WO2019201147A1 - 一种高带宽弯曲不敏感多模光纤 - Google Patents

一种高带宽弯曲不敏感多模光纤 Download PDF

Info

Publication number
WO2019201147A1
WO2019201147A1 PCT/CN2019/082239 CN2019082239W WO2019201147A1 WO 2019201147 A1 WO2019201147 A1 WO 2019201147A1 CN 2019082239 W CN2019082239 W CN 2019082239W WO 2019201147 A1 WO2019201147 A1 WO 2019201147A1
Authority
WO
WIPO (PCT)
Prior art keywords
core layer
bandwidth
optical fiber
layer
mhz
Prior art date
Application number
PCT/CN2019/082239
Other languages
English (en)
French (fr)
Inventor
肖武丰
黄荣
王海鹰
王润涵
汪洪海
王瑞春
Original Assignee
长飞光纤光缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆股份有限公司 filed Critical 长飞光纤光缆股份有限公司
Priority to PL19789502.2T priority Critical patent/PL3767348T3/pl
Priority to US17/047,808 priority patent/US11841530B2/en
Priority to EP19789502.2A priority patent/EP3767348B1/en
Publication of WO2019201147A1 publication Critical patent/WO2019201147A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +

Definitions

  • the invention relates to a high-bandwidth bending insensitive multimode optical fiber, and belongs to the technical field of optical communication.
  • the A1 fiber is a multimode fiber, and according to the geometry, the A1 fiber is divided into A1a, A1b and A1d class.
  • the A1a fiber is a 50/125 ⁇ m graded-index fiber
  • the A1b fiber is a 62.5/125 ⁇ m graded-index fiber
  • the A1d fiber is a 100/140 ⁇ m graded-index fiber.
  • A1a fiber is the most widely used multimode fiber type. It is divided into A1a.1, A1a.2 and A1a.3 fiber according to the bandwidth performance from small to large, corresponding to the ISO/IEC standard. Cable fiber types OM2, OM3 and OM4.
  • Multimode fiber has become a high-quality solution for short-distance and high-rate transmission networks due to its low system cost. It has been widely used in data centers, office centers, high-performance computing centers, and storage area networks.
  • the application scenarios of multimode fiber are often integrated systems such as narrow cabinets and wiring boxes, and the fiber will experience a small bending radius.
  • a conventional multimode fiber is bent at a small angle, a high-order mode transmitted near the edge of the core easily leaks out, resulting in signal loss.
  • a method of increasing the low refractive index region in the fiber cladding can be used to limit leakage of the high-order mode and minimize signal loss.
  • the excellent bending resistance of the bend-resistant multimode fiber enables it to be efficiently applied in data center LANs.
  • the inter-mode dispersion existing in the multimode fiber greatly limits the transmission distance that can be supported.
  • the core refractive index profile of the multimode fiber needs to be designed to continuously decrease the refractive index from the center to the edge. Distribution, usually we call it " ⁇ profile”. That is, the refractive index distribution satisfying the power exponential function as follows:
  • n 1 is the refractive index of the fiber axis; r is the distance from the fiber axis; a is the fiber core radius; ⁇ is the distribution index; ⁇ 0 is the refractive index of the core center relative to the cladding.
  • ⁇ i % [(n i 2 -n 0 2 )/2n i 2 ] ⁇ 100%
  • n i is the refractive index from the center i position of the core
  • n 0 is the minimum refractive index of the core layer of the optical fiber, and is usually also the refractive index of the cladding of the optical fiber.
  • the multimode fiber thus designed can support high-speed transmission of hundreds of meters. For example, with a 850nm laser source, a single OM4 multimode fiber can support 10Gb/s Ethernet traffic for more than 550m, and support 40Gb/s for more than 150m.
  • the capacity of multimode fiber needs to be continuously improved.
  • the bandwidth of a single OM4 multimode fiber is close to the upper limit of the multimode fiber.
  • the transmission distance that OM4 multimode fiber can support is greatly shortened.
  • Wavelength division multiplexing (WDM) technology is an effective means to further increase the capacity of multimode fiber to accommodate higher speed transmission systems. With WDM, a single fiber can accommodate multiple data channels, and each additional wavelength increases the transmission capacity of the fiber.
  • Multimode fiber uses WDM technology, which requires the fiber to support high-performance transmission in multiple wavelength windows.
  • Multimode fiber can achieve high bandwidth performance by precisely controlling the core refractive index profile.
  • the bandwidth performance here refers to the full injection bandwidth (OFL Bandwidth) of the fiber, which is measured by the FOTP-204 standard test method specified in the TIA.
  • OF Bandwidth the full injection bandwidth
  • Studies have shown that when the refractive index profile of multimode fiber is constant, it tends to exhibit higher bandwidth performance only for a specific wavelength window.
  • the bandwidth performance will be significantly reduced. Therefore, from the application point of view, the design of multimode fiber needs to be improved, so that it can be compatible with existing OM3/OM4 multimode fiber, and has low bandwidth-wavelength sensitivity, meeting WDM in a certain band range.
  • the application requirements of the technology and also have excellent bending resistance, to adapt to the new demand for multimode fiber in the advancement of transmission technology.
  • germanium doping is used to form a near-parabolic refractive index profile at the core layer of a multimode fiber and achieve high bandwidth by optimizing the alpha value of the profile.
  • the optimum alpha value is sensitive to the operating wavelength of the light propagating in the fiber. Therefore, the traditional multimode fiber bandwidth is very sensitive to the fluctuation of the core layer ⁇ . A slight deviation from the optimal alpha value results in a decrease in bandwidth, which makes the high-bandwidth operating wavelength range of the conventional multimode fiber narrow.
  • the multi-component doped core layer can have a smaller chromatic dispersion than a conventional multi-mode fiber single-doped core layer by optimizing the type, concentration, and mode of the doping component with respect to the single erbium-doped core layer. It has a higher bandwidth over a wider range.
  • Mandrel a preform containing a core layer and a partial cladding
  • Radius the distance between the outer boundary of the layer and the center point
  • Refractive index profile the relationship between the refractive index of a fiber or an optical fiber preform (including a mandrel) and its radius;
  • germanium (Ge) the relative refractive index difference ( ⁇ Ge) of germanium (Ge)-doped quartz glass relative to pure quartz glass, thereby indicating the amount of germanium (Ge) doped;
  • Phosphorus (P) contribution The relative refractive index difference phosphorus ( ⁇ P) of phosphorus-doped (P) quartz glass relative to pure quartz glass, thereby indicating the amount of phosphorus-doped (P).
  • the technical problem to be solved by the present invention is to provide a high-bandwidth bending insensitive multimode optical fiber with reasonable material composition and core cladding structure design and convenient process control in view of the above-mentioned deficiencies of the prior art.
  • the technical solution adopted by the present invention to solve the above-mentioned problems is to include a core layer and a cladding layer, wherein the cladding layer is an inner cladding layer, a depressed cladding layer and an outer cladding layer from the inside to the outside, and is characterized in that the core layer is refracted.
  • the rate profile is parabolic, the distribution index ⁇ is 2.0-2.3, the radius R1 of the core layer is 23-27 ⁇ m, and the maximum relative refractive index difference ⁇ 1 max of the core layer is 0.9%-1.2%, and the core layer is bismuth phosphorus fluoride.
  • ⁇ P0 is 0.01% to 0.30%
  • the contribution amount ⁇ P1 of the P layer at the boundary between the core layer and the inner cladding layer is 0.01% to 0.30%
  • the difference between the contributions of P at the center and the edge of the core layer ⁇ P10 is less than or equal to 5%
  • the core P content of the core layer is consistent with the edge of the core layer, that is, the concentration difference is as small as possible
  • the core layer F acts as a negative dopant
  • the center of the core layer is in the direction of the edge of the core layer, and the F doping amount is increased.
  • the contribution amount ⁇ F0 of the center of the core layer is 0.0% to -0.1%
  • the contribution amount ⁇ F1 of the edge F of the core layer is -0.40% to -0.20%.
  • the inner cladding layer is a phosphorus-fluorine P and F co-doped silica glass layer, wherein the F-doping contribution amount ⁇ F2 is -0.18% to -0.08%, and the P contribution amount of the inner cladding outer edge is ⁇ P2.
  • the P concentration change of the inner cladding is divided into the platform area and the gradual change area from the inside to the outside.
  • the concentration of the platform area remains basically unchanged, and then gradually increases or decreases gradually.
  • the width T1 of the platform area is 0.1-2 ⁇ m, and the gradual change area
  • the width T2 is 2-4 ⁇ m;
  • the depressed cladding width (R3-R2) is 3.0-7.0 ⁇ m, and the relative refractive index difference ⁇ 3 is -0.9%--0.3%; the outer cladding layer is a pure silica glass layer.
  • the DMD Inner Mask (5-18 ⁇ m) and the DMD Outer Mask (0-23 ⁇ m) of the optical fiber are both 0.33 ps/m or less; the DMD Interval Mask is 0.25 ps/m or less; the DMD of the optical fiber is preferably used.
  • Inner Mask (5-18 ⁇ m) and DMD Outer Mask (0-23 ⁇ m) are both 0.14 ps/m or less, and the DMD Interval Mask is 0.11 ps/m or less.
  • the optical fiber has a numerical aperture of 0.185 to 0.215.
  • the optical fiber has a bandwidth of 3500 MHz-km or more than 3500 MHz-km at a wavelength of 850 nm, a bandwidth of 2000 MHz-km or more at a wavelength of 950 nm, and a bandwidth of 500 MHz-km or more at a wavelength of 1300 nm.
  • the optical fiber has a bandwidth of 5000 MHz-km or more than 5000 MHz-km at a wavelength of 850 nm, a bandwidth of 3300 MHz-km or more at a wavelength of 950 nm, and a bandwidth of 600 MHz-km or more at a wavelength of 1300 nm.
  • the optical fiber has an effective mode bandwidth (EMB) of 4700 MHz-km or more than 4700 MHz-km at a wavelength of 850 nm; an effective mode bandwidth (EMB) of 3400 MHz-km or more of 3400 MHz-km at a wavelength of 875 nm; and a wavelength of 900 nm at a wavelength of 900 nm Active mode bandwidth (EMB) with 2900MHz-km or above 2900MHz-km; effective mode bandwidth (EMB) of 2800MHz-km or 2800MHz-km or higher at 925nm wavelength; 2500MHz-km or 2500MHz-km or higher at 950nm wavelength Effective mode bandwidth (EMB).
  • EMB effective mode bandwidth
  • the optical fiber has an additional bending loss of less than 0.2 dB at a wavelength of 850 nm with a bending radius of 7.5 mm, and a bending additional loss of less than 0.5 dB at a wavelength of 1300 nm with two turns of 7.5 mm. .
  • the beneficial effects of the invention are as follows: 1.
  • the invention optimizes the performance of the optical transmission bandwidth by optimizing the fluorine doping amount of the core layer, and the bandwidth-wavelength sensitivity is reduced while the bandwidth performance is improved; 2.
  • the optical fiber core layer By using Ge/P/F co-doping, by increasing the concentration of phosphorus and reducing the concentration of germanium, it is beneficial to improve the material dispersion characteristics of the core material, reduce the chromatic dispersion, further improve the bandwidth performance, and reduce the fiber attenuation; Since P is not easy to accurately control the flowmeter to form an accurate refractive index profile, and it is easy to diffuse and easily diffuse, the concentration of phosphorus in the core layer is relatively fixed, the concentration difference is small, the concentration of the center and the edge remains substantially unchanged, and the gradient of the core layer is gradually changed.
  • the refractive index is precisely controlled by Ge/F. 4.
  • the inner cladding is doped with P, which is divided into a platform region and a gradual region.
  • the platform region avoids P diffusion caused by the P concentration difference between the core layer and the inner cladding layer.
  • the core layer profile is distorted, that is, the same phosphorus concentration difference as the core layer is maintained in the portion of the cladding near the core layer, and the diffusion of phosphorus between the core layer and the cladding layer can be avoided;
  • the gradual change region is mainly composed of a gradient And forming a P diffusion heteroaryl; transition region in line with Fick's law, may be gradually increased or decreased.
  • the gradually increasing phosphorus in the gradual zone can also be used as an auxiliary agent for adjusting the viscosity matching, improving the material viscosity matching of the inner cladding and the depressed cladding layer; 5.
  • the optical fiber of the invention can not only be compatible with the existing OM3/OM4 multimode fiber, but also support 850 nm. Wavelength division multiplexing technology in the wavelength range of ⁇ 950nm; 6. Reasonable design of the depressed cladding parameters, improving the bending inflexibility of the fiber; 7.
  • the fiber of the invention has excellent bending resistance and can be applied to the access network and In miniaturized optical devices.
  • the invention further improves the transmission capacity of the multimode optical fiber, adapts to the network demand for the rapid growth of the data traffic, and has important significance for the application of the optical communication technology; 8.
  • the manufacturing method of the invention is simple and suitable for mass production.
  • Figure 1 is a schematic cross-sectional view showing a refractive index of an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a doping amount according to an embodiment of the present invention.
  • Fig. 3 is a schematic cross-sectional view showing the doping amount of another embodiment of the present invention.
  • EMB effective mode bandwidth
  • the core layer and the cladding layer are included, and the cladding layer is an inner cladding layer, a depressed cladding layer and an outer cladding layer from the inside to the outside, and the refractive index profile of the core layer is parabolic, the distribution index is ⁇ , and the radius of the core layer is R1.
  • the core layer has a maximum relative refractive index difference ⁇ 1 max of 0.9% to 1.2%, and the core layer is a bisphosphonium fluoride Ge, P, F ternary co-doped silica glass layer, and P and Ge are used as positive dopants.
  • the contribution of P in the center of the core layer is ⁇ P0, the contribution of P at the boundary between the core layer and the inner cladding layer is ⁇ P1, and the difference between the contribution of P at the center of the core layer and the edge of the core layer
  • the P content in the center of the core layer is consistent with the edge of the core layer, that is, the concentration difference is as small as possible;
  • the core layer F acts as a negative dopant, and the center of the core layer is in the direction of the edge of the core layer, and the amount of F doping increases, and the center of the core layer F
  • the contribution is ⁇ F0, and the contribution of the edge F of the core layer is ⁇ F1.
  • the inner cladding radius is R2
  • the inner cladding has a relative refractive index difference of ⁇ 2
  • the depressed cladding radius is R3, and the relative refractive index difference is ⁇ 3
  • the outer cladding is a pure silica glass layer, and is outsourced.
  • the layer radius is 62.5 ⁇ m.
  • a set of preforms and wires are prepared and coated by a double layer of multimode fibers.
  • the structure and main performance parameters of the fibers are shown in Table 1.
  • the macrobend additional loss is measured according to the FOTP-62 (IEC-60793-1-47) method.
  • the fiber under test is wound around a certain diameter (for example: 10mm, 15mm, 20mm, 30mm, etc.), and then the circle is placed. Open, test the change of optical power before and after the circle, as the additional loss of the macrobend of the fiber.
  • an Encircled Flux light injection condition was employed. Encircled Flux light injection conditions can be obtained by welding a 2 m long ordinary 50 micron core multimode fiber at the front end of the fiber to be tested, and winding a 25 mm diameter ring in the middle of the fiber. When the injected light is injected into the fiber, the fiber to be tested is an Encircled Flux light injection.
  • the full injection bandwidth is measured according to the FOTP-204 method, and the test uses a full injection condition.
  • Table 1 Main structural parameters and performance parameters of optical fibers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种高带宽弯曲不敏感多模光纤,包括有芯层和包层,包层由内到外依次为内包层、下陷包层和外包层,芯层折射率剖面呈抛物线形,分布指数α为2.0~2.3,芯层的半径R1为23~27μm,芯层中心最大相对折射率差Δ1max为0.9%~1.2%,芯层为锗磷氟Ge、P、F三元共掺的二氧化硅玻璃层,芯层中心的P的贡献量ΔP0为0.01%~0.30%,芯层与内包层交界的P的贡献量ΔP1为0.01%~0.30%,芯层中心P含量与芯层边缘保持一致,芯层中心到芯层边缘方向,F掺杂量呈递增状,芯层中心的F的贡献量ΔF0为0.0%~‑0.1%,芯层边缘F的贡献量ΔF1为‑0.40%~‑0.20%。该光纤材料组成和芯包层结构设计合理,降低了色度色散,提高了带宽性能,并降低了光纤衰耗。

Description

一种高带宽弯曲不敏感多模光纤 技术领域
本发明涉及一种高带宽弯曲不敏感多模光纤,属于光通信技术领域。
背景技术
按照国际电工委员会(IEC)的光纤产品规范标准IEC 60793-2中对多模光纤的描述,A1类光纤为多模光纤,并且根据几何结构的不同,A1类光纤又被分为A1a、A1b和A1d类。A1a类光纤即50/125μm的渐变折射率光纤,A1b类光纤即62.5/125μm的渐变折射率光纤,A1d类光纤即100/140μm的渐变折射率光纤。其中A1a类光纤是目前商用最广泛的多模光纤类型,它又按照带宽性能从小到大依次被分为A1a.1、A1a.2和A1a.3类光纤,分别对应ISO/IEC标准中的成缆光纤类型OM2、OM3和OM4。
多模光纤以其低廉的系统成本优势,成为短距离高速率传输网络的优质解决方案,已广泛应用于数据中心、办公中心、高性能计算中心和存储区域网等领域。多模光纤的应用场景往往是狭窄的机柜、配线箱等集成系统,光纤会经受很小的弯曲半径。常规多模光纤进行小角度弯曲时,靠近纤芯边缘传输的高阶模很容易泄漏出去,从而造成信号损失。在设计抗弯多模光纤折射率剖面时,可以采用在光纤包层增加低折射率区域的方法来限制高阶模的泄漏,使信号损失最小化。抗弯多模光纤优异的抗弯曲性能使得其能够被高效地应用在数据中心局域网中。
多模光纤中存在的模间色散使其所能支持的传输距离受到大大限制,为降低光纤模间色散,需要将多模光纤的芯层折射率剖面设计成中心至边缘连续逐渐降低的折射率分布,通常我们称其为“α剖面”。即满足如下幂指数函数的折射率分布:
Figure PCTCN2019082239-appb-000001
其中,n 1为光纤轴心的折射率;r为离开光纤轴心的距离;a为光纤芯半径;α为分布指数;Δ 0为纤芯中心相对包层的折射率。
相对折射率即Δ i
Δ i%=[(n i 2-n 0 2)/2n i 2]×100%,
其中,n i为距离纤芯中心i位置的折射率;n 0为光纤芯层的最小折射率,通常也是光纤包层的折射率。
通过在SiO 2中掺入一定浓度具有折射率调节功能的掺杂剂(如GeO 2、F、B 2O 3、P 2O 5、 TiO 2、Al 2O 3、ZrO 2、SnO 2等)来实现多模光纤的芯层折射率分布。由此设计而得的多模光纤能够支持数百米的高速率传输。例如,用850nm激光光源,单根OM4多模光纤能够支持10Gb/s的以太网流量传输550m以上,支持40Gb/s的速率传输150m以上。然而,随着网络传输速率的飞速发展,和用户对带宽需求的不断上升,多模光纤的容量需要不断提升。目前单根OM4多模光纤的带宽已经接近多模光纤上限。在100Gb/s、400Gb/s甚至更高速的单一光源传输系统中,OM4多模光纤所能支持的传输距离会大大缩短。波分复用(WDM)技术是进一步提升多模光纤容量以适应更高速传输系统的有效手段。采用WDM,单根光纤可以容纳多股数据通道,每增加一个波长,光纤的传输能力就会增加。例如,4个25Gb/s的波长合并在一起通过一根多模光纤传输,就实现了单根多模光纤支持100Gb/s的速率传输150m以上的性能,即单根多模光纤容量增大至原来的4倍。多模光纤应用WDM技术,要求该光纤能够支持多个波长窗口下的高性能传输。
多模光纤可以通过精确控制芯层折射率分布来获得高带宽性能。这里的带宽性能是指光纤的满注入带宽(OFL Bandwidth),采用TIA中规定的FOTP-204标准测试方法测得。研究表明,多模光纤折射率剖面一定时,往往只针对特定的波长窗口表现出较高的带宽性能,当光纤应用窗口移至较大或较小波长时,带宽性能会出现明显的下降。因此,从应用角度出发,需要对多模光纤的设计进行改进,使其既能与现有OM3/OM4多模光纤兼容,又能具有较低的带宽-波长敏感性,满足一定波段范围内WDM技术的应用要求,并且还能具有优异的抗弯曲性能,以适应传输技术进步对多模光纤的新需求。
在传统的掺锗多模光纤中,锗掺杂被用于在多模光纤的芯层处形成接近抛物线的折射率剖面,并通过优化该剖面的α值实现高带宽。然而,由于掺锗芯层的色度色散较高,最优α值对光纤中传播的光的工作波长的敏感。因此,传统的多模光纤带宽对芯层α的波动十分敏感,稍微偏离最优α值就会导致带宽的降低,使得传统多模光纤的高带宽工作波长范围很窄。另外,由于锗是半径较大的金属原子,当其掺杂量较高时,光纤的衰耗较高。波分复用技术要求光纤能够支持多个波长窗口下的高性能传输,因此多模光纤需要在较宽的范围内对工作波长不敏感,以保证有较大的高带宽工作窗口。相对于单掺锗的芯层,通过优化掺杂组分的类别、浓度和方式,多组分掺杂的芯层可以具有相对传统多模光纤单掺锗芯层更小的色度色散,从而在较宽的范围内具有较高的带宽。
发明内容
为方便介绍本发明内容,定义部分术语:
芯棒:含有芯层和部分包层的预制件;
半径:该层外边界与中心点之间的距离;
折射率剖面:光纤或光纤预制棒(包括芯棒)玻璃折射率与其半径之间的关系;
氟(F)的贡献量:掺氟(F)石英玻璃相对于纯石英玻璃的相对折射率差值(ΔF),以此来表示掺氟(F)量;
锗(Ge)的贡献量:掺锗(Ge)石英玻璃相对于纯石英玻璃的相对折射率差值(ΔGe),以此来表示掺锗(Ge)量;
磷(P)的贡献量:掺磷(P)石英玻璃相对于纯石英玻璃的相对折射率差值磷(ΔP),以此来表示掺磷(P)量。
本发明所要解决的技术问题是针对上述现有技术存在的不足提供一种材料组成和芯包层结构设计合理、工艺控制方便的高带宽弯曲不敏感多模光纤。
本发明为解决上述提出的问题所采用的技术方案为:包括有芯层和包层,所述的包层由内到外依次为内包层、下陷包层和外包层,其特征在于芯层折射率剖面呈抛物线形,分布指数α为2.0~2.3,芯层的半径R1为23~27μm,芯层中心最大相对折射率差Δ1 max为0.9%~1.2%,所述的芯层为锗磷氟Ge、P、F三元共掺的二氧化硅玻璃层,P和Ge作为正掺杂剂,芯层中心的P的贡献量
ΔP0为0.01%~0.30%,芯层与内包层交界的P的贡献量ΔP1为0.01%~0.30%,芯层中心和边缘的P的贡献量之差
Figure PCTCN2019082239-appb-000002
ΔP10小于或等于5%,芯层中心P含量与芯层边缘保持一致,即浓度差尽可能小;芯层F作为负掺杂剂,芯层中心到芯层边缘方向,F掺杂量呈递增状,芯层中心的F的贡献量ΔF0为0.0%~-0.1%,芯层边缘F的贡献量ΔF1为-0.40%~-0.20%。
按上述方案,所述的内包层为磷氟P、F共掺的二氧化硅玻璃层,其中F掺杂的贡献量ΔF2为-0.18%~-0.08%,内包层外边缘的P贡献量ΔP2为0%~0.40%,芯层和内包层交界处与内包层外边缘的P的贡献量之差为ΔP21=ΔP2-ΔP1,ΔP21为-0.3%~-0.01%或0.01%~0.20%。
按上述方案,内包层的P浓度变化从内至外分为平台区和渐变区,平台区的浓度基本保持不变,而后逐渐增加或逐渐降低,平台区的宽度T1为0.1-2μm,渐变区的宽度T2为2-4μm;所述的内包层宽度(R2-R1)为1.0~5.0μm,内包层的相对折射率差Δ2=ΔP2+ΔF2,平台区和渐变区的ΔF2保证Δ2介于-0.09%~0.09%。
按上述方案,所述的下陷包层宽度(R3-R2)为3.0~7.0μm,相对折射率差Δ3为-0.9%~-0.3%;所述的外包层为纯二氧化硅玻璃层。
按上述方案,所述光纤的DMD Inner Mask(5-18μm)和DMD Outer Mask(0-23μm)均小于等于0.33ps/m;DMD Interval Mask小于等于0.25ps/m;优选条件下光纤的DMD的Inner Mask(5-18μm)和DMD Outer Mask(0-23μm)均小于等于0.14ps/m,DMD Interval Mask小于等于0.11ps/m。
按上述方案,所述光纤的数值孔径为0.185~0.215。
按上述方案,所述光纤在850nm波长具有3500MHz-km或3500MHz-km以上带宽,在950nm波长具有2000MHz-km或2000MHz-km以上带宽,在1300nm波长具有500MHz-km或500MHz-km以上带宽。
更进一步的,光纤在850nm波长具有5000MHz-km或5000MHz-km以上带宽,在950nm波长具有3300MHz-km或3300MHz-km以上带宽,在1300nm波长具有600MHz-km或600MHz-km以上带宽。
按上述方案,所述光纤在850nm波长具有4700MHz-km或4700MHz-km以上的有效模式带宽(EMB);在875nm波长具有3400MHz-km或3400MHz-km以上的有效模式带宽(EMB);在900nm波长具有2900MHz-km或2900MHz-km以上的有效模式带宽(EMB);在925nm波长具有2800MHz-km或2800MHz-km以上的有效模式带宽(EMB);在950nm波长具有2500MHz-km或2500MHz-km以上的有效模式带宽(EMB)。
按上述方案,所述光纤在850nm波长处,以7.5毫米弯曲半径绕2圈导致的弯曲附加损耗小于0.2dB;在1300nm波长处,以7.5毫米弯曲半径绕2圈导致的弯曲附加损耗小于0.5dB。
本发明的有益效果在于:1、本发明通过对芯层氟掺杂量的优化,实现对于光传输带宽性能的优化,在带宽性能提高的同时,带宽-波长敏感性降低;2、光纤芯层采用Ge/P/F共掺,通过增大磷的浓度,降低锗的浓度,有利于改进芯层材料的材料色散特性,降低色度色散,进一步提高带宽性能,并降低光纤衰耗;3、由于P不易于流量计精确控制形成精确的折射率剖面,且易挥发易扩散,因此芯层磷的浓度相对固定,浓度差很小,中心跟边缘的浓度基本保持不变,芯层的渐变型折射率通过Ge/F来精确控制;4、采用内包层掺P方式,分为平台区和渐变区,平台区避免了因芯层和内包层的界面处两侧存在P浓度差导致的P扩散从而使得芯层剖面发生畸变,即在包层靠近芯层的部分保 持与芯层相同的磷浓度差,可以避免磷在芯层和包层之间的扩散;渐变区主要由梯度掺杂和P的扩散形成;渐变区域符合菲克定律,可以逐渐增加或减少。渐变区域逐渐增加的磷还可以作为调节粘度匹配的辅助剂,改进内包层和下陷包层的材料粘度匹配;5、本发明光纤不仅能与现有OM3/OM4多模光纤兼容,还能支持850nm~950nm波长范围内的波分复用技术;6、合理的下陷包层参数设计,提高了光纤弯曲不敏感曲性能;7、本发明光纤具有优异的抗弯曲性能,可适用于接入网和小型化光器件中。本发明使多模光纤传输容量得到进一步提升,适应了数据流量高速增长的网络需求,对光通信技术的应用具有重要意义;8、本发明制造方法简便,适于大规模生产。
附图说明
图1是本发明一个实施例的折射率剖面示意图。
图2是本发明一个实施例的掺杂量剖面示意图。
图3是本发明另一个实施例的掺杂量剖面示意图。
图4是本发明所述高带宽弯曲不敏感多模光纤和对比例的有效模式带宽(EMB)随波长的分布图。
具体实施方式
下面将给出具体的实施例,对本发明作进一步的说明。
包括有芯层和包层,所述的包层由内到外依次为内包层、下陷包层和外包层,芯层折射率剖面呈抛物线形,分布指数为α,芯层的半径为R1,芯层中心最大相对折射率差Δ1 max为0.9%~1.2%,所述的芯层为锗磷氟Ge、P、F三元共掺的二氧化硅玻璃层,P和Ge作为正掺杂剂,芯层中心的P的贡献量为ΔP0,芯层与内包层交界的P的贡献量为ΔP1,芯层中心和边缘的P的贡献量之差
Figure PCTCN2019082239-appb-000003
芯层中心P含量与芯层边缘保持一致,即浓度差尽可能小;芯层F作为负掺杂剂,芯层中心到芯层边缘方向,F掺杂量呈递增状,芯层中心的F的贡献量为ΔF0,芯层边缘F的贡献量为ΔF1。所述的内包层为磷氟P、F共掺的二氧化硅玻璃层,其中F掺杂的贡献量ΔF2为-0.18%~-0.08%,内包层外边缘的P贡献量ΔP2为0%~0.40%,芯层和内包层交界处即内包层内边缘与内包层外边缘的P的贡献量之差为ΔP21=ΔP2-ΔP1。所述的内包层半径为R2,内包层的相对折射率差为Δ2,所述的下陷包层半径为R3,相对折射率差为Δ3;所述的外包层为纯二氧化硅玻璃层,外包层半径为62.5μm。
按本发明所述,制备了一组预制棒并拉丝,采用多模光纤的双层涂覆,光纤的结构和主要性能参数见表1。
宏弯附加损耗是根据FOTP-62(IEC-60793-1-47)方法测得的,被测光纤按一定直径(比如:10mm,15mm,20mm,30mm等等)绕一圈,然后将圆圈放开,测试打圈前后光功率的变化,以此作为光纤的宏弯附加损耗。测试时,采用环形通量(Encircled Flux)光注入条件。环形通量(Encircled Flux)光注入条件可以通过以下方法获得:在被测光纤前端熔接一段2米长的普通50微米芯径多模光纤,并在该光纤中间绕一个25毫米直径的圈,当满注入光注入该光纤时,被测光纤即为环形通量(Encircled Flux)光注入。
满注入带宽是根据FOTP-204方法测得的,测试采用满注入条件。
表1:光纤的主要结构参数和性能参数
Figure PCTCN2019082239-appb-000004
Figure PCTCN2019082239-appb-000005

Claims (10)

  1. 一种高带宽弯曲不敏感多模光纤,包括有芯层和包层,所述的包层由内到外依次为内包层、下陷包层和外包层,其特征在于芯层折射率剖面呈抛物线形,分布指数α为2.0~2.3,芯层的半径R1为23~27μm,芯层中心最大相对折射率差Δ1 max为0.9%~1.2%,所述的芯层为锗磷氟Ge、P、F三元共掺的二氧化硅玻璃层,P和Ge作为正掺杂剂,芯层中心的P的贡献量ΔP0为0.01%~0.30%,芯层与内包层交界的P的贡献量ΔP1为0.01%~0.30%,芯层中心和边缘的P的贡献量之差
    Figure PCTCN2019082239-appb-100001
    ΔP10小于或等于5%,芯层中心P含量与芯层边缘保持一致,芯层F作为负掺杂剂,芯层中心到芯层边缘方向,F掺杂量呈递增状,芯层中心的F的贡献量ΔF0为0.0%~-0.1%,芯层边缘F的贡献量ΔF1为-0.40%~-0.20%。
  2. 按权利要求1所述的高带宽弯曲不敏感多模光纤,其特征在于所述的内包层为磷氟P、F共掺的二氧化硅玻璃层,其中F掺杂的贡献量ΔF2为-0.18%~-0.08%,内包层外边缘的P贡献量ΔP2为0%~0.40%,芯层和内包层交界处与内包层外边缘的P的贡献量之差为ΔP21=ΔP2-ΔP1,ΔP21为-0.3%~-0.01%或0.01%~0.20%。
  3. 按权利要求2所述的高带宽弯曲不敏感多模光纤,其特征在于内包层的P浓度变化从内至外分为平台区和渐变区,平台区的浓度基本保持不变,而后逐渐增加或逐渐降低,平台区的宽度T1为0.1-2μm,渐变区的宽度T2为2-4μm;所述的内包层宽度(R2-R1)为1.0~5.0μm,内包层的相对折射率差Δ2=ΔP2+ΔF2,平台区和渐变区的ΔF2保证Δ2介于-0.09%~0.09%。
  4. 按权利要求1或2所述的高带宽弯曲不敏感多模光纤,其特征在于所述的下陷包层宽度(R3-R2)为3.0~7.0μm,相对折射率差Δ3为-0.9%~-0.3%;所述的外包层为纯二氧化硅玻璃层。
  5. 按权利要求1或2所述的高带宽弯曲不敏感多模光纤,其特征在于所述光纤的DMD Inner Mask(5-18μm)和DMD Outer Mask(0-23μm)均小于等于0.33ps/m;DMD Interval Mask小于等于0.25ps/m。
  6. 按权利要求1或2所述的高带宽弯曲不敏感多模光纤,其特征在于所述光纤的数值孔径为0.185~0.215。
  7. 按权利要求1或2所述的高带宽弯曲不敏感多模光纤,其特征在于所述光纤在850nm波长具有3500MHz-km或3500MHz-km以上带宽,在950nm波长具有2000MHz-km或2000MHz-km以上带宽,在1300nm波长具有500MHz-km或500MHz-km 以上带宽。
  8. 按权利要求1或2所述的高带宽弯曲不敏感多模光纤,其特征在于光纤在850nm波长具有5000MHz-km或5000MHz-km以上带宽,在950nm波长具有3300MHz-km或3300MHz-km以上带宽,在1300nm波长具有600MHz-km或600MHz-km以上带宽。
  9. 按权利要求1或2所述的高带宽弯曲不敏感多模光纤,其特征在于所述光纤在850nm波长具有4700MHz-km或4700MHz-km以上的有效模式带宽(EMB);在875nm波长具有3400MHz-km或3400MHz-km以上的有效模式带宽(EMB);在900nm波长具有2900MHz-km或2900MHz-km以上的有效模式带宽(EMB);在925nm波长具有2800MHz-km或2800MHz-km以上的有效模式带宽(EMB);在950nm波长具有2500MHz-km或2500MHz-km以上的有效模式带宽(EMB)。
  10. 按权利要求1或2所述的高带宽弯曲不敏感多模光纤,其特征在于所述光纤在850nm波长处,以7.5毫米弯曲半径绕2圈导致的弯曲附加损耗小于0.2dB;在1300nm波长处,以7.5毫米弯曲半径绕2圈导致的弯曲附加损耗小于0.5dB。
PCT/CN2019/082239 2018-04-17 2019-04-11 一种高带宽弯曲不敏感多模光纤 WO2019201147A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL19789502.2T PL3767348T3 (pl) 2018-04-17 2019-04-11 Wielomodowe włókno światłowodowe o dużej przepustowości oraz niewrażliwe na zginanie
US17/047,808 US11841530B2 (en) 2018-04-17 2019-04-11 High-bandwidth bend-insensitive multimode fiber
EP19789502.2A EP3767348B1 (en) 2018-04-17 2019-04-11 High-bandwidth bending-insensitive multimode optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810344821.5 2018-04-17
CN201810344821.5A CN108375815B (zh) 2018-04-17 2018-04-17 一种高带宽弯曲不敏感多模光纤

Publications (1)

Publication Number Publication Date
WO2019201147A1 true WO2019201147A1 (zh) 2019-10-24

Family

ID=63032472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082239 WO2019201147A1 (zh) 2018-04-17 2019-04-11 一种高带宽弯曲不敏感多模光纤

Country Status (5)

Country Link
US (1) US11841530B2 (zh)
EP (1) EP3767348B1 (zh)
CN (1) CN108375815B (zh)
PL (1) PL3767348T3 (zh)
WO (1) WO2019201147A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108375815B (zh) * 2018-04-17 2020-08-25 长飞光纤光缆股份有限公司 一种高带宽弯曲不敏感多模光纤
CN109143463B (zh) * 2018-09-25 2020-05-26 长飞光纤光缆股份有限公司 一种小芯径兼容型渐变折射率光纤
CN108983350B (zh) * 2018-09-25 2020-09-22 长飞光纤光缆股份有限公司 一种小芯径渐变折射率光纤
CN109188603B (zh) 2018-09-25 2020-09-15 长飞光纤光缆股份有限公司 小芯径渐变折射率光纤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070065084A1 (en) * 2006-05-02 2007-03-22 Sterlite Optical Technologies Ltd. Dispersion optimized optical fiber for wideband optical transmission
CN1945364A (zh) * 2003-07-18 2007-04-11 株式会社藤仓 渐变折射率多模光纤
CN102396119A (zh) * 2009-06-12 2012-03-28 J-纤维有限公司 包括掺杂的玻璃纤维芯和包围玻璃纤维芯的包层的光导纤维、特别是激光纤维
CN106383379A (zh) * 2016-11-26 2017-02-08 长飞光纤光缆股份有限公司 高带宽弯曲不敏感多模光纤
CN106842419A (zh) * 2016-12-30 2017-06-13 中天科技精密材料有限公司 一种宽带弯曲不敏感多模光纤
CN108375815A (zh) * 2018-04-17 2018-08-07 长飞光纤光缆股份有限公司 一种高带宽弯曲不敏感多模光纤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771865B2 (en) * 2002-03-20 2004-08-03 Corning Incorporated Low bend loss optical fiber and components made therefrom
US8965163B2 (en) * 2011-11-04 2015-02-24 Corning Incorporated Ge-P co-doped multimode optical fiber
ES2847900T3 (es) * 2013-12-20 2021-08-04 Draka Comteq Bv Fibra monomodo con un núcleo trapezoidal, que muestra pérdidas reducidas
US9329335B2 (en) * 2014-01-31 2016-05-03 Ofs Fitel, Llc Broadband multi-mode optical fibers with flat-zone in dopant concentration profile
US9804325B2 (en) * 2014-01-31 2017-10-31 Ofs Fitel, Llc Framework for the design of optimum and near-optimum broadband multi-mode optical fibers by core doping
ES2665784T3 (es) * 2014-02-28 2018-04-27 Draka Comteq Bv Fibra óptica multimodo con alto ancho de banda en una gama de longitud de onda ampliada, y el sistema óptico multimodo correspondiente
US9804324B2 (en) * 2015-01-30 2017-10-31 Sumitomo Electric Industries, Ltd. Multimode optical fiber
CN106707407B (zh) * 2016-12-30 2019-06-28 中天科技精密材料有限公司 宽带半阶跃型多模光纤
CN107102400B (zh) * 2017-06-28 2020-01-14 长飞光纤光缆股份有限公司 一种高带宽弯曲不敏感多模光纤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1945364A (zh) * 2003-07-18 2007-04-11 株式会社藤仓 渐变折射率多模光纤
US20070065084A1 (en) * 2006-05-02 2007-03-22 Sterlite Optical Technologies Ltd. Dispersion optimized optical fiber for wideband optical transmission
CN102396119A (zh) * 2009-06-12 2012-03-28 J-纤维有限公司 包括掺杂的玻璃纤维芯和包围玻璃纤维芯的包层的光导纤维、特别是激光纤维
CN106383379A (zh) * 2016-11-26 2017-02-08 长飞光纤光缆股份有限公司 高带宽弯曲不敏感多模光纤
CN106842419A (zh) * 2016-12-30 2017-06-13 中天科技精密材料有限公司 一种宽带弯曲不敏感多模光纤
CN108375815A (zh) * 2018-04-17 2018-08-07 长飞光纤光缆股份有限公司 一种高带宽弯曲不敏感多模光纤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767348A4 *

Also Published As

Publication number Publication date
PL3767348T3 (pl) 2022-09-19
CN108375815A (zh) 2018-08-07
US11841530B2 (en) 2023-12-12
CN108375815B (zh) 2020-08-25
EP3767348B1 (en) 2022-06-01
US20210165159A1 (en) 2021-06-03
EP3767348A4 (en) 2021-04-21
EP3767348A1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
CN109188603B (zh) 小芯径渐变折射率光纤
WO2019201147A1 (zh) 一种高带宽弯曲不敏感多模光纤
WO2017101568A1 (zh) 一种高带宽抗弯多模光纤
CN102645699B (zh) 一种低衰减弯曲不敏感单模光纤
WO2017020456A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
WO2012149818A1 (zh) 一种单模光纤
CN102778722B (zh) 渐变折射率抗弯曲多模光纤
JP6129270B2 (ja) 曲げ耐性のマルチモード光ファイバ
CN106842419B (zh) 一种宽带弯曲不敏感多模光纤
WO2016173253A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
CN104316994A (zh) 一种低衰减弯曲不敏感单模光纤
KR102106677B1 (ko) 초저감쇠 단일모드 광섬유
WO2021189891A1 (zh) 一种多芯多模光纤
CN105334570A (zh) 一种低衰减弯曲不敏感单模光纤
CN106707407B (zh) 宽带半阶跃型多模光纤
WO2020119439A1 (zh) 一种低损耗大有效面积单模光纤及其制备方法
WO2021082978A1 (zh) 低色散单模光纤
CN106383379A (zh) 高带宽弯曲不敏感多模光纤
CN106443875A (zh) 一种超低衰减弯曲不敏感单模光纤
WO2023240880A1 (zh) 一种多波段衰减平坦光纤
CN108594361B (zh) 一种高带宽多模光纤
CN107193080B (zh) 高带宽弯曲不敏感多模光纤
CN108983350B (zh) 一种小芯径渐变折射率光纤
CN109143463B (zh) 一种小芯径兼容型渐变折射率光纤
CN113625390B (zh) 一种色散优化弯曲不敏感光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019789502

Country of ref document: EP

Effective date: 20201015