WO2012149818A1 - 一种单模光纤 - Google Patents

一种单模光纤 Download PDF

Info

Publication number
WO2012149818A1
WO2012149818A1 PCT/CN2011/082254 CN2011082254W WO2012149818A1 WO 2012149818 A1 WO2012149818 A1 WO 2012149818A1 CN 2011082254 W CN2011082254 W CN 2011082254W WO 2012149818 A1 WO2012149818 A1 WO 2012149818A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
cladding
index difference
relative refractive
Prior art date
Application number
PCT/CN2011/082254
Other languages
English (en)
French (fr)
Inventor
杨晨
曹蓓蓓
陈苏
童维军
倪先元
罗杰
Original Assignee
长飞光纤光缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆有限公司 filed Critical 长飞光纤光缆有限公司
Priority to KR1020137019551A priority Critical patent/KR101539555B1/ko
Priority to US14/008,781 priority patent/US8849084B2/en
Priority to EP11864715.5A priority patent/EP2713188B1/en
Publication of WO2012149818A1 publication Critical patent/WO2012149818A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03683Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - - + +

Definitions

  • the present invention relates to a low attenuation single mode fiber used in an optical fiber communication system, which has improved bending resistance and low fiber loss, and belongs to the field of optical communication technology.
  • Single-mode optical fiber has been widely used in the construction of optical fiber communication networks because of its advantages of fast transmission rate, large carrying capacity, and long transmission distance. With the further development of optical amplification technology and wavelength division multiplexing technology, optical fiber communication systems continue to move toward higher transmission power and longer transmission distances. As an important transmission medium in optical fiber communication systems, the performance indicators of single-mode fiber have yet to be further improved to meet the actual development needs of fiber-optic communication systems.
  • the attenuation coefficient and effective area of the fiber are two important performance indicators for single mode fiber. The smaller the attenuation coefficient of the optical fiber, the longer the transmission distance of the optical signal carried by it. The larger the effective area of the fiber, the weaker its nonlinear effect.
  • the large effective area can effectively suppress nonlinear effects such as self-phase modulation, four-wave mixing, and cross-phase modulation, and ensure the transmission quality of high-power optical signals.
  • the reduced attenuation coefficient and the increased effective area can effectively improve the optical-signal-to-noise ratio (OSNR) in the optical fiber communication system, and further improve the transmission quality and transmission distance of the system.
  • OSNR optical-signal-to-noise ratio
  • the scattering of light due to non-uniformity constitutes the scattering loss of the fiber.
  • Rayleigh scattering of the fiber is one of three scattering mechanisms, which is linear scattering (ie, independent of the frequency of the optical signal).
  • Rayleigh scattering is characterized by its inversely proportional to the fourth power of the wavelength, and the loss caused by it is related to the type and concentration of the dopant material. In general, the lower the concentration of the doped material, the less the loss caused by Rayleigh scattering.
  • a "pure silicon core” fiber is an optical fiber in which the core portion is free of any doping (ie, pure silica quartz glass).
  • the Rayleigh scattering of a pure silicon core fiber will be very close to the intrinsic Rayleigh scattering of pure quartz glass material, and thus will significantly reduce the attenuation coefficient of the fiber.
  • the fiber has a larger effective area by optimizing parameters such as core diameter and fluorine doping concentration of the cladding.
  • a larger effective area results in a significant increase in the bending loss of the fiber (including the macrobend loss and microbend loss of the fiber), especially in the long wavelength region.
  • the bending resistance of the optical fiber cannot meet the requirements, the loss of the signal will become large, and the transmission quality of the signal cannot be guaranteed.
  • a core layer doped with chlorine (Cl) is disclosed, the relative refractive index difference being positive, cladding Fluorine-doped (F), an optical fiber having a negative relative refractive index difference, and the optical fiber has a structure in which the inner cladding is a depressed cladding.
  • the core-doped chlorine material can effectively reduce the mismatch of the fiber core package material and reduce the additional stress generated by the wire drawing process.
  • the inner cladding layer is a depressed cladding structure, which can improve the bending performance of the fiber, but the structure of the depressed cladding layer improves the bending.
  • the ability to perform is limited and affects other optical parameters of the fiber, such as the mode field diameter and cut-off wavelength of the fiber.
  • the inner depressed cladding structure may cause leakage of the LP01 mode (ie, the attenuation coefficient of the single mode fiber rises sharply in the long wavelength region).
  • the bending performance of the fiber can be improved by the following method: First, by changing the MAC value of the fiber (i.e., the ratio of the mode field diameter of the fiber to the cutoff wavelength).
  • the smaller the MAC value the better the bending resistance of the fiber.
  • the reduction of the mode field diameter will result in a reduction in the effective area, and the cutoff wavelength of the fiber must be smaller than the operating wavelength to ensure the operating characteristics of the single mode. Therefore, the space for improving the bending performance of the fiber is limited by changing the MAC value of the fiber. .
  • the bending performance can be improved by the double-clad structure in which the inner cladding is a depressed cladding layer, but the depressed cladding layer may cause the "LP01 mode leakage" phenomenon of the optical fiber.
  • the third is to improve the bending performance of the fiber while ensuring a large mode field diameter by adding a trench-like trench outside the inner cladding of the fiber.
  • This method is in bending insensitive single mode fiber. (ie, G.657 fiber) is widely used, such as Chinese patent CN101598834A, US patent US7450807, and European patent EP1978383. No related patents or literature reports have been found to use trench-like recessed trenches in pure silicon core fibers to further improve the bending properties of such fibers.
  • the dopant changes the relative refractive index difference of the quartz glass.
  • Doping agents such as germanium (Ge), chlorine (Cl), and phosphorus (P) can make the relative refractive index difference of the doped quartz glass positive, which we call “positive dopant” and fluorine (F
  • the dopant such as boron (B) can make the relative refractive index difference of the doped quartz glass a negative value, which we call “negative dopant”. If a "positive dopant” and a "negative dopant" are simultaneously used to dope the quartz glass, the relative refractive index difference of the doped quartz glass may be positive or negative, or 0. .
  • Refractive index profile the relationship between the refractive index of a glass and its radius in an optical fiber; , ni and ⁇ are the refractive indices of the respective corresponding portions and the refractive index of the pure silica quartz glass, respectively.
  • the technical problem to be solved by the present invention is to provide a low-attenuation single-mode optical fiber having a reasonable refractive index profile design and further improved bending resistance of the optical fiber in view of the above-mentioned deficiencies of the prior art.
  • the core layer and the cladding layer are included, the difference is that the relative refractive index difference ⁇ 1 of the core layer ranges from -0.1% to +0.1%, the radius R1 ranges from 4.0 ⁇ to 6.0 ⁇ , and there are three surrounding the core layer.
  • the first cladding layer closely surrounds the core layer, the relative refractive index difference ⁇ 2 ranges from -0.2% to -0.6%, and the radius R2 ranges from 10 ⁇ to 22 ⁇ ;
  • the second cladding layer closely surrounds the first cladding layer,
  • the relative refractive index difference ⁇ 3 is smaller than ⁇ 2, and the relative refractive index difference of the first cladding layer, the relative refractive index difference between the radius and the second cladding layer, and the radius have the following numerical relationship:
  • V (A2-A3)x(R3- R2), then the V value ranges from 0.15% ⁇ to 0.8% ⁇ ;
  • the third cladding layer is all layers closely surrounding the second cladding layer, and the relative refractive index difference of each layer is greater than ⁇ 3.
  • the relative refractive index difference ⁇ 3 of the second cladding layer ranges from -0.3% to -0.7%, and the radius R3 ranges from 13 ⁇ to 27.5 ⁇ ; the layered radius of the outermost layer of the third cladding layer is The range of R4, R4 is 36 ⁇ to 63 ⁇ .
  • the core layer is composed of fluorine-doped (F)-doped quartz glass or quartz glass doped with fluorine and other dopants, and the contribution amount ⁇ of the core layer fluorine (F) is -0.1% to 0%. .
  • the first cladding layer is composed of fluorine-doped (F)-doped quartz glass, and the ratio R2/R1 of the radius R2 of the first cladding layer to the radius R1 of the core layer is 2 to 4, and the relative refractive index difference is The difference ( ⁇ 1 - ⁇ 2) between the ⁇ 2 and the core layer relative refractive index difference ⁇ 1 is 0.3% to 0.45%; the second cladding layer is composed of fluorine-doped (F)-doped quartz glass, and the relative refractive index difference ⁇ 3 is smaller than Other cladding.
  • the third cladding layer is a layer, which is a quartz glass layer doped with fluorine or other dopants, and the relative refractive index difference ⁇ 4 ranges from -0.25% to -0.45%; or the third package
  • the layer is two layers, and the inner layer is a fluorine-doped layer.
  • the relative refractive index difference ⁇ 4 ranges from -0.25% to -0.45%, the radius ranges from 36 ⁇ to 54 ⁇ , and the outer layer is pure silicon layer.
  • the relative refractive index difference is 0%.
  • the attenuation coefficient of the optical fiber at a wavelength of 1550 nm is less than or equal to 0.180 dB/km.
  • the mode field diameter of the optical fiber at a wavelength of 1550 nm is 10 ⁇ to 13 ⁇ .
  • the optical fiber has a cable cut-off wavelength less than or equal to 1530 nm; at a wavelength of 1550 nm, an additional loss is less than or equal to 0.5 dB for one turn around a bending radius of 10 mm; and an additional loss for 10 turns around a bending radius of 15 mm Less than or equal to 0.2dB.
  • the additional loss is less than or equal to 1.0 dB for one revolution around a 10 mm bend radius; the additional loss is less than or equal to 0.8 dB for 10 turns around a 15 mm bend radius.
  • the microbend loss of the optical fiber at 1700 nm is less than or equal to 0.8 dB/km.
  • the invention has the following advantages: 1.
  • the second cladding layer having the smallest relative refractive index difference can effectively confine the optical signal in the core for propagation, and can effectively prevent the optical signal from leaking outward in the curved state.
  • the anti-bending performance of the optical fiber including the anti-macro bending performance and the microbend resistance of the optical fiber are ensured.
  • the mode field diameter of the fiber increases, its effective area also increases.
  • the MAC value increases, its bending resistance deteriorates.
  • the second cladding layer will enable the optical fiber to have a large effective area while still maintaining good bending performance, so that the performance of the fiber after the cable is secured in practical applications; 2.
  • the core layer is at least doped with fluorine, so that the core layer
  • the viscosity of the material is reduced, and the viscosity mismatch between the core layer and the cladding layer is improved.
  • the residual stress inside the fiber after drawing is reduced, which is beneficial to improve the attenuation performance of the fiber; 3.
  • the fluorine content of the third cladding layer The stratified fluorine-doped (F) contribution ⁇ is “less than -0.25% to ensure that the “LP01 mode leakage” phenomenon is avoided. Since the viscosity is greater than the second cladding, the higher viscosity third cladding material will be drawn during drawing. Carrying a large proportion of the drawing tension, which can effectively prevent the stress caused by the drawing tension from being concentrated on the core portion and causing an increase in the attenuation of the optical fiber.
  • Figure 1 is a schematic diagram showing the refractive index profile of a conventional core-doped erbium-matched cladding single-mode fiber.
  • the dotted line corresponding to 01 is the relative refractive index difference of pure quartz glass (that is, its value is 0%).
  • Figure 2 is a schematic cross-sectional view of a refractive index of a pure silicon core fiber.
  • the dashed line indicates that the fiber contains a structure in which the inner cladding is a depressed cladding.
  • Figure 3 is a schematic cross-sectional view of a radial section of one embodiment of the present invention.
  • 00 corresponds to the core layer of the optical fiber
  • 10 corresponds to the first cladding of the optical fiber
  • 20 corresponds to the second cladding of the optical fiber
  • 30 corresponds to the third cladding of the optical fiber.
  • Figure 4 is a schematic cross-sectional view of a radial section of another embodiment of the present invention.
  • 301 corresponds to the inner fluorine-doped layer in the third cladding layer
  • 302 corresponds to the outer pure silicon layer.
  • Figure 5 is a schematic cross-sectional view of a refractive index of one embodiment of the present invention.
  • Figure 6 is a schematic cross-sectional view showing a refractive index of another embodiment of the present invention.
  • FIG. 7 and 8 are respectively a refractive index sectional view and a fluorine (F) doped cross-sectional view of an eleventh embodiment of the present invention.
  • Figure 9 is a microbend loss spectrum of an optical fiber according to an embodiment of the present invention.
  • Figure 10 is an example of a microbend loss spectrum for a pure silicon core fiber. detailed description
  • the core layer 00 is composed of fluorine-doped (F)-doped quartz glass or quartz glass doped with fluorine and other dopants; there are three cladding layers surrounding the core layer.
  • the first cladding layer 10 closely surrounds the core layer and is composed of fluorine-doped (F)-doped quartz glass;
  • the second cladding layer 20 closely surrounds the first cladding layer, and the second cladding layer is composed of fluorine-doped (F)-doped quartz glass, which is opposite Refractive index difference ⁇ 3 Less than other cladding layers.
  • the third cladding layer 30 is all layers closely surrounding the second cladding layer, the relative refractive index difference of each layer is greater than ⁇ 3, the layering radius of the outermost layer of the third cladding layer is R4, and the range of R4 is 36 ⁇ ⁇ to 63 ⁇ ⁇ .
  • the third cladding layer may be a layered layer, which is a quartz glass layer doped with fluorine or other dopants, or the third cladding layer may have two layers, and the inner layer is a fluorine-doped layer 301, a radius range. It is 36 ⁇ to 54 ⁇ , and the outer layer is pure silicon layer 302, that is, the relative refractive index difference is 0%.
  • the parameters of the optical fiber are designed within the range specified by the fiber, and the core bar manufacturing process such as the well-known PCVD process, MCVD process, OVD process or VAD process is adopted according to the design requirements of the optical fiber.
  • the mandrel is manufactured, and the entire preform is manufactured by an outsourcing process such as a casing process, an OVD process, or a VAD process.
  • the PCVD process has certain advantages when performing high concentrations of fluorine (F).
  • the refractive index profile of the drawn fiber was tested using an NR-9200 device (EXFO).
  • the refractive index profile of the fiber and the main parameters of the doped material are shown in Table 1-a and Table 1-b.
  • the macrobend additional loss test method refers to the method specified in IEC 60793-1 -47. Because the longer the wavelength is, the more sensitive it is to bending, the main test is to bend the additional loss of the fiber at 1550nm and 1625nm to accurately evaluate the fiber in the full-band range. Bending sensitivity inside (especially L-band). The fiber is wound into a circle or a circle at a certain diameter, and then the circle is released, and the change of the optical power before and after the ring is tested, thereby taking the macrobend additional loss of the fiber.
  • the microbend loss test method refers to the Method B method specified in IEC TR 62221-2001. Since the long wavelength is more sensitive to bending, the test wavelength range is from 1300 nm to 1700 nm, and the focus is on the microbend loss of the fiber length above 1550 nm.
  • V value and the ( ⁇ 1 - ⁇ 2) value have a significant influence on the bending properties of the optical fiber, as reflected by the examples of the numbers 5 and 6 and the numbers 3 and 4, and the larger V value.
  • the sum ( ⁇ 1 - ⁇ 2) values mean that the fiber has better bending resistance.
  • the contribution of fluorine (F) in the core layer will affect the attenuation performance of the fiber. If ⁇ 1 is a certain value, if the contribution of fluorine (F) in the core layer increases, it means "positive doping in the core layer". The concentration of the agent needs to be increased correspondingly to maintain the ⁇ 1 constant.
  • the increase of the dopant concentration will further reduce the viscosity of the core material, so that the viscosity matching of the core layer and the cladding material is improved, which is beneficial to the improvement of the attenuation performance of the fiber.
  • the contribution of the fluorine (F) of the third cladding also has an effect on the attenuation performance of the optical fiber, as reflected by the examples of the serial numbers 7, 8, and 9.
  • a larger fluorine-doped concentration will result in a lower relative refractive index difference of the fluorine-doped layer, which will further avoid the "LP01 mode leakage" phenomenon of the fiber.
  • the larger fluorine-doped concentration also means the viscosity of the cladding. It will be further reduced, which will not be conducive to the tensile tension of the cladding during the drawing process, which will cause more stress in the core part of the fiber, which will have an adverse effect on the attenuation. Therefore, it is necessary to comprehensively consider the fluorine doping of the third cladding. The size of the quantity. At the same time, if the third cladding layer contains the inner fluorine-doped layer and the outer pure silicon layer, it is necessary to consider the positioning of the outer pure silicon layer, so that the layer does not cause the "LP01 mode leakage of the fiber".
  • the third cladding of the optical fiber is divided into an inner fluorine-doped layer and an outer pure silicon layer. From the data of Table 2, when the outer silicon is pure When the inner diameter D4* of the ring is large enough, the layer material can effectively carry part of the wire drawing tension while avoiding the "LP01 mode leakage" phenomenon of the fiber, so that the stress will not be significantly concentrated on the core portion of the fiber, the fiber The attenuation performance is improved.
  • the optical fiber manufactured according to the technical scheme of the present invention can have a mode field diameter of 15 ⁇ or more at 1550 nm, a cut-off wavelength of the cable of 1530 nm or less, an attenuation coefficient of 1580 nm or less, and an optical fiber having an attenuation coefficient of 0.180 dB/km or less.
  • Good bending resistance including good resistance to macrobend and microbend resistance, fiber at 1550nm wavelength, additional loss less than or equal to 0.5dB for 1 turn around a 10mm bend radius; 10 turns around a 15mm bend radius
  • the additional bending loss is less than or equal to 0.2 dB; at 1625 nm, the additional loss is less than or equal to 1.0 dB for one revolution around a 10 mm bend radius; the additional loss is less than or equal to 0.8 dB for 10 turns around a 15 mm bend radius.
  • the microbend loss of the fiber at 1700nm is less than 0.8dB/km.
  • D4* indicates the diameter of the fluorine-doped layer inside the third cladding
  • D4 indicates the diameter of the pure silicon layer in the outermost layer of the third cladding.
  • ⁇ 4* indicates the relative fold of the fluorine-doped layer within the third cladding, and the difference in c- shoot ratio.
  • Table 2 Main performance parameters of the fiber mode field straight bend at 1550nm bend at 1625nm attenuation coefficient
  • Diameter fiber splicing damage gross added damage hair cutoff ( dB/km )

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Description

一种单模光纤
技术领域
本发明涉及一种光纤通信系统中使用的低衰减单模光纤,该光纤具有改进的抗弯曲性能和 低的光纤损耗, 属于光通信技术领域。
背景技术
单模光纤因其具有传输速率快, 携带信息容量大, 传输距离远等优点, 已经大量应用于 光纤通信网络的建设之中。 随着光放大技术和波分复用技术的进一步发展, 光纤通信系统向 着更高传输功率和更长的传输距离的方向持续向前发展。 作为光纤通信系统中的重要传输媒 质, 单模光纤的相关性能指标也有待得到进一步的改进, 以满足光纤通信系统实际发展的需 要。 光纤的衰减系数和有效面积是单模光纤的两个重要的性能指标。 光纤的衰减系数越小, 则其携带的光信号的可传输距离就更长。 光纤的有效面积越大, 则其非线性效应越弱。 大有 效面积可以有效地抑制自相位调制、 四波混频、 交叉相位调制等非线性效应, 保证高功率光 信号的传输质量。 降低的衰减系数和增大的有效面积可以有效提高光纤通信系统中的光信噪 比 (OSNR: optical-signal-to-noise ratio), 进一步提高系统的传输质量和传输距离。
在光纤材料中, 由于不均匀性所引起的光的散射构成光纤的散射损耗。 其中光纤的瑞利 散射为三种散射机理之一, 为线性散射(即与光信号的频率无关)。瑞利散射的特点是其大小 与波长的四次方成反比, 同时由其引起的损耗与掺杂材料的种类与浓度有关。 一般来说, 掺 杂材料的浓度越低, 则瑞利散射所引起的损耗越小。 "纯硅芯"光纤就是一种芯层部分无任何 掺杂 (即为纯二氧化硅石英玻璃) 的光纤。 理论上认为纯硅芯光纤的瑞利散射将非常接近于 纯石英玻璃材料的本征瑞利散射, 因而也将明显地降低光纤的衰减系数。 同时通过优化芯层 直径和包层的掺氟浓度等参数, 使得光纤具有更大的有效面积。 然而, 一般而言, 较大的有 效面积会造成光纤的弯曲损耗的明显增加(包括光纤的宏弯损耗和微弯损耗), 特别是在长波 长区域。 在光纤的成缆过程或者实际的铺设以及使用过程中, 如果光纤的抗弯曲性能不能满 足要求, 则信号的损耗将会变大, 信号的传输质量无法得到保证。
在美国专利 US6917740中,描述了一种材料粘度失配得到改善的纯硅芯单模光纤及其制 造方法。 通过在芯层中掺氯 (CI ) 和氟 (F), 使得芯层与包层的玻璃化转变温度 Tg 的差值 縮小到 20CTC以内, 优化光纤的衰减性能。该专利未涉及到对光纤的弯曲性能的研究和改进, 未涉及光纤的光学传输性能。
在美国专利 US6449415中, 公开了一种芯层掺氯 (Cl ), 其相对折射率差为正值, 包层 掺氟 (F), 其相对折射率差为负值的光纤, 并且该光纤具有内包层为下陷包层 (depressed cladding ) 的结构。 芯层掺氯的材料可以有效降低光纤芯包材料的失配, 减少由拉丝过程产 生的附加应力, 同时内包层为下陷包层结构, 可以改善光纤的弯曲性能, 然而下陷包层的结 构改善弯曲性能的能力有限, 同时会影响光纤的其它光学参数, 比如光纤的模场直径和截止 波长等。 而且在外包层参数设计不合理的情况下, 内下陷包层结构有可能会引起 LP01 模的 泄漏问题 (即单模光纤的衰减系数在长波长区域急剧地上升)。
在美国专利 US6947650中, 提出了一种具有掺氟下陷内包层的纯硅芯光纤, 其下陷包层 的直径 D与芯层 d的直径之比 D/d约为 8.5, 范围为小于 10。其光纤的工作波长 λορ与截止 波长 Acut的比值范围在 1 .0和 1 .2之间。 该专利未描述光纤的衰减和弯曲等性能。
一般的, 通过下述方法可以改善光纤的弯曲性能, 一是通过改变光纤的 MAC值(即光纤 模场直径与截止波长的比值)。 MAC值越小, 则光纤的抗弯曲性能越好。 然而, 模场直径的 减小会造成有效面积的减小, 同时光纤的截止波长必须小于工作波长, 以保证单模的工作特 性, 所以通过改变光纤的 MAC值来改善光纤的弯曲性能的空间有限。 二是可以通过内包层 为下陷包层的双包层结构来改善弯曲性能, 但是下陷包层有可能引起光纤的" LP01模泄漏 "现 象。 三是通过在光纤的内包层外增加一层类似于沟槽的下陷包层 (trench ), 在保证较大的模 场直径的同时, 改善光纤的弯曲性能, 此方法在弯曲不敏感单模光纤 (即 G.657光纤) 中得 到普遍的应用,如中国专利 CN101598834A,美国专利 US7450807以及欧洲专利 EP1978383 等。 未发现相关专利或文献报道在纯硅芯光纤中采用类似于沟槽的下陷包层 (trench ) 来进 一步改善该种光纤的弯曲性能。
一般的, 掺杂剂会改变石英玻璃的相对折射率差。 锗 (Ge)、 氯 (Cl )、 磷 (P) 等掺杂 剂可以使得掺杂后的石英玻璃的相对折射率差为正值, 我们称之为"正掺杂剂", 而氟 (F)、 硼(B)等掺杂剂可以使得掺杂后的石英玻璃的相对折射率差为负值,我们称之为"负掺杂剂"。 如果同时使用一种"正掺杂剂"和一种 "负掺杂剂"对石英玻璃进行掺杂, 则掺杂后的石英玻璃的 相对折射率差可以为正值或者负值, 或者为 0。
发明内容
为方便介绍本发明内容, 定义以下术语:
折射率剖面: 光纤中玻璃折射率与其半径之间的关系;
Figure imgf000004_0001
, ni和 ηθ分别为各对应部分的折射率和纯二 氧化硅石英玻璃的折射率。 氟(F)的贡献量:掺氟(F)石英玻璃相对于纯二氧化硅石英玻璃的相对折射率差(Δ「), 以此来表示掺氟 (F) 量;
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种折射率剖面设计 合理、 光纤的抗弯曲性能得到进一步提高的低衰减单模光纤。
本发明单模光纤的技术方案为:
包括有芯层和包层, 其不同之处在于芯层的相对折射率差 Δ1范围为 -0.1 %至 +0.1 %, 半 径 R1 的范围是 4.0μΓΠ至 6.0μ ΓΠ, 围绕在芯层外有三个包层; 第一包层紧密围绕芯层, 其相 对折射率差 Δ2的范围是 -0.2%至 -0.6%, 半径 R2的范围是 10μηη至 22μηη; 第二包层紧密围 绕第一包层, 其相对折射率差 Δ3小于 Δ2, 并且第一包层的相对折射率差、 半径与第二包层 的相对折射率差、 半径存在以下的数值关系: 设 V=(A2-A3)x(R3-R2), 则 V 值的范围为 0.15%μΓΠ至 0.8%μΓΠ ; 第三包层为紧密围绕第二包层的所有分层, 其各个分层的相对折射率 差大于 Δ3。
按上述方案, 所述的第二包层的相对折射率差 Δ3的范围是 -0.3%至 -0.7%, 半径 R3的 范围是 13μηη至 27.5μηη; 第三包层最外层的分层半径为 R4, R4的范围是 36μηη至 63μηη。
按上述方案,所述的芯层由掺氟(F)的石英玻璃或掺有氟及其他掺杂剂的石英玻璃组成, 芯层氟 (F) 的贡献量 Δ「为 -0.1 %至 0%。
按上述方案, 所述的第一包层由掺氟 (F) 的石英玻璃组成, 第一包层的半径 R2与芯层 的半径 R1的比值 R2/R1为 2至 4, 其相对折射率差 Δ2与芯层的相对折射率差 Δ1的差值 (Δ1 -Δ2) 为 0.3%至 0.45%; 所述的第二包层由掺氟 (F) 的石英玻璃组成, 其相对折射率 差 Δ3小于其它包层。
按上述方案, 所述的第三包层为一个分层, 为掺氟或其他掺杂剂的石英玻璃层, 其相对 折射率差 Δ4的范围是 -0.25%至 -0.45%; 或者第三包层为两个分层, 内分层为掺氟分层, 其 相对折射率差 Δ4的范围是 -0.25%至 -0.45%, 半径范围是 36μηη至 54μηη, 外分层为纯硅分 层, 即相对折射率差为 0%。
按上述方案, 所述光纤在 1550nm波长处的衰减系数小于或等于 0.180dB/km。
按上述方案, 所述光纤在 1550nm波长处的模场直径为 10μηη至 13μηη。
按上述方案, 所述光纤具有小于或等于 1530nm的光缆截止波长; 在 1550nm波长处, 对于围绕 10mm弯曲半径绕 1圈弯曲附加损耗小于或等于 0.5dB;对于围绕 15mm弯曲半径 绕 10圈弯曲附加损耗小于或等于 0.2dB。在 1625nm波长处,对于围绕 10mm弯曲半径绕 1 圈弯曲附加损耗小于或等于 1 .0dB; 对于围绕 15mm弯曲半径绕 10圈弯曲附加损耗小于或 等于 0.8dB。 按上述方案, 所述光纤在 1700nm的微弯损耗小于或等于 0.8dB/km。
本发明的有益效果在于: 1 .具有最小相对折射率差的第二包层, 可有效地将光信号约束 在纤芯中进行传播, 同时在弯曲状态下, 能有效阻止光信号向外的泄漏, 使得光纤的抗弯曲 性能, 包括光纤的抗宏弯性能和抗微弯性能得到保证。 光纤的模场直径增大后, 其有效面积 也随之增大, 然而随着 MAC值的增大, 其抗弯曲性能恶化。 第二包层将使得光纤具有较大 有效面积的同时, 依然能够保持良好的弯曲性能, 使得成缆后光纤在实际应用中的性能得到 保障; 2.芯层中至少掺有氟, 使得芯层材料的粘度得到降低, 芯层与包层的粘度失配情况随 之得到改善, 拉丝后光纤内部的残余应力将会减小, 有利于改善光纤的衰减性能; 3.第三包 层的掺氟分层的掺氟 (F) 贡献量 Δ「小于 -0.25%, 以保证避免出现" LP01模泄漏"现象, 由 于其粘度大于第二包层, 较高粘度的第三包层材料将在拉丝时承载较大比例的拉丝张力, 这 样就可以有效的阻止拉丝张力所造成的应力集中在纤芯部分而造成光纤衰减的增加。 附图说明
图 1 是普通芯层掺锗的匹配包层单模光纤的折射率剖面示意图。 其中 01所对应的虚线 为纯石英玻璃的相对折射率差 (即其值为 0%)。
图 2 是纯硅芯光纤的折射率剖面示意图。 虚线表示光纤含有内包层为下陷包层 (depressed cladding ) 的结构。
图 3 是本发明一个实施例的径向截面示意图。 图中 00对应光纤的芯层, 10对应光纤的 第一包层, 20对应光纤的第二包层, 30对应光纤的第三包层。
图 4 是本发明另一个实施例的径向截面示意图。图中 301对应第三包层中靠内的掺氟分 层, 302对应靠外的纯硅分层。
图 5 是本发明一个实施例的折射率剖面示意图。
图 6 是本发明另一个实施例的折射率剖面示意图。
图 7、 图 8分别是本发明第十一个实施例的折射率剖面图及其氟 (F) 掺杂剖面图。 图 9是本发明一个实施例的光纤的微弯损耗谱。
图 10是纯硅芯光纤的一个微弯损耗谱实例。 具体实施方式
下面将给出详细的实施例, 对本发明作进一步的说明。
包括有芯层和包层, 芯层 00由掺氟 (F) 的石英玻璃或掺有氟及其他掺杂剂的石英玻璃 组成; 围绕在芯层外有三个包层。第一包层 10紧密围绕芯层, 由掺氟(F)的石英玻璃组成; 第二包层 20紧密围绕第一包层, 第二包层由掺氟(F)的石英玻璃组成, 其相对折射率差 Δ3 小于其它包层。第三包层 30为紧密围绕第二包层的所有分层,其各个分层的相对折射率差大 于 Δ3, 第三包层最外层的分层半径为 R4, R4的范围是 36μ ΓΠ至 63μ ΓΠ。 所述的第三包层可 为一个分层, 为掺氟或其他掺杂剂的石英玻璃层, 或者第三包层可为两个分层, 内分层为掺 氟分层 301, 半径范围是 36μ ΓΠ至 54μ ΓΠ, 外分层为纯硅分层 302, 即相对折射率差为 0%。
按照上述单模光纤的技术方案, 在其所规定的范围内对光纤的参数进行设计, 并通过我 们熟知的 PCVD工艺、 MCVD工艺、 OVD工艺或 VAD工艺等芯棒制造工艺来根据光纤的设 计要求制造芯棒, 通过套管工艺、 OVD工艺或 VAD工艺等外包工艺来完成整个预制棒的制 造。 PCVD工艺在进行高浓度的掺氟 (F) 时, 具有一定的优势。
所拉光纤的折射率剖面使用 NR-9200设备 (EXFO) 进行测试, 光纤的折射率剖面以及 掺杂材料的主要参数如表 1 -a和表 1 -b所示。
宏弯附加损耗测试方法参照 IEC 60793-1 -47 中规定的方法, 由于波长越长对弯曲越敏 感, 所以主要测试光纤在 1550nm和 1625nm波长处的弯曲附加损耗, 以准确评估光纤在全 波段范围内 (尤其是 L波段) 的弯曲敏感性。 将光纤按一定直径绕成 1 圈或 10圈, 然后将 圆圈放开, 测试打圈前后光功率的变化, 以此作为光纤的宏弯附加损耗。
微弯损耗测试方法参照 IEC TR 62221 -2001中规定 Method B的方法, 由于长波长对于 弯曲更敏感, 故测试波长范围为 1300nm至 1700nm, 并且重点关注光纤在 1550nm以上波 长的微弯损耗的大小。
所拉光纤的主要性能参数如表 2所示。
从实施例可以看出, V值和 (Δ1 -Δ2) 值对于光纤的弯曲性能有明显的影响, 如序号为 5 和 6以及序号 3和 4的实施例所反映的情况, 更大的 V值和 (Δ1 -Δ2) 值意味着光纤具有更 好的抗弯曲性能。 而芯层中氟 (F) 的贡献量会影响光纤的衰减性能, 在 Δ1为一定值的情况 下, 芯层中氟 (F) 的贡献量如果增加, 则意味着芯层中"正掺杂剂"的浓度需要相应的增加以 维持 Δ1 不变, 掺杂剂浓度的增加将进一步降低芯层材料的粘度, 使得芯层和包层材料的粘 度匹配程度提高, 有利于对光纤衰减性能的改善, 如序号为 1和 2的实施例所反映的情况。 第三包层的氟(F) 的贡献量 对于光纤的衰减性能也有影响, 如序号为 7、 8、 9的实施例 所反映的情况。 更大的掺氟浓度会使得掺氟分层的相对折射率差更低, 将有利于进一步的避 免光纤的" LP01模泄漏"现象, 然而更大的掺氟浓度也意味着该包层的粘度会进一步降低, 这 样将不利于该包层在拉丝过程中承载拉丝张力, 会使得光纤纤芯部分集中更多的应力, 对于 衰减会有不利的影响, 所以需要综合考虑第三包层的掺氟量的大小。 同时, 如果第三包层包 含靠内的掺氟分层和靠外的纯硅分层, 则需要考虑靠外的纯硅分层的定位, 使得该分层不会 引起光纤的" LP01模泄漏",同时又要维持足够的厚度使得其在拉丝过程中承载部分拉丝张力, 避免应力集中在光纤纤芯部分。 序号为 10、 11、 12 的实施例中, 光纤的第三包层分成靠内 的掺氟分层和靠外的纯硅分层, 从表 2的数据来看, 当靠外的纯硅分层所在环的内径 D4*足 够大时, 在避免光纤的 "LP01模泄漏"现象的同时, 该层材料可有效承载部分拉丝张力, 这样 应力将不会明显集中于光纤的纤芯部分, 光纤的衰减性能就得到了改善。
实验表明, 按照本发明的技术方案所制造的光纤, 其 1550nm 处的模场直径可以达到 10μηη以上, 光缆截止波长保证在 1530nm以下, 1550nm处的衰减系数保证在 0.180dB/km 以下,且光纤具有良好的抗弯曲性能,包括良好的抗宏弯性能和抗微弯性能,光纤在 1550nm 波长处, 对于围绕 10mm弯曲半径绕 1圈弯曲附加损耗小于或等于 0.5dB; 对于围绕 15mm 弯曲半径绕 10圈弯曲附加损耗小于或等于 0.2dB; 在 1625nm波长处, 对于围绕 10mm弯 曲半径绕 1 圈弯曲附加损耗小于或等于 1 .0dB; 对于围绕 15mm弯曲半径绕 10圈弯曲附加 损耗小于或等于 0.8dB。 同时光纤在 1700nm的微弯损耗小于 0.8dB/km。
表 1 -a: 光纤的结构和材料组成
Figure imgf000008_0001
表 1 -b: 光纤的结构和材料组成
Figure imgf000009_0001
注 1 : D4*表示第三包层靠内的掺氟分层的直径, D4表示第三包层最外层的纯硅分层的直径。
奪@
注 2: Δ4*表示第三包层靠内的掺氟分层的相对折 m , c射率差。
表 2: 光纤的主要性能参数 模场直 1550nm处的弯 1625nm处的弯 光缆 衰减系数
径 光纤 曲附加损毛 曲附加损毛 序 截止 ( dB/km )
( μιη ) 直径 (dB/圏) (dB/圏) 号 波长 @1550n
@155 ( μιη )
(nm ) m R10m R15m R10m R15m Onm m m m m
1 10.2 1230 124.8 0.177 0.7 0.4 0.015 0.68 0.06
2 10.1 1220 124.2 0.172 0.68 0.41 0.014 0.66 0.05
3 11.2 1340 125.2 0.176 0.6 0.23 0.01 0.35 0.035
4 11.3 1335 124.6 0.175 0.45 0.13 0.006 0.25 0.02
5 12.7 1525 124.4 0.175 0.4 0.18 0.011 0.36 0.03
6 12.1 1500 125.4 0.174 0.2 0.08 0.003 0.14 0.007
7 11.3 1295 124.6 0.177 0.4 0.22 0.011 0.33 0.03
8 11.2 1280 125 0.173 0.35 0.21 0.01 0.32 0.028
9 11.4 1310 124.8 0.176 0.32 0.2 0.009 0.31 0.025
10 11.5 1320 124.8 0.175 0.5 0.3 0.013 0.6 0.026
11 11.4 1300 125 0.172 0.48 0.28 0.01 0.48 0.02
12 11.6 1340 124.9 0.174 0.52 0.25 0.009 0.4 0.018
13 11.4 1300 124.6 0.177 0.32 0.11 0.002 0.18 0.007
14 10.3 1285 125 0.176 0.4 0.18 0.009 0.23 0.01

Claims

1 . 一种单模光纤,包括有芯层和包层,其特征在于芯层的相对折射率差 Δ1范围为 -0.1 % 至 +0.1 %, 半径 R1 的范围是 4.0μηη至 6.0μηη, 围绕在芯层外有三个包层; 第一包层紧密围 绕芯层, 其相对折射率差 Δ2的范围是 -0.2%至 -0.6%, 半径 R2的范围是 10μηη至 22μηη; 第 二包层紧密围绕第一包层, 其相对折射率差 Δ3小于 Δ2, 并且第一包层的相对折射率差、 半 径与第二包层的相对折射率差、 半径存在以下的数值关系: 设 V=(A2-A3)x(R3-R2), 则 V值 的范围为 0.15%μΓΠ至 0.8%μΓΠ ; 第三包层为紧密围绕第二包层的所有分层, 其各个分层的 相对折射率差大于 Δ3。
2. 如权利要求 1所述的单模光纤, 其特征在于所述的第二包层的相对折射率差 Δ3的范 围是 -0.3%至 -0.7%,半径 R3的范围是 13μηη至 27.5μηη;第三包层最外层的分层半径为 R4, R4的范围是 36μηη至 63μηη。
3. 如权利要求 1或 2所述的单模光纤, 其特征在于所述的芯层由掺氟 (F) 的石英玻璃 或掺有氟及其他掺杂剂的石英玻璃组成, 芯层氟 (F) 的贡献量 为 -0.1 %至 0%。
4. 如权利要求 1或 2所述的单模光纤, 其特征在于所述的第一包层由掺氟 (F) 的石英 玻璃组成,第一包层的半径 R2与芯层的半径 R1的比值 R2/R1为 2至 4,其相对折射率差 Δ2 与芯层的相对折射率差 Δ1的差值 (Δ1 -Δ2) 为 0.3%至 0.45%。
5. 如权利要求 1或 2所述的单模光纤, 其特征在于所述的第二包层由掺氟 (F) 的石英 玻璃组成, 其相对折射率差 Δ3小于其它包层。
6. 如权利要求 1或 2所述的低衰减单模光纤, 其特征在于所述的第三包层为一个分层, 为掺氟或其他掺杂剂的石英玻璃层, 其相对折射率差 Δ4的范围是 -0.25%至 -0.45%。
7. 如权利要求 1或 2所述的单模光纤,其特征在于第三包层为两个分层, 内分层为掺氟 分层, 其相对折射率差 Δ4的范围是 -0.25%至 -0.45%, 半径范围是 36μηη至 54μηη, 外分层 为纯硅分层, 即相对折射率差为 0%。
8. 如权利要求 1或 2所述的单模光纤, 其特征在于所述光纤在 1550nm波长处的衰减 系数小于或等于 0.180dB/km, 模场直径为 10μηη至 13μηη。
9. 如权利要求 1或 2所述的单模光纤, 其特征在于所述光纤具有小于或等于 1530nm 的光缆截止波长; 在 1550nm波长处, 对于围绕 10mm弯曲半径绕 1圈弯曲附加损耗小于或 等于 0.5dB; 对于围绕 15mm弯曲半径绕 10圈弯曲附加损耗小于或等于 0.2dB。在 1625nm 波长处, 对于围绕 10mm弯曲半径绕 1圈弯曲附加损耗小于或等于 1 .0dB; 对于围绕 15mm 弯曲半径绕 10圈弯曲附加损耗小于或等于 0.8dB。
10. 如权利要求 1或 2所述的单模光纤, 其特征在于所述光纤在 1700nm的微弯损耗小于或 等于 0.8dB/km。
PCT/CN2011/082254 2011-05-05 2011-11-16 一种单模光纤 WO2012149818A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137019551A KR101539555B1 (ko) 2011-05-05 2011-11-16 단일모드 광섬유
US14/008,781 US8849084B2 (en) 2011-05-05 2011-11-16 Single mode optical fiber
EP11864715.5A EP2713188B1 (en) 2011-05-05 2011-11-16 Single mode optical fibre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110114732.X 2011-05-05
CN201110114732XA CN102156323B (zh) 2011-05-05 2011-05-05 一种单模光纤

Publications (1)

Publication Number Publication Date
WO2012149818A1 true WO2012149818A1 (zh) 2012-11-08

Family

ID=44437882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082254 WO2012149818A1 (zh) 2011-05-05 2011-11-16 一种单模光纤

Country Status (5)

Country Link
US (1) US8849084B2 (zh)
EP (1) EP2713188B1 (zh)
KR (1) KR101539555B1 (zh)
CN (1) CN102156323B (zh)
WO (1) WO2012149818A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170131468A1 (en) * 2014-08-28 2017-05-11 Sumitomo Electric Industries, Ltd. Optical fiber and optical fiber transmission path

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156323B (zh) * 2011-05-05 2012-06-06 长飞光纤光缆有限公司 一种单模光纤
KR101273801B1 (ko) * 2011-10-17 2013-06-11 에쓰이에이치에프코리아 (주) 구부림 손실 강화 광섬유
CN102645699B (zh) * 2012-05-02 2015-03-04 长飞光纤光缆股份有限公司 一种低衰减弯曲不敏感单模光纤
US9057817B2 (en) * 2013-04-15 2015-06-16 Corning Incorporated Low diameter optical fiber
CN103454719B (zh) * 2013-09-03 2015-09-30 长飞光纤光缆股份有限公司 一种单模光纤
CN103630965B (zh) * 2013-12-03 2015-06-24 烽火通信科技股份有限公司 一种抗弯曲拉锥光纤及其制造方法
US9658394B2 (en) * 2014-06-24 2017-05-23 Corning Incorporated Low attenuation fiber with viscosity matched core and inner clad
US9618692B2 (en) * 2014-07-10 2017-04-11 Corning Incorporated High chlorine content low attenuation optical fiber
CN104316994A (zh) * 2014-10-29 2015-01-28 长飞光纤光缆股份有限公司 一种低衰减弯曲不敏感单模光纤
CN104360434B (zh) * 2014-11-12 2017-02-01 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN104777553B (zh) * 2015-04-28 2017-12-29 长飞光纤光缆股份有限公司 一种超低衰减单模光纤
CN104749691B (zh) * 2015-04-28 2018-05-01 长飞光纤光缆股份有限公司 一种超低衰耗弯曲不敏感单模光纤
US9874686B2 (en) 2015-05-29 2018-01-23 Corning Incorporated Optical fiber with macrobend loss mitigating layer
CN104898200B (zh) 2015-06-25 2018-03-16 长飞光纤光缆股份有限公司 一种掺杂优化的超低衰减单模光纤
US20170097465A1 (en) * 2015-06-30 2017-04-06 Corning Incorporated Optical fiber with large effective area and low bending loss
US9919955B2 (en) * 2015-07-24 2018-03-20 Ofs Fitel, Llc Optical fiber with low loss and nanoscale structurally homogeneous core
CN104991306A (zh) * 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 一种超低衰耗弯曲不敏感单模光纤
CN104991307A (zh) * 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
DE112015006766T5 (de) * 2015-08-04 2018-04-19 Sumitomo Electric Industries, Ltd. Optische Verbindungskomponente
CN105182471B (zh) * 2015-08-19 2019-03-12 长飞光纤光缆股份有限公司 一种单模光纤
US11366266B2 (en) 2017-07-03 2022-06-21 Nippon Telegraph And Telephone Corporation Optical fiber and optical transmission system
NL2019817B1 (en) * 2017-08-08 2019-02-21 Corning Inc Low bend loss optical fiber with a chlorine doped core and offset trench
JP7019617B2 (ja) * 2019-02-07 2022-02-15 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
CN111458789B (zh) * 2020-04-26 2021-11-09 中天科技光纤有限公司 光纤
CN113848608B (zh) * 2020-06-28 2023-08-08 中天科技精密材料有限公司 单模光纤及其制备方法
CN112062460B (zh) * 2020-08-10 2022-11-04 普天线缆集团有限公司 低损耗g.652.d光纤及其制作方法
CN113820782B (zh) * 2021-08-12 2024-09-17 江苏法尔胜光电科技有限公司 一种高精度匀化光纤及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449415B1 (en) 1999-01-18 2002-09-10 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the same
US6917740B2 (en) 2003-05-30 2005-07-12 Corning Incorporated Optical fiber having reduced viscosity mismatch
US6947650B1 (en) 2004-05-06 2005-09-20 Luna Energy Llc Long wavelength, pure silica core single mode fiber and method of forming the same
EP1978383A1 (en) 2007-04-06 2008-10-08 Draka Comteq B.V. Transmission optical fiber having large effective area
US7450807B2 (en) 2006-08-31 2008-11-11 Corning Incorporated Low bend loss optical fiber with deep depressed ring
CN101598834A (zh) 2009-06-26 2009-12-09 长飞光纤光缆有限公司 一种单模光纤及其制造方法
US7680381B1 (en) * 2008-11-25 2010-03-16 Corning Incorporated Bend insensitive optical fibers
US20100178504A1 (en) * 2009-01-09 2010-07-15 Xin Chen Bend Insensitive Optical Fibers with Low Refractive Index Glass Rings
CN101883998A (zh) * 2007-06-15 2010-11-10 Ofs菲特尔有限责任公司 单模光纤中的弯曲不敏感性
US20110064368A1 (en) * 2009-09-11 2011-03-17 Dana Craig Bookbinder Low Bend Loss Optical Fiber
CN102043196A (zh) * 2009-10-13 2011-05-04 德雷卡通信技术公司 具有凹陷槽的单模光纤
CN102156323A (zh) * 2011-05-05 2011-08-17 长飞光纤光缆有限公司 一种单模光纤

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641917A (en) * 1985-02-08 1987-02-10 At&T Bell Laboratories Single mode optical fiber
US5044724A (en) * 1989-12-22 1991-09-03 At&T Bell Laboratories Method of producing optical fiber, and fiber produced by the method
US5032001A (en) * 1990-03-09 1991-07-16 At&T Bell Laboratories Optical fiber having enhanced bend resistance
JP3853833B2 (ja) * 2003-04-11 2006-12-06 株式会社フジクラ 光ファイバ
EP1663890B1 (en) * 2003-08-29 2020-09-23 Corning Incorporated Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
FR2893149B1 (fr) * 2005-11-10 2008-01-11 Draka Comteq France Fibre optique monomode.
US8315495B2 (en) * 2009-01-30 2012-11-20 Corning Incorporated Large effective area fiber with Ge-free core

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449415B1 (en) 1999-01-18 2002-09-10 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the same
US6917740B2 (en) 2003-05-30 2005-07-12 Corning Incorporated Optical fiber having reduced viscosity mismatch
US6947650B1 (en) 2004-05-06 2005-09-20 Luna Energy Llc Long wavelength, pure silica core single mode fiber and method of forming the same
US7450807B2 (en) 2006-08-31 2008-11-11 Corning Incorporated Low bend loss optical fiber with deep depressed ring
EP1978383A1 (en) 2007-04-06 2008-10-08 Draka Comteq B.V. Transmission optical fiber having large effective area
CN101883998A (zh) * 2007-06-15 2010-11-10 Ofs菲特尔有限责任公司 单模光纤中的弯曲不敏感性
US7680381B1 (en) * 2008-11-25 2010-03-16 Corning Incorporated Bend insensitive optical fibers
US20100178504A1 (en) * 2009-01-09 2010-07-15 Xin Chen Bend Insensitive Optical Fibers with Low Refractive Index Glass Rings
CN101598834A (zh) 2009-06-26 2009-12-09 长飞光纤光缆有限公司 一种单模光纤及其制造方法
US20110064368A1 (en) * 2009-09-11 2011-03-17 Dana Craig Bookbinder Low Bend Loss Optical Fiber
CN102043196A (zh) * 2009-10-13 2011-05-04 德雷卡通信技术公司 具有凹陷槽的单模光纤
CN102156323A (zh) * 2011-05-05 2011-08-17 长飞光纤光缆有限公司 一种单模光纤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2713188A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170131468A1 (en) * 2014-08-28 2017-05-11 Sumitomo Electric Industries, Ltd. Optical fiber and optical fiber transmission path
JPWO2016031901A1 (ja) * 2014-08-28 2017-06-15 住友電気工業株式会社 光ファイバおよび光ファイバ伝送路
US9977183B2 (en) * 2014-08-28 2018-05-22 Sumitomo Electric Industries, Ltd. Optical fiber and optical fiber transmission path

Also Published As

Publication number Publication date
EP2713188A4 (en) 2014-05-28
EP2713188A1 (en) 2014-04-02
EP2713188B1 (en) 2016-09-28
KR101539555B1 (ko) 2015-07-28
US20140248026A1 (en) 2014-09-04
KR20130117839A (ko) 2013-10-28
CN102156323B (zh) 2012-06-06
CN102156323A (zh) 2011-08-17
US8849084B2 (en) 2014-09-30

Similar Documents

Publication Publication Date Title
WO2012149818A1 (zh) 一种单模光纤
CN102645699B (zh) 一种低衰减弯曲不敏感单模光纤
US8837889B2 (en) Single mode optical fiber
JP6564074B2 (ja) 極低損失でベンド不敏感の単一モード光ファイバ
JP6084698B2 (ja) 大有効面積を有するシングルモード光ファイバ
JP6298893B2 (ja) 損失低下を示す、台形コアを有するシングルモードファイバ
EP1845399A1 (en) Single-mode optical fibre with low bending losses still complying with the ITU-T G.652 specification
CN103454719B (zh) 一种单模光纤
KR101731743B1 (ko) 대유효면적 광섬유
JP6529666B2 (ja) 極低減衰で大有効面積の単一モード光ファイバ
EP3637160A1 (en) Small core-diameter graded-index optical fiber
JP2012027454A (ja) 単一モード光ファイバおよび光システム
US10564349B2 (en) Low bend loss optical fiber with graded index core
WO2015109861A1 (zh) 一种具有兼容性的小弯曲半径单模光纤
JP2016099623A (ja) 曲げ耐性のマルチモード光ファイバ
WO2016173253A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
WO2019201147A1 (zh) 一种高带宽弯曲不敏感多模光纤
CN107490819B (zh) 具有超低衰减大有效面积的单模光纤
CN114397727B (zh) 一种超低衰减大有效面积单模光纤
CN114325928A (zh) 一种低损耗抗弯曲单模光纤
CN105137534A (zh) 一种小型化器件用单模光纤
CN105137535A (zh) 一种单模光纤及其制造方法
US11067744B2 (en) Low bend loss optical fiber with step index core
CN105182471A (zh) 一种单模光纤
CN110824610A (zh) 一种弯曲不敏感单模光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137019551

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14008781

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011864715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011864715

Country of ref document: EP