WO2019198470A1 - Sealant for organic electroluminescent display element - Google Patents

Sealant for organic electroluminescent display element Download PDF

Info

Publication number
WO2019198470A1
WO2019198470A1 PCT/JP2019/012361 JP2019012361W WO2019198470A1 WO 2019198470 A1 WO2019198470 A1 WO 2019198470A1 JP 2019012361 W JP2019012361 W JP 2019012361W WO 2019198470 A1 WO2019198470 A1 WO 2019198470A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
compound represented
sealing agent
display element
display elements
Prior art date
Application number
PCT/JP2019/012361
Other languages
French (fr)
Japanese (ja)
Inventor
山本 拓也
七里 徳重
勝則 西出
千鶴 金
美香 笹野
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020207018025A priority Critical patent/KR20200141978A/en
Priority to JP2019521510A priority patent/JPWO2019198470A1/en
Priority to CN201980023814.8A priority patent/CN112074957A/en
Publication of WO2019198470A1 publication Critical patent/WO2019198470A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a sealant for an organic EL display element that can provide an organic EL display element that is excellent in inkjet coating property, low outgassing property, adhesion to a substrate or an inorganic material film, and excellent in reliability.
  • organic electroluminescence (hereinafter, also referred to as “organic EL”) display element has a laminated structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and the organic light emitting material layer is formed from one electrode on the organic light emitting material layer.
  • organic EL organic electroluminescence
  • the organic EL display element performs self-emission, it has better visibility than a liquid crystal display element that requires a backlight, can be reduced in thickness, and can be driven by a DC low voltage. Has the advantage.
  • Patent Document 1 discloses a method of sealing an organic light emitting material layer and an electrode of an organic EL display element with a laminated film of a silicon nitride film and a resin film formed by a CVD method.
  • the resin film has a role of preventing pressure on the organic layer and the electrode due to internal stress of the silicon nitride film.
  • a method for forming a resin film there is a method in which a sealing agent is applied on a substrate using an inkjet method and then the sealing agent is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed. However, when the sealant is made to have a low viscosity in order to be suitable for application by the ink jet method, outgas is generated, or the obtained organic EL display element is inferior in reliability, etc. There was a problem.
  • Patent Document 1 In the method of sealing with a silicon nitride film disclosed in Patent Document 1, organic light emission occurs when a silicon nitride film is formed due to unevenness on the surface of the organic EL display element, adhesion of foreign matters, generation of cracks due to internal stress, or the like. The material layer or electrode may not be completely covered. If the coating with the silicon nitride film is incomplete, moisture will enter the organic light emitting material layer through the silicon nitride film. As a method for preventing moisture from entering into the organic light emitting material layer, Patent Document 2 discloses a method of alternately depositing an inorganic material film and a resin film. Patent Document 3 and Patent Document 4 Discloses a method of forming a resin film on an inorganic material film.
  • a method for forming a resin film there is a method in which a sealing agent is applied on a substrate using an inkjet method and then the sealing agent is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed.
  • the sealant is made to have a low viscosity in order to be suitable for application by the ink jet method, outgas is generated, or the obtained organic EL display element is inferior in reliability, etc.
  • the present invention provides an organic EL display element sealant that can provide an organic EL display element that is excellent in inkjet coating property, low outgassing property, adhesion to a substrate or an inorganic material film, and excellent in reliability. The purpose is to do.
  • Invention 1 is a sealant for an organic EL display element containing a curable resin and a polymerization initiator, and the curable resin comprises a compound represented by the following formula (1) and the following formula ( 2), the content of the compound represented by the following formula (1) is 1.0 times by weight relative to the content of the compound represented by the following formula (2)
  • the viscosity of the whole sealing agent for organic EL display elements at 25 ° C. is 40 mPa ⁇ s or less, and the surface tension of the whole sealing agent for organic EL display elements at 25 ° C. is 15 mN / m. It is a sealing agent for organic EL display elements which is 35 mN / m or less.
  • Invention 2 is a sealing agent for organic EL display elements containing a curable resin and a polymerization initiator, and the curable resin comprises a compound represented by the following formula (1) and the following formula ( 2), the content of the compound represented by the following formula (1) is 1.0 times by weight relative to the content of the compound represented by the following formula (2) It is 1.5 times or less and is a sealing agent for organic EL display elements used for application
  • each R 1 independently represents a bond, a linear or branched alkylene group having 1 to 18 carbon atoms, or a linear or branched carbon group having 2 to 18 carbon atoms.
  • R 2 is a linear or branched alkylene group having 1 to 18 carbon atoms, or a linear or branched alkenylene group having 2 to 18 carbon atoms.
  • N is 0 or 1.
  • the present inventors As a curable resin used for a sealing agent for organic EL display elements, the present inventors have excellent curable properties, low outgassing properties, and relatively low viscosity 3-ethyl-3-((((3-ethyloxetane). The use of -3-yl) methoxy) methyl) oxetane was investigated. However, although the obtained sealant is excellent in curability, it has a problem that it becomes inferior in adhesion to a substrate or an inorganic material film due to curing shrinkage or is unsuitable for inkjet application.
  • the present inventors have determined that a diepoxy compound having a more specific structure as a curable resin is converted to the 3-ethyl-3-(((3-ethyloxetane-3-yl) methoxy) methyl) oxetane.
  • an organic EL display element sealant that can provide an organic EL display element that is excellent in inkjet coating property, low outgassing property, adhesion to a substrate or an inorganic material film, and excellent in reliability.
  • the present invention has been completed.
  • the sealing agent for organic EL display elements of this invention contains curable resin.
  • the curable resin contains a compound represented by the above formula (1) and a compound represented by the above formula (2).
  • the sealing agent for organic EL display elements of the present invention is an inkjet.
  • the coating property, the low outgassing property, and the adhesion to the substrate and the inorganic material film are excellent.
  • R 1 is a linear or branched alkylene group having 1 to 18 carbon atoms or a linear or branched alkenylene group having 2 to 18 carbon atoms. It is preferably a linear or branched alkylene group having 1 to 18 carbon atoms, more preferably a linear or branched alkylene group having 1 to 3 carbon atoms. More preferred is a methylene group.
  • R 2 is preferably a linear or branched alkylene group having 1 to 18 carbon atoms, and a linear or branched carbon group having 2 to 5 carbon atoms.
  • An alkylene group is more preferable.
  • the total preferred lower limit of the number of carbon atoms of the R 1 and R 2 above are 3, a preferred upper limit is 20.
  • the obtained sealing agent for organic EL display elements is excellent in low outgassing property and adhesion to a substrate or an inorganic material film.
  • the more preferable lower limit of the total carbon number of R 1 and R 2 is 4, and the more preferable upper limit is 7.
  • N is preferably 1 in the above formula (1) from the viewpoint of inkjet coating properties of the obtained sealing agent for organic EL display elements.
  • a preferred lower limit of the boiling point of the compound represented by the formula (1) is 200 ° C.
  • the boiling point of the compound represented by the above formula (1) is 200 ° C. or higher, it is difficult to volatilize, and the obtained sealing agent for organic EL display elements is more excellent in ink jet coatability.
  • a more preferable lower limit of the boiling point of the compound represented by the formula (1) is 250 ° C.
  • the said boiling point in this specification means the value measured on the conditions of 101 kPa using the method based on JISK2233, or the value converted into 101 kPa by the boiling point conversion chart.
  • Specific examples of the compound represented by the above formula (1) include ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl.
  • Examples include ether, 1,2,7,8-diepoxyoctane, 1,2,5,6-diepoxyhexane, and the like. Among these, it is difficult to volatilize, and the resulting sealant for organic EL display elements is excellent in ink jet coating properties.
  • neopentyl glycol diglycidyl ether 1,4-butanediol diglycidyl ether, 1,6 -Hexanediol diglycidyl ether is preferred, and neopentyl glycol diglycidyl ether is most preferred.
  • the content of the compound represented by the formula (1) is a weight ratio with respect to the content of the compound represented by the formula (2), and the lower limit is 1.0 times and the upper limit is 1.5 times. is there.
  • the sealing agent for an organic EL display element of the present invention is The adhesion to the substrate and the inorganic material film is excellent, and the obtained organic EL display element is excellent in reliability.
  • the sealing agent for organic EL display elements of the present invention is , Excellent curability and low outgassing properties.
  • the content of the compound represented by the above formula (1) is 1.1 times the preferable lower limit and 1.4 is the preferable upper limit in terms of weight ratio with respect to the content of the compound represented by the above formula (2). Is double.
  • a preferable lower limit of the total content of the compound represented by the formula (1) and the compound represented by the formula (2) in 100 parts by weight of the curable resin is 30 parts by weight.
  • the obtained sealing agent for organic EL display elements is applied by inkjet coating. It is excellent in the property, low outgassing property, and adhesion to the substrate and the inorganic material film.
  • a more preferable lower limit of the total content of the compound represented by the above formula (1) and the compound represented by the above formula (2) is 50 parts by weight. From the viewpoint of low outgassing property, etc., the preferred upper limit of the total content of the compound represented by the above formula (1) and the compound represented by the above formula (2) in 100 parts by weight of the curable resin is 80 parts by weight.
  • the curable resin may contain a polymerizable compound other than the compound represented by the formula (1) and the compound represented by the formula (2).
  • the other polymerizable compounds include other epoxy compounds other than the compound represented by the formula (1), other oxetane compounds other than the compound represented by the formula (2), and a (meth) acrylic compound.
  • vinyl ether compounds include other epoxy compounds other than the compound represented by the formula (1), other oxetane compounds other than the compound represented by the formula (2), and a (meth) acrylic compound.
  • vinyl ether compounds vinyl ether compounds.
  • the above “(meth) acryl” means acryl or methacryl
  • the above “(meth) acryl compound” means a compound having a (meth) acryloyl group
  • the above “(meth) “Acryloyl” means acryloyl or methacryloyl.
  • Examples of the other epoxy compounds include bisphenol A type epoxy compounds, bisphenol E type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol O type epoxy compounds, and 2,2′-diallyl bisphenol A type epoxy.
  • Examples include en novolac type epoxy compounds, biphenyl novolac type epoxy compounds, naphthalene phenol novolac type epoxy compounds, glycidyl amine type epoxy compounds, alkyl polyol type epoxy compounds, rubber-modified epoxy compounds, glycidyl ester compounds, and epoxy compounds having
  • an epoxy compound having a siloxane skeleton is preferable because the obtained sealing agent for organic EL display elements has excellent wettability with respect to the substrate and the inorganic material film.
  • the epoxy compounds having a siloxane skeleton those commercially available include, for example, X-22-169, X-22-163, X-22-343, X-22-2046, X-22-4741, -22-173DX, X-22-9002 (both manufactured by Shin-Etsu Chemical Co., Ltd.) and the like. These other epoxy compounds may be used alone or in combination of two or more.
  • Examples of the other oxetane compounds include 3- (allyloxy) oxetane, phenoxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- ( (2-ethylhexyloxy) methyl) oxetane, 3-ethyl-3-((3- (triethoxysilyl) propoxy) methyl) oxetane, phenol novolac oxetane, 1,4-bis (((3-ethyl-3-oxetanyl And oxetane compounds having a siloxane skeleton.
  • an oxetane compound having a siloxane skeleton is preferable because the obtained sealing agent for organic EL display elements has excellent wettability with respect to a substrate or an inorganic material film.
  • These other oxetane compounds may be used alone or in combination of two or more.
  • Examples of the (meth) acrylic compound include glycidyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dicyclopentenyl (meth) acrylate, and di Cyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, trimethylolpropane tri (meth) arylate, 1,12-dodecanediol di (meth) acrylate, lauryl (meth) acrylate And (meth) acrylic compounds having a siloxane skeleton.
  • a (meth) acrylic compound having a siloxane skeleton is preferable because the obtained sealing agent for organic EL display elements has excellent wettability with respect to a substrate or an inorganic material film.
  • examples of commercially available (meth) acrylic compounds having the siloxane skeleton include X-22-164, X-22-174DX, X-22-174ASX, X-22-2426, X-22- 2475 (all manufactured by Shin-Etsu Chemical Co., Ltd.). These (meth) acrylic compounds may be used alone or in combination of two or more.
  • the “(meth) acrylate” means acrylate or methacrylate.
  • vinyl ether compound examples include benzyl vinyl ether, cyclohexane dimethanol monovinyl ether, dicyclopentadiene vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, dipropylene glycol. Examples thereof include divinyl ether and tripropylene glycol divinyl ether. These vinyl ether compounds may be used alone or in combination of two or more.
  • the sealing agent for organic EL display elements of the present invention contains a polymerization initiator.
  • a polymerization initiator a photocationic polymerization initiator or a thermal cationic polymerization initiator is preferably used.
  • radical photopolymerization initiator and a thermal radical polymerization initiator are also used suitably.
  • the photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be.
  • anion portion of the ionic photoacid-generating photocationic polymerization initiator examples include BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , (BX 4 ) ⁇ (where X is at least two or more fluorine atoms) Or a phenyl group substituted with a trifluoromethyl group).
  • anion moiety examples include PF m (C n F 2n + 1 ) 6-m ⁇ (wherein, m is an integer of 0 or more and 5 or less, and n is an integer of 1 or more and 6 or less). Can be mentioned.
  • Examples of the ionic photoacid-generating photocationic polymerization initiator include aromatic sulfonium salts, aromatic iodonium salts, aromatic diazonium salts, aromatic ammonium salts having the above anion moiety, and (2,4-cyclohexane). And pentadien-1-yl) ((1-methylethyl) benzene) -Fe salt.
  • aromatic sulfonium salt examples include bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluoroantimonate, and bis (4- ( Diphenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (diphenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4- ( Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetraflu
  • aromatic iodonium salt examples include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexa Fluorophosphate, 4-methylphenyl-4- (1-methylethy
  • aromatic diazonium salt examples include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
  • aromatic ammonium salt examples include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl -2-Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl)
  • Examples include -2-cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate.
  • Examples of the (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe salt include (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene.
  • nonionic photoacid-generating photocationic polymerization initiator examples include nitrobenzyl ester, sulfonic acid derivative, phosphoric acid ester, phenol sulfonic acid ester, diazonaphthoquinone, N-hydroxyimide sulfonate, and the like.
  • Examples of commercially available photocationic polymerization initiators include, for example, a photocationic polymerization initiator manufactured by Midori Chemical Co., a photocationic polymerization initiator manufactured by Union Carbide, a photocationic polymerization initiator manufactured by ADEKA, Examples thereof include a photocationic polymerization initiator manufactured by 3M, a photocationic polymerization initiator manufactured by BASF, a photocationic polymerization initiator manufactured by Rhodia, and a photocationic polymerization initiator manufactured by San Apro. Examples of the photocationic polymerization initiator manufactured by Midori Chemical Co., Ltd. include DTS-200.
  • Examples of the cationic photopolymerization initiator manufactured by Union Carbide include UVI6990, UVI6974, and the like.
  • Examples of the photocation polymerization initiator manufactured by ADEKA include SP-150 and SP-170.
  • Examples of the cationic photopolymerization initiator manufactured by 3M include FC-508, FC-512, and the like.
  • Examples of the cationic photopolymerization initiator manufactured by BASF include IRGACURE261, IRGACURE290, and the like.
  • Examples of the photocationic polymerization initiator manufactured by Rhodia include PI 2074.
  • Examples of the cationic photopolymerization initiator manufactured by Sun Apro include CPI-100P, CPI-200K, CPI-210S, and the like.
  • the anion moiety is BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , or (BX 4 ) ⁇ (where X is substituted with at least two fluorine or trifluoromethyl groups
  • a sulfonium salt, a phosphonium salt, an ammonium salt, and the like are preferable.
  • sulfonium salt examples include triphenylsulfonium tetrafluoroborate and triphenylsulfonium hexafluoroantimonate.
  • Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
  • ammonium salt examples include dimethylphenyl (4-methoxybenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methoxybenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methoxybenzyl) ammonium tetrakis (pentafluorophenyl).
  • thermal cationic polymerization initiators examples include thermal cationic polymerization initiators manufactured by Sanshin Chemical Industry, thermal cationic polymerization initiators manufactured by King Industries, and the like.
  • thermal cationic polymerization initiator manufactured by Sanshin Chemical Industry Co., Ltd. examples include Sun-Aid SI-60, Sun-Aid SI-80, Sun-Aid SI-B3, Sun-Aid SI-B3A, and Sun-Aid SI-B4.
  • thermal cationic polymerization initiator manufactured by King Industries examples include CXC1612 and CXC1821.
  • photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone compounds, and the like.
  • the radical photopolymerization initiator by BASF As what is marketed among the said radical photopolymerization initiators, the radical photopolymerization initiator by BASF, the radical photopolymerization initiator by Tokyo Chemical Industry, etc. are mentioned, for example.
  • the radical photopolymerization initiator manufactured by BASF include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucyrin TPO.
  • the photo radical polymerization initiator manufactured by Tokyo Chemical Industry Co., Ltd. include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • the azo compound include 2,2′-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile, and the like.
  • the organic peroxide include benzoyl peroxide, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • thermal radical polymerization initiators examples include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, V-501 (all of which are Fuji Film Wako Pure Chemical Industries, Ltd.). Manufactured) and the like.
  • the content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the polymerization initiator is 0.01 parts by weight or more, the obtained sealing agent for organic EL display elements is more excellent in curability.
  • the content of the polymerization initiator is 10 parts by weight or less, the curing reaction of the obtained sealing agent for organic EL display elements does not become too fast, the workability is improved, and the cured product is more uniform. It can be.
  • the minimum with more preferable content of the said polymerization initiator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for organic EL display elements of the present invention may contain a sensitizer.
  • the sensitizer has a role of further improving the polymerization initiation efficiency of the polymerization initiator and further promoting the curing reaction of the sealing agent for organic EL display elements of the present invention.
  • Examples of the sensitizer include anthracene compounds, thioxanthone compounds, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, Examples include 4,4′-bis (dimethylamino) benzophenone and 4-benzoyl-4′-methyldiphenyl sulfide.
  • Examples of the anthracene compound include 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, and 9,10-bis (octanoyloxy) anthracene.
  • Examples of the thioxanthone compound include 2,4-diethylthioxanthone.
  • the content of the sensitizer is preferably 0.01 parts by weight and preferably 3 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the sensitizer is 0.01 parts by weight or more, the sensitizing effect is more exhibited.
  • the content of the sensitizer is 3 parts by weight or less, light can be transmitted to a deep part without excessive absorption.
  • the minimum with more preferable content of the said sensitizer is 0.1 weight part, and a more preferable upper limit is 1 weight part.
  • the sealing agent for organic EL display elements of the present invention may contain a silane coupling agent.
  • the said silane coupling agent has a role which further improves the adhesiveness of the sealing agent for organic EL display elements of this invention, and a board
  • silane coupling agent examples include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane coupling agents may be used independently and 2 or more types may be used together.
  • the content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for organic EL display elements of the present invention may further contain a surface adjusting agent as long as the object of the present invention is not impaired.
  • a surface conditioning agent By containing the surface conditioning agent, the flatness of the coating film can be imparted to the sealing agent for organic EL display elements of the present invention.
  • the surface conditioner include surfactants and leveling agents.
  • Examples of the surface conditioner include those based on silicone and fluorine.
  • Examples of commercially available surface conditioners include BYK-340, BYK-345 (both manufactured by Big Chemie Japan), Surflon S-611 (manufactured by AGC Seimi Chemical Co., Ltd.), and the like.
  • the content of the surface conditioning agent is preferably 0.01 parts by weight and preferably 5 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the surface conditioning agent is within this range, the surface tension of the entire sealing agent for organic EL display elements of the present invention can be adjusted more easily.
  • the minimum with more preferable content of the said surface conditioning agent is 0.1 weight part, and a more preferable upper limit is 3 weight part.
  • the encapsulant for organic EL display elements of the present invention may contain a solvent for the purpose of adjusting the viscosity, but problems such as deterioration of the organic light emitting material layer and generation of outgas due to the remaining solvent. Therefore, the content of the solvent is preferably 0.05% by weight or less, and most preferably no solvent is contained.
  • the sealing agent for organic EL display elements of this invention contains well-known various additives, such as a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, a ultraviolet absorber, antioxidant, as needed. May be.
  • the sealing agent for organic EL display elements of the present invention for example, using a mixer such as a homodisper, homomixer, universal mixer, planetary mixer, kneader, three rolls, And a method of mixing a polymerization initiator and an additive such as a silane coupling agent added if necessary.
  • a mixer such as a homodisper, homomixer, universal mixer, planetary mixer, kneader, three rolls, and a method of mixing a polymerization initiator and an additive such as a silane coupling agent added if necessary.
  • the sealing agent for organic EL display elements of the present invention 1 has an upper limit of viscosity at 25 ° C. of 40 mPa ⁇ s.
  • the upper limit with the preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 20 mPa * s.
  • the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 5 mPa * s.
  • the said viscosity in this specification means the value measured on 25 degreeC and 100 rpm conditions using an E-type viscosity meter.
  • the preferable upper limit of the viscosity in 25 degreeC is 40 mPa * s.
  • the sealing agent for organic EL display elements of this invention 2 becomes more excellent by inkjet applicability
  • the upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 20 mPa * s.
  • the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 5 mPa * s.
  • the sealing agent for organic EL display elements of the present invention 1 has a lower limit of surface tension at 25 ° C. of 15 mN / m and an upper limit of 35 mN / m. When the surface tension is within this range, the organic EL display element sealant of the first aspect of the invention has excellent ink jet coating properties.
  • the preferable lower limit of the surface tension of the sealant for organic EL display elements of the present invention 1 is 20 mN / m, the preferable upper limit is 30 mN / m, the more preferable lower limit is 22 mN / m, and the more preferable upper limit is 28 mN / m.
  • the surface tension can be measured with a dynamic wettability tester at 25 ° C.
  • the sealing agent for organic EL display elements of this invention 2 the preferable minimum of the surface tension in 25 degreeC is 15 mN / m, and a preferable upper limit is 35 mN / m.
  • the organic EL display element sealant of the second aspect of the present invention is superior in ink jet coating properties.
  • the more preferable lower limit of the surface tension of the sealing agent for organic EL display elements of the present invention 2 is 20 mN / m
  • the more preferable upper limit is 30 mN / m
  • the still more preferable lower limit is 22 mN / m
  • the still more preferable upper limit is 28 mN / m.
  • cured material of the sealing agent for organic EL display elements of this invention is 80%.
  • the total light transmittance is 80% or more, the obtained organic EL display element has superior optical characteristics.
  • a more preferable lower limit of the total light transmittance is 85%.
  • the total light transmittance can be measured using a spectrometer such as AUTOMATIC HAZE METER MODEL TC-III DPK (manufactured by Tokyo Denshoku).
  • cured material used for the measurement of the said light transmittance and the water vapor transmission rate and moisture content mentioned later can be obtained by irradiating 3000 mJ / cm ⁇ 2 > of ultraviolet rays with a wavelength of 365 nm using light sources, such as an LED lamp, for example. it can.
  • the transmittance at 400 nm after irradiating the cured product with ultraviolet rays for 100 hours is preferably 85% or more at an optical path length of 20 ⁇ m.
  • the transmittance after irradiating the ultraviolet rays for 100 hours is 85% or more, the transparency is high, the loss of light emission is small, and the color reproducibility is excellent.
  • a more preferable lower limit of the transmittance after irradiation with the ultraviolet rays for 100 hours is 90%, and a more preferable lower limit is 95%.
  • the light source for irradiating the ultraviolet rays a conventionally known light source such as a xenon lamp or a carbon arc lamp can be used.
  • the sealant for an organic EL display device of the present invention has a moisture permeability of 100 g / 100 ⁇ m when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours in accordance with JIS Z 0208.
  • m is preferably 2 or less.
  • the moisture content of the cured product is preferably less than 0.5% when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours.
  • the moisture content of the cured product is less than 0.5%, the effect of preventing the deterioration of the organic light emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability. It becomes.
  • a more preferable upper limit of the moisture content of the cured product is 0.3%.
  • the method for measuring the moisture content include a method of obtaining by a Karl Fischer method in accordance with JIS K 7251, and a method of obtaining a weight increment after water absorption in accordance with JIS K 7209-2.
  • an organic EL display element using the sealing agent for organic EL display elements of the present invention for example, a step of applying the sealing agent for organic EL display elements of the present invention to a substrate by an inkjet method, And a method of curing the applied sealing agent for organic EL display elements by light irradiation and / or heating.
  • the organic EL display element sealant of the present invention may be applied to the entire surface of the substrate, or on a part of the substrate. It may be applied.
  • the shape of the sealing portion of the sealing agent for organic EL display elements of the present invention formed by coating is not particularly limited as long as it is a shape that can protect the laminate having the organic light emitting material layer from the outside air. A shape that completely covers the body may be formed, a closed pattern may be formed in the peripheral portion of the laminate, or a pattern having a shape in which a partial opening is provided in the peripheral portion of the laminate. It may be formed.
  • the organic EL display sealant element of the present invention When curing the organic EL display element sealing agent of the present invention by light irradiation, the organic EL display sealant element of the present invention, 300 nm or more 400nm or less wavelength and 300 mJ / cm 2 or more 3000 mJ / cm 2 or less of It can be suitably cured by irradiating with an accumulated amount of light.
  • Examples of the light source used for the light irradiation include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, a sodium lamp, a halogen lamp, and a xenon.
  • a lamp, an LED lamp, a fluorescent lamp, sunlight, an electron beam irradiation apparatus, etc. are mentioned.
  • These light sources may be used independently and 2 or more types may be used together. These light sources are appropriately selected according to the absorption wavelength of the photocationic polymerization initiator.
  • Examples of the light irradiation means to the organic EL display element sealant of the present invention include simultaneous irradiation of various light sources, sequential irradiation with a time difference, combined irradiation of simultaneous irradiation and sequential irradiation, and the like. Any irradiation means may be used.
  • the cured product obtained by the step of curing the organic EL display element sealing agent by light irradiation and / or heating may be further coated with an inorganic material film.
  • the inorganic material forming the inorganic material layer can be a conventionally known, for example, silicon nitride (SiN x), silicon oxide (SiO x), and the like.
  • the inorganic material film may be a single layer or may be a laminate of a plurality of types of layers. Moreover, you may coat
  • the method for producing the organic EL display element comprises a step of bonding a base material (hereinafter also referred to as “one base material”) coated with the organic EL display element sealing agent of the present invention and the other base material.
  • the substrate on which the sealing agent for organic EL display elements of the present invention is applied (hereinafter also referred to as “one substrate”) may be a substrate on which a laminate having an organic light emitting material layer is formed. A base material on which the laminate is not formed may be used.
  • the present invention is applied to the one substrate so that the laminate can be protected from the outside air when the other substrate is bonded. What is necessary is just to apply
  • the sealing agent portion having a closed pattern may be formed in a shape that fits in the shape.
  • the step of curing the organic EL display element sealant by light irradiation and / or heating may be performed before the step of bonding the one base material and the other base material, You may perform after the process of bonding a base material and said other base material.
  • the organic EL display of the present invention preferably has a pot life of 1 minute or longer after irradiation with light and / or heating until the curing reaction proceeds and adhesion becomes impossible. When the pot life is 1 minute or longer, higher adhesion strength can be obtained without excessive curing before the one base material and the other base material are bonded together.
  • a method of bonding the one base material and the other base material is not particularly limited, but it is preferable to bond them in a reduced-pressure atmosphere.
  • the preferable lower limit of the degree of vacuum in the reduced-pressure atmosphere is 0.01 kPa, and the preferable upper limit is 10 kPa.
  • the degree of vacuum in the reduced-pressure atmosphere is within this range, the one substrate and the other substrate can be used without spending a long time to achieve a vacuum state due to the airtightness of the vacuum apparatus and the ability of the vacuum pump. Bubbles in the sealing agent for organic EL display elements of the present invention when the material is bonded can be more efficiently removed.
  • the sealing agent for organic EL display elements which can obtain the organic EL display element which is excellent in inkjet applicability
  • Examples 1 to 7, Comparative Examples 1 to 6 According to the blending ratios described in Tables 1 and 2, each material was stirred and mixed uniformly at a stirring speed of 3000 rpm using a homodisper type stirring mixer (Primix Co., Ltd., “Homodisper L type”). Sealants for organic EL display elements of Examples 1 to 7 and Comparative Examples 1 to 6 were prepared. About each sealing agent for organic EL display elements obtained in Examples and Comparative Examples, measurement was performed using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., “VISCOMETER TV-22”) at 25 ° C. and 100 rpm. Tables 1 and 2 show the measured viscosity and the surface tension measured at 25 ° C. using a dynamic wettability tester (Reska, “WET-6100 type”).
  • each of the sealing agents for organic EL display elements obtained in the examples and comparative examples is a liquid of 30 picoliters using an inkjet discharge device (“NanoPrinter500” manufactured by Microjet). With a drop amount, 1000 drops were applied on alkali-washed non-alkali glass ("AN100" manufactured by Asahi Glass Co., Ltd.) The coating conditions were set to a pitch of 800 ⁇ m and a frequency of 20 kHz from a height of 0.5 mm from the substrate.
  • the diameter of the droplet on the alkali-free glass 10 minutes after the application was measured, and “ ⁇ ” when the diameter of the droplet was 180 ⁇ m or more, and “when” the diameter of the droplet was 150 ⁇ m or more and less than 180 ⁇ m.
  • the case where the diameter of the droplet was 120 ⁇ m or more and less than 150 ⁇ m was evaluated as “ ⁇ ”, and the case where the diameter of the droplet was less than 120 ⁇ m was evaluated as “X”.
  • the peeling was 5% or less, “ ⁇ ”, when the peeling was more than 5% and 35% or less, “ ⁇ ”, and the peeling was more than 35% and 65% or less.
  • “ ⁇ ” the case where peeling exceeded 65% was evaluated as “x”, and the adhesion to the inorganic material film was evaluated.
  • this substrate is fixed to a substrate holder of a vacuum deposition apparatus, and 200 mg of N, N'-di (1-naphthyl) -N, N'-diphenylbenzidine ( ⁇ -NPD) is added to the unglazed crucible.
  • 200 mg of tris (8-quinolinolato) aluminum (Alq 3 ) was put in the crucible, and the pressure in the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa. Thereafter, the crucible containing ⁇ -NPD was heated, and ⁇ -NPD was deposited on the substrate at a deposition rate of 15 s / s to form a 600 ⁇ ⁇ hole transport layer.
  • the crucible containing Alq 3 was heated to form an organic light emitting material layer having a thickness of 600 ⁇ at a deposition rate of 15 ⁇ / s. Thereafter, the substrate on which the hole transport layer and the organic light emitting material layer are formed is transferred to another vacuum vapor deposition apparatus, and 200 mg of lithium fluoride is added to a tungsten resistance heating boat in the vacuum vapor deposition apparatus, and an aluminum wire is added to another tungsten boat. 1.0 g was added.
  • the inside of the vapor deposition unit of the vacuum vapor deposition apparatus is depressurized to 2 ⁇ 10 ⁇ 4 Pa to form a lithium fluoride film with a thickness of 5 mm at a deposition rate of 0.2 kg / s, and then aluminum with a film thickness of 1000 mm at a rate of 20 kg / s did.
  • the inside of the vapor deposition unit was returned to normal pressure with nitrogen, and the substrate on which the laminate having the organic light emitting material layer of 10 mm ⁇ 10 mm was arranged was taken out.
  • a mask having an opening of 13 mm ⁇ 13 mm is installed so as to cover the entire laminated body of the substrate on which the obtained laminated body is arranged, and inorganic by plasma CVD method.
  • a material film A was formed.
  • SiH 4 gas and nitrogen gas are used as source gases, the flow rates of each are SiH 4 gas 10 sccm, nitrogen gas 200 sccm, RF power 10 W (frequency 2.45 GHz), chamber temperature 100 ° C., chamber The test was performed under the condition that the internal pressure was 0.9 Torr.
  • the formed inorganic material film A had a thickness of about 1 ⁇ m.
  • the sealing agent for organic EL display elements which can obtain the organic EL display element which is excellent in inkjet applicability

Abstract

The purpose of the present invention is to provide a sealant for an organic electroluminescent (EL) display element, which has inkjet coating properties, low outgassing properties, and outstanding adhesion to a substrate and an inorganic material film, and with which it is possible to obtain an organic EL display element with outstanding reliability. The present invention is a sealant for an organic EL display element, containing a curable resin and a polymerization initiator, wherein: the curable resin contains a compound represented by formula (1) and a compound represented by formula (2); the content of the compound represented by formula (1), by weight ratio, is 1.0–1.5 times the content of the compound represented by formula (2); the viscosity of the entirety of the sealant for the organic EL display element is 40 mPa·s or less at 25°C; and the surface tension of the entirety of the sealant for the organic EL display element is 15–35 mN/m. In formula (1): each R1 is independently a bonding hand, a straight-chain or branched-chain C1–18 alkylene group, or a straight-chain or branched-chain C2-18 alkenylene group; R2 is a straight-chain or branched-chain C1-18 alkylene group or a straight-chain or branched-chain C2-18 alkenylene group; and n is 0 or 1.

Description

有機EL表示素子用封止剤Sealant for organic EL display element
本発明は、インクジェット塗布性、低アウトガス性、及び、基板や無機材料膜に対する密着性に優れ、かつ、信頼性に優れる有機EL表示素子を得ることができる有機EL表示素子用封止剤に関する。 The present invention relates to a sealant for an organic EL display element that can provide an organic EL display element that is excellent in inkjet coating property, low outgassing property, adhesion to a substrate or an inorganic material film, and excellent in reliability.
有機エレクトロルミネッセンス(以下、「有機EL」ともいう)表示素子は、互いに対向する一対の電極間に有機発光材料層が挟持された積層体構造を有し、この有機発光材料層に一方の電極から電子が注入されるとともに他方の電極から正孔が注入されることにより有機発光材料層内で電子と正孔とが結合して発光する。このように有機EL表示素子は自己発光を行うことから、バックライトを必要とする液晶表示素子等と比較して視認性がよく、薄型化が可能であり、しかも直流低電圧駆動が可能であるという利点を有している。 An organic electroluminescence (hereinafter, also referred to as “organic EL”) display element has a laminated structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and the organic light emitting material layer is formed from one electrode on the organic light emitting material layer. When electrons are injected and holes are injected from the other electrode, the electrons and holes are combined in the organic light emitting material layer to emit light. Thus, since the organic EL display element performs self-emission, it has better visibility than a liquid crystal display element that requires a backlight, can be reduced in thickness, and can be driven by a DC low voltage. Has the advantage.
有機EL表示素子を構成する有機発光材料層や電極は、水分や酸素等により特性が劣化しやすいという問題がある。従って、実用的な有機EL表示素子を得るためには、有機発光材料層や電極を大気と遮断して長寿命化を図る必要がある。特許文献1には、有機EL表示素子の有機発光材料層と電極とを、CVD法により形成した窒化珪素膜と樹脂膜との積層膜により封止する方法が開示されている。ここで樹脂膜は、窒化珪素膜の内部応力による有機層や電極への圧迫を防止する役割を有する。 The organic light-emitting material layer and electrodes constituting the organic EL display element have a problem that the characteristics are easily deteriorated by moisture, oxygen, and the like. Therefore, in order to obtain a practical organic EL display element, it is necessary to extend the life by blocking the organic light emitting material layer and the electrode from the atmosphere. Patent Document 1 discloses a method of sealing an organic light emitting material layer and an electrode of an organic EL display element with a laminated film of a silicon nitride film and a resin film formed by a CVD method. Here, the resin film has a role of preventing pressure on the organic layer and the electrode due to internal stress of the silicon nitride film.
樹脂膜を形成する方法として、インクジェット法を用いて基材上に封止剤を塗布した後、該封止剤を硬化させる方法がある。このようなインクジェット法による塗布方法を用いれば、高速かつ均一に樹脂膜を形成することができる。しかしながら、インクジェット法による塗布に適したものとするために封止剤を低粘度となるようにした場合、アウトガスが発生したり、得られる有機EL表示素子が信頼性に劣るものとなったりする等の問題があった。 As a method for forming a resin film, there is a method in which a sealing agent is applied on a substrate using an inkjet method and then the sealing agent is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed. However, when the sealant is made to have a low viscosity in order to be suitable for application by the ink jet method, outgas is generated, or the obtained organic EL display element is inferior in reliability, etc. There was a problem.
特開2000-223264号公報JP 2000-223264 A 特表2005-522891号公報JP 2005-522891 Gazette 特開2001-307873号公報JP 2001-307873 A 特開2008-149710号公報JP 2008-149710 A
特許文献1に開示された窒化珪素膜で封止を行う方法では、有機EL表示素子の表面の凹凸や異物の付着、内部応力によるクラックの発生等により、窒化珪素膜を形成する際に有機発光材料層や電極を完全に被覆できないことがある。窒化珪素膜による被覆が不完全であると、水分が窒化珪素膜を通して有機発光材料層内に浸入してしまう。
有機発光材料層内への水分の浸入を防止するための方法として、特許文献2には、無機材料膜と樹脂膜とを交互に蒸着する方法が開示されており、特許文献3や特許文献4には、無機材料膜上に樹脂膜を形成する方法が開示されている。
樹脂膜を形成する方法として、インクジェット法を用いて基材上に封止剤を塗布した後、該封止剤を硬化させる方法がある。このようなインクジェット法による塗布方法を用いれば、高速かつ均一に樹脂膜を形成することができる。しかしながら、インクジェット法による塗布に適したものとするために封止剤を低粘度となるようにした場合、アウトガスが発生したり、得られる有機EL表示素子が信頼性に劣るものとなったりする等の問題があった。
本発明は、インクジェット塗布性、低アウトガス性、及び、基板や無機材料膜に対する密着性に優れ、かつ、信頼性に優れる有機EL表示素子を得ることができる有機EL表示素子用封止剤を提供することを目的とする。
In the method of sealing with a silicon nitride film disclosed in Patent Document 1, organic light emission occurs when a silicon nitride film is formed due to unevenness on the surface of the organic EL display element, adhesion of foreign matters, generation of cracks due to internal stress, or the like. The material layer or electrode may not be completely covered. If the coating with the silicon nitride film is incomplete, moisture will enter the organic light emitting material layer through the silicon nitride film.
As a method for preventing moisture from entering into the organic light emitting material layer, Patent Document 2 discloses a method of alternately depositing an inorganic material film and a resin film. Patent Document 3 and Patent Document 4 Discloses a method of forming a resin film on an inorganic material film.
As a method for forming a resin film, there is a method in which a sealing agent is applied on a substrate using an inkjet method and then the sealing agent is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed. However, when the sealant is made to have a low viscosity in order to be suitable for application by the ink jet method, outgas is generated, or the obtained organic EL display element is inferior in reliability, etc. There was a problem.
The present invention provides an organic EL display element sealant that can provide an organic EL display element that is excellent in inkjet coating property, low outgassing property, adhesion to a substrate or an inorganic material film, and excellent in reliability. The purpose is to do.
本発明1は、硬化性樹脂と、重合開始剤とを含有する有機EL表示素子用封止剤であって、上記硬化性樹脂は、下記式(1)で表される化合物と、下記式(2)で表される化合物とを含有し、下記式(1)で表される化合物の含有量が下記式(2)で表される化合物の含有量に対して、重量比で1.0倍以上1.5倍以下であり、25℃における有機EL表示素子用封止剤全体の粘度が40mPa・s以下であり、25℃における有機EL表示素子用封止剤全体の表面張力が15mN/m以上35mN/m以下である有機EL表示素子用封止剤である。
本発明2は、硬化性樹脂と、重合開始剤とを含有する有機EL表示素子用封止剤であって、上記硬化性樹脂は、下記式(1)で表される化合物と、下記式(2)で表される化合物とを含有し、下記式(1)で表される化合物の含有量が下記式(2)で表される化合物の含有量に対して、重量比で1.0倍以上1.5倍以下であり、インクジェット法による塗布に用いられる有機EL表示素子用封止剤である。
Invention 1 is a sealant for an organic EL display element containing a curable resin and a polymerization initiator, and the curable resin comprises a compound represented by the following formula (1) and the following formula ( 2), the content of the compound represented by the following formula (1) is 1.0 times by weight relative to the content of the compound represented by the following formula (2) The viscosity of the whole sealing agent for organic EL display elements at 25 ° C. is 40 mPa · s or less, and the surface tension of the whole sealing agent for organic EL display elements at 25 ° C. is 15 mN / m. It is a sealing agent for organic EL display elements which is 35 mN / m or less.
Invention 2 is a sealing agent for organic EL display elements containing a curable resin and a polymerization initiator, and the curable resin comprises a compound represented by the following formula (1) and the following formula ( 2), the content of the compound represented by the following formula (1) is 1.0 times by weight relative to the content of the compound represented by the following formula (2) It is 1.5 times or less and is a sealing agent for organic EL display elements used for application | coating by the inkjet method.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(1)中、Rは、それぞれ独立に、結合手、直鎖状若しくは分岐鎖状の炭素数1以上18以下のアルキレン基、又は、直鎖状若しくは分岐鎖状の炭素数2以上18以下のアルケニレン基であり、Rは、直鎖状若しくは分岐鎖状の炭素数1以上18以下のアルキレン基、又は、直鎖状若しくは分岐鎖状の炭素数2以上18以下のアルケニレン基であり、nは、0又は1である。 In formula (1), each R 1 independently represents a bond, a linear or branched alkylene group having 1 to 18 carbon atoms, or a linear or branched carbon group having 2 to 18 carbon atoms. R 2 is a linear or branched alkylene group having 1 to 18 carbon atoms, or a linear or branched alkenylene group having 2 to 18 carbon atoms. , N is 0 or 1.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
以下に本発明を詳述する。なお、本発明1の有機EL表示素子用封止剤と本発明2の有機EL表示素子用封止剤とに共通する事項については、「本発明の有機EL表示素子用封止剤」として記載する。 The present invention is described in detail below. In addition, about the matter common to the sealing agent for organic EL display elements of this invention 1 and the sealing agent for organic EL display elements of this invention 2, it describes as "the sealing agent for organic EL display elements of this invention". To do.
本発明者らは、有機EL表示素子用封止剤に用いる硬化性樹脂として、硬化性及び低アウトガス性に優れ、かつ、比較的粘度が低い3-エチル-3-(((3-エチルオキセタン-3-イル)メトキシ)メチル)オキセタンを用いることを検討した。しかしながら、得られた封止剤は、硬化性には優れるものの、硬化収縮により基板や無機材料膜に対する密着性に劣るものとなったり、インクジェット塗布に不向きであったりするという問題があった。そこで本発明者らは鋭意検討した結果、硬化性樹脂として更に特定の構造を有するジエポキシ化合物を、該3-エチル-3-(((3-エチルオキセタン-3-イル)メトキシ)メチル)オキセタンに対して特定の含有割合となるように配合することを検討した。その結果、インクジェット塗布性、低アウトガス性、及び、基板や無機材料膜に対する密着性に優れ、かつ、信頼性に優れる有機EL表示素子を得ることができる有機EL表示素子用封止剤を得ることができることを見出し、本発明を完成させるに至った。 As a curable resin used for a sealing agent for organic EL display elements, the present inventors have excellent curable properties, low outgassing properties, and relatively low viscosity 3-ethyl-3-((((3-ethyloxetane). The use of -3-yl) methoxy) methyl) oxetane was investigated. However, although the obtained sealant is excellent in curability, it has a problem that it becomes inferior in adhesion to a substrate or an inorganic material film due to curing shrinkage or is unsuitable for inkjet application. As a result of intensive studies, the present inventors have determined that a diepoxy compound having a more specific structure as a curable resin is converted to the 3-ethyl-3-(((3-ethyloxetane-3-yl) methoxy) methyl) oxetane. On the other hand, it was studied to blend so as to have a specific content ratio. As a result, it is possible to obtain an organic EL display element sealant that can provide an organic EL display element that is excellent in inkjet coating property, low outgassing property, adhesion to a substrate or an inorganic material film, and excellent in reliability. As a result, the present invention has been completed.
本発明の有機EL表示素子用封止剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、上記式(1)で表される化合物と上記式(2)で表される化合物とを含有する。上記式(1)で表される化合物と上記式(2)で表される化合物とを後述する含有割合となるようにして用いることにより、本発明の有機EL表示素子用封止剤は、インクジェット塗布性、低アウトガス性、及び、基板や無機材料膜に対する密着性に優れるものとなる。
The sealing agent for organic EL display elements of this invention contains curable resin.
The curable resin contains a compound represented by the above formula (1) and a compound represented by the above formula (2). By using the compound represented by the above formula (1) and the compound represented by the above formula (2) so as to have a content ratio described later, the sealing agent for organic EL display elements of the present invention is an inkjet. The coating property, the low outgassing property, and the adhesion to the substrate and the inorganic material film are excellent.
上記式(1)中、上記Rは、直鎖状若しくは分岐鎖状の炭素数1以上18以下のアルキレン基、又は、直鎖状若しくは分岐鎖状の炭素数2以上18以下のアルケニレン基であることが好ましく、直鎖状若しくは分岐鎖状の炭素数1以上18以下のアルキレン基であることがより好ましく、直鎖状若しくは分岐鎖状の炭素数1以上3以下のアルキレン基であることが更に好ましく、メチレン基であることが最も好ましい。 In the above formula (1), R 1 is a linear or branched alkylene group having 1 to 18 carbon atoms or a linear or branched alkenylene group having 2 to 18 carbon atoms. It is preferably a linear or branched alkylene group having 1 to 18 carbon atoms, more preferably a linear or branched alkylene group having 1 to 3 carbon atoms. More preferred is a methylene group.
上記式(1)中、上記Rは、直鎖状若しくは分岐鎖状の炭素数1以上18以下のアルキレン基であることが好ましく、直鎖状若しくは分岐鎖状の炭素数2以上5以下のアルキレン基であることがより好ましい。 In the formula (1), R 2 is preferably a linear or branched alkylene group having 1 to 18 carbon atoms, and a linear or branched carbon group having 2 to 5 carbon atoms. An alkylene group is more preferable.
上記式(1)中、上記R及び上記Rの合計の炭素数の好ましい下限は3、好ましい上限は20である。上記R及び上記Rの合計の炭素数がこの範囲であることにより、得られる有機EL表示素子用封止剤が低アウトガス性及び基板や無機材料膜に対する密着性により優れるものとなる。上記R及び上記Rの合計の炭素数のより好ましい下限は4、より好ましい上限は7である。 The formula (1), the total preferred lower limit of the number of carbon atoms of the R 1 and R 2 above are 3, a preferred upper limit is 20. When the total number of carbon atoms of R 1 and R 2 is within this range, the obtained sealing agent for organic EL display elements is excellent in low outgassing property and adhesion to a substrate or an inorganic material film. The more preferable lower limit of the total carbon number of R 1 and R 2 is 4, and the more preferable upper limit is 7.
得られる有機EL表示素子用封止剤のインクジェット塗布性等の観点から、上記式(1)中、nは1であることが好ましい。 N is preferably 1 in the above formula (1) from the viewpoint of inkjet coating properties of the obtained sealing agent for organic EL display elements.
上記式(1)で表される化合物の沸点の好ましい下限は200℃である。上記式(1)で表される化合物の沸点が200℃以上であることにより、揮発し難く、得られる有機EL表示素子用封止剤がよりインクジェット塗布性により優れるものとなる。上記式(1)で表される化合物の沸点のより好ましい下限は250℃である。
なお、本明細書において上記沸点は、JIS K 2233に準拠した方法を用いて、101kPaの条件で測定される値、又は、沸点換算図表等で101kPaに換算された値を意味する。
A preferred lower limit of the boiling point of the compound represented by the formula (1) is 200 ° C. When the boiling point of the compound represented by the above formula (1) is 200 ° C. or higher, it is difficult to volatilize, and the obtained sealing agent for organic EL display elements is more excellent in ink jet coatability. A more preferable lower limit of the boiling point of the compound represented by the formula (1) is 250 ° C.
In addition, the said boiling point in this specification means the value measured on the conditions of 101 kPa using the method based on JISK2233, or the value converted into 101 kPa by the boiling point conversion chart.
上記式(1)で表される化合物としては、具体的には例えば、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,2,7,8-ジエポキシオクタン、1,2,5,6-ジエポキシヘキサン、等が挙げられる。なかでも、揮発し難く、得られる有機EL表示素子用封止剤がインクジェット塗布性により優れるものとなること等から、ネオペンチルグリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテルが好ましく、ネオペンチルグリコールジグリシジルエーテルが最も好ましい。 Specific examples of the compound represented by the above formula (1) include ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl. Examples include ether, 1,2,7,8-diepoxyoctane, 1,2,5,6-diepoxyhexane, and the like. Among these, it is difficult to volatilize, and the resulting sealant for organic EL display elements is excellent in ink jet coating properties. Therefore, neopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6 -Hexanediol diglycidyl ether is preferred, and neopentyl glycol diglycidyl ether is most preferred.
上記式(1)で表される化合物の含有量は、上記式(2)で表される化合物の含有量に対して、重量比で、下限が1.0倍、上限が1.5倍である。上記式(1)で表される化合物の含有量が上記式(2)で表される化合物の含有量の1.0倍以上であることにより、本発明の有機EL表示素子用封止剤は、基板や無機材料膜に対する密着性に優れるものとなり、得られる有機EL表示素子が信頼性に優れるものとなる。上記式(1)で表される化合物の含有量が上記式(2)で表される化合物の含有量の1.5倍以下であることにより、本発明の有機EL表示素子用封止剤は、硬化性及び低アウトガス性に優れるものとなる。上記式(1)で表される化合物の含有量は、上記式(2)で表される化合物の含有量に対して、重量比で、好ましい下限が1.1倍、好ましい上限が1.4倍である。 The content of the compound represented by the formula (1) is a weight ratio with respect to the content of the compound represented by the formula (2), and the lower limit is 1.0 times and the upper limit is 1.5 times. is there. When the content of the compound represented by the above formula (1) is 1.0 times or more of the content of the compound represented by the above formula (2), the sealing agent for an organic EL display element of the present invention is The adhesion to the substrate and the inorganic material film is excellent, and the obtained organic EL display element is excellent in reliability. When the content of the compound represented by the above formula (1) is 1.5 times or less of the content of the compound represented by the above formula (2), the sealing agent for organic EL display elements of the present invention is , Excellent curability and low outgassing properties. The content of the compound represented by the above formula (1) is 1.1 times the preferable lower limit and 1.4 is the preferable upper limit in terms of weight ratio with respect to the content of the compound represented by the above formula (2). Is double.
上記硬化性樹脂100重量部中における上記式(1)で表される化合物と上記式(2)で表される化合物との合計の含有量の好ましい下限は30重量部である。上記式(1)で表される化合物と上記式(2)で表される化合物との合計の含有量が30重量部以上であることにより、得られる有機EL表示素子用封止剤がインクジェット塗布性、低アウトガス性、及び、基板や無機材料膜に対する密着性により優れるものとなる。上記式(1)で表される化合物と上記式(2)で表される化合物との合計の含有量のより好ましい下限は50重量部である。
また、低アウトガス性等の観点から、上記硬化性樹脂100重量部中における上記式(1)で表される化合物と上記式(2)で表される化合物との合計の含有量の好ましい上限は80重量部である。
A preferable lower limit of the total content of the compound represented by the formula (1) and the compound represented by the formula (2) in 100 parts by weight of the curable resin is 30 parts by weight. When the total content of the compound represented by the above formula (1) and the compound represented by the above formula (2) is 30 parts by weight or more, the obtained sealing agent for organic EL display elements is applied by inkjet coating. It is excellent in the property, low outgassing property, and adhesion to the substrate and the inorganic material film. A more preferable lower limit of the total content of the compound represented by the above formula (1) and the compound represented by the above formula (2) is 50 parts by weight.
From the viewpoint of low outgassing property, etc., the preferred upper limit of the total content of the compound represented by the above formula (1) and the compound represented by the above formula (2) in 100 parts by weight of the curable resin is 80 parts by weight.
上記硬化性樹脂は、上記式(1)で表される化合物及び上記式(2)で表される化合物以外のその他の重合性化合物を含有してもよい。
上記その他の重合性化合物としては、上記式(1)で表される化合物以外のその他のエポキシ化合物や、上記式(2)で表される化合物以外のその他のオキセタン化合物や、(メタ)アクリル化合物や、ビニルエーテル化合物等が挙げられる。
なお、本明細書において、上記「(メタ)アクリル」は、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」は、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」は、アクリロイル又はメタクリロイルを意味する。
The curable resin may contain a polymerizable compound other than the compound represented by the formula (1) and the compound represented by the formula (2).
Examples of the other polymerizable compounds include other epoxy compounds other than the compound represented by the formula (1), other oxetane compounds other than the compound represented by the formula (2), and a (meth) acrylic compound. And vinyl ether compounds.
In the present specification, the above “(meth) acryl” means acryl or methacryl, the above “(meth) acryl compound” means a compound having a (meth) acryloyl group, and the above “(meth) “Acryloyl” means acryloyl or methacryloyl.
上記その他のエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノールO型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、脂環式エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物、シロキサン骨格を有するエポキシ化合物等が挙げられる。なかでも、得られる有機EL表示素子用封止剤が基板や無機材料膜に対する濡れ広がり性に優れるものとなることから、シロキサン骨格を有するエポキシ化合物が好ましい。
上記シロキサン骨格を有するエポキシ化合物のうち市販されているものとしては、例えば、X-22-169、X-22-163、X-22-343、X-22-2046、X-22-4741、X-22-173DX、X-22-9002(いずれも信越化学工業社製)等が挙げられる。
これらのその他のエポキシ化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the other epoxy compounds include bisphenol A type epoxy compounds, bisphenol E type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol O type epoxy compounds, and 2,2′-diallyl bisphenol A type epoxy. Compound, cycloaliphatic epoxy compound, hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound , Naphthalene type epoxy compound, phenol novolac type epoxy compound, orthocresol novolac type epoxy compound, dicyclopentadi Examples include en novolac type epoxy compounds, biphenyl novolac type epoxy compounds, naphthalene phenol novolac type epoxy compounds, glycidyl amine type epoxy compounds, alkyl polyol type epoxy compounds, rubber-modified epoxy compounds, glycidyl ester compounds, and epoxy compounds having a siloxane skeleton. It is done. Among them, an epoxy compound having a siloxane skeleton is preferable because the obtained sealing agent for organic EL display elements has excellent wettability with respect to the substrate and the inorganic material film.
Among the epoxy compounds having a siloxane skeleton, those commercially available include, for example, X-22-169, X-22-163, X-22-343, X-22-2046, X-22-4741, -22-173DX, X-22-9002 (both manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.
These other epoxy compounds may be used alone or in combination of two or more.
上記その他のオキセタン化合物としては、例えば、3-(アリルオキシ)オキセタン、フェノキシメチルオキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-((2-エチルヘキシルオキシ)メチル)オキセタン、3-エチル-3-((3-(トリエトキシシリル)プロポキシ)メチル)オキセタン、フェノールノボラックオキセタン、1,4-ビス(((3-エチル-3-オキセタニル)メトキシ)メチル)ベンゼン、シロキサン骨格を有するオキセタン化合物等が挙げられる。なかでも、得られる有機EL表示素子用封止剤が基板や無機材料膜に対する濡れ広がり性に優れるものとなることから、シロキサン骨格を有するオキセタン化合物が好ましい。
これらのその他のオキセタン化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the other oxetane compounds include 3- (allyloxy) oxetane, phenoxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- ( (2-ethylhexyloxy) methyl) oxetane, 3-ethyl-3-((3- (triethoxysilyl) propoxy) methyl) oxetane, phenol novolac oxetane, 1,4-bis (((3-ethyl-3-oxetanyl And oxetane compounds having a siloxane skeleton. Of these, an oxetane compound having a siloxane skeleton is preferable because the obtained sealing agent for organic EL display elements has excellent wettability with respect to a substrate or an inorganic material film.
These other oxetane compounds may be used alone or in combination of two or more.
上記(メタ)アクリル化合物としては、例えば、グリシジル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アリレート、1,12-ドデカンジオールジ(メタ)アクリレート、ラウリル(メタ)アクリレート、シロキサン骨格を有する(メタ)アクリル化合物等が挙げられる。
なかでも、得られる有機EL表示素子用封止剤が基板や無機材料膜に対する濡れ広がり性に優れるものとなることから、シロキサン骨格を有する(メタ)アクリル化合物が好ましい。
上記シロキサン骨格を有する(メタ)アクリル化合物のうち市販されているものとしては、例えば、X-22-164、X-22-174DX、X-22-174ASX、X-22-2426、X-22-2475(いずれも信越化学工業社製)等が挙げられる。
これらの(メタ)アクリル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
Examples of the (meth) acrylic compound include glycidyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dicyclopentenyl (meth) acrylate, and di Cyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, trimethylolpropane tri (meth) arylate, 1,12-dodecanediol di (meth) acrylate, lauryl (meth) acrylate And (meth) acrylic compounds having a siloxane skeleton.
Of these, a (meth) acrylic compound having a siloxane skeleton is preferable because the obtained sealing agent for organic EL display elements has excellent wettability with respect to a substrate or an inorganic material film.
Examples of commercially available (meth) acrylic compounds having the siloxane skeleton include X-22-164, X-22-174DX, X-22-174ASX, X-22-2426, X-22- 2475 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
These (meth) acrylic compounds may be used alone or in combination of two or more.
In the present specification, the “(meth) acrylate” means acrylate or methacrylate.
上記ビニルエーテル化合物としては、例えば、ベンジルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、ジシクロペンタジエンビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、トリプロピレングリコールジビニルエーテル等が挙げられる。
これらのビニルエーテル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the vinyl ether compound include benzyl vinyl ether, cyclohexane dimethanol monovinyl ether, dicyclopentadiene vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, dipropylene glycol. Examples thereof include divinyl ether and tripropylene glycol divinyl ether.
These vinyl ether compounds may be used alone or in combination of two or more.
本発明の有機EL表示素子用封止剤は、重合開始剤を含有する。
上記重合開始剤としては、光カチオン重合開始剤や熱カチオン重合開始剤が好適に用いられる。また、上記その他の重合性化合物の種類に応じて、光ラジカル重合開始剤、熱ラジカル重合開始剤も好適に用いられる。
The sealing agent for organic EL display elements of the present invention contains a polymerization initiator.
As the polymerization initiator, a photocationic polymerization initiator or a thermal cationic polymerization initiator is preferably used. Moreover, according to the kind of said other polymeric compound, radical photopolymerization initiator and a thermal radical polymerization initiator are also used suitably.
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生型であってもよいし、非イオン性光酸発生型であってもよい。 The photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be.
上記イオン性光酸発生型の光カチオン重合開始剤のアニオン部分としては、例えば、BF 、PF 、SbF 、(BX(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)等が挙げられる。また、上記アニオン部分としては、PF(C2n+16-m (但し、式中、mは0以上5以下の整数であり、nは1以上6以下の整数である)等も挙げられる。
上記イオン性光酸発生型の光カチオン重合開始剤としては、例えば、上記アニオン部分を有する、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ジアゾニウム塩、芳香族アンモニウム塩、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩等が挙げられる。
Examples of the anion portion of the ionic photoacid-generating photocationic polymerization initiator include BF 4 , PF 6 , SbF 6 , (BX 4 ) (where X is at least two or more fluorine atoms) Or a phenyl group substituted with a trifluoromethyl group). Examples of the anion moiety include PF m (C n F 2n + 1 ) 6-m (wherein, m is an integer of 0 or more and 5 or less, and n is an integer of 1 or more and 6 or less). Can be mentioned.
Examples of the ionic photoacid-generating photocationic polymerization initiator include aromatic sulfonium salts, aromatic iodonium salts, aromatic diazonium salts, aromatic ammonium salts having the above anion moiety, and (2,4-cyclohexane). And pentadien-1-yl) ((1-methylethyl) benzene) -Fe salt.
上記芳香族スルホニウム塩としては、例えば、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、トリス(4-(4-アセチルフェニル)チオフェニル)スルホニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the aromatic sulfonium salt include bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluoroantimonate, and bis (4- ( Diphenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (diphenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4- ( Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetrafluoroborate, diphenyl-4- (phenylthio) Phenylsulfonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrafluoroborate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, bis (4- (di ( 4- (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide bishexafluoroantimonate, Bis (4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (di ( - (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, tris (4- (4-acetylphenyl) thiophenyl) sulfonium tetrakis (pentafluorophenyl) borate, and the like.
上記芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the aromatic iodonium salt include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexa Fluorophosphate, 4-methylphenyl-4- (1-methylethyl) Such as phenyl iodonium hexafluoroantimonate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrafluoroborate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrakis (pentafluorophenyl) borate Can be mentioned.
上記芳香族ジアゾニウム塩としては、例えば、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、フェニルジアゾニウムテトラフルオロボレート、フェニルジアゾニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the aromatic diazonium salt include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
上記芳香族アンモニウム塩としては、例えば、1-ベンジル-2-シアノピリジニウムヘキサフルオロホスフェート、1-ベンジル-2-シアノピリジニウムヘキサフルオロアンチモネート、1-ベンジル-2-シアノピリジニウムテトラフルオロボレート、1-ベンジル-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロホスフェート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロアンチモネート、1-(ナフチルメチル)-2-シアノピリジニウムテトラフルオロボレート、1-(ナフチルメチル)-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the aromatic ammonium salt include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl -2-Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl) Examples include -2-cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate.
上記(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩としては、例えば、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロホスフェート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラフルオロボレート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe salt include (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene. ) -Fe (II) hexafluorophosphate, (2,4-cyclopentadiene-1-yl) ((1-methylethyl) benzene) -Fe (II) hexafluoroantimonate, (2,4-cyclopentadiene-1 -Yl) ((1-methylethyl) benzene) -Fe (II) tetrafluoroborate, (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe (II) tetrakis (penta Fluorophenyl) borate and the like.
上記非イオン性光酸発生型の光カチオン重合開始剤としては、例えば、ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N-ヒドロキシイミドスルホネート等が挙げられる。 Examples of the nonionic photoacid-generating photocationic polymerization initiator include nitrobenzyl ester, sulfonic acid derivative, phosphoric acid ester, phenol sulfonic acid ester, diazonaphthoquinone, N-hydroxyimide sulfonate, and the like.
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、みどり化学社製の光カチオン重合開始剤、ユニオンカーバイド社製の光カチオン重合開始剤、ADEKA社製の光カチオン重合開始剤、3M社製の光カチオン重合開始剤、BASF社製の光カチオン重合開始剤、ローディア社製の光カチオン重合開始剤、サンアプロ社製の光カチオン重合開始剤等が挙げられる。
上記みどり化学社製の光カチオン重合開始剤としては、例えば、DTS-200等が挙げられる。
上記ユニオンカーバイド社製の光カチオン重合開始剤としては、例えば、UVI6990、UVI6974等が挙げられる。
上記ADEKA社製の光カチオン重合開始剤としては、例えば、SP-150、SP-170等が挙げられる。
上記3M社製の光カチオン重合開始剤としては、例えば、FC-508、FC-512等が挙げられる。
上記BASF社製の光カチオン重合開始剤としては、例えば、IRGACURE261、IRGACURE290等が挙げられる。
上記ローディア社製の光カチオン重合開始剤としては、例えば、PI2074等が挙げられる。
上記サンアプロ社製の光カチオン重合開始剤としては、例えば、CPI-100P、CPI-200K、CPI-210S等が挙げられる。
Examples of commercially available photocationic polymerization initiators include, for example, a photocationic polymerization initiator manufactured by Midori Chemical Co., a photocationic polymerization initiator manufactured by Union Carbide, a photocationic polymerization initiator manufactured by ADEKA, Examples thereof include a photocationic polymerization initiator manufactured by 3M, a photocationic polymerization initiator manufactured by BASF, a photocationic polymerization initiator manufactured by Rhodia, and a photocationic polymerization initiator manufactured by San Apro.
Examples of the photocationic polymerization initiator manufactured by Midori Chemical Co., Ltd. include DTS-200.
Examples of the cationic photopolymerization initiator manufactured by Union Carbide include UVI6990, UVI6974, and the like.
Examples of the photocation polymerization initiator manufactured by ADEKA include SP-150 and SP-170.
Examples of the cationic photopolymerization initiator manufactured by 3M include FC-508, FC-512, and the like.
Examples of the cationic photopolymerization initiator manufactured by BASF include IRGACURE261, IRGACURE290, and the like.
Examples of the photocationic polymerization initiator manufactured by Rhodia include PI 2074.
Examples of the cationic photopolymerization initiator manufactured by Sun Apro include CPI-100P, CPI-200K, CPI-210S, and the like.
上記熱カチオン重合開始剤としては、アニオン部分がBF 、PF 、SbF 、又は、(BX(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)で構成される、スルホニウム塩、ホスホニウム塩、アンモニウム塩等が挙げられる。なかでも、スルホニウム塩、アンモニウム塩が好ましい。 As the thermal cationic polymerization initiator, the anion moiety is BF 4 , PF 6 , SbF 6 , or (BX 4 ) (where X is substituted with at least two fluorine or trifluoromethyl groups A sulfonium salt, a phosphonium salt, an ammonium salt, and the like. Of these, sulfonium salts and ammonium salts are preferable.
上記スルホニウム塩としては、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート等が挙げられる。 Examples of the sulfonium salt include triphenylsulfonium tetrafluoroborate and triphenylsulfonium hexafluoroantimonate.
上記ホスホニウム塩としては、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、テトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。 Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
上記アンモニウム塩としては、例えば、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メトキシベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロテトラキス(ペンタフルオロフェニル)ボレート、メチルフェニルジベンジルアンモニウムヘキサフルオロホスフェート、メチルフェニルジベンジルアンモニウムヘキサフルオロアンチモネート、メチルフェニルジベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、フェニルトリベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(3,4-ジメチルベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチル-N-ベンジルアニリニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルアニリニウムテトラフルオロボレート、N,N-ジメチル-N-ベンジルピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルピリジニウムトリフルオロメタンスルホン酸等が挙げられる。 Examples of the ammonium salt include dimethylphenyl (4-methoxybenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methoxybenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methoxybenzyl) ammonium tetrakis (pentafluorophenyl). Borate, dimethylphenyl (4-methylbenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methylbenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methylbenzyl) ammonium hexafluorotetrakis (pentafluorophenyl) borate, methylphenyl Dibenzylammonium hexafluorophosphate, methylphenyldibenzylammonium Safluoroantimonate, methylphenyldibenzylammonium tetrakis (pentafluorophenyl) borate, phenyltribenzylammonium tetrakis (pentafluorophenyl) borate, dimethylphenyl (3,4-dimethylbenzyl) ammonium tetrakis (pentafluorophenyl) borate, N , N-dimethyl-N-benzylanilinium hexafluoroantimonate, N, N-diethyl-N-benzylanilinium tetrafluoroborate, N, N-dimethyl-N-benzylpyridinium hexafluoroantimonate, N, N-diethyl -N-benzylpyridinium trifluoromethanesulfonic acid and the like.
上記熱カチオン重合開始剤のうち市販されているものとしては、例えば、三新化学工業社製の熱カチオン重合開始剤、King Industries社製の熱カチオン重合開始剤等が挙げられる。
上記三新化学工業社製の熱カチオン重合開始剤としては、例えば、サンエイドSI-60、サンエイドSI-80、サンエイドSI-B3、サンエイドSI-B3A、サンエイドSI-B4等が挙げられる。
上記King Industries社製の熱カチオン重合開始剤としては、例えば、CXC1612、CXC1821等が挙げられる。
Examples of commercially available thermal cationic polymerization initiators include thermal cationic polymerization initiators manufactured by Sanshin Chemical Industry, thermal cationic polymerization initiators manufactured by King Industries, and the like.
Examples of the thermal cationic polymerization initiator manufactured by Sanshin Chemical Industry Co., Ltd. include Sun-Aid SI-60, Sun-Aid SI-80, Sun-Aid SI-B3, Sun-Aid SI-B3A, and Sun-Aid SI-B4.
Examples of the thermal cationic polymerization initiator manufactured by King Industries include CXC1612 and CXC1821.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン系化合物等が挙げられる。 Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone compounds, and the like.
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、BASF社製の光ラジカル重合開始剤、東京化成工業社製の光ラジカル重合開始剤等が挙げられる。
上記BASF社製の光ラジカル重合開始剤としては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO等が挙げられる。
上記東京化成工業社製の光ラジカル重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。
As what is marketed among the said radical photopolymerization initiators, the radical photopolymerization initiator by BASF, the radical photopolymerization initiator by Tokyo Chemical Industry, etc. are mentioned, for example.
Examples of the radical photopolymerization initiator manufactured by BASF include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucyrin TPO.
Examples of the photo radical polymerization initiator manufactured by Tokyo Chemical Industry Co., Ltd. include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。
上記アゾ化合物としては、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル等が挙げられる。
上記有機過酸化物としては、例えば、過酸化ベンゾイル、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。
As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
Examples of the azo compound include 2,2′-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile, and the like.
Examples of the organic peroxide include benzoyl peroxide, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記熱ラジカル重合開始剤のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。 Examples of commercially available thermal radical polymerization initiators include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, V-501 (all of which are Fuji Film Wako Pure Chemical Industries, Ltd.). Manufactured) and the like.
上記重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記重合開始剤の含有量が0.01重量部以上であることにより、得られる有機EL表示素子用封止剤が硬化性により優れるものとなる。上記重合開始剤の含有量が10重量部以下であることにより、得られる有機EL表示素子用封止剤の硬化反応が速くなりすぎず、作業性により優れるものとなり、硬化物をより均一なものとすることができる。上記重合開始剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は5重量部である。 The content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the polymerization initiator is 0.01 parts by weight or more, the obtained sealing agent for organic EL display elements is more excellent in curability. When the content of the polymerization initiator is 10 parts by weight or less, the curing reaction of the obtained sealing agent for organic EL display elements does not become too fast, the workability is improved, and the cured product is more uniform. It can be. The minimum with more preferable content of the said polymerization initiator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
本発明の有機EL表示素子用封止剤は、増感剤を含有してもよい。上記増感剤は、上記重合開始剤の重合開始効率をより向上させて、本発明の有機EL表示素子用封止剤の硬化反応をより促進させる役割を有する。 The sealing agent for organic EL display elements of the present invention may contain a sensitizer. The sensitizer has a role of further improving the polymerization initiation efficiency of the polymerization initiator and further promoting the curing reaction of the sealing agent for organic EL display elements of the present invention.
上記増感剤としては、例えば、アントラセン化合物や、チオキサントン化合物や、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等が挙げられる。
上記アントラセン化合物としては、例えば、9,10-ジブトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ビス(オクタノイルオキシ)アントラセン等が挙げられる。
上記チオキサントン化合物としては、例えば、2,4-ジエチルチオキサントン等が挙げられる。
Examples of the sensitizer include anthracene compounds, thioxanthone compounds, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, Examples include 4,4′-bis (dimethylamino) benzophenone and 4-benzoyl-4′-methyldiphenyl sulfide.
Examples of the anthracene compound include 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, and 9,10-bis (octanoyloxy) anthracene.
Examples of the thioxanthone compound include 2,4-diethylthioxanthone.
上記増感剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が3重量部である。上記増感剤の含有量が0.01重量部以上であることにより、増感効果がより発揮される。上記増感剤の含有量が3重量部以下であることにより、吸収が大きくなり過ぎずに深部まで光を伝えることができる。上記増感剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は1重量部である。 The content of the sensitizer is preferably 0.01 parts by weight and preferably 3 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the sensitizer is 0.01 parts by weight or more, the sensitizing effect is more exhibited. When the content of the sensitizer is 3 parts by weight or less, light can be transmitted to a deep part without excessive absorption. The minimum with more preferable content of the said sensitizer is 0.1 weight part, and a more preferable upper limit is 1 weight part.
本発明の有機EL表示素子用封止剤は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、本発明の有機EL表示素子用封止剤と基板や無機材料膜との密着性を更に向上させる役割を有する。 The sealing agent for organic EL display elements of the present invention may contain a silane coupling agent. The said silane coupling agent has a role which further improves the adhesiveness of the sealing agent for organic EL display elements of this invention, and a board | substrate or an inorganic material film.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤は単独で用いられてもよいし、2種以上が併用されてもよい。 Examples of the silane coupling agent include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane coupling agents may be used independently and 2 or more types may be used together.
上記シランカップリング剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、余剰のシランカップリング剤がブリードアウトすることを抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。 The content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness is suppressed while suppressing the excess silane coupling agent from bleeding out. The minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
本発明の有機EL表示素子用封止剤は、更に、本発明の目的を阻害しない範囲において、表面調整剤を含有してもよい。上記表面調整剤を含有することにより、本発明の有機EL表示素子用封止剤に塗膜の平坦性を付与することができる。
上記表面調整剤としては、例えば、界面活性剤やレベリング剤等が挙げられる。
The sealing agent for organic EL display elements of the present invention may further contain a surface adjusting agent as long as the object of the present invention is not impaired. By containing the surface conditioning agent, the flatness of the coating film can be imparted to the sealing agent for organic EL display elements of the present invention.
Examples of the surface conditioner include surfactants and leveling agents.
上記表面調整剤としては、例えば、シリコーン系やフッ素系等のものが挙げられる。
上記表面調整剤のうち市販されているものとしては、例えば、BYK-340、BYK-345(いずれもビックケミー・ジャパン社製)、サーフロンS-611(AGCセイミケミカル社製)等が挙げられる。
Examples of the surface conditioner include those based on silicone and fluorine.
Examples of commercially available surface conditioners include BYK-340, BYK-345 (both manufactured by Big Chemie Japan), Surflon S-611 (manufactured by AGC Seimi Chemical Co., Ltd.), and the like.
上記表面調整剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が5重量部である。上記表面調整剤の含有量がこの範囲であることにより、本発明の有機EL表示素子用封止剤全体の表面張力をより容易に調整することができる。上記表面調整剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は3重量部である。 The content of the surface conditioning agent is preferably 0.01 parts by weight and preferably 5 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the surface conditioning agent is within this range, the surface tension of the entire sealing agent for organic EL display elements of the present invention can be adjusted more easily. The minimum with more preferable content of the said surface conditioning agent is 0.1 weight part, and a more preferable upper limit is 3 weight part.
本発明の有機EL表示素子用封止剤は、粘度調整等を目的として溶剤を含有してもよいが、残存した溶剤により、有機発光材料層が劣化したりアウトガスが発生したりする等の問題が生じるおそれがあるため、溶剤の含有量が0.05重量%以下であることが好ましく、溶剤を含有しないことが最も好ましい。 The encapsulant for organic EL display elements of the present invention may contain a solvent for the purpose of adjusting the viscosity, but problems such as deterioration of the organic light emitting material layer and generation of outgas due to the remaining solvent. Therefore, the content of the solvent is preferably 0.05% by weight or less, and most preferably no solvent is contained.
また、本発明の有機EL表示素子用封止剤は、必要に応じて、補強剤、軟化剤、可塑剤、粘度調整剤、紫外線吸収剤、酸化防止剤等の公知の各種添加剤を含有してもよい。 Moreover, the sealing agent for organic EL display elements of this invention contains well-known various additives, such as a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, a ultraviolet absorber, antioxidant, as needed. May be.
本発明の有機EL表示素子用封止剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、重合開始剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the sealing agent for organic EL display elements of the present invention, for example, using a mixer such as a homodisper, homomixer, universal mixer, planetary mixer, kneader, three rolls, And a method of mixing a polymerization initiator and an additive such as a silane coupling agent added if necessary.
本発明1の有機EL表示素子用封止剤は、25℃における粘度の上限が40mPa・sである。上記粘度が40mPa・s以下であることにより、本発明1の有機EL表示素子用封止剤は、インクジェット塗布性に優れるものとなる。本発明1の有機EL表示素子用封止剤の粘度の好ましい上限は20mPa・sである。
また、本発明1の有機EL表示素子用封止剤の粘度の好ましい下限は5mPa・sである。
なお、本明細書において上記粘度は、E型粘度計を用いて、25℃、100rpmの条件で測定される値を意味する。
The sealing agent for organic EL display elements of the present invention 1 has an upper limit of viscosity at 25 ° C. of 40 mPa · s. By the said viscosity being 40 mPa * s or less, the sealing agent for organic EL display elements of this invention 1 is excellent in inkjet applicability | paintability. The upper limit with the preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 20 mPa * s.
Moreover, the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 5 mPa * s.
In addition, the said viscosity in this specification means the value measured on 25 degreeC and 100 rpm conditions using an E-type viscosity meter.
本発明2の有機EL表示素子用封止剤は、25℃における粘度の好ましい上限が40mPa・sである。上記粘度が40mPa・s以下であることにより、本発明2の有機EL表示素子用封止剤は、インクジェット塗布性により優れるものとなる。本発明2の有機EL表示素子用封止剤の粘度のより好ましい上限は20mPa・sである。
また、本発明2の有機EL表示素子用封止剤の粘度の好ましい下限は5mPa・sである。
As for the sealing agent for organic EL display elements of this invention 2, the preferable upper limit of the viscosity in 25 degreeC is 40 mPa * s. By the said viscosity being 40 mPa * s or less, the sealing agent for organic EL display elements of this invention 2 becomes more excellent by inkjet applicability | paintability. The upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 20 mPa * s.
Moreover, the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 5 mPa * s.
本発明1の有機EL表示素子用封止剤は、25℃における表面張力の下限が15mN/m、上限が35mN/mである。上記表面張力がこの範囲であることにより本発明1の有機EL表示素子用封止剤は、インクジェット塗布性に優れるものとなる。本発明1の有機EL表示素子用封止剤の表面張力の好ましい下限は20mN/m、好ましい上限は30mN/m、より好ましい下限は22mN/m、より好ましい上限は28mN/mである。
なお、上記表面張力は、25℃において動的濡れ性試験機により測定することができる。
The sealing agent for organic EL display elements of the present invention 1 has a lower limit of surface tension at 25 ° C. of 15 mN / m and an upper limit of 35 mN / m. When the surface tension is within this range, the organic EL display element sealant of the first aspect of the invention has excellent ink jet coating properties. The preferable lower limit of the surface tension of the sealant for organic EL display elements of the present invention 1 is 20 mN / m, the preferable upper limit is 30 mN / m, the more preferable lower limit is 22 mN / m, and the more preferable upper limit is 28 mN / m.
The surface tension can be measured with a dynamic wettability tester at 25 ° C.
本発明2の有機EL表示素子用封止剤は、25℃における表面張力の好ましい下限が15mN/m、好ましい上限が35mN/mである。上記表面張力がこの範囲であることにより、本発明2の有機EL表示素子用封止剤は、インクジェット塗布性により優れるものとなる。本発明2の有機EL表示素子用封止剤の表面張力のより好ましい下限は20mN/m、より好ましい上限は30mN/m、更に好ましい下限は22mN/m、更に好ましい上限は28mN/mである。 As for the sealing agent for organic EL display elements of this invention 2, the preferable minimum of the surface tension in 25 degreeC is 15 mN / m, and a preferable upper limit is 35 mN / m. When the surface tension is within this range, the organic EL display element sealant of the second aspect of the present invention is superior in ink jet coating properties. The more preferable lower limit of the surface tension of the sealing agent for organic EL display elements of the present invention 2 is 20 mN / m, the more preferable upper limit is 30 mN / m, the still more preferable lower limit is 22 mN / m, and the still more preferable upper limit is 28 mN / m.
本発明の有機EL表示素子用封止剤の硬化物の波長380nm以上800nm以下における光の全光線透過率の好ましい下限は80%である。上記全光線透過率が80%以上であることにより、得られる有機EL表示素子が光学特性により優れるものとなる。上記全光線透過率のより好ましい下限は85%である。
上記全光線透過率は、例えば、AUTOMATIC HAZE METER MODEL TC-III DPK(東京電色社製)等の分光計を用いて測定することができる。また、上記光線透過率、並びに、後述する透湿度及び含水率の測定に用いる硬化物は、例えば、LEDランプ等の光源を用いて波長365nmの紫外線を3000mJ/cm照射することにより得ることができる。
The preferable minimum of the total light transmittance of the light in the wavelength of 380 nm or more and 800 nm or less of the hardened | cured material of the sealing agent for organic EL display elements of this invention is 80%. When the total light transmittance is 80% or more, the obtained organic EL display element has superior optical characteristics. A more preferable lower limit of the total light transmittance is 85%.
The total light transmittance can be measured using a spectrometer such as AUTOMATIC HAZE METER MODEL TC-III DPK (manufactured by Tokyo Denshoku). Moreover, the hardened | cured material used for the measurement of the said light transmittance and the water vapor transmission rate and moisture content mentioned later can be obtained by irradiating 3000 mJ / cm < 2 > of ultraviolet rays with a wavelength of 365 nm using light sources, such as an LED lamp, for example. it can.
本発明の有機EL表示素子用封止剤は、硬化物に紫外線を100時間照射した後の400nmにおける透過率が20μmの光路長にて85%以上であることが好ましい。上記紫外線を100時間照射した後の透過率が85%以上であることにより、透明性が高く、発光の損失が小さくなり、かつ、色再現性により優れるものとなる。上記紫外線を100時間照射した後の透過率のより好ましい下限は90%、更に好ましい下限は95%である。
上記紫外線を照射する光源としては、例えば、キセノンランプ、カーボンアークランプ等、従来公知の光源を用いることができる。
In the sealing agent for organic EL display elements of the present invention, the transmittance at 400 nm after irradiating the cured product with ultraviolet rays for 100 hours is preferably 85% or more at an optical path length of 20 μm. When the transmittance after irradiating the ultraviolet rays for 100 hours is 85% or more, the transparency is high, the loss of light emission is small, and the color reproducibility is excellent. A more preferable lower limit of the transmittance after irradiation with the ultraviolet rays for 100 hours is 90%, and a more preferable lower limit is 95%.
As the light source for irradiating the ultraviolet rays, a conventionally known light source such as a xenon lamp or a carbon arc lamp can be used.
本発明の有機EL表示素子用封止剤は、JIS Z 0208に準拠して、硬化物を85℃、85%RHの環境下に24時間暴露して測定した100μm厚での透湿度が100g/m以下であることが好ましい。上記透湿度が100g/m以下であることにより、硬化物中の水分による有機発光材料層の劣化を防止する効果により優れるものとなり、得られる有機EL表示素子が信頼性により優れるものとなる。 The sealant for an organic EL display device of the present invention has a moisture permeability of 100 g / 100 μm when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours in accordance with JIS Z 0208. m is preferably 2 or less. When the moisture permeability is 100 g / m 2 or less, the effect of preventing deterioration of the organic light-emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability.
本発明の有機EL表示素子用封止剤は、硬化物を85℃、85%RHの環境下に24時間暴露したときに、硬化物の含水率が0.5%未満であることが好ましい。上記硬化物の含水率が0.5%未満であることにより、硬化物中の水分による有機発光材料層の劣化を防止する効果により優れるものとなり、得られる有機EL表示素子が信頼性により優れるものとなる。上記硬化物の含水率のより好ましい上限は0.3%である。
上記含水率の測定方法としては、例えば、JIS K 7251に準拠してカールフィッシャー法により求める方法や、JIS K 7209-2に準拠して吸水後の重量増分を求める等の方法が挙げられる。
In the encapsulant for organic EL display elements of the present invention, the moisture content of the cured product is preferably less than 0.5% when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours. When the moisture content of the cured product is less than 0.5%, the effect of preventing the deterioration of the organic light emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability. It becomes. A more preferable upper limit of the moisture content of the cured product is 0.3%.
Examples of the method for measuring the moisture content include a method of obtaining by a Karl Fischer method in accordance with JIS K 7251, and a method of obtaining a weight increment after water absorption in accordance with JIS K 7209-2.
本発明の有機EL表示素子用封止剤を用いて有機EL表示素子を製造する方法としては、例えば、インクジェット法により、本発明の有機EL表示素子用封止剤を基材に塗布する工程と、塗布した有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程とを有する方法等が挙げられる。 As a method for producing an organic EL display element using the sealing agent for organic EL display elements of the present invention, for example, a step of applying the sealing agent for organic EL display elements of the present invention to a substrate by an inkjet method, And a method of curing the applied sealing agent for organic EL display elements by light irradiation and / or heating.
本発明の有機EL表示素子用封止剤を基材に塗布する工程において、本発明の有機EL表示素子用封止剤は、基材の全面に塗布してもよく、基材の一部に塗布してもよい。塗布により形成される本発明の有機EL表示素子用封止剤の封止部の形状としては、有機発光材料層を有する積層体を外気から保護しうる形状であれば特に限定されず、該積層体を完全に被覆する形状であってもよいし、該積層体の周辺部に閉じたパターンを形成してもよいし、該積層体の周辺部に一部開口部を設けた形状のパターンを形成してもよい。 In the step of applying the organic EL display element sealant of the present invention to the substrate, the organic EL display element sealant of the present invention may be applied to the entire surface of the substrate, or on a part of the substrate. It may be applied. The shape of the sealing portion of the sealing agent for organic EL display elements of the present invention formed by coating is not particularly limited as long as it is a shape that can protect the laminate having the organic light emitting material layer from the outside air. A shape that completely covers the body may be formed, a closed pattern may be formed in the peripheral portion of the laminate, or a pattern having a shape in which a partial opening is provided in the peripheral portion of the laminate. It may be formed.
本発明の有機EL表示素子用封止剤を光照射により硬化させる場合、本発明の有機EL表示素子用封止剤は、300nm以上400nm以下の波長及び300mJ/cm以上3000mJ/cm以下の積算光量の光を照射することによって好適に硬化させることができる。 When curing the organic EL display element sealing agent of the present invention by light irradiation, the organic EL display sealant element of the present invention, 300 nm or more 400nm or less wavelength and 300 mJ / cm 2 or more 3000 mJ / cm 2 or less of It can be suitably cured by irradiating with an accumulated amount of light.
上記光照射に用いる光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、エキシマレーザ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、ナトリウムランプ、ハロゲンランプ、キセノンランプ、LEDランプ、蛍光灯、太陽光、電子線照射装置等が挙げられる。これらの光源は、単独で用いられてもよく、2種以上が併用されてもよい。
これらの光源は、上記光カチオン重合開始剤の吸収波長に合わせて適宜選択される。
Examples of the light source used for the light irradiation include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, a sodium lamp, a halogen lamp, and a xenon. A lamp, an LED lamp, a fluorescent lamp, sunlight, an electron beam irradiation apparatus, etc. are mentioned. These light sources may be used independently and 2 or more types may be used together.
These light sources are appropriately selected according to the absorption wavelength of the photocationic polymerization initiator.
本発明の有機EL表示素子用封止剤への光の照射手段としては、例えば、各種光源の同時照射、時間差をおいての逐次照射、同時照射と逐次照射との組み合わせ照射等が挙げられ、いずれの照射手段を用いてもよい。 Examples of the light irradiation means to the organic EL display element sealant of the present invention include simultaneous irradiation of various light sources, sequential irradiation with a time difference, combined irradiation of simultaneous irradiation and sequential irradiation, and the like. Any irradiation means may be used.
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程により得られる硬化物は、更に無機材料膜で被覆されていてもよい。
上記無機材料膜を構成する無機材料としては、従来公知のものを用いることができ、例えば、窒化珪素(SiN)や酸化珪素(SiO)等が挙げられる。上記無機材料膜は、1層からなるものであってもよく、複数種の層を積層したものであってもよい。また、上記無機材料膜と本発明の有機EL表示素子用封止剤からなる樹脂膜とを、交互に繰り返して上記積層体を被覆してもよい。
The cured product obtained by the step of curing the organic EL display element sealing agent by light irradiation and / or heating may be further coated with an inorganic material film.
As the inorganic material forming the inorganic material layer can be a conventionally known, for example, silicon nitride (SiN x), silicon oxide (SiO x), and the like. The inorganic material film may be a single layer or may be a laminate of a plurality of types of layers. Moreover, you may coat | cover the said laminated body by repeating alternately the said inorganic material film | membrane and the resin film which consists of the sealing agent for organic EL display elements of this invention.
上記有機EL表示素子を製造する方法は、本発明の有機EL表示素子用封止剤を塗布した基材(以下、「一方の基材」ともいう)と他方の基材とを貼り合わせる工程を有していてもよい。
本発明の有機EL表示素子用封止剤を塗布する基材(以下、「一方の基材」ともいう)は、有機発光材料層を有する積層体の形成されている基材であってもよく、該積層体の形成されていない基材であってもよい。
上記一方の基材が上記積層体の形成されていない基材である場合、上記他方の基材を貼り合わせた際に、上記積層体を外気から保護できるように上記一方の基材に本発明の有機EL表示素子用封止剤を塗布すればよい。即ち、他方の基材を貼り合わせた際に上記積層体の位置となる場所に全面的に塗布するか、又は、他方の基材を貼り合わせた際に上記積層体の位置となる場所が完全に収まる形状に、閉じたパターンの封止剤部を形成してもよい。
The method for producing the organic EL display element comprises a step of bonding a base material (hereinafter also referred to as “one base material”) coated with the organic EL display element sealing agent of the present invention and the other base material. You may have.
The substrate on which the sealing agent for organic EL display elements of the present invention is applied (hereinafter also referred to as “one substrate”) may be a substrate on which a laminate having an organic light emitting material layer is formed. A base material on which the laminate is not formed may be used.
When the one substrate is a substrate on which the laminate is not formed, the present invention is applied to the one substrate so that the laminate can be protected from the outside air when the other substrate is bonded. What is necessary is just to apply | coat the sealing agent for organic EL display elements. That is, apply the entire surface to the location of the laminate when the other substrate is bonded, or the location of the laminate is complete when the other substrate is bonded. The sealing agent portion having a closed pattern may be formed in a shape that fits in the shape.
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程は、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なってもよいし、上記一方の基材と上記他方の基材とを貼り合わせる工程の後に行なってもよい。
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程を、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なう場合、本発明の有機EL表示素子用封止剤は、光照射及び/又は加熱してから硬化反応が進行して接着ができなくなるまでの可使時間が1分以上であることが好ましい。上記可使時間が1分以上であることにより、上記一方の基材と上記他方の基材とを貼り合わせる前に硬化が進行し過ぎることなく、より高い接着強度を得ることができる。
The step of curing the organic EL display element sealant by light irradiation and / or heating may be performed before the step of bonding the one base material and the other base material, You may perform after the process of bonding a base material and said other base material.
When the step of curing the organic EL display element sealant by light irradiation and / or heating is performed before the step of bonding the one base material and the other base material, the organic EL display of the present invention. The device sealant preferably has a pot life of 1 minute or longer after irradiation with light and / or heating until the curing reaction proceeds and adhesion becomes impossible. When the pot life is 1 minute or longer, higher adhesion strength can be obtained without excessive curing before the one base material and the other base material are bonded together.
上記一方の基材と上記他方の基材とを貼り合わせる工程において、上記一方の基材と上記他方の基材とを貼り合わせる方法は特に限定されないが、減圧雰囲気下で貼り合わせることが好ましい。
上記減圧雰囲気下の真空度の好ましい下限は0.01kPa、好ましい上限は10kPaである。上記減圧雰囲気下の真空度がこの範囲であることにより、真空装置の気密性や真空ポンプの能力から真空状態を達成するのに長時間を費やすことなく、上記一方の基材と上記他方の基材とを貼り合わせる際の本発明の有機EL表示素子用封止剤中の気泡をより効率的に除去することができる。
In the step of bonding the one base material and the other base material, a method of bonding the one base material and the other base material is not particularly limited, but it is preferable to bond them in a reduced-pressure atmosphere.
The preferable lower limit of the degree of vacuum in the reduced-pressure atmosphere is 0.01 kPa, and the preferable upper limit is 10 kPa. When the degree of vacuum in the reduced-pressure atmosphere is within this range, the one substrate and the other substrate can be used without spending a long time to achieve a vacuum state due to the airtightness of the vacuum apparatus and the ability of the vacuum pump. Bubbles in the sealing agent for organic EL display elements of the present invention when the material is bonded can be more efficiently removed.
本発明によれば、インクジェット塗布性、低アウトガス性、及び、基板や無機材料膜に対する密着性に優れ、かつ、信頼性に優れる有機EL表示素子を得ることができる有機EL表示素子用封止剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing agent for organic EL display elements which can obtain the organic EL display element which is excellent in inkjet applicability | paintability, low outgas property, and the adhesiveness with respect to a board | substrate or an inorganic material film, and excellent in reliability. Can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1~7、比較例1~6)
表1、2に記載された配合比に従い、各材料を、ホモディスパー型撹拌混合機(プライミクス社製、「ホモディスパーL型」)を用い、撹拌速度3000rpmで均一に撹拌混合することにより、実施例1~7、比較例1~6の各有機EL表示素子用封止剤を作製した。
実施例及び比較例で得られた各有機EL表示素子用封止剤について、E型粘度計(東機産業社製、「VISCOMETER TV-22」)を用いて、25℃、100rpmの条件において測定した粘度、及び、25℃において動的濡れ性試験機(レスカ社製、「WET-6100型」)を用いて測定した表面張力を表1、2に示した。
(Examples 1 to 7, Comparative Examples 1 to 6)
According to the blending ratios described in Tables 1 and 2, each material was stirred and mixed uniformly at a stirring speed of 3000 rpm using a homodisper type stirring mixer (Primix Co., Ltd., “Homodisper L type”). Sealants for organic EL display elements of Examples 1 to 7 and Comparative Examples 1 to 6 were prepared.
About each sealing agent for organic EL display elements obtained in Examples and Comparative Examples, measurement was performed using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., “VISCOMETER TV-22”) at 25 ° C. and 100 rpm. Tables 1 and 2 show the measured viscosity and the surface tension measured at 25 ° C. using a dynamic wettability tester (Reska, “WET-6100 type”).
<評価>
実施例及び比較例で得られた各有機EL表示素子用封止剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluation was performed about each sealing agent for organic EL display elements obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(1)インクジェット塗布性
(1-1)インクジェット吐出性
実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter500」)を用いて、30ピコリットルの液滴量にて、アルカリ洗浄した無アルカリガラス(旭硝子社製、「AN100」)上に、5m/秒の速度にて500μmピッチで1000滴塗布した。
塗布できなかった液滴の数が0個であった場合を「◎」、塗布できなかった液滴の数が1個以上5個未満であった場合を「○」、塗布できなかった液滴の数が5個以上20個未満であった場合を「△」、塗布できなかった液滴の数が20個以上であった場合を「×」としてインクジェット吐出性を評価した。
(1) Inkjet applicability (1-1) Inkjet ejection properties Each of the organic EL display element sealants obtained in Examples and Comparative Examples was used with an inkjet ejection device (“NanoPrinter500” manufactured by Microjet Co., Ltd.). Then, 1000 drops were applied at a speed of 5 m / second at a pitch of 500 μm on alkali-washed non-alkali glass (“AN100” manufactured by Asahi Glass Co., Ltd.) with a drop volume of 30 picoliters.
When the number of droplets that could not be applied was 0, “0”, when the number of droplets that could not be applied was 1 or more and less than 5, “○”, droplets that could not be applied The ink jetting property was evaluated as “Δ” when the number of droplets was 5 or more and less than 20, and “X” when the number of droplets that could not be applied was 20 or more.
(1-2)濡れ広がり性
実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter500」)を用いて、30ピコリットルの液滴量にて、アルカリ洗浄した無アルカリガラス(旭硝子社製、「AN100」)上に1000滴塗布した。塗布条件は、基板から0.5mmの高さから、800μmピッチ、周波数20kHzとした。塗布から10分後の無アルカリガラス上の液滴の直径を測定し、液滴の直径が180μm以上であった場合を「◎」、液滴の直径が150μm以上180μm未満であった場合を「○」、液滴の直径が120μm以上150μm未満であった場合を「△」、液滴の直径が120μm未満であった場合を「×」として濡れ広がり性を評価した。
(1-2) Wetting and spreading property Each of the sealing agents for organic EL display elements obtained in the examples and comparative examples is a liquid of 30 picoliters using an inkjet discharge device (“NanoPrinter500” manufactured by Microjet). With a drop amount, 1000 drops were applied on alkali-washed non-alkali glass ("AN100" manufactured by Asahi Glass Co., Ltd.) The coating conditions were set to a pitch of 800 μm and a frequency of 20 kHz from a height of 0.5 mm from the substrate. The diameter of the droplet on the alkali-free glass 10 minutes after the application was measured, and “◎” when the diameter of the droplet was 180 μm or more, and “when” the diameter of the droplet was 150 μm or more and less than 180 μm. The case where the diameter of the droplet was 120 μm or more and less than 150 μm was evaluated as “Δ”, and the case where the diameter of the droplet was less than 120 μm was evaluated as “X”.
(2)低アウトガス性
実施例及び比較例で得られた各有機EL表示素子用封止剤の硬化物の加熱時に発生するアウトガスを以下に示すヘッドスペース法によるガスクロマトグラフにより測定した。
まず、各有機EL表示素子用封止剤100mgをアプリケーターにて300μmの厚さに塗工した後に、LEDランプにて波長365nmの紫外線を3000mJ/cm照射して封止剤を硬化させた。次いで、得られた封止剤硬化物をヘッドスペース用バイアルに入れてバイアルを封止し、100℃で30分間加熱して、ヘッドスペース法により発生ガスを測定した。
発生したガスが400ppm未満であった場合を「◎」、400ppm以上600ppm未満であった場合を「○」、600ppm以上800ppm未満であった場合を「△」、800ppm以上であった場合を「×」として低アウトガス性を評価した。
(2) Low outgassing property Outgas generated during heating of the cured product of the sealing agent for organic EL display elements obtained in the examples and comparative examples was measured by a gas chromatograph by the headspace method shown below.
First, 100 mg of each organic EL display element sealant was applied to a thickness of 300 μm with an applicator, and then the UV light with a wavelength of 365 nm was irradiated with 3000 mJ / cm 2 with an LED lamp to cure the sealant. Next, the obtained sealant cured product was put in a headspace vial, the vial was sealed, heated at 100 ° C. for 30 minutes, and the generated gas was measured by the headspace method.
When the generated gas is less than 400 ppm, “「 ”, when it is 400 ppm or more and less than 600 ppm,“ ◯ ”, when it is 600 ppm or more and less than 800 ppm,“ △ ”, when it is 800 ppm or more,“ × ” ”Was evaluated for low outgassing.
(3)無機材料膜に対する密着性
膜厚300nmの窒化珪素膜が予め製膜されたガラス上に、実施例及び比較例で得られた各有機EL表示素子用封止剤を、スピンコーターを用いて10μmの厚みに塗布した。次いで、LEDランプにて波長365nmの紫外線を3000mJ/cm照射し、更に100℃で30分間加熱して、有機EL表示素子用封止剤を硬化させ、樹脂膜を得た。
形成した樹脂膜に対しJIS K 5600-5-6に従い、切込み間隔1mmのクロスカット試験を行った。クロスカット試験を行った際の、剥がれが5%以下であった場合を「◎」、剥がれが5%を超え35%以下であった場合を「○」、剥がれが35%を超え65%以下であった場合を「△」、剥がれが65%を超えた場合を「×」として無機材料膜に対する密着性を評価した。
(3) Adhesiveness to inorganic material film Each glass EL device sealing agent obtained in Examples and Comparative Examples is formed on a glass on which a silicon nitride film having a thickness of 300 nm is formed in advance using a spin coater. To a thickness of 10 μm. Next, ultraviolet light having a wavelength of 365 nm was irradiated with an LED lamp at 3000 mJ / cm 2 and further heated at 100 ° C. for 30 minutes to cure the organic EL display element sealant to obtain a resin film.
A cross-cut test with a cut interval of 1 mm was performed on the formed resin film in accordance with JIS K 5600-5-6. When the cross-cut test was performed, the peeling was 5% or less, “◎”, when the peeling was more than 5% and 35% or less, “◯”, and the peeling was more than 35% and 65% or less. In the case of “Δ”, the case where peeling exceeded 65% was evaluated as “x”, and the adhesion to the inorganic material film was evaluated.
(4)有機EL表示素子の信頼性
(4-1)有機発光材料層を有する積層体が配置された基板の作製
ガラス基板(長さ25mm、幅25mm、厚さ0.7mm)にITO電極を1000Åの厚さで成膜したものを基板とした。上記基板をアセトン、アルカリ水溶液、イオン交換水、イソプロピルアルコールにてそれぞれ15分間超音波洗浄した後、煮沸させたイソプロピルアルコールにて10分間洗浄し、更に、UV-オゾンクリーナ(日本レーザー電子社製、「NL-UV253」)にて直前処理を行った。
次に、この基板を真空蒸着装置の基板ホルダーに固定し、素焼きの坩堝にN,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(α-NPD)を200mg、別の素焼き坩堝にトリス(8-キノリノラト)アルミニウム(Alq)を200mg入れ、真空チャンバー内を、1×10-4Paまで減圧した。その後、α-NPDの入った坩堝を加熱し、α-NPDを蒸着速度15Å/sで基板に堆積させ、膜厚600Åの正孔輸送層を成膜した。次いで、Alqの入った坩堝を加熱し、15Å/sの蒸着速度で膜厚600Åの有機発光材料層を成膜した。その後、正孔輸送層及び有機発光材料層が形成された基板を別の真空蒸着装置に移し、この真空蒸着装置内のタングステン製抵抗加熱ボートにフッ化リチウム200mg、別のタングステン製ボートにアルミニウム線1.0gを入れた。その後、真空蒸着装置の蒸着器内を2×10-4Paまで減圧してフッ化リチウムを0.2Å/sの蒸着速度で5Å成膜した後、アルミニウムを20Å/sの速度で1000Å成膜した。窒素により蒸着器内を常圧に戻し、10mm×10mmの有機発光材料層を有する積層体が配置された基板を取り出した。
(4) Reliability of organic EL display element (4-1) Fabrication of a substrate on which a laminate having an organic light emitting material layer is disposed An ITO electrode is placed on a glass substrate (length 25 mm, width 25 mm, thickness 0.7 mm). A substrate having a thickness of 1000 mm was used as a substrate. The substrate was ultrasonically washed with acetone, an aqueous alkali solution, ion-exchanged water, and isopropyl alcohol for 15 minutes, respectively, then washed with boiled isopropyl alcohol for 10 minutes, and a UV-ozone cleaner (manufactured by Nippon Laser Electronics Co., Ltd.). The last treatment was performed with “NL-UV253”).
Next, this substrate is fixed to a substrate holder of a vacuum deposition apparatus, and 200 mg of N, N'-di (1-naphthyl) -N, N'-diphenylbenzidine (α-NPD) is added to the unglazed crucible. 200 mg of tris (8-quinolinolato) aluminum (Alq 3 ) was put in the crucible, and the pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa. Thereafter, the crucible containing α-NPD was heated, and α-NPD was deposited on the substrate at a deposition rate of 15 s / s to form a 600 正 孔 hole transport layer. Next, the crucible containing Alq 3 was heated to form an organic light emitting material layer having a thickness of 600 で at a deposition rate of 15 Å / s. Thereafter, the substrate on which the hole transport layer and the organic light emitting material layer are formed is transferred to another vacuum vapor deposition apparatus, and 200 mg of lithium fluoride is added to a tungsten resistance heating boat in the vacuum vapor deposition apparatus, and an aluminum wire is added to another tungsten boat. 1.0 g was added. After that, the inside of the vapor deposition unit of the vacuum vapor deposition apparatus is depressurized to 2 × 10 −4 Pa to form a lithium fluoride film with a thickness of 5 mm at a deposition rate of 0.2 kg / s, and then aluminum with a film thickness of 1000 mm at a rate of 20 kg / s did. The inside of the vapor deposition unit was returned to normal pressure with nitrogen, and the substrate on which the laminate having the organic light emitting material layer of 10 mm × 10 mm was arranged was taken out.
(4-2)無機材料膜Aによる被覆
得られた積層体が配置された基板の該積層体全体を覆うように、13mm×13mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Aを形成した。
プラズマCVD法は、原料ガスとしてSiHガス及び窒素ガスを用い、各々の流量をSiHガス10sccm、窒素ガス200sccmとし、RFパワーを10W(周波数2.45GHz)、チャンバー内温度を100℃、チャンバー内圧力を0.9Torrとする条件で行った。
形成された無機材料膜Aの厚さは、約1μmであった。
(4-2) Coating with Inorganic Material Film A A mask having an opening of 13 mm × 13 mm is installed so as to cover the entire laminated body of the substrate on which the obtained laminated body is arranged, and inorganic by plasma CVD method. A material film A was formed.
In the plasma CVD method, SiH 4 gas and nitrogen gas are used as source gases, the flow rates of each are SiH 4 gas 10 sccm, nitrogen gas 200 sccm, RF power 10 W (frequency 2.45 GHz), chamber temperature 100 ° C., chamber The test was performed under the condition that the internal pressure was 0.9 Torr.
The formed inorganic material film A had a thickness of about 1 μm.
(4-3)樹脂保護膜の形成
得られた基板に対し、実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter300」)を使用して基板にパターン塗布した。
その後、LEDランプを用いて波長365nmの紫外線を3000mJ/cm照射して有機EL表示素子用封止剤を硬化させて樹脂保護膜を形成した。
(4-3) Formation of Resin Protective Film Each of the organic EL display element sealants obtained in Examples and Comparative Examples was applied to the obtained substrate using an inkjet discharge device (“NanoPrinter300” manufactured by Microjet Co., Ltd.). Was used to apply a pattern to the substrate.
Thereafter, an ultraviolet ray having a wavelength of 365 nm was irradiated with 3000 mJ / cm 2 using an LED lamp to cure the organic EL display element sealant to form a resin protective film.
(4-4)無機材料膜Bによる被覆
樹脂保護膜を形成した後、該樹脂保護膜の全体を覆うように、12mm×12mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Bを形成して有機EL表示素子を得た。
プラズマCVD法は、上記「(4-2)無機材料膜Aによる被覆」と同様の条件で行った。
形成された無機材料膜Bの厚さは、約1μmであった。
(4-4) After forming the coating resin protective film with the inorganic material film B, a mask having an opening of 12 mm × 12 mm is installed so as to cover the entire resin protective film, and the inorganic material is formed by plasma CVD. Film B was formed to obtain an organic EL display element.
The plasma CVD method was performed under the same conditions as in “(4-2) Coating with inorganic material film A”.
The formed inorganic material film B had a thickness of about 1 μm.
(4-5)有機EL表示素子の発光状態の観察
得られた有機EL表示素子を、温度85℃、湿度85%の環境下で100時間暴露した後、3Vの電圧を印加し、有機EL表示素子の発光状態(ダークスポット及び画素周辺消光の有無)を目視で観察した。ダークスポットや周辺消光が無く均一に発光した場合を「◎」、ダークスポットや周辺消光はないものの輝度に僅かな低下が認められた場合を「○」、ダークスポットや周辺消光が認められた場合を「△」、非発光部が著しく拡大した場合を「×」として有機EL表示素子の信頼性を評価した。
(4-5) Observation of light emission state of organic EL display device The obtained organic EL display device was exposed for 100 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, and then a voltage of 3 V was applied to display the organic EL display. The light emission state of the device (the presence or absence of dark spots and pixel periphery quenching) was visually observed. "◎" when there is no dark spot or peripheral quenching, and "◎" when there is no dark spot or peripheral quenching, but "○" when there is a slight decrease in brightness, when dark spot or peripheral quenching is observed Was evaluated as “Δ”, and the case where the non-light emitting portion was remarkably enlarged was evaluated as “x”, and the reliability of the organic EL display element was evaluated.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
本発明によれば、インクジェット塗布性、低アウトガス性、及び、基板や無機材料膜に対する密着性に優れ、かつ、信頼性に優れる有機EL表示素子を得ることができる有機EL表示素子用封止剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing agent for organic EL display elements which can obtain the organic EL display element which is excellent in inkjet applicability | paintability, low outgas property, and the adhesiveness with respect to a board | substrate or an inorganic material film, and excellent in reliability. Can be provided.

Claims (3)

  1. 硬化性樹脂と、重合開始剤とを含有する有機EL表示素子用封止剤であって、
    前記硬化性樹脂は、下記式(1)で表される化合物と、下記式(2)で表される化合物とを含有し、
    下記式(1)で表される化合物の含有量が下記式(2)で表される化合物の含有量に対して、重量比で1.0倍以上1.5倍以下であり、
    25℃における有機EL表示素子用封止剤全体の粘度が40mPa・s以下であり、25℃における有機EL表示素子用封止剤全体の表面張力が15mN/m以上35mN/m以下である
    ことを特徴とする有機EL表示素子用封止剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、Rは、それぞれ独立に、結合手、直鎖状若しくは分岐鎖状の炭素数1以上18以下のアルキレン基、又は、直鎖状若しくは分岐鎖状の炭素数2以上18以下のアルケニレン基であり、Rは、直鎖状若しくは分岐鎖状の炭素数1以上18以下のアルキレン基、又は、直鎖状若しくは分岐鎖状の炭素数2以上18以下のアルケニレン基であり、nは、0又は1である。
    Figure JPOXMLDOC01-appb-C000002
    An organic EL display element sealing agent containing a curable resin and a polymerization initiator,
    The curable resin contains a compound represented by the following formula (1) and a compound represented by the following formula (2),
    The content of the compound represented by the following formula (1) is 1.0 to 1.5 times by weight with respect to the content of the compound represented by the following formula (2),
    The viscosity of the whole sealing agent for organic EL display elements at 25 ° C. is 40 mPa · s or less, and the surface tension of the whole sealing agent for organic EL display elements at 25 ° C. is 15 mN / m or more and 35 mN / m or less. A sealing agent for organic EL display elements, which is characterized.
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), each R 1 independently represents a bond, a linear or branched alkylene group having 1 to 18 carbon atoms, or a linear or branched carbon group having 2 to 18 carbon atoms. R 2 is a linear or branched alkylene group having 1 to 18 carbon atoms, or a linear or branched alkenylene group having 2 to 18 carbon atoms. , N is 0 or 1.
    Figure JPOXMLDOC01-appb-C000002
  2. 硬化性樹脂と、重合開始剤とを含有する有機EL表示素子用封止剤であって、
    前記硬化性樹脂は、下記式(1)で表される化合物と、下記式(2)で表される化合物とを含有し、
    下記式(1)で表される化合物の含有量が下記式(2)で表される化合物の含有量に対して、重量比で1.0倍以上1.5倍以下であり、
    インクジェット法による塗布に用いられる
    ことを特徴とする有機EL表示素子用封止剤。
    Figure JPOXMLDOC01-appb-C000003
    式(1)中、Rは、それぞれ独立に、結合手、直鎖状若しくは分岐鎖状の炭素数1以上18以下のアルキレン基、又は、直鎖状若しくは分岐鎖状の炭素数2以上18以下のアルケニレン基であり、Rは、直鎖状若しくは分岐鎖状の炭素数1以上18以下のアルキレン基、又は、直鎖状若しくは分岐鎖状の炭素数2以上18以下のアルケニレン基であり、nは、0又は1である。
    Figure JPOXMLDOC01-appb-C000004
    An organic EL display element sealing agent containing a curable resin and a polymerization initiator,
    The curable resin contains a compound represented by the following formula (1) and a compound represented by the following formula (2),
    The content of the compound represented by the following formula (1) is 1.0 to 1.5 times by weight with respect to the content of the compound represented by the following formula (2),
    A sealing agent for organic EL display elements, which is used for coating by an ink jet method.
    Figure JPOXMLDOC01-appb-C000003
    In formula (1), each R 1 independently represents a bond, a linear or branched alkylene group having 1 to 18 carbon atoms, or a linear or branched carbon group having 2 to 18 carbon atoms. R 2 is a linear or branched alkylene group having 1 to 18 carbon atoms, or a linear or branched alkenylene group having 2 to 18 carbon atoms. , N is 0 or 1.
    Figure JPOXMLDOC01-appb-C000004
  3. 前記硬化性樹脂100重量部中における前記式(1)で表される化合物と前記式(2)で表される化合物との合計の含有量が30重量部以上である請求項1又は2記載の有機EL表示素子用封止剤。 The total content of the compound represented by the formula (1) and the compound represented by the formula (2) in 100 parts by weight of the curable resin is 30 parts by weight or more. Sealant for organic EL display elements.
PCT/JP2019/012361 2018-04-09 2019-03-25 Sealant for organic electroluminescent display element WO2019198470A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207018025A KR20200141978A (en) 2018-04-09 2019-03-25 Sealant for organic EL display devices
JP2019521510A JPWO2019198470A1 (en) 2018-04-09 2019-03-25 Encapsulant for organic EL display elements
CN201980023814.8A CN112074957A (en) 2018-04-09 2019-03-25 Sealing agent for organic EL display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018074699 2018-04-09
JP2018-074699 2018-04-09

Publications (1)

Publication Number Publication Date
WO2019198470A1 true WO2019198470A1 (en) 2019-10-17

Family

ID=68163341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012361 WO2019198470A1 (en) 2018-04-09 2019-03-25 Sealant for organic electroluminescent display element

Country Status (4)

Country Link
JP (1) JPWO2019198470A1 (en)
KR (1) KR20200141978A (en)
CN (1) CN112074957A (en)
WO (1) WO2019198470A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031389A (en) * 2010-06-30 2012-02-16 Fujifilm Corp Maintenance liquid
JP2013186976A (en) * 2012-03-06 2013-09-19 Sekisui Chem Co Ltd Vertical-conduction material for organic electroluminescent display element, and organic electroluminescent display element
WO2017068936A1 (en) * 2015-10-23 2017-04-27 東レ株式会社 Resin composition for display substrate, and heat-resistant resin film, organic el display substrate, and method for manufacturing organic el display using same
JP6228289B1 (en) * 2016-12-28 2017-11-08 株式会社ダイセル Composition for sealing an organic electroluminescence device
WO2018030232A1 (en) * 2016-08-08 2018-02-15 積水化学工業株式会社 Curable resin composition and sealing agent for organic electroluminescent display elements

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817081B2 (en) 1999-01-29 2006-08-30 パイオニア株式会社 Manufacturing method of organic EL element
JP2001307873A (en) 2000-04-21 2001-11-02 Toppan Printing Co Ltd Organic electroluminescence display element and its manufacturing method
US8808457B2 (en) 2002-04-15 2014-08-19 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
JP2008153211A (en) 2006-11-22 2008-07-03 Fujifilm Corp Barrier performance film substrate and its manufacturing method
JPWO2015068454A1 (en) * 2013-11-07 2017-03-09 積水化学工業株式会社 Sealant for organic electroluminescence display element
JP2016060744A (en) * 2014-09-12 2016-04-25 積水化学工業株式会社 Sealing agent for organic electroluminescence display element
WO2016170893A1 (en) * 2015-04-20 2016-10-27 Jnc株式会社 Curable resin composition and electronic devices such as organic electroluminescence element using cured product thereof
JP7216470B2 (en) * 2016-03-30 2023-02-01 株式会社Adeka Curable composition, method for producing cured product, and cured product thereof
WO2017221935A1 (en) * 2016-06-21 2017-12-28 株式会社Adeka Curable composition, method for producing cured product, and cured product of same
WO2018051924A1 (en) * 2016-09-13 2018-03-22 株式会社Adeka Curable composition, method for curing said composition, and cured product obtained by said method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031389A (en) * 2010-06-30 2012-02-16 Fujifilm Corp Maintenance liquid
JP2013186976A (en) * 2012-03-06 2013-09-19 Sekisui Chem Co Ltd Vertical-conduction material for organic electroluminescent display element, and organic electroluminescent display element
WO2017068936A1 (en) * 2015-10-23 2017-04-27 東レ株式会社 Resin composition for display substrate, and heat-resistant resin film, organic el display substrate, and method for manufacturing organic el display using same
WO2018030232A1 (en) * 2016-08-08 2018-02-15 積水化学工業株式会社 Curable resin composition and sealing agent for organic electroluminescent display elements
JP6228289B1 (en) * 2016-12-28 2017-11-08 株式会社ダイセル Composition for sealing an organic electroluminescence device

Also Published As

Publication number Publication date
KR20200141978A (en) 2020-12-21
JPWO2019198470A1 (en) 2021-03-11
CN112074957A (en) 2020-12-11

Similar Documents

Publication Publication Date Title
JP6200591B2 (en) Sealant for electronic device for inkjet coating and method for producing electronic device
JP6997062B2 (en) A method for manufacturing a sealant for an organic EL display element and a sealant for an organic EL display element.
JP6985228B2 (en) Encapsulant for organic EL display elements
JP2022027778A (en) Organic el display element sealing agent
JP2023112128A (en) Encapsulant for organic el display element
JP7007272B2 (en) Encapsulant for organic EL display elements
WO2018074510A1 (en) Organic el display element sealing agent
WO2018225723A1 (en) Sealant for organic electroluminescent display element
WO2019198470A1 (en) Sealant for organic electroluminescent display element
JP7065746B2 (en) Encapsulant for organic EL display elements
WO2018131553A1 (en) Sealant for organic electroluminescent display element
JP2019029355A (en) Sealing agent for organic EL display element
WO2019188805A1 (en) Organic el display element sealing agent
WO2019203123A1 (en) Sealant for organic el display element and top emission type organic el display element
WO2019188794A1 (en) Sealant for organic el display element
JP2023029649A (en) Sealant for organic EL display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521510

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784216

Country of ref document: EP

Kind code of ref document: A1