WO2019198489A1 - Photosensitive resin composition, cured product, insulating material, resin material for solder resists and resist member - Google Patents

Photosensitive resin composition, cured product, insulating material, resin material for solder resists and resist member Download PDF

Info

Publication number
WO2019198489A1
WO2019198489A1 PCT/JP2019/012752 JP2019012752W WO2019198489A1 WO 2019198489 A1 WO2019198489 A1 WO 2019198489A1 JP 2019012752 W JP2019012752 W JP 2019012752W WO 2019198489 A1 WO2019198489 A1 WO 2019198489A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
acid
acrylate
compound
Prior art date
Application number
PCT/JP2019/012752
Other languages
French (fr)
Japanese (ja)
Inventor
正紀 宮本
駿介 山田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201980025082.6A priority Critical patent/CN111954849A/en
Priority to JP2020513172A priority patent/JP7290150B2/en
Publication of WO2019198489A1 publication Critical patent/WO2019198489A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a photosensitive resin composition, a cured product, an insulating material made of the photosensitive resin composition, a resin material for solder resist, and a resist member that hardly generate outgas.
  • solder resist resin materials for printed wiring boards.
  • the required properties for the solder resist resin material include various properties such as curing with a small exposure amount, excellent alkali developability, and excellent heat resistance, strength, dielectric properties, etc. in the cured product.
  • an acid group-containing epoxy acrylate resin obtained by further reacting a tetrahydrophthalic anhydride with an intermediate obtained by reacting a cresol novolak type epoxy resin, acrylic acid and phthalic anhydride Is known (for example, refer to Patent Document 1), but the photosensitivity and heat resistance of the cured product are not sufficient, and it has not satisfied the increasingly required performance.
  • the photosensitive resin composition is gasified by volatilizing components such as a photopolymerization initiator at the time of photocuring, then at the time of heat curing performed as necessary, or at the time of soldering at the time of mounting, There was an outgas problem that contaminated the surroundings.
  • the problem to be solved by the present invention is a photosensitive resin composition having high photosensitivity and excellent heat resistance in a cured product, and hardly generating outgas, a cured product, and an insulating material comprising the photosensitive resin composition It is providing the resin material for solder resists, and a resist member.
  • the present inventors have solved the above problems by using a photosensitive resin composition containing an acid group-containing (meth) acrylate resin and a specific photopolymerization initiator. The inventors have found that this can be solved and completed the present invention.
  • the present invention is a photosensitive resin composition containing an acid group-containing (meth) acrylate resin (A) and a photopolymerization initiator (B), wherein the photopolymerization initiator (B) is: A Michael addition reaction product of an ⁇ -aminoacetophenone skeleton-containing compound (b1) functioning as a Michael addition donor represented by the general formula (1) and a reactive compound (b2) having a function as a Michael acceptor.
  • the present invention relates to a photosensitive resin composition, a cured product, an insulating material composed of the photosensitive resin composition, a resin material for solder resist, and a resist member.
  • R 1 represents an aliphatic group or an aryl group
  • R 2 and R 3 each independently represents an aliphatic group or an aryl group
  • R 2 and R 3 may be combined together to form a ring
  • R 4 to R 7 each independently represents a hydrogen atom, an aliphatic group or an aryl group
  • X 1 represents a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms
  • X 2 represents a carbonyl group or a thiocarbonyl group
  • Y 1 represents a group represented by the following general formula (2), the following general formula (3) or the following general formula (4)
  • Y 2 represents a group represented by the following general formula (2) or the following general formula (3).
  • at least one of X 5 is —NH—.
  • n is 0 or 1.
  • X 3 and X 4 each independently represent a linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms
  • X 5 represents a single bond, —O— Or -NH-.
  • X 6 represents a substituted or unsubstituted linear or branched alkylene or oxyalkylene group having 2 to 6 carbon atoms, wherein R 8 and R 9 are each Independently represents an aliphatic group or an aryl group.
  • R 10 and R 11 each independently represents an aliphatic group or an aryl group.
  • the photosensitive resin composition of the present invention has high photosensitivity and excellent heat resistance in a cured product, and since it is difficult for outgas to occur, an insulating material, a resin material for solder resist, and the solder resist It can use suitably for the resist member which consists of resin.
  • the photosensitive resin composition of the present invention contains an acid group-containing (meth) acrylate resin (A) and a photopolymerizable initiator (B) represented by the following general formula (1). .
  • R 1 represents an aliphatic group or an aryl group
  • R 2 and R 3 each independently represents an aliphatic group or an aryl group
  • R 2 and R 3 may be combined together to form a ring
  • R 4 to R 7 each independently represents a hydrogen atom, an aliphatic group or an aryl group
  • X 1 represents a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms
  • X 2 represents a carbonyl group or a thiocarbonyl group
  • Y 1 represents a group represented by the following general formula (2), the following general formula (3) or the following general formula (4)
  • Y 2 represents a group represented by the following general formula (2) or the following general formula (3).
  • at least one of X 5 is —NH—.
  • n is 0 or 1.
  • X 3 and X 4 each independently represent a linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms
  • X 5 represents a single bond, —O— Or -NH-.
  • X 6 represents a substituted or unsubstituted linear or branched alkylene or oxyalkylene group having 2 to 6 carbon atoms, wherein R 8 and R 9 are each Independently represents an aliphatic group or an aryl group.
  • R 10 and R 11 each independently represents an aliphatic group or an aryl group.
  • (meth) acrylate resin refers to a resin having one or both of an acryloyl group and a methacryloyl group in the molecule. Further, “(meth) acryloyl group” means one or both of acryloyl group and methacryloyl group, and “(meth) acrylate” means one or both of acrylate and methacrylate.
  • the acid group-containing (meth) acrylate resin (A) will be described.
  • the acid group-containing (meth) acrylate resin (A) only needs to have an acid group and a (meth) acryloyl group, and other specific structures and molecular weights are not particularly limited, and a wide variety of resins are used. Can do.
  • Examples of the acid group contained in the acid group-containing (meth) acrylate resin (A) include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyl group is preferable because it exhibits excellent alkali developability.
  • Examples of the acid group-containing (meth) acrylate resin (A) include [1] epoxy resin (a1-1), unsaturated monocarboxylic acid (a1-2), and polycarboxylic acid anhydride (a1-3). ) And (2) a phenolic hydroxyl group-containing resin (a2-1) and a cyclic carbonate compound (a2-2a) or a cyclic ether compound. (A2-2b), an unsaturated monocarboxylic acid (a2-3a) and / or an N-alkoxyalkyl (meth) acrylamide compound (a2-3b), and a polycarboxylic acid anhydride (a2-4) are essential.
  • Acid group-containing (meth) acrylate resin A-2
  • Acid group-containing (meth) acrylate resin comprising compound (a3-2), (meth) acryloyl group-containing epoxy compound (a3-3), and polycarboxylic acid anhydride (a3-4) as essential reaction materials ( A-3) and the like.
  • the acid group-containing (meth) acrylate resin (A-1) essentially comprises an epoxy resin (a1-1), an unsaturated monocarboxylic acid (a1-2), and a polycarboxylic acid anhydride (a1-3). Obtained as a reaction raw material.
  • the specific structure of the epoxy resin (a1-1) is not particularly limited as long as it has a plurality of epoxy groups in the resin.
  • Examples of the epoxy resin (a1-1) include bisphenol type epoxy resins, hydrogenated bisphenol type epoxy resins, biphenol type epoxy resins, hydrogenated biphenol type epoxy resins, phenylene ether type epoxy resins, naphthylene ether type epoxy resins, Phenol novolac type epoxy resin, cresol novolak type epoxy resin, bisphenol novolak type epoxy resin, naphthol novolak type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, etc. .
  • the unsaturated monocarboxylic acid (a1-2) refers to a compound having a (meth) acryloyl group and a carboxyl group in one molecule, and examples thereof include acrylic acid and methacrylic acid. Further, esterified products, acid halides, acid anhydrides and the like of the unsaturated monocarboxylic acid (a1-2) can also be used. These unsaturated monocarboxylic acids (a1-2) can be used alone or in combination of two or more.
  • esterified product of the unsaturated monocarboxylic acid (a1-2) examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, ( (Meth) acrylic acid alkyl esters such as n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate Compound; Hydroxyl group-containing (meth) acrylate compound such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate; dimethylaminoethyl (meth) acrylate, (meth) acrylic Nitrogen-containing (meth) acrylic acid ester such as dieth
  • Examples of the acid halide of the unsaturated monocarboxylic acid (a1-2) include (meth) acrylic acid chloride.
  • Examples of the acid anhydride of the unsaturated monocarboxylic acid (b1-3) include (meth) acrylic acid anhydride.
  • any acid anhydride of a compound having two or more carboxyl groups in one molecule can be used.
  • the polycarboxylic acid anhydride include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid,
  • acid anhydrides of dicarboxylic acid compounds such as terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, and methylhexahydrophthalic acid.
  • the method for producing the acid group-containing (meth) acrylate resin (A-1) includes the epoxy resin (a1-1), the unsaturated monocarboxylic acid (a1-2), and the polycarboxylic acid anhydride (a1-
  • the method is not particularly limited as long as 3) is an essential reaction raw material, and any method may be used. For example, it may be produced by a method in which all of the reaction raw materials are reacted together, or may be produced by a method in which the reaction raw materials are reacted sequentially.
  • the epoxy resin (a1-1) and the unsaturated monocarboxylic acid (a1-2) are first reacted, and then the polycarboxylic acid anhydride (a1-3)
  • the method of reacting is preferred.
  • the reaction is carried out, for example, by reacting an epoxy resin (a1-1) and an unsaturated monocarboxylic acid (a1-2) in the temperature range of 100 to 150 ° C. in the presence of an esterification reaction catalyst.
  • the polycarboxylic acid anhydride (a1-3) can be added to the mixture and reacted at a temperature range of 90 to 120 ° C.
  • the reaction ratio of the epoxy resin (a1-1) to the unsaturated monocarboxylic acid (a1-2) is the amount of the unsaturated monocarboxylic acid (a1-2) relative to 1 mol of the epoxy group in the epoxy resin (a1-1). ) Is preferably used in the range of 0.9 to 1.1 mol.
  • the reaction rate of the polycarboxylic acid anhydride (a1-3) is preferably in the range of 0.2 to 1.0 mol with respect to 1 mol of the epoxy group in the epoxy resin (a1-1).
  • esterification reaction catalyst examples include phosphorus compounds such as trimethylphosphine, tributylphosphine and triphenylphosphine, amine compounds such as triethylamine, tributylamine and dimethylbenzylamine, 2-methylimidazole, 2-heptadecylimidazole, 2- Examples thereof include imidazole compounds such as ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole and 1-isobutyl-2-methylimidazole. These reaction catalysts can be used alone or in combination of two or more.
  • the amount of the reaction catalyst added is preferably in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass of the total reaction raw material.
  • the reaction of the epoxy resin (a1-1), the unsaturated monocarboxylic acid (a1-2), and the polycarboxylic acid anhydride (a1-3) can be performed in an organic solvent as necessary.
  • the organic solvent to be used can be appropriately selected depending on the solubility of the acid group-containing (meth) acrylate resin that is the reaction raw material and the product and the reaction temperature conditions.
  • methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone examples include methoxypropanol, cyclohexanone, methyl cellosolve, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like.
  • These organic solvents can be used alone or in combination of two or more as a mixed solvent.
  • the amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass with respect to a total of 100 parts by mass of the reaction raw materials because the reaction efficiency is good.
  • the acid value of the acid group-containing (meth) acrylate resin (A-1) used in the present invention has a high photosensitivity and an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent heat resistance Is preferably in the range of 30 to 150 mgKOH / g, more preferably in the range of 40 to 100 mgKOH / g.
  • the acid value of the acid group-containing (meth) acrylate resin is a value measured by a neutralization titration method of JIS K 0070 (1992).
  • the acid group-containing (meth) acrylate resin (A-2) includes a phenolic hydroxyl group-containing resin (a2-1), a cyclic carbonate compound (a2-2a) or a cyclic ether compound (a2-2b),
  • the carboxylic acid (a2-3a) and / or the N-alkoxyalkyl (meth) acrylamide compound (a2-3b) and the polycarboxylic acid anhydride (a2-4) are obtained as essential reaction materials.
  • the phenolic hydroxyl group-containing resin (a2-1) refers to a resin having two or more phenolic hydroxyl groups in the molecule, such as an aromatic polyhydroxy compound or a compound having one phenolic hydroxyl group in the molecule.
  • a novolak-type phenol resin using one or more kinds as a reaction raw material, a compound having one phenolic hydroxyl group, and a compound represented by any of the following structural formulas (x-1) to (x-5) ( and reaction products using x) as an essential reaction raw material.
  • R 1 is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, or an aralkyl group, and i is 0. Or an integer of 1 to 4.
  • Z is a vinyl group, a halomethyl group, a hydroxymethyl group, or an alkyloxymethyl group, and Y is an alkylene group having 1 to 4 carbon atoms, an oxygen atom, or a sulfur atom.
  • carbonyl group, j is an integer of 1 to 4.
  • aromatic polyhydroxy compound examples include dihydroxybenzene, trihydroxybenzene, tetrahydroxybenzene, dihydroxynaphthalene, trihydroxynaphthalene, tetrahydroxynaphthalene, dihydroxyanthracene, trihydroxyanthracene, tetrahydroxyanthracene, biphenol, tetrahydroxybiphenyl, In addition to bisphenol and the like, compounds having one or more substituents on these aromatic nuclei may be mentioned.
  • substituent on the aromatic nucleus examples include a methyl group, an ethyl group, a vinyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, and a nonyl group.
  • Aliphatic hydrocarbon group such as methoxy group, ethoxy group, propyloxy group, butoxy group; halogen atom such as fluorine atom, chlorine atom, bromine atom; phenyl group, naphthyl group, anthryl group, and aromatic nucleus thereof
  • These aromatic polyhydroxy compounds can be used alone or in combination of
  • Examples of the novolac type phenol resin include those obtained by reacting one or more compounds having one phenolic hydroxyl group in the molecule with an aldehyde compound in the presence of an acidic catalyst.
  • the compound having one phenolic hydroxyl group in the molecule may be any compound as long as it is an aromatic compound having one hydroxyl group on the aromatic nucleus.
  • aromatic compound having one hydroxyl group on the aromatic nucleus For example, one or a plurality of compounds on the aromatic nucleus of phenol or phenol are used.
  • Phenol compounds having one or more substituents, naphthols or naphthol compounds having one or more substituents on the aromatic nucleus of naphthol, anthracans having one or more substituents on the aromatic nucleus of anthracenol or anthracenol Examples include a senol compound.
  • substituent on the aromatic nucleus examples include an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, and an aralkyl group, and specific examples of each are as described above. These compounds having one phenolic hydroxyl group can be used alone or in combination of two or more.
  • aldehyde compound examples include formaldehyde; alkyl aldehydes such as acetaldehyde, propyl aldehyde, butyraldehyde, isobutyraldehyde, pentyl aldehyde, hexyl aldehyde; salicyl aldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 2-hydroxy-4 -Hydroxybenzaldehydes such as methylbenzaldehyde, 2,4-dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde; 2-hydroxy-3-methoxybenzaldehyde, 3-hydroxy-4-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, 3 -Ethoxy-4-hydroxybenzaldehyde, 4-hydroxy-3,5-dimethoxybenzaldehyde Benzaldehydes having both hydroxy groups and alkoxy groups; alky
  • the acidic catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Etc. These acidic catalysts can be used alone or in combination of two or more.
  • a compound having one phenolic hydroxyl group in the molecule and the compound (x) can be obtained by a method of heating and stirring under a temperature condition of about 80 to 200 ° C. under an acidic catalyst.
  • the reaction ratio between the compound having one phenolic hydroxyl group in the molecule and the compound (x) is 0 for the compound having one phenolic hydroxyl group in the molecule with respect to 1 mol of the compound (x).
  • the ratio is preferably 5 to 5 mol.
  • the acid catalyst is the same as described above.
  • Examples of the cyclic carbonate compound (a2-2a) include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate, and the like. These cyclic carbonate compounds can be used alone or in combination of two or more. Among these, ethylene carbonate or propylene carbonate is preferable because an acid group-containing (meth) acrylate resin composition capable of forming a cured product having high photosensitivity and excellent heat resistance can be obtained.
  • Examples of the cyclic ether compound (a2-2b) include ethylene oxide, propylene oxide, and tetrahydrofuran. These cyclic ether compounds can be used alone or in combination of two or more. Among these, ethylene oxide or propylene oxide is preferable because an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having excellent heat resistance can be obtained.
  • the same unsaturated monocarboxylic acid (a1-2) as described above can be used as the unsaturated monocarboxylic acid (a1-2) as described above.
  • N-alkoxyalkyl (meth) acrylamide compound (a2-3b) examples include N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, and N-methoxy. Examples include ethyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, and N-butoxyethyl (meth) acrylamide. Among these, N-methoxymethyl (meth) acrylamide is preferable because an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having excellent heat resistance can be obtained. Moreover, these N-alkoxyalkyl (meth) acrylamide compounds can be used alone or in combination of two or more.
  • polycarboxylic acid anhydride (a2-4) the same polycarboxylic acid anhydride (a1-3) described above can be used.
  • the equivalent ratio [(a2-3b) / (a2-4)) to the polycarboxylic acid anhydride (a2-4)) is From the viewpoint of obtaining an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product excellent in heat resistance, the range of 0.2 to 7 is preferable, and 0.25 to 6 A range of .7 is more preferred.
  • the method for producing the acid group-containing (meth) acrylate resin (A-2) is not particularly limited, and any method may be used. For example, it may be produced by a method in which all of the reaction raw materials are reacted together, or may be produced by a method in which the reaction raw materials are reacted sequentially.
  • the phenolic hydroxyl group-containing resin (a2-1) is first reacted with the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2-2b), Next, after reacting the unsaturated monocarboxylic acid (a2-3a) and / or the N-alkoxyalkyl (meth) acrylamide compound (a2-3b), the polycarboxylic acid anhydride (a2-4) is reacted.
  • the reaction is performed, for example, by combining the phenolic hydroxyl group-containing resin (a2-1) with the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2-2b) in the presence of a basic catalyst.
  • the unsaturated polycarboxylic acid (b2-3a) and / or the N-alkoxyalkyl (meth) acrylamide compound (a2-3b) is heated at a temperature of 80 to 140 ° C. in the presence of an acidic catalyst.
  • the reaction can be carried out in the range, followed by the addition of polycarboxylic anhydride (a2-4) and the reaction in the temperature range of 80 to 140 ° C.
  • Examples of the basic catalyst include alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal waters such as sodium hydroxide and potassium hydroxide.
  • the acidic catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Etc. These acid catalysts can be used alone or in combination of two or more.
  • the reaction of the alkyl (meth) acrylamide compound (a2-3b) and the polycarboxylic acid anhydride (a2-4) can be carried out in an organic solvent as necessary.
  • the organic solvent to be used can be appropriately selected depending on the solubility of the acid group-containing (meth) acrylate resin that is the reaction raw material and the product and the reaction temperature conditions.
  • methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone examples include methoxypropanol, cyclohexanone, methyl cellosolve, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like.
  • organic solvents can be used alone or in combination of two or more kinds as a mixed solvent.
  • the amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass with respect to a total of 100 parts by mass of the reaction raw materials because the reaction efficiency is good.
  • the specific structure of the acid group-containing (meth) acrylate resin (A-2) is not particularly limited, and the phenolic hydroxyl group-containing resin (a2-1) and the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2) -2b), unsaturated monocarboxylic acid (a2-3a) and / or N-alkoxyalkyl (meth) acrylamide compound (a2-3b), and polycarboxylic acid anhydride (a2-4) Any acid group and (meth) acryloyl group may be used in the resin.
  • Examples of the acid group-containing (meth) acrylate resin (A-2) to be obtained include the following structural formula (a-1): ) Having a resin structure in which a structural unit (I) represented by the following structural formula (a-2) and a structural unit (II) represented by the following structural formula (a-2) are repeated, or the following structural formula (a-3): Having a resin structure which structure represented by the site (III) and the following formula (a-4) structural moiety represented by formula (IV) and the repeating structural units and the like.
  • R 2 is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • R 3 is each independently a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and n is each independently 1 or 2.
  • R 4 is each independently a methylene group or a structural moiety represented by any of the following structural formulas (x′-1) to (x′-5).
  • R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. R 5 and R 6 may be linked to form a saturated or unsaturated ring.
  • R 7 is a hydrocarbon group having 1 to 12 carbon atoms.
  • R 8 is a hydrogen atom or a methyl group.
  • x represents the structural site represented by R 3 or the structural site (I) represented by the structural formula (a-1) or the structural site (II) represented by the structural formula (a-2).
  • R 2 is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • R 3 is each independently a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and n is each independently 1 or 2.
  • R 4 is each independently a methylene group or a structural moiety represented by any of the following structural formulas (x′-1) to (x′-5).
  • R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. R 5 and R 6 may be linked to form a saturated or unsaturated ring.
  • R 7 is a hydrocarbon group having 1 to 12 carbon atoms.
  • R 8 is a hydrogen atom or a methyl group.
  • x is the structural site represented by R 3 or the structural site (III) represented by the structural formula (a-3) or the structural site (IV) represented by the structural formula (a-4).
  • h is 0 or 1.
  • R 9 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group or an aralkyl group, and i is 0 or an integer of 1 to 4.
  • R 10 is a hydrogen atom or a methyl group.
  • W is the following structural formula (w-1) or (w-2).
  • Y is any one of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, and a carbonyl group.
  • j is an integer of 1 to 4.
  • R 11 is each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • R 12 and R 13 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 12 and R 13 may be linked to form a saturated or unsaturated ring,
  • R 14 is a hydrocarbon group having 1 to 12 carbon atoms, and
  • R 15 is hydrogen. An atom or a methyl group.
  • the acid value of the acid group-containing (meth) acrylate resin (A-2) has high photosensitivity, and an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent heat resistance is obtained. Therefore, the range of 30 to 150 mgKOH / g is preferable, and the range of 40 to 100 mgKOH / g is more preferable.
  • the acid value of the acid group-containing (meth) acrylate resin is a value measured based on a neutralization titration method of JIS K 0070 (1992).
  • the acid group-containing (meth) acrylate resin (A-3) includes an amideimide resin (a3-1) having an acid group or an acid anhydride group, a hydroxyl group-containing (meth) acrylate compound (a3-2), )
  • An acryloyl group-containing epoxy compound (a3-3) and a polycarboxylic acid anhydride (a3-4) are obtained as essential reaction raw materials.
  • the amideimide resin (a3-1) may have only one of an acid group or an acid anhydride group, or may have both. From the viewpoint of reactivity and reaction control with the hydroxyl group-containing (meth) acrylate compound (a3-2) and the (meth) acryloyl group-containing epoxy compound (a3-3), it may have an acid anhydride group. Preferably, it has both an acid group and an acid anhydride group.
  • the acid value of the amideimide resin (a3-1) is preferably in the range of 60 to 350 mgKOH / g under neutral conditions, that is, under conditions where the acid anhydride group is not ring-opened. On the other hand, the measured value under the condition where the acid anhydride group is opened, such as in the presence of water, is preferably in the range of 61 to 360 mgKOH / g.
  • the specific structure and production method of the amideimide resin (a3-1) are not particularly limited, and general amideimide resins and the like can be widely used.
  • amideimide resins and the like can be widely used.
  • what can be obtained by using a polyisocyanate compound and polycarboxylic acid or its acid anhydride as a reaction raw material is mentioned.
  • polyisocyanate compound examples include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone diisocyanate, Cycloaliphatic diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diisocyanato-3 , 3'-dimethylbiphenyl, o-tolidine diisocyanate, etc.
  • aliphatic diisocyanate compounds such as butane diis
  • Cyanate compound polymethylene polyphenyl polyisocyanate having a repeating structure represented by the following structural formula (i-1); these isocyanurate modified product, a biuret modified product, and the like allophanate modified product. These polyisocyanate compounds can be used alone or in combination of two or more.
  • R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 2 is each independently an alkyl group having 1 to 4 carbon atoms, or a bonding point that is linked to a structural moiety represented by the structural formula (i-1) via a methylene group marked with *. is there.
  • l is 0 or an integer of 1 to 3
  • m is an integer of 1 or more.
  • an acid group-containing (meth) acrylate resin composition having high solvent solubility is obtained, and therefore, an alicyclic diisocyanate compound or a modified product thereof, an aliphatic diisocyanate compound or a modified product thereof is used.
  • An alicyclic diisocyanate or its isocyanurate-modified product, and an aliphatic diisocyanate or its isocyanurate-modified product are more preferable.
  • the ratio of the total mass of an alicyclic diisocyanate compound or its modified body and an aliphatic diisocyanate compound or its modified body in the total mass of the said polyisocyanate compound is 70 mass% or more, and 90 mass % Or more is preferable.
  • the mass ratio of the two is preferably in the range of 30/70 to 70/30.
  • the polycarboxylic acid or its acid anhydride is not particularly limited as long as it is a compound having a plurality of carboxyl groups in its molecular structure or its acid anhydride, and a wide variety of compounds can be used.
  • the amideimide resin (a3-1) In order for the amideimide resin (a3-1) to have both an amide group and an imide group, it is necessary that both a carboxyl group and an acid anhydride group exist in the system.
  • a compound having both a carboxyl group and an acid anhydride group in the molecule may be used, or a compound having a carboxyl group and a compound having an acid anhydride group may be used in combination.
  • polycarboxylic acid or acid anhydride thereof examples include aliphatic polycarboxylic acid compounds or acid anhydrides thereof, alicyclic polycarboxylic acid compounds or acid anhydrides thereof, aromatic polycarboxylic acid compounds or acid anhydrides thereof. Etc.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure.
  • Examples of the aliphatic polycarboxylic acid compound or acid anhydride thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, Examples include citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, and acid anhydrides thereof.
  • the alicyclic polycarboxylic acid compound or acid anhydride thereof is an alicyclic polycarboxylic acid compound or acid anhydride thereof in which a carboxyl group or an acid anhydride group is bonded to an alicyclic structure.
  • the presence or absence of an aromatic ring at other structural sites is not questioned.
  • the alicyclic polycarboxylic acid compound or acid anhydride thereof include tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, and bicyclo [2.2.1].
  • Heptane-2,3-dicarboxylic acid methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4 -Tetrahydronaphthalene-1,2-dicarboxylic acid, and acid anhydrides thereof.
  • aromatic polycarboxylic acid compound or acid anhydride thereof examples include phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, and biphenyl.
  • aromatic polycarboxylic acid compound or acid anhydride thereof examples include phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, and biphenyl.
  • examples thereof include tetracarboxylic acid and benzophenone tetracarboxylic acid.
  • the acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having excellent heat resistance is obtained
  • the alicyclic polycarboxylic acid compound or its acid anhydride is obtained.
  • the aromatic polycarboxylic acid compound or acid anhydride thereof since the amideimide resin (a3-1) can be efficiently produced, it is preferable to use a tricarboxylic acid anhydride having both a carboxyl group and an acid anhydride group in the molecular structure, and cyclohexanetricarboxylic acid anhydride or It is particularly preferable to use trimellitic anhydride.
  • the ratio of the total amount of the alicyclic tricarboxylic acid anhydride and the aromatic tricarboxylic acid anhydride to the total mass of the polycarboxylic acid or acid anhydride is preferably 70% by mass or more, and 90% by mass or more. It is more preferable that
  • the amide-imide resin (a3-1) is a reaction raw material comprising the polyisocyanate compound and the polycarboxylic acid or acid anhydride thereof
  • other reaction raw materials depending on the desired resin performance and the like May be used in combination.
  • the ratio of the total mass of the polyisocyanate compound and the polycarboxylic acid or the acid anhydride thereof to the total reaction raw material mass of the amideimide resin (a3-1) Is preferably 90% by mass or more, and more preferably 95% by mass or more.
  • the amideimide resin (a3-1) is a polyisocyanate compound and polycarboxylic acid or acid anhydride thereof as reaction raw materials
  • it is not particularly limited and may be produced by any method.
  • it can be produced by the same method as a general amideimide resin. Specifically, 0.8 to 1.2 mol of polycarboxylic acid or its acid anhydride is used with 1 mol of the isocyanate group of the polyisocyanate compound, and the mixture is stirred and mixed at a temperature of about 120 to 180 ° C. The method of making it react is mentioned.
  • the reaction between the polyisocyanate compound and polycarboxylic acid or acid anhydride thereof can be performed in an organic solvent as necessary.
  • organic solvent include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These organic solvents can be used alone or in combination of two or more as a mixed solvent.
  • the amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass with respect to a total of 100 parts by mass of the reaction raw materials because the reaction efficiency is good.
  • the hydroxyl group-containing (meth) acrylate compound (a3-2) is not particularly limited as long as it has a hydroxyl group and a (meth) acryloyl group in the molecular structure, and a wide variety of compounds are used. be able to.
  • those having a molecular weight of 1,000 or less are preferable because an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent heat resistance can be obtained.
  • the weight average molecular weight (Mw) is preferably 1,000 or less.
  • the (meth) acryloyl group-containing epoxy compound (a3-3) is not particularly limited as long as it has a (meth) acryloyl group and an epoxy group in the molecular structure, and a wide variety of compounds can be used. Can be used.
  • glycidyl group-containing (meth) acrylate monomers such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and epoxycyclohexylmethyl (meth) acrylate; dihydroxybenzene diglycidyl ether, dihydroxynaphthalenediglycidyl ether, And mono (meth) acrylates of diglycidyl ether compounds such as biphenol diglycidyl ether and bisphenol diglycidyl ether.
  • a glycidyl group-containing (meth) acrylate monomer is preferable because an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent heat resistance can be obtained. Moreover, it is preferable that the molecular weight is 500 or less. Furthermore, the proportion of the glycidyl group-containing (meth) acrylate monomer in the total mass of the (meth) acryloyl group-containing epoxy compound (a3-3) is preferably 70% by mass or more, and 90% by mass or more. Is more preferable.
  • the polycarboxylic acid anhydride (a3-4) is the same as the above-mentioned polycarboxylic acid anhydride (a1-3) and polycarboxylic acid anhydride (a2-4).
  • the acid group-containing (meth) acrylate resin (A-3) includes the amide-imide resin (a3-1) having the acid group or the acid anhydride group, the hydroxyl group-containing (meth) acrylate, depending on the desired resin performance.
  • the (meth) acryloyl group-containing epoxy compound (a3-3) and the polycarboxylic acid anhydride (a3-4) other reaction raw materials can be used in combination.
  • the ratio of the total mass of the components (a3-1) to (a3-4) in the total mass of the reaction raw material of the acid group-containing (meth) acrylate resin (A-3) is 80% by mass or more. Preferably, it is 90 mass% or more.
  • the method for producing the acid group-containing (meth) acrylate resin (A-3) is not particularly limited, and any method may be used. For example, it may be produced by a method in which all of the reaction raw materials are reacted together, or may be produced by a method in which the reaction raw materials are reacted sequentially.
  • the amide-imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) are reacted (step 1), and the product of step 1 and the (meth) acryloyl group-containing epoxy compound (a3-3) (Step 2), and the product of Step 2 and the polycarboxylic acid anhydride (a3-4) are preferably reacted.
  • Step 1 is a step of reacting the amideimide resin (a3-1) with the hydroxyl group-containing (meth) acrylate compound (a3-2).
  • the acid group or acid anhydride group in the amideimide resin (a3-1) and the hydroxyl group in the hydroxyl group-containing (meth) acrylate compound (a3-2) mainly react. Since the hydroxyl group-containing (meth) acrylate compound (a3-2) is excellent in reactivity with an acid anhydride group, as described above, the amideimide resin (a3-1) has an acid anhydride group. It is preferable.
  • the reaction ratio between the amideimide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is based on the total of acid groups and acid anhydride groups in the amideimide resin (a3-1).
  • the hydroxyl group-containing (meth) acrylate compound (a3-2) is preferably used in a range of 0.9 to 1.1 mol, and particularly, the total of acid anhydride groups in the amideimide resin (a3-1).
  • the hydroxyl group-containing (meth) acrylate compound (a3-2) is preferably used in the range of 0.9 to 1.1 mol.
  • the content of the acid anhydride group in the amideimide resin (a3-1) is the difference between the two acid value measurement values described above, that is, the acid value under the condition where the acid anhydride group is ring-opened, It can be calculated from the difference from the acid value under conditions where the acid anhydride group is not ring-opened.
  • the reaction between the amideimide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is, for example, heated and stirred under a temperature condition of about 90 to 140 ° C. in the presence of an esterification reaction catalyst. Can be done.
  • esterification reaction catalyst examples include phosphorus compounds such as trimethylphosphine, tributylphosphine and triphenylphosphine, amine compounds such as triethylamine, tributylamine and dimethylbenzylamine, 2-methylimidazole, 2-heptadecylimidazole, 2- Examples thereof include imidazole compounds such as ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole and 1-isobutyl-2-methylimidazole. These reaction catalysts can be used alone or in combination of two or more.
  • the amount of the reaction catalyst added is preferably in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass in total of the reaction raw materials.
  • the reaction in Step 1 can also be performed in an organic solvent as necessary.
  • the organic solvent to be used can be appropriately selected depending on the solubility of the acid group-containing (meth) acrylate resin that is the reaction raw material and the product and the reaction temperature conditions.
  • methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone examples include methoxypropanol, cyclohexanone, methyl cellosolve, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like.
  • These organic solvents can be used alone or in combination of two or more as a mixed solvent.
  • Step 2 is a step of reacting the product obtained in Step 1 with the (meth) acryloyl group-containing epoxy compound (a3-3).
  • the (meth) acryloyl group-containing epoxy compound (a3-3) mainly reacts with the carboxyl group in the product of Step 1.
  • the reaction ratio is preferably such that the (meth) acryloyl group-containing epoxy compound (a3-3) is used in the range of 0.5 to 1.2 mol with respect to the carboxyl group in the product of Step 1. More preferably, it is used in the range of 9 to 1.1 mol.
  • the reaction in Step 2 can be performed, for example, with heating and stirring under a temperature condition of about 90 to 140 ° C. in the presence of an esterification reaction catalyst. When step 1 and step 2 are performed continuously, the esterification reaction catalyst may not be added or may be added as appropriate. Moreover, reaction can also be performed in an organic solvent as needed.
  • Step 3 is a step of reacting the product obtained in Step 2 with the polycarboxylic anhydride (a3-4).
  • the reaction mainly the polycarboxylic acid anhydride (a3-4) reacts with the hydroxyl group in the product of Step 2.
  • the reaction rate is preferably adjusted so that the acid value of the acid group-containing (meth) acrylate resin (A-3) as the final product is about 50 to 100 mgKOH / g.
  • the reaction in Step 3 can be carried out, for example, with heating and stirring under a temperature condition of about 90 to 140 ° C. in the presence of an esterification reaction catalyst.
  • the esterification reaction catalyst may not be added or may be added as appropriate.
  • reaction can also be performed in an organic solvent as needed.
  • the acid value of the acid group-containing (meth) acrylate resin (A-3) has a high photosensitivity, and an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent heat resistance is obtained. Therefore, the range of 30 to 150 mgKOH / g is preferable, and the range of 40 to 100 mgKOH / g is more preferable.
  • the acid value of the acid group-containing (meth) acrylate resin (A-3) is a value measured by the neutralization titration method of JIS K 0070 (1992).
  • the photopolymerization initiator (B) will be described.
  • the photopolymerization initiator (B) includes an ⁇ -aminoacetophenone skeleton-containing compound (b1) that functions as a Michael addition donor represented by the following general formula (1), and a reactivity that functions as a Michael acceptor.
  • a Michael addition reaction product with the compound (b2) is used.
  • the ⁇ -aminoacetophenone skeleton-containing compound (b1) has a functional group having a Michael addition donating function represented by a secondary amino group such as a piperazinyl group, a methylamino group, an ethylamino group, or a benzylamino group in the molecular structure. Specifically, it is represented by the following general formula (1).
  • R 1 represents an aliphatic group or an aryl group
  • R 2 to R 3 each independently represents an aliphatic group or an aryl group
  • R 2 and R 3 may be combined together to form a ring
  • R 4 to R 7 each independently represents a hydrogen atom, an aliphatic group or an aryl group
  • X 1 represents a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms
  • X 2 represents a carbonyl group or a thiocarbonyl group
  • Y 1 represents a group represented by the following general formula (2), general formula (3) or general formula (4)
  • Y 2 represents a group represented by the following general formula (2) or general formula (3).
  • at least one of X 5 is —NH—.
  • n is 0 or 1.
  • X 3 and X 4 each independently represent a linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms, X 5 represents a single bond, —O Represents-or -NH-.
  • X 6 represents a substituted or unsubstituted linear or branched alkylene or oxyalkylene group having 2 to 6 carbon atoms, wherein R 8 and R 9 are each Independently represents an aliphatic group or an aryl group.
  • R 10 and R 11 each independently represents an aliphatic group or an aryl group.
  • examples of the aliphatic group constituting R 1 to R 7 in the general formula (1) include an alkyl group, an alkenyl group, and an alkynyl group.
  • alkyl group examples include linear, branched, and cyclic alkyl groups having 1 to 18 carbon atoms.
  • alkenyl group examples include butenyl groups such as propenyl group or allyl group, 2-butenyl group, 3-butenyl group and isobutenyl group, and alkenyl groups such as n-2,4-pentadienyl group. .
  • alkynyl group examples include ethynyl group, 1-propynyl group, 1-butynyl group, and trimethylsilylethynyl group.
  • aliphatic groups a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, and a cyclic alkyl group having 5 to 10 carbon atoms Groups are preferred.
  • the aliphatic group may further have a substituent on a carbon atom, and examples of such a substituent include a substituent composed of a monovalent nonmetallic atom excluding a hydrogen atom.
  • halogen atom (—F, —Br, —Cl, —I), hydroxyl group, alkoxy group, aryloxy group, mercapto group, alkylthio group, arylthio group, alkyldithio group, aryldithio group, amino group Group, N-alkylamino group, N, N-dialkylamino group, N-arylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkyl Carbamoyloxy group, N-arylcarbamoyloxy group, N, N-dialkylcarbamoyloxy group, N, N-diarylcarbamoyloxy group, N-alkyl-N-arylcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group, Acyl
  • alkyl group is mentioned as a specific example of the alkyl group in these substituents.
  • aryl group in the substituent include, for example, phenyl group, biphenyl group, naphthyl group, tolyl group, xylyl group, mesityl group, cumenyl group, chlorophenyl group, bromophenyl group, chloromethylphenyl group, hydroxyphenyl group.
  • alkenyl group in the substituent examples include a vinyl group, 1-propenyl group, 1-butenyl group, cinnamyl group, 2-chloro-1-ethenyl group and the like.
  • alkynyl group in the substituent examples include ethynyl group, 1-propynyl group, 1-butynyl group, trimethylsilylethynyl group and the like.
  • phenyl group methoxyphenyl group, ethoxyphenyl group, fluorophenyl group, chlorophenyl group, bromophenyl group, tolyl group, xylyl group, naphthyl group, benzyl group, ⁇ -methylbenzyl group, ⁇ -dimethyl
  • examples include benzyl group, phenethyl group naphthyl group, anthryl group, phenanthryl group, indenyl group, acenaphthenyl group, and fluorenyl group. In these, a phenyl group and a naphthyl group are more preferable.
  • the aryl group may have a substituent composed of a monovalent nonmetallic atomic group excluding a hydrogen atom as a substituent on the ring-forming carbon atom of the aryl group.
  • a substituent composed of a monovalent nonmetallic atomic group excluding a hydrogen atom as a substituent on the ring-forming carbon atom of the aryl group.
  • the above-described alkyl group and those previously shown as the substituent in the substituted alkyl group can be mentioned.
  • aryl group having a substituent examples include, for example, a biphenyl group, a tolyl group, a xylyl group, a mesityl group, a cumenyl group, a chlorophenyl group, a bromophenyl group, a fluorophenyl group, a chloromethylphenyl group, and trifluoromethyl.
  • Phenyl group hydroxyphenyl group, methoxyphenyl group, methoxyethoxyphenyl group, allyloxyphenyl group, phenoxyphenyl group, methylthiophenyl group, tolylthiophenyl group, ethylaminophenyl group, diethylaminophenyl group, morpholinophenyl group, acetyloxyphenyl Group, benzoyloxyphenyl group, N-cyclohexylcarbamoyloxyphenyl group, N-phenylcarbamoyloxyphenyl group, acetylaminophenyl group, N-methylbenzoylaminophen Group, carboxyphenyl group, methoxycarbonylphenyl group, allyloxycarbonylphenyl group, chlorophenoxycarbonylphenyl group, carbamoylphenyl group, N-methylcarbamoylphenyl group, N, N-diprop
  • R 1 is preferably a linear alkyl group having 1 to 12 carbon atoms from the viewpoint of availability of raw materials and ease of reaction control in production, and particularly 1 carbon atom.
  • a linear alkyl group of ⁇ 6 is preferred.
  • R 2 to R 3 are preferably linear alkyl groups having 1 to 12 carbon atoms, and preferably linear alkyl groups having 1 to 6 carbon atoms.
  • R 4 to R 7 are specifically preferably a hydrogen atom or a linear alkyl group having 1 to 6 carbon atoms.
  • X 1 represents a single bond or an alkylene group having 1 to 6 carbon atoms, such as a linear or branched methylene group, ethylene group or propylene group.
  • substituents include the substituents described for the aliphatic group which may have the substituent.
  • X 2 represents a carbonyl group or a thiocarbonyl group.
  • Y 1 and Y 2 each independently represent a group represented by General Formula (2) or General Formula (3).
  • X 3 and X 4 each independently represent a linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms
  • X 5 represents a single bond
  • — O— or —NH— is represented.
  • Specific examples of X 3 and X 4 include a chain or branched methylene group, ethylene group, propylene group, butylene group, oxymethylene group, oxypropylene group, and oxybutylene group.
  • X 6 represents a substituted or unsubstituted linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms
  • R 8 and R 9 are Each independently represents an aliphatic group or an aryl group.
  • specific examples of the substituent in X 6 include a chain or branched methylene group, a propylene group, a butylene group, an oxymethylene group, an oxypropylene group, and an oxybutylene group.
  • R 8 and R 9 each independently represents an aliphatic group or an aryl group.
  • examples of the aliphatic group and aryl group include those constituting R 1 to R 7 described above.
  • R 10 and R 11 in the general formula (4) are each independently an aliphatic group or an aryl group.
  • an aliphatic group or aryl group those exemplified as the aliphatic group or aryl group constituting the aforementioned R 1 to R 7 can be mentioned.
  • n in the general formula (1) is 0 or 1.
  • R 1 is an ethyl group
  • R 2 is a methyl group
  • R 3 is a methyl group
  • R 4 is hydrogen
  • R 5 is hydrogen
  • X 1 is a short bond
  • X 2 is a carbonyl group
  • Y 1 is a piperazinyl group
  • Y 2 is or a compound piperazinyl group
  • R 1 is An ethyl group
  • R 2 is a methyl group
  • R 3 is a methyl group
  • R 4 is hydrogen
  • R 5 is hydrogen
  • X 2 is a carbonyl group
  • Y 1 is a piperazinyl group
  • Y 2 is a piperazinyl group
  • R 5 is hydrogen
  • Specific examples of the compound represented by the general formula (1) include compounds represented by the structural formulas (5) to (28).
  • structural formula (5), structural formula (6), structural formula (16), and structure which are aminoacetophenone-based compounds having a cyclic secondary amino group such as one piperazinyl group because of their high curability.
  • the formula (17), the structural formula (19), the structural formula (20), the structural formula (22), the structural formula (23), the structural formula (25), the structural formula (26), and the structural formula (27) are preferable.
  • Structural formula (5), structural formula (6), structural formula (16), structural formula (17), structural formula (25), and structural formula (26) are preferable.
  • a compound having the cyclic secondary amino group only at Y 1 in the general formula (1) has a very high curability and is preferable.
  • Examples of such a compound include compounds represented by structural formula (5), structural formula (6), structural formula (25), structural formula (26), and structural formula (27).
  • the compound having the cyclic secondary amino group only in Y 2 in the general formula (1) has very high curability, and the cleavage product generated by absorption of active energy rays can be converted into a polymer matrix. Uptake is also considered to be promoted and is particularly preferred. Examples of such a compound include compounds represented by structural formula (16), structural formula (17), structural formula (19), structural formula (20), structural formula (22), and structural formula (23).
  • ⁇ -aminoacetophenone skeleton-containing compounds (b1) should be produced by any one of the following synthesis methods 1 to 3 depending on the introduction means of Y 1 -and Y 2- in the general formula (1). Can do.
  • Method 1 an alkyl acetophenone having a halogen atom on an aromatic nucleus is reacted with a secondary amino group-containing compound (Y 1 -H), then a bromine atom is introduced into the ⁇ -position of the carbonyl group, and then a secondary monoamine
  • Y 1 -H a secondary amino group-containing compound
  • a bromine atom is introduced into the ⁇ -position of the carbonyl group
  • a secondary monoamine The compound (HN (R 2 ) (R 3 )) is reacted, and then benzyl bromide having a substituent (—X 1 —X 2 —OR) n as a substituent on the aromatic nucleus is reacted.
  • R is an alkyl group
  • n is 0 or 1.
  • this is treated with an alkali to produce a compound (P) which is an intermediate having a hydroxyl group (or thiol group) at the terminal. Further, this can be reacted with a secondary amino group-containing compound (Y 2 —H) to produce the desired ⁇ -aminoacetophenone skeleton-containing compound (b1).
  • the secondary amino group-containing compound (Y 2 —H) is a diamine compound having active hydrogen.
  • a method in which one amino group of the compound is protected with an oxycarbonyl group or the like and then treated with an acid to remove the protecting group may be used.
  • the reactive compound (b2) having a function as the Michael acceptor refers to a compound having a reactive group that contributes to curing by light irradiation (hereinafter abbreviated as “photocurable group”).
  • photocurable group a compound having a reactive group that contributes to curing by light irradiation
  • a polyfunctional reactive compound having a plurality of curable groups is preferred because the photocuring function is particularly good.
  • Examples of the polyfunctional reactive compound having a plurality of photocurable groups include ⁇ , ⁇ -unsaturated carbonyl compounds such as maleimide compounds, maleate compounds, fumarate compounds, and (meth) acrylate compounds. It is done. Among these, a (meth) acrylate compound is preferable because it is easy to control the Michael addition reaction at the time of synthesis, and a photosensitive resin composition that has high reactivity at the time of photocuring and hardly generates outgassing. .
  • Examples of the (meth) acrylate compound include diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, and 3-methyl-1,5-pentanediol di (meth).
  • Bifunctional acrylates such as acrylate, hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate and its modified alkylene oxide such as ethylene oxide and propylene oxide, pentaerythritol tri Tetra (meth) acrylate and its modified alkylene oxide such as ethylene oxide and propylene oxide, ditrimethylolpropane tetra (meth) acrylate and its Alkylene oxide modified products such as tylene oxide and propylene oxide, polyfunctional (meth) acrylates such as dipentaerythritol tetra or penta or hexa (meth) acrylate and its caprolactone modified product, bisphenol A diglycidyl ether and trimethylolpropane triglycidyl Epoxy (meth) acrylates obtained by the reaction of polyglycidyl ethers
  • the reactive compound is most preferably a trifunctional or higher functional (meth) acrylate compound because it becomes a high molecular weight body after curing and can be firmly fixed by a cured film.
  • a trifunctional or higher functional (meth) acrylate having three or more (meth) acryloyl groups is selected as the reactive compound having a function as a Michael acceptor
  • the photocurable group of the Michael addition reactant of the present invention Is preferably 2 or more.
  • the Michael addition reaction between the ⁇ -aminoacetophenone skeleton-containing compound (b1) and the reactive compound (b2) having a function as the Michael acceptor is not particularly limited and is a known and usual reaction. Can be done under conditions.
  • As a general method there is a method in which the ⁇ -aminoacetophenone skeleton-containing compound (b1) and the reactive compound (b2) having a function as the Michael acceptor are mixed at 0 to 150 ° C. in a reaction vessel. Can be mentioned. At this time, a catalyst or an organic solvent can also be used.
  • the catalyst examples include tetraethylammonium fluoride, tetrabutylammonium hydroxide, potassium hydroxide, tetramethylguanidi, diazabicycloundecene, sodium t-butylate, tri-n-octylphosphine, and triphenylphosphine. Etc.
  • organic solvent examples include saturated hydrocarbons such as pentane, hexane, heptane, and cyclohexane, aromatic hydrocarbons such as toluene and xylene, methanol, ethanol, isopropanol, 2-butanol, t-butanol, ethylene glycol, and carbylene.
  • Alcohols such as Toll, ethers such as dimethyl ether, diethyl ether, 1,4-dioxane, tetrahydrofuran (THF), amides such as dimethylformamide (DMF), halogenated solvents such as chloroform and dichloromethane, dimethyl sulfoxide (DMSO), etc. Can be mentioned.
  • the mixing ratio of the ⁇ -aminoacetophenone skeleton-containing compound (b1) and the reactive compound (b2) having a function as the Michael acceptor is not particularly limited, but a group having a Michael addition-donating function (
  • the equivalent ratio [(ii) / (i)] between i) and the group (ii) having a Michael accepting function is preferably 1/1 to 1/30, and more preferably 1/2 to 1/30. It is more preferable.
  • the amount of the photopolymerization initiator (B) used is preferably in the range of 1 to 20 parts by mass with respect to 100 parts by mass of the acid group-containing (meth) acrylate resin (A).
  • a photoinitiator such as a photosensitizer or a tertiary amine may be used as necessary in order to further improve the curing performance.
  • the photosensitizer include thioxanthone series such as 2,4-diethylthioxanthone and 2,4-diisopropylthioxanthone, benzophenone series such as 4,4'-bis (diethylamino) benzophenone, anthraquinone and the like.
  • examples of the tertiary amine include ethyl p-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, and N, N-dimethylbenzylamine.
  • a high molecular weight compound obtained by branching a plurality of photosensitizers or tertiary amines in one molecule with a polyhydric alcohol or the like can be used as appropriate.
  • the photoinitiator aid is preferably used in an amount of 0.03 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, based on the total amount of the photosensitive resin composition.
  • photopolymerization initiators other than the photopolymerization initiator (B) can be used in combination as long as the effects of the present invention are not impaired.
  • Examples of the other photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl]- 2-hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2′-dimethoxy-1,2-diphenylethane-1-one, diphenyl (2,4,6-trimethoxybenzoyl) ) Phosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1- (4 Morpholinophenyl) -1-butanone, and the like.
  • photopolymerization initiators examples include “Omnirad-1173”, “Omnirad-184”, “Omnirad-127”, “Omnirad-2959”, “Omnirad-369”, “Omnirad-379”.
  • the photosensitive resin composition of the present invention may contain other resin components other than the acid group-containing (meth) acrylate resin (A).
  • the other resin components include (meth) acrylic acid, dicarboxylic acid anhydride, and unsaturated monocarboxylic acid anhydride, if necessary, to epoxy resin such as bisphenol type epoxy resin and novolak type epoxy resin.
  • epoxy resin such as bisphenol type epoxy resin and novolak type epoxy resin.
  • examples thereof include resins having a carboxyl group and a (meth) acryloyl group in the resin, various (meth) acrylate monomers, and the like.
  • Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and 2-ethylhexyl.
  • Aliphatic mono (meth) acrylate compounds such as (meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) acrylate compounds such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate ; Heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, phenylben (Meth) acrylate, phenoxy (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, phenoxybenzyl (meth) acrylate, benz
  • the photosensitive resin composition of the present invention may contain an organic solvent for the purpose of adjusting the coating viscosity, and the type and addition amount thereof are appropriately selected and adjusted according to the desired performance.
  • organic solvent examples include ketone solvents such as methyl ethyl ketone, acetone and isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; and aromatics such as toluene, xylene and solvent naphtha.
  • ketone solvents such as methyl ethyl ketone, acetone and isobutyl ketone
  • cyclic ether solvents such as tetrahydrofuran and dioxolane
  • ester solvents such as methyl acetate, ethyl acetate and butyl acetate
  • aromatics such as toluene, xylene and solvent naphtha.
  • Aliphatic solvents such as cyclohexane and methylcyclohexane; Alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, dialkylene glycol Examples include glycol ether solvents such as monoalkyl ether acetate. These organic solvents can be used alone or in combination of two or more.
  • the photosensitive resin composition of the present invention may contain various additives such as inorganic fine particles and polymer fine particles, pigments, antifoaming agents, viscosity modifiers, leveling agents, flame retardants, and storage stabilizers as necessary. It can also be contained.
  • the cured product of the present invention can be obtained by irradiating the photosensitive resin composition with active energy rays.
  • the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • irradiation may be performed in an inert gas atmosphere such as nitrogen gas or an air atmosphere in order to efficiently perform a curing reaction with ultraviolet rays.
  • an ultraviolet lamp is generally used from the viewpoint of practicality and economy. Specific examples include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a gallium lamp, a metal halide lamp, sunlight, and an LED.
  • the cured product obtained by curing the photosensitive resin composition of the present invention has excellent heat resistance and is less likely to generate outgas.
  • solder resist and interlayer insulation in semiconductor device applications It can be suitably used as a package adhesive layer such as a material, a package material, an underfill material, or a circuit element, or an adhesive layer between an integrated circuit element and a circuit board. Further, it can be suitably used for a thin film transistor protective film, a liquid crystal color filter protective film, a color filter pigment resist, a black matrix resist, a spacer, etc. in thin display applications typified by LCD and OELD.
  • the resin material for a solder resist of the present invention can be applied to the photosensitive resin composition, if necessary, for example, a curing agent, a curing accelerator, an organic solvent, inorganic fine particles or polymer fine particles, a pigment, an antifoaming agent, a viscosity modifier.
  • a curing agent for example, a curing agent, a curing accelerator, an organic solvent, inorganic fine particles or polymer fine particles, a pigment, an antifoaming agent, a viscosity modifier.
  • Various additives such as a leveling agent, a flame retardant, and a storage stabilizer can be used.
  • the curing agent is not particularly limited as long as it has a functional group capable of reacting with a carboxyl group in the acid group-containing (meth) acrylate resin (A), and examples thereof include an epoxy resin.
  • the epoxy resin include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition Examples include reactive epoxy resins.
  • epoxy resins can be used alone or in combination of two or more.
  • a phenol novolac type epoxy resin a cresol novolak type epoxy resin, a bisphenol novolak type epoxy resin, a naphthol novolak type epoxy resin, a naphthol-phenol co-condensed novolak type epoxy resin
  • a novolak type epoxy resin such as a naphthol-cresol co-condensed novolak type epoxy resin is preferable, and a softening point in the range of 50 to 120 ° C. is particularly preferable.
  • the curing accelerator is to accelerate the curing reaction of the curing agent.
  • an epoxy resin for example, a phosphorus compound, a tertiary amine, imidazole, an organic acid metal salt
  • Examples include Lewis acids and amine complex salts.
  • These curing accelerators can be used alone or in combination of two or more.
  • the addition amount of the curing accelerator is preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent, for example.
  • the organic solvent is not particularly limited as long as it can dissolve various components such as the acid group-containing (meth) acrylate resin (A) and a curing agent, and examples thereof include ketone solvents such as methyl ethyl ketone, acetone, and isobutyl ketone.
  • Cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; aromatic solvents such as toluene, xylene and solvent naphtha; alicyclic solvents such as cyclohexane and methylcyclohexane; carbitol and cellosolve Alcohol solvents such as methanol, isopropanol, butanol, propylene glycol monomethyl ether; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether acetate Such as glycol ethers solvents over bets, and the like. These organic solvents can be used alone or in combination of two or more.
  • the resist member of the present invention is, for example, a photomask in which a desired pattern is formed after applying the resin material for solder resist on a substrate and evaporating and drying an organic solvent in a temperature range of about 60 to 100 ° C. And exposed to an active energy ray, developed in an unexposed portion with an aqueous alkali solution, and further heat-cured in a temperature range of about 140 to 180 ° C.
  • This acid group-containing (meth) acrylate resin (A-1) had a solid content acid value of 85 mgKOH / g.
  • This acid group-containing (meth) acrylate resin (A-2) had a solid content acid value of 80 mgKOH / g.
  • a 1 L four-necked flask equipped with a stirrer, thermometer, nitrogen inlet tube, alkali trap and dropping funnel is charged with 121.8 g of aluminum chloride (anhydrous) and 300 mL of dehydrated dichloromethane, and cooled with ice in an ice bath under a nitrogen stream. did. To this was added 200 g of 2-bromobutyryl bromide. A mixed solution of 83.6 g of fluorobenzene and 100 mL of dehydrated dichloromethane was dropped into the previous flask using a dropping funnel over 20 minutes. After completion of dropping, the ice bath was removed and stirring was continued for 2 hours. After completion of the stirring, the reaction solution was put into 1 L of ice water and stirring was continued for 2 hours.
  • a 2L four-necked flask equipped with a stirrer and a thermometer was charged with 799.9 g of an 11% dimethylamine / ethanol solution and cooled in an ice bath using an ice bath.
  • the intermediate body (101) 157.7g was dripped there over 30 minutes using the dropping funnel. After completion of the dropwise addition, the ice bath was removed and stirring was continued for a whole day and night. After stirring, ethanol was distilled off and toluene was added. After washing with water, the upper layer was adjusted to pH 1 with 2N hydrochloric acid and then separated to recover the lower layer.
  • the pH of the recovered lower layer was adjusted to 12 using a 10% aqueous sodium hydroxide solution, and then toluene was added to recover the upper layer. Further, after washing twice with a saturated saline solution, the upper layer was collected and dried with magnesium sulfate all day and night. Toluene was distilled off under reduced pressure to obtain an intermediate (102).
  • a 500 mL four-necked flask equipped with a stirrer, thermometer, and dropping funnel was charged with 19.3 g of 2-chloro-4.6-dimethoxy-1,3,5-triazine and 100 mL of dehydrated dichloromethane, and ice-cooled using an ice bath. did. Thereto, 33.3 g of N-methylmorpholine was dropped over 10 minutes using a dropping funnel. After completion of dropping, 38.0 g of intermediate (112) was added and stirred for 2 hours under ice cooling. Thereto, 200 mL of dehydrated dichloromethane in which 34.4 g of piperazine was dissolved was dropped using a dropping funnel over 20 minutes. The ice bath was removed and stirring was continued at room temperature for 2 hours.
  • Example 1 Preparation of photosensitive resin composition (1)
  • 100 parts by mass of the acid group-containing (meth) acrylate resin (A-1) obtained in Synthesis Example 1 100 parts by mass of the acid group-containing (meth) acrylate resin (A-1) obtained in Synthesis Example 1, 24.6 parts by mass of an orthocresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation) as a curing agent, 6.3 parts by mass of dipentaerythritol hexaacrylate, 8 parts by mass of the photopolymerization initiator (M17) obtained in Synthesis Example 3, 13.3 parts by mass of diethylene glycol monomethyl ether acetate, 0.5 mass of 2-ethyl-4-methylimidazole Part and 0.7 parts by mass of phthalocyanine green were blended and kneaded by a roll mill to obtain a photosensitive resin composition (1).
  • A-1 acid group-containing (meth) acrylate resin obtained in Synthesis Example 1
  • Examples 2 to 5 Preparation of photosensitive resin compositions (2) to (5)
  • the photosensitivity was the same as in Example 1 except that the acid group-containing (meth) acrylate resin (A-1) and the photopolymerization initiator (M17) used in Example 1 were replaced with the compositions shown in Table 1. Resin compositions (2) to (5) were obtained.
  • the drying management width was 60 minutes or more.
  • X The dry management width was less than 60 minutes.
  • Table 1 shows the compositions and evaluation results of the photosensitive resin compositions (1) to (5) prepared in Examples 1 to 5 and the photosensitive resin compositions (C1) and (C2) prepared in Comparative Examples 1 and 2. Shown in
  • Example 6 Preparation of photosensitive resin composition (6)
  • 100 parts by mass of the acid group-containing (meth) acrylate resin (A-1) obtained in Synthesis Example 1 14.6 parts by mass of an orthocresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation) as a curing agent, 8 parts by mass of the photopolymerization initiator (M17) obtained in Synthesis Example 3 and 13.3 parts by mass of diethylene glycol monomethyl ether acetate were blended to obtain a photosensitive resin composition (6).
  • Example 7 to 10 Preparation of photosensitive resin compositions (7) to (10)
  • Photosensitivity was obtained in the same manner as in Example 6 except that the acid group-containing (meth) acrylate resin (A-1) and the photopolymerization initiator (M17) used in Example 6 were replaced with the compositions shown in Table 2. Resin compositions (7) to (10) were obtained.
  • a 6 mm ⁇ 35 mm test piece was cut out from the cured product, and a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., Ltd., tension method: frequency 1 Hz, temperature rising rate 3 ° C./min) was used.
  • the temperature at which the change in elastic modulus was maximized was evaluated as the glass transition temperature. In addition, it shows that it is excellent in heat resistance, so that glass transition temperature is high.
  • Table 2 shows the compositions and evaluation results of the photosensitive resin compositions (6) to (10) prepared in Examples 6 to 10 and the photosensitive resin compositions (C3) and (C4) prepared in Comparative Examples 3 and 4. Shown in
  • the “curing agent” in Tables 1 and 2 represents an ortho-cresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation, epoxy equivalent: 214 g / equivalent).
  • Organic solvent in Tables 1 and 2 represents diethylene glycol monomethyl ether acetate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Provided are: a photosensitive resin composition comprising an acid group-containing (meth)acrylate resin (A) and a photopolymerization initiator (B), characterized in that the photopolymerization initiator (B) is a product of a Michael addition reaction between a compound (b1) having an α-aminoacetophenone skeleton represented by general formula (1), said compound (b1) functioning as a Michael donor, and a reactive compound (b2) functioning as a Michael acceptor; a cured product; an insulating material; a resin material for solder resists; and a resist member. The photosensitive resin composition has a high photosensitivity and is capable of forming a cured product that has an excellent heat tolerance and generates little outgas.

Description

感光性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材Photosensitive resin composition, cured product, insulating material, resin material for solder resist and resist member
 本発明は、アウトガスが生じにくい感光性樹脂組成物、硬化物、前記感光性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材に関する。 The present invention relates to a photosensitive resin composition, a cured product, an insulating material made of the photosensitive resin composition, a resin material for solder resist, and a resist member that hardly generate outgas.
 近年、プリント配線板向けのソルダーレジスト用樹脂材料としては、紫外線等の活性エネルギー線により硬化可能な感光性樹脂組成物が広く用いられている。前記ソルダーレジスト用樹脂材料に対する要求特性としては、少ない露光量で硬化すること、アルカリ現像性に優れること、硬化物における耐熱性や強度、誘電特性等に優れることなど様々なものが挙げられる。 In recent years, photosensitive resin compositions that can be cured by active energy rays such as ultraviolet rays have been widely used as solder resist resin materials for printed wiring boards. The required properties for the solder resist resin material include various properties such as curing with a small exposure amount, excellent alkali developability, and excellent heat resistance, strength, dielectric properties, etc. in the cured product.
 従来のソルダーレジスト用樹脂材料としては、クレゾールノボラック型エポキシ樹脂とアクリル酸と無水フタル酸とを反応させて得られる中間体に、更にテトラヒドロ無水フタル酸を反応させて得られる酸基含有エポキシアクリレート樹脂を含む感光性樹脂組成物が知られているが(例えば、特許文献1参照。)、光感度や硬化物における耐熱性が十分ではなく、昨今ますます高まる要求性能を満足するものではなかった。 As a conventional resin material for a solder resist, an acid group-containing epoxy acrylate resin obtained by further reacting a tetrahydrophthalic anhydride with an intermediate obtained by reacting a cresol novolak type epoxy resin, acrylic acid and phthalic anhydride Is known (for example, refer to Patent Document 1), but the photosensitivity and heat resistance of the cured product are not sufficient, and it has not satisfied the increasingly required performance.
 また、前記感光性樹脂組成物は、光硬化時、その後必要に応じて行われる熱硬化時、または実装時のはんだ付けの際に、光重合開始剤などの含有成分が揮発してガス化し、周囲を汚染するアウトガスの問題があった。 In addition, the photosensitive resin composition is gasified by volatilizing components such as a photopolymerization initiator at the time of photocuring, then at the time of heat curing performed as necessary, or at the time of soldering at the time of mounting, There was an outgas problem that contaminated the surroundings.
 そこで、光感度及び硬化物における耐熱性に優れ、さらに、アウトガスが生じにくい感光性樹脂組成物が求められていた。 Therefore, there has been a demand for a photosensitive resin composition that is excellent in photosensitivity and heat resistance in a cured product, and that hardly causes outgassing.
特開平8-259663号公報JP-A-8-259663
 本発明が解決しようとする課題は、高い光感度及び硬化物における優れた耐熱性を有し、かつ、アウトガスが生じにくい感光性樹脂組成物、硬化物、前記感光性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材を提供することである。 The problem to be solved by the present invention is a photosensitive resin composition having high photosensitivity and excellent heat resistance in a cured product, and hardly generating outgas, a cured product, and an insulating material comprising the photosensitive resin composition It is providing the resin material for solder resists, and a resist member.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、酸基含有(メタ)アクリレート樹脂と、特定の光重合開始剤とを含む感光性樹脂組成物を用いることによって、上記課題を解決できることを見出し、本発明を完成させた。 As a result of diligent research to solve the above problems, the present inventors have solved the above problems by using a photosensitive resin composition containing an acid group-containing (meth) acrylate resin and a specific photopolymerization initiator. The inventors have found that this can be solved and completed the present invention.
 すなわち、本発明は、酸基含有(メタ)アクリレート樹脂(A)と、光重合開始剤(B)とを含有する感光性樹脂組成物であって、前記光重合開始剤(B)が、下記一般式(1)で表されるマイケル付加供与体として機能するα-アミノアセトフェノン骨格含有化合物(b1)と、マイケル受容体としての機能を有する反応性化合物(b2)とのマイケル付加反応物であることを特徴とする感光性樹脂組成物、硬化物、前記感光性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材に関するものである。 That is, the present invention is a photosensitive resin composition containing an acid group-containing (meth) acrylate resin (A) and a photopolymerization initiator (B), wherein the photopolymerization initiator (B) is: A Michael addition reaction product of an α-aminoacetophenone skeleton-containing compound (b1) functioning as a Michael addition donor represented by the general formula (1) and a reactive compound (b2) having a function as a Michael acceptor. The present invention relates to a photosensitive resin composition, a cured product, an insulating material composed of the photosensitive resin composition, a resin material for solder resist, and a resist member.
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、
は脂肪族基またはアリール基を表し、
及びRはそれぞれ独立して脂肪族基またはアリール基を表し、
またRとRとはそれぞれ一体となって環を形成してもよく、
~Rはそれぞれ独立して水素原子、脂肪族基またはアリール基を表し、
は単結合または炭素原子数1~6の直鎖状若しくは分岐状のアルキレン基を表し、
はカルボニル基またはチオカルボニル基を表し、
は下記一般式(2)、下記一般式(3)または下記一般式(4)で表される基を表し、
は下記一般式(2)または下記一般式(3)で表される基を表す。但し、Y及びYが共に下記一般式(2)で表される構造を有する場合は、その少なくとも一方のXは-NH-である。
nは、0または1である。)
Figure JPOXMLDOC01-appb-C000005
(In general formula (1),
R 1 represents an aliphatic group or an aryl group,
R 2 and R 3 each independently represents an aliphatic group or an aryl group,
R 2 and R 3 may be combined together to form a ring,
R 4 to R 7 each independently represents a hydrogen atom, an aliphatic group or an aryl group,
X 1 represents a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms,
X 2 represents a carbonyl group or a thiocarbonyl group,
Y 1 represents a group represented by the following general formula (2), the following general formula (3) or the following general formula (4),
Y 2 represents a group represented by the following general formula (2) or the following general formula (3). However, when both Y 1 and Y 2 have a structure represented by the following general formula (2), at least one of X 5 is —NH—.
n is 0 or 1. )
Figure JPOXMLDOC01-appb-C000006
(一般式(2)中、X及びXはそれぞれ独立して、炭素原子数2~6の直鎖状若しくは分岐状のアルキレン基またはオキシアルキレン基を、Xは単結合、-O-または-NH-を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (2), X 3 and X 4 each independently represent a linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms, X 5 represents a single bond, —O— Or -NH-.
Figure JPOXMLDOC01-appb-C000007
(一般式(3)中、Xは置換基を有するか若しくは無置換の炭素原子数2~6の直鎖状若しくは分岐状のアルキレン基またはオキシアルキレン基を表し、R及びRはそれぞれ独立して脂肪族基またはアリール基を表す。)
Figure JPOXMLDOC01-appb-C000007
(In the general formula (3), X 6 represents a substituted or unsubstituted linear or branched alkylene or oxyalkylene group having 2 to 6 carbon atoms, wherein R 8 and R 9 are each Independently represents an aliphatic group or an aryl group.)
Figure JPOXMLDOC01-appb-C000008
(一般式(4)中、R10及びR11はそれぞれ独立して脂肪族基またはアリール基を表す。)
Figure JPOXMLDOC01-appb-C000008
(In General Formula (4), R 10 and R 11 each independently represents an aliphatic group or an aryl group.)
 本発明の感光性樹脂組成物は、高い光感度及び硬化物における優れた耐熱性を有しており、また、アウトガスが生じにくいことから、絶縁材料、ソルダーレジスト用樹脂材料、及び前記ソルダーレジスト用樹脂からなるレジスト部材に好適に用いることができる。 The photosensitive resin composition of the present invention has high photosensitivity and excellent heat resistance in a cured product, and since it is difficult for outgas to occur, an insulating material, a resin material for solder resist, and the solder resist It can use suitably for the resist member which consists of resin.
 本発明の感光性樹脂組成物は、酸基含有(メタ)アクリレート樹脂(A)と、下記一般式(1)で表される光重合性開始剤(B)とを含有することを特徴とする。 The photosensitive resin composition of the present invention contains an acid group-containing (meth) acrylate resin (A) and a photopolymerizable initiator (B) represented by the following general formula (1). .
Figure JPOXMLDOC01-appb-C000009
(一般式(1)中、
は脂肪族基またはアリール基を表し、
及びRはそれぞれ独立して脂肪族基またはアリール基を表し、
またRとRとはそれぞれ一体となって環を形成してもよく、
~Rはそれぞれ独立して水素原子、脂肪族基またはアリール基を表し、
は単結合または炭素原子数1~6の直鎖状若しくは分岐状のアルキレン基を表し、
はカルボニル基またはチオカルボニル基を表し、
は下記一般式(2)、下記一般式(3)または下記一般式(4)で表される基を表し、
は下記一般式(2)または下記一般式(3)で表される基を表す。但し、Y及びYが共に下記一般式(2)で表される構造を有する場合は、その少なくとも一方のXは-NH-である。
nは、0または1である。)
Figure JPOXMLDOC01-appb-C000009
(In general formula (1),
R 1 represents an aliphatic group or an aryl group,
R 2 and R 3 each independently represents an aliphatic group or an aryl group,
R 2 and R 3 may be combined together to form a ring,
R 4 to R 7 each independently represents a hydrogen atom, an aliphatic group or an aryl group,
X 1 represents a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms,
X 2 represents a carbonyl group or a thiocarbonyl group,
Y 1 represents a group represented by the following general formula (2), the following general formula (3) or the following general formula (4),
Y 2 represents a group represented by the following general formula (2) or the following general formula (3). However, when both Y 1 and Y 2 have a structure represented by the following general formula (2), at least one of X 5 is —NH—.
n is 0 or 1. )
Figure JPOXMLDOC01-appb-C000010
(一般式(2)中、X及びXはそれぞれ独立して、炭素原子数2~6の直鎖状若しくは分岐状のアルキレン基またはオキシアルキレン基を、Xは単結合、-O-または-NH-を表す。)
Figure JPOXMLDOC01-appb-C000010
(In the general formula (2), X 3 and X 4 each independently represent a linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms, X 5 represents a single bond, —O— Or -NH-.
Figure JPOXMLDOC01-appb-C000011
(一般式(3)中、Xは置換基を有するか若しくは無置換の炭素原子数2~6の直鎖状若しくは分岐状のアルキレン基またはオキシアルキレン基を表し、R及びRはそれぞれ独立して脂肪族基またはアリール基を表す。)
Figure JPOXMLDOC01-appb-C000011
(In the general formula (3), X 6 represents a substituted or unsubstituted linear or branched alkylene or oxyalkylene group having 2 to 6 carbon atoms, wherein R 8 and R 9 are each Independently represents an aliphatic group or an aryl group.)
Figure JPOXMLDOC01-appb-C000012
(一般式(4)中、R10及びR11はそれぞれ独立して脂肪族基またはアリール基を表す。)
Figure JPOXMLDOC01-appb-C000012
(In General Formula (4), R 10 and R 11 each independently represents an aliphatic group or an aryl group.)
 なお、本発明において、「(メタ)アクリレート樹脂」とは、分子中にアクリロイル基及びメタクリロイル基の一方または両方を有する樹脂のことをいう。また、「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の一方または両方のことをいい、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの一方また両方をいう。 In the present invention, “(meth) acrylate resin” refers to a resin having one or both of an acryloyl group and a methacryloyl group in the molecule. Further, “(meth) acryloyl group” means one or both of acryloyl group and methacryloyl group, and “(meth) acrylate” means one or both of acrylate and methacrylate.
 前記酸基含有(メタ)アクリレート樹脂(A)について説明する。 The acid group-containing (meth) acrylate resin (A) will be described.
 前記酸基含有(メタ)アクリレート樹脂(A)としては、酸基及び(メタ)アクリロイル基を有していればよく、その他の具体構造や分子量等は特に問われず、多種多様な樹脂を用いることができる。 The acid group-containing (meth) acrylate resin (A) only needs to have an acid group and a (meth) acryloyl group, and other specific structures and molecular weights are not particularly limited, and a wide variety of resins are used. Can do.
 前記酸基含有(メタ)アクリレート樹脂(A)が含有する酸基としては、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。これらの中でも優れたアルカリ現像性を発現することから、カルボキシル基が好ましい。 Examples of the acid group contained in the acid group-containing (meth) acrylate resin (A) include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyl group is preferable because it exhibits excellent alkali developability.
 前記酸基含有(メタ)アクリレート樹脂(A)としては、例えば、〔1〕エポキシ樹脂(a1-1)と、不飽和モノカルボン酸(a1-2)と、ポリカルボン酸無水物(a1-3)とを必須の反応原料とする酸基含有(メタ)アクリレート樹脂(A-1)、〔2〕フェノール性水酸基含有樹脂(a2-1)と、環状カーボネート化合物(a2-2a)または環状エーテル化合物(a2-2b)と、不飽和モノカルボン酸(a2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)と、ポリカルボン酸無水物(a2-4)とを必須の反応原料とする酸基含有(メタ)アクリレート樹脂(A-2)、〔3〕酸基または酸無水物基を有するアミドイミド樹脂(a3-1)と、水酸基含有(メタ)アクリレート化合物(a3-2)と、(メタ)アクリロイル基含有エポキシ化合物(a3-3)と、ポリカルボン酸無水物(a3-4)とを必須の反応原料とする酸基含有(メタ)アクリレート樹脂(A-3)等が挙げられる。 Examples of the acid group-containing (meth) acrylate resin (A) include [1] epoxy resin (a1-1), unsaturated monocarboxylic acid (a1-2), and polycarboxylic acid anhydride (a1-3). ) And (2) a phenolic hydroxyl group-containing resin (a2-1) and a cyclic carbonate compound (a2-2a) or a cyclic ether compound. (A2-2b), an unsaturated monocarboxylic acid (a2-3a) and / or an N-alkoxyalkyl (meth) acrylamide compound (a2-3b), and a polycarboxylic acid anhydride (a2-4) are essential. Acid group-containing (meth) acrylate resin (A-2), [3] Amidoimide resin (a3-1) having acid group or acid anhydride group, and hydroxyl group-containing (meth) acrylate Acid group-containing (meth) acrylate resin comprising compound (a3-2), (meth) acryloyl group-containing epoxy compound (a3-3), and polycarboxylic acid anhydride (a3-4) as essential reaction materials ( A-3) and the like.
 〔1〕酸基含有(メタ)アクリレート樹脂(A-1)について説明する。 [1] The acid group-containing (meth) acrylate resin (A-1) will be described.
 前記酸基含有(メタ)アクリレート樹脂(A-1)は、エポキシ樹脂(a1-1)と、不飽和モノカルボン酸(a1-2)と、ポリカルボン酸無水物(a1-3)とを必須の反応原料として得られるものである。 The acid group-containing (meth) acrylate resin (A-1) essentially comprises an epoxy resin (a1-1), an unsaturated monocarboxylic acid (a1-2), and a polycarboxylic acid anhydride (a1-3). Obtained as a reaction raw material.
 前記エポキシ樹脂(a1-1)としては、樹脂中に複数のエポキシ基を有しているものであれば、その具体構造は特に限定されない。 The specific structure of the epoxy resin (a1-1) is not particularly limited as long as it has a plurality of epoxy groups in the resin.
 前記エポキシ樹脂(a1-1)としては、例えば、ビスフェノール型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、水添ビフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂等が挙げられる。 Examples of the epoxy resin (a1-1) include bisphenol type epoxy resins, hydrogenated bisphenol type epoxy resins, biphenol type epoxy resins, hydrogenated biphenol type epoxy resins, phenylene ether type epoxy resins, naphthylene ether type epoxy resins, Phenol novolac type epoxy resin, cresol novolak type epoxy resin, bisphenol novolak type epoxy resin, naphthol novolak type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, etc. .
 前記不飽和モノカルボン酸(a1-2)とは、一分子中に(メタ)アクリロイル基とカルボキシル基とを有する化合物をいい、例えば、アクリル酸、メタクリル酸等が挙げられる。また、前記不飽和モノカルボン酸(a1-2)のエステル化物、酸ハロゲン化物、酸無水物等も用いることができる。これらの不飽和モノカルボン酸(a1-2)は、単独で用いることも2種以上を併用することもできる。 The unsaturated monocarboxylic acid (a1-2) refers to a compound having a (meth) acryloyl group and a carboxyl group in one molecule, and examples thereof include acrylic acid and methacrylic acid. Further, esterified products, acid halides, acid anhydrides and the like of the unsaturated monocarboxylic acid (a1-2) can also be used. These unsaturated monocarboxylic acids (a1-2) can be used alone or in combination of two or more.
 前記不飽和モノカルボン酸(a1-2)のエステル化物としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル化合物;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル化合物;(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル等の窒素含有(メタ)アクリル酸エステル化合物;(メタ)アクリル酸グリシジル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸モルホリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸シクロへキシル等のその他(メタ)アクリル酸エステル化合物などが挙げられる。 Examples of the esterified product of the unsaturated monocarboxylic acid (a1-2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, ( (Meth) acrylic acid alkyl esters such as n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate Compound; Hydroxyl group-containing (meth) acrylate compound such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate; dimethylaminoethyl (meth) acrylate, (meth) acrylic Nitrogen-containing (meth) acrylic acid ester such as diethylaminoethyl acid Other compounds (meth) acrylates such as glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, morpholyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate Compound etc. are mentioned.
 前記不飽和モノカルボン酸(a1-2)の酸ハロゲン化物としては、例えば、(メタ)アクリル酸クロライド等が挙げられる。 Examples of the acid halide of the unsaturated monocarboxylic acid (a1-2) include (meth) acrylic acid chloride.
 前記不飽和モノカルボン酸(b1-3)の酸無水物としては、例えば、(メタ)アクリル酸無水物等が挙げられる。 Examples of the acid anhydride of the unsaturated monocarboxylic acid (b1-3) include (meth) acrylic acid anhydride.
 前記ポリカルボン酸無水物(a1-3)は、一分子中に2つ以上のカルボキシル基を有する化合物の酸無水物であれば、いずれのものも用いることができる。前記ポリカルボン酸無水物としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸化合物の酸無水物などが挙げられる。 As the polycarboxylic acid anhydride (a1-3), any acid anhydride of a compound having two or more carboxyl groups in one molecule can be used. Examples of the polycarboxylic acid anhydride include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, Examples thereof include acid anhydrides of dicarboxylic acid compounds such as terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, and methylhexahydrophthalic acid.
 前記酸基含有(メタ)アクリレート樹脂(A-1)の製造方法は、前記エポキシ樹脂(a1-1)、前記不飽和モノカルボン酸(a1-2)、及び前記ポリカルボン酸無水物(a1-3)を必須の反応原料とするものであれば特に限定されず、どのような方法にて製造してもよい。例えば、反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、先にエポキシ樹脂(a1-1)と不飽和モノカルボン酸(a1-2)とを反応させ、次いで、ポリカルボン酸無水物(a1-3)を反応させる方法が好ましい。該反応は、例えば、エポキシ樹脂(a1-1)と不飽和モノカルボン酸(a1-2)とをエステル化反応触媒の存在下、100~150℃の温度範囲で反応させた後、反応系中にポリカルボン酸無水物(a1-3)を加え、90~120℃の温度範囲で反応させる方法等により行うことができる。 The method for producing the acid group-containing (meth) acrylate resin (A-1) includes the epoxy resin (a1-1), the unsaturated monocarboxylic acid (a1-2), and the polycarboxylic acid anhydride (a1- The method is not particularly limited as long as 3) is an essential reaction raw material, and any method may be used. For example, it may be produced by a method in which all of the reaction raw materials are reacted together, or may be produced by a method in which the reaction raw materials are reacted sequentially. Among these, since the reaction is easily controlled, the epoxy resin (a1-1) and the unsaturated monocarboxylic acid (a1-2) are first reacted, and then the polycarboxylic acid anhydride (a1-3) The method of reacting is preferred. The reaction is carried out, for example, by reacting an epoxy resin (a1-1) and an unsaturated monocarboxylic acid (a1-2) in the temperature range of 100 to 150 ° C. in the presence of an esterification reaction catalyst. The polycarboxylic acid anhydride (a1-3) can be added to the mixture and reacted at a temperature range of 90 to 120 ° C.
 前記エポキシ樹脂(a1-1)と不飽和モノカルボン酸(a1-2)との反応割合は、エポキシ樹脂(a1-1)中のエポキシ基1モルに対し、不飽和モノカルボン酸(a1-2)を0.9~1.1モルの範囲で用いることが好ましい。また、前記ポリカルボン酸無水物(a1-3)の反応割合は、エポキシ樹脂(a1-1)中のエポキシ基1モルに対し、0.2~1.0モルの範囲で用いることが好ましい。 The reaction ratio of the epoxy resin (a1-1) to the unsaturated monocarboxylic acid (a1-2) is the amount of the unsaturated monocarboxylic acid (a1-2) relative to 1 mol of the epoxy group in the epoxy resin (a1-1). ) Is preferably used in the range of 0.9 to 1.1 mol. The reaction rate of the polycarboxylic acid anhydride (a1-3) is preferably in the range of 0.2 to 1.0 mol with respect to 1 mol of the epoxy group in the epoxy resin (a1-1).
 前記エステル化反応触媒としては、例えば、トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のリン化合物、トリエチルアミン、トリブチルアミン、ジメチルベンジルアミン等のアミン化合物、2-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール等のイミダゾール化合物などが挙げられる。これらの反応触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the esterification reaction catalyst include phosphorus compounds such as trimethylphosphine, tributylphosphine and triphenylphosphine, amine compounds such as triethylamine, tributylamine and dimethylbenzylamine, 2-methylimidazole, 2-heptadecylimidazole, 2- Examples thereof include imidazole compounds such as ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole and 1-isobutyl-2-methylimidazole. These reaction catalysts can be used alone or in combination of two or more.
 前記反応触媒の添加量は、反応原料の合計100質量部に対して0.001~5質量部の範囲が好ましい。 The amount of the reaction catalyst added is preferably in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass of the total reaction raw material.
 前記エポキシ樹脂(a1-1)、前記不飽和モノカルボン酸(a1-2)、及び前記ポリカルボン酸無水物(a1-3)の反応は、必要に応じて有機溶媒中で行うこともできる。用いる有機溶媒の選択は、反応原料及び生成物である酸基含有(メタ)アクリレート樹脂の溶解性や、反応温度条件により適宜選択し得るが、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジアルキレングリコールモノアルキルエーテルアセテート、ジアルキレングリコールアセテート等が挙げられる。これらの有機溶媒は、単独で用いることも、2種以上を併用し混合溶媒として用いることもできる。 The reaction of the epoxy resin (a1-1), the unsaturated monocarboxylic acid (a1-2), and the polycarboxylic acid anhydride (a1-3) can be performed in an organic solvent as necessary. The organic solvent to be used can be appropriately selected depending on the solubility of the acid group-containing (meth) acrylate resin that is the reaction raw material and the product and the reaction temperature conditions. For example, methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, Examples include methoxypropanol, cyclohexanone, methyl cellosolve, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These organic solvents can be used alone or in combination of two or more as a mixed solvent.
 前記有機溶媒の使用量は、反応効率が良好となることから、反応原料の合計100質量部に対して10~500質量部の範囲が好ましい。 The amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass with respect to a total of 100 parts by mass of the reaction raw materials because the reaction efficiency is good.
 本発明に用いる酸基含有(メタ)アクリレート樹脂(A-1)の酸価は、高い光感度を有し、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~100mgKOH/gの範囲がより好ましい。なお、本願発明において酸基含有(メタ)アクリレート樹脂の酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。 The acid value of the acid group-containing (meth) acrylate resin (A-1) used in the present invention has a high photosensitivity and an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent heat resistance Is preferably in the range of 30 to 150 mgKOH / g, more preferably in the range of 40 to 100 mgKOH / g. In the present invention, the acid value of the acid group-containing (meth) acrylate resin is a value measured by a neutralization titration method of JIS K 0070 (1992).
 次に、〔2〕酸基含有(メタ)アクリレート樹脂(A-2)について説明する。 Next, [2] acid group-containing (meth) acrylate resin (A-2) will be described.
 前記酸基含有(メタ)アクリレート樹脂(A-2)は、フェノール性水酸基含有樹脂(a2-1)と、環状カーボネート化合物(a2-2a)または環状エーテル化合物(a2-2b)と、不飽和モノカルボン酸(a2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)と、ポリカルボン酸無水物(a2-4)とを必須の反応原料として得られるものである。 The acid group-containing (meth) acrylate resin (A-2) includes a phenolic hydroxyl group-containing resin (a2-1), a cyclic carbonate compound (a2-2a) or a cyclic ether compound (a2-2b), The carboxylic acid (a2-3a) and / or the N-alkoxyalkyl (meth) acrylamide compound (a2-3b) and the polycarboxylic acid anhydride (a2-4) are obtained as essential reaction materials.
 前記フェノール性水酸基含有樹脂(a2-1)とは、分子内にフェノール性水酸基を2つ以上有する樹脂をいい、例えば、芳香族ポリヒドロキシ化合物や、分子内にフェノール性水酸基を1つ有する化合物の1種または2種以上を反応原料とするノボラック型フェノール樹脂や、前記フェノール性水酸基を1つ有する化合物と下記構造式(x-1)~(x-5)の何れかで表される化合物(x)とを必須の反応原料とする反応生成物等が挙げられる。 The phenolic hydroxyl group-containing resin (a2-1) refers to a resin having two or more phenolic hydroxyl groups in the molecule, such as an aromatic polyhydroxy compound or a compound having one phenolic hydroxyl group in the molecule. A novolak-type phenol resin using one or more kinds as a reaction raw material, a compound having one phenolic hydroxyl group, and a compound represented by any of the following structural formulas (x-1) to (x-5) ( and reaction products using x) as an essential reaction raw material.
Figure JPOXMLDOC01-appb-C000013
(式中hは、0または1である。Rは、それぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アリールオキシ基、アラルキル基の何れかであり、iは、0または1~4の整数である。Zは、ビニル基、ハロメチル基、ヒドロキシメチル基、アルキルオキシメチル基の何れかである。Yは、炭素原子数1~4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかである。jは1~4の整数である。)
Figure JPOXMLDOC01-appb-C000013
(In the formula, h is 0 or 1. R 1 is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, or an aralkyl group, and i is 0. Or an integer of 1 to 4. Z is a vinyl group, a halomethyl group, a hydroxymethyl group, or an alkyloxymethyl group, and Y is an alkylene group having 1 to 4 carbon atoms, an oxygen atom, or a sulfur atom. Or carbonyl group, j is an integer of 1 to 4.)
 前記芳香族ポリヒドロキシ化合物としては、例えば、ジヒドロキシベンゼン、トリヒドロキシベンゼン、テトラヒドロキシベンゼン、ジヒドロキシナフタレン、トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ジヒドロキシアントラセン、トリヒドロキシアントラセン、テトラヒドロキシアントラセン、ビフェノール、テトラヒドロキシビフェニル、ビスフェノール等の他、これらの芳香核上に1つまたは複数の置換基を有する化合物などが挙げられる。また、芳香核上の置換基としては、例えば、メチル基、エチル基、ビニル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等の脂肪族炭化水素基;メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基、前記アルコキシ基、前記ハロゲン原子等が置換したアリール基;フェニルオキシ基、ナフチルオキシ基、及びこれらの芳香核上に前記脂肪族炭化水素基、前記アルコキシ基、前記ハロゲン原子等が置換したアリールオキシ基;フェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記脂肪族炭化水素基、前記アルコキシ基、前記ハロゲン原子等が置換したアラルキル基などが挙げられる。これらの芳香族ポリヒドロキシ化合物は、単独で用いることも2種以上を併用することもできる。これらの中でも、高い絶縁信頼性を有する酸基含有(メタ)アクリレート樹脂が得られることから、ハロゲンを含有しない化合物が好ましい。 Examples of the aromatic polyhydroxy compound include dihydroxybenzene, trihydroxybenzene, tetrahydroxybenzene, dihydroxynaphthalene, trihydroxynaphthalene, tetrahydroxynaphthalene, dihydroxyanthracene, trihydroxyanthracene, tetrahydroxyanthracene, biphenol, tetrahydroxybiphenyl, In addition to bisphenol and the like, compounds having one or more substituents on these aromatic nuclei may be mentioned. Examples of the substituent on the aromatic nucleus include a methyl group, an ethyl group, a vinyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, and a nonyl group. Aliphatic hydrocarbon group; alkoxy group such as methoxy group, ethoxy group, propyloxy group, butoxy group; halogen atom such as fluorine atom, chlorine atom, bromine atom; phenyl group, naphthyl group, anthryl group, and aromatic nucleus thereof An aryl group substituted with the aliphatic hydrocarbon group, the alkoxy group, the halogen atom or the like above; a phenyloxy group, a naphthyloxy group, and the aliphatic hydrocarbon group, the alkoxy group, Aryloxy groups substituted by halogen atoms and the like; phenylmethyl group, phenylethyl group, naphthylmethyl group, naphthylethyl group, and These aromatic nuclei wherein the aliphatic hydrocarbon group on the alkoxy group, the halogen atom and the like and aralkyl groups substituted. These aromatic polyhydroxy compounds can be used alone or in combination of two or more. Among these, a compound containing no halogen is preferable because an acid group-containing (meth) acrylate resin having high insulation reliability can be obtained.
 前記ノボラック型フェノール樹脂としては、例えば、分子内にフェノール性水酸基を1つ有する化合物の1種または2種以上と、アルデヒド化合物とを酸性触媒下で反応させて得られるものが挙げられる。 Examples of the novolac type phenol resin include those obtained by reacting one or more compounds having one phenolic hydroxyl group in the molecule with an aldehyde compound in the presence of an acidic catalyst.
 前記分子内にフェノール性水酸基を1つ有する化合物としては、芳香核上に水酸基を1つ有する芳香族化合物であれば何れの化合物でもよく、例えば、フェノール或いはフェノールの芳香核上に1つまたは複数の置換基を有するフェノール化合物、ナフトール或いはナフトールの芳香核上に1つまたは複数の置換基を有するナフトール化合物、アントラセノール或いはアントラセノールの芳香核上に1つまたは複数の置換基を有するアントラセノール化合物等が挙げられる。また、芳香核上の置換基としては、例えば、脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アリールオキシ基、アラルキル基等が挙げられ、それぞれの具体例は前述の通りである。これらのフェノール性水酸基を1つ有する化合物は、単独で用いることも、2種以上を併用することもできる。 The compound having one phenolic hydroxyl group in the molecule may be any compound as long as it is an aromatic compound having one hydroxyl group on the aromatic nucleus. For example, one or a plurality of compounds on the aromatic nucleus of phenol or phenol are used. Phenol compounds having one or more substituents, naphthols or naphthol compounds having one or more substituents on the aromatic nucleus of naphthol, anthracans having one or more substituents on the aromatic nucleus of anthracenol or anthracenol Examples include a senol compound. Examples of the substituent on the aromatic nucleus include an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, and an aralkyl group, and specific examples of each are as described above. These compounds having one phenolic hydroxyl group can be used alone or in combination of two or more.
 前記アルデヒド化合物としては、例えば、ホルムアルデヒド;アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、ペンチルアルデヒド、へキシルアルデヒド等のアルキルアルデヒド;サリチルアルデヒド、3-ヒドロキシベンズアルデヒド、4-ヒドロキシベンズアルデヒド、2-ヒドロキシ-4-メチルベンズアルデヒド、2,4-ジヒドロキシベンズアルデヒド、3,4-ジヒドロキシベンズアルデヒド等のヒドロキシベンズアルデヒド;2-ヒドロキシ-3-メトキシベンズアルデヒド、3-ヒドロキシ-4-メトキシベンズアルデヒド、4-ヒドロキシ-3-メトキシベンズアルデヒド、3-エトキシ-4-ヒドロキシベンズアルデヒド、4-ヒドロキシ-3,5-ジメトキシベンズアルデヒド等のヒドロキシ基とアルコキシ基の両方を有するベンズアルデヒド;メトキシベンズアルデヒド、エトキシベンズアルデヒド等のアルコキシベンズアルデヒド;1-ヒドロキシ-2-ナフトアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、6-ヒドロキシ-2-ナフトアルデヒド等のヒドロキシナフトアルデヒド;ブロムベンズアルデヒド等のハロゲン化ベンズアルデヒド等が挙げられる。 Examples of the aldehyde compound include formaldehyde; alkyl aldehydes such as acetaldehyde, propyl aldehyde, butyraldehyde, isobutyraldehyde, pentyl aldehyde, hexyl aldehyde; salicyl aldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 2-hydroxy-4 -Hydroxybenzaldehydes such as methylbenzaldehyde, 2,4-dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde; 2-hydroxy-3-methoxybenzaldehyde, 3-hydroxy-4-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, 3 -Ethoxy-4-hydroxybenzaldehyde, 4-hydroxy-3,5-dimethoxybenzaldehyde Benzaldehydes having both hydroxy groups and alkoxy groups; alkoxybenzaldehydes such as methoxybenzaldehyde and ethoxybenzaldehyde; 1-hydroxy-2-naphthaldehyde, 2-hydroxy-1-naphthaldehyde, 6-hydroxy-2-naphthaldehyde and the like Hydroxynaphthaldehyde; Halogenated benzaldehyde such as bromobenzaldehyde.
 前記酸性触媒としては、例えば、塩酸、硫酸、リン酸等の無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸などが挙げられる。これらの酸性触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Etc. These acidic catalysts can be used alone or in combination of two or more.
 前記フェノール性水酸基を1つ有する化合物と前記化合物(x)とを必須の反応原料とする反応生成物としては、例えば、前記分子内にフェノール性水酸基を1つ有する化合物と前記化合物(x)とを、酸性触媒下で80~200℃程度の温度条件下で加熱撹拌する方法により得ることができる。前記分子内にフェノール性水酸基を1つ有する化合物と前記化合物(x)との反応割合は、前記化合物(x)1モルに対して、前記分子内にフェノール性水酸基を1つ有する化合物が、0.5~5モルとなる割合であることが好ましい。 As a reaction product using the compound having one phenolic hydroxyl group and the compound (x) as essential reaction raw materials, for example, a compound having one phenolic hydroxyl group in the molecule and the compound (x) Can be obtained by a method of heating and stirring under a temperature condition of about 80 to 200 ° C. under an acidic catalyst. The reaction ratio between the compound having one phenolic hydroxyl group in the molecule and the compound (x) is 0 for the compound having one phenolic hydroxyl group in the molecule with respect to 1 mol of the compound (x). The ratio is preferably 5 to 5 mol.
 前記酸性触媒としては、上述したものと同様である。 The acid catalyst is the same as described above.
 前記環状カーボネート化合物(a2-2a)としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ペンチレンカーボネート等が挙げられる。これらの環状カーボネート化合物は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、高い光感度を有し、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、エチレンカーボネート、またはプロピレンカーボネートが好ましい。 Examples of the cyclic carbonate compound (a2-2a) include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate, and the like. These cyclic carbonate compounds can be used alone or in combination of two or more. Among these, ethylene carbonate or propylene carbonate is preferable because an acid group-containing (meth) acrylate resin composition capable of forming a cured product having high photosensitivity and excellent heat resistance can be obtained.
 前記環状エーテル化合物(a2-2b)としては、例えば、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等が挙げられる。これらの環状エーテル化合物は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、高い光感度を有し、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、エチレンオキサイド、またはプロピレンオキサイドが好ましい。 Examples of the cyclic ether compound (a2-2b) include ethylene oxide, propylene oxide, and tetrahydrofuran. These cyclic ether compounds can be used alone or in combination of two or more. Among these, ethylene oxide or propylene oxide is preferable because an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having excellent heat resistance can be obtained.
 前記不飽和モノカルボン酸(a2-3a)としては、上述の不飽和モノカルボン酸(a1-2)と同様のものを用いることができる。 As the unsaturated monocarboxylic acid (a2-3a), the same unsaturated monocarboxylic acid (a1-2) as described above can be used.
 前記N-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)としては、例えば、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-ブトキシエチル(メタ)アクリルアミド等が挙げられる。これらの中でも、高い光感度を有し、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、N-メトキシメチル(メタ)アクリルアミドが好ましい。また、これらのN-アルコキシアルキル(メタ)アクリルアミド化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the N-alkoxyalkyl (meth) acrylamide compound (a2-3b) include N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, and N-methoxy. Examples include ethyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, and N-butoxyethyl (meth) acrylamide. Among these, N-methoxymethyl (meth) acrylamide is preferable because an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having excellent heat resistance can be obtained. Moreover, these N-alkoxyalkyl (meth) acrylamide compounds can be used alone or in combination of two or more.
 前記ポリカルボン酸無水物(a2-4)としては、上述のポリカルボン酸無水物(a1-3)と同様のものを用いることができる。 As the polycarboxylic acid anhydride (a2-4), the same polycarboxylic acid anhydride (a1-3) described above can be used.
 前記N-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)を用いる場合、前記ポリカルボン酸無水物(a2-4))との当量比[(a2-3b)/(a2-4))]は、高い光感度を有し、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、0.2~7の範囲が好ましく、0.25~6.7の範囲がより好ましい。 When the N-alkoxyalkyl (meth) acrylamide compound (a2-3b) is used, the equivalent ratio [(a2-3b) / (a2-4)) to the polycarboxylic acid anhydride (a2-4)) is From the viewpoint of obtaining an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product excellent in heat resistance, the range of 0.2 to 7 is preferable, and 0.25 to 6 A range of .7 is more preferred.
 前記酸基含有(メタ)アクリレート樹脂(A-2)の製造方法は、特に限定されず、どのような方法にて製造してもよい。例えば、反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、先にフェノール性水酸基含有樹脂(a2-1)と、環状カーボネート化合物(a2-2a)または環状エーテル化合物(a2-2b)とを反応させて、次いで、不飽和モノカルボン酸(a2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)を反応させた後、ポリカルボン酸無水物(a2-4)を反応させる方法が好ましい。該反応は、例えば、前記フェノール性水酸基含有樹脂(a2-1)と前記前記環状カーボネート化合物(a2-2a)または前記環状エーテル化合物(a2-2b)とを塩基性触媒の存在下、100~200℃の温度範囲で反応させた後、酸性触媒の存在下、不飽和ポリカルボン酸(b2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)を80~140℃の温度範囲で反応させ、次いで、ポリカルボン酸無水物(a2-4)を加え、80~140℃の温度範囲で反応させる方法等により行うことができる。 The method for producing the acid group-containing (meth) acrylate resin (A-2) is not particularly limited, and any method may be used. For example, it may be produced by a method in which all of the reaction raw materials are reacted together, or may be produced by a method in which the reaction raw materials are reacted sequentially. Among these, since the reaction is easily controlled, the phenolic hydroxyl group-containing resin (a2-1) is first reacted with the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2-2b), Next, after reacting the unsaturated monocarboxylic acid (a2-3a) and / or the N-alkoxyalkyl (meth) acrylamide compound (a2-3b), the polycarboxylic acid anhydride (a2-4) is reacted. preferable. The reaction is performed, for example, by combining the phenolic hydroxyl group-containing resin (a2-1) with the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2-2b) in the presence of a basic catalyst. After the reaction in the temperature range of 0 ° C., the unsaturated polycarboxylic acid (b2-3a) and / or the N-alkoxyalkyl (meth) acrylamide compound (a2-3b) is heated at a temperature of 80 to 140 ° C. in the presence of an acidic catalyst. The reaction can be carried out in the range, followed by the addition of polycarboxylic anhydride (a2-4) and the reaction in the temperature range of 80 to 140 ° C.
 前記塩基性触媒としては、例えば、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のリン化合物、トリエチルアミン、トリブチルアミン、ジメチルベンジルアミン等のアミン化合物、2-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール等のイミダゾール化合物などが挙げられる。これらの塩基性触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the basic catalyst include alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal waters such as sodium hydroxide and potassium hydroxide. Oxides, phosphorus compounds such as trimethylphosphine, tributylphosphine, triphenylphosphine, amine compounds such as triethylamine, tributylamine, dimethylbenzylamine, 2-methylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, Examples thereof include imidazole compounds such as 1-benzyl-2-methylimidazole and 1-isobutyl-2-methylimidazole. These basic catalysts can be used alone or in combination of two or more.
 前記酸性触媒としては、例えば、塩酸、硫酸、リン酸等の無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸などが挙げられる。これらの酸触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Etc. These acid catalysts can be used alone or in combination of two or more.
 前記フェノール性水酸基含有樹脂(a2-1)、前記環状カーボネート化合物(a2-2a)または前記環状エーテル化合物(a2-2b)、前記不飽和モノカルボン酸(a2-3a)及び/または前記N-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)、並びに前記ポリカルボン酸無水物(a2-4)の反応は、必要に応じて有機溶媒中で行うこともできる。用いる有機溶媒の選択は、反応原料及び生成物である酸基含有(メタ)アクリレート樹脂の溶解性や、反応温度条件により適宜選択し得るが、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジアルキレングリコールモノアルキルエーテルアセテート、ジアルキレングリコールアセテート等が挙げられる。これらの有機溶媒は、単独で用いることも2種以上を併用し混合溶媒として用いることもできる。 The phenolic hydroxyl group-containing resin (a2-1), the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2-2b), the unsaturated monocarboxylic acid (a2-3a) and / or the N-alkoxy The reaction of the alkyl (meth) acrylamide compound (a2-3b) and the polycarboxylic acid anhydride (a2-4) can be carried out in an organic solvent as necessary. The organic solvent to be used can be appropriately selected depending on the solubility of the acid group-containing (meth) acrylate resin that is the reaction raw material and the product and the reaction temperature conditions. For example, methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, Examples include methoxypropanol, cyclohexanone, methyl cellosolve, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These organic solvents can be used alone or in combination of two or more kinds as a mixed solvent.
 前記有機溶媒の使用量は、反応効率が良好となることから、反応原料の合計100質量部に対して10~500質量部の範囲が好ましい。 The amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass with respect to a total of 100 parts by mass of the reaction raw materials because the reaction efficiency is good.
 前記酸基含有(メタ)アクリレート樹脂(A-2)の具体的構造は特に限定されず、フェノール性水酸基含有樹脂(a2-1)と、環状カーボネート化合物(a2-2a)または環状エーテル化合物(a2-2b)と、不飽和モノカルボン酸(a2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(a2-3b)と、ポリカルボン酸無水物(a2-4)とを必須の反応原料とし、樹脂中に酸基及び(メタ)アクリロイル基を有するものであればよいが、得られる前記酸基含有(メタ)アクリレート樹脂(A-2)としては、例えば、下記構造式(a-1)で表される構造部位(I)と下記構造式(a-2)で表される構造部位(II)とを繰り返し構造単位とする樹脂構造を有するものや、下記構造式(a-3)で表される構造部位(III)と下記構造式(a-4)で表される構造部位(IV)とを繰り返し構造単位とする樹脂構造を有するものが挙げられる。 The specific structure of the acid group-containing (meth) acrylate resin (A-2) is not particularly limited, and the phenolic hydroxyl group-containing resin (a2-1) and the cyclic carbonate compound (a2-2a) or the cyclic ether compound (a2) -2b), unsaturated monocarboxylic acid (a2-3a) and / or N-alkoxyalkyl (meth) acrylamide compound (a2-3b), and polycarboxylic acid anhydride (a2-4) Any acid group and (meth) acryloyl group may be used in the resin. Examples of the acid group-containing (meth) acrylate resin (A-2) to be obtained include the following structural formula (a-1): ) Having a resin structure in which a structural unit (I) represented by the following structural formula (a-2) and a structural unit (II) represented by the following structural formula (a-2) are repeated, or the following structural formula (a-3): Having a resin structure which structure represented by the site (III) and the following formula (a-4) structural moiety represented by formula (IV) and the repeating structural units and the like.
Figure JPOXMLDOC01-appb-C000014
[式中Rは、それぞれ独立に水素原子または炭素原子数1~4の炭化水素基である。Rは、それぞれ独立に水素原子、炭素原子数1~4の炭化水素基、炭素原子数1~4のアルコキシ基、ハロゲン原子の何れかであり、nは、それぞれ独立に1または2である。Rは、それぞれ独立にメチレン基または下記構造式(x’-1)~(x’-5)の何れかで表される構造部位である。R、Rは、それぞれ独立に水素原子または炭素原子数1~20の炭化水素基である。また、RとRとが、連結して飽和または不飽和の環を形成してもよい。Rは、炭素原子数1~12の炭化水素基である。Rは、水素原子またはメチル基である。xは、前記Rで表される構造部位、或いは、構造式(a-1)で表される構造部位(I)または構造式(a-2)で表される構造部位(II)とが、*印が付されたRを介して連結する結合点である。]
Figure JPOXMLDOC01-appb-C000014
[Wherein R 2 is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. R 3 is each independently a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and n is each independently 1 or 2. . R 4 is each independently a methylene group or a structural moiety represented by any of the following structural formulas (x′-1) to (x′-5). R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. R 5 and R 6 may be linked to form a saturated or unsaturated ring. R 7 is a hydrocarbon group having 1 to 12 carbon atoms. R 8 is a hydrogen atom or a methyl group. x represents the structural site represented by R 3 or the structural site (I) represented by the structural formula (a-1) or the structural site (II) represented by the structural formula (a-2). , And a connecting point to be connected through R 4 marked with *. ]
Figure JPOXMLDOC01-appb-C000015
[式中Rは、それぞれ独立に水素原子または炭素原子数1~4の炭化水素基である。Rは、それぞれ独立に水素原子、炭素原子数1~4の炭化水素基、炭素原子数1~4のアルコキシ基、ハロゲン原子の何れかであり、nは、それぞれ独立に1または2である。Rは、それぞれ独立にメチレン基または下記構造式(x’-1)~(x’-5)の何れかで表される構造部位である。R、Rは、それぞれ独立に水素原子または炭素原子数1~20の炭化水素基である。また、RとRとが、連結して飽和または不飽和の環を形成してもよい。Rは、炭素原子数1~12の炭化水素基である。Rは、水素原子またはメチル基である。xは、前記Rで表される構造部位、或いは、構造式(a-3)で表される構造部位(III)または構造式(a-4)で表される構造部位(IV)とが、*印が付されたRを介して連結する結合点である。]
Figure JPOXMLDOC01-appb-C000015
[Wherein R 2 is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. R 3 is each independently a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and n is each independently 1 or 2. . R 4 is each independently a methylene group or a structural moiety represented by any of the following structural formulas (x′-1) to (x′-5). R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. R 5 and R 6 may be linked to form a saturated or unsaturated ring. R 7 is a hydrocarbon group having 1 to 12 carbon atoms. R 8 is a hydrogen atom or a methyl group. x is the structural site represented by R 3 or the structural site (III) represented by the structural formula (a-3) or the structural site (IV) represented by the structural formula (a-4). , And a connecting point to be connected through R 4 marked with *. ]
Figure JPOXMLDOC01-appb-C000016
[式中hは、0または1である。Rは、それぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかであり、iは、0または1~4の整数である。R10は、水素原子またはメチル基である。Wは、下記構造式(w-1)または(w-2)である。Yは、炭素原子数1~4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかである。jは、1~4の整数である。]
Figure JPOXMLDOC01-appb-C000016
[In the formula, h is 0 or 1. R 9 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group or an aralkyl group, and i is 0 or an integer of 1 to 4. R 10 is a hydrogen atom or a methyl group. W is the following structural formula (w-1) or (w-2). Y is any one of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, and a carbonyl group. j is an integer of 1 to 4. ]
Figure JPOXMLDOC01-appb-C000017
(式中R11は、それぞれ独立に水素原子または炭素原子数1~4の炭化水素基である。R12、R13は、それぞれ独立に水素原子または炭素原子数1~20の炭化水素基である。また、R12とR13とが、連結して飽和または不飽和の環を形成してもよい。R14は、炭素原子数1~12の炭化水素基である。R15は、水素原子またはメチル基である。)
Figure JPOXMLDOC01-appb-C000017
(Wherein R 11 is each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. R 12 and R 13 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. R 12 and R 13 may be linked to form a saturated or unsaturated ring, R 14 is a hydrocarbon group having 1 to 12 carbon atoms, and R 15 is hydrogen. An atom or a methyl group.)
 前記酸基含有(メタ)アクリレート樹脂(A-2)の酸価は、高い光感度を有し、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~100mgKOH/gの範囲がより好ましい。なお、本発明において、前記酸基含有(メタ)アクリレート樹脂の酸価は、JIS K 0070(1992)の中和滴定法に基づいて測定される値である。 The acid value of the acid group-containing (meth) acrylate resin (A-2) has high photosensitivity, and an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent heat resistance is obtained. Therefore, the range of 30 to 150 mgKOH / g is preferable, and the range of 40 to 100 mgKOH / g is more preferable. In the present invention, the acid value of the acid group-containing (meth) acrylate resin is a value measured based on a neutralization titration method of JIS K 0070 (1992).
 次に、〔3〕酸基含有(メタ)アクリレート樹脂(A-3)について説明する。 Next, [3] acid group-containing (meth) acrylate resin (A-3) will be described.
 前記酸基含有(メタ)アクリレート樹脂(A-3)は、酸基または酸無水物基を有するアミドイミド樹脂(a3-1)と、水酸基含有(メタ)アクリレート化合物(a3-2)と、(メタ)アクリロイル基含有エポキシ化合物(a3-3)と、ポリカルボン酸無水物(a3-4)とを必須の反応原料として得られるものである。 The acid group-containing (meth) acrylate resin (A-3) includes an amideimide resin (a3-1) having an acid group or an acid anhydride group, a hydroxyl group-containing (meth) acrylate compound (a3-2), ) An acryloyl group-containing epoxy compound (a3-3) and a polycarboxylic acid anhydride (a3-4) are obtained as essential reaction raw materials.
 前記アミドイミド樹脂(a3-1)としては、酸基または酸無水物基のどちらか一方のみを有するものであってもよいし、両方を有するものであってもよい。前記水酸基含有(メタ)アクリレート化合物(a3-2)や前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)との反応性や反応制御の観点から、酸無水物基を有するものであることが好ましく、酸基と酸無水物基との両方を有するものであることがより好ましい。前記アミドイミド樹脂(a3-1)の酸価は、中性条件下、即ち、酸無水物基を開環させない条件での測定値が60~350mgKOH/gの範囲であることが好ましい。他方、水の存在下等、酸無水物基を開環させた条件での測定値が61~360mgKOH/gの範囲であることが好ましい。 The amideimide resin (a3-1) may have only one of an acid group or an acid anhydride group, or may have both. From the viewpoint of reactivity and reaction control with the hydroxyl group-containing (meth) acrylate compound (a3-2) and the (meth) acryloyl group-containing epoxy compound (a3-3), it may have an acid anhydride group. Preferably, it has both an acid group and an acid anhydride group. The acid value of the amideimide resin (a3-1) is preferably in the range of 60 to 350 mgKOH / g under neutral conditions, that is, under conditions where the acid anhydride group is not ring-opened. On the other hand, the measured value under the condition where the acid anhydride group is opened, such as in the presence of water, is preferably in the range of 61 to 360 mgKOH / g.
 前記アミドイミド樹脂(a3-1)の具体構造や製造方法は特に限定されず、一般的なアミドイミド樹脂等を広く用いることができる。例えば、ポリイソシアネート化合物と、ポリカルボン酸またはその酸無水物とを反応原料として得られるものが挙げられる。 The specific structure and production method of the amideimide resin (a3-1) are not particularly limited, and general amideimide resins and the like can be widely used. For example, what can be obtained by using a polyisocyanate compound and polycarboxylic acid or its acid anhydride as a reaction raw material is mentioned.
 前記ポリイソシアネート化合物としては、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、o-トリジンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(i-1)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体などが挙げられる。また、これらのポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the polyisocyanate compound include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone diisocyanate, Cycloaliphatic diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diisocyanato-3 , 3'-dimethylbiphenyl, o-tolidine diisocyanate, etc. Cyanate compound; polymethylene polyphenyl polyisocyanate having a repeating structure represented by the following structural formula (i-1); these isocyanurate modified product, a biuret modified product, and the like allophanate modified product. These polyisocyanate compounds can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000018
[式中、Rはそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。Rはそれぞれ独立に炭素原子数1~4のアルキル基、または構造式(i-1)で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。lは0または1~3の整数であり、mは1以上の整数である。]
Figure JPOXMLDOC01-appb-C000018
[Wherein, R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. R 2 is each independently an alkyl group having 1 to 4 carbon atoms, or a bonding point that is linked to a structural moiety represented by the structural formula (i-1) via a methylene group marked with *. is there. l is 0 or an integer of 1 to 3, and m is an integer of 1 or more. ]
 また、前記ポリイソシアネート化合物としては、高い溶剤溶解性を有する酸基含有(メタ)アクリレート樹脂組成物が得られることから、脂環式ジイソシアネート化合物またはその変性体、脂肪族ジイソシアネート化合物またはその変性体が好ましく、脂環式ジイソシアネートまたはそのイソシアヌレート変性体、脂肪族ジイソシアネートまたはそのイソシアヌレート変性体がより好ましい。 In addition, as the polyisocyanate compound, an acid group-containing (meth) acrylate resin composition having high solvent solubility is obtained, and therefore, an alicyclic diisocyanate compound or a modified product thereof, an aliphatic diisocyanate compound or a modified product thereof is used. An alicyclic diisocyanate or its isocyanurate-modified product, and an aliphatic diisocyanate or its isocyanurate-modified product are more preferable.
 また、前記ポリイソシアネート化合物の総質量中における、脂環式ジイソシアネート化合物またはその変性体と、脂肪族ジイソシアネート化合物またはその変性体の合計質量の割合が、70質量%以上であることが好ましく、90質量%以上であることが好ましい。 Moreover, it is preferable that the ratio of the total mass of an alicyclic diisocyanate compound or its modified body and an aliphatic diisocyanate compound or its modified body in the total mass of the said polyisocyanate compound is 70 mass% or more, and 90 mass % Or more is preferable.
 また、脂環式ジイソシアネート化合物またはその変性体と、脂肪族ジイソシアネート化合物またはその変性体とを併用する場合には、両者の質量比が30/70~70/30の範囲であることが好ましい。 Further, when the alicyclic diisocyanate compound or a modified product thereof and the aliphatic diisocyanate compound or the modified product thereof are used in combination, the mass ratio of the two is preferably in the range of 30/70 to 70/30.
 前記ポリカルボン酸またはその酸無水物としては、分子構造中に複数のカルボキシル基を有する化合物またはその酸無水物であれば具体構造は特に問われず、多種多様な化合物を用いることができる。なお、前記アミドイミド樹脂(a3-1)がアミド基とイミド基の両方を有するためには、系中にカルボキシル基及び酸無水物基の両方が存在している必要があるが、本発明においては、分子中にカルボキシル基と酸無水物基との両方を有する化合物を用いてもよいし、カルボキシル基を有する化合物と酸無水物基を有する化合物とを併用してもよい。 The polycarboxylic acid or its acid anhydride is not particularly limited as long as it is a compound having a plurality of carboxyl groups in its molecular structure or its acid anhydride, and a wide variety of compounds can be used. In order for the amideimide resin (a3-1) to have both an amide group and an imide group, it is necessary that both a carboxyl group and an acid anhydride group exist in the system. A compound having both a carboxyl group and an acid anhydride group in the molecule may be used, or a compound having a carboxyl group and a compound having an acid anhydride group may be used in combination.
 前記ポリカルボン酸またはその酸無水物としては、例えば、脂肪族ポリカルボン酸化合物またはその酸無水物、脂環式ポリカルボン酸化合物またはその酸無水物、芳香族ポリカルボン酸化合物またはその酸無水物等が挙げられる。 Examples of the polycarboxylic acid or acid anhydride thereof include aliphatic polycarboxylic acid compounds or acid anhydrides thereof, alicyclic polycarboxylic acid compounds or acid anhydrides thereof, aromatic polycarboxylic acid compounds or acid anhydrides thereof. Etc.
 前記脂肪族ポリカルボン酸化合物またはその酸無水物としては、脂肪族炭化水素基は直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。 As the aliphatic polycarboxylic acid compound or an acid anhydride thereof, the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure.
 前記脂肪族ポリカルボン酸化合物またはその酸無水物としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、及びこれらの酸無水物等が挙げられる。 Examples of the aliphatic polycarboxylic acid compound or acid anhydride thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, Examples include citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, and acid anhydrides thereof.
 前記脂環式ポリカルボン酸化合物またはその酸無水物としては、本発明では、カルボキシル基または酸無水物基が脂環構造に結合しているものを脂環式ポリカルボン酸化合物またはその酸無水物とし、それ以外の構造部位における芳香環の有無は問わないものとする。前記脂環式ポリカルボン酸化合物またはその酸無水物としては、例えば、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、及びこれらの酸無水物等が挙げられる。 In the present invention, the alicyclic polycarboxylic acid compound or acid anhydride thereof is an alicyclic polycarboxylic acid compound or acid anhydride thereof in which a carboxyl group or an acid anhydride group is bonded to an alicyclic structure. In addition, the presence or absence of an aromatic ring at other structural sites is not questioned. Examples of the alicyclic polycarboxylic acid compound or acid anhydride thereof include tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, and bicyclo [2.2.1]. Heptane-2,3-dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4 -Tetrahydronaphthalene-1,2-dicarboxylic acid, and acid anhydrides thereof.
 前記芳香族ポリカルボン酸化合物またはその酸無水物としては、例えば、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等が挙げられる。 Examples of the aromatic polycarboxylic acid compound or acid anhydride thereof include phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, and biphenyl. Examples thereof include tetracarboxylic acid and benzophenone tetracarboxylic acid.
 これらの中でも、高い光感度を有し、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、前記脂環式ポリカルボン酸化合物またはその酸無水物、或いは前記芳香族ポリカルボン酸化合物またはその酸無水物が好ましい。また、前記アミドイミド樹脂(a3-1)を効率的に製造できることから、分子構造中にカルボキシル基と酸無水物基との両方を有するトリカルボン酸無水物を用いることが好ましく、シクロヘキサントリカルボン酸無水物またはトリメリット酸無水物を用いることが特に好ましい。更に、前記ポリカルボン酸またはその酸無水物の総質量に対する脂環式トリカルボン酸無水物と芳香族トリカルボン酸無水物との合計量の割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。 Among these, since the acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having excellent heat resistance is obtained, the alicyclic polycarboxylic acid compound or its acid anhydride is obtained. Or the aromatic polycarboxylic acid compound or acid anhydride thereof. In addition, since the amideimide resin (a3-1) can be efficiently produced, it is preferable to use a tricarboxylic acid anhydride having both a carboxyl group and an acid anhydride group in the molecular structure, and cyclohexanetricarboxylic acid anhydride or It is particularly preferable to use trimellitic anhydride. Furthermore, the ratio of the total amount of the alicyclic tricarboxylic acid anhydride and the aromatic tricarboxylic acid anhydride to the total mass of the polycarboxylic acid or acid anhydride is preferably 70% by mass or more, and 90% by mass or more. It is more preferable that
 前記アミドイミド樹脂(a3-1)が、前記ポリイソシアネート化合物と、前記ポリカルボン酸またはその酸無水物とを反応原料とするものである場合、所望の樹脂性能等に応じて、これら以外の反応原料を併用してもよい。この場合、本発明が奏する効果が十分に発揮されることから、アミドイミド樹脂(a3-1)の反応原料総質量に対する前記ポリイソシアネート化合物と前記ポリカルボン酸またはその酸無水物との合計質量の割合が90質量%以上であることが好ましく、95質量%以上であることがより好ましい。 When the amide-imide resin (a3-1) is a reaction raw material comprising the polyisocyanate compound and the polycarboxylic acid or acid anhydride thereof, other reaction raw materials depending on the desired resin performance and the like May be used in combination. In this case, since the effect exhibited by the present invention is sufficiently exhibited, the ratio of the total mass of the polyisocyanate compound and the polycarboxylic acid or the acid anhydride thereof to the total reaction raw material mass of the amideimide resin (a3-1) Is preferably 90% by mass or more, and more preferably 95% by mass or more.
 前記アミドイミド樹脂(a3-1)が、ポリイソシアネート化合物とポリカルボン酸またはその酸無水物とを反応原料とするものである場合、特に限定されず、どのような方法にて製造してもよい。例えば、一般的なアミドイミド樹脂と同様の方法にて製造することができる。具体的には、ポリイソシアネート化合物が有するイソシアネート基1モルに対し、0.8~1.2モルのポリカルボン酸またはその酸無水物を用い、120~180℃程度の温度条件下で撹拌混合して反応させる方法が挙げられる。 When the amideimide resin (a3-1) is a polyisocyanate compound and polycarboxylic acid or acid anhydride thereof as reaction raw materials, it is not particularly limited and may be produced by any method. For example, it can be produced by the same method as a general amideimide resin. Specifically, 0.8 to 1.2 mol of polycarboxylic acid or its acid anhydride is used with 1 mol of the isocyanate group of the polyisocyanate compound, and the mixture is stirred and mixed at a temperature of about 120 to 180 ° C. The method of making it react is mentioned.
 前記ポリイソシアネート化合物とポリカルボン酸またはその酸無水物との反応は、必要に応じて有機溶媒中で行うこともできる。前記有機溶媒としては、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジアルキレングリコールモノアルキルエーテルアセテート、ジアルキレングリコールアセテート等が挙げられる。これらの有機溶媒は、単独で用いることも、2種以上を併用し混合溶媒として用いることもできる。 The reaction between the polyisocyanate compound and polycarboxylic acid or acid anhydride thereof can be performed in an organic solvent as necessary. Examples of the organic solvent include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These organic solvents can be used alone or in combination of two or more as a mixed solvent.
 前記有機溶媒の使用量は、反応効率が良好となることから、反応原料の合計100質量部に対して10~500質量部の範囲が好ましい。 The amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass with respect to a total of 100 parts by mass of the reaction raw materials because the reaction efficiency is good.
 前記水酸基含有(メタ)アクリレート化合物(a3-2)としては、分子構造中に水酸基と(メタ)アクリロイル基とを有する化合物であれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等のヒドロキシ(メタ)アクリレート化合物;前記各種のヒドロキシ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のヒドロキシ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。これらの中でも、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、分子量が1,000以下のものが好ましい。また、前記水酸基含有(メタ)アクリレート化合物(a3-2)が、前記オキシアルキレン変性体やラクトン変性体である場合には、重量平均分子量(Mw)が1,000以下であることが好ましい。これらの水酸基含有(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 The hydroxyl group-containing (meth) acrylate compound (a3-2) is not particularly limited as long as it has a hydroxyl group and a (meth) acryloyl group in the molecular structure, and a wide variety of compounds are used. be able to. For example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate (Poly) oxy such as (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) oxytetramethylene chain, etc. in the molecular structure of the various hydroxy (meth) acrylate compounds. (Poly) oxyalkylene modified products in which an alkylene chain is introduced; lactone modified products in which a (poly) lactone structure is introduced into the molecular structure of the various hydroxy (meth) acrylate compounds. Among these, those having a molecular weight of 1,000 or less are preferable because an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent heat resistance can be obtained. Further, when the hydroxyl group-containing (meth) acrylate compound (a3-2) is the oxyalkylene-modified product or lactone-modified product, the weight average molecular weight (Mw) is preferably 1,000 or less. These hydroxyl group-containing (meth) acrylate compounds can be used alone or in combination of two or more.
 前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)は、分子構造中に(メタ)アクリロイル基とエポキシ基とを有するものであれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、エポキシシクロへキシルメチル(メタ)アクリレート等のグリシジル基含有(メタ)アクリレートモノマー;ジヒドロキシベンゼンジグリシジルエーテル、ジヒドロキシナフタレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、ビスフェノールジグリシジルエーテル等のジグリシジルエーテル化合物のモノ(メタ)アクリレート化物などが挙げられる。これらの中でも、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、グリシジル基含有(メタ)アクリレートモノマーが好ましい。また、その分子量は、500以下であることが好ましい。さらに、前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)の総質量中の前記グリシジル基含有(メタ)アクリレートモノマーの割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。 The (meth) acryloyl group-containing epoxy compound (a3-3) is not particularly limited as long as it has a (meth) acryloyl group and an epoxy group in the molecular structure, and a wide variety of compounds can be used. Can be used. For example, glycidyl group-containing (meth) acrylate monomers such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and epoxycyclohexylmethyl (meth) acrylate; dihydroxybenzene diglycidyl ether, dihydroxynaphthalenediglycidyl ether, And mono (meth) acrylates of diglycidyl ether compounds such as biphenol diglycidyl ether and bisphenol diglycidyl ether. Among these, a glycidyl group-containing (meth) acrylate monomer is preferable because an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent heat resistance can be obtained. Moreover, it is preferable that the molecular weight is 500 or less. Furthermore, the proportion of the glycidyl group-containing (meth) acrylate monomer in the total mass of the (meth) acryloyl group-containing epoxy compound (a3-3) is preferably 70% by mass or more, and 90% by mass or more. Is more preferable.
 前記ポリカルボン酸無水物(a3-4)としては、上述のポリカルボン酸無水物(a1-3)及びポリカルボン酸無水物(a2-4)と同様である。 The polycarboxylic acid anhydride (a3-4) is the same as the above-mentioned polycarboxylic acid anhydride (a1-3) and polycarboxylic acid anhydride (a2-4).
 前記酸基含有(メタ)アクリレート樹脂(A-3)は、所望の樹脂性能等に応じて、前記酸基または酸無水物基を有するアミドイミド樹脂(a3-1)、前記水酸基含有(メタ)アクリレート化合物(a3-2)、(メタ)アクリロイル基含有エポキシ化合物(a3-3)及びポリカルボン酸無水物(a3-4)以外に、他の反応原料を併用することもできる。この場合、酸基含有(メタ)アクリレート樹脂(A-3)の反応原料総質量中の前記(a3-1)~(a3-4)成分の合計質量の割合が80質量%以上であることが好ましく、90質量%以上であることがより好ましい。 The acid group-containing (meth) acrylate resin (A-3) includes the amide-imide resin (a3-1) having the acid group or the acid anhydride group, the hydroxyl group-containing (meth) acrylate, depending on the desired resin performance. In addition to the compound (a3-2), the (meth) acryloyl group-containing epoxy compound (a3-3) and the polycarboxylic acid anhydride (a3-4), other reaction raw materials can be used in combination. In this case, the ratio of the total mass of the components (a3-1) to (a3-4) in the total mass of the reaction raw material of the acid group-containing (meth) acrylate resin (A-3) is 80% by mass or more. Preferably, it is 90 mass% or more.
 前記酸基含有(メタ)アクリレート樹脂(A-3)の製造方法は、特に限定されず、どのような方法にて製造してもよい。例えば、反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、アミドイミド樹脂(a3-1)と水酸基含有(メタ)アクリレート化合物(a3-2)を反応させ(工程1)、工程1の生成物と(メタ)アクリロイル基含有エポキシ化合物(a3-3)とを反応させ(工程2)、工程2の生成物と前記ポリカルボン酸無水物(a3-4)とを反応させる方法で製造することが好ましい。 The method for producing the acid group-containing (meth) acrylate resin (A-3) is not particularly limited, and any method may be used. For example, it may be produced by a method in which all of the reaction raw materials are reacted together, or may be produced by a method in which the reaction raw materials are reacted sequentially. In particular, the amide-imide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) are reacted (step 1), and the product of step 1 and the (meth) acryloyl group-containing epoxy compound (a3-3) (Step 2), and the product of Step 2 and the polycarboxylic acid anhydride (a3-4) are preferably reacted.
 前記工程1は、アミドイミド樹脂(a3-1)と水酸基含有(メタ)アクリレート化合物(a3-2)とを反応させる工程である。前記反応としては、主に、前記アミドイミド樹脂(a3-1)中の酸基または酸無水物基と前記水酸基含有(メタ)アクリレート化合物(a3-2)中の水酸基とが反応する。前記水酸基含有(メタ)アクリレート化合物(a3-2)は、酸無水物基との反応性に優れることから、前述の通り、前記アミドイミド樹脂(a3-1)は酸無水物基を有していることが好ましい。前記アミドイミド樹脂(a3-1)と前記水酸基含有(メタ)アクリレート化合物(a3-2)との反応割合は、前記アミドイミド樹脂(a3-1)中の酸基及び酸無水物基の合計に対して、前記水酸基含有(メタ)アクリレート化合物(a3-2)を0.9~1.1モルの範囲で用いることが好ましく、特に、前記アミドイミド樹脂(a3-1)中の酸無水物基の合計に対して、前記水酸基含有(メタ)アクリレート化合物(a3-2)を0.9~1.1モルの範囲で用いることが好ましい。前記アミドイミド樹脂(a3-1)中の酸無水物基の含有量は、前述した2通りの酸価の測定値の差分、即ち、酸無水物基を開環させた条件での酸価と、酸無水物基を開環させない条件での酸価との差分から算出することができる。 Step 1 is a step of reacting the amideimide resin (a3-1) with the hydroxyl group-containing (meth) acrylate compound (a3-2). As the reaction, the acid group or acid anhydride group in the amideimide resin (a3-1) and the hydroxyl group in the hydroxyl group-containing (meth) acrylate compound (a3-2) mainly react. Since the hydroxyl group-containing (meth) acrylate compound (a3-2) is excellent in reactivity with an acid anhydride group, as described above, the amideimide resin (a3-1) has an acid anhydride group. It is preferable. The reaction ratio between the amideimide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is based on the total of acid groups and acid anhydride groups in the amideimide resin (a3-1). The hydroxyl group-containing (meth) acrylate compound (a3-2) is preferably used in a range of 0.9 to 1.1 mol, and particularly, the total of acid anhydride groups in the amideimide resin (a3-1). On the other hand, the hydroxyl group-containing (meth) acrylate compound (a3-2) is preferably used in the range of 0.9 to 1.1 mol. The content of the acid anhydride group in the amideimide resin (a3-1) is the difference between the two acid value measurement values described above, that is, the acid value under the condition where the acid anhydride group is ring-opened, It can be calculated from the difference from the acid value under conditions where the acid anhydride group is not ring-opened.
 前記アミドイミド樹脂(a3-1)と前記水酸基含有(メタ)アクリレート化合物(a3-2)との反応は、例えば、エステル化反応触媒の存在下、90~140℃程度の温度条件下で加熱撹拌して行うことができる。前記エステル化反応触媒としては、例えば、トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のリン化合物、トリエチルアミン、トリブチルアミン、ジメチルベンジルアミン等のアミン化合物、2-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール等のイミダゾール化合物などが挙げられる。これらの反応触媒は、単独で用いることも2種以上を併用することもできる。 The reaction between the amideimide resin (a3-1) and the hydroxyl group-containing (meth) acrylate compound (a3-2) is, for example, heated and stirred under a temperature condition of about 90 to 140 ° C. in the presence of an esterification reaction catalyst. Can be done. Examples of the esterification reaction catalyst include phosphorus compounds such as trimethylphosphine, tributylphosphine and triphenylphosphine, amine compounds such as triethylamine, tributylamine and dimethylbenzylamine, 2-methylimidazole, 2-heptadecylimidazole, 2- Examples thereof include imidazole compounds such as ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole and 1-isobutyl-2-methylimidazole. These reaction catalysts can be used alone or in combination of two or more.
 前記反応触媒の添加量は、反応原料の合計100質量部に対して0.001~5質量部の範囲が好ましい。 The amount of the reaction catalyst added is preferably in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass in total of the reaction raw materials.
 前記工程1の反応は、必要に応じて有機溶媒中で行うこともできる。用いる有機溶媒の選択は、反応原料及び生成物である酸基含有(メタ)アクリレート樹脂の溶解性や、反応温度条件により適宜選択し得るが、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジアルキレングリコールモノアルキルエーテルアセテート、ジアルキレングリコールアセテート等が挙げられる。これらの有機溶媒は、単独で用いることも、2種以上を併用し混合溶媒として用いることもできる。前記アミドイミド樹脂(a3-1)の製造と工程1とを連続して行う場合には、前記アミドイミド樹脂(a3-1)の製造で用いた有機溶媒中でそのまま反応を続けてもよい。 The reaction in Step 1 can also be performed in an organic solvent as necessary. The organic solvent to be used can be appropriately selected depending on the solubility of the acid group-containing (meth) acrylate resin that is the reaction raw material and the product and the reaction temperature conditions. For example, methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, Examples include methoxypropanol, cyclohexanone, methyl cellosolve, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These organic solvents can be used alone or in combination of two or more as a mixed solvent. When the production of the amideimide resin (a3-1) and Step 1 are carried out continuously, the reaction may be continued as it is in the organic solvent used in the production of the amideimide resin (a3-1).
 前記工程2は、前記工程1で得られた生成物と(メタ)アクリロイル基含有エポキシ化合物(a3-3)とを反応させる工程である。前記反応としては、主に、(メタ)アクリロイル基含有エポキシ化合物(a3-3)と、前記工程1の生成物中のカルボキシル基とが反応する。その反応割合は、工程1の生成物中のカルボキシル基に対して、前記(メタ)アクリロイル基含有エポキシ化合物(a3-3)を0.5~1.2モルの範囲で用いることが好ましく、0.9~1.1モルの範囲で用いることがより好ましい。工程2の反応は、例えば、エステル化反応触媒の存在下、90~140℃程度の温度条件下で加熱撹拌して行うことができる。工程1と工程2とを連続して行う場合、エステル化反応触媒は追加しなくてもよいし、適宜追加してもよい。また、反応は必要に応じて有機溶媒中で行うこともできる。 Step 2 is a step of reacting the product obtained in Step 1 with the (meth) acryloyl group-containing epoxy compound (a3-3). As the reaction, the (meth) acryloyl group-containing epoxy compound (a3-3) mainly reacts with the carboxyl group in the product of Step 1. The reaction ratio is preferably such that the (meth) acryloyl group-containing epoxy compound (a3-3) is used in the range of 0.5 to 1.2 mol with respect to the carboxyl group in the product of Step 1. More preferably, it is used in the range of 9 to 1.1 mol. The reaction in Step 2 can be performed, for example, with heating and stirring under a temperature condition of about 90 to 140 ° C. in the presence of an esterification reaction catalyst. When step 1 and step 2 are performed continuously, the esterification reaction catalyst may not be added or may be added as appropriate. Moreover, reaction can also be performed in an organic solvent as needed.
 前記工程3は、前記工程2で得られた生成物とポリカルボン酸無水物(a3-4)とを反応させる工程である。前記反応としては、主に、前記ポリカルボン酸無水物(a3-4)と、前記工程2の生成物中の水酸基とが反応する。その反応割合は、最終生成物である酸基含有(メタ)アクリレート樹脂(A-3)の酸価が50~100mgKOH/g程度になるよう調整されることが好ましい。前記工程3の反応は、例えば、エステル化反応触媒の存在下、90~140℃程度の温度条件下で加熱撹拌して行うことができる。工程2と工程3とを連続して行う場合、エステル化反応触媒は追加しなくてもよいし、適宜追加してもよい。また、反応は必要に応じて有機溶媒中で行うこともできる。 Step 3 is a step of reacting the product obtained in Step 2 with the polycarboxylic anhydride (a3-4). As the reaction, mainly the polycarboxylic acid anhydride (a3-4) reacts with the hydroxyl group in the product of Step 2. The reaction rate is preferably adjusted so that the acid value of the acid group-containing (meth) acrylate resin (A-3) as the final product is about 50 to 100 mgKOH / g. The reaction in Step 3 can be carried out, for example, with heating and stirring under a temperature condition of about 90 to 140 ° C. in the presence of an esterification reaction catalyst. When step 2 and step 3 are performed continuously, the esterification reaction catalyst may not be added or may be added as appropriate. Moreover, reaction can also be performed in an organic solvent as needed.
 前記酸基含有(メタ)アクリレート樹脂(A-3)の酸価は、高い光感度を有し、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~100mgKOH/gの範囲がより好ましい。なお、本願発明において酸基含有(メタ)アクリレート樹脂(A-3)の酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。 The acid value of the acid group-containing (meth) acrylate resin (A-3) has a high photosensitivity, and an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent heat resistance is obtained. Therefore, the range of 30 to 150 mgKOH / g is preferable, and the range of 40 to 100 mgKOH / g is more preferable. In the present invention, the acid value of the acid group-containing (meth) acrylate resin (A-3) is a value measured by the neutralization titration method of JIS K 0070 (1992).
 前記光重合開始剤(B)について説明する。 The photopolymerization initiator (B) will be described.
 前記光重合開始剤(B)としては、下記一般式(1)で表されるマイケル付加供与体として機能するα-アミノアセトフェノン骨格含有化合物(b1)と、マイケル受容体としての機能を有する反応性化合物(b2)とのマイケル付加反応物を用いる。 The photopolymerization initiator (B) includes an α-aminoacetophenone skeleton-containing compound (b1) that functions as a Michael addition donor represented by the following general formula (1), and a reactivity that functions as a Michael acceptor. A Michael addition reaction product with the compound (b2) is used.
[α-アミノアセトフェノン骨格含有化合物(b1)]
 前記α-アミノアセトフェノン骨格含有化合物(b1)は、ピペラジニル基、メチルアミノ基、エチルアミノ基、ベンジルアミノ基等の二級アミノ基に代表されるマイケル付加供与機能を有する官能基を分子構造中に持つものであり、具体的には、下記一般式(1)で表される。
[Α-Aminoacetophenone skeleton-containing compound (b1)]
The α-aminoacetophenone skeleton-containing compound (b1) has a functional group having a Michael addition donating function represented by a secondary amino group such as a piperazinyl group, a methylamino group, an ethylamino group, or a benzylamino group in the molecular structure. Specifically, it is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(一般式(1)中、
は脂肪族基またはアリール基を表し、
~Rはそれぞれ独立して脂肪族基またはアリール基を表し、
またRとRとはそれぞれ一体となって環を形成してもよく、
~Rはそれぞれ独立して水素原子または脂肪族基またはアリール基を表し、
は単結合または炭素原子数1~6の直鎖状若しくは分岐状のアルキレン基を表し、
はカルボニル基、チオカルボニル基を表し、
は下記一般式(2)、一般式(3)または一般式(4)で表される基を表し、
は下記一般式(2)または一般式(3)で表される基を表す。但し、Y及びYが共に一般式(2)で表される構造を有する場合は、その少なくとも一方のXは-NH-である。
nは、0または1である。)
(In general formula (1),
R 1 represents an aliphatic group or an aryl group,
R 2 to R 3 each independently represents an aliphatic group or an aryl group;
R 2 and R 3 may be combined together to form a ring,
R 4 to R 7 each independently represents a hydrogen atom, an aliphatic group or an aryl group,
X 1 represents a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms,
X 2 represents a carbonyl group or a thiocarbonyl group,
Y 1 represents a group represented by the following general formula (2), general formula (3) or general formula (4);
Y 2 represents a group represented by the following general formula (2) or general formula (3). However, when both Y 1 and Y 2 have a structure represented by the general formula (2), at least one of X 5 is —NH—.
n is 0 or 1. )
Figure JPOXMLDOC01-appb-C000020
(一般式(2)中、X及びXはそれぞれ独立して、炭素原子数2~6の直鎖状若しくは分岐状のアルキレン基またはオキシアルキレン基を、Xは、単結合、-O-または-NH-を表す。)
Figure JPOXMLDOC01-appb-C000020
(In the general formula (2), X 3 and X 4 each independently represent a linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms, X 5 represents a single bond, —O Represents-or -NH-.)
Figure JPOXMLDOC01-appb-C000021
(一般式(3)中、Xは置換基を有するか若しくは無置換の炭素原子数2~6の直鎖状若しくは分岐状のアルキレン基またはオキシアルキレン基を表し、R及びRはそれぞれ独立して脂肪族基またはアリール基を表す。)
Figure JPOXMLDOC01-appb-C000021
(In the general formula (3), X 6 represents a substituted or unsubstituted linear or branched alkylene or oxyalkylene group having 2 to 6 carbon atoms, wherein R 8 and R 9 are each Independently represents an aliphatic group or an aryl group.)
Figure JPOXMLDOC01-appb-C000022
(一般式(4)中、R10及びR11はそれぞれ独立して脂肪族基またはアリール基を表す。)
Figure JPOXMLDOC01-appb-C000022
(In General Formula (4), R 10 and R 11 each independently represents an aliphatic group or an aryl group.)
 ここで、一般式(1)中のR~Rを構成する脂肪族基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。 Here, examples of the aliphatic group constituting R 1 to R 7 in the general formula (1) include an alkyl group, an alkenyl group, and an alkynyl group.
 前記アルキル基としては、例えば、炭素原子数が1から18までの直鎖状、分岐状、及び環状のいずれかのアルキル基が挙げられる。 Examples of the alkyl group include linear, branched, and cyclic alkyl groups having 1 to 18 carbon atoms.
 具体的には、例えば、メチル基、エチル基、プロピル基、n-ブチル基、t-ブチル基;s-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、イソプロピル基、第2ブチル基、イソブチル基、第3ブチル基、2-エチルブチル基、イソペンチル基、1-メチルペンチル基、1,3-ジメチルブチル基、1-メチルヘキシル基、イソヘプチル基、1,1,3,3-テトラメチルブチル基、2,2,4,4-テトラメチルブチル基、1-メチルヘプチル基、3-メチルヘプチル基、2-エチルヘキシル基、1,1,3-トリメチルヘキシル基、1,1,3,3-テトラメチルペンチル基、イソデシル基、1-メチルウンデシル基または1,1,3,3,5,5-ヘキサメチルヘキシル基、ドデシル基、テトラデシル基、オクタデシル基等の直鎖状または分岐上のアルキル基、シクロヘプチル基、シクロヘキシル基、シクロペンンチル基等のシクロアルキル基などが挙げられる。 Specifically, for example, methyl group, ethyl group, propyl group, n-butyl group, t-butyl group; s-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl Group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, isopropyl group, secondary butyl group, isobutyl group, tertiary butyl group, 2-ethylbutyl group, isopentyl group, 1-methyl Pentyl group, 1,3-dimethylbutyl group, 1-methylhexyl group, isoheptyl group, 1,1,3,3-tetramethylbutyl group, 2,2,4,4-tetramethylbutyl group, 1-methylheptyl Group, 3-methylheptyl group, 2-ethylhexyl group, 1,1,3-trimethylhexyl group, 1,1,3,3-tetramethyl Linear or branched alkyl group such as pentyl group, isodecyl group, 1-methylundecyl group or 1,1,3,3,5,5-hexamethylhexyl group, dodecyl group, tetradecyl group, octadecyl group, Examples thereof include cycloalkyl groups such as a cycloheptyl group, a cyclohexyl group and a cyclopentyl group.
 また、前記アルケニル基としては、例えば、プロペニル基またはアリル基、2-ブテニル基、3-ブテニル基及びイソブテニル基のようなブテニル基並びにn-2,4-ペンタジエニル基等のアルケニル基等が挙げられる。 Examples of the alkenyl group include butenyl groups such as propenyl group or allyl group, 2-butenyl group, 3-butenyl group and isobutenyl group, and alkenyl groups such as n-2,4-pentadienyl group. .
 また、前記アルキニル基としては、例えば、エチニル基、1-プロピニル基、1-ブチニル基、トリメチルシリルエチニル基等が挙げられる。 Examples of the alkynyl group include ethynyl group, 1-propynyl group, 1-butynyl group, and trimethylsilylethynyl group.
 これらの脂肪族基の中でも、特に炭素原子数1から12までの直鎖状のアルキル基、炭素原子数3から12までの分岐状のアルキル基、並びに炭素原子数5から10までの環状のアルキル基が好ましい。 Among these aliphatic groups, a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, and a cyclic alkyl group having 5 to 10 carbon atoms Groups are preferred.
 前記脂肪族基は更に炭素原子上に置換基を有していてもよく、斯かる置換基としては、水素原子を除く一価の非金属原子からなる置換基が挙げられる。 The aliphatic group may further have a substituent on a carbon atom, and examples of such a substituent include a substituent composed of a monovalent nonmetallic atom excluding a hydrogen atom.
 具体的には、例えば、ハロゲン原子(-F、-Br、-Cl、-I)、ヒドロキシル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N-アルキルアミノ基、N,N-ジアルキルアミノ基、N-アリールアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、N-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N’-アルキルウレイド基、N’,N’-ジアルキルウレイド基、N’-アリールウレイド基、N’,N’-ジアリールウレイド基、N’-アルキル-N’-アリールウレイド基、N-アルキルウレイド基、N-アリールウレイド基、N’-アルキル-N-アルキルウレイド基、N’-アルキル-N-アリールウレイド基、N’,N’-ジアルキル-N-アルキルウレイド基、N’,N’-ジアルキル-N-アリールウレイド基、N’-アリール-N-アルキルウレイド基、N’-アリール-N-アリールウレイド基、N’,N’-ジアリール-N-アルキルウレイド基、N’,N’-ジアリール-N-アリールウレイド基、N’-アルキル-N’-アリール-N-アルキルウレイド基、N’-アルキル-N’-アリール-N-アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリール-N-アルコキシカルボニルアミノ基、N-アリール-N-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(-SOH)及びその共役塩基基(スルホナト基と称す)、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィイナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、ホスホノ基(-PO)及びその共役塩基基(ホスホナト基と称す)、ジアルキルホスホノ基(-PO(alkyl))「alkyl=アルキル基、以下同」、ジアリールホスホノ基(-PO(aryl))「aryl=アリール基、以下同」、アルキルアリールホスホノ基(-PO(alkyl)(aryl))、モノアルキルホスホノ基(-PO(alkyl))及びその共役塩基基(アルキルホスホナト基と称す)、モノアリールホスホノ基(-POH(aryl))及びその共役塩基基(アリールホスホナト基と称す)、ホスホノオキシ基(-OPO)及びその共役塩基基(ホスホナトオキシ基と称す)、ジアルキルホスホノオキシ基(-OPOH(alkyl))、ジアリールホスホノオキシ基(-OPO(aryl))、アルキルアリールホスホノオキシ基(-OPO(alkyl)(aryl))、モノアルキルホスホノオキシ基(-OPOH(alkyl))及びその共役塩基基(アルキルホスホナトオキシ基と称す)、モノアリールホスホノオキシ基(-OPOH(aryl))及びその共役塩基基(アリールホスホナトオキシ基と称す)、シアノ基、ニトロ基、アリール基、アルケニル基、アルキニル基、ヘテロ環基、シリル基等が挙げられる。 Specifically, for example, halogen atom (—F, —Br, —Cl, —I), hydroxyl group, alkoxy group, aryloxy group, mercapto group, alkylthio group, arylthio group, alkyldithio group, aryldithio group, amino group Group, N-alkylamino group, N, N-dialkylamino group, N-arylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkyl Carbamoyloxy group, N-arylcarbamoyloxy group, N, N-dialkylcarbamoyloxy group, N, N-diarylcarbamoyloxy group, N-alkyl-N-arylcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group, Acylthio group, acylamino group, N-alkylacyl group Group, N-arylacylamino group, ureido group, N′-alkylureido group, N ′, N′-dialkylureido group, N′-arylureido group, N ′, N′-diarylureido group, N′- Alkyl-N'-arylureido group, N-alkylureido group, N-arylureido group, N'-alkyl-N-alkylureido group, N'-alkyl-N-arylureido group, N ', N'-dialkyl -N-alkylureido group, N ', N'-dialkyl-N-arylureido group, N'-aryl-N-alkylureido group, N'-aryl-N-arylureido group, N', N'-diaryl -N-alkylureido group, N ', N'-diaryl-N-arylureido group, N'-alkyl-N'-aryl-N-alkylureido group, N'-alkyl-N'-aryl- -Arylureido group, alkoxycarbonylamino group, aryloxycarbonylamino group, N-alkyl-N-alkoxycarbonylamino group, N-alkyl-N-aryloxycarbonylamino group, N-aryl-N-alkoxycarbonylamino group, N-aryl-N-aryloxycarbonylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group, N, N-dialkylcarbamoyl group, N-ary carbamoyl group, N, N- di arylcarbamoyl group, N- alkyl -N- arylcarbamoyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, a sulfo group (-SO 3 H) And its conjugate base group (referred to as sulfonate group), alkoxysulfonyl group, aryloxysulfonyl group, sulfinamoyl group, N-alkylsulfinamoyl group, N, N-dialkylsulfinaimoyl group, N-arylsulfinamoyl group, N, N-diarylsulfinamoyl group, N-alkyl-N-arylsulfinamoyl group, sulfamoyl group, N-alkylsulfamoyl group, N, N-dialkylsulfamoyl group, N-arylsulfamoyl group N, N-diarylsulfamoyl group, N-alkyl-N-arylsulfamoyl group, phosphono group (—PO 3 H 2 ) and its conjugate base group (referred to as phosphonato group), dialkylphosphono group (— PO 3 (alkyl) 2 ) “alkyl = alkyl group, hereinafter the same”, diarylphospho Group (—PO 3 (aryl) 2 ) “aryl = aryl group, hereinafter the same”, alkylarylphosphono group (—PO 3 (alkyl) (aryl)), monoalkylphosphono group (—PO 3 (alkyl)) ) And conjugated base groups (referred to as alkylphosphonate groups), monoarylphosphono groups (—PO 3 H (aryl)) and conjugated base groups (referred to as arylphosphonate groups), phosphonooxy groups (—OPO 3 H 2 ) and its conjugate base group (referred to as phosphonatoxy group), dialkylphosphonooxy group (—OPO 3 H (alkyl) 2 ), diarylphosphonooxy group (—OPO 3 (aryl) 2 ), alkylarylphosphonooxy group (-OPO 3 (alkyl) (aryl )), monoalkyl phosphono group (-OPO 3 H (alk l)) and its conjugated base group (alkylphosphonato referred to as preparative group), referred to as monoarylphosphono group (-OPO 3 H (aryl)) and its conjugated base group (aryl phosphite Hona preparative group), a cyano group Nitro group, aryl group, alkenyl group, alkynyl group, heterocyclic group, silyl group and the like.
 なお、これらの置換基におけるアルキル基の具体例としては、前述のアルキル基が挙げられる。前記置換基におけるアリール基の具体例としては、例えば、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、クロロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、フェノキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、メチルチオフェニル基、フェニルチオフェニル基、メチルアミノフェニル基、ジメチルアミノフェニル基、アセチルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、エトキシフェニルカルボニル基、フェノキシカルボニルフェニル基、N-フェニルカルバモイルフェニル基、シアノフェニル基、スルホフェニル基、スルホナトフェニル基、ホスホノフェニル基、ホスホナトフェニル基等が挙げられる。 In addition, the above-mentioned alkyl group is mentioned as a specific example of the alkyl group in these substituents. Specific examples of the aryl group in the substituent include, for example, phenyl group, biphenyl group, naphthyl group, tolyl group, xylyl group, mesityl group, cumenyl group, chlorophenyl group, bromophenyl group, chloromethylphenyl group, hydroxyphenyl group. , Methoxyphenyl group, ethoxyphenyl group, phenoxyphenyl group, acetoxyphenyl group, benzoyloxyphenyl group, methylthiophenyl group, phenylthiophenyl group, methylaminophenyl group, dimethylaminophenyl group, acetylaminophenyl group, carboxyphenyl group , Methoxycarbonylphenyl group, ethoxyphenylcarbonyl group, phenoxycarbonylphenyl group, N-phenylcarbamoylphenyl group, cyanophenyl group, sulfophenyl group, sulfonatophenyl group, phospho Phenyl group, phosphonium Hona preparative phenyl group.
 前記置換基におけるアルケニル基の例としては、例えば、ビニル基、1-プロペニル基、1-ブテニル基、シンナミル基、2-クロロ-1-エテニル基等が挙げられる。 Examples of the alkenyl group in the substituent include a vinyl group, 1-propenyl group, 1-butenyl group, cinnamyl group, 2-chloro-1-ethenyl group and the like.
 前記置換基におけるアルキニル基の例としては、例えば、エチニル基、1-プロピニル基、1-ブチニル基、トリメチルシリルエチニル基等が挙げられる。 Examples of the alkynyl group in the substituent include ethynyl group, 1-propynyl group, 1-butynyl group, trimethylsilylethynyl group and the like.
 次に、一般式(1)中のR~Rを構成するアリール基としては、1個~3個のベンゼン環が縮合環を形成したもの、ベンゼン環と5員不飽和環とが縮合環を形成したものが挙げられる。具体的には、例えば、フェニル基、メトキシフェニル基、エトキシフェニル基、フルオロフェニル基、クロロフェニル基、ブロモフェニル基、トリル基、キシリル基、ナフチル基、ベンジル基、α-メチルベンジル基、αα-ジメチルベンジル基、フェネチル基ナフチル基、アントリル基、フェナントリル基、インデニル基、アセナフテニル基、フルオレニル基が挙げられる。これらの中では、フェニル基、ナフチル基がより好ましい。 Next, as the aryl group constituting R 1 to R 7 in the general formula (1), one to three benzene rings form a condensed ring, and a benzene ring and a five-membered unsaturated ring are condensed. The thing which formed the ring is mentioned. Specifically, for example, phenyl group, methoxyphenyl group, ethoxyphenyl group, fluorophenyl group, chlorophenyl group, bromophenyl group, tolyl group, xylyl group, naphthyl group, benzyl group, α-methylbenzyl group, αα-dimethyl Examples include benzyl group, phenethyl group naphthyl group, anthryl group, phenanthryl group, indenyl group, acenaphthenyl group, and fluorenyl group. In these, a phenyl group and a naphthyl group are more preferable.
 前記アリール基は、該アリール基の環形成炭素原子上に置換基として、水素原子を除く一価の非金属原子団からなる置換基を有していてもよい。ここで、置換基として、好ましいものの例は、前述のアルキル基、並びに、先に置換アルキル基における置換基として示したものが挙げられる。 The aryl group may have a substituent composed of a monovalent nonmetallic atomic group excluding a hydrogen atom as a substituent on the ring-forming carbon atom of the aryl group. Here, as a preferable example of the substituent, the above-described alkyl group and those previously shown as the substituent in the substituted alkyl group can be mentioned.
 前記置換基を有するアリール基の好ましい具体例としては、例えば、ビフェニル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基、クロロメチルフェニル基、トリフルオロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、メトキシエトキシフェニル基、アリルオキシフェニル基、フェノキシフェニル基、メチルチオフェニル基、トリルチオフェニル基、エチルアミノフェニル基、ジエチルアミノフェニル基、モルホリノフェニル基、アセチルオキシフェニル基、ベンゾイルオキシフェニル基、N-シクロヘキシルカルバモイルオキシフェニル基、N-フェニルカルバモイルオキシフェニル基、アセチルアミノフェニル基、N-メチルベンゾイルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、アリルオキシカルボニルフェニル基、クロロフェノキシカルボニルフェニル基、カルバモイルフェニル基、N-メチルカルバモイルフェニル基、N,N-ジプロピルカルバモイルフェニル基、N-(メトキシフェニル)カルバモイルフェニル基、N-メチル-N-(スルホフェニル)カルバモイルフェニル基、スルホフェニル基、スルホナトフェニル基、スルファモイルフェニル基、N-エチルスルファモイルフェニル基、N,N-ジプロピルスルファモイルフェニル基、N-トリルスルファモイルフェニル基、N-メチル-N-(ホスホノフェニル)スルファモイルフェニル基、ホスホノフェニル基、ホスホナトフェニル基、ジエチルホスホノフェニル基、ジフェニルホスホノフェニル基、メチルホスホノフェニル基、メチルホスホナトフェニル基、トリルホスホノフェニル基、トリルホスホナトフェニル基、アリルフェニル基、1-プロペニルメチルフェニル基、2-ブテニルフェニル基、2-メチルアリルフェニル基、2-メチルプロペニルフェニル基、2-プロピニルフェニル基、2-ブチニルフェニル基、3-ブチニルフェニル基等が挙げられる。 Preferable specific examples of the aryl group having a substituent include, for example, a biphenyl group, a tolyl group, a xylyl group, a mesityl group, a cumenyl group, a chlorophenyl group, a bromophenyl group, a fluorophenyl group, a chloromethylphenyl group, and trifluoromethyl. Phenyl group, hydroxyphenyl group, methoxyphenyl group, methoxyethoxyphenyl group, allyloxyphenyl group, phenoxyphenyl group, methylthiophenyl group, tolylthiophenyl group, ethylaminophenyl group, diethylaminophenyl group, morpholinophenyl group, acetyloxyphenyl Group, benzoyloxyphenyl group, N-cyclohexylcarbamoyloxyphenyl group, N-phenylcarbamoyloxyphenyl group, acetylaminophenyl group, N-methylbenzoylaminophen Group, carboxyphenyl group, methoxycarbonylphenyl group, allyloxycarbonylphenyl group, chlorophenoxycarbonylphenyl group, carbamoylphenyl group, N-methylcarbamoylphenyl group, N, N-dipropylcarbamoylphenyl group, N- (methoxyphenyl) ) Carbamoylphenyl group, N-methyl-N- (sulfophenyl) carbamoylphenyl group, sulfophenyl group, sulfonatophenyl group, sulfamoylphenyl group, N-ethylsulfamoylphenyl group, N, N-dipropylsulfa Moylphenyl group, N-tolylsulfamoylphenyl group, N-methyl-N- (phosphonophenyl) sulfamoylphenyl group, phosphonophenyl group, phosphonatophenyl group, diethylphosphonophenyl group, diphenylphos Nophenyl group, methylphosphonophenyl group, methylphosphonatophenyl group, tolylphosphonophenyl group, tolylphosphonatophenyl group, allylphenyl group, 1-propenylmethylphenyl group, 2-butenylphenyl group, 2-methylallylphenyl Group, 2-methylpropenylphenyl group, 2-propynylphenyl group, 2-butynylphenyl group, 3-butynylphenyl group and the like.
 本発明において、Rは具体的には、炭素原子数が1~12の直鎖状のアルキル基が原料の入手や製造上の反応制御のしやすさの点から好ましく、特に炭素原子数1~6の直鎖状のアルキル基が好ましい。 In the present invention, specifically, R 1 is preferably a linear alkyl group having 1 to 12 carbon atoms from the viewpoint of availability of raw materials and ease of reaction control in production, and particularly 1 carbon atom. A linear alkyl group of ˜6 is preferred.
 また、R~Rは具体的には、炭素原子数が1~12の直鎖状のアルキル基が好ましく、炭素原子数1~6の直鎖状のアルキル基が好ましい。 Specifically, R 2 to R 3 are preferably linear alkyl groups having 1 to 12 carbon atoms, and preferably linear alkyl groups having 1 to 6 carbon atoms.
 また、R~Rは具体的には、水素原子、炭素原子数1~6の直鎖状のアルキル基が好ましい。 R 4 to R 7 are specifically preferably a hydrogen atom or a linear alkyl group having 1 to 6 carbon atoms.
 一般式(1)中、Xは単結合または炭素原子数1~6の直鎖状若しくは分岐状のメチレン基、エチレン基、プロピレン基等のアルキレン基を表す。ここで置換基とは、前記置換基を有していてもよい脂肪族基で説明した置換基を挙げることができる。 In the general formula (1), X 1 represents a single bond or an alkylene group having 1 to 6 carbon atoms, such as a linear or branched methylene group, ethylene group or propylene group. Here, examples of the substituent include the substituents described for the aliphatic group which may have the substituent.
 次に、一般式(1)中の、Xは、カルボニル基、またはチオカルボニル基を表す。 Next, in the general formula (1), X 2 represents a carbonyl group or a thiocarbonyl group.
 一般式(1)中、Y及びYはそれぞれ独立して一般式(2)または一般式(3)で表される基を表す。 In General Formula (1), Y 1 and Y 2 each independently represent a group represented by General Formula (2) or General Formula (3).
 ここでY及びYを構成する一般式(2)は以下に構造式で表されるものである。 Here, the general formula (2) constituting Y 1 and Y 2 is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 斯かる一般式(2)中、X及びXはそれぞれ独立して、炭素原子数2~6の直鎖状若しくは分岐状のアルキレン基またはオキシアルキレン基を、Xは、単結合、-O-または-NH-を表す。X及びXは、具体的には、鎖状若しくは分岐状のメチレン基、エチレン基、プロピレン基、ブチレン基、オキシメチレン基、オキシプロピレン基、オキシブチレン基等が挙げられる。 In the general formula (2), X 3 and X 4 each independently represent a linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms, X 5 represents a single bond, — O— or —NH— is represented. Specific examples of X 3 and X 4 include a chain or branched methylene group, ethylene group, propylene group, butylene group, oxymethylene group, oxypropylene group, and oxybutylene group.
 以上詳述した一般式(2)で表される構造部位は、具体的には、以下のような構造が挙げられる。 Specific examples of the structural portion represented by the general formula (2) described in detail above include the following structures.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 次に、Y及びYを構成する一般式(3)は下記構造式で表されるものである。 Next, general formula (3) constituting Y 1 and Y 2 is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 ここで一般式(3)中、Xは置換基を有するか若しくは無置換の炭素原子数2~6の直鎖状若しくは分岐状のアルキレン基またはオキシアルキレン基を表し、R及びRはそれぞれ独立して脂肪族基またはアリール基を表す。ここで、Xにおける置換基とは、具体的には、鎖状若しくは分岐状のメチレン基、プロピレン基、ブチレン基、オキシメチレン基、オキシプロピレン基、オキシブチレン基等が挙げられる。 In the general formula (3), X 6 represents a substituted or unsubstituted linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms, and R 8 and R 9 are Each independently represents an aliphatic group or an aryl group. Here, specific examples of the substituent in X 6 include a chain or branched methylene group, a propylene group, a butylene group, an oxymethylene group, an oxypropylene group, and an oxybutylene group.
 R及びRはそれぞれ独立して脂肪族基またはアリール基を表す。ここで脂肪族基、及びアリール基としては、前記したR~Rを構成するものを挙げることができる。 R 8 and R 9 each independently represents an aliphatic group or an aryl group. Here, examples of the aliphatic group and aryl group include those constituting R 1 to R 7 described above.
 次に、Yを構成する一般式(4)は下記構造式で表されるものである。 Next, general formula (4) constituting Y 1 is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記一般式(4)中のR10及びR11は、それぞれ独立して脂肪族基またはアリール基である。斯かる脂肪族基またはアリール基としては、前記したR~Rを構成する脂肪族基またはアリール基として例示したものが挙げられる。 R 10 and R 11 in the general formula (4) are each independently an aliphatic group or an aryl group. As such an aliphatic group or aryl group, those exemplified as the aliphatic group or aryl group constituting the aforementioned R 1 to R 7 can be mentioned.
 ここで、本発明では、一般式(1)中のY及びYが共に一般式(2)で表される構造を有する場合は、その少なくとも一方のXは-NH-である。これにより、α-アミノアセトフェノン骨格含有化合物(b1)においてマイケル付加供与機能を発現させることができる。 Here, in the present invention, when Y 1 and Y 2 in the general formula (1) have a structure represented by the general formula (2), at least one X 5 is —NH—. Thus, the Michael addition donating function can be expressed in the α-aminoacetophenone skeleton-containing compound (b1).
 次に、一般式(1)中の、nは、0または1である。 Next, n in the general formula (1) is 0 or 1.
 上記一般式(1)としては、中でも、Rがエチル基であり、Rがメチル基であり、Rがメチル基であり、Rが水素であり、Rが水素であり、Rが水素でありRが水素であり、Xが短結合であり、Xがカルボニル基であり、Yはピペラジニル基であり、且つYはピペラジニル基である化合物や、Rがエチル基であり、Rがメチル基であり、Rがメチル基であり、Rが水素であり、Rが水素であり、Rが水素でありRが水素であり、Xが-CH(CH)-であり、Xがカルボニル基であり、Yはピペラジニル基であり、且つYはピペラジニル基である化合物や、Rがエチル基であり、Rが1-ヘキシル基であり、Rがメチル基であり、Rが水素であり、Rが水素であり、Rが水素でありRが水素であり、Xが短結合であり、Xがカルボニル基であり、Yはピペラジニル基であり、且つYはピペラジニル基である化合物、Rがエチル基であり、Rがメチル基であり、Rがメチル基であり、Rが水素であり、Rが水素であり、Rが水素でありRが水素であり、Xが短結合であり、Xがカルボニル基であり、Yはモルホリノ基であり、Yはピペラジニル基である化合物や、Rがエチル基であり、Rがメチル基であり、Rがメチル基であり、Rが水素であり、Rが水素であり、Rが水素でありRが水素であり、Xが短結合であり、Xがカルボニル基であり、Yはピペラジニル基であり、Yはモルホリノ基である化合物が、特に好ましい。 As the above general formula (1), R 1 is an ethyl group, R 2 is a methyl group, R 3 is a methyl group, R 4 is hydrogen, R 5 is hydrogen, R 6 is and R 7 is hydrogen hydrogen, X 1 is a short bond, X 2 is a carbonyl group, Y 1 is a piperazinyl group, and Y 2 is or a compound piperazinyl group, R 1 is An ethyl group, R 2 is a methyl group, R 3 is a methyl group, R 4 is hydrogen, R 5 is hydrogen, R 6 is hydrogen and R 7 is hydrogen, X 1 Is —CH (CH 3 ) —, X 2 is a carbonyl group, Y 1 is a piperazinyl group, and Y 2 is a piperazinyl group, or R 1 is an ethyl group and R 2 is 1 - a hexyl group, R 3 is a methyl group, R 4 is hydrogen, R 5 is hydrogen There is a R 7 R 6 is hydrogen is hydrogen, X 1 is a short bond, X 2 is a carbonyl group, Y 1 is a piperazinyl group, and the compound Y 2 is piperazinyl radical, R 1 is an ethyl group, R 2 is a methyl group, R 3 is a methyl group, R 4 is hydrogen, R 5 is hydrogen, R 6 is hydrogen and R 7 is hydrogen, X 1 is a short bond, X 2 is a carbonyl group, Y 1 is a morpholino group, Y 2 is a piperazinyl group, R 1 is an ethyl group, R 2 is a methyl group, R 3 is a methyl group, R 4 is hydrogen, R 5 is hydrogen, R 6 is hydrogen, R 7 is hydrogen, X 1 is a short bond, and X 2 is a carbonyl group , Y 1 is a piperazinyl group, compounds Y 2 are morpholino group, particularly good Arbitrariness.
 一般式(1)で表される化合物は、具体的には、構造式(5)~構造式(28)で表される化合物が挙げられる。なかでも硬化性の高さから、1個のピペラジニル基等の環状二級アミノ基を有するアミノアセトフェノン系の化合物である、構造式(5)、構造式(6)、構造式(16)、構造式(17)、構造式(19)、構造式(20)、構造式(22)、構造式(23)、構造式(25)、構造式(26)、構造式(27)が好ましく、特に構造式(5)、構造式(6)、構造式(16)、構造式(17)、構造式(25)、構造式(26)が好ましい。 Specific examples of the compound represented by the general formula (1) include compounds represented by the structural formulas (5) to (28). Among them, structural formula (5), structural formula (6), structural formula (16), and structure, which are aminoacetophenone-based compounds having a cyclic secondary amino group such as one piperazinyl group because of their high curability. The formula (17), the structural formula (19), the structural formula (20), the structural formula (22), the structural formula (23), the structural formula (25), the structural formula (26), and the structural formula (27) are preferable. Structural formula (5), structural formula (6), structural formula (16), structural formula (17), structural formula (25), and structural formula (26) are preferable.
 前記環状二級アミノ基を前記一般式(1)中のYにのみ有する化合物は、硬化性が非常に高く好ましい。このような化合物としては、構造式(5)、構造式(6)、構造式(25)、構造式(26)、構造式(27)の化合物である。 A compound having the cyclic secondary amino group only at Y 1 in the general formula (1) has a very high curability and is preferable. Examples of such a compound include compounds represented by structural formula (5), structural formula (6), structural formula (25), structural formula (26), and structural formula (27).
 また、前記環状二級アミノ基を前記一般式(1)中のYにのみ有する化合物は、硬化性が非常に高く、また活性エネルギー線の吸収により発生する開裂生成物の高分子マトリクスへの取り込みも促進されると考えられ、特に好ましい。このような化合物としては構造式(16)、構造式(17)、構造式(19)、構造式(20)、構造式(22)、構造式(23)の化合物である。 In addition, the compound having the cyclic secondary amino group only in Y 2 in the general formula (1) has very high curability, and the cleavage product generated by absorption of active energy rays can be converted into a polymer matrix. Uptake is also considered to be promoted and is particularly preferred. Examples of such a compound include compounds represented by structural formula (16), structural formula (17), structural formula (19), structural formula (20), structural formula (22), and structural formula (23).
Figure JPOXMLDOC01-appb-C000027
                     (5)
Figure JPOXMLDOC01-appb-C000027
(5)
Figure JPOXMLDOC01-appb-C000028
                     (6)
Figure JPOXMLDOC01-appb-C000028
(6)
Figure JPOXMLDOC01-appb-C000029
                     (7)
Figure JPOXMLDOC01-appb-C000029
(7)
Figure JPOXMLDOC01-appb-C000030
                     (8)
Figure JPOXMLDOC01-appb-C000030
(8)
Figure JPOXMLDOC01-appb-C000031
                     (9)
Figure JPOXMLDOC01-appb-C000031
(9)
Figure JPOXMLDOC01-appb-C000032
                     (10)
Figure JPOXMLDOC01-appb-C000032
(10)
Figure JPOXMLDOC01-appb-C000033
                     (11)
Figure JPOXMLDOC01-appb-C000033
(11)
Figure JPOXMLDOC01-appb-C000034
                     (12)
Figure JPOXMLDOC01-appb-C000034
(12)
Figure JPOXMLDOC01-appb-C000035
                     (13)
Figure JPOXMLDOC01-appb-C000035
(13)
Figure JPOXMLDOC01-appb-C000036
                     (14)
Figure JPOXMLDOC01-appb-C000036
(14)
Figure JPOXMLDOC01-appb-C000037
                     (15)
Figure JPOXMLDOC01-appb-C000037
(15)
Figure JPOXMLDOC01-appb-C000038
                     (16)
Figure JPOXMLDOC01-appb-C000038
(16)
Figure JPOXMLDOC01-appb-C000039
                     (17)
Figure JPOXMLDOC01-appb-C000039
(17)
Figure JPOXMLDOC01-appb-C000040
                     (18)
Figure JPOXMLDOC01-appb-C000040
(18)
Figure JPOXMLDOC01-appb-C000041
                     (19)
Figure JPOXMLDOC01-appb-C000041
(19)
Figure JPOXMLDOC01-appb-C000042
                     (20)
Figure JPOXMLDOC01-appb-C000042
(20)
Figure JPOXMLDOC01-appb-C000043
                     (21)
Figure JPOXMLDOC01-appb-C000043
(21)
Figure JPOXMLDOC01-appb-C000044
                     (22)
Figure JPOXMLDOC01-appb-C000044
(22)
Figure JPOXMLDOC01-appb-C000045
                     (23)
Figure JPOXMLDOC01-appb-C000045
(23)
Figure JPOXMLDOC01-appb-C000046
                     (24)
Figure JPOXMLDOC01-appb-C000046
(24)
Figure JPOXMLDOC01-appb-C000047
                     (25)
Figure JPOXMLDOC01-appb-C000047
(25)
Figure JPOXMLDOC01-appb-C000048
                     (26)
Figure JPOXMLDOC01-appb-C000048
(26)
Figure JPOXMLDOC01-appb-C000049
                     (27)
Figure JPOXMLDOC01-appb-C000049
(27)
Figure JPOXMLDOC01-appb-C000050
                     (28)
Figure JPOXMLDOC01-appb-C000050
(28)
 これらのα-アミノアセトフェノン骨格含有化合物(b1)は、一般式(1)中のY-及びY-の導入手段の違いによって下記の方法1~3の何れかの合成方法により製造することができる。 These α-aminoacetophenone skeleton-containing compounds (b1) should be produced by any one of the following synthesis methods 1 to 3 depending on the introduction means of Y 1 -and Y 2- in the general formula (1). Can do.
(方法1)
 方法1は、芳香核上にハロゲン原子を持つアルキルアセトフェノンを、2級アミノ基含有化合物(Y-H)と反応させ、次いでカルボニル基のα位に臭素原子を導入し、次いで、2級モノアミン化合物(HN(R)(R))を反応させ、次いで、置換基(-X-X-OR)nを芳香核上の置換基として有するベンジルブロミドを反応させる。ここで、Rはアルキル基であり、nは0または1である。次いで、これをアルカリで処理して末端に水酸基(またはチオール基)を持つ中間体である化合物(P)を製造する。更に、これに2級アミノ基含有化合物(Y-H)を反応させ、目的とするα-アミノアセトフェノン骨格含有化合物(b1)を製造することができる。この際、中間体である化合物(P)と2級アミノ基含有化合物(Y-H)との反応において、2級アミノ基含有化合物(Y-H)が活性水素を持つジアミン化合物である場合には、該化合物の一方のアミノ基を、オキシカルボニル基等で保護した化合物を用い、次いで、酸で処理して保護基を除去する方法を用いてもよい。
(Method 1)
In Method 1, an alkyl acetophenone having a halogen atom on an aromatic nucleus is reacted with a secondary amino group-containing compound (Y 1 -H), then a bromine atom is introduced into the α-position of the carbonyl group, and then a secondary monoamine The compound (HN (R 2 ) (R 3 )) is reacted, and then benzyl bromide having a substituent (—X 1 —X 2 —OR) n as a substituent on the aromatic nucleus is reacted. Here, R is an alkyl group, and n is 0 or 1. Next, this is treated with an alkali to produce a compound (P) which is an intermediate having a hydroxyl group (or thiol group) at the terminal. Further, this can be reacted with a secondary amino group-containing compound (Y 2 —H) to produce the desired α-aminoacetophenone skeleton-containing compound (b1). In this case, in the reaction of the intermediate compound (P) with the secondary amino group-containing compound (Y 2 —H), the secondary amino group-containing compound (Y 2 —H) is a diamine compound having active hydrogen. In some cases, a method in which one amino group of the compound is protected with an oxycarbonyl group or the like and then treated with an acid to remove the protecting group may be used.
[マイケル受容体としての機能を有する反応性化合物(b2)]
 前記マイケル受容体としての機能を有する反応性化合物(b2)としては、光照射により硬化に寄与する反応性基(以下、「光硬化性基」と略記する。)を有する化合物をいい、前記光硬化性基を複数有する多官能性の反応性化合物が、光硬化機能が特に良好となることから、好ましい。
[Reactive compound (b2) having a function as a Michael acceptor]
The reactive compound (b2) having a function as the Michael acceptor refers to a compound having a reactive group that contributes to curing by light irradiation (hereinafter abbreviated as “photocurable group”). A polyfunctional reactive compound having a plurality of curable groups is preferred because the photocuring function is particularly good.
 前記光硬化性基を複数有する多官能性の反応性化合物としては、例えば、マレイミド化合物、マレイン酸エステル化合物、フマル酸エステル化合物、(メタ)アクリレート化合物などのα,β-不飽和カルボニル化合物が挙げられる。これらのなかでも、特に合成時のマイケル付加反応の制御が容易であり、かつ光硬化時の反応性が高く、アウトガスが生じにくい感光性樹脂組成物が得られることから(メタ)アクリレート化合物が好ましい。 Examples of the polyfunctional reactive compound having a plurality of photocurable groups include α, β-unsaturated carbonyl compounds such as maleimide compounds, maleate compounds, fumarate compounds, and (meth) acrylate compounds. It is done. Among these, a (meth) acrylate compound is preferable because it is easy to control the Michael addition reaction at the time of synthesis, and a photosensitive resin composition that has high reactivity at the time of photocuring and hardly generates outgassing. .
 前記(メタ)アクリレート化合物としては、例えば、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の二官能アクリレート類、トリメチロールプロパントリ(メタ)アクリレート及びそのエチレンオキシドやプロピレンオキシド等のアルキレンオキシド変性物、ペンタエリスリトールトリまたはテトラ(メタ)アクリレート及びそのエチレンオキシドやプロピレンオキシド等のアルキレンオキシド変性物、ジトリメチロールプロパンテトラ(メタ)アクリレート及びそのエチレンオキシドやプロピレンオキシド等のアルキレンオキシド変性物、ジペンタエリスリトールテトラまたはペンタまたはヘキサ(メタ)アクリレート及びそのカプロラクトン変性物等の多官能(メタ)アクリレート類、ビスフェノールAジグリシジルエーテルやトリメチロールプロパントリグリシジルエーテル等のポリグリシジルエーテルと(メタ)アクリル酸との反応により得られるエポキシ(メタ)アクリレート類、イソホロンジイソシアネートやヘキサメチレンジイソシアネート三量体等のポリイソシアナート化合物と、ヒドロキシエチル(メタ)アクリレートやペンタエリスリトールトリ(メタ)アクリレート等の水酸基を有するアクリレートとの反応により得られるウレタン(メタ)アクリレート類、トリメリット酸やコハク酸等の多塩基酸と、エチレングリコールやネオペンチルグリコール等のポリオールと、ヒドロキシエチル(メタ)アクリレートやペンタエリスリトールトリ(メタ)アクリレート等の水酸基を有する(メタ)アクリレートとの反応により得られるポリエステル(メタ)アクリレート類、グリシジル(メタ)アクリレートと単官能(メタ)アクリレートとの重合物と、(メタ)アクリル酸との反応により得られる高分子量型のポリ(メタ)アクリレート等が挙げられるが、これらに限定されるものではない。またこれらの反応性化合物は、単独で使用してもよく、複数を混合して使用してもよい。 Examples of the (meth) acrylate compound include diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, and 3-methyl-1,5-pentanediol di (meth). Bifunctional acrylates such as acrylate, hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate and its modified alkylene oxide such as ethylene oxide and propylene oxide, pentaerythritol tri Tetra (meth) acrylate and its modified alkylene oxide such as ethylene oxide and propylene oxide, ditrimethylolpropane tetra (meth) acrylate and its Alkylene oxide modified products such as tylene oxide and propylene oxide, polyfunctional (meth) acrylates such as dipentaerythritol tetra or penta or hexa (meth) acrylate and its caprolactone modified product, bisphenol A diglycidyl ether and trimethylolpropane triglycidyl Epoxy (meth) acrylates obtained by the reaction of polyglycidyl ethers such as ether and (meth) acrylic acid, polyisocyanate compounds such as isophorone diisocyanate and hexamethylene diisocyanate trimer, hydroxyethyl (meth) acrylate and penta Urethane (meth) acrylates obtained by reaction with acrylates having hydroxyl groups such as erythritol tri (meth) acrylate, trimellitic acid and succinate Polyester obtained by reaction of a polybasic acid such as ethylene glycol or neopentyl glycol with a (meth) acrylate having a hydroxyl group such as hydroxyethyl (meth) acrylate or pentaerythritol tri (meth) acrylate (meta ) Acrylates, polymers of glycidyl (meth) acrylate and monofunctional (meth) acrylates, and high molecular weight poly (meth) acrylates obtained by reaction with (meth) acrylic acid, and the like. It is not limited. These reactive compounds may be used alone or in combination.
 中でも、硬化後高分子量体となって硬化膜により強固に固定化できることから、前記反応性化合物としては、3官能以上の(メタ)アクリレート化合物が最も好ましい。マイケル受容体としての機能を有する反応性化合物として、(メタ)アクリロイル基を3つ以上有する3官能以上の(メタ)アクリレートを選択した場合は、本発明のマイケル付加反応物が有する光硬化性基が2個以上とするため好ましい。 Among them, the reactive compound is most preferably a trifunctional or higher functional (meth) acrylate compound because it becomes a high molecular weight body after curing and can be firmly fixed by a cured film. When a trifunctional or higher functional (meth) acrylate having three or more (meth) acryloyl groups is selected as the reactive compound having a function as a Michael acceptor, the photocurable group of the Michael addition reactant of the present invention Is preferably 2 or more.
(マイケル付加反応)
 本発明において、前記α-アミノアセトフェノン骨格含有化合物(b1)と、前記マイケル受容体としての機能を有する反応性化合物(b2)とのマイケル付加反応は、特に限定されることなく、公知慣用の反応条件で行うことができる。一般的な方法としては、前記α-アミノアセトフェノン骨格含有化合物(b1)と前記マイケル受容体としての機能を有する反応性化合物(b2)とを、反応容器中、0~150℃で混合する方法が挙げられる。この際、触媒や有機溶媒を使用することもできる。
(Michael addition reaction)
In the present invention, the Michael addition reaction between the α-aminoacetophenone skeleton-containing compound (b1) and the reactive compound (b2) having a function as the Michael acceptor is not particularly limited and is a known and usual reaction. Can be done under conditions. As a general method, there is a method in which the α-aminoacetophenone skeleton-containing compound (b1) and the reactive compound (b2) having a function as the Michael acceptor are mixed at 0 to 150 ° C. in a reaction vessel. Can be mentioned. At this time, a catalyst or an organic solvent can also be used.
 前記触媒としては、例えば、テトラエチルアンモニウムフロライド、テトラブチルアンモニウム水酸化物、水酸化カリウム、テトラメチルグアニジ、ジアザビシクロウンデセン、ナトリウム-t-ブチラート、トリ-n-オクチルホスフィン、トリフェニルホスフィン等が挙げられる。 Examples of the catalyst include tetraethylammonium fluoride, tetrabutylammonium hydroxide, potassium hydroxide, tetramethylguanidi, diazabicycloundecene, sodium t-butylate, tri-n-octylphosphine, and triphenylphosphine. Etc.
 前記有機溶媒としては例えば、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の飽和炭化水素類、トルエン、キシレン等の芳香族炭化水素類、メタノール、エタノール、イソプロパノール、2-ブタノール、t-ブタノール、エチレングリコール、カルビトール等のアルコール類、ジメチルエーテル、ジエチルエーテル、1,4-ジオキサン、テトラヒドロフラン(THF)等のエーテル、ジメチルホルムアミド(DMF)等のアミド類、クロロホルム、ジクロロメタン等のハロゲン系溶媒、ジメチルスルホキシド(DMSO)等を挙げることができる。 Examples of the organic solvent include saturated hydrocarbons such as pentane, hexane, heptane, and cyclohexane, aromatic hydrocarbons such as toluene and xylene, methanol, ethanol, isopropanol, 2-butanol, t-butanol, ethylene glycol, and carbylene. Alcohols such as Toll, ethers such as dimethyl ether, diethyl ether, 1,4-dioxane, tetrahydrofuran (THF), amides such as dimethylformamide (DMF), halogenated solvents such as chloroform and dichloromethane, dimethyl sulfoxide (DMSO), etc. Can be mentioned.
 前記α-アミノアセトフェノン骨格含有化合物(b1)と、前記マイケル受容体としての機能を有する反応性化合物(b2)の混合比は、特に限定されることはないが、マイケル付加供与機能を有する基(i)と、マイケル受容機能を有する基(ii)との当量比[(ii)/(i)]が、1/1~1/30であることが好ましく、1/2~1/30であることがより好ましい。 The mixing ratio of the α-aminoacetophenone skeleton-containing compound (b1) and the reactive compound (b2) having a function as the Michael acceptor is not particularly limited, but a group having a Michael addition-donating function ( The equivalent ratio [(ii) / (i)] between i) and the group (ii) having a Michael accepting function is preferably 1/1 to 1/30, and more preferably 1/2 to 1/30. It is more preferable.
 前記α-アミノアセトフェノン骨格含有化合物(b1)と、前記マイケル受容体としての機能を有する反応性化合物(b2)とをマイケル付加反応させてえられたマイケル付加反応物としては、例えば、以下の式(M1)~(M18)を挙げることができる。 As the Michael addition reaction product obtained by the Michael addition reaction of the α-aminoacetophenone skeleton-containing compound (b1) and the reactive compound (b2) having a function as the Michael acceptor, for example, the following formula (M1) to (M18) can be mentioned.
Figure JPOXMLDOC01-appb-C000051
                     (M1)
Figure JPOXMLDOC01-appb-C000051
(M1)
Figure JPOXMLDOC01-appb-C000052
                     (M2)
Figure JPOXMLDOC01-appb-C000052
(M2)
Figure JPOXMLDOC01-appb-C000053
                     (M3)
Figure JPOXMLDOC01-appb-C000053
(M3)
Figure JPOXMLDOC01-appb-C000054
                     (M4)
Figure JPOXMLDOC01-appb-C000054
(M4)
Figure JPOXMLDOC01-appb-C000055
                     (M5)
Figure JPOXMLDOC01-appb-C000055
(M5)
Figure JPOXMLDOC01-appb-C000056
                     (M6)
Figure JPOXMLDOC01-appb-C000056
(M6)
Figure JPOXMLDOC01-appb-C000057
                     (M7)
Figure JPOXMLDOC01-appb-C000057
(M7)
Figure JPOXMLDOC01-appb-C000058
                     (M8)
Figure JPOXMLDOC01-appb-C000058
(M8)
Figure JPOXMLDOC01-appb-C000059
                     (M9)
Figure JPOXMLDOC01-appb-C000059
(M9)
Figure JPOXMLDOC01-appb-C000060
                     (M10)
Figure JPOXMLDOC01-appb-C000060
(M10)
Figure JPOXMLDOC01-appb-C000061
                     (M11)
Figure JPOXMLDOC01-appb-C000061
(M11)
Figure JPOXMLDOC01-appb-C000062
                     (M12)
Figure JPOXMLDOC01-appb-C000062
(M12)
Figure JPOXMLDOC01-appb-C000063
                     (M13)
Figure JPOXMLDOC01-appb-C000063
(M13)
Figure JPOXMLDOC01-appb-C000064
                     (M14)
Figure JPOXMLDOC01-appb-C000064
(M14)
Figure JPOXMLDOC01-appb-C000065
                     (M15)
Figure JPOXMLDOC01-appb-C000065
(M15)
Figure JPOXMLDOC01-appb-C000066
                     (M16)
Figure JPOXMLDOC01-appb-C000066
(M16)
Figure JPOXMLDOC01-appb-C000067
                     (M17)
Figure JPOXMLDOC01-appb-C000067
(M17)
Figure JPOXMLDOC01-appb-C000068
                     (M18)
Figure JPOXMLDOC01-appb-C000068
(M18)
 前記光重合開始剤(B)の使用量は、前記酸基含有(メタ)アクリレート樹脂(A)100質量部に対して、1~20質量部の範囲が好ましい。 The amount of the photopolymerization initiator (B) used is preferably in the range of 1 to 20 parts by mass with respect to 100 parts by mass of the acid group-containing (meth) acrylate resin (A).
 本発明の感光性樹脂組成物は、更に硬化性能を高めるため、必要に応じて、光増感剤や三級アミン類等の光開始助剤を使用しても良い。前記光増感剤としては、例えば、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン系、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン系、アントラキノン等が挙げられる。一方、三級アミンとしては、例えば、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミル、N,N-ジメチルベンジルアミン等が挙げられる。また、1分子内に複数の光増感剤や三級アミン類を多価アルコール等で分岐させた高分子量化合物も適宜使用することができる。前記光開始助剤は、感光性樹脂組成物の全量に対し0.03~20質量部で使用することが好ましく、0.1~10質量部で使用することがなお好ましい。 In the photosensitive resin composition of the present invention, a photoinitiator such as a photosensitizer or a tertiary amine may be used as necessary in order to further improve the curing performance. Examples of the photosensitizer include thioxanthone series such as 2,4-diethylthioxanthone and 2,4-diisopropylthioxanthone, benzophenone series such as 4,4'-bis (diethylamino) benzophenone, anthraquinone and the like. On the other hand, examples of the tertiary amine include ethyl p-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, and N, N-dimethylbenzylamine. In addition, a high molecular weight compound obtained by branching a plurality of photosensitizers or tertiary amines in one molecule with a polyhydric alcohol or the like can be used as appropriate. The photoinitiator aid is preferably used in an amount of 0.03 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, based on the total amount of the photosensitive resin composition.
 また、本発明の効果を損なわない範囲で、前記光重合開始剤(B)以外のその他の光重合開始剤を併用することもできる。 Further, other photopolymerization initiators other than the photopolymerization initiator (B) can be used in combination as long as the effects of the present invention are not impaired.
 前記その他の光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、ジフェニル(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン等が挙げられる。 Examples of the other photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl]- 2-hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2′-dimethoxy-1,2-diphenylethane-1-one, diphenyl (2,4,6-trimethoxybenzoyl) ) Phosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1- (4 Morpholinophenyl) -1-butanone, and the like.
 前記その他の光重合開始剤の市販品としては、例えば、「Omnirad-1173」、「Omnirad-184」、「Omnirad-127」、「Omnirad-2959」、「Omnirad-369」、「Omnirad-379」、「Omnirad-907」、「Omnirad-4265」、「Omnirad-1000」、「Omnirad-651」、「Omnirad-TPO」、「Omnirad-819」、「Omnirad-2022」、「Omnirad-2100」、「Omnirad-754」、「Omnirad-784」、「Omnirad-500」、「Omnirad-81」(IGM社製)、「カヤキュア-DETX」、「カヤキュア-MBP」、「カヤキュア-DMBI」、「カヤキュア-EPA」、「カヤキュア-OA」(日本化薬株式会社製)、「バイキュア-10」、「バイキュア-55」(ストウファ・ケミカル社製)、「トリゴナルP1」(アクゾ社製)、「サンドレイ1000」(サンドズ社製)、「ディープ」(アプジョン社製)、「クオンタキュア-PDO」、「クオンタキュア-ITX」、「クオンタキュア-EPD」(ワードブレンキンソップ社製)、「Runtecure-1104」(Runtec社製)等が挙げられる。 Examples of other commercially available photopolymerization initiators include “Omnirad-1173”, “Omnirad-184”, “Omnirad-127”, “Omnirad-2959”, “Omnirad-369”, “Omnirad-379”. , “Omnirad-907”, “Omnirad-4265”, “Omnirad-1000”, “Omnirad-651”, “Omnirad-TPO”, “Omnirad-819”, “Omnirad-2022”, “Omnirad-2100” “ Omnirad-754, Omnirad-784, Omnirad-500, Omnirad-81 (manufactured by IGM), Kayacure-DETX, Kayacure-MBP, Kayacure-DMBI, Kayacyu -EPA "," Kayacure-OA "(manufactured by Nippon Kayaku Co., Ltd.)," Bicure-10 "," Bicure-55 "(manufactured by Stofa Chemical)," Trigonal P1 "(manufactured by Akzo)," Sandray 1000 "Sands", "Deep" (Apjon), "QuantaCure-PDO", "QuantaCure-ITX", "QuantaCure-EPD" (Ward Brenkinsop), "Runtecure-1104" (Manufactured by Runtec).
 本発明の感光性樹脂組成物は、前記酸基含有(メタ)アクリレート樹脂(A)以外のその他の樹脂成分を含有しても良い。前記その他の樹脂成分としては、例えば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂に、(メタ)アクリル酸、ジカルボン酸無水物、必要に応じて不飽和モノカルボン酸無水物等を反応させて得られる、樹脂中にカルボキシル基と(メタ)アクリロイル基とを有する樹脂、各種の(メタ)アクリレートモノマー等が挙げられる。 The photosensitive resin composition of the present invention may contain other resin components other than the acid group-containing (meth) acrylate resin (A). Examples of the other resin components include (meth) acrylic acid, dicarboxylic acid anhydride, and unsaturated monocarboxylic acid anhydride, if necessary, to epoxy resin such as bisphenol type epoxy resin and novolak type epoxy resin. Examples thereof include resins having a carboxyl group and a (meth) acryloyl group in the resin, various (meth) acrylate monomers, and the like.
 前記(メタ)アクリレートモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ベンジルベンジル(メタ)アクリレート、フェニルフェノキシエチル(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物等のモノ(メタ)アクリレート化合物:前記各種のモノ(メタ)アクリレートモノマーの分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性モノ(メタ)アクリレート化合物;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入したポリオキシアルキレン変性ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性ジ(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性トリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した4官能以上の(ポリ)オキシアルキレン変性ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入した4官能以上のラクトン変性ポリ(メタ)アクリレート化合物などが挙げられる。 Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and 2-ethylhexyl. Aliphatic mono (meth) acrylate compounds such as (meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) acrylate compounds such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate ; Heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, phenylben (Meth) acrylate, phenoxy (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, phenoxybenzyl (meth) acrylate, benzylbenzyl ( Mono (meth) acrylate compounds such as aromatic mono (meth) acrylate compounds such as meth) acrylate and phenylphenoxyethyl (meth) acrylate: (poly) oxyethylene chains in the molecular structure of the various mono (meth) acrylate monomers , (Poly) oxypropylene-modified (poly) oxyalkylene-modified (poly) oxyalkylene-modified (poly) oxyalkylene-modified mono (meth) acrylate compounds; Lactone-modified mono (meth) acrylate compounds in which (poly) lactone structure is introduced into the molecular structure of the compound; ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol Aliphatic di (meth) acrylate compounds such as di (meth) acrylate and neopentyl glycol di (meth) acrylate; 1,4-cyclohexanedimethanol di (meth) acrylate, norbornane di (meth) acrylate, norbornane dimethanol di ( Alicyclic di (meth) acrylate compounds such as (meth) acrylate, dicyclopentanyl di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate; biphenol di (meth) acrylate, bisphenol Aromatic di (meth) acrylate compounds such as rudi (meth) acrylate; in the molecular structure of the various di (meth) acrylate compounds, (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) oxytetramethylene A polyoxyalkylene-modified di (meth) acrylate compound in which a (poly) oxyalkylene chain such as a chain is introduced; a lactone-modified di (meta) compound in which a (poly) lactone structure is introduced into the molecular structure of the various di (meth) acrylate compounds ) Acrylate compound; Aliphatic tri (meth) acrylate compound such as trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, etc .; (poly) oxyethylene chain in the molecular structure of the aliphatic tri (meth) acrylate compound , (Poly) oxypropylene chain, (poly) oxyte (Poly) oxyalkylene-modified tri (meth) acrylate compound in which (poly) oxyalkylene chain such as lamethylene chain is introduced; lactone modification in which (poly) lactone structure is introduced into the molecular structure of the aliphatic tri (meth) acrylate compound Tri (meth) acrylate compounds; tetra- or higher functional aliphatic poly (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; the aliphatic (Poly) having at least four functional groups in which a (poly) oxyalkylene chain such as a (poly) oxyethylene chain, (poly) oxypropylene chain, or (poly) oxytetramethylene chain is introduced into the molecular structure of the poly (meth) acrylate compound Oxyalkylene modified poly Meth) acrylate compound; and the aliphatic poly (meth) acrylate compound in the molecular structure of (poly) lactone 4 or more functional introducing the lactone structure-modified poly (meth) acrylate compounds.
 本発明の感光性樹脂組成物は、塗工粘度調節等の目的で有機溶剤を含有してもよく、その種類や添加量は、所望の性能に応じて適宜選択及び調整される。 The photosensitive resin composition of the present invention may contain an organic solvent for the purpose of adjusting the coating viscosity, and the type and addition amount thereof are appropriately selected and adjusted according to the desired performance.
 前記有機溶剤としては、例えば、メチルエチルケトン、アセトン、イソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ソルベントナフサ等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテル等のアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル溶剤などが挙げられる。これらの有機溶剤は、単独で用いることも2種以上を併用することもできる。 Examples of the organic solvent include ketone solvents such as methyl ethyl ketone, acetone and isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; and aromatics such as toluene, xylene and solvent naphtha. Aliphatic solvents such as cyclohexane and methylcyclohexane; Alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, dialkylene glycol Examples include glycol ether solvents such as monoalkyl ether acetate. These organic solvents can be used alone or in combination of two or more.
 また、本発明の感光性樹脂組成物には、必要に応じて、無機微粒子やポリマー微粒子、顔料、消泡剤、粘度調整剤、レベリング剤、難燃剤、保存安定化剤等の各種添加剤を含有することもできる。 In addition, the photosensitive resin composition of the present invention may contain various additives such as inorganic fine particles and polymer fine particles, pigments, antifoaming agents, viscosity modifiers, leveling agents, flame retardants, and storage stabilizers as necessary. It can also be contained.
 本発明の硬化物は、前記感光性樹脂組成物に、活性エネルギー線を照射することで得ることができる。前記活性エネルギー線としては、例えば、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。また、前記活性エネルギー線として、紫外線を用いる場合、紫外線による硬化反応を効率よく行う上で、窒素ガス等の不活性ガス雰囲気下で照射してもよく、空気雰囲気下で照射してもよい。 The cured product of the present invention can be obtained by irradiating the photosensitive resin composition with active energy rays. Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. In addition, when ultraviolet rays are used as the active energy rays, irradiation may be performed in an inert gas atmosphere such as nitrogen gas or an air atmosphere in order to efficiently perform a curing reaction with ultraviolet rays.
 紫外線発生源としては、実用性、経済性の面から紫外線ランプが一般的に用いられている。具体的には、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ、太陽光、LED等が挙げられる。 As an ultraviolet ray generation source, an ultraviolet lamp is generally used from the viewpoint of practicality and economy. Specific examples include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a gallium lamp, a metal halide lamp, sunlight, and an LED.
 また、本発明の感光性樹脂組成物を硬化させて得られた硬化物は、優れた耐熱性を有しており、アウトガスが生じにくいことから、例えば、半導体デバイス用途における、ソルダーレジスト、層間絶縁材料、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や、集積回路素子と回路基板の接着層として好適に用いることができる。また、LCD、OELDに代表される薄型ディスプレイ用途における、薄膜トランジスタ保護膜、液晶カラーフィルタ保護膜、カラーフィルタ用顔料レジスト、ブラックマトリックス用レジスト、スペーサー等に好適に用いることができる。 In addition, the cured product obtained by curing the photosensitive resin composition of the present invention has excellent heat resistance and is less likely to generate outgas. For example, solder resist and interlayer insulation in semiconductor device applications It can be suitably used as a package adhesive layer such as a material, a package material, an underfill material, or a circuit element, or an adhesive layer between an integrated circuit element and a circuit board. Further, it can be suitably used for a thin film transistor protective film, a liquid crystal color filter protective film, a color filter pigment resist, a black matrix resist, a spacer, etc. in thin display applications typified by LCD and OELD.
 本発明のソルダーレジスト用樹脂材料は、前記感光性樹脂組成物に、必要に応じて、例えば、硬化剤、硬化促進剤、有機溶剤、無機微粒子やポリマー微粒子、顔料、消泡剤、粘度調整剤、レベリング剤、難燃剤、保存安定化剤等の各種添加剤等を用いることができる。 The resin material for a solder resist of the present invention can be applied to the photosensitive resin composition, if necessary, for example, a curing agent, a curing accelerator, an organic solvent, inorganic fine particles or polymer fine particles, a pigment, an antifoaming agent, a viscosity modifier. Various additives such as a leveling agent, a flame retardant, and a storage stabilizer can be used.
 前記硬化剤としては、前記酸基含有(メタ)アクリレート樹脂(A)中のカルボキシル基と反応し得る官能基を有するものであれば特に制限されず、例えば、エポキシ樹脂が挙げられる。前記エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、硬化物における耐熱性に優れることから、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂が好ましく、軟化点が50~120℃の範囲であるものが特に好ましい。 The curing agent is not particularly limited as long as it has a functional group capable of reacting with a carboxyl group in the acid group-containing (meth) acrylate resin (A), and examples thereof include an epoxy resin. Examples of the epoxy resin include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition Examples include reactive epoxy resins. These epoxy resins can be used alone or in combination of two or more. Among these, since it has excellent heat resistance in a cured product, a phenol novolac type epoxy resin, a cresol novolak type epoxy resin, a bisphenol novolak type epoxy resin, a naphthol novolak type epoxy resin, a naphthol-phenol co-condensed novolak type epoxy resin, A novolak type epoxy resin such as a naphthol-cresol co-condensed novolak type epoxy resin is preferable, and a softening point in the range of 50 to 120 ° C. is particularly preferable.
 前記硬化促進剤とは、前記硬化剤の硬化反応を促進するものであり、前記硬化剤としてエポキシ樹脂を用いる場合には、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。これらの硬化促進剤は、単独で用いることも2種以上を併用することもできる。また、前記硬化促進剤の添加量は、例えば、前記硬化剤100質量部に対して1~10質量部の範囲で用いることが好ましい。 The curing accelerator is to accelerate the curing reaction of the curing agent. When an epoxy resin is used as the curing agent, for example, a phosphorus compound, a tertiary amine, imidazole, an organic acid metal salt, Examples include Lewis acids and amine complex salts. These curing accelerators can be used alone or in combination of two or more. The addition amount of the curing accelerator is preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent, for example.
 前記有機溶剤としては、前記酸基含有(メタ)アクリレート樹脂(A)や硬化剤等の各種成分を溶解し得るものであれば特に限定されず、例えば、メチルエチルケトン、アセトン、イソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ソルベントナフサ等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル溶剤などが挙げられる。これらの有機溶剤は、単独で用いることも2種以上を併用することもできる。 The organic solvent is not particularly limited as long as it can dissolve various components such as the acid group-containing (meth) acrylate resin (A) and a curing agent, and examples thereof include ketone solvents such as methyl ethyl ketone, acetone, and isobutyl ketone. Cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; aromatic solvents such as toluene, xylene and solvent naphtha; alicyclic solvents such as cyclohexane and methylcyclohexane; carbitol and cellosolve Alcohol solvents such as methanol, isopropanol, butanol, propylene glycol monomethyl ether; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether acetate Such as glycol ethers solvents over bets, and the like. These organic solvents can be used alone or in combination of two or more.
 本発明のレジスト部材は、例えば、前記ソルダーレジスト用樹脂材料を基材上に塗布し、60~100℃程度の温度範囲で有機溶媒を揮発乾燥させた後、所望のパターンが形成されたフォトマスクを通して活性エネルギー線にて露光させ、アルカリ水溶液にて未露光部を現像し、更に140~180℃程度の温度範囲で加熱硬化させて得ることができる。 The resist member of the present invention is, for example, a photomask in which a desired pattern is formed after applying the resin material for solder resist on a substrate and evaporating and drying an organic solvent in a temperature range of about 60 to 100 ° C. And exposed to an active energy ray, developed in an unexposed portion with an aqueous alkali solution, and further heat-cured in a temperature range of about 140 to 180 ° C.
 以下、実施例と比較例とにより、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples and comparative examples.
(合成例1:酸基含有(メタ)アクリレート樹脂(A-1)の合成)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート101質量部を入れ、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」、エポキシ当量;214g/eq)428質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン4質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸144質量部、トリフェニルホスフィン1.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行なった。その後、ジエチレングリコールモノメチルエーテルアセテート311質量部、テトラヒドロ無水フタル酸160質量部を加え110℃で2.5時間反応させて、酸基含有(メタ)アクリレート樹脂(A-1)を得た。この酸基含有(メタ)アクリレート樹脂(A-1)の固形分酸価は85mgKOH/gであった。
(Synthesis Example 1: Synthesis of acid group-containing (meth) acrylate resin (A-1))
A flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 101 parts by mass of diethylene glycol monomethyl ether acetate, and an orthocresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation, epoxy equivalent; 214 g / eq) ) Dissolve 428 parts by mass, add 4 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor, then add 144 parts by mass of acrylic acid and 1.6 parts by mass of triphenylphosphine Then, the esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Thereafter, 311 parts by mass of diethylene glycol monomethyl ether acetate and 160 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain an acid group-containing (meth) acrylate resin (A-1). This acid group-containing (meth) acrylate resin (A-1) had a solid content acid value of 85 mgKOH / g.
(合成例2:酸基含有(メタ)アクリレート樹脂(A-2)の合成)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート379質量部、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)185質量部、無水トリメリット酸146質量部、ジブチルヒドロキシトルエン1.6質量部を加えて溶解させた。窒素雰囲気下、160℃で5時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。次いで、メトキノン0.3質量部、ペンタエリスリトールポリアクリレート混合物(東亜合成株式会社製「アロニックスM-306」、ペンタエリスリトールトリアクリレート含有量約67%、水酸基価159.7mgKOH/g)112質量部及びトリフェニルホスフィン3.1質量部を添加し、空気を吹き込みながら110℃で5時間反応させた。次いで、グリシジルメタクリレート125質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸87質量部を加えて110℃で5時間反応させて、酸基含有(メタ)アクリレート樹脂(A-2)を得た。この酸基含有(メタ)アクリレート樹脂(A-2)の固形分酸価は80mgKOH/gであった。
(Synthesis Example 2: Synthesis of acid group-containing (meth) acrylate resin (A-2))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 379 parts by mass of diethylene glycol monomethyl ether acetate, an isocyanurate-modified form of isophorone diisocyanate (“VESTANAT T-1890 / 100” manufactured by EVONIK, isocyanate group content 17. 2% by mass) 185 parts by mass, 146 parts by mass of trimellitic anhydride, and 1.6 parts by mass of dibutylhydroxytoluene were added and dissolved. It was made to react at 160 degreeC under nitrogen atmosphere for 5 hours, and it confirmed that isocyanate group content was 0.1 mass% or less. Next, 0.3 parts by weight of methoquinone, 112 parts by weight of pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toa Gosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value of 159.7 mg KOH / g) and tri 3.1 parts by mass of phenylphosphine was added and reacted at 110 ° C. for 5 hours while blowing air. Next, 125 parts by mass of glycidyl methacrylate was added and reacted at 110 ° C. for 5 hours. Furthermore, 87 parts by mass of succinic anhydride was added and reacted at 110 ° C. for 5 hours to obtain an acid group-containing (meth) acrylate resin (A-2). This acid group-containing (meth) acrylate resin (A-2) had a solid content acid value of 80 mgKOH / g.
(合成例3:光重合開始剤(M17)の合成) (Synthesis Example 3: Synthesis of photopolymerization initiator (M17))
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 撹拌機、温度計、窒素導入管、アルカリトラップ及び滴下ロートを備えた1L四つ口フラスコに塩化アルミニウム(無水)121.8gと脱水ジクロロメタン300mLを仕込み、窒素気流下、氷浴を用いて氷冷した。これに2-ブロモブチリルブロミド200gを添加した。フルオロベンゼン83.6gと脱水ジクロロメタン100mLの混合溶液を、滴下ロートを用いて先のフラスコ中へ20分かけて滴下した。滴下終了後、氷浴を外し、そのまま、2時間攪拌を続けた。攪拌終了後、反応液を氷水1L中へ投入し、2時間攪拌を続けた。靜置後分液し、下層を回収した。2N塩酸で2回洗浄し、飽和炭酸水素ナトリウム水溶液で1回洗浄し、飽和食塩水で2回洗浄した。硫酸マグネシウムで一昼夜乾燥させた後、ジクロロメタンを減圧留去し、中間体(101)を得た。 A 1 L four-necked flask equipped with a stirrer, thermometer, nitrogen inlet tube, alkali trap and dropping funnel is charged with 121.8 g of aluminum chloride (anhydrous) and 300 mL of dehydrated dichloromethane, and cooled with ice in an ice bath under a nitrogen stream. did. To this was added 200 g of 2-bromobutyryl bromide. A mixed solution of 83.6 g of fluorobenzene and 100 mL of dehydrated dichloromethane was dropped into the previous flask using a dropping funnel over 20 minutes. After completion of dropping, the ice bath was removed and stirring was continued for 2 hours. After completion of the stirring, the reaction solution was put into 1 L of ice water and stirring was continued for 2 hours. After placing the solution, the solution was separated and the lower layer was collected. Washed twice with 2N hydrochloric acid, washed once with saturated aqueous sodium hydrogen carbonate solution, and washed twice with saturated brine. After drying overnight with magnesium sulfate, dichloromethane was distilled off under reduced pressure to obtain an intermediate (101).
 収量:214.3g、収率:100% Yield: 214.3 g, Yield: 100%
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 攪拌機、温度計を備えた2L四つ口フラスコに11%ジメチルアミン/エタノール溶液789.9gを仕込み、氷浴を用いて氷冷した。そこに中間体(101)157.7gを滴下ロートを用いて30分かけて滴下した。滴下終了後、氷浴を外し、そのまま、一昼夜攪拌を続けた。攪拌終了後、エタノールを留去し、トルエンを投入した。水洗後、上層に2N塩酸を用いてpH1にした後、分液し、下層を回収した。回収した下層に10%水酸化ナトリウム水溶液を用いて、pH12にした後、トルエンを投入し、上層を回収した。さらに飽和食塩水で2回洗浄した後、上層を回収し、硫酸マグネシウムで、一昼夜乾燥させた。トルエンを減圧留去し、中間体(102)を得た。 A 2L four-necked flask equipped with a stirrer and a thermometer was charged with 799.9 g of an 11% dimethylamine / ethanol solution and cooled in an ice bath using an ice bath. The intermediate body (101) 157.7g was dripped there over 30 minutes using the dropping funnel. After completion of the dropwise addition, the ice bath was removed and stirring was continued for a whole day and night. After stirring, ethanol was distilled off and toluene was added. After washing with water, the upper layer was adjusted to pH 1 with 2N hydrochloric acid and then separated to recover the lower layer. The pH of the recovered lower layer was adjusted to 12 using a 10% aqueous sodium hydroxide solution, and then toluene was added to recover the upper layer. Further, after washing twice with a saturated saline solution, the upper layer was collected and dried with magnesium sulfate all day and night. Toluene was distilled off under reduced pressure to obtain an intermediate (102).
 収量:134.6g、収率:100% Yield: 134.6g, Yield: 100%
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 攪拌機、温度計、冷却管を備えた500mL四つ口フラスコに中間体(102)79.5gと臭化ベンジル(103)71.4gとイソプロパノール(以下「IPA」と略記する。)120mLを仕込み、50℃で2時間攪拌した。その後、8M水酸化ナトリウム水溶液の104mLを添加し、50℃で1時間攪拌した。攪拌終了後、塩酸水溶液を用いてpH6に調製した後、IPAを留去し、析出した結晶をろ別して中間体(104)を得た。 A 500 mL four-necked flask equipped with a stirrer, a thermometer, and a condenser tube was charged with 79.5 g of intermediate (102), 71.4 g of benzyl bromide (103) and 120 mL of isopropanol (hereinafter abbreviated as “IPA”). The mixture was stirred at 50 ° C. for 2 hours. Thereafter, 104 mL of an 8M aqueous sodium hydroxide solution was added and stirred at 50 ° C. for 1 hour. After completion of the stirring, the pH was adjusted to 6 using an aqueous hydrochloric acid solution, and then IPA was distilled off. The precipitated crystals were separated by filtration to obtain an intermediate (104).
 収量:96.7g、収率:85.0% Yield: 96.7 g, Yield: 85.0%
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 攪拌機、温度計、冷却管を備えた1L四つ口フラスコに、中間体(104)34.3gとジメチルスルホキシド(DMSO)105mLと無水ピペラジンの29.6gと炭酸カリウム7.9gを加え、窒素気流下、120℃で24時間加熱した。水を加えて反応を停止させた後、トルエンで抽出した。水で2回洗浄した後、硫酸マグネシウムで、一昼夜乾燥させた。トルエンを減圧留去し、メタノールから再結晶し、マイケル付加供与能を有する中間体(5)を得た。 To a 1 L four-necked flask equipped with a stirrer, a thermometer, and a condenser tube was added 34.3 g of intermediate (104), 105 mL of dimethyl sulfoxide (DMSO), 29.6 g of anhydrous piperazine, and 7.9 g of potassium carbonate, and a nitrogen stream Under heating at 120 ° C. for 24 hours. Water was added to stop the reaction, followed by extraction with toluene. After washing twice with water, it was dried overnight with magnesium sulfate. Toluene was distilled off under reduced pressure and recrystallized from methanol to obtain an intermediate (5) having a Michael addition-donating ability.
 収量:36.9g、収率:98.0質量% Yield: 36.9 g, Yield: 98.0% by mass
 撹拌機、コンデンサ及び熱電対を備えた100mLの三口フラスコにエチレンオキシド変性トリメチロールプロパントリアクリレート(東亞合成株式会社製「アロニックスM-350」)45g及びマイケル付加供与能を有する中間体(5)12gを加え、80℃で6時間撹拌して、下記構造式で表されるマイケル付加反応物(M17)57gを得た。反応仕込み時のマイケル供与機能を有する基とマイケル受容機能を有する基の比率は1:5.5であった。 In a 100 mL three-necked flask equipped with a stirrer, a condenser and a thermocouple, 45 g of ethylene oxide-modified trimethylolpropane triacrylate (“Aronix M-350” manufactured by Toagosei Co., Ltd.) and 12 g of an intermediate (5) having a Michael addition donating ability In addition, the mixture was stirred at 80 ° C. for 6 hours to obtain 57 g of a Michael addition reaction product (M17) represented by the following structural formula. The ratio of the group having a Michael donating function to the group having a Michael accepting function at the time of reaction preparation was 1: 5.5.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
(合成例4:光重合開始剤(M11)の合成) (Synthesis Example 4: Synthesis of Photopolymerization Initiator (M11))
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 撹拌機、温度計、窒素導入管、冷却管、アルカリトラップを備えた5Lフラスコに、4-フルオロブチロフェノン(105)500g、ジメチルスルホキシド(DMSO)250mL及びモルホリン1000mLを仕込み、窒素下で95℃にて2日間攪拌しながら反応させた。反応の追跡は、ガスクロマトグラフィー分析にて転化率を確認した。放冷後、トルエン 1.4Lと水 2.1Lを加えて静置後分液し、続いて有機層を3回水洗した後、トルエンを減圧留去した。得られた残渣にイソプロパノール700mLを攪拌しながら添加し、氷冷下で析出した結晶を濾収した後、減圧乾燥し、中間体(106)を得た。 A 5 L flask equipped with a stirrer, thermometer, nitrogen inlet tube, condenser tube, and alkali trap was charged with 500 g of 4-fluorobutyrophenone (105), 250 mL of dimethyl sulfoxide (DMSO) and 1000 mL of morpholine, and at 95 ° C. under nitrogen. The reaction was allowed to stir for 2 days. Following the reaction, the conversion was confirmed by gas chromatography analysis. After standing to cool, toluene (1.4 L) and water (2.1 L) were added, and the mixture was allowed to stand for liquid separation. Subsequently, the organic layer was washed with water three times, and then toluene was distilled off under reduced pressure. To the obtained residue, 700 mL of isopropanol was added with stirring, and the crystals precipitated under ice-cooling were collected by filtration and dried under reduced pressure to obtain Intermediate (106).
 収量:597g、収率:85% Yield: 597g, Yield: 85%
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 撹拌機、温度計、窒素導入管、冷却管、滴下ロート、アルカリトラップを備えた3Lフラスコに、中間体(106)348g、塩化メチレン348mLを仕込み、窒素下で氷冷し、25%臭化水素-酢酸溶液 724gを1時間かけ滴下した。滴下完了後、20℃以下を維持するように臭素 238gを1時間かけ滴下し、同温度で1時間攪拌して反応を完結させた。2Lの水を加え、水酸化ナトリウムにて中和後、析出した生成物の結晶に塩化メチレン1.5Lを追加して溶解させた。有機層を5%炭酸水素ナトリウムで1回、水で1回、飽和塩化ナトリウム水で1回洗浄した後、塩化メチレンを減圧留去した。ヘキサン1.5Lを加えて氷冷し、析出した結晶を濾収、乾燥することによって中間体(107)を得た。 A 3 L flask equipped with a stirrer, thermometer, nitrogen inlet tube, condenser tube, dropping funnel, and alkali trap was charged with 348 g of intermediate (106) and 348 mL of methylene chloride, cooled with ice under nitrogen, and 25% hydrogen bromide -724 g of acetic acid solution was added dropwise over 1 hour. After completion of the dropwise addition, 238 g of bromine soot was added dropwise over 1 hour so as to maintain the temperature at 20 ° C. or lower, and the reaction was completed by stirring at the same temperature for 1 hour. After adding 2 L of water and neutralizing with sodium hydroxide, 1.5 L of methylene chloride was added and dissolved in the precipitated product crystals. The organic layer was washed once with 5% sodium hydrogen carbonate, once with water and once with saturated aqueous sodium chloride, and then methylene chloride was distilled off under reduced pressure. 1.5 L of hexane was added and ice-cooled, and the precipitated crystals were collected by filtration and dried to obtain an intermediate (107).
 収量:438g、収率:94% Yield: 438g, Yield: 94%
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 撹拌機、温度計、冷却管、滴下ロートを備えた3Lフラスコに中間体(107)290g、2-ブタノン870mLを仕込み、氷冷しながら50%ジメチルアミン水溶液251gを5~10℃で滴下し、同温度で5時間攪拌して反応を完結させた。有機層を水500mLで4回洗浄した後、2-ブタノンを減圧留去して中間体(108)を含む粗生成物を得た。得られた粗生成物はいっさいの精製無しで次工程へ使用した。粗生成物の一部をサンプリングし、ヘキサンにより再結晶することにより薄黄色結晶の中間体(108)が得られた。 Into a 3 L flask equipped with a stirrer, thermometer, condenser, and dropping funnel was charged 290 g of intermediate (107) and 870 mL of 2-butanone, and 251 g of 50% dimethylamine aqueous solution was added dropwise at 5 to 10 ° C. while cooling with ice. The reaction was completed by stirring at the same temperature for 5 hours. The organic layer was washed 4 times with 500 mL of water, and then 2-butanone was distilled off under reduced pressure to obtain a crude product containing intermediate (108). The resulting crude product was used in the next step without any purification. A part of the crude product was sampled and recrystallized from hexane to obtain an intermediate (108) of pale yellow crystals.
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 攪拌機、温度計、冷却管を備えた3Lフラスコに上記に記載で得られた中間体(108)と4-(ブロモメチル)安息香酸メチル(109)256gとIPA510mLを仕込み、50℃で3時間攪拌した。その後、8M水酸化ナトリウム水溶液の232mLを添加し、50℃で1時間攪拌した。攪拌終了後、塩酸水溶液を用いてpH5.7に調製した後、IPAを留去した。濃縮残渣を酢酸エチルで抽出し、水で2回、飽和食塩水で1回洗浄した。酢酸エチルを減圧留去後、ヘキサンの添加によって析出した結晶をろ別し、減圧乾燥を行い、中間体(110)を得た。 A 3 L flask equipped with a stirrer, thermometer, and condenser was charged with intermediate (108) obtained above, 256 g of methyl 4- (bromomethyl) benzoate (109) and 510 mL of IPA, and stirred at 50 ° C. for 3 hours. . Then, 232 mL of 8M sodium hydroxide aqueous solution was added, and it stirred at 50 degreeC for 1 hour. After completion of the stirring, the pH was adjusted to 5.7 using an aqueous hydrochloric acid solution, and then IPA was distilled off. The concentrated residue was extracted with ethyl acetate and washed twice with water and once with saturated brine. After distilling off ethyl acetate under reduced pressure, crystals precipitated by addition of hexane were filtered off and dried under reduced pressure to obtain Intermediate (110).
 収量:290.0g、収率:76.0% Yield: 290.0 g, Yield: 76.0%
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 攪拌機、温度計、滴下ロートを備えた300mLフラスコに、中間体(110)28.9gとN,N-ジメチルホルムアミド(DMF)1mLと塩化メチレン100mLを加えて溶解し、これに塩化チオニル16.8gを滴下して2時間反応させた。反応溶液を減圧濃縮し、濃縮残渣を50mLのジクロロメタンに溶解して酸クロリドのジクロロメタン溶液を調製した。攪拌機、温度計、滴下ロートを備えた別の500mLフラスコにピペラジン30.3gと塩化メチレン200mLを加えて溶解し、これに前述の酸クロリドのジクロロメタン溶液を30分かけて滴下した。30分間攪拌して反応を完結させ、1M-水酸化ナトリウム水溶液を添加して反応を停止させた。反応液を分液ロートに移し、有機層を2回水洗した後、硫酸マグネシウムで、一昼夜乾燥させた。ジクロロメタンを減圧留去し、マイケル付加供与能を有する中間体(16)を得た。 In a 300 mL flask equipped with a stirrer, thermometer, and dropping funnel, 28.9 g of intermediate (110), 1 mL of N, N-dimethylformamide (DMF) and 100 mL of methylene chloride were added and dissolved, and 16.8 g of thionyl chloride was dissolved therein. Was added dropwise to react for 2 hours. The reaction solution was concentrated under reduced pressure, and the concentrated residue was dissolved in 50 mL of dichloromethane to prepare a solution of acid chloride in dichloromethane. In another 500 mL flask equipped with a stirrer, a thermometer, and a dropping funnel, 30.3 g of piperazine and 200 mL of methylene chloride were added and dissolved, and the above dichloromethane solution of acid chloride was added dropwise over 30 minutes. The reaction was completed by stirring for 30 minutes, and the reaction was stopped by adding 1 M aqueous sodium hydroxide solution. The reaction solution was transferred to a separatory funnel, and the organic layer was washed twice with water, and then dried with magnesium sulfate all day and night. Dichloromethane was distilled off under reduced pressure to obtain an intermediate (16) having a Michael addition-donating ability.
 収量:33.0g、収率:98.0% Yield: 33.0 g, Yield: 98.0%
 撹拌機、コンデンサ及び熱電対を備えた100mLの三口フラスコにエチレンオキシド変性トリメチロールプロパントリアクリレート(東亞合成株式会社製「アロニックスM-350」)12.5g及びマイケル付加供与能を有する中間体(16)12gを加え、80℃で6時間撹拌して、下記構造式で表されるマイケル付加反応物(M11)24.5gを得た。反応仕込み時のマイケル供与機能を有する基とマイケル受容機能を有する基の比率は1:3.5であった。 Intermediate (16) having 12.5 g of ethylene oxide-modified trimethylolpropane triacrylate (“Aronix M-350” manufactured by Toagosei Co., Ltd.) and Michael addition donating ability in a 100 mL three-necked flask equipped with a stirrer, a condenser and a thermocouple 12 g was added and stirred at 80 ° C. for 6 hours to obtain 24.5 g of a Michael addition reaction product (M11) represented by the following structural formula. The ratio of the group having a Michael donating function to the group having a Michael accepting function at the time of reaction charging was 1: 3.5.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
(合成例5:光重合開始剤(M3)の合成) (Synthesis Example 5: Synthesis of photopolymerization initiator (M3))
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 攪拌機、温度計、冷却管を備えた500mL四つ口フラスコに、合成例3で調製した中間体(102)79.5gと4-(ブロモメチル)安息香酸メチル(109)87.0gとIPA120mLを仕込み、50℃で一昼夜、攪拌した。その後、8M水酸化ナトリウム水溶液105mLを添加し、50℃で1時間攪拌した。攪拌終了後、6N塩酸を用いてpH5.6に調製した後、IPAを留去し、残渣を酢酸エチルとヘキサンで晶析し、中間体(112)を得た。 A 500 mL four-necked flask equipped with a stirrer, a thermometer and a condenser tube was charged with 79.5 g of the intermediate (102) prepared in Synthesis Example 3, 87.0 g of methyl 4- (bromomethyl) benzoate (109) and 120 mL of IPA. The mixture was stirred at 50 ° C. all day and night. Thereafter, 105 mL of an 8M aqueous sodium hydroxide solution was added and stirred at 50 ° C. for 1 hour. After completion of the stirring, the pH was adjusted to 5.6 with 6N hydrochloric acid, IPA was distilled off, and the residue was crystallized with ethyl acetate and hexane to obtain an intermediate (112).
 収量:72.5g、収率:50.2% Yield: 72.5g, Yield: 50.2%
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 攪拌機、温度計、滴下ロートを備えた500mL四つ口フラスコに2-クロロ-4.6-ジメトキシ-1,3,5-トリアジン19.3gと脱水ジクロロメタン100mLを仕込み、氷浴を用いて氷冷した。そこにN-メチルモルホリン33.3gを、滴下ロートを用いて10分かけて滴下した。滴下終了後、中間体(112)38.0gを添加し、氷冷下で2時間攪拌した。そこにピペラジン34.4gを溶解した脱水ジクロロメタン200mLを、滴下ロートを用いて20分かけて滴下した。氷浴を外し、室温下、2時間攪拌を続けた。攪拌終了後、蒸留水中へ投入し、ジクロロメタン層を回収した。さらに蒸留水で2回洗浄した後、硫酸マグネシウムで、一昼夜乾燥させた、ジクロロメタンを減圧留去し、中間体(113)を得た。引き続き、ジメチルスルホキシド(DMSO)100mLとピペラジン34.4gを加え、窒素気流下、120℃で15時間加熱した。終了後、蒸留水を添加し、析出した結晶をろ別し、蒸留水とエタノールで交互に2回ずつ洗浄し、乾燥してマイケル付加供与能を有する中間体(7)を得た。 A 500 mL four-necked flask equipped with a stirrer, thermometer, and dropping funnel was charged with 19.3 g of 2-chloro-4.6-dimethoxy-1,3,5-triazine and 100 mL of dehydrated dichloromethane, and ice-cooled using an ice bath. did. Thereto, 33.3 g of N-methylmorpholine was dropped over 10 minutes using a dropping funnel. After completion of dropping, 38.0 g of intermediate (112) was added and stirred for 2 hours under ice cooling. Thereto, 200 mL of dehydrated dichloromethane in which 34.4 g of piperazine was dissolved was dropped using a dropping funnel over 20 minutes. The ice bath was removed and stirring was continued at room temperature for 2 hours. After completion of stirring, the mixture was poured into distilled water, and a dichloromethane layer was recovered. Further, after washing twice with distilled water, drying with magnesium sulfate for a whole day and night, dichloromethane was distilled off under reduced pressure to obtain an intermediate (113). Subsequently, 100 mL of dimethyl sulfoxide (DMSO) and 34.4 g of piperazine were added, and the mixture was heated at 120 ° C. for 15 hours under a nitrogen stream. After completion, distilled water was added, the precipitated crystals were filtered off, washed twice with distilled water and ethanol alternately and dried to obtain an intermediate (7) having a Michael addition-donating ability.
 収量:41.7g、収率:87.4% Yield: 41.7 g, Yield: 87.4%
 撹拌機、コンデンサ及び熱電対を備えた100mLの三口フラスコにエチレンオキシド変性トリメチロールプロパントリアクリレート(東亞合成株式会社製「アロニックスM-350」)の28.6g及びマイケル付加供与能を有する中間体(7)12gを加え、80℃で6時間撹拌して、下記構造式で表されるマイケル付加反応物(M3)40.6gを得た。反応仕込み時のマイケル供与機能を有する基とマイケル受容機能を有する基の比率は1:4.0であった。 In a 100 mL three-necked flask equipped with a stirrer, a condenser and a thermocouple, 28.6 g of ethylene oxide-modified trimethylolpropane triacrylate (“Aronix M-350” manufactured by Toagosei Co., Ltd.) and an intermediate (7 ) 12 g was added and stirred at 80 ° C. for 6 hours to obtain 40.6 g of a Michael addition reaction product (M3) represented by the following structural formula. The ratio of the group having a Michael donating function to the group having a Michael accepting function at the time of reaction preparation was 1: 4.0.
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
(合成例6:光重合開始剤(M18)の合成)
 光重合開始剤(M18)は、特表2008-519760号公報の実施例3に記載の化合物5の合成例に従って合成し、下記構造式で表されるマイケル付加反応物(M18)を得た。
(Synthesis Example 6: Synthesis of photopolymerization initiator (M18))
The photopolymerization initiator (M18) was synthesized according to the synthesis example of compound 5 described in Example 3 of JP-T-2008-519760 to obtain a Michael addition reaction product (M18) represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
(実施例1:感光性樹脂組成物(1)の調製)
 合成例1で得た酸基含有(メタ)アクリレート樹脂(A-1)100質量部、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)24.6質量部、ジペンタエリスリトールヘキサアクリレート6.3質量部、合成例3で得た光重合開始剤(M17)8質量部、ジエチレングリコールモノメチルエーテルアセテート13.3質量部、2-エチル-4-メチルイミダゾール0.5質量部、フタロシアニングリーン0.7質量部を配合し、ロールミルにより混錬して感光性樹脂組成物(1)を得た。
(Example 1: Preparation of photosensitive resin composition (1))
100 parts by mass of the acid group-containing (meth) acrylate resin (A-1) obtained in Synthesis Example 1, 24.6 parts by mass of an orthocresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation) as a curing agent, 6.3 parts by mass of dipentaerythritol hexaacrylate, 8 parts by mass of the photopolymerization initiator (M17) obtained in Synthesis Example 3, 13.3 parts by mass of diethylene glycol monomethyl ether acetate, 0.5 mass of 2-ethyl-4-methylimidazole Part and 0.7 parts by mass of phthalocyanine green were blended and kneaded by a roll mill to obtain a photosensitive resin composition (1).
(実施例2~5:感光性樹脂組成物(2)~(5)の調製)
 実施例1で用いた酸基含有(メタ)アクリレート樹脂(A-1)及び光重合開始剤(M17)を、表1に示した組成に代えた以外は、実施例1と同様にして感光性樹脂組成物(2)~(5)を得た。
(Examples 2 to 5: Preparation of photosensitive resin compositions (2) to (5))
The photosensitivity was the same as in Example 1 except that the acid group-containing (meth) acrylate resin (A-1) and the photopolymerization initiator (M17) used in Example 1 were replaced with the compositions shown in Table 1. Resin compositions (2) to (5) were obtained.
(比較例1及び2:感光性樹脂組成物(C1)及び(C2)の調製)
 実施例1で用いた光重合開始剤(M17)の代わりに、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(IGM社製「Omnirad907」)、または2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン(IGM社製「Omnirad369」)を表1に示した配合量で用いた以外は、実施例1と同様にして感光性樹脂組成物(C1)及び(C2)を得た。
(Comparative Examples 1 and 2: Preparation of photosensitive resin compositions (C1) and (C2))
Instead of the photopolymerization initiator (M17) used in Example 1, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (“Omnirad 907” manufactured by IGM) or 2 Photosensitizing in the same manner as in Example 1 except that -benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone ("Omnirad 369" manufactured by IGM) was used in the amount shown in Table 1. Resin compositions (C1) and (C2) were obtained.
 上記の実施例1~5で得られた感光性樹脂組成物(1)~(5)、並びに比較例1及び2で得られた感光性樹脂組成物(C1)及び(C2)を用いて、下記の評価を行った。 Using the photosensitive resin compositions (1) to (5) obtained in Examples 1 to 5 and the photosensitive resin compositions (C1) and (C2) obtained in Comparative Examples 1 and 2, The following evaluation was performed.
[光感度の評価方法]
 各実施例及び比較例で得られた感光性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布し、80℃で30分乾燥させた。次いで、乾燥させた塗膜上にコダック社製「ステップタブレットNo.2」を乗せ、メタルハライドランプを用いて500mJ/cmの紫外線を照射した。これを1%の炭酸ナトリウム水溶液で30℃180秒間現像し、ステップタブレット法に基づきステップタブレットの残存段数にて評価した。なお、残存段数が多いほど光感度が高いことを示す。
[Evaluation method of photosensitivity]
The photosensitive resin composition obtained by each Example and the comparative example was apply | coated so that it might become a film thickness of 50 micrometers on a glass base material using the applicator, and it was made to dry at 80 degreeC for 30 minutes. Next, “Step Tablet No. 2” manufactured by Kodak Co., Ltd. was placed on the dried coating film, and irradiated with ultraviolet rays of 500 mJ / cm 2 using a metal halide lamp. This was developed with a 1% aqueous sodium carbonate solution at 30 ° C. for 180 seconds, and evaluated by the number of remaining steps of the step tablet based on the step tablet method. In addition, it shows that photosensitivity is so high that there are many remaining steps.
[アルカリ現像性の評価方法]
 各実施例及び比較例で得られた感光性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布した後、80℃でそれぞれ30分間、40分間、50分間、60分間、70分間、80分間、90分間、100分間乾燥させ、乾燥時間が異なるサンプルを作成した。これらを1%炭酸ナトリウム水溶液で30℃180秒間現像し、基板上に残渣が残らなかったサンプルの80℃での乾燥時間を乾燥管理幅として下記の評価基準で評価した。なお、乾燥管理幅が長いほどアルカリ現像性が優れていることを示す。
[Evaluation method of alkali developability]
After applying the photosensitive resin composition obtained in each Example and Comparative Example to a film thickness of 50 μm on a glass substrate using an applicator, 30 minutes, 40 minutes, and 50 minutes, respectively, at 80 ° C. Samples with different drying times were prepared by drying for 60 minutes, 70 minutes, 80 minutes, 90 minutes, and 100 minutes. These were developed with a 1% aqueous sodium carbonate solution at 30 ° C. for 180 seconds, and the drying time at 80 ° C. of a sample in which no residue remained on the substrate was evaluated based on the following evaluation criteria as the drying control width. In addition, it shows that alkali developability is excellent, so that the dry management width | variety is long.
 ○:乾燥管理幅が、60分以上であった。
 ×:乾燥管理幅が、60分未満であった。
○: The drying management width was 60 minutes or more.
X: The dry management width was less than 60 minutes.
 実施例1~5で調製した感光性樹脂組成物(1)~(5)、並びに比較例1及び2で調製した感光性樹脂組成物(C1)及び(C2)の組成及び評価結果を表1に示す。 Table 1 shows the compositions and evaluation results of the photosensitive resin compositions (1) to (5) prepared in Examples 1 to 5 and the photosensitive resin compositions (C1) and (C2) prepared in Comparative Examples 1 and 2. Shown in
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000084
(実施例6:感光性樹脂組成物(6)の調製)
 合成例1で得た酸基含有(メタ)アクリレート樹脂(A-1)100質量部、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)24.6質量部、合成例3で得た光重合開始剤(M17)8質量部、ジエチレングリコールモノメチルエーテルアセテート13.3質量部を配合して感光性樹脂組成物(6)を得た。
(Example 6: Preparation of photosensitive resin composition (6))
100 parts by mass of the acid group-containing (meth) acrylate resin (A-1) obtained in Synthesis Example 1, 24.6 parts by mass of an orthocresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation) as a curing agent, 8 parts by mass of the photopolymerization initiator (M17) obtained in Synthesis Example 3 and 13.3 parts by mass of diethylene glycol monomethyl ether acetate were blended to obtain a photosensitive resin composition (6).
(実施例7~10:感光性樹脂組成物(7)~(10)の調製)
 実施例6で用いた酸基含有(メタ)アクリレート樹脂(A-1)及び光重合開始剤(M17)を、表2に示した組成に代えた以外は、実施例6と同様にして感光性樹脂組成物(7)~(10)を得た。
(Examples 7 to 10: Preparation of photosensitive resin compositions (7) to (10))
Photosensitivity was obtained in the same manner as in Example 6 except that the acid group-containing (meth) acrylate resin (A-1) and the photopolymerization initiator (M17) used in Example 6 were replaced with the compositions shown in Table 2. Resin compositions (7) to (10) were obtained.
(比較例3及び4:感光性樹脂組成物(C3)及び(C4)の調製)
 実施例6で用いた光重合開始剤(M17)の代わりに、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(IGM社製「Omnirad907」)、または2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン(IGM社製「Omnirad369」)を表2に示した配合量で用いた以外は、実施例6と同様にして感光性樹脂組成物(C3)及び(C4)を得た。
(Comparative Examples 3 and 4: Preparation of photosensitive resin compositions (C3) and (C4))
In place of the photopolymerization initiator (M17) used in Example 6, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (“Omnirad 907” manufactured by IGM) or 2 Photosensitization in the same manner as in Example 6 except that -benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone ("Omnirad 369" manufactured by IGM) was used in the amount shown in Table 2. Resin compositions (C3) and (C4) were obtained.
 上記の実施例6~10で得られた感光性樹脂組成物(6)~(10)、並びに比較例3及び4で得られた感光性樹脂組成物(C3)及び(C4)を用いて、下記の評価を行った。 Using the photosensitive resin compositions (6) to (10) obtained in Examples 6 to 10 and the photosensitive resin compositions (C3) and (C4) obtained in Comparative Examples 3 and 4, The following evaluation was performed.
[耐熱性の評価方法]
 各実施例及び比較例で得られた感光性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布し、80℃で30分乾燥させた。次いで、メタルハライドランプを用いて500mJ/cmの紫外線を照射した後、200℃で1時間加熱して、硬化物をガラス基材から剥離し、硬化物を得た。前記硬化物から6mm×35mmの試験片を切り出し、粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、引張り法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる温度をガラス転移温度として評価した。なお、ガラス転移温度が高いほど耐熱性に優れていることを示す。
[Evaluation method of heat resistance]
The photosensitive resin composition obtained by each Example and the comparative example was apply | coated so that it might become a film thickness of 50 micrometers on a glass base material using the applicator, and it was made to dry at 80 degreeC for 30 minutes. Subsequently, after irradiating 500 mJ / cm < 2 > of ultraviolet-rays using a metal halide lamp, it heated at 200 degreeC for 1 hour, the hardened | cured material was peeled from the glass base material, and hardened | cured material was obtained. A 6 mm × 35 mm test piece was cut out from the cured product, and a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., Ltd., tension method: frequency 1 Hz, temperature rising rate 3 ° C./min) was used. The temperature at which the change in elastic modulus was maximized was evaluated as the glass transition temperature. In addition, it shows that it is excellent in heat resistance, so that glass transition temperature is high.
[アウトガスの測定方法]
 各実施例及び比較例で得られた感光性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布し、80℃で30分乾燥させた。次いで、メタルハライドランプを用いて500mJ/cmの紫外線を照射した後、200℃で1時間加熱して、硬化物をガラス基材から剥離し、硬化物を得た。前記硬化物より粉末サンプルを採取し、ゲステル社製加熱脱着装置(TDU)に入れた。その後(1)150℃の熱抽出温度で10分間アウトガス成分を、(2)260℃の熱抽出温度で10分間アウトガス成分を、それぞれ液体窒素を用いて-60℃で捕集した。捕集したアウトガス成分は、アジレントテクノロジー社製ガスクロマトグラフィー質量分析装置(6890N/5973N)で分離分析を行い、n-ドデカン換算で定量し、以下の評価基準で評価した。
[Measurement method of outgas]
The photosensitive resin composition obtained by each Example and the comparative example was apply | coated so that it might become a film thickness of 50 micrometers on a glass base material using the applicator, and it was made to dry at 80 degreeC for 30 minutes. Subsequently, after irradiating 500 mJ / cm < 2 > of ultraviolet-rays using a metal halide lamp, it heated at 200 degreeC for 1 hour, the hardened | cured material was peeled from the glass base material, and hardened | cured material was obtained. A powder sample was collected from the cured product and placed in a heat desorption apparatus (TDU) manufactured by GUSTER. Thereafter, (1) an outgas component at a heat extraction temperature of 150 ° C. for 10 minutes and (2) an outgas component at a heat extraction temperature of 260 ° C. for 10 minutes were collected at −60 ° C. using liquid nitrogen. The collected outgas component was subjected to separation analysis with a gas chromatography mass spectrometer (6890N / 5973N) manufactured by Agilent Technologies, quantified in terms of n-dodecane, and evaluated according to the following evaluation criteria.
 ◎:アウトガス成分はほとんど確認されなかった。
 ○:アウトガス成分が少し確認された。
 △:アウトガス成分が確認された。
 ×:多量のアウトガス成分が確認された。
A: Almost no outgas component was confirmed.
○: Some outgas components were confirmed.
(Triangle | delta): The outgas component was confirmed.
X: A large amount of outgas components were confirmed.
 実施例6~10で調製した感光性樹脂組成物(6)~(10)、並びに比較例3及び4で調製した感光性樹脂組成物(C3)及び(C4)の組成及び評価結果を表2に示す。 Table 2 shows the compositions and evaluation results of the photosensitive resin compositions (6) to (10) prepared in Examples 6 to 10 and the photosensitive resin compositions (C3) and (C4) prepared in Comparative Examples 3 and 4. Shown in
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000085
 なお、表1及び2中の「硬化剤」は、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」、エポキシ当量:214g/当量)を示す。 The “curing agent” in Tables 1 and 2 represents an ortho-cresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation, epoxy equivalent: 214 g / equivalent).
 表1及び2中の「有機溶剤」は、ジエチレングリコールモノメチルエーテルアセテートを示す。 “Organic solvent” in Tables 1 and 2 represents diethylene glycol monomethyl ether acetate.

Claims (6)

  1.  酸基含有(メタ)アクリレート樹脂(A)と、光重合開始剤(B)とを含有する感光性樹脂組成物であって、
    前記光重合開始剤(B)が、下記一般式(1)で表されるマイケル付加供与体として機能するα-アミノアセトフェノン骨格含有化合物(b1)と、マイケル受容体としての機能を有する反応性化合物(b2)とのマイケル付加反応物であることを特徴とする感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、
    は脂肪族基またはアリール基を表し、
    及びRはそれぞれ独立して脂肪族基またはアリール基を表し、
    またRとRとはそれぞれ一体となって環を形成してもよく、
    ~Rはそれぞれ独立して水素原子、脂肪族基またはアリール基を表し、
    は単結合または炭素原子数1~6の直鎖状若しくは分岐状のアルキレン基を表し、
    はカルボニル基またはチオカルボニル基を表し、
    は下記一般式(2)、下記一般式(3)または下記一般式(4)で表される基を表し、
    は下記一般式(2)または下記一般式(3)で表される基を表す。但し、Y及びYが共に下記一般式(2)で表される構造を有する場合は、その少なくとも一方のXは-NH-である。
    nは、0または1である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、X及びXはそれぞれ独立して、炭素原子数2~6の直鎖状若しくは分岐状のアルキレン基またはオキシアルキレン基を、Xは単結合、-O-または-NH-を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、Xは置換基を有するか若しくは無置換の炭素原子数2~6の直鎖状若しくは分岐状のアルキレン基またはオキシアルキレン基を表し、R及びRはそれぞれ独立して脂肪族基またはアリール基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)中、R10及びR11はそれぞれ独立して脂肪族基またはアリール基を表す。)
    A photosensitive resin composition containing an acid group-containing (meth) acrylate resin (A) and a photopolymerization initiator (B),
    The photopolymerization initiator (B) is an α-aminoacetophenone skeleton-containing compound (b1) that functions as a Michael addition donor represented by the following general formula (1), and a reactive compound that functions as a Michael acceptor A photosensitive resin composition, which is a Michael addition reaction product with (b2).
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1),
    R 1 represents an aliphatic group or an aryl group,
    R 2 and R 3 each independently represents an aliphatic group or an aryl group,
    R 2 and R 3 may be combined together to form a ring,
    R 4 to R 7 each independently represents a hydrogen atom, an aliphatic group or an aryl group,
    X 1 represents a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms,
    X 2 represents a carbonyl group or a thiocarbonyl group,
    Y 1 represents a group represented by the following general formula (2), the following general formula (3) or the following general formula (4),
    Y 2 represents a group represented by the following general formula (2) or the following general formula (3). However, when both Y 1 and Y 2 have a structure represented by the following general formula (2), at least one of X 5 is —NH—.
    n is 0 or 1. )
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), X 3 and X 4 each independently represent a linear or branched alkylene group or oxyalkylene group having 2 to 6 carbon atoms, X 5 represents a single bond, —O— Or -NH-.
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (3), X 6 represents a substituted or unsubstituted linear or branched alkylene or oxyalkylene group having 2 to 6 carbon atoms, wherein R 8 and R 9 are each Independently represents an aliphatic group or an aryl group.)
    Figure JPOXMLDOC01-appb-C000004
    (In General Formula (4), R 10 and R 11 each independently represents an aliphatic group or an aryl group.)
  2.  前記マイケル受容体としての機能を有する反応性化合物(b2)が、多官能型(メタ)アクリレート化合物である請求項1記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the reactive compound (b2) having a function as the Michael acceptor is a polyfunctional (meth) acrylate compound.
  3.  請求項1または2記載の感光性樹脂組成物の硬化反応物であることを特徴とする硬化物。 A cured product, which is a cured reaction product of the photosensitive resin composition according to claim 1.
  4.  請求項1または2記載の感光性樹脂組成物からなることを特徴とする絶縁材料。 An insulating material comprising the photosensitive resin composition according to claim 1 or 2.
  5.  請求項1または2記載の感光性樹脂組成物からなることを特徴とするソルダーレジスト用樹脂材料。 A resin material for solder resist, comprising the photosensitive resin composition according to claim 1.
  6.  請求項5記載のソルダーレジスト用樹脂材料からなることを特徴とするレジスト部材。 A resist member comprising the resin material for a solder resist according to claim 5.
PCT/JP2019/012752 2018-04-10 2019-03-26 Photosensitive resin composition, cured product, insulating material, resin material for solder resists and resist member WO2019198489A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980025082.6A CN111954849A (en) 2018-04-10 2019-03-26 Photosensitive resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2020513172A JP7290150B2 (en) 2018-04-10 2019-03-26 Photosensitive resin composition, cured product, insulating material, resin material for solder resist, and resist member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-075375 2018-04-10
JP2018075375 2018-04-10

Publications (1)

Publication Number Publication Date
WO2019198489A1 true WO2019198489A1 (en) 2019-10-17

Family

ID=68162858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012752 WO2019198489A1 (en) 2018-04-10 2019-03-26 Photosensitive resin composition, cured product, insulating material, resin material for solder resists and resist member

Country Status (4)

Country Link
JP (1) JP7290150B2 (en)
CN (1) CN111954849A (en)
TW (1) TWI805726B (en)
WO (1) WO2019198489A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104849A (en) * 2003-09-26 2005-04-21 Dainippon Printing Co Ltd Photosensitive polyfunctional compound, photosensitive resin composition and article using the same
JP2012246245A (en) * 2011-05-26 2012-12-13 Jsr Corp Novel compound, method for producing the same, radiation-sensitive composition including the same, and cured film
JP5540165B1 (en) * 2013-06-28 2014-07-02 太陽インキ製造株式会社 Photocurable resin composition, cured product thereof and printed wiring board
JP2016079157A (en) * 2014-10-22 2016-05-16 株式会社Adeka New polymerization initiator and radical polymerizable composition containing polymerization initiator
JP2016079158A (en) * 2014-10-22 2016-05-16 株式会社Adeka New polymerization initiator and radical polymerizable composition containing polymerization initiator
WO2017180496A1 (en) * 2016-04-11 2017-10-19 Sun Chemical Corporation Process for electron beam curable inkjet formulations

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2420117A (en) * 2004-11-10 2006-05-17 Sun Chemical Ltd Piperazino based multi-functional photoinitiators
JP6011744B2 (en) * 2014-05-15 2016-10-19 Dic株式会社 COMPOUND, ACTIVE ENERGY RAY CURABLE COMPOSITION, CURED PRODUCT, PRINTING INK AND INKJET RECORDING INK
JP2017014310A (en) * 2015-06-26 2017-01-19 Dic株式会社 Active energy ray-curable printing ink and printed matter of the same
JP2017019979A (en) * 2015-07-15 2017-01-26 Dic株式会社 Active energy ray-curable printing ink, and printed matter thereof
JP2018002958A (en) * 2016-07-07 2018-01-11 Dic株式会社 Active energy ray-curable printing ink and printed matter of the same
JP2018002957A (en) * 2016-07-07 2018-01-11 Dic株式会社 Active energy ray-curable printing ink and printed matter of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104849A (en) * 2003-09-26 2005-04-21 Dainippon Printing Co Ltd Photosensitive polyfunctional compound, photosensitive resin composition and article using the same
JP2012246245A (en) * 2011-05-26 2012-12-13 Jsr Corp Novel compound, method for producing the same, radiation-sensitive composition including the same, and cured film
JP5540165B1 (en) * 2013-06-28 2014-07-02 太陽インキ製造株式会社 Photocurable resin composition, cured product thereof and printed wiring board
JP2016079157A (en) * 2014-10-22 2016-05-16 株式会社Adeka New polymerization initiator and radical polymerizable composition containing polymerization initiator
JP2016079158A (en) * 2014-10-22 2016-05-16 株式会社Adeka New polymerization initiator and radical polymerizable composition containing polymerization initiator
WO2017180496A1 (en) * 2016-04-11 2017-10-19 Sun Chemical Corporation Process for electron beam curable inkjet formulations

Also Published As

Publication number Publication date
JP7290150B2 (en) 2023-06-13
CN111954849A (en) 2020-11-17
TWI805726B (en) 2023-06-21
TW201943706A (en) 2019-11-16
JPWO2019198489A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
US8088836B2 (en) Oxime ester compounds and photosensitive resin compositions using the same
JP5371471B2 (en) Oxime ester compounds and photosensitive resin compositions using them
US4416975A (en) Photopolymerization process employing compounds containing acryloyl groups and maleimide groups
KR20010053101A (en) Photopolymerizable thermosetting resin compositions
JP5876182B1 (en) Curable resin composition, dry film and cured product thereof, and printed wiring board having the same
TWI475006B (en) Photopolymerization initiator and photosensitive composition
JP4010547B2 (en) Self-polymerizing photopolymerization initiator and photosensitive resin composition using the same
JP3731979B2 (en) Calixarene derivative and curable resin composition containing the same
JP2012017444A (en) Curable resin composition and printed wiring board
JP7290150B2 (en) Photosensitive resin composition, cured product, insulating material, resin material for solder resist, and resist member
TWI239947B (en) Oxetane-modified compounds and photocuring compounds derived therefrom, processes for preparation of both and curing compositions containing the photocuring compounds
JP7310802B2 (en) Photosensitive resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP4504142B2 (en) Photoradical generator, photosensitive resin composition, and article
JP2004176035A (en) Free radical generator and photosensitive resin composition
KR102179484B1 (en) 9-phenylacridine polymer photosensitizer and its preparation method and use
JP2007162027A (en) Unsaturated-group-containing multi-branched compound, curable composition containing same and cured article therefrom
JP2004176034A (en) Photosensitive compound and photosensitive resin composition
JP5135659B2 (en) Energy ray curable resin production method and energy ray curable resin composition
JP2020013107A (en) Photosensitive resin composition
WO2023218876A1 (en) Alkali-soluble resin, photosensitive resin composition, and cured product thereof
WO2023085155A1 (en) Curable resin composition, laminated structure, cured product, and electronic component
JP2004331768A (en) Epoxy group-containing highly branched compound, curable composition containing the same and printed wiring board using the curable composition
JP2023108200A (en) Photosensitive resin, curable resin composition containing the photosensitive resin, dry film having the curable resin composition as resin layer, cured product of the curable resin composition or resin layer, electronic component having the cured product, and method for producing the photosensitive resin
JP5084461B2 (en) Photopolymerizable unsaturated compound
JP5035726B2 (en) Novel di (meth) acrylate and photocurable resin composition containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785234

Country of ref document: EP

Kind code of ref document: A1