WO2019201153A1 - 一种高压直流电缆用绝缘材料及其制备方法 - Google Patents
一种高压直流电缆用绝缘材料及其制备方法 Download PDFInfo
- Publication number
- WO2019201153A1 WO2019201153A1 PCT/CN2019/082246 CN2019082246W WO2019201153A1 WO 2019201153 A1 WO2019201153 A1 WO 2019201153A1 CN 2019082246 W CN2019082246 W CN 2019082246W WO 2019201153 A1 WO2019201153 A1 WO 2019201153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulating material
- direct current
- voltage direct
- current cable
- high voltage
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/37—Thiols
- C08K5/375—Thiols containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
- C08K5/103—Esters; Ether-esters of monocarboxylic acids with polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
Definitions
- the invention relates to an insulating material, in particular to an insulating material for a high voltage direct current cable and a preparation method thereof.
- Extruded cross-linked polyethylene (XLPE) high voltage DC cable has become the key material for DC grid transmission system.
- Extrusion type cross-linked polyethylene (XLPE) high-voltage DC cable has the characteristics of simple structure, light weight, large current capacity, simple manufacturing process and convenient installation and maintenance.
- XLPE is a thermosetting material having a three-dimensional network structure formed by crosslinking of linear thermoplastic polyethylene. The most commonly used crosslinking method is to initiate a series of free radical reactions by pyrolysis of peroxide to form a peroxide crosslink of a three-dimensional crosslinked network structure.
- the commonly used cross-linking agent is dicumyl peroxide (DCP), and its content is one of the key factors affecting the cross-linking reaction process and cross-linking network structure of polyethylene, and the gel content and cross-linking density in XLPE materials. Heat resistance and mechanical properties are directly related. The greater the amount of cross-linking agent added, the more free radicals are generated by decomposition, and the greater the degree of cross-linking of the system. The lower content of the crosslinker tends to cause the degree of crosslinking and thermal elongation of the material to fail to meet the criteria.
- DCP dicumyl peroxide
- cross-linking by-products acetophenone, cumyl alcohol, etc.
- the present invention provides the following technical solutions:
- An insulating material for a high voltage direct current cable comprising the following components in parts by mass:
- the polyethylene resin comprises polyethylene having a molecular weight distribution of 7 to 8, a melting point of 105 to 110 ° C, a melt index of 1.95 to 2.05 g/min, and a density of 0.920 to 0.923 g/cm 3 .
- the antioxidant comprises 4,4'-thiobis(6-tert-butyl-3-methylphenol) having a purity of >99.9%.
- the crosslinking agent comprises dicumyl peroxide (DCP) crystals having a purity of >99.95%.
- DCP dicumyl peroxide
- the preparation of the dicumyl peroxide comprises synthesizing in a reaction vessel from a decyl alcohol having a molar ratio of 1:1.1 to an oxidizing solution.
- the preparation of the dicumyl peroxide comprises the following steps:
- the co-crosslinking agent comprises trimethylolpropane triacrylate (TMPTA) or trimethylolpropane trimethacrylate (TMPTMA).
- TMPTA trimethylolpropane triacrylate
- TMPTMA trimethylolpropane trimethacrylate
- the preparation of the trimethylolpropane triacrylate comprises the following steps:
- a method of preparing an insulating material comprising the steps of:
- melt-kneading polyethylene and an antioxidant (1) melt-kneading polyethylene and an antioxidant
- the step (1) is carried out in a twin-screw extruder having a screw rotation speed of 190 rpm/min and a plasticization temperature of 120 to 165 °C.
- the insulating material provided by the invention reduces the content of the crosslinking agent, prolongs the plasticizing time, shortens the degassing time of the high-voltage cable, and reduces the cross-linking by-products by adding the crosslinking agent while maintaining the degree of crosslinking.
- the concentration of the cable thus improves the insulation properties of the cable.
- the preparation method provided by the invention has the characteristics of simple process, low price and the like, and can be widely applied in industrial production.
- Example 1 is a rheological graph of a polyethylene insulating material prepared in Example 1.
- the material is pumped into an adsorption tower equipped with 40 wt% macroporous adsorption resin, 40 wt% ion exchange resin and 20 wt% active molecular sieve, and the flow rate is controlled so that the material is slowly deacidified by exchanging the adsorption resin;
- the temperature is controlled at 20 to 60 ° C, and the acid value is detected to be ⁇ 5 mg KOH / g to terminate the adsorption;
- the preparation method of the insulating material includes the following steps:
- composition of the components of each example is expressed in parts by mass as shown in Table 2:
- the polyethylene insulating material prepared in the first embodiment of the present invention is placed into the mixing chamber by a torque rheometer, and the material is melted, plasticized and melted at a temperature of 60 rad/min at 140 ° C.
- the cross-linking reaction reflects the rheological behavior of the material by recording a torque-time curve.
- the polyethylene insulating material prepared by the invention is wrapped in a copper mesh and placed in a Soxhlet extractor with xylene as an extractant, and extracted under reflux at 120 ° C for 6 h. After the reflux is completed, the copper mesh is taken out, and the remainder is removed. The material was vacuum dried and weighed to calculate the gel content.
- the polyethylene insulating material prepared by the invention is hot-pressed by a flat vulcanizing machine, and the preparation process is pre-pressing at 130 ° C for 5 minutes, pressurizing and crosslinking at 180 ° C and 15 MPa for 15 minutes, and cooling at 15 Mpa for 5 minutes to obtain a thickness.
- a 1.0 mm sheet sample was subjected to a heat elongation test in accordance with the GB/T 2951.11-2008 standard.
- the present invention reduces the DCP content of the crosslinking agent and adds the crosslinking agent at the same time as the traditional polyethylene insulating material, so that the plasticizing time is prolonged during the reprocessing of the insulating material, and the crosslinking is performed.
- the rate is reduced and the desired degree of cross-linking is obtained (the gel content and the heat extension value are almost equivalent to those of conventional insulating materials).
- the insulating material provided by the invention adds a co-crosslinking agent compared with the traditional cross-linked polyethylene insulating material, reduces the cross-linking agent content while maintaining the same degree of cross-linking, prolongs the plasticizing time, and shortens the cable stripping.
- the gas time reduces the concentration of cross-linking by-products, thereby improving the insulation properties of the cable.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明提供了一种高压直流电缆用绝缘材料及其制备方法,该绝缘材料包括按质量份数计的如下组分:聚乙烯树脂98-100份;抗氧剂0.15-0.25份;交联剂1.3-1.5份和助交联剂0.5-0.8份。本发明提供的绝缘材料,相比传统XLPE绝缘材料加入了助交联剂,在保持相同交联度的同时,降低了交联剂含量,延长了塑化时间,缩短了电缆的脱气时间,减小了交联副产物浓度,从而提高了电缆的绝缘性能。
Description
相关申请的交叉引用
本申请基于申请号为201810342197.5、申请日为2018年04月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本发明涉及一种绝缘材料,具体涉及一种高压直流电缆用绝缘材料及其制备方法。
随着直流输电技术的发展,挤出型交联聚乙烯(XLPE)高压直流电缆成为了直流电网输电系统的关键用材。挤出型交联聚乙烯(XLPE)高压直流电缆具有结构简单、质量轻、载流量大、制造工艺简单和安装维护方便等特点。XLPE是线性热塑聚乙烯发生交联后形成的具有立体网状结构的热固性材料。现有最常用的交联方式为通过过氧化物高温分解引发一系列自由基反应,形成三维交联网状结构的过氧化物交联。常用的交联剂为过氧化二异丙苯(DCP),其含量是影响聚乙烯交联反应过程和交联网络结构的关键因素之一,并与XLPE材料中的凝胶含量、交联密度、耐热性和力学性能均直接相关。交联剂的加入量越大,分解产生的自由基越多,体系交联度越大。交联剂的较低含量容易导致材料的交联度和热延伸不能满足标准。
在恒定直流电场作用下,电荷不断地从电极注入绝缘介质内部,在导体和绝缘间的界面以及材料内部会出现空间电荷。存在的空间电荷是制约高压直流电缆绝缘材料发展的瓶颈。在聚乙烯的交联过程中,DCP分解产生的交联副产物(苯乙酮、枯基醇等)通常以小分子的形式存在于XLPE无定形区。存在的 交联副产物容易造成XLPE绝缘材料内部或半导电和绝缘界面处的空间电荷产生和积聚,从而在电缆长期运行过程中引发局部场强畸变,加速绝缘介质的击穿和老化。现有的XLPE电缆制备工艺中,通常采用脱气处理促进交联副产物的挥发,提高电缆的绝缘性能。脱气时间越长,电缆内部交联副产物浓度越低,越有利于改善绝缘介质内空间电荷分布。经本发明人长期研究、分析,发现延长脱气时间的单一因素难以胜任大幅度降低副产物浓度的任务。
发明内容
本发明的目的在于提供一种具有低交联剂含量和高交联度的高压直流电缆用绝缘材料及其制备方法。
为了达到上述目的,本发明提供了下述技术方案:
一种高压直流电缆用绝缘材料,所述绝缘材料包括按质量份数计的下述组分:
优选地,所述聚乙烯树脂包括分子量分布为7~8、熔点为105~110℃、熔融指数为1.95-2.05g/min、密度为0.920-0.923g/cm
3的聚乙烯。
优选地,所述抗氧剂包括纯度>99.9%的4,4′-硫代双(6-叔丁基-3-甲基苯酚)。
优选地,所述交联剂包括纯度>99.95%的过氧化二异丙苯(DCP)晶体。
优选地,所述过氧化二异丙苯的制备包括在反应釜中由摩尔比为1∶1.1的精卞醇与氧化液合成。
优选地,所述过氧化二异丙苯的制备包括如下步骤:
(1)原料的准备;
(2)将精卞醇和氧化液按顺序投入到反应釜中进行反应温度为43~45℃的合成反应,得所述过氧化二异丙苯。
优选地,所述助交联剂包括三羟甲基丙烷三丙烯酸酯(TMPTA)或三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)。
优选地,所述三羟甲基丙烷三丙烯酸酯的制备包括如下步骤:
(1)取三羟甲基丙烷、丙烯酸、甲基磺酸催化剂、对苯二酚、次磷酸和环己烷进行酯化反应;
(2)在吸附塔中进行脱酸处理,冷却得所述三羟甲基丙烷三丙烯酸酯。
一种绝缘材料的制备方法,所述方法包括如下步骤:
(1)熔融混炼聚乙烯和抗氧剂;
(2)过滤熔融物料、造粒,经干燥过筛后得聚乙烯粒料;
(3)将得到的聚乙烯粒料、过氧化物交联剂和助交联剂在70℃的吸收装置内搅拌3h后保温24h,得聚乙烯绝缘料。
优选地,所述步骤(1)在螺杆转速为190rpm/min、塑化温度为120~165℃的双螺杆挤出机中进行。
与现有技术比,本发明提供的技术方案具有以下有益效果:
本发明提供的绝缘材料通过加入助交联剂,在保持交联度的同时,降低了交联剂的含量、延长了塑化时间、缩短了高压电缆的脱气时间、减少了交联副产物的浓度,从而提高了电缆的绝缘性能。
本发明提供的制备方法具有过程简单、价格低廉等特点,可在工业化生产中广泛应用。
图1为实施例1制备的聚乙烯绝缘料的流变曲线图。
下面结合附图和具体实施例作进一步详细说明,对本发明的技术方案进行清楚、完整地描述。
一、原料的准备:
1、过氧化二异丙苯的制备:以氧化液与精卞醇为原料,按精卞醇与氧化液摩尔比为1∶1.1在反应釜内进行合成反应,包括如下步骤:
(1)精卞醇的计量:把卞醇塔生产的合格的精卞醇用泵输送至精卞醇计量槽,液位显示在3000kg~3200kg之间;
(2)氧化液的计量:把氧化液用泵输送至氧化液计量槽,液位显示在7000kg~7500kg之间;
(3)反应釜的投料顺序:开反应釜搅拌,利用反应釜上的真空系统把计量好的精卞醇投至反应釜内,当精卞醇投料至1/3时,加入助催化剂,至精卞醇投完后,用反应釜上的真空泵把计量好的氧化液投入反应釜内,其中,所述的助催化剂按重量百分比包括47%高氯酸、20%二甲基亚砜和33%水;所述的高氯酸的加入量按重量比计:高氯酸∶氧化液=0.076∶100;
(4)合成反应的条件控制:投料完毕后,开启反应釜底鼓泡阀,调节阀底压力在-0.04±0.001MPa,然后通过反应釜夹套加热和反应釜盘管冷却水控制合成反应温度43~45℃,反应生成的水随气相至冷凝器冷凝液收集器,控制釜内氧化液含量的下降速度为3~6%wt/h,反应至釜内氧化液含量≤0.8%wt时,向反应釜内加水终止反应;
(5)反应过程中杂质的处理:反应后的反应液与碱液按质量比为1∶0.1在清洗釜进行混合。
2、三羟甲基丙烷三丙烯酸酯的制备:包括如下步骤:
(1)取三羟甲基丙烷31.4wt%、丙烯酸54.5wt%、甲基磺酸催化剂17wt%、对苯二酚920ppm、次磷酸480ppm、环己烷12wt%;投入反应釜混合搅拌,通空气,打开蒸汽阀门缓慢加热,控制气压在0.5Mpa左右,1小时内升温到70~80℃,并保持30分钟,控制蒸气压为0.5Mpa,反应温度80~91℃,反应12~14小时,反应结束,取样送检,检测酯化酸值20~50mgKOH/g左右时,表明反应结束;
(2)酯化反应后物料经泵打入有40wt%大孔吸附树脂、40wt%离子交换树脂和20wt%活性分子筛搭配的吸附塔内,控制流速使物料缓慢通过交换吸附树脂进行脱酸处理;温度控制在20~60℃,检测酸值≤5mgKOH/g,终止吸附;
(3)开启真空机组,保持真空度-0.09Mpa以上,控制物料温度在60~90℃,脱去溶剂,经冷却得产品。
二、绝缘材料的制备方法包括如下步骤:
(1)将低密度聚乙烯和抗氧剂加入双螺杆挤出机,在螺杆转速190rpm/min和各区塑化温度下,对物料进行熔融混炼;
(2)经过300目滤网的过滤净化系统将熔融物料过滤杂质后,由模头挤出造粒,将粒料输送到料仓,通过风冷干燥和震动筛后得到聚乙烯粒料;
(3)将过氧化物交联剂和助交联剂以及所得聚乙烯粒料加入到吸收装置,在70℃下均匀搅拌3小时,然后70℃下保温24h,确保交联剂的完全吸收,得到聚乙烯绝缘料。
各区塑化温度如表1所示:
表1
分区 | 一区 | 二区 | 三区 | 四区 | 五区 |
温度 | 120℃ | 130℃ | 145℃ | 150℃ | 150℃ |
分区 | 六区 | 七区 | 八区 | 九区 | 十区 |
温度 | 155℃ | 155℃ | 165℃ | 165℃ | 165℃ |
各实施例组分的组成按质量份数计如表2:
表2
三、绝缘材料的性能测试:
1、利用转矩流变仪将本发明实施例1制备的聚乙烯绝缘料在压锤作用下投放到混料腔内,在140℃,转速60rad/min条件下,物料发生熔融、塑化和交联反应,通过记录扭矩-时间关系曲线,反映物料的流变行为。
聚乙烯绝缘料的流变曲线如图1所示。
2、将本发明制备的聚乙烯绝缘料,用铜网包裹放入以二甲苯为萃取剂的索氏抽提器中,在120℃条件下回流抽提6h,回流完毕将铜网取出,剩余物真空烘干称重,进行凝胶含量的计算。
将本发明制备的聚乙烯绝缘料通过平板硫化机热压成型,制备流程为在130℃下预压5分钟,180℃和15MPa下加压交联15分钟,15Mpa下降温冷却 5分钟,得到厚度1.0mm的薄片试样,参照GB/T 2951.11-2008标准进行热延伸测试。
聚乙烯绝缘料的凝胶含量和热延伸试验结果如表3所示:
表3
从图1和表3实验结果发现,与传统聚乙烯绝缘料相比,本发明在降低交联剂DCP含量的同时添加助交联剂,使得绝缘材料再加工过程中塑化时间延长,交联速率降低,并获得理想的交联度(凝胶含量和热延伸数值几乎和常规绝缘材料参比样相当)。
以上实施例仅用以说明本发明的技术方案而非对其进行限制,所属领域的普通技术人员应当理解,参照上述实施例可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换均在申请待批的权利要求保护范围之内。
本发明提供的绝缘材料,相比传统交联聚乙烯绝缘料加入了助交联剂,在保持相同交联度的同时,降低了交联剂含量,延长了塑化时间,缩短了电缆的脱气时间,减小了交联副产物浓度,从而提高了电缆的绝缘性能。
Claims (10)
- 根据权利要求1所述的高压直流电缆用绝缘材料,其特征在于,所述聚乙烯树脂包括分子量分布为7~8、熔点为105~110℃、熔融指数为1.95-2.05g/min、密度为0.920-0.923g/cm 3的聚乙烯。
- 根据权利要求1所述的高压直流电缆用绝缘材料,其特征在于,所述抗氧剂包括纯度>99.9%的4,4′-硫代双(6-叔丁基-3-甲基苯酚)。
- 根据权利要求1所述的高压直流电缆用绝缘材料,其特征在于,所述交联剂包括纯度>99.95%的过氧化二异丙苯晶体。
- 根据权利要求4所述的高压直流电缆用绝缘材料,其特征在于,所述过氧化二异丙苯的制备包括在反应釜中由摩尔比为1∶1.1的精卞醇与氧化液合成。
- 根据权利要求4所述的高压直流电缆用绝缘材料,其特征在于,所述过氧化二异丙苯的制备包括如下步骤:(1)原料的准备;(2)将精卞醇和氧化液按顺序投入到反应釜中进行反应温度为43~45℃的合成反应,得所述过氧化二异丙苯。
- 根据权利要求1所述的高压直流电缆用绝缘材料,其特征在于,所述助交联剂包括三羟甲基丙烷三丙烯酸酯或三羟甲基丙烷三甲基丙烯酸酯。
- 根据权利要求7所述的高压直流电缆用绝缘材料,其特征在于,所述三羟甲基丙烷三丙烯酸酯的制备包括如下步骤:(1)取三羟甲基丙烷、丙烯酸、甲基磺酸催化剂、对苯二酚、次磷酸和环己烷进行酯化反应;(2)在吸附塔中进行脱酸处理,冷却得所述三羟甲基丙烷三丙烯酸酯。
- 如权利要求1~8任一项所述绝缘材料的制备方法,其特征在于,所述方法包括如下步骤:(1)熔融混炼聚乙烯和抗氧剂;(2)过滤熔融物料、造粒,经干燥过筛后得聚乙烯粒料;(3)将得到的聚乙烯粒料、过氧化物交联剂和助交联剂在70℃的吸收装置内搅拌2~4h后保温24h,得聚乙烯绝缘料。
- 根据权利要求9所述的制备方法,其特征在于,所述步骤(1)在螺杆转速为190rpm/min、塑化温度为120~165℃的双螺杆挤出机中进行。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810342197.5A CN108623877A (zh) | 2018-04-17 | 2018-04-17 | 一种高压直流电缆用绝缘材料及其制备方法 |
CN201810342197.5 | 2018-04-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019201153A1 true WO2019201153A1 (zh) | 2019-10-24 |
Family
ID=63705342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/082246 WO2019201153A1 (zh) | 2018-04-17 | 2019-04-11 | 一种高压直流电缆用绝缘材料及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108623877A (zh) |
WO (1) | WO2019201153A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108623877A (zh) * | 2018-04-17 | 2018-10-09 | 全球能源互联网研究院有限公司 | 一种高压直流电缆用绝缘材料及其制备方法 |
CN109942932A (zh) * | 2019-02-22 | 2019-06-28 | 全球能源互联网研究院有限公司 | 一种耐温高压电缆绝缘料及其制备方法 |
CN109942933A (zh) * | 2019-02-22 | 2019-06-28 | 全球能源互联网研究院有限公司 | 一种抑制空间电荷的直流电缆绝缘料及其制备方法 |
CN110305387A (zh) * | 2019-07-12 | 2019-10-08 | 无锡工艺职业技术学院 | 一种高压阻燃电缆料及其制备方法 |
TWI839561B (zh) * | 2019-10-15 | 2024-04-21 | 美商美力肯及公司 | 用於製造聚合物組成物的方法以及適合使用於該方法中的組成物 |
CN113773568A (zh) * | 2021-09-14 | 2021-12-10 | 浙江万马高分子材料集团有限公司 | 绝缘材料及其制备方法和用途 |
CN114031837A (zh) * | 2021-12-20 | 2022-02-11 | 全球能源互联网研究院有限公司 | 一种高压电缆用可交联聚乙烯绝缘材料、制备方法及其用途 |
CN115028775B (zh) * | 2022-06-23 | 2024-05-31 | 哈尔滨理工大学 | 一种接枝改性交联聚乙烯绝缘层及其制备方法与应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6454605A (en) * | 1987-08-26 | 1989-03-02 | Fujikura Ltd | Composition of insulator |
CN102827051A (zh) * | 2012-09-24 | 2012-12-19 | 金魏 | 过氧化二异丙苯的合成方法 |
CN102850558A (zh) * | 2012-10-11 | 2013-01-02 | 昆山捷兴翡国际贸易有限公司 | 一种110kv及以上屏蔽料的制备方法 |
CN103824642A (zh) * | 2014-02-10 | 2014-05-28 | 国家电网公司 | 具有耐湿老化性的柔性电力电缆 |
CN104903395A (zh) * | 2012-12-29 | 2015-09-09 | 陶氏环球技术有限责任公司 | 可交联聚合性组合物、制造所述聚合性组合物的方法以及由其制成的物品 |
CN108623877A (zh) * | 2018-04-17 | 2018-10-09 | 全球能源互联网研究院有限公司 | 一种高压直流电缆用绝缘材料及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102140193A (zh) * | 2009-10-30 | 2011-08-03 | 中国石油化工股份有限公司 | 一种化学交联聚乙烯组合物及其制备方法 |
CN102276901B (zh) * | 2011-07-19 | 2013-03-27 | 哈尔滨理工大学 | 一种高压电缆超净可交联聚乙烯绝缘料的制备方法 |
WO2015149221A1 (en) * | 2014-03-31 | 2015-10-08 | Dow Global Technologies Llc | Crosslinkable polymeric compositions with n,n,n',n',n",n"-hexaallyl-1,3,5-triazine-2,4,6-triamine crosslinking coagent, methods for making the same, and articles made therefrom |
CN106748761A (zh) * | 2016-11-15 | 2017-05-31 | 惠州市长润发涂料有限公司 | 一种三羟甲基丙烷三丙烯酸酯的制备方法 |
CN107501677A (zh) * | 2017-08-21 | 2017-12-22 | 天津科技大学 | 绝缘气体充填高压交联聚乙烯电缆绝缘层及其制备方法 |
CN107828116B (zh) * | 2017-12-07 | 2021-02-05 | 江苏德威新材料股份有限公司 | ±500kV直流电缆用抗焦烧绝缘材料及其制备方法 |
CN108530726A (zh) * | 2018-03-08 | 2018-09-14 | 全球能源互联网研究院有限公司 | 一种低温度敏感性的绝缘材料及其制备方法 |
-
2018
- 2018-04-17 CN CN201810342197.5A patent/CN108623877A/zh active Pending
-
2019
- 2019-04-11 WO PCT/CN2019/082246 patent/WO2019201153A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6454605A (en) * | 1987-08-26 | 1989-03-02 | Fujikura Ltd | Composition of insulator |
CN102827051A (zh) * | 2012-09-24 | 2012-12-19 | 金魏 | 过氧化二异丙苯的合成方法 |
CN102850558A (zh) * | 2012-10-11 | 2013-01-02 | 昆山捷兴翡国际贸易有限公司 | 一种110kv及以上屏蔽料的制备方法 |
CN104903395A (zh) * | 2012-12-29 | 2015-09-09 | 陶氏环球技术有限责任公司 | 可交联聚合性组合物、制造所述聚合性组合物的方法以及由其制成的物品 |
CN103824642A (zh) * | 2014-02-10 | 2014-05-28 | 国家电网公司 | 具有耐湿老化性的柔性电力电缆 |
CN108623877A (zh) * | 2018-04-17 | 2018-10-09 | 全球能源互联网研究院有限公司 | 一种高压直流电缆用绝缘材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108623877A (zh) | 2018-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019201153A1 (zh) | 一种高压直流电缆用绝缘材料及其制备方法 | |
CN102276901B (zh) | 一种高压电缆超净可交联聚乙烯绝缘料的制备方法 | |
US4444948A (en) | Manufacture of insulated electric conductors | |
US3923947A (en) | Process for continuously preparing extrudable, crosslinkable polyethylene compositions | |
CN107857932B (zh) | 化学交联低烟无卤阻燃聚烯烃电缆料及其制备方法 | |
CN104130492A (zh) | 一种硅烷一步交联聚乙烯电缆料及其制备方法 | |
CN104277182A (zh) | 一种交联低密度聚乙烯的制备方法 | |
KR102201366B1 (ko) | 비가교 수지를 함유하는 전력 케이블의 절연층 제조용 혼합물 | |
WO2012074230A2 (ko) | 천연 식물성 섬유질을 이용한 인조목재 제조방법 | |
WO2012074229A2 (ko) | 천연 식물성 섬유질을 이용한 인조목재 | |
CN102399390B (zh) | 一种辐射交联聚丙烯的制备方法 | |
CN112480523A (zh) | 架空电缆用硅烷交联聚乙烯绝缘料及制备工艺 | |
CN101935418B (zh) | 正温度系数材料及其制备方法及含该材料的热敏电阻及其制备方法 | |
CN104774363A (zh) | 一种新型硅烷交联聚乙烯电缆料的制备方法 | |
CN115772080B (zh) | 一种丙烯酸修饰山梨糖醇水树抑制剂的制备方法和应用 | |
CN104497409A (zh) | 一步法硅烷自然交联聚乙烯电缆料及其制备方法 | |
CN105348620B (zh) | 一种耐热105℃耐候化学交联聚乙烯绝缘料 | |
CN103113704A (zh) | 耐110℃高温的硅烷自然交联聚乙烯电缆料的制备方法 | |
CN113512211B (zh) | 紫外光交联聚烯烃母粒的制备方法 | |
CN1500822A (zh) | 聚酯薄膜及其制造方法 | |
CN114656703A (zh) | 一种高压直流电缆用的交联聚乙烯绝缘材料及其制备方法 | |
CN102382380B (zh) | 连续型热缩应力控制管材料及其制备方法 | |
CN104693576A (zh) | 一种阻燃xlpe电缆料及其生产流程 | |
CN113583320B (zh) | 可交联聚烯烃组合物及其制备方法与应用、交联聚烯烃及其应用 | |
CN115819872B (zh) | 一种绝缘层用过氧化物交联聚乙烯电缆料及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19787981 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19787981 Country of ref document: EP Kind code of ref document: A1 |