷氧基)丙氧基丙胺、4-十二烷氧基苯、1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-二十一氟葵胺、5,5,6,6,7,7,8,8,9,9,10,10,10-十一氟葵胺、双十八烷基二甲基羟丙基多铵、十八烷基-N,N,N-甲基双(聚合氧化丙烯)氯化铵、N,N,N,N’,N’—甲基-三(聚氧乙烯)丙撑二胺十八烷基季铵盐酸、十二烷基胍盐酸盐、十二烷基N,N’-丙撑二胺-双规盐酸盐、十三烷基2,4-甲基吗啉、十二烷基苯胺、十四烷基喹啉盐酸、1-十八烷基双胍单盐酸盐、奥替尼啶双盐酸盐、月桂基羟乙基咪唑啉。
  18. 根据权利要求1-17任一项所述的改性淀粉,其特征在于,所述淀粉选自:玉米淀粉、木薯淀粉、红薯淀粉、小麦淀粉、氧化改性的淀粉中至少一种;所述氧化改性的淀粉为氧化改性的玉米淀粉、氧化改性的木薯淀粉、氧化改性的红薯淀粉或氧化改性的小麦淀粉。
  19. 根据权利要求18所述的改性淀粉,其特征在于,所述氧化改性的淀粉的制备方法包括以下步骤:取淀粉配制成水溶液,加热至80-100℃,加入过硫酸铵反应至粘度达到稳定,再降温至60-70℃,即得。
  20. 根据权利要求1-17任一项所述的改性淀粉,其特征在于,所述淀粉与所述阳离子淀粉络合剂的质量比为1-200:1。
  21. 根据权利要求20所述的改性淀粉,其特征在于,所述淀粉与所述阳离子淀粉络合剂的质量比为20-120:1。
  22. 根据权利要求21所述的改性淀粉,其特征在于,所述淀粉与所述阳离子淀粉络合剂的质量比为20-60:1。
  23. 根据权利要求22所述的改性淀粉,其特征在于,所述淀粉与所述阳离子淀粉络合剂的质量比为20-36:1。
  24. 根据权利要求1-17任一项所述的改性淀粉,其特征在于,其制备原料中还包括增效剂,所述增效剂选自:聚合氯化铝、聚合硫酸铝、聚合硫酸铁、聚二烯丙基二甲基氯化铵、聚氧乙烯、聚丙烯酰胺和聚丙烯酰胺-聚丙烯酸类阴离子共聚物中的至少一种。
  25. 根据权利要求24所述的改性淀粉,其特征在于,所述增效剂与所述阳离子淀粉络合剂的质量比为1:1-35。
  26. 一种权利要求1-25任一项所述的改性淀粉的制备方法,其特征在于,包括如下步骤:
    配制淀粉水溶液;
    在所述淀粉水溶液中加入所述阳离子淀粉络合剂进行反应,即得。
  27. 根据权利要求26所述的改性淀粉的制备方法,其特征在于,包括如下步骤:
    配制淀粉水溶液;
    在所述淀粉水溶液中加入所述阳离子淀粉络合剂进行反应,得反应溶液;
    在所述反应溶液中加入增效剂,混匀,即得。
  28. 根据权利要求26或者27所述的改性淀粉的制备方法,其特征在于,所述淀粉水溶液中的淀粉浓度为300-3200mg/L。
  29. 根据权利要求26或者27所述的改性淀粉的制备方法,其特征在于,所述反应的温度为10-90℃。
  30. 根据权利要求26或者27所述的改性淀粉的制备方法,其特征在于,所述反应的时间为1min-20h。
  31. 根据权利要求30所述的改性淀粉的制备方法,其特征在于,所述反应的时间为5min-1h。
  32. 根据权利要求26或者27所述的改性淀粉的制备方法,其特征在于,所述反应的pH为4-11。
  33. 根据权利要求32所述的改性淀粉的制备方法,其特征在于,所述反应的pH为5-7。
  34. 权利要求1-17任一项中所述的阳离子淀粉络合剂在回收造纸废水中的游离淀粉中的应用。
  35. 权利要求1-17任一项中所述的阳离子淀粉络合剂在降低造纸废水的COD浓度中的应用。
  36. 权利要求1-17任一项中所述的阳离子淀粉络合剂在造纸生产中作为清洁剂或者杀菌剂的应用。
  37. 权利要求1-17任一项中所述的阳离子淀粉络合剂在对淀粉进行改性中的应用。
  38. 权利要求1-17任一项中所述的阳离子淀粉络合剂在造纸生产中作为纸张强度增强剂的应用。
  39. 权利要求1-25任一项所述的改性淀粉在造纸生产中作为纸张强度增强剂的应用。
  40. 一种造纸方法,其特征在于,包括如下步骤:
    a)在含有淀粉的制浆白水或者淀粉水溶液中加入阳离子淀粉络合剂进行反应,得改性淀粉溶液;
    b)在所述改性淀粉溶液中加入纤维或纸浆,搅拌,进行吸附反应,得反应后的浆料;
    c)将所述反应后的浆料制备成纸产品;
    或者所述造纸方法包括如下步骤:
    1)在含有淀粉的造纸浆料中加入阳离子淀粉络合剂进行反应,得反应后的浆料;
    2)将所述反应后的浆料制备成纸产品;
    所述阳离子淀粉络合剂为权利要求1-17任一项中所述的阳离子淀粉络合剂。
  41. 根据权利要求40所述的造纸方法,其特征在于,所述淀粉选自:玉米淀粉、木薯淀粉、红薯淀粉、小麦淀粉、氧化改性的淀粉中的至少一种;所述氧化改性的淀粉为氧化改性的玉米淀粉、氧化改性的木薯淀粉、氧化改性的红薯淀粉或氧化改性的小麦淀粉。
  42. 根据权利要求41所述的造纸方法,其特征在于,所述氧化改性的淀粉的制备方法包括以下步骤:取淀粉配制成水溶液,加热至80-100℃,加入淀粉氧化剂或淀粉酶反应至粘度达到稳定,再降温至60-70℃,即得。
  43. 根据权利要求40所述的造纸方法,其特征在于,所述淀粉水溶液中的淀粉与所述阳离子淀粉络合剂的质量比为1-200:1。
  44. 根据权利要求43所述的造纸方法,其特征在于,所述淀粉水溶液中的淀粉与所述阳离子淀粉络合剂的质量比为20-120:1。
  45. 根据权利要求44所述的造纸方法,其特征在于,所述淀粉水溶液中的淀粉与所述阳离子淀粉络合剂的质量比为20-60:1。
  46. 根据权利要求45所述的造纸方法,其特征在于,所述淀粉水溶液中的淀粉与所述阳离子淀粉络合剂的质量比为20-36:1。
  47. 根据权利要求40所述的造纸方法,其特征在于,所述淀粉水溶液中的淀粉浓度为300-3200mg/L。
  48. 根据权利要求40所述的造纸方法,其特征在于,所述反应后的浆料中纤维或纸浆的固体浓度为1%-10%。
  49. 根据权利要求40所述的造纸方法,其特征在于,所述阳离子淀粉络合剂与所述纤维或纸浆的干重的重量比为0.02-20kg/T。
  50. 根据权利要求49所述的造纸方法,其特征在于,所述阳离子淀粉络合剂与所述纤维或纸浆的干重的重量比为0.15-2kg/T。
  51. 根据权利要求40所述的造纸方法,其特征在于,所述造纸方法还包括加入增效剂的步骤,具体包括:
    a)在含有淀粉的制浆白水或者淀粉水溶液中加入阳离子淀粉络合剂进行反应,得改性淀粉溶液;
    b)在所述改性淀粉溶液中加入增效剂,混匀,再加入纤维或纸浆,搅拌,进行吸附反应,得反应后的浆料;
    c)将所述反应后的浆料制备成纸产品;
    或者所述造纸方法包括如下步骤:
    1)在含有淀粉的造纸浆料中加入阳离子淀粉络合剂和增效剂进行反应,得反应后的浆料;
    2)将所述反应后的浆料制备成纸产品;
    所述增效剂选自:聚合氯化铝、聚合硫酸铝、聚合硫酸铁、聚二烯丙基二甲基氯化铵、聚氧乙烯、聚丙烯酰胺和聚丙烯酰胺-聚丙烯酸类阴离子共聚物中的至少一种。
  52. 根据权利要求51所述的造纸方法,其特征在于,所述增效剂与所述阳离子淀粉络合剂的质量比为1:1-35。
  53. 根据权利要求52所述的造纸方法,其特征在于,所述增效剂与所述阳离子淀粉络合剂的质量比为1:2-10。
  54. 根据权利要求40-53任一项所述的造纸方法,其特征在于,步骤a)所述反应的温度为10-90℃,步骤b)所述吸附反应的温度为10-90℃,步骤1)所述反应的温度为10-90℃。
  55. 根据权利要求40-53任一项所述的造纸方法,其特征在于,步骤a)所述反应的时间为1min-20h。
  56. 根据权利要求55所述的造纸方法,其特征在于,步骤a)所述反应的时间为5min-1h。
  57. 根据权利要求40-53任一项所述的造纸方法,其特征在于,步骤b)所述反应的时间为1min-120min。
  58. 根据权利要求57所述的造纸方法,其特征在于,步骤b)所述反应的时间为5min-30min。
  59. 根据权利要求40-53任一项所述的造纸方法,其特征在于,步骤a)和步骤b)所述反应的pH为4-11。
  60. 根据权利要求59所述的造纸方法,其特征在于,步骤a)和步骤b)所述反应的pH为5-7。
  61. 一种回收造纸白水中游离淀粉的方法,其特征在于,包括步骤(a):使阳离子淀粉络合剂与造纸白水中的游离淀粉进行反应以使所述游离淀粉发生改性;
    所述阳离子淀粉络合剂为权利要求1-17任一项中所述的述阳离子淀粉络合剂。
  62. 根据权利要求61所述的回收造纸白水中游离淀粉的方法,其特征在于,所述游离淀粉选自:玉米淀粉、木薯淀粉、红薯淀粉、小麦淀粉、氧化改性的淀粉中的至少一种;所述氧化改性的淀粉为氧化改性的玉米淀粉、氧化改性的木薯淀粉、氧化改性的红薯淀粉或氧化改性的小麦淀粉。
  63. 根据权利要求62所述的回收造纸白水中游离淀粉的方法,其特征在于,所述氧化改性的淀粉的制备方法包括以下步骤:取淀粉配制成水溶液,加热至80-100℃,加入淀粉氧化剂或淀粉酶反应至粘度达到稳定,再降温至60-70℃,即得。
  64. 根据权利要求61所述的回收造纸白水中游离淀粉的方法,其特征在于,包括以下步骤:
    (a)在造纸白水中加入所述阳离子淀粉络合剂,使所述阳离子淀粉络合剂与造纸白水中的游离淀粉进行反应以使所述游离淀粉发生改性,得改性淀粉;
    (b)再加入纤维或者纸浆,进行吸附反应,以吸附所述改性淀粉。
  65. 根据权利要求64所述的回收造纸白水中游离淀粉的方法,其特征在于,所述纤维或纸浆的固体浓度为1%-10%。
  66. 根据权利要求64所述的回收造纸白水中游离淀粉的方法,其特征在于,所述阳离子淀粉络合剂与所述纤维或纸浆的干重的重量比为0.02-20kg/T。
  67. 根据权利要求66所述的回收造纸白水中游离淀粉的方法,其特征在于,所述阳离子淀粉络合剂与所述纤维或纸浆的干重的重量比为0.15-2kg/T。
  68. 根据权利要求61所述的回收造纸白水中游离淀粉的方法,其特征在于,还包括加入增效剂的步骤,具体包括:
    (a)在造纸白水中加入阳离子淀粉络合剂,使所述阳离子淀粉络合剂与造纸白水中的游离淀粉进行反应以使所述游离淀粉发生改性,得改性淀粉;
    (b)再加入纤维或纸浆以及增效剂,进行吸附反应,以吸附所述改性淀粉;
    所述增效剂选自:聚合氯化铝、聚合硫酸铝、聚合硫酸铁、聚二烯丙基二甲基氯化铵、聚氧乙烯、聚丙烯酰胺和聚丙烯酰胺-聚丙烯酸类阴离子共聚物中的至少一种。
  69. 根据权利要求68所述的回收造纸白水中游离淀粉的方法,其特征在于,所述增效剂与所述阳离子淀粉络合剂的质量比为1:1-35。
  70. 根据权利要求61-69任一项所述的回收造纸白水中游离淀粉的方法,其特征在于,步骤a)所述反应的温度为10-90℃,步骤b)所述吸附反应的温度为10-90℃。
  71. 根据权利要求61-69任一项所述的回收造纸白水中游离淀粉的方法,其特征在于,步骤a)所述反应的时间为1min-20h。
  72. 根据权利要求71所述的回收造纸白水中游离淀粉的方法,其特征在于,步骤a)所述反应的时间为5min-1h。
  73. 根据权利要求64-69任一项所述的回收造纸白水中游离淀粉的方法,其特征在于,步骤b)所述吸附反应的时间为1min-120min。
  74. 根据权利要求73所述的回收造纸白水中游离淀粉的方法,其特征在于,步骤b)所述吸附反应的时间为5min-30min。
  75. 根据权利要求61-69任一项所述的回收造纸白水中游离淀粉的方法,其特征在于,步骤a)和步骤b)所述反应的pH为4-11。
  76. 根据权利要求75所述的回收造纸白水中游离淀粉的方法,其特征在于,步骤a)和步骤b)所述反应的pH为5-7。
PCT/CN2019/082774 2018-04-16 2019-04-15 改性淀粉及其制备方法和应用 WO2019201221A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810339091.X 2018-04-16
CN201810339075.0A CN110387765B (zh) 2018-04-16 2018-04-16 造纸方法
CN201810339075.0 2018-04-16
CN201810339077.X 2018-04-16
CN201810339091.XA CN110386988B (zh) 2018-04-16 2018-04-16 改性淀粉及其制备方法和应用
CN201810339077.XA CN110387761B (zh) 2018-04-16 2018-04-16 回收造纸白水中游离淀粉的方法

Publications (1)

Publication Number Publication Date
WO2019201221A1 true WO2019201221A1 (zh) 2019-10-24

Family

ID=68240466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082774 WO2019201221A1 (zh) 2018-04-16 2019-04-15 改性淀粉及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2019201221A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990392A (zh) * 2005-12-07 2007-07-04 中国科学院成都有机化学有限公司 一种高取代度季铵型阳离子淀粉絮凝剂及其合成方法
CN102517991A (zh) * 2011-12-31 2012-06-27 上海东升新材料有限公司 用于纸张表面施胶的改性淀粉及其制备方法和应用
CN102796202A (zh) * 2011-05-26 2012-11-28 金东纸业(江苏)股份有限公司 复合阳离子淀粉、其制造方法及采用该淀粉造纸的方法
WO2013140046A1 (en) * 2012-03-23 2013-09-26 Kemira Oyj Method for dissolving cationic starch, papermaking agent and its use
CN104499363A (zh) * 2015-01-09 2015-04-08 广州天赐高新材料股份有限公司 Akd乳液及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990392A (zh) * 2005-12-07 2007-07-04 中国科学院成都有机化学有限公司 一种高取代度季铵型阳离子淀粉絮凝剂及其合成方法
CN102796202A (zh) * 2011-05-26 2012-11-28 金东纸业(江苏)股份有限公司 复合阳离子淀粉、其制造方法及采用该淀粉造纸的方法
CN102517991A (zh) * 2011-12-31 2012-06-27 上海东升新材料有限公司 用于纸张表面施胶的改性淀粉及其制备方法和应用
WO2013140046A1 (en) * 2012-03-23 2013-09-26 Kemira Oyj Method for dissolving cationic starch, papermaking agent and its use
CN104499363A (zh) * 2015-01-09 2015-04-08 广州天赐高新材料股份有限公司 Akd乳液及其制备方法

Similar Documents

Publication Publication Date Title
CN110387765B (zh) 造纸方法
RU2669629C2 (ru) Проклеивающая композиция, ее применение и способ изготовления бумаги, картона или аналогичного материала
CN102834565B (zh) 聚乙烯胺与阳离子淀粉的稳定和水性组合物及其在造纸中的用途
CN101210401B (zh) 改性瓜尔胶表面施胶剂及其制备方法和应用
CN111691224B (zh) 改性淀粉及其制备方法和应用
AU703943B2 (en) Swollen starches as papermaking additives
EP1235959B1 (en) A process for making paper
ZA200509055B (en) Method for the cationisation of legume starches, cationic starches thus obtained and applications thereof
TW201940780A (zh) 乾強組成物、其用途及製造紙張、紙板或其類似物之方法
US8444820B2 (en) Aqueous composition containing at least one soluble gelatinized anionic starch
JP5398844B2 (ja) 製紙方法
CN108138447A (zh) 用于纸和纸板的含水表面处理组合物
US8088209B2 (en) Cationic liquid starchy composition and uses thereof
CN110386988B (zh) 改性淀粉及其制备方法和应用
CN110387761B (zh) 回收造纸白水中游离淀粉的方法
CN112521518B (zh) 改性淀粉及其制备方法和应用
Wang et al. Enzymatically modified starch for paper surface sizing: Enzymes with different action modes and sites
CN111691223B (zh) 造纸方法
JP6376365B2 (ja) 安定化サイズ製剤
WO2019201221A1 (zh) 改性淀粉及其制备方法和应用
US20130225803A1 (en) Method for preparing hydroxyalkyl starch
CN107090737B (zh) 一种非木材类本色浆食品包装纸及其制备方法
CN112661867B (zh) 改性淀粉及其制备方法和应用
CN106868940B (zh) 一种纸页表面施胶用淀粉胶及其加工方法
CN111691217B (zh) 回收造纸白水中游离淀粉的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789167

Country of ref document: EP

Kind code of ref document: A1