WO2019188805A1 - Organic el display element sealing agent - Google Patents
Organic el display element sealing agent Download PDFInfo
- Publication number
- WO2019188805A1 WO2019188805A1 PCT/JP2019/012141 JP2019012141W WO2019188805A1 WO 2019188805 A1 WO2019188805 A1 WO 2019188805A1 JP 2019012141 W JP2019012141 W JP 2019012141W WO 2019188805 A1 WO2019188805 A1 WO 2019188805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- sealing agent
- substrate
- examples
- less
- Prior art date
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 80
- 239000000758 substrate Substances 0.000 claims abstract description 80
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 79
- 229920005989 resin Polymers 0.000 claims abstract description 60
- 239000011347 resin Substances 0.000 claims abstract description 60
- 239000003505 polymerization initiator Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims description 36
- 239000000565 sealant Substances 0.000 claims description 30
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 12
- 239000008393 encapsulating agent Substances 0.000 claims description 8
- 239000010408 film Substances 0.000 abstract description 50
- 229910010272 inorganic material Inorganic materials 0.000 abstract description 28
- 239000011147 inorganic material Substances 0.000 abstract description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000010409 thin film Substances 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- -1 siloxane skeleton Chemical group 0.000 description 109
- 150000001875 compounds Chemical class 0.000 description 48
- 239000000463 material Substances 0.000 description 40
- 239000004593 Epoxy Substances 0.000 description 29
- 239000010410 layer Substances 0.000 description 21
- 239000002585 base Substances 0.000 description 20
- LWNGJAHMBMVCJR-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C(F)=C(F)C(F)=C1F LWNGJAHMBMVCJR-UHFFFAOYSA-N 0.000 description 16
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 16
- 239000000126 substance Substances 0.000 description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000006087 Silane Coupling Agent Substances 0.000 description 9
- 239000003999 initiator Substances 0.000 description 9
- 239000003607 modifier Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 238000010538 cationic polymerization reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 229960000834 vinyl ether Drugs 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 229920003986 novolac Polymers 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000007870 radical polymerization initiator Substances 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- UCBQKJQXUPVHFJ-UHFFFAOYSA-N 1-cyclopenta-2,4-dien-1-yl-2-propan-2-ylbenzene Chemical compound CC(C)C1=CC=CC=C1C1C=CC=C1 UCBQKJQXUPVHFJ-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- PFHLXMMCWCWAMA-UHFFFAOYSA-N [4-(4-diphenylsulfoniophenyl)sulfanylphenyl]-diphenylsulfanium Chemical compound C=1C=C([S+](C=2C=CC=CC=2)C=2C=CC=CC=2)C=CC=1SC(C=C1)=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 PFHLXMMCWCWAMA-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000012663 cationic photopolymerization Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 238000003892 spreading Methods 0.000 description 4
- 230000007480 spreading Effects 0.000 description 4
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000001846 repelling effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2,2'-azo-bis-isobutyronitrile Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 2
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 102100033806 Alpha-protein kinase 3 Human genes 0.000 description 2
- 101710082399 Alpha-protein kinase 3 Proteins 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910018286 SbF 6 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 239000012954 diazonium Substances 0.000 description 2
- HYVNJCOHGOONJK-UHFFFAOYSA-N dibenzyl-methyl-phenylazanium Chemical compound C=1C=CC=CC=1C[N+](C=1C=CC=CC=1)(C)CC1=CC=CC=C1 HYVNJCOHGOONJK-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 150000004714 phosphonium salts Chemical class 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical class C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- VLTYTTRXESKBKI-UHFFFAOYSA-N (2,4-dichlorophenyl)-phenylmethanone Chemical compound ClC1=CC(Cl)=CC=C1C(=O)C1=CC=CC=C1 VLTYTTRXESKBKI-UHFFFAOYSA-N 0.000 description 1
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 1
- UNMJLQGKEDTEKJ-UHFFFAOYSA-N (3-ethyloxetan-3-yl)methanol Chemical compound CCC1(CO)COC1 UNMJLQGKEDTEKJ-UHFFFAOYSA-N 0.000 description 1
- NQEJEMZJOBCYOD-UHFFFAOYSA-N (4-methoxyphenyl)methyl-dimethyl-phenylazanium Chemical compound C1=CC(OC)=CC=C1C[N+](C)(C)C1=CC=CC=C1 NQEJEMZJOBCYOD-UHFFFAOYSA-N 0.000 description 1
- QKAIFCSOWIMRJG-UHFFFAOYSA-N (4-methylphenyl)-(4-propan-2-ylphenyl)iodanium Chemical compound C1=CC(C(C)C)=CC=C1[I+]C1=CC=C(C)C=C1 QKAIFCSOWIMRJG-UHFFFAOYSA-N 0.000 description 1
- KWEKXPWNFQBJAY-UHFFFAOYSA-N (dimethyl-$l^{3}-silanyl)oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)C KWEKXPWNFQBJAY-UHFFFAOYSA-N 0.000 description 1
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 1
- HIYIGPVBMDKPCR-UHFFFAOYSA-N 1,1-bis(ethenoxymethyl)cyclohexane Chemical compound C=COCC1(COC=C)CCCCC1 HIYIGPVBMDKPCR-UHFFFAOYSA-N 0.000 description 1
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 1
- CYIGRWUIQAVBFG-UHFFFAOYSA-N 1,2-bis(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOCCOC=C CYIGRWUIQAVBFG-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- MWZJGRDWJVHRDV-UHFFFAOYSA-N 1,4-bis(ethenoxy)butane Chemical compound C=COCCCCOC=C MWZJGRDWJVHRDV-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- VSHKLLPSERFSRJ-UHFFFAOYSA-N 1-(naphthalen-1-ylmethyl)pyridin-1-ium-2-carbonitrile Chemical compound N#CC1=CC=CC=[N+]1CC1=CC=CC2=CC=CC=C12 VSHKLLPSERFSRJ-UHFFFAOYSA-N 0.000 description 1
- OBSKXJSZGYXFFB-UHFFFAOYSA-N 1-benzylpyridin-1-ium-2-carbonitrile Chemical compound N#CC1=CC=CC=[N+]1CC1=CC=CC=C1 OBSKXJSZGYXFFB-UHFFFAOYSA-N 0.000 description 1
- SAMJGBVVQUEMGC-UHFFFAOYSA-N 1-ethenoxy-2-(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOC=C SAMJGBVVQUEMGC-UHFFFAOYSA-N 0.000 description 1
- FOWNZLLMQHBVQT-UHFFFAOYSA-N 1-ethenoxy-2-[2-(2-ethenoxypropoxy)propoxy]propane Chemical compound C=COCC(C)OCC(C)OCC(C)OC=C FOWNZLLMQHBVQT-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 1
- IITAGOPHHFGANB-UHFFFAOYSA-N 2-(phenoxymethyl)oxetane Chemical compound C1COC1COC1=CC=CC=C1 IITAGOPHHFGANB-UHFFFAOYSA-N 0.000 description 1
- GJKGAPPUXSSCFI-UHFFFAOYSA-N 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Chemical compound CC(C)(O)C(=O)C1=CC=C(OCCO)C=C1 GJKGAPPUXSSCFI-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- HTJPMGZZCKEJNA-UHFFFAOYSA-N 2-[3-[4-[4-[2,3-bis(2-hydroxyethoxy)phenyl]sulfanylphenyl]sulfanylphenyl]sulfanyl-2-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=CC(SC=2C=CC(SC=3C=CC(SC=4C(=C(OCCO)C=CC=4)OCCO)=CC=3)=CC=2)=C1OCCO HTJPMGZZCKEJNA-UHFFFAOYSA-N 0.000 description 1
- KUAUJXBLDYVELT-UHFFFAOYSA-N 2-[[2,2-dimethyl-3-(oxiran-2-ylmethoxy)propoxy]methyl]oxirane Chemical compound C1OC1COCC(C)(C)COCC1CO1 KUAUJXBLDYVELT-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- NLGDWWCZQDIASO-UHFFFAOYSA-N 2-hydroxy-1-(7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-yl)-2-phenylethanone Chemical class OC(C(=O)c1cccc2Oc12)c1ccccc1 NLGDWWCZQDIASO-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- BIDWUUDRRVHZLQ-UHFFFAOYSA-N 3-ethyl-3-(2-ethylhexoxymethyl)oxetane Chemical compound CCCCC(CC)COCC1(CC)COC1 BIDWUUDRRVHZLQ-UHFFFAOYSA-N 0.000 description 1
- JUXZNIDKDPLYBY-UHFFFAOYSA-N 3-ethyl-3-(phenoxymethyl)oxetane Chemical compound C=1C=CC=CC=1OCC1(CC)COC1 JUXZNIDKDPLYBY-UHFFFAOYSA-N 0.000 description 1
- FNYWFRSQRHGKJT-UHFFFAOYSA-N 3-ethyl-3-[(3-ethyloxetan-3-yl)methoxymethyl]oxetane Chemical compound C1OCC1(CC)COCC1(CC)COC1 FNYWFRSQRHGKJT-UHFFFAOYSA-N 0.000 description 1
- LMIOYAVXLAOXJI-UHFFFAOYSA-N 3-ethyl-3-[[4-[(3-ethyloxetan-3-yl)methoxymethyl]phenyl]methoxymethyl]oxetane Chemical compound C=1C=C(COCC2(CC)COC2)C=CC=1COCC1(CC)COC1 LMIOYAVXLAOXJI-UHFFFAOYSA-N 0.000 description 1
- FMGBDYLOANULLW-UHFFFAOYSA-N 3-isocyanatopropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCN=C=O FMGBDYLOANULLW-UHFFFAOYSA-N 0.000 description 1
- NONFBYUIHZQHQT-UHFFFAOYSA-N 3-prop-2-enoxyoxetane Chemical compound C=CCOC1COC1 NONFBYUIHZQHQT-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- WOCGGVRGNIEDSZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3-prop-2-enylphenyl)propan-2-yl]-2-prop-2-enylphenol Chemical compound C=1C=C(O)C(CC=C)=CC=1C(C)(C)C1=CC=C(O)C(CC=C)=C1 WOCGGVRGNIEDSZ-UHFFFAOYSA-N 0.000 description 1
- KSMGAOMUPSQGTB-UHFFFAOYSA-N 9,10-dibutoxyanthracene Chemical compound C1=CC=C2C(OCCCC)=C(C=CC=C3)C3=C(OCCCC)C2=C1 KSMGAOMUPSQGTB-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- GMXOYEFGMAXIIU-UHFFFAOYSA-N C[N+](CC1=CC(=C(C=C1)C)C)(C1=CC=CC=C1)C Chemical compound C[N+](CC1=CC(=C(C=C1)C)C)(C1=CC=CC=C1)C GMXOYEFGMAXIIU-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- MOOIXEMFUKBQLJ-UHFFFAOYSA-N [1-(ethenoxymethyl)cyclohexyl]methanol Chemical compound C=COCC1(CO)CCCCC1 MOOIXEMFUKBQLJ-UHFFFAOYSA-N 0.000 description 1
- DBHQYYNDKZDVTN-UHFFFAOYSA-N [4-(4-methylphenyl)sulfanylphenyl]-phenylmethanone Chemical compound C1=CC(C)=CC=C1SC1=CC=C(C(=O)C=2C=CC=CC=2)C=C1 DBHQYYNDKZDVTN-UHFFFAOYSA-N 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Natural products C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- CIZVQWNPBGYCGK-UHFFFAOYSA-N benzenediazonium Chemical compound N#[N+]C1=CC=CC=C1 CIZVQWNPBGYCGK-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- AENNXXRRACDJAY-UHFFFAOYSA-N bis(2-dodecylphenyl)iodanium Chemical compound CCCCCCCCCCCCC1=CC=CC=C1[I+]C1=CC=CC=C1CCCCCCCCCCCC AENNXXRRACDJAY-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- PESYEWKSBIWTAK-UHFFFAOYSA-N cyclopenta-1,3-diene;titanium(2+) Chemical class [Ti+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 PESYEWKSBIWTAK-UHFFFAOYSA-N 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- URQUNWYOBNUYJQ-UHFFFAOYSA-N diazonaphthoquinone Chemical compound C1=CC=C2C(=O)C(=[N]=[N])C=CC2=C1 URQUNWYOBNUYJQ-UHFFFAOYSA-N 0.000 description 1
- ONRGBXGMVZEZLY-UHFFFAOYSA-N dimethyl-[(4-methylphenyl)methyl]-phenylazanium Chemical compound C1=CC(C)=CC=C1C[N+](C)(C)C1=CC=CC=C1 ONRGBXGMVZEZLY-UHFFFAOYSA-N 0.000 description 1
- OWZDULOODZHVCQ-UHFFFAOYSA-N diphenyl-(4-phenylsulfanylphenyl)sulfanium Chemical compound C=1C=C([S+](C=2C=CC=CC=2)C=2C=CC=CC=2)C=CC=1SC1=CC=CC=C1 OWZDULOODZHVCQ-UHFFFAOYSA-N 0.000 description 1
- OZLBDYMWFAHSOQ-UHFFFAOYSA-N diphenyliodanium Chemical compound C=1C=CC=CC=1[I+]C1=CC=CC=C1 OZLBDYMWFAHSOQ-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- AZDCYKCDXXPQIK-UHFFFAOYSA-N ethenoxymethylbenzene Chemical compound C=COCC1=CC=CC=C1 AZDCYKCDXXPQIK-UHFFFAOYSA-N 0.000 description 1
- RCNRJBWHLARWRP-UHFFFAOYSA-N ethenyl-[ethenyl(dimethyl)silyl]oxy-dimethylsilane;platinum Chemical compound [Pt].C=C[Si](C)(C)O[Si](C)(C)C=C RCNRJBWHLARWRP-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- ZCIJAGHWGVCOHJ-UHFFFAOYSA-N naphthalene phenol Chemical compound C1(=CC=CC=C1)O.C1(=CC=CC=C1)O.C1=CC=CC2=CC=CC=C12.C1(=CC=CC=C1)O ZCIJAGHWGVCOHJ-UHFFFAOYSA-N 0.000 description 1
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229940044654 phenolsulfonic acid Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003458 sulfonic acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- HMKGBOLFVMRQRP-UHFFFAOYSA-N tribenzyl(phenyl)azanium Chemical compound C=1C=CC=CC=1C[N+](C=1C=CC=CC=1)(CC=1C=CC=CC=1)CC1=CC=CC=C1 HMKGBOLFVMRQRP-UHFFFAOYSA-N 0.000 description 1
- GAMLUOSQYHLFCT-UHFFFAOYSA-N triethoxy-[3-[(3-ethyloxetan-3-yl)methoxy]propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1(CC)COC1 GAMLUOSQYHLFCT-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- WLOQLWBIJZDHET-UHFFFAOYSA-N triphenylsulfonium Chemical compound C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 WLOQLWBIJZDHET-UHFFFAOYSA-N 0.000 description 1
- 239000012953 triphenylsulfonium Substances 0.000 description 1
- ULNJZOIDTANZKR-UHFFFAOYSA-N tris[4-(4-acetylphenyl)sulfanylphenyl]sulfanium Chemical compound C1=CC(C(=O)C)=CC=C1SC1=CC=C([S+](C=2C=CC(SC=3C=CC(=CC=3)C(C)=O)=CC=2)C=2C=CC(SC=3C=CC(=CC=3)C(C)=O)=CC=2)C=C1 ULNJZOIDTANZKR-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2003/1034—Materials or components characterised by specific properties
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/871—Self-supporting sealing arrangements
- H10K59/8722—Peripheral sealing arrangements, e.g. adhesives, sealants
Definitions
- the present invention relates to a sealing agent for organic EL display elements that is excellent in applicability to a substrate or an inorganic material film even when it is thinned.
- organic electroluminescence (hereinafter, also referred to as “organic EL”) display element has a laminated structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and the organic light emitting material layer is formed from one electrode on the organic light emitting material layer.
- organic EL organic electroluminescence
- the organic EL display element performs self-emission, it has better visibility than a liquid crystal display element that requires a backlight, can be reduced in thickness, and can be driven by a DC low voltage. Has the advantage.
- Patent Document 1 discloses a method of sealing an organic light emitting material layer and an electrode of an organic EL display element with a laminated film of a silicon nitride film and a resin film formed by a CVD method.
- the resin film has a role of preventing pressure on the organic layer and the electrode due to internal stress of the silicon nitride film.
- Patent Document 2 discloses a method of alternately depositing an inorganic material film and a resin film.
- Patent Document 3 and Patent Document 4 Discloses a method of forming a resin film on an inorganic material film.
- a method for forming a resin film there is a method in which a sealing agent is applied on a substrate using an inkjet method and then the sealing agent is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed.
- a resin film can be uniformly formed at high speed.
- the organic EL display element sealant since there is a need for flexibility in using an organic EL display element by making it curved or folded, it is also necessary for the organic EL display element sealant to correspond to the flexibility.
- the sealing agent for organic EL display elements it is conceivable to make the sealing agent into a thin film, but the conventional sealing agent is applied when the film is made into a thin film by an inkjet method or the like.
- An object of this invention is to provide the sealing agent for organic EL display elements which is excellent in the applicability
- Invention 1 contains a curable resin and a polymerization initiator, has a surface tension at 25 ° C. of 25 mN / m or more and 38 mN / m or less, and a surface free energy of 70 mN / m or more and 80 mN / m or less.
- the sealant for organic EL display elements has a contact angle at 25 ° C. of 2 substrates and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less of 13 degrees or less.
- the present invention 2 is a sealant for an organic EL display element used for coating by an ink jet method, which contains a curable resin and a polymerization initiator, and has a surface tension at 25 ° C. of 25 mN / m to 38 mN /
- the contact angle at 25 ° C. with a SiO 2 substrate having a surface free energy of 70 mN / m or more and 80 mN / m or less and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less is 13
- It is the sealing agent for organic EL display elements which is below a degree.
- the present invention is described in detail below.
- the sealing agent for organic EL display elements of this invention 1 and the sealing agent for organic EL display elements of this invention 2 it describes as "the sealing agent for organic EL display elements of this invention". To do.
- the inventors of the present invention have found that the cause of inferior applicability when an organic EL display element sealant is made thin is on an inorganic material film such as SiO 2 that is used for flexibility. It was thought that the sealant around the foreign matter was repelled starting from foreign matter such as SiN present in the substrate, or the sealant could not follow the unevenness of the substrate or the inorganic material film. Therefore, as a result of intensive studies, the present inventors have determined that the contact angles with the SiO 2 substrate and the SiN substrate whose surface free energies are in a specific range are not more than a specific value, thereby reducing the thickness. The present inventors have found that a sealing agent for organic EL display elements excellent in applicability to a substrate or an inorganic material film can be obtained, and the present invention has been completed.
- the encapsulant for organic EL display elements of the present invention is at 25 ° C. with a SiO 2 substrate having a surface free energy of 70 mN / m to 80 mN / m and a SiN substrate having a surface free energy of 50 mN / m to 60 mN / m.
- the contact angles are all 13 degrees or less. When both of the contact angles are 13 degrees or less, the organic EL display element sealing agent of the present invention is excellent in the effect of preventing repelling starting from a foreign substance and the wettability with respect to a substrate or an inorganic material film. It will be a thing.
- the contact angles are preferably 10 degrees or less, more preferably 8 degrees or less, and still more preferably 6 degrees or less.
- the contact angles are preferably 5 degrees or more, and more preferably 8 degrees or more.
- the “surface free energy” is measured by an evaluation method based on the Owens-Wendy method from the contact angle between water and methylene iodide at 25 ° C., and specifically, measured using a contact angle meter. Means the value. Examples of the contact angle meter include MSA (manufactured by KRUS). Further, in the present specification, the “contact angle” is a high value of 0.5 mm from the above-described SiO 2 substrate and SiN substrate having the surface free energy at 25 ° C.
- an inkjet discharge device and a droplet amount of 10 pL.
- it means a value measured as an angle of each droplet of the sealing agent about 10 seconds after landing when the sealing agent is discharged onto each substrate.
- the inkjet discharge device include NanoPrinter 500 (manufactured by Microjet Co., Ltd.), and the sealing agent is discharged under the condition of a frequency of 20 kHz.
- the above “angle of the sealing agent droplet with respect to each substrate” means a value obtained by measuring an image captured by the substrate observation camera of the contact angle meter using image processing software.
- the contact angle meter include CAM200 (manufactured by KSV INSTRUMENTS), and examples of the image processing software include CAM2008 (manufactured by KSV INSTRUMENTS).
- Examples of the method of setting the contact angles to 13 degrees or less include a method of setting the solubility parameter of the entire curable resin in a range described later, a method of combining a resin having good wettability with each substrate, and the like.
- Examples of the method for setting the above contact angles to 5 degrees or more include, for example, a method of adding a resin having a high surface tension, a method of combining a resin having good wettability with a resin that is not good for each substrate, and the like. It is done.
- the preferable upper limit of the viscosity in 25 degreeC is 30 mPa * s.
- the sealing agent for organic EL display elements of this invention 1 is excellent in inkjet applicability
- the upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 20 mPa * s.
- the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 5 mPa * s.
- the “viscosity” means a value measured using an E-type viscometer under the conditions of 25 ° C. and 100 rpm.
- the preferable upper limit of the viscosity in 25 degreeC is 30 mPa * s.
- the viscosity is 30 mPa ⁇ s or less
- the organic EL display element sealant of the second aspect of the present invention is more excellent in ink jet coatability.
- the upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 20 mPa * s.
- the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 5 mPa * s.
- the sealing agent for organic EL display elements of the present invention 1 has a surface tension of the whole sealing agent for organic EL display elements at 25 ° C. of 25 mN / m or more and 38 mN / m or less.
- the organic EL display element sealant of the first aspect of the invention has excellent ink jet coating properties.
- the preferable lower limit of the surface tension of the whole encapsulant for organic EL display elements of the present invention is 26 mN / m
- the preferable upper limit is 37 mN / m
- the more preferable lower limit is 27 mN / m
- the more preferable upper limit is 35 mN / m.
- the “surface tension” means a value measured by a dynamic wettability tester at 25 ° C.
- the surface tension of the whole sealing agent for organic EL display elements at 25 ° C. is 25 mN / m or more and 38 mN / m or less.
- the organic EL display element sealant of the second aspect of the present invention is superior in ink jet coating properties.
- the preferable lower limit of the surface tension of the whole encapsulant for organic EL display elements of the present invention is 26 mN / m
- the preferable upper limit is 37 mN / m
- the more preferable lower limit is 27 mN / m
- the more preferable upper limit is 35 mN / m.
- the sealing agent for organic EL display elements of this invention contains curable resin.
- the sealing agent for organic EL display elements of the present invention has a solubility parameter (hereinafter also referred to as “SP value”) of the entire curable resin of 16.5 (J / cm 3 ) 1/2 or more and 19.5 (J / Cm 3 ) 1/2 or less is preferable.
- SP value solubility parameter
- the encapsulant for organic EL display elements of the present invention has an effect of preventing repellence starting from foreign matters, and wettability with respect to a substrate or an inorganic material film. It will be better.
- the more preferable lower limit of the SP value of the entire curable resin is 17.0 (J / cm 3 ) 1/2
- the more preferable upper limit is 19.2 (J / cm 3 ) 1/2
- the more preferable lower limit is 17 0.7 (J / cm 3 ) 1/2
- a more preferable upper limit is 19.0 (J / cm 3 ) 1/2
- the “solubility parameter” is a value calculated by Fedors' estimation method.
- the “solubility parameter of the entire curable resin” means the average value of the solubility parameter based on the weight fraction of each curable resin component used in the sealant for organic EL display elements.
- the sealing agent for organic EL display elements of this invention contains 2 or more types of curable resin as said curable resin, and the difference of SP value between each curable resin is 5 (J / cm ⁇ 3 >) ⁇ 1/2 >. It is preferable that content with respect to all the curable resin of the curable resin used as the following is 95 weight% or more. That is, when calculating the sum of the contents of two or more curable resins so that there is no combination of curable resins in which the difference in SP value between the curable resins exceeds 5 (J / cm 3 ) 1/2 In addition, there is a combination of 95% by weight or more based on the total curable resin.
- the sealing agent for organic EL display elements obtained by the content of the curable resin having a difference in SP value between each curable resin being 5 (J / cm 3 ) 1/2 or less is 95% by weight or more. However, it is excellent in the effect of preventing repelling starting from a foreign substance and the wettability with respect to the substrate and the inorganic material film.
- the content of the curable resin in which the difference in SP value between the curable resins is 5 (J / cm 3 ) 1/2 or less is more preferably 98% by weight or more, and 99% by weight or more. Is more preferably 99.9% by weight or more, and particularly preferably 99.99% by weight or more.
- the sealing agent for organic EL display elements of this invention contains 2 or more types of said curable resin as said curable resin, and the maximum difference of SP value between each curable resin is 5 (J / cm ⁇ 3 >) ⁇ 1 >. / 2 or less is preferable. That is, it is preferable that there is no combination of curable resins in which the difference in SP value exceeds 5 (J / cm 3 ) 1/2 .
- the maximum difference in SP value between the curable resins is 5 (J / cm 3 ) 1 ⁇ 2 or less, the obtained sealing agent for organic EL display elements prevents repelling starting from foreign matters. The effect and the wettability with respect to the substrate and the inorganic material film are excellent.
- the maximum difference in SP value between the curable resins is more preferably 4 (J / cm 3 ) 1/2 or less.
- the SP value of the entire curable resin and the SP value of each curable resin component in the sealing agent for organic EL display elements of the present invention can be determined by purifying the sealing agent for organic EL display elements by chromatography or GC-
- the structure and composition can be specified by performing composition analysis such as MS and LC-MS, and the SP value can be calculated.
- the curable resin preferably contains a compound having a siloxane skeleton.
- a compound having a siloxane skeleton By containing the compound having the siloxane skeleton, it becomes easy to adjust the surface tension of the obtained sealing agent for organic EL display elements, and the resulting coating film is more excellent in flatness.
- Examples of the compound having a siloxane skeleton include an epoxy compound having a siloxane skeleton, an oxetane compound having a siloxane skeleton, and a (meth) acryl compound having a siloxane skeleton.
- the compound represented by following formula (1) is preferable.
- the above “(meth) acryl” means acryl or methacryl
- the above “(meth) acryl compound” means a compound having a (meth) acryloyl group
- the above “(meth) “Acryloyl” means acryloyl or methacryloyl.
- R 1 represents an alkyl group having 1 to 10 carbon atoms
- X 1 and X 2 are each independently an alkyl group having 1 to 10 carbon atoms, or the following formula (2- 1), (2-2), (2-3) or a group represented by (2-4)
- X 3 represents the following formulas (2-1), (2-2), (2 -3) or a group represented by (2-4).
- m is an integer from 0 to 100
- n is an integer from 0 to 100.
- at least one of X 1 and X 2 is represented by the following formula (2-1), (2-2), (2-3), or (2-4) Represents a group.
- R 2 represents a bond or an alkylene group having 1 to 6 carbon atoms
- R 3 represents hydrogen or 1 carbon atom.
- R 4 represents a bond or a methylene group
- R 5 represents hydrogen or a methyl group.
- the compound having a siloxane skeleton is used for organic EL display elements from the viewpoints of storage stability of the obtained sealing agent for organic EL display elements, adhesion to substrates and inorganic material films, and ejection stability when inkjet coating is performed. It is preferable that the polymer having a number average molecular weight of 100,000 or more is removed in advance before blending with the sealant. Specifically, the content ratio of the high molecular weight compound having a number average molecular weight of 100,000 or more is preferably 0.5% or less in the compound having the siloxane skeleton.
- the number average molecular weight and the content ratio of the high molecular weight substance are values obtained by measuring in polystyrene using gel permeation chromatography (GPC) using tetrahydrofuran as a solvent. .
- the content rate of the said high molecular weight body can also be measured by GPC.
- Examples of the column used for measuring the number average molecular weight in terms of polystyrene by GPC and the content ratio of the high molecular weight substance include Shodex LF-804 (manufactured by Showa Denko KK). Further, the content ratio of the high molecular weight substance is calculated from the area ratio of the GPC.
- Examples of the method for purifying the compound having a siloxane skeleton include a method for purification by distillation, a method for purification using a column, and the like.
- the compounds having a siloxane skeleton may be used alone or in combination of two or more.
- the content of the compound having a siloxane skeleton in the curable resin is preferably less than 40% by weight.
- the content of the compound having a siloxane skeleton is less than 40% by weight, the obtained sealing agent for organic EL display elements has better wettability.
- the upper limit with more preferable content of the compound which has the said siloxane skeleton is 35 weight%.
- the minimum with preferable content of the compound which has the said siloxane skeleton in the said curable resin is 0.1 weight%.
- the content of the compound having a siloxane skeleton is 0.1% by weight or more, it becomes easier to adjust the surface tension of the obtained sealing agent for organic EL display elements.
- Examples of the curable resin other than the compound having a siloxane skeleton include, for example, an epoxy compound having no siloxane skeleton (hereinafter, also simply referred to as “epoxy compound”), and an oxetane compound having no siloxane skeleton (hereinafter, simply “ An oxetane compound), a vinyl ether compound having no siloxane skeleton (hereinafter also simply referred to as “vinyl ether compound”), a (meth) acryl compound having no siloxane skeleton (hereinafter simply referred to as “(meth) acryl compound”). And the like).
- epoxy compounds examples include bisphenol A type epoxy compounds, bisphenol E type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol O type epoxy compounds, 2,2′-diallyl bisphenol A type epoxy compounds, Alicyclic epoxy compounds, hydrogenated bisphenol type epoxy compounds, propylene oxide added bisphenol A type epoxy compounds, resorcinol type epoxy compounds, biphenyl type epoxy compounds, sulfide type epoxy compounds, diphenyl ether type epoxy compounds, dicyclopentadiene type epoxy compounds, naphthalene Type epoxy compound, phenol novolac type epoxy compound, orthocresol novolac type epoxy compound, dicyclopentadiene novo Examples thereof include a rack type epoxy compound, a biphenyl novolac type epoxy compound, a naphthalenephenol novolak type epoxy compound, a glycidylamine type epoxy compound, an alkyl polyol type epoxy compound, a rubber-modified epoxy compound, and a glycidyl ester compound.
- an alkyl polyol type epoxy compound is preferable, and neopentyl glycol diglycidyl ether is most preferable because it is difficult to volatilize and the obtained sealing agent for organic EL display elements is excellent in ink jet coating properties.
- the said epoxy compound may be used independently and 2 or more types may be used in combination.
- oxetane compound examples include 3- (allyloxy) oxetane, phenoxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3-((2 -Ethylhexyloxy) methyl) oxetane, 3-ethyl-3-((3- (triethoxysilyl) propoxy) methyl) oxetane, 3-ethyl-3 ((((3-ethyloxetane-3-yl) methoxy) methyl) And oxetane, phenol novolac oxetane, 1,4-bis (((3-ethyl-3-oxetanyl) methoxy) methyl) benzene, and the like.
- 3-ethyl-3 (((3-ethyloxetane-3-yl) methoxy) methyl) oxetane is preferable because of excellent curability and low outgassing properties.
- the said oxetane compound may be used independently and 2 or more types may be used in combination.
- vinyl ether compound examples include benzyl vinyl ether, cyclohexane dimethanol monovinyl ether, dicyclopentadiene vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, dipropylene glycol. Examples thereof include divinyl ether and tripropylene glycol divinyl ether.
- the said vinyl ether compound may be used independently and 2 or more types may be used in combination.
- Examples of the (meth) acrylic compound include glycidyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dicyclopentenyl (meth) acrylate, and di Cyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, trimethylolpropane tri (meth) arylate, 1,12-dodecanediol di (meth) acrylate, lauryl (meth) acrylate Etc.
- the said (meth) acryl compound may be used independently and 2 or more types may be used in combination.
- the “(meth) acrylate” means acrylate or methacrylate.
- the sealing agent for organic EL display elements of the present invention contains a polymerization initiator.
- a polymerization initiator a photocationic polymerization initiator or a thermal cationic polymerization initiator is preferably used.
- a radical photopolymerization initiator and a thermal radical polymerization initiator are also used suitably.
- the photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be.
- anion portion of the ionic photoacid-generating photocationic polymerization initiator examples include BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , (BX 4 ) ⁇ (where X is at least two or more fluorine atoms) Or a phenyl group substituted with a trifluoromethyl group).
- anion moiety examples include PF m (C n F 2n + 1 ) 6-m ⁇ (wherein, m is an integer of 0 or more and 5 or less, and n is an integer of 1 or more and 6 or less). Can be mentioned.
- Examples of the ionic photoacid-generating photocationic polymerization initiator include aromatic sulfonium salts, aromatic iodonium salts, aromatic diazonium salts, aromatic ammonium salts having the above anion moiety, and (2,4-cyclohexane). And pentadien-1-yl) ((1-methylethyl) benzene) -Fe salt.
- aromatic sulfonium salt examples include bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluoroantimonate, and bis (4- ( Diphenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (diphenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4- ( Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetraflu
- aromatic iodonium salt examples include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexa Fluorophosphate, 4-methylphenyl-4- (1-methylethy
- aromatic diazonium salt examples include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
- aromatic ammonium salt examples include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl -2-Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl)
- Examples include -2-cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate.
- Examples of the (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe salt include (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene.
- nonionic photoacid-generating photocationic polymerization initiator examples include nitrobenzyl ester, sulfonic acid derivative, phosphoric acid ester, phenol sulfonic acid ester, diazonaphthoquinone, N-hydroxyimide sulfonate, and the like.
- Examples of commercially available photocationic polymerization initiators include, for example, a photocationic polymerization initiator manufactured by Midori Chemical Co., a photocationic polymerization initiator manufactured by Union Carbide, a photocationic polymerization initiator manufactured by ADEKA, Examples thereof include a photocationic polymerization initiator manufactured by 3M, a photocationic polymerization initiator manufactured by BASF, a photocationic polymerization initiator manufactured by Rhodia, and a photocationic polymerization initiator manufactured by San Apro. Examples of the photocationic polymerization initiator manufactured by Midori Chemical Co., Ltd. include DTS-200.
- Examples of the cationic photopolymerization initiator manufactured by Union Carbide include UVI6990, UVI6974, and the like.
- Examples of the photocation polymerization initiator manufactured by ADEKA include SP-150 and SP-170.
- Examples of the cationic photopolymerization initiator manufactured by 3M include FC-508, FC-512, and the like.
- Examples of the cationic photopolymerization initiator manufactured by BASF include IRGACURE261, IRGACURE290, and the like.
- Examples of the photocationic polymerization initiator manufactured by Rhodia include PI 2074.
- Examples of the cationic photopolymerization initiator manufactured by Sun Apro include CPI-100P, CPI-200K, CPI-210S, and the like.
- the anion moiety is BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , or (BX 4 ) ⁇ (where X is substituted with at least two fluorine or trifluoromethyl groups
- a sulfonium salt, a phosphonium salt, an ammonium salt, and the like are preferable.
- sulfonium salt examples include triphenylsulfonium tetrafluoroborate and triphenylsulfonium hexafluoroantimonate.
- Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
- ammonium salt examples include dimethylphenyl (4-methoxybenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methoxybenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methoxybenzyl) ammonium tetrakis (pentafluorophenyl).
- thermal cationic polymerization initiators examples include thermal cationic polymerization initiators manufactured by Sanshin Chemical Industry, thermal cationic polymerization initiators manufactured by King Industries, and the like.
- thermal cationic polymerization initiator manufactured by Sanshin Chemical Industry Co., Ltd. examples include Sun-Aid SI-60, Sun-Aid SI-80, Sun-Aid SI-B3, Sun-Aid SI-B3A, and Sun-Aid SI-B4.
- thermal cationic polymerization initiator manufactured by King Industries examples include CXC1612 and CXC1821.
- photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone compounds, and the like.
- the radical photopolymerization initiator by BASF As what is marketed among the said radical photopolymerization initiators, the radical photopolymerization initiator by BASF, the radical photopolymerization initiator by Tokyo Chemical Industry, etc. are mentioned, for example.
- the radical photopolymerization initiator manufactured by BASF include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucyrin TPO.
- the photo radical polymerization initiator manufactured by Tokyo Chemical Industry Co., Ltd. include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
- thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
- the azo compound include 2,2′-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile, and the like.
- the organic peroxide include benzoyl peroxide, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
- thermal radical polymerization initiators examples include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, and V-501 (all of which are FUJIFILM Wako Pure Chemical Industries, Ltd.). Manufactured) and the like.
- the content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
- the content of the polymerization initiator is 0.01 parts by weight or more, the obtained sealing agent for organic EL display elements is more excellent in curability.
- the content of the polymerization initiator is 10 parts by weight or less, the curing reaction of the obtained sealing agent for organic EL display elements does not become too fast, the workability is improved, and the cured product is more uniform. It can be.
- the minimum with more preferable content of the said polymerization initiator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
- the sealing agent for organic EL display elements of the present invention may contain a sensitizer.
- the sensitizer has a role of further improving the polymerization initiation efficiency of the polymerization initiator and further promoting the curing reaction of the sealing agent for organic EL display elements of the present invention.
- Examples of the sensitizer include anthracene compounds, thioxanthone compounds, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, Examples include 4,4′-bis (dimethylamino) benzophenone and 4-benzoyl-4′-methyldiphenyl sulfide.
- Examples of the anthracene compound include 9,10-dibutoxyanthracene.
- Examples of the thioxanthone compound include 2,4-diethylthioxanthone.
- the content of the sensitizer is preferably 0.01 parts by weight and preferably 3 parts by weight with respect to 100 parts by weight of the curable resin.
- the content of the sensitizer is 0.01 parts by weight or more, the sensitizing effect is more exhibited.
- the content of the sensitizer is 3 parts by weight or less, light can be transmitted to a deep part without excessive absorption.
- the minimum with more preferable content of the said sensitizer is 0.1 weight part, and a more preferable upper limit is 1 weight part.
- the sealing agent for organic EL display elements of the present invention includes a silane coupling agent, a surface modifier, a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, an ultraviolet absorber, an antioxidant and the like as necessary.
- An additive may be contained.
- the maximum difference in SP value between each component contained in the curable resin and the additive is preferably 5 (J / cm 3 ) 1/2 or less.
- the said silane coupling agent has a role which further improves the adhesiveness of the sealing agent for organic EL display elements of this invention, and a board
- the silane coupling agent include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane coupling agents may be used independently and 2 or more types may be used together.
- the content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the polymerizable compound. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness is suppressed while suppressing the excess silane coupling agent from bleeding out.
- the minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
- the said surface modifier has a role which further improves the flatness of the coating film of the sealing agent for organic EL display elements of this invention.
- examples of the surface modifier include surfactants and leveling agents.
- Examples of the surface modifier include silicone-based and fluorine-based ones.
- Examples of commercially available surface modifiers include surface modifiers manufactured by Big Chemie Japan, and surface modifiers manufactured by AGC Seimi Chemical.
- Examples of the surface modifier made by Big Chemie Japan include BYK-340, BYK-345, and the like.
- Examples of the surface modifier made by AGC Seimi Chemical include Surflon S-611.
- the encapsulant for organic EL display elements of the present invention may contain a solvent for the purpose of adjusting the viscosity, but problems such as deterioration of the organic light emitting material layer and generation of outgas due to the remaining solvent. Therefore, the content of the solvent is preferably 0.05% by weight or less, and most preferably no solvent is contained.
- the sealing agent for organic EL display elements of the present invention for example, using a mixer, additives such as a curable resin, a polymerization initiator, and a silane coupling agent to be added as necessary.
- the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three roll.
- cured material of the sealing agent for organic EL display elements of this invention is 80%.
- the total light transmittance is 80% or more, the obtained organic EL display element has superior optical characteristics.
- a more preferable lower limit of the total light transmittance is 85%.
- the total light transmittance can be measured using, for example, a spectrometer. Examples of the spectrometer include AUTOMATIC HAZE METER MODEL TC-III DPK (manufactured by Tokyo Denshoku Co., Ltd.).
- cured material used for the measurement of the said light transmittance and the water vapor transmission rate and moisture content mentioned later can be obtained by irradiating 3000 mJ / cm ⁇ 2 > of ultraviolet rays with a wavelength of 365 nm using light sources, such as an LED lamp, for example. it can.
- the transmittance at 400 nm after irradiating the cured product with ultraviolet rays for 100 hours is preferably 85% or more at an optical path length of 20 ⁇ m.
- the transmittance after irradiating the ultraviolet rays for 100 hours is 85% or more, the transparency is high, the loss of light emission is small, and the color reproducibility is excellent.
- a more preferable lower limit of the transmittance after irradiation with the ultraviolet rays for 100 hours is 90%, and a more preferable lower limit is 95%.
- the light source for irradiating the ultraviolet rays a conventionally known light source such as a xenon lamp or a carbon arc lamp can be used.
- the sealant for an organic EL display device of the present invention has a moisture permeability of 100 g / 100 ⁇ m when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours in accordance with JIS Z 0208.
- m is preferably 2 or less.
- the moisture content of the cured product is preferably less than 0.5% when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours.
- the moisture content of the cured product is less than 0.5%, the effect of preventing the deterioration of the organic light emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability. It becomes.
- a more preferable upper limit of the moisture content of the cured product is 0.3%.
- the method for measuring the moisture content include a method of obtaining by a Karl Fischer method in accordance with JIS K 7251, and a method of obtaining a weight increment after water absorption in accordance with JIS K 7209-2.
- an organic EL display element using the sealing agent for organic EL display elements of the present invention for example, a step of applying the sealing agent for organic EL display elements of the present invention to a substrate by an inkjet method, And a method of curing the applied sealing agent for organic EL display elements by light irradiation and / or heating.
- the organic EL display element sealant of the present invention may be applied to the entire surface of the substrate, or on a part of the substrate. It may be applied.
- the shape of the sealing portion of the sealing agent for organic EL display elements of the present invention formed by coating is not particularly limited as long as it is a shape that can protect the laminate having the organic light emitting material layer from the outside air. A shape that completely covers the body may be formed, a closed pattern may be formed in the peripheral portion of the laminate, or a pattern having a shape in which a partial opening is provided in the peripheral portion of the laminate. It may be formed.
- the organic EL display sealant element of the present invention When curing the organic EL display element sealing agent of the present invention by light irradiation, the organic EL display sealant element of the present invention, 300 nm or more 400nm or less wavelength and 300 mJ / cm 2 or more 3000 mJ / cm 2 or less of It can be suitably cured by irradiating with an accumulated amount of light.
- Examples of the light source used for the light irradiation include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, a sodium lamp, a halogen lamp, and a xenon.
- a lamp, an LED lamp, a fluorescent lamp, sunlight, an electron beam irradiation apparatus, etc. are mentioned.
- These light sources may be used independently and 2 or more types may be used together. These light sources are appropriately selected according to the absorption wavelength of the photocationic polymerization initiator or the photoradical polymerization initiator.
- Examples of the light irradiation means to the organic EL display element sealant of the present invention include simultaneous irradiation of various light sources, sequential irradiation with a time difference, combined irradiation of simultaneous irradiation and sequential irradiation, and the like. Any irradiation means may be used.
- the cured product obtained by the step of curing the organic EL display element sealing agent by light irradiation and / or heating may be further coated with an inorganic material film.
- the inorganic material forming the inorganic material layer can be a conventionally known, for example, silicon nitride (SiN x or SiO X N Y), silicon oxide (SiO x), and the like.
- the inorganic material film may be a single layer or may be a laminate of a plurality of types of layers. Moreover, you may coat
- the method for producing the organic EL display element comprises a step of bonding a base material (hereinafter also referred to as “one base material”) coated with the organic EL display element sealing agent of the present invention and the other base material.
- the substrate on which the sealing agent for organic EL display elements of the present invention is applied (hereinafter also referred to as “one substrate”) may be a substrate on which a laminate having an organic light emitting material layer is formed. A base material on which the laminate is not formed may be used.
- the present invention is applied to the one substrate so that the laminate can be protected from the outside air when the other substrate is bonded. What is necessary is just to apply
- the sealing agent portion having a closed pattern may be formed in a shape that fits in the shape.
- the step of curing the organic EL display element sealant by light irradiation and / or heating may be performed before the step of bonding the one base material and the other base material, You may perform after the process of bonding a base material and said other base material.
- the organic EL display of the present invention preferably has a pot life of 1 minute or longer after irradiation with light and / or heating until the curing reaction proceeds and adhesion becomes impossible. When the pot life is 1 minute or longer, higher adhesion strength can be obtained without excessive curing before the one base material and the other base material are bonded together.
- a method of bonding the one base material and the other base material is not particularly limited, but it is preferable to bond them in a reduced-pressure atmosphere.
- the preferable lower limit of the degree of vacuum in the reduced-pressure atmosphere is 0.01 kPa, and the preferable upper limit is 10 kPa.
- the degree of vacuum in the reduced-pressure atmosphere is within this range, the one base material and the other base material are not spent for a long time to achieve a vacuum state due to the airtightness of the vacuum device and the ability of the vacuum pump. Bubbles in the sealing agent for organic EL display elements of the present invention when the material is bonded can be more efficiently removed.
- the sealing agent for organic EL display elements which is excellent in the applicability
- membrane can be provided.
- SiO 2 was chemically deposited with an ICP-CVD apparatus (manufactured by Celbach) at a film thickness of 1000 nm to prepare a SiO 2 base plate.
- the surface free energy after vapor deposition was measured by an evaluation method according to the Owens-Wendy method from the contact angle between water and methylene iodide using a contact angle meter, and found to be 73.0 mN / m.
- MSA made by KRUSS
- the Si atom was 31.3% and the O atom was 63.2%.
- SiN was chemically deposited with an ICP-CVD apparatus (manufactured by Cellvac) at a film thickness of 1000 nm to prepare a SiN base plate.
- the surface free energy after the deposition was measured by an evaluation method according to the Owens-Wendy method from the contact angle between water and methylene iodide using a contact angle meter, and found to be 58.0 mN / m.
- MSA made by KRUSS
- N atoms were 48.0% with respect to 44.8% Si atoms.
- Examples 1 to 9, Comparative Examples 1 to 4 According to the blending ratios described in Tables 1 and 2, each material was uniformly stirred and mixed at a stirring speed of 300 rpm using a homodisper type stirring mixer, whereby each of Examples 1 to 9 and Comparative Examples 1 to 4 was A sealant for an organic EL display element was produced.
- a homodisper type stirring mixer a homodisper L type (manufactured by Primics) was used.
- the compound having a siloxane skeleton in the table those purified in advance by distillation before mixing with other components were used.
- the oxetane compound having a siloxane skeleton in the table one obtained by the following method was used.
- the SiO 2 substrate and the SiN substrate having the surface free energy of 58.0 mN / m obtained in the above-mentioned “(Preparation of SiN substrate)” were respectively discharged.
- an inkjet discharge device NanoPrinter 500 (manufactured by Microjet Co., Ltd.) was used, and the sealant was discharged at 25 ° C., a droplet volume of 10 pL, a pitch of 800 ⁇ m, a drop from a height of 0.5 mm from the substrate, and a frequency of 20 kHz. It went on condition of.
- Tables 1 and 2 show contact angles with respect to the respective substrates measured by using image processing software for images taken with a substrate observation camera of a contact angle meter for a sealant droplet about 10 seconds after landing.
- CAM200 manufactured by KSV INSTRUMENTS
- CAM2008 was used as the image processing software.
- Table 1 shows contact angles with respect to the respective substrates measured by using image processing software for images taken with a substrate observation camera of a contact angle meter for a sealant droplet about 10 seconds after landing.
- CAM200 manufactured by KSV INSTRUMENTS
- CAM2008 was used as the image processing software.
- the surface tension measured by Wilhelmy method at 25 degreeC using the surface tension meter was shown to Table 1,2.
- a surface tension meter DY-300 (manufactured by Kyowa Interface Science Co., Ltd.) was used.
- Tables 1 and 2 show the viscosities of the encapsulants for organic EL display elements obtained in Examples and Comparative Examples, measured using an E-type viscometer under the conditions of 25 ° C. and 100 rpm.
- VISCOMETER TV-22 manufactured by Toki Sangyo Co., Ltd.
- Silicon nitride particles and silica particles were dispersed by a spreader on the SiO 2 substrate having a surface free energy of 73.0 mN / m obtained in the above-mentioned “(Preparation of SiO 2 substrate)”.
- SN-E10 manufactured by Ube Industries
- Seahoster manufactured by Nippon Shokubai Co., Ltd.
- Each of the sealing agents for organic EL display elements obtained in Examples and Comparative Examples was applied to the obtained SiO 2 substrate with an 8 cm ⁇ 8 cm size at a pitch of 48 ⁇ m at a droplet volume of 10 pL using an inkjet discharge device. It apply
- an inkjet discharge device NanoPrinter 500 (manufactured by Microjet) was used. Three minutes after application, irradiating with a 395 nm UV LED with an illuminance of 1000 mW / cm 2 so that the integrated light quantity becomes 1000 mJ / cm 2 , and assuming the dispersed silicon nitride particles and silica particles as foreign matters, per 10 extracted foreign matters The number of pinholes was confirmed.
- UV-ozone cleaner As the UV-ozone cleaner, NL-UV253 (manufactured by Nippon Laser Electronics Co., Ltd.) was used. Next, the substrate after the last treatment is fixed to the substrate holder of the vacuum evaporation apparatus, and 200 mg of N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine ( ⁇ -NPD) is put in an unglazed crucible. In another unglazed crucible, 200 mg of tris (8-quinolinolato) aluminum (Alq 3 ) was put, and the pressure in the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
- Alq 3 8-quinolinolato
- the crucible containing ⁇ -NPD was heated, and ⁇ -NPD was deposited on the substrate at a deposition rate of 15 s / s to form a 600 ⁇ ⁇ hole transport layer.
- the crucible containing Alq 3 was heated to form an organic light emitting material layer having a thickness of 600 ⁇ at a deposition rate of 15 ⁇ / s.
- the substrate on which the hole transport layer and the organic light emitting material layer are formed is transferred to another vacuum vapor deposition apparatus having a tungsten resistance heating boat, and lithium fluoride is added to one of the tungsten resistance heating boats in the vacuum vapor deposition apparatus. 200 mg was charged, and 1.0 g of aluminum wire was put in another tungsten resistance heating boat.
- the inside of the vapor deposition unit of the vacuum vapor deposition apparatus is depressurized to 2 ⁇ 10 ⁇ 4 Pa to form a lithium fluoride film with a thickness of 5 mm at a deposition rate of 0.2 kg / s, and then aluminum with a film thickness of 1000 mm at a rate of 20 kg / s. did.
- the inside of the vapor deposition unit was returned to normal pressure with nitrogen, and the substrate on which the laminate having the organic light emitting material layer of 10 mm ⁇ 10 mm was arranged was taken out.
- a mask having an opening of 13 mm ⁇ 13 mm is installed so as to cover the entire laminated body of the substrate on which the obtained laminated body is arranged, and inorganic by plasma CVD method.
- a material film A was formed.
- SiH 4 gas and nitrogen gas are used as source gases, the flow rates of each are SiH 4 gas 10 sccm, nitrogen gas 200 sccm, RF power 10 W (frequency 2.45 GHz), chamber temperature 100 ° C., chamber The test was performed under the condition that the internal pressure was 0.9 Torr.
- the formed inorganic material film A had a thickness of about 1 ⁇ m.
- the height of a convex part was measured on condition of a feed rate of 0.2 mm / s using a 2CR filter and a stylus of R2 ⁇ m with a surface roughness measuring instrument.
- a surface roughness measuring instrument SE300 (manufactured by Kosaka Laboratory) was used. The height of the convex portion was confirmed by setting the concave portion on the surface to zero.
- the sealing agent for organic EL display elements which is excellent in the applicability
- membrane can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Epoxy Resins (AREA)
- Sealing Material Composition (AREA)
Abstract
The purpose of the present invention is to provide an organic EL display element sealing agent which has excellent applicability to substrates and inorganic material films even when forming thin films. The present invention is the organic EL display element sealing agent which comprises a curable resin and a polymerization initiator, has a surface tension at 25°C of 25 to 38 mN/m, and has a contact angle at 25°C of 13 degrees or less with respect to a SiO2 substrate having surface free energy of 70 to 80 mN/m and a SiN substrate having surface free energy of 50 to 60 mN/m.
Description
本発明は、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤に関する。
The present invention relates to a sealing agent for organic EL display elements that is excellent in applicability to a substrate or an inorganic material film even when it is thinned.
有機エレクトロルミネッセンス(以下、「有機EL」ともいう)表示素子は、互いに対向する一対の電極間に有機発光材料層が挟持された積層体構造を有し、この有機発光材料層に一方の電極から電子が注入されるとともに他方の電極から正孔が注入されることにより有機発光材料層内で電子と正孔とが結合して発光する。このように有機EL表示素子は自己発光を行うことから、バックライトを必要とする液晶表示素子等と比較して視認性がよく、薄型化が可能であり、しかも直流低電圧駆動が可能であるという利点を有している。
An organic electroluminescence (hereinafter, also referred to as “organic EL”) display element has a laminated structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and the organic light emitting material layer is formed from one electrode on the organic light emitting material layer. When electrons are injected and holes are injected from the other electrode, the electrons and holes are combined in the organic light emitting material layer to emit light. Thus, since the organic EL display element performs self-emission, it has better visibility than a liquid crystal display element that requires a backlight, can be reduced in thickness, and can be driven by a DC low voltage. Has the advantage.
有機EL表示素子を構成する有機発光材料層や電極は、水分や酸素等により特性が劣化しやすいという問題がある。従って、実用的な有機EL表示素子を得るためには、有機発光材料層や電極を大気と遮断して長寿命化を図る必要がある。特許文献1には、有機EL表示素子の有機発光材料層と電極とを、CVD法により形成した窒化珪素膜と樹脂膜との積層膜により封止する方法が開示されている。ここで樹脂膜は、窒化珪素膜の内部応力による有機層や電極への圧迫を防止する役割を有する。
The organic light-emitting material layer and electrodes constituting the organic EL display element have a problem that the characteristics are easily deteriorated by moisture, oxygen, and the like. Therefore, in order to obtain a practical organic EL display element, it is necessary to extend the life by blocking the organic light emitting material layer and the electrode from the atmosphere. Patent Document 1 discloses a method of sealing an organic light emitting material layer and an electrode of an organic EL display element with a laminated film of a silicon nitride film and a resin film formed by a CVD method. Here, the resin film has a role of preventing pressure on the organic layer and the electrode due to internal stress of the silicon nitride film.
有機発光材料層内への水分の浸入を防止するための方法として、特許文献2には、無機材料膜と樹脂膜とを交互に蒸着する方法が開示されており、特許文献3や特許文献4には、無機材料膜上に樹脂膜を形成する方法が開示されている。
As a method for preventing moisture from entering into the organic light emitting material layer, Patent Document 2 discloses a method of alternately depositing an inorganic material film and a resin film. Patent Document 3 and Patent Document 4 Discloses a method of forming a resin film on an inorganic material film.
樹脂膜を形成する方法として、インクジェット法を用いて基材上に封止剤を塗布した後、該封止剤を硬化させる方法がある。このようなインクジェット法による塗布方法を用いれば、高速かつ均一に樹脂膜を形成することができる。
一方、有機EL表示素子には、曲面化したり折りたたんだりして用いるフレキシブル化のニーズがあるため、有機EL表示素子用封止剤もフレキシブル化に対応させる必要がある。有機EL表示素子用封止剤をフレキシブル化に対応させる方法の1つとして、封止剤を薄膜化することが考えられるが、従来の封止剤は、インクジェット法等によって薄膜化する場合の塗布性に劣り、ピンホールが発生して得られる有機EL表示素子が信頼性に劣るものとなるという問題があった。
本発明は、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤を提供することを目的とする。 As a method for forming a resin film, there is a method in which a sealing agent is applied on a substrate using an inkjet method and then the sealing agent is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed.
On the other hand, since there is a need for flexibility in using an organic EL display element by making it curved or folded, it is also necessary for the organic EL display element sealant to correspond to the flexibility. As one method for adapting the sealing agent for organic EL display elements to make it flexible, it is conceivable to make the sealing agent into a thin film, but the conventional sealing agent is applied when the film is made into a thin film by an inkjet method or the like. There is a problem that the organic EL display element obtained by generating pinholes is inferior in reliability and inferior in reliability.
An object of this invention is to provide the sealing agent for organic EL display elements which is excellent in the applicability | paintability with respect to a board | substrate or an inorganic material film | membrane, even when it thins.
一方、有機EL表示素子には、曲面化したり折りたたんだりして用いるフレキシブル化のニーズがあるため、有機EL表示素子用封止剤もフレキシブル化に対応させる必要がある。有機EL表示素子用封止剤をフレキシブル化に対応させる方法の1つとして、封止剤を薄膜化することが考えられるが、従来の封止剤は、インクジェット法等によって薄膜化する場合の塗布性に劣り、ピンホールが発生して得られる有機EL表示素子が信頼性に劣るものとなるという問題があった。
本発明は、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤を提供することを目的とする。 As a method for forming a resin film, there is a method in which a sealing agent is applied on a substrate using an inkjet method and then the sealing agent is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed.
On the other hand, since there is a need for flexibility in using an organic EL display element by making it curved or folded, it is also necessary for the organic EL display element sealant to correspond to the flexibility. As one method for adapting the sealing agent for organic EL display elements to make it flexible, it is conceivable to make the sealing agent into a thin film, but the conventional sealing agent is applied when the film is made into a thin film by an inkjet method or the like. There is a problem that the organic EL display element obtained by generating pinholes is inferior in reliability and inferior in reliability.
An object of this invention is to provide the sealing agent for organic EL display elements which is excellent in the applicability | paintability with respect to a board | substrate or an inorganic material film | membrane, even when it thins.
本発明1は、硬化性樹脂と重合開始剤とを含有し、25℃における表面張力が25mN/m以上38mN/m以下であり、かつ、表面自由エネルギーが70mN/m以上80mN/m以下のSiO2基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板との25℃における接触角がいずれも13度以下である有機EL表示素子用封止剤である。
また、本発明2は、インクジェット法による塗布に用いられる有機EL表示素子用封止剤であって、硬化性樹脂と重合開始剤とを含有し、25℃における表面張力が25mN/m以上38mN/m以下であり、かつ、表面自由エネルギーが70mN/m以上80mN/m以下のSiO2基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板との25℃における接触角がいずれも13度以下である有機EL表示素子用封止剤である。
以下に本発明を詳述する。なお、本発明1の有機EL表示素子用封止剤と本発明2の有機EL表示素子用封止剤とに共通する事項については、「本発明の有機EL表示素子用封止剤」として記載する。 Invention 1 contains a curable resin and a polymerization initiator, has a surface tension at 25 ° C. of 25 mN / m or more and 38 mN / m or less, and a surface free energy of 70 mN / m or more and 80 mN / m or less. The sealant for organic EL display elements has a contact angle at 25 ° C. of 2 substrates and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less of 13 degrees or less.
In addition, the present invention 2 is a sealant for an organic EL display element used for coating by an ink jet method, which contains a curable resin and a polymerization initiator, and has a surface tension at 25 ° C. of 25 mN / m to 38 mN / The contact angle at 25 ° C. with a SiO 2 substrate having a surface free energy of 70 mN / m or more and 80 mN / m or less and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less is 13 It is the sealing agent for organic EL display elements which is below a degree.
The present invention is described in detail below. In addition, about the matter common to the sealing agent for organic EL display elements of this invention 1 and the sealing agent for organic EL display elements of this invention 2, it describes as "the sealing agent for organic EL display elements of this invention". To do.
また、本発明2は、インクジェット法による塗布に用いられる有機EL表示素子用封止剤であって、硬化性樹脂と重合開始剤とを含有し、25℃における表面張力が25mN/m以上38mN/m以下であり、かつ、表面自由エネルギーが70mN/m以上80mN/m以下のSiO2基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板との25℃における接触角がいずれも13度以下である有機EL表示素子用封止剤である。
以下に本発明を詳述する。なお、本発明1の有機EL表示素子用封止剤と本発明2の有機EL表示素子用封止剤とに共通する事項については、「本発明の有機EL表示素子用封止剤」として記載する。 Invention 1 contains a curable resin and a polymerization initiator, has a surface tension at 25 ° C. of 25 mN / m or more and 38 mN / m or less, and a surface free energy of 70 mN / m or more and 80 mN / m or less. The sealant for organic EL display elements has a contact angle at 25 ° C. of 2 substrates and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less of 13 degrees or less.
In addition, the present invention 2 is a sealant for an organic EL display element used for coating by an ink jet method, which contains a curable resin and a polymerization initiator, and has a surface tension at 25 ° C. of 25 mN / m to 38 mN / The contact angle at 25 ° C. with a SiO 2 substrate having a surface free energy of 70 mN / m or more and 80 mN / m or less and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less is 13 It is the sealing agent for organic EL display elements which is below a degree.
The present invention is described in detail below. In addition, about the matter common to the sealing agent for organic EL display elements of this invention 1 and the sealing agent for organic EL display elements of this invention 2, it describes as "the sealing agent for organic EL display elements of this invention". To do.
本発明者らは、有機EL表示素子用封止剤を薄膜化しようとした場合に塗布性に劣るものとなる原因が、フレキシブル化に対応して用いられているSiO2等の無機材料膜上に存在するSiN等の異物を起点として該異物周辺の封止剤にはじきが生じたり、基板や無機材料膜の凹凸に封止剤が追従できていなかったりすることにあると考えた。そこで本発明者らは鋭意検討した結果、表面自由エネルギーがそれぞれ特定の範囲であるSiO2基板及びSiN基板との接触角をいずれも特定値以下とすることにより、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤を得ることができることを見出し、本発明を完成させるに至った。
The inventors of the present invention have found that the cause of inferior applicability when an organic EL display element sealant is made thin is on an inorganic material film such as SiO 2 that is used for flexibility. It was thought that the sealant around the foreign matter was repelled starting from foreign matter such as SiN present in the substrate, or the sealant could not follow the unevenness of the substrate or the inorganic material film. Therefore, as a result of intensive studies, the present inventors have determined that the contact angles with the SiO 2 substrate and the SiN substrate whose surface free energies are in a specific range are not more than a specific value, thereby reducing the thickness. The present inventors have found that a sealing agent for organic EL display elements excellent in applicability to a substrate or an inorganic material film can be obtained, and the present invention has been completed.
本発明の有機EL表示素子用封止剤は、表面自由エネルギーが70mN/m以上80mN/m以下のSiO2基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板との25℃における接触角がいずれも13度以下である。上記接触角がいずれも13度以下であることにより、本発明の有機EL表示素子用封止剤は、異物を起点とするはじきを防止する効果、及び、基板や無機材料膜に対する濡れ性に優れるものとなる。上記接触角はいずれも10度以下であることが好ましく、8度以下であることがより好ましく、6度以下であることが更に好ましい。一方、表面ムラに起因するエッジ流れを抑制する観点からは、上記接触角はいずれも5度以上であることが好ましく、8度以上であることがより好ましい。
本明細書において上記「表面自由エネルギー」は、25℃における水とヨウ化メチレンの接触角から、Owens-Wendy方式による評価方法で測定したものであり、具体的には接触角計を用いて測定された値を意味する。上記接触角計としては、例えば、MSA(KRUSS社製)等が挙げられる。
また、本明細書において上記「接触角」は、25℃において、インクジェット吐出装置を用いて、液滴量10pLにて、上述した表面自由エネルギーを有するSiO2基板及びSiN基板から0.5mmの高さより、封止剤を各基板に吐出した際の、着弾から約10秒後の封止剤の液滴の各基板に対する角度として測定される値を意味する。上記インクジェット吐出装置としては、例えば、NanoPrinter500(マイクロジェット社製)等が挙げられ、封止剤の吐出は、周波数20kHzの条件で行われる。上記「封止剤の液滴の各基板に対する角度」は、接触角計の基板観察カメラにて取り込んだ画像を、画像処理ソフトを用いて測定される値を意味する。上記接触角計としては、例えば、CAM200(KSV INSTRUMENTS社製)等が挙げられ、上記画像処理ソフトとしては、例えば、CAM2008(KSV INSTRUMENTS社製)等が挙げられる。 The encapsulant for organic EL display elements of the present invention is at 25 ° C. with a SiO 2 substrate having a surface free energy of 70 mN / m to 80 mN / m and a SiN substrate having a surface free energy of 50 mN / m to 60 mN / m. The contact angles are all 13 degrees or less. When both of the contact angles are 13 degrees or less, the organic EL display element sealing agent of the present invention is excellent in the effect of preventing repelling starting from a foreign substance and the wettability with respect to a substrate or an inorganic material film. It will be a thing. The contact angles are preferably 10 degrees or less, more preferably 8 degrees or less, and still more preferably 6 degrees or less. On the other hand, from the viewpoint of suppressing edge flow caused by surface unevenness, the contact angles are preferably 5 degrees or more, and more preferably 8 degrees or more.
In the present specification, the “surface free energy” is measured by an evaluation method based on the Owens-Wendy method from the contact angle between water and methylene iodide at 25 ° C., and specifically, measured using a contact angle meter. Means the value. Examples of the contact angle meter include MSA (manufactured by KRUS).
Further, in the present specification, the “contact angle” is a high value of 0.5 mm from the above-described SiO 2 substrate and SiN substrate having the surface free energy at 25 ° C. using an inkjet discharge device and a droplet amount of 10 pL. In addition, it means a value measured as an angle of each droplet of the sealing agent about 10 seconds after landing when the sealing agent is discharged onto each substrate. Examples of the inkjet discharge device include NanoPrinter 500 (manufactured by Microjet Co., Ltd.), and the sealing agent is discharged under the condition of a frequency of 20 kHz. The above “angle of the sealing agent droplet with respect to each substrate” means a value obtained by measuring an image captured by the substrate observation camera of the contact angle meter using image processing software. Examples of the contact angle meter include CAM200 (manufactured by KSV INSTRUMENTS), and examples of the image processing software include CAM2008 (manufactured by KSV INSTRUMENTS).
本明細書において上記「表面自由エネルギー」は、25℃における水とヨウ化メチレンの接触角から、Owens-Wendy方式による評価方法で測定したものであり、具体的には接触角計を用いて測定された値を意味する。上記接触角計としては、例えば、MSA(KRUSS社製)等が挙げられる。
また、本明細書において上記「接触角」は、25℃において、インクジェット吐出装置を用いて、液滴量10pLにて、上述した表面自由エネルギーを有するSiO2基板及びSiN基板から0.5mmの高さより、封止剤を各基板に吐出した際の、着弾から約10秒後の封止剤の液滴の各基板に対する角度として測定される値を意味する。上記インクジェット吐出装置としては、例えば、NanoPrinter500(マイクロジェット社製)等が挙げられ、封止剤の吐出は、周波数20kHzの条件で行われる。上記「封止剤の液滴の各基板に対する角度」は、接触角計の基板観察カメラにて取り込んだ画像を、画像処理ソフトを用いて測定される値を意味する。上記接触角計としては、例えば、CAM200(KSV INSTRUMENTS社製)等が挙げられ、上記画像処理ソフトとしては、例えば、CAM2008(KSV INSTRUMENTS社製)等が挙げられる。 The encapsulant for organic EL display elements of the present invention is at 25 ° C. with a SiO 2 substrate having a surface free energy of 70 mN / m to 80 mN / m and a SiN substrate having a surface free energy of 50 mN / m to 60 mN / m. The contact angles are all 13 degrees or less. When both of the contact angles are 13 degrees or less, the organic EL display element sealing agent of the present invention is excellent in the effect of preventing repelling starting from a foreign substance and the wettability with respect to a substrate or an inorganic material film. It will be a thing. The contact angles are preferably 10 degrees or less, more preferably 8 degrees or less, and still more preferably 6 degrees or less. On the other hand, from the viewpoint of suppressing edge flow caused by surface unevenness, the contact angles are preferably 5 degrees or more, and more preferably 8 degrees or more.
In the present specification, the “surface free energy” is measured by an evaluation method based on the Owens-Wendy method from the contact angle between water and methylene iodide at 25 ° C., and specifically, measured using a contact angle meter. Means the value. Examples of the contact angle meter include MSA (manufactured by KRUS).
Further, in the present specification, the “contact angle” is a high value of 0.5 mm from the above-described SiO 2 substrate and SiN substrate having the surface free energy at 25 ° C. using an inkjet discharge device and a droplet amount of 10 pL. In addition, it means a value measured as an angle of each droplet of the sealing agent about 10 seconds after landing when the sealing agent is discharged onto each substrate. Examples of the inkjet discharge device include NanoPrinter 500 (manufactured by Microjet Co., Ltd.), and the sealing agent is discharged under the condition of a frequency of 20 kHz. The above “angle of the sealing agent droplet with respect to each substrate” means a value obtained by measuring an image captured by the substrate observation camera of the contact angle meter using image processing software. Examples of the contact angle meter include CAM200 (manufactured by KSV INSTRUMENTS), and examples of the image processing software include CAM2008 (manufactured by KSV INSTRUMENTS).
上記接触角をいずれも13度以下とする方法としては、例えば、硬化性樹脂全体の溶解度パラメータを後述する範囲とする方法、各基板に対して濡れ性の良い樹脂を組み合わせる方法等が挙げられる。
また、上記接触角をいずれも5度以上とする方法としては、例えば、表面張力の高い樹脂を添加する方法、各基板に対して濡れ性の良い樹脂と良くない樹脂とを組み合わせる方法等が挙げられる。 Examples of the method of setting the contact angles to 13 degrees or less include a method of setting the solubility parameter of the entire curable resin in a range described later, a method of combining a resin having good wettability with each substrate, and the like.
Examples of the method for setting the above contact angles to 5 degrees or more include, for example, a method of adding a resin having a high surface tension, a method of combining a resin having good wettability with a resin that is not good for each substrate, and the like. It is done.
また、上記接触角をいずれも5度以上とする方法としては、例えば、表面張力の高い樹脂を添加する方法、各基板に対して濡れ性の良い樹脂と良くない樹脂とを組み合わせる方法等が挙げられる。 Examples of the method of setting the contact angles to 13 degrees or less include a method of setting the solubility parameter of the entire curable resin in a range described later, a method of combining a resin having good wettability with each substrate, and the like.
Examples of the method for setting the above contact angles to 5 degrees or more include, for example, a method of adding a resin having a high surface tension, a method of combining a resin having good wettability with a resin that is not good for each substrate, and the like. It is done.
本発明1の有機EL表示素子用封止剤は、25℃における粘度の好ましい上限が30mPa・sである。上記粘度が30mPa・s以下であることにより、本発明1の有機EL表示素子用封止剤は、インクジェット塗布性に優れるものとなる。本発明1の有機EL表示素子用封止剤の粘度のより好ましい上限は20mPa・sである。
また、本発明1の有機EL表示素子用封止剤の粘度の好ましい下限は5mPa・sである。
なお、本明細書において上記「粘度」は、E型粘度計を用いて、25℃、100rpmの条件で測定される値を意味する。 As for the sealing agent for organic EL display elements of this invention 1, the preferable upper limit of the viscosity in 25 degreeC is 30 mPa * s. By the said viscosity being 30 mPa * s or less, the sealing agent for organic EL display elements of this invention 1 is excellent in inkjet applicability | paintability. The upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 20 mPa * s.
Moreover, the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 5 mPa * s.
In the present specification, the “viscosity” means a value measured using an E-type viscometer under the conditions of 25 ° C. and 100 rpm.
また、本発明1の有機EL表示素子用封止剤の粘度の好ましい下限は5mPa・sである。
なお、本明細書において上記「粘度」は、E型粘度計を用いて、25℃、100rpmの条件で測定される値を意味する。 As for the sealing agent for organic EL display elements of this invention 1, the preferable upper limit of the viscosity in 25 degreeC is 30 mPa * s. By the said viscosity being 30 mPa * s or less, the sealing agent for organic EL display elements of this invention 1 is excellent in inkjet applicability | paintability. The upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 20 mPa * s.
Moreover, the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 1 is 5 mPa * s.
In the present specification, the “viscosity” means a value measured using an E-type viscometer under the conditions of 25 ° C. and 100 rpm.
本発明2の有機EL表示素子用封止剤は、25℃における粘度の好ましい上限が30mPa・sである。上記粘度が30mPa・s以下であることにより、本発明2の有機EL表示素子用封止剤は、インクジェット塗布性により優れるものとなる。本発明2の有機EL表示素子用封止剤の粘度のより好ましい上限は20mPa・sである。
また、本発明2の有機EL表示素子用封止剤の粘度の好ましい下限は5mPa・sである。 As for the sealing agent for organic EL display elements of this invention 2, the preferable upper limit of the viscosity in 25 degreeC is 30 mPa * s. When the viscosity is 30 mPa · s or less, the organic EL display element sealant of the second aspect of the present invention is more excellent in ink jet coatability. The upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 20 mPa * s.
Moreover, the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 5 mPa * s.
また、本発明2の有機EL表示素子用封止剤の粘度の好ましい下限は5mPa・sである。 As for the sealing agent for organic EL display elements of this invention 2, the preferable upper limit of the viscosity in 25 degreeC is 30 mPa * s. When the viscosity is 30 mPa · s or less, the organic EL display element sealant of the second aspect of the present invention is more excellent in ink jet coatability. The upper limit with a more preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 20 mPa * s.
Moreover, the minimum with a preferable viscosity of the sealing agent for organic EL display elements of this invention 2 is 5 mPa * s.
本発明1の有機EL表示素子用封止剤は、25℃における有機EL表示素子用封止剤全体の表面張力が25mN/m以上38mN/m以下である。上記表面張力がこの範囲であることにより、本発明1の有機EL表示素子用封止剤は、インクジェット塗布性に優れるものとなる。本発明の有機EL表示素子用封止剤全体の表面張力の好ましい下限は26mN/m、好ましい上限は37mN/m、より好ましい下限は27mN/m、より好ましい上限は35mN/mである。
なお、本明細書において上記「表面張力」は、25℃において動的濡れ性試験機により測定される値を意味する。 The sealing agent for organic EL display elements of the present invention 1 has a surface tension of the whole sealing agent for organic EL display elements at 25 ° C. of 25 mN / m or more and 38 mN / m or less. When the surface tension is within this range, the organic EL display element sealant of the first aspect of the invention has excellent ink jet coating properties. The preferable lower limit of the surface tension of the whole encapsulant for organic EL display elements of the present invention is 26 mN / m, the preferable upper limit is 37 mN / m, the more preferable lower limit is 27 mN / m, and the more preferable upper limit is 35 mN / m.
In the present specification, the “surface tension” means a value measured by a dynamic wettability tester at 25 ° C.
なお、本明細書において上記「表面張力」は、25℃において動的濡れ性試験機により測定される値を意味する。 The sealing agent for organic EL display elements of the present invention 1 has a surface tension of the whole sealing agent for organic EL display elements at 25 ° C. of 25 mN / m or more and 38 mN / m or less. When the surface tension is within this range, the organic EL display element sealant of the first aspect of the invention has excellent ink jet coating properties. The preferable lower limit of the surface tension of the whole encapsulant for organic EL display elements of the present invention is 26 mN / m, the preferable upper limit is 37 mN / m, the more preferable lower limit is 27 mN / m, and the more preferable upper limit is 35 mN / m.
In the present specification, the “surface tension” means a value measured by a dynamic wettability tester at 25 ° C.
本発明2の有機EL表示素子用封止剤は、25℃における有機EL表示素子用封止剤全体の表面張力が25mN/m以上38mN/m以下である。上記表面張力がこの範囲であることにより、本発明2の有機EL表示素子用封止剤は、インクジェット塗布性により優れるものとなる。本発明の有機EL表示素子用封止剤全体の表面張力の好ましい下限は26mN/m、好ましい上限は37mN/m、より好ましい下限は27mN/m、より好ましい上限は35mN/mである。
In the sealing agent for organic EL display elements of the present invention 2, the surface tension of the whole sealing agent for organic EL display elements at 25 ° C. is 25 mN / m or more and 38 mN / m or less. When the surface tension is within this range, the organic EL display element sealant of the second aspect of the present invention is superior in ink jet coating properties. The preferable lower limit of the surface tension of the whole encapsulant for organic EL display elements of the present invention is 26 mN / m, the preferable upper limit is 37 mN / m, the more preferable lower limit is 27 mN / m, and the more preferable upper limit is 35 mN / m.
本発明の有機EL表示素子用封止剤は、硬化性樹脂を含有する。
本発明の有機EL表示素子用封止剤は、上記硬化性樹脂全体の溶解度パラメータ(以下、「SP値」ともいう)が16.5(J/cm3)1/2以上19.5(J/cm3)1/2以下であることが好ましい。上記硬化性樹脂全体のSP値がこの範囲であることにより、本発明の有機EL表示素子用封止剤は、異物を起点とするはじきを防止する効果、及び、基板や無機材料膜に対する濡れ性により優れるものとなる。上記硬化性樹脂全体のSP値のより好ましい下限は17.0(J/cm3)1/2、より好ましい上限は19.2(J/cm3)1/2であり、更に好ましい下限は17.7(J/cm3)1/2、更に好ましい上限は19.0(J/cm3)1/2である。
なお、本明細書において上記「溶解度パラメータ」は、Fedorsの推算法により算出される値である。また、上記「硬化性樹脂全体の溶解度パラメータ」は、有機EL表示素子用封止剤に用いる各硬化性樹脂構成成分の重量分率による溶解度パラメータの平均値を意味する。 The sealing agent for organic EL display elements of this invention contains curable resin.
The sealing agent for organic EL display elements of the present invention has a solubility parameter (hereinafter also referred to as “SP value”) of the entire curable resin of 16.5 (J / cm 3 ) 1/2 or more and 19.5 (J / Cm 3 ) 1/2 or less is preferable. When the SP value of the entire curable resin is in this range, the encapsulant for organic EL display elements of the present invention has an effect of preventing repellence starting from foreign matters, and wettability with respect to a substrate or an inorganic material film. It will be better. The more preferable lower limit of the SP value of the entire curable resin is 17.0 (J / cm 3 ) 1/2 , the more preferable upper limit is 19.2 (J / cm 3 ) 1/2 , and the more preferable lower limit is 17 0.7 (J / cm 3 ) 1/2 and a more preferable upper limit is 19.0 (J / cm 3 ) 1/2 .
In the present specification, the “solubility parameter” is a value calculated by Fedors' estimation method. The “solubility parameter of the entire curable resin” means the average value of the solubility parameter based on the weight fraction of each curable resin component used in the sealant for organic EL display elements.
本発明の有機EL表示素子用封止剤は、上記硬化性樹脂全体の溶解度パラメータ(以下、「SP値」ともいう)が16.5(J/cm3)1/2以上19.5(J/cm3)1/2以下であることが好ましい。上記硬化性樹脂全体のSP値がこの範囲であることにより、本発明の有機EL表示素子用封止剤は、異物を起点とするはじきを防止する効果、及び、基板や無機材料膜に対する濡れ性により優れるものとなる。上記硬化性樹脂全体のSP値のより好ましい下限は17.0(J/cm3)1/2、より好ましい上限は19.2(J/cm3)1/2であり、更に好ましい下限は17.7(J/cm3)1/2、更に好ましい上限は19.0(J/cm3)1/2である。
なお、本明細書において上記「溶解度パラメータ」は、Fedorsの推算法により算出される値である。また、上記「硬化性樹脂全体の溶解度パラメータ」は、有機EL表示素子用封止剤に用いる各硬化性樹脂構成成分の重量分率による溶解度パラメータの平均値を意味する。 The sealing agent for organic EL display elements of this invention contains curable resin.
The sealing agent for organic EL display elements of the present invention has a solubility parameter (hereinafter also referred to as “SP value”) of the entire curable resin of 16.5 (J / cm 3 ) 1/2 or more and 19.5 (J / Cm 3 ) 1/2 or less is preferable. When the SP value of the entire curable resin is in this range, the encapsulant for organic EL display elements of the present invention has an effect of preventing repellence starting from foreign matters, and wettability with respect to a substrate or an inorganic material film. It will be better. The more preferable lower limit of the SP value of the entire curable resin is 17.0 (J / cm 3 ) 1/2 , the more preferable upper limit is 19.2 (J / cm 3 ) 1/2 , and the more preferable lower limit is 17 0.7 (J / cm 3 ) 1/2 and a more preferable upper limit is 19.0 (J / cm 3 ) 1/2 .
In the present specification, the “solubility parameter” is a value calculated by Fedors' estimation method. The “solubility parameter of the entire curable resin” means the average value of the solubility parameter based on the weight fraction of each curable resin component used in the sealant for organic EL display elements.
本発明の有機EL表示素子用封止剤は、上記硬化性樹脂として2種以上の硬化性樹脂を含有し、各硬化性樹脂間のSP値の差が5(J/cm3)1/2以下となる硬化性樹脂の全硬化性樹脂に対する含有量が95重量%以上であることが好ましい。即ち、各硬化性樹脂間におけるSP値の差が5(J/cm3)1/2を超える硬化性樹脂の組み合わせが存在しないように2以上の硬化性樹脂について含有量の和を求めた際に、全硬化性樹脂に対して95重量%以上となる組み合わせが存在する。各硬化性樹脂間のSP値の差が5(J/cm3)1/2以下となる硬化性樹脂の含有量が95重量%以上であることにより、得られる有機EL表示素子用封止剤が、異物を起点とするはじきを防止する効果、及び、基板や無機材料膜に対する濡れ性により優れるものとなる。各硬化性樹脂間のSP値の差が5(J/cm3)1/2以下となる硬化性樹脂の含有量は、98重量%以上であることがより好ましく、99重量%以上であることが更に好ましく、99.9重量%以上であることが更により好ましく、99.99重量%以上であることが特に好ましい。
本発明の有機EL表示素子用封止剤は、上記硬化性樹脂として2種以上の上記硬化性樹脂を含有し、各硬化性樹脂間のSP値の最大差が5(J/cm3)1/2以下であることが好ましい。即ち、SP値の差が5(J/cm3)1/2を超える硬化性樹脂の組み合わせが存在しないことが好ましい。上記各硬化性樹脂間のSP値の最大差が5(J/cm3)1/2以下であることにより、得られる有機EL表示素子用封止剤が、異物を起点とするはじきを防止する効果、及び、基板や無機材料膜に対する濡れ性により優れるものとなる。上記各硬化性樹脂間のSP値の最大差は4(J/cm3)1/2以下であることがより好ましい。 The sealing agent for organic EL display elements of this invention contains 2 or more types of curable resin as said curable resin, and the difference of SP value between each curable resin is 5 (J / cm < 3 >) <1/2 >. It is preferable that content with respect to all the curable resin of the curable resin used as the following is 95 weight% or more. That is, when calculating the sum of the contents of two or more curable resins so that there is no combination of curable resins in which the difference in SP value between the curable resins exceeds 5 (J / cm 3 ) 1/2 In addition, there is a combination of 95% by weight or more based on the total curable resin. The sealing agent for organic EL display elements obtained by the content of the curable resin having a difference in SP value between each curable resin being 5 (J / cm 3 ) 1/2 or less is 95% by weight or more. However, it is excellent in the effect of preventing repelling starting from a foreign substance and the wettability with respect to the substrate and the inorganic material film. The content of the curable resin in which the difference in SP value between the curable resins is 5 (J / cm 3 ) 1/2 or less is more preferably 98% by weight or more, and 99% by weight or more. Is more preferably 99.9% by weight or more, and particularly preferably 99.99% by weight or more.
The sealing agent for organic EL display elements of this invention contains 2 or more types of said curable resin as said curable resin, and the maximum difference of SP value between each curable resin is 5 (J / cm < 3 >) < 1 >. / 2 or less is preferable. That is, it is preferable that there is no combination of curable resins in which the difference in SP value exceeds 5 (J / cm 3 ) 1/2 . When the maximum difference in SP value between the curable resins is 5 (J / cm 3 ) ½ or less, the obtained sealing agent for organic EL display elements prevents repelling starting from foreign matters. The effect and the wettability with respect to the substrate and the inorganic material film are excellent. The maximum difference in SP value between the curable resins is more preferably 4 (J / cm 3 ) 1/2 or less.
本発明の有機EL表示素子用封止剤は、上記硬化性樹脂として2種以上の上記硬化性樹脂を含有し、各硬化性樹脂間のSP値の最大差が5(J/cm3)1/2以下であることが好ましい。即ち、SP値の差が5(J/cm3)1/2を超える硬化性樹脂の組み合わせが存在しないことが好ましい。上記各硬化性樹脂間のSP値の最大差が5(J/cm3)1/2以下であることにより、得られる有機EL表示素子用封止剤が、異物を起点とするはじきを防止する効果、及び、基板や無機材料膜に対する濡れ性により優れるものとなる。上記各硬化性樹脂間のSP値の最大差は4(J/cm3)1/2以下であることがより好ましい。 The sealing agent for organic EL display elements of this invention contains 2 or more types of curable resin as said curable resin, and the difference of SP value between each curable resin is 5 (J / cm < 3 >) <1/2 >. It is preferable that content with respect to all the curable resin of the curable resin used as the following is 95 weight% or more. That is, when calculating the sum of the contents of two or more curable resins so that there is no combination of curable resins in which the difference in SP value between the curable resins exceeds 5 (J / cm 3 ) 1/2 In addition, there is a combination of 95% by weight or more based on the total curable resin. The sealing agent for organic EL display elements obtained by the content of the curable resin having a difference in SP value between each curable resin being 5 (J / cm 3 ) 1/2 or less is 95% by weight or more. However, it is excellent in the effect of preventing repelling starting from a foreign substance and the wettability with respect to the substrate and the inorganic material film. The content of the curable resin in which the difference in SP value between the curable resins is 5 (J / cm 3 ) 1/2 or less is more preferably 98% by weight or more, and 99% by weight or more. Is more preferably 99.9% by weight or more, and particularly preferably 99.99% by weight or more.
The sealing agent for organic EL display elements of this invention contains 2 or more types of said curable resin as said curable resin, and the maximum difference of SP value between each curable resin is 5 (J / cm < 3 >) < 1 >. / 2 or less is preferable. That is, it is preferable that there is no combination of curable resins in which the difference in SP value exceeds 5 (J / cm 3 ) 1/2 . When the maximum difference in SP value between the curable resins is 5 (J / cm 3 ) ½ or less, the obtained sealing agent for organic EL display elements prevents repelling starting from foreign matters. The effect and the wettability with respect to the substrate and the inorganic material film are excellent. The maximum difference in SP value between the curable resins is more preferably 4 (J / cm 3 ) 1/2 or less.
本発明の有機EL表示素子用封止剤における硬化性樹脂全体のSP値及び各硬化性樹脂成分のSP値は、有機EL表示素子用封止剤をクロマトグラフで精製すること、又は、GC-MS、LC-MS等の組成分析を行うことにより構造及び組成を特定し、SP値を計算して求めることができる。
The SP value of the entire curable resin and the SP value of each curable resin component in the sealing agent for organic EL display elements of the present invention can be determined by purifying the sealing agent for organic EL display elements by chromatography or GC- The structure and composition can be specified by performing composition analysis such as MS and LC-MS, and the SP value can be calculated.
上記硬化性樹脂は、シロキサン骨格を有する化合物を含有することが好ましい。上記シロキサン骨格を有する化合物を含有することにより、得られる有機EL表示素子用封止剤の表面張力を調整することが容易となり、得られる塗膜が平坦性により優れるものとなる。
The curable resin preferably contains a compound having a siloxane skeleton. By containing the compound having the siloxane skeleton, it becomes easy to adjust the surface tension of the obtained sealing agent for organic EL display elements, and the resulting coating film is more excellent in flatness.
上記シロキサン骨格を有する化合物としては、例えば、シロキサン骨格を有するエポキシ化合物、シロキサン骨格を有するオキセタン化合物、シロキサン骨格を有する(メタ)アクリル化合物等が挙げられる。なかでも、下記式(1)で表される化合物が好ましい。
なお、本明細書において、上記「(メタ)アクリル」は、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」は、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」は、アクリロイル又はメタクリロイルを意味する。 Examples of the compound having a siloxane skeleton include an epoxy compound having a siloxane skeleton, an oxetane compound having a siloxane skeleton, and a (meth) acryl compound having a siloxane skeleton. Especially, the compound represented by following formula (1) is preferable.
In the present specification, the above “(meth) acryl” means acryl or methacryl, the above “(meth) acryl compound” means a compound having a (meth) acryloyl group, and the above “(meth) “Acryloyl” means acryloyl or methacryloyl.
なお、本明細書において、上記「(メタ)アクリル」は、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」は、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」は、アクリロイル又はメタクリロイルを意味する。 Examples of the compound having a siloxane skeleton include an epoxy compound having a siloxane skeleton, an oxetane compound having a siloxane skeleton, and a (meth) acryl compound having a siloxane skeleton. Especially, the compound represented by following formula (1) is preferable.
In the present specification, the above “(meth) acryl” means acryl or methacryl, the above “(meth) acryl compound” means a compound having a (meth) acryloyl group, and the above “(meth) “Acryloyl” means acryloyl or methacryloyl.
式(1)中、R1は、炭素数1以上10以下のアルキル基を表し、X1、X2は、それぞれ独立に、炭素数1以上10以下のアルキル基、又は、下記式(2-1)、(2-2)、(2-3)、若しくは、(2-4)で表される基を表し、X3は、下記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される基を表す。mは、0以上100以下の整数であり、nは、0以上100以下の整数である。ただし、nが0の場合、X1及びX2のうち少なくとも一方は、下記式(2-1)、(2-2)、(2-3)、又は、(2-4)で表される基を表す。
In Formula (1), R 1 represents an alkyl group having 1 to 10 carbon atoms, and X 1 and X 2 are each independently an alkyl group having 1 to 10 carbon atoms, or the following formula (2- 1), (2-2), (2-3) or a group represented by (2-4), and X 3 represents the following formulas (2-1), (2-2), (2 -3) or a group represented by (2-4). m is an integer from 0 to 100, and n is an integer from 0 to 100. However, when n is 0, at least one of X 1 and X 2 is represented by the following formula (2-1), (2-2), (2-3), or (2-4) Represents a group.
式(2-1)~(2-4)中、R2は、結合手又は炭素数1以上6以下のアルキレン基を表し、式(2-3)中、R3は、水素又は炭素数1以上6以下のアルキル基を表し、R4は、結合手又はメチレン基を表し、式(2-4)中、R5は、水素又はメチル基を表す。
In formulas (2-1) to (2-4), R 2 represents a bond or an alkylene group having 1 to 6 carbon atoms, and in formula (2-3), R 3 represents hydrogen or 1 carbon atom. Represents an alkyl group of 6 or less, R 4 represents a bond or a methylene group, and in formula (2-4), R 5 represents hydrogen or a methyl group.
上記シロキサン骨格を有する化合物は、得られる有機EL表示素子用封止剤の保存安定性、基板や無機材料膜に対する密着性、インクジェット塗布する場合の吐出安定性等の観点から、有機EL表示素子用封止剤に配合する前に予め精製して数平均分子量10万以上の高分子量体を除去したものであることが好ましい。
具体的には、上記シロキサン骨格を有する化合物は、数平均分子量10万以上の高分子量体の含有割合が0.5%以下であることが好ましい。
なお、本明細書において、上記数平均分子量、及び、上記高分子量体の含有割合は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。また、上記高分子量体の含有割合もGPCによって測定することができる。GPCによってポリスチレン換算による数平均分子量、及び、上記高分子量体の含有割合を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。また、高分子量体の含有割合については、上記GPCの面積比から算出される。 The compound having a siloxane skeleton is used for organic EL display elements from the viewpoints of storage stability of the obtained sealing agent for organic EL display elements, adhesion to substrates and inorganic material films, and ejection stability when inkjet coating is performed. It is preferable that the polymer having a number average molecular weight of 100,000 or more is removed in advance before blending with the sealant.
Specifically, the content ratio of the high molecular weight compound having a number average molecular weight of 100,000 or more is preferably 0.5% or less in the compound having the siloxane skeleton.
In the present specification, the number average molecular weight and the content ratio of the high molecular weight substance are values obtained by measuring in polystyrene using gel permeation chromatography (GPC) using tetrahydrofuran as a solvent. . Moreover, the content rate of the said high molecular weight body can also be measured by GPC. Examples of the column used for measuring the number average molecular weight in terms of polystyrene by GPC and the content ratio of the high molecular weight substance include Shodex LF-804 (manufactured by Showa Denko KK). Further, the content ratio of the high molecular weight substance is calculated from the area ratio of the GPC.
具体的には、上記シロキサン骨格を有する化合物は、数平均分子量10万以上の高分子量体の含有割合が0.5%以下であることが好ましい。
なお、本明細書において、上記数平均分子量、及び、上記高分子量体の含有割合は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。また、上記高分子量体の含有割合もGPCによって測定することができる。GPCによってポリスチレン換算による数平均分子量、及び、上記高分子量体の含有割合を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。また、高分子量体の含有割合については、上記GPCの面積比から算出される。 The compound having a siloxane skeleton is used for organic EL display elements from the viewpoints of storage stability of the obtained sealing agent for organic EL display elements, adhesion to substrates and inorganic material films, and ejection stability when inkjet coating is performed. It is preferable that the polymer having a number average molecular weight of 100,000 or more is removed in advance before blending with the sealant.
Specifically, the content ratio of the high molecular weight compound having a number average molecular weight of 100,000 or more is preferably 0.5% or less in the compound having the siloxane skeleton.
In the present specification, the number average molecular weight and the content ratio of the high molecular weight substance are values obtained by measuring in polystyrene using gel permeation chromatography (GPC) using tetrahydrofuran as a solvent. . Moreover, the content rate of the said high molecular weight body can also be measured by GPC. Examples of the column used for measuring the number average molecular weight in terms of polystyrene by GPC and the content ratio of the high molecular weight substance include Shodex LF-804 (manufactured by Showa Denko KK). Further, the content ratio of the high molecular weight substance is calculated from the area ratio of the GPC.
上記シロキサン骨格を有する化合物を精製する方法としては、例えば、蒸留して精製する方法、カラムを用いて精製する方法等が挙げられる。
Examples of the method for purifying the compound having a siloxane skeleton include a method for purification by distillation, a method for purification using a column, and the like.
上記シロキサン骨格を有する化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
The compounds having a siloxane skeleton may be used alone or in combination of two or more.
上記硬化性樹脂中における上記シロキサン骨格を有する化合物の含有量は、40重量%未満であることが好ましい。上記シロキサン骨格を有する化合物の含有量が40重量%未満であることにより、得られる有機EL表示素子用封止剤が濡れ広がり性により優れるものとなる。上記シロキサン骨格を有する化合物の含有量のより好ましい上限は35重量%である。
また、上記硬化性樹脂中における上記シロキサン骨格を有する化合物の含有量の好ましい下限は0.1重量%である。上記シロキサン骨格を有する化合物の含有量が0.1重量%以上であることにより、得られる有機EL表示素子用封止剤の表面張力を調整することがより容易となる。 The content of the compound having a siloxane skeleton in the curable resin is preferably less than 40% by weight. When the content of the compound having a siloxane skeleton is less than 40% by weight, the obtained sealing agent for organic EL display elements has better wettability. The upper limit with more preferable content of the compound which has the said siloxane skeleton is 35 weight%.
Moreover, the minimum with preferable content of the compound which has the said siloxane skeleton in the said curable resin is 0.1 weight%. When the content of the compound having a siloxane skeleton is 0.1% by weight or more, it becomes easier to adjust the surface tension of the obtained sealing agent for organic EL display elements.
また、上記硬化性樹脂中における上記シロキサン骨格を有する化合物の含有量の好ましい下限は0.1重量%である。上記シロキサン骨格を有する化合物の含有量が0.1重量%以上であることにより、得られる有機EL表示素子用封止剤の表面張力を調整することがより容易となる。 The content of the compound having a siloxane skeleton in the curable resin is preferably less than 40% by weight. When the content of the compound having a siloxane skeleton is less than 40% by weight, the obtained sealing agent for organic EL display elements has better wettability. The upper limit with more preferable content of the compound which has the said siloxane skeleton is 35 weight%.
Moreover, the minimum with preferable content of the compound which has the said siloxane skeleton in the said curable resin is 0.1 weight%. When the content of the compound having a siloxane skeleton is 0.1% by weight or more, it becomes easier to adjust the surface tension of the obtained sealing agent for organic EL display elements.
上記シロキサン骨格を有する化合物以外の上記硬化性樹脂としては、例えば、シロキサン骨格を有さないエポキシ化合物(以下、単に「エポキシ化合物」ともいう)、シロキサン骨格を有さないオキセタン化合物(以下、単に「オキセタン化合物」ともいう)、シロキサン骨格を有さないビニルエーテル化合物(以下、単に「ビニルエーテル化合物」ともいう)、シロキサン骨格を有さない(メタ)アクリル化合物(以下、単に「(メタ)アクリル化合物」ともいう)等が挙げられる。
Examples of the curable resin other than the compound having a siloxane skeleton include, for example, an epoxy compound having no siloxane skeleton (hereinafter, also simply referred to as “epoxy compound”), and an oxetane compound having no siloxane skeleton (hereinafter, simply “ An oxetane compound), a vinyl ether compound having no siloxane skeleton (hereinafter also simply referred to as “vinyl ether compound”), a (meth) acryl compound having no siloxane skeleton (hereinafter simply referred to as “(meth) acryl compound”). And the like).
上記エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノールO型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、脂環式エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。なかでも、揮発し難く、得られる有機EL表示素子用封止剤がインクジェット塗布性により優れるものとなること等から、アルキルポリオール型エポキシ化合物が好ましく、ネオペンチルグリコールジグリシジルエーテルが最も好ましい。
上記エポキシ化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the epoxy compounds include bisphenol A type epoxy compounds, bisphenol E type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol O type epoxy compounds, 2,2′-diallyl bisphenol A type epoxy compounds, Alicyclic epoxy compounds, hydrogenated bisphenol type epoxy compounds, propylene oxide added bisphenol A type epoxy compounds, resorcinol type epoxy compounds, biphenyl type epoxy compounds, sulfide type epoxy compounds, diphenyl ether type epoxy compounds, dicyclopentadiene type epoxy compounds, naphthalene Type epoxy compound, phenol novolac type epoxy compound, orthocresol novolac type epoxy compound, dicyclopentadiene novo Examples thereof include a rack type epoxy compound, a biphenyl novolac type epoxy compound, a naphthalenephenol novolak type epoxy compound, a glycidylamine type epoxy compound, an alkyl polyol type epoxy compound, a rubber-modified epoxy compound, and a glycidyl ester compound. Among these, an alkyl polyol type epoxy compound is preferable, and neopentyl glycol diglycidyl ether is most preferable because it is difficult to volatilize and the obtained sealing agent for organic EL display elements is excellent in ink jet coating properties.
The said epoxy compound may be used independently and 2 or more types may be used in combination.
上記エポキシ化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the epoxy compounds include bisphenol A type epoxy compounds, bisphenol E type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol O type epoxy compounds, 2,2′-diallyl bisphenol A type epoxy compounds, Alicyclic epoxy compounds, hydrogenated bisphenol type epoxy compounds, propylene oxide added bisphenol A type epoxy compounds, resorcinol type epoxy compounds, biphenyl type epoxy compounds, sulfide type epoxy compounds, diphenyl ether type epoxy compounds, dicyclopentadiene type epoxy compounds, naphthalene Type epoxy compound, phenol novolac type epoxy compound, orthocresol novolac type epoxy compound, dicyclopentadiene novo Examples thereof include a rack type epoxy compound, a biphenyl novolac type epoxy compound, a naphthalenephenol novolak type epoxy compound, a glycidylamine type epoxy compound, an alkyl polyol type epoxy compound, a rubber-modified epoxy compound, and a glycidyl ester compound. Among these, an alkyl polyol type epoxy compound is preferable, and neopentyl glycol diglycidyl ether is most preferable because it is difficult to volatilize and the obtained sealing agent for organic EL display elements is excellent in ink jet coating properties.
The said epoxy compound may be used independently and 2 or more types may be used in combination.
上記オキセタン化合物としては、例えば、3-(アリルオキシ)オキセタン、フェノキシメチルオキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-((2-エチルヘキシルオキシ)メチル)オキセタン、3-エチル-3-((3-(トリエトキシシリル)プロポキシ)メチル)オキセタン、3-エチル-3(((3-エチルオキセタン-3-イル)メトキシ)メチル)オキセタン、フェノールノボラックオキセタン、1,4-ビス(((3-エチル-3-オキセタニル)メトキシ)メチル)ベンゼン等が挙げられる。なかでも、硬化性及び低アウトガス性に優れることから、3-エチル-3(((3-エチルオキセタン-3-イル)メトキシ)メチル)オキセタンが好ましい。
上記オキセタン化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the oxetane compound include 3- (allyloxy) oxetane, phenoxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3-((2 -Ethylhexyloxy) methyl) oxetane, 3-ethyl-3-((3- (triethoxysilyl) propoxy) methyl) oxetane, 3-ethyl-3 ((((3-ethyloxetane-3-yl) methoxy) methyl) And oxetane, phenol novolac oxetane, 1,4-bis (((3-ethyl-3-oxetanyl) methoxy) methyl) benzene, and the like. Among these, 3-ethyl-3 (((3-ethyloxetane-3-yl) methoxy) methyl) oxetane is preferable because of excellent curability and low outgassing properties.
The said oxetane compound may be used independently and 2 or more types may be used in combination.
上記オキセタン化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the oxetane compound include 3- (allyloxy) oxetane, phenoxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3-((2 -Ethylhexyloxy) methyl) oxetane, 3-ethyl-3-((3- (triethoxysilyl) propoxy) methyl) oxetane, 3-ethyl-3 ((((3-ethyloxetane-3-yl) methoxy) methyl) And oxetane, phenol novolac oxetane, 1,4-bis (((3-ethyl-3-oxetanyl) methoxy) methyl) benzene, and the like. Among these, 3-ethyl-3 (((3-ethyloxetane-3-yl) methoxy) methyl) oxetane is preferable because of excellent curability and low outgassing properties.
The said oxetane compound may be used independently and 2 or more types may be used in combination.
上記ビニルエーテル化合物としては、例えば、ベンジルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、ジシクロペンタジエンビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、トリプロピレングリコールジビニルエーテル等が挙げられる。
上記ビニルエーテル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the vinyl ether compound include benzyl vinyl ether, cyclohexane dimethanol monovinyl ether, dicyclopentadiene vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, dipropylene glycol. Examples thereof include divinyl ether and tripropylene glycol divinyl ether.
The said vinyl ether compound may be used independently and 2 or more types may be used in combination.
上記ビニルエーテル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the vinyl ether compound include benzyl vinyl ether, cyclohexane dimethanol monovinyl ether, dicyclopentadiene vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, dipropylene glycol. Examples thereof include divinyl ether and tripropylene glycol divinyl ether.
The said vinyl ether compound may be used independently and 2 or more types may be used in combination.
上記(メタ)アクリル化合物としては、例えば、グリシジル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アリレート、1,12-ドデカンジオールジ(メタ)アクリレート、ラウリル(メタ)アクリレート等が挙げられる。
上記(メタ)アクリル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。 Examples of the (meth) acrylic compound include glycidyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dicyclopentenyl (meth) acrylate, and di Cyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, trimethylolpropane tri (meth) arylate, 1,12-dodecanediol di (meth) acrylate, lauryl (meth) acrylate Etc.
The said (meth) acryl compound may be used independently and 2 or more types may be used in combination.
In the present specification, the “(meth) acrylate” means acrylate or methacrylate.
上記(メタ)アクリル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。 Examples of the (meth) acrylic compound include glycidyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dicyclopentenyl (meth) acrylate, and di Cyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, trimethylolpropane tri (meth) arylate, 1,12-dodecanediol di (meth) acrylate, lauryl (meth) acrylate Etc.
The said (meth) acryl compound may be used independently and 2 or more types may be used in combination.
In the present specification, the “(meth) acrylate” means acrylate or methacrylate.
本発明の有機EL表示素子用封止剤は、重合開始剤を含有する。
上記重合開始剤としては、光カチオン重合開始剤や熱カチオン重合開始剤が好適に用いられる。また、上記硬化性樹脂の種類に応じて、光ラジカル重合開始剤、熱ラジカル重合開始剤も好適に用いられる。 The sealing agent for organic EL display elements of the present invention contains a polymerization initiator.
As the polymerization initiator, a photocationic polymerization initiator or a thermal cationic polymerization initiator is preferably used. Moreover, according to the kind of said curable resin, a radical photopolymerization initiator and a thermal radical polymerization initiator are also used suitably.
上記重合開始剤としては、光カチオン重合開始剤や熱カチオン重合開始剤が好適に用いられる。また、上記硬化性樹脂の種類に応じて、光ラジカル重合開始剤、熱ラジカル重合開始剤も好適に用いられる。 The sealing agent for organic EL display elements of the present invention contains a polymerization initiator.
As the polymerization initiator, a photocationic polymerization initiator or a thermal cationic polymerization initiator is preferably used. Moreover, according to the kind of said curable resin, a radical photopolymerization initiator and a thermal radical polymerization initiator are also used suitably.
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生型であってもよいし、非イオン性光酸発生型であってもよい。
The photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be.
上記イオン性光酸発生型の光カチオン重合開始剤のアニオン部分としては、例えば、BF4
-、PF6
-、SbF6
-、(BX4)-(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)等が挙げられる。また、上記アニオン部分としては、PFm(CnF2n+1)6-m
-(但し、式中、mは0以上5以下の整数であり、nは1以上6以下の整数である)等も挙げられる。
上記イオン性光酸発生型の光カチオン重合開始剤としては、例えば、上記アニオン部分を有する、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ジアゾニウム塩、芳香族アンモニウム塩、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩等が挙げられる。 Examples of the anion portion of the ionic photoacid-generating photocationic polymerization initiator include BF 4 − , PF 6 − , SbF 6 − , (BX 4 ) − (where X is at least two or more fluorine atoms) Or a phenyl group substituted with a trifluoromethyl group). Examples of the anion moiety include PF m (C n F 2n + 1 ) 6-m − (wherein, m is an integer of 0 or more and 5 or less, and n is an integer of 1 or more and 6 or less). Can be mentioned.
Examples of the ionic photoacid-generating photocationic polymerization initiator include aromatic sulfonium salts, aromatic iodonium salts, aromatic diazonium salts, aromatic ammonium salts having the above anion moiety, and (2,4-cyclohexane). And pentadien-1-yl) ((1-methylethyl) benzene) -Fe salt.
上記イオン性光酸発生型の光カチオン重合開始剤としては、例えば、上記アニオン部分を有する、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ジアゾニウム塩、芳香族アンモニウム塩、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩等が挙げられる。 Examples of the anion portion of the ionic photoacid-generating photocationic polymerization initiator include BF 4 − , PF 6 − , SbF 6 − , (BX 4 ) − (where X is at least two or more fluorine atoms) Or a phenyl group substituted with a trifluoromethyl group). Examples of the anion moiety include PF m (C n F 2n + 1 ) 6-m − (wherein, m is an integer of 0 or more and 5 or less, and n is an integer of 1 or more and 6 or less). Can be mentioned.
Examples of the ionic photoacid-generating photocationic polymerization initiator include aromatic sulfonium salts, aromatic iodonium salts, aromatic diazonium salts, aromatic ammonium salts having the above anion moiety, and (2,4-cyclohexane). And pentadien-1-yl) ((1-methylethyl) benzene) -Fe salt.
上記芳香族スルホニウム塩としては、例えば、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、トリス(4-(4-アセチルフェニル)チオフェニル)スルホニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
Examples of the aromatic sulfonium salt include bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluoroantimonate, and bis (4- ( Diphenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (diphenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4- ( Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetrafluoroborate, diphenyl-4- (phenylthio) Phenylsulfonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrafluoroborate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, bis (4- (di ( 4- (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide bishexafluoroantimonate, Bis (4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (di ( - (2-hydroxyethoxy)) phenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, tris (4- (4-acetylphenyl) thiophenyl) sulfonium tetrakis (pentafluorophenyl) borate, and the like.
上記芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
Examples of the aromatic iodonium salt include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexa Fluorophosphate, 4-methylphenyl-4- (1-methylethyl) Such as phenyl iodonium hexafluoroantimonate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrafluoroborate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrakis (pentafluorophenyl) borate Can be mentioned.
上記芳香族ジアゾニウム塩としては、例えば、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、フェニルジアゾニウムテトラフルオロボレート、フェニルジアゾニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
Examples of the aromatic diazonium salt include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
上記芳香族アンモニウム塩としては、例えば、1-ベンジル-2-シアノピリジニウムヘキサフルオロホスフェート、1-ベンジル-2-シアノピリジニウムヘキサフルオロアンチモネート、1-ベンジル-2-シアノピリジニウムテトラフルオロボレート、1-ベンジル-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロホスフェート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロアンチモネート、1-(ナフチルメチル)-2-シアノピリジニウムテトラフルオロボレート、1-(ナフチルメチル)-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
Examples of the aromatic ammonium salt include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl -2-Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl) Examples include -2-cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate.
上記(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩としては、例えば、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロホスフェート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラフルオロボレート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
Examples of the (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe salt include (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene. ) -Fe (II) hexafluorophosphate, (2,4-cyclopentadiene-1-yl) ((1-methylethyl) benzene) -Fe (II) hexafluoroantimonate, (2,4-cyclopentadiene-1 -Yl) ((1-methylethyl) benzene) -Fe (II) tetrafluoroborate, (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe (II) tetrakis (penta Fluorophenyl) borate and the like.
上記非イオン性光酸発生型の光カチオン重合開始剤としては、例えば、ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N-ヒドロキシイミドスルホネート等が挙げられる。
Examples of the nonionic photoacid-generating photocationic polymerization initiator include nitrobenzyl ester, sulfonic acid derivative, phosphoric acid ester, phenol sulfonic acid ester, diazonaphthoquinone, N-hydroxyimide sulfonate, and the like.
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、みどり化学社製の光カチオン重合開始剤、ユニオンカーバイド社製の光カチオン重合開始剤、ADEKA社製の光カチオン重合開始剤、3M社製の光カチオン重合開始剤、BASF社製の光カチオン重合開始剤、ローディア社製の光カチオン重合開始剤、サンアプロ社製の光カチオン重合開始剤等が挙げられる。
上記みどり化学社製の光カチオン重合開始剤としては、例えば、DTS-200等が挙げられる。
上記ユニオンカーバイド社製の光カチオン重合開始剤としては、例えば、UVI6990、UVI6974等が挙げられる。
上記ADEKA社製の光カチオン重合開始剤としては、例えば、SP-150、SP-170等が挙げられる。
上記3M社製の光カチオン重合開始剤としては、例えば、FC-508、FC-512等が挙げられる。
上記BASF社製の光カチオン重合開始剤としては、例えば、IRGACURE261、IRGACURE290等が挙げられる。
上記ローディア社製の光カチオン重合開始剤としては、例えば、PI2074等が挙げられる。
上記サンアプロ社製の光カチオン重合開始剤としては、例えば、CPI-100P、CPI-200K、CPI-210S等が挙げられる。 Examples of commercially available photocationic polymerization initiators include, for example, a photocationic polymerization initiator manufactured by Midori Chemical Co., a photocationic polymerization initiator manufactured by Union Carbide, a photocationic polymerization initiator manufactured by ADEKA, Examples thereof include a photocationic polymerization initiator manufactured by 3M, a photocationic polymerization initiator manufactured by BASF, a photocationic polymerization initiator manufactured by Rhodia, and a photocationic polymerization initiator manufactured by San Apro.
Examples of the photocationic polymerization initiator manufactured by Midori Chemical Co., Ltd. include DTS-200.
Examples of the cationic photopolymerization initiator manufactured by Union Carbide include UVI6990, UVI6974, and the like.
Examples of the photocation polymerization initiator manufactured by ADEKA include SP-150 and SP-170.
Examples of the cationic photopolymerization initiator manufactured by 3M include FC-508, FC-512, and the like.
Examples of the cationic photopolymerization initiator manufactured by BASF include IRGACURE261, IRGACURE290, and the like.
Examples of the photocationic polymerization initiator manufactured by Rhodia include PI 2074.
Examples of the cationic photopolymerization initiator manufactured by Sun Apro include CPI-100P, CPI-200K, CPI-210S, and the like.
上記みどり化学社製の光カチオン重合開始剤としては、例えば、DTS-200等が挙げられる。
上記ユニオンカーバイド社製の光カチオン重合開始剤としては、例えば、UVI6990、UVI6974等が挙げられる。
上記ADEKA社製の光カチオン重合開始剤としては、例えば、SP-150、SP-170等が挙げられる。
上記3M社製の光カチオン重合開始剤としては、例えば、FC-508、FC-512等が挙げられる。
上記BASF社製の光カチオン重合開始剤としては、例えば、IRGACURE261、IRGACURE290等が挙げられる。
上記ローディア社製の光カチオン重合開始剤としては、例えば、PI2074等が挙げられる。
上記サンアプロ社製の光カチオン重合開始剤としては、例えば、CPI-100P、CPI-200K、CPI-210S等が挙げられる。 Examples of commercially available photocationic polymerization initiators include, for example, a photocationic polymerization initiator manufactured by Midori Chemical Co., a photocationic polymerization initiator manufactured by Union Carbide, a photocationic polymerization initiator manufactured by ADEKA, Examples thereof include a photocationic polymerization initiator manufactured by 3M, a photocationic polymerization initiator manufactured by BASF, a photocationic polymerization initiator manufactured by Rhodia, and a photocationic polymerization initiator manufactured by San Apro.
Examples of the photocationic polymerization initiator manufactured by Midori Chemical Co., Ltd. include DTS-200.
Examples of the cationic photopolymerization initiator manufactured by Union Carbide include UVI6990, UVI6974, and the like.
Examples of the photocation polymerization initiator manufactured by ADEKA include SP-150 and SP-170.
Examples of the cationic photopolymerization initiator manufactured by 3M include FC-508, FC-512, and the like.
Examples of the cationic photopolymerization initiator manufactured by BASF include IRGACURE261, IRGACURE290, and the like.
Examples of the photocationic polymerization initiator manufactured by Rhodia include PI 2074.
Examples of the cationic photopolymerization initiator manufactured by Sun Apro include CPI-100P, CPI-200K, CPI-210S, and the like.
上記熱カチオン重合開始剤としては、アニオン部分がBF4
-、PF6
-、SbF6
-、又は、(BX4)-(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)で構成される、スルホニウム塩、ホスホニウム塩、アンモニウム塩等が挙げられる。なかでも、スルホニウム塩、アンモニウム塩が好ましい。
As the thermal cationic polymerization initiator, the anion moiety is BF 4 − , PF 6 − , SbF 6 − , or (BX 4 ) − (where X is substituted with at least two fluorine or trifluoromethyl groups A sulfonium salt, a phosphonium salt, an ammonium salt, and the like. Of these, sulfonium salts and ammonium salts are preferable.
上記スルホニウム塩としては、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート等が挙げられる。
Examples of the sulfonium salt include triphenylsulfonium tetrafluoroborate and triphenylsulfonium hexafluoroantimonate.
上記ホスホニウム塩としては、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、テトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。
Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
上記アンモニウム塩としては、例えば、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メトキシベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロテトラキス(ペンタフルオロフェニル)ボレート、メチルフェニルジベンジルアンモニウムヘキサフルオロホスフェート、メチルフェニルジベンジルアンモニウムヘキサフルオロアンチモネート、メチルフェニルジベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、フェニルトリベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(3,4-ジメチルベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチル-N-ベンジルアニリニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルアニリニウムテトラフルオロボレート、N,N-ジメチル-N-ベンジルピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルピリジニウムトリフルオロメタンスルホン酸等が挙げられる。
Examples of the ammonium salt include dimethylphenyl (4-methoxybenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methoxybenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methoxybenzyl) ammonium tetrakis (pentafluorophenyl). Borate, dimethylphenyl (4-methylbenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methylbenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methylbenzyl) ammonium hexafluorotetrakis (pentafluorophenyl) borate, methylphenyl Dibenzylammonium hexafluorophosphate, methylphenyldibenzylammonium Safluoroantimonate, methylphenyldibenzylammonium tetrakis (pentafluorophenyl) borate, phenyltribenzylammonium tetrakis (pentafluorophenyl) borate, dimethylphenyl (3,4-dimethylbenzyl) ammonium tetrakis (pentafluorophenyl) borate, N , N-dimethyl-N-benzylanilinium hexafluoroantimonate, N, N-diethyl-N-benzylanilinium tetrafluoroborate, N, N-dimethyl-N-benzylpyridinium hexafluoroantimonate, N, N-diethyl -N-benzylpyridinium trifluoromethanesulfonic acid and the like.
上記熱カチオン重合開始剤のうち市販されているものとしては、例えば、三新化学工業社製の熱カチオン重合開始剤、King Industries社製の熱カチオン重合開始剤等が挙げられる。
上記三新化学工業社製の熱カチオン重合開始剤としては、例えば、サンエイドSI-60、サンエイドSI-80、サンエイドSI-B3、サンエイドSI-B3A、サンエイドSI-B4等が挙げられる。
上記King Industries社製の熱カチオン重合開始剤としては、例えば、CXC1612、CXC1821等が挙げられる。 Examples of commercially available thermal cationic polymerization initiators include thermal cationic polymerization initiators manufactured by Sanshin Chemical Industry, thermal cationic polymerization initiators manufactured by King Industries, and the like.
Examples of the thermal cationic polymerization initiator manufactured by Sanshin Chemical Industry Co., Ltd. include Sun-Aid SI-60, Sun-Aid SI-80, Sun-Aid SI-B3, Sun-Aid SI-B3A, and Sun-Aid SI-B4.
Examples of the thermal cationic polymerization initiator manufactured by King Industries include CXC1612 and CXC1821.
上記三新化学工業社製の熱カチオン重合開始剤としては、例えば、サンエイドSI-60、サンエイドSI-80、サンエイドSI-B3、サンエイドSI-B3A、サンエイドSI-B4等が挙げられる。
上記King Industries社製の熱カチオン重合開始剤としては、例えば、CXC1612、CXC1821等が挙げられる。 Examples of commercially available thermal cationic polymerization initiators include thermal cationic polymerization initiators manufactured by Sanshin Chemical Industry, thermal cationic polymerization initiators manufactured by King Industries, and the like.
Examples of the thermal cationic polymerization initiator manufactured by Sanshin Chemical Industry Co., Ltd. include Sun-Aid SI-60, Sun-Aid SI-80, Sun-Aid SI-B3, Sun-Aid SI-B3A, and Sun-Aid SI-B4.
Examples of the thermal cationic polymerization initiator manufactured by King Industries include CXC1612 and CXC1821.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン系化合物等が挙げられる。
Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone compounds, and the like.
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、BASF社製の光ラジカル重合開始剤、東京化成工業社製の光ラジカル重合開始剤等が挙げられる。
上記BASF社製の光ラジカル重合開始剤としては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO等が挙げられる。
上記東京化成工業社製の光ラジカル重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。 As what is marketed among the said radical photopolymerization initiators, the radical photopolymerization initiator by BASF, the radical photopolymerization initiator by Tokyo Chemical Industry, etc. are mentioned, for example.
Examples of the radical photopolymerization initiator manufactured by BASF include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucyrin TPO.
Examples of the photo radical polymerization initiator manufactured by Tokyo Chemical Industry Co., Ltd. include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
上記BASF社製の光ラジカル重合開始剤としては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO等が挙げられる。
上記東京化成工業社製の光ラジカル重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。 As what is marketed among the said radical photopolymerization initiators, the radical photopolymerization initiator by BASF, the radical photopolymerization initiator by Tokyo Chemical Industry, etc. are mentioned, for example.
Examples of the radical photopolymerization initiator manufactured by BASF include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, and Lucyrin TPO.
Examples of the photo radical polymerization initiator manufactured by Tokyo Chemical Industry Co., Ltd. include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。
上記アゾ化合物としては、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル等が挙げられる。
上記有機過酸化物としては、例えば、過酸化ベンゾイル、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
Examples of the azo compound include 2,2′-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile, and the like.
Examples of the organic peroxide include benzoyl peroxide, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記アゾ化合物としては、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル等が挙げられる。
上記有機過酸化物としては、例えば、過酸化ベンゾイル、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
Examples of the azo compound include 2,2′-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile, and the like.
Examples of the organic peroxide include benzoyl peroxide, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記熱ラジカル重合開始剤のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of commercially available thermal radical polymerization initiators include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, and V-501 (all of which are FUJIFILM Wako Pure Chemical Industries, Ltd.). Manufactured) and the like.
上記重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記重合開始剤の含有量が0.01重量部以上であることにより、得られる有機EL表示素子用封止剤が硬化性により優れるものとなる。上記重合開始剤の含有量が10重量部以下であることにより、得られる有機EL表示素子用封止剤の硬化反応が速くなりすぎず、作業性により優れるものとなり、硬化物をより均一なものとすることができる。上記重合開始剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は5重量部である。
The content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the polymerization initiator is 0.01 parts by weight or more, the obtained sealing agent for organic EL display elements is more excellent in curability. When the content of the polymerization initiator is 10 parts by weight or less, the curing reaction of the obtained sealing agent for organic EL display elements does not become too fast, the workability is improved, and the cured product is more uniform. It can be. The minimum with more preferable content of the said polymerization initiator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
本発明の有機EL表示素子用封止剤は、増感剤を含有してもよい。上記増感剤は、上記重合開始剤の重合開始効率をより向上させて、本発明の有機EL表示素子用封止剤の硬化反応をより促進させる役割を有する。
The sealing agent for organic EL display elements of the present invention may contain a sensitizer. The sensitizer has a role of further improving the polymerization initiation efficiency of the polymerization initiator and further promoting the curing reaction of the sealing agent for organic EL display elements of the present invention.
上記増感剤としては、例えば、アントラセン化合物や、チオキサントン化合物や、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等が挙げられる。
上記アントラセン化合物としては、例えば、9,10-ジブトキシアントラセン等が挙げられる。
上記チオキサントン化合物としては、例えば、2,4-ジエチルチオキサントン等が挙げられる。 Examples of the sensitizer include anthracene compounds, thioxanthone compounds, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, Examples include 4,4′-bis (dimethylamino) benzophenone and 4-benzoyl-4′-methyldiphenyl sulfide.
Examples of the anthracene compound include 9,10-dibutoxyanthracene.
Examples of the thioxanthone compound include 2,4-diethylthioxanthone.
上記アントラセン化合物としては、例えば、9,10-ジブトキシアントラセン等が挙げられる。
上記チオキサントン化合物としては、例えば、2,4-ジエチルチオキサントン等が挙げられる。 Examples of the sensitizer include anthracene compounds, thioxanthone compounds, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, Examples include 4,4′-bis (dimethylamino) benzophenone and 4-benzoyl-4′-methyldiphenyl sulfide.
Examples of the anthracene compound include 9,10-dibutoxyanthracene.
Examples of the thioxanthone compound include 2,4-diethylthioxanthone.
上記増感剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が3重量部である。上記増感剤の含有量が0.01重量部以上であることにより、増感効果がより発揮される。上記増感剤の含有量が3重量部以下であることにより、吸収が大きくなり過ぎずに深部まで光を伝えることができる。上記増感剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は1重量部である。
The content of the sensitizer is preferably 0.01 parts by weight and preferably 3 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the sensitizer is 0.01 parts by weight or more, the sensitizing effect is more exhibited. When the content of the sensitizer is 3 parts by weight or less, light can be transmitted to a deep part without excessive absorption. The minimum with more preferable content of the said sensitizer is 0.1 weight part, and a more preferable upper limit is 1 weight part.
本発明の有機EL表示素子用封止剤は、必要に応じて、シランカップリング剤、表面改質剤、補強剤、軟化剤、可塑剤、粘度調整剤、紫外線吸収剤、酸化防止剤等の添加剤を含有してもよい。
上記添加剤を含有する場合、得られる有機EL表示素子用封止剤の異物を起点とするはじき防止性、及び、基板や無機材料膜の凹凸への追従性により優れるものとする観点から、上記硬化性樹脂に含まれる各成分と該添加剤とのSP値の最大差は、5(J/cm3)1/2以下であることが好ましい。 The sealing agent for organic EL display elements of the present invention includes a silane coupling agent, a surface modifier, a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, an ultraviolet absorber, an antioxidant and the like as necessary. An additive may be contained.
In the case of containing the additive, from the viewpoint of being excellent in repellency prevention starting from the foreign matter of the sealing agent for organic EL display element obtained, and in conformity to irregularities of the substrate and the inorganic material film, The maximum difference in SP value between each component contained in the curable resin and the additive is preferably 5 (J / cm 3 ) 1/2 or less.
上記添加剤を含有する場合、得られる有機EL表示素子用封止剤の異物を起点とするはじき防止性、及び、基板や無機材料膜の凹凸への追従性により優れるものとする観点から、上記硬化性樹脂に含まれる各成分と該添加剤とのSP値の最大差は、5(J/cm3)1/2以下であることが好ましい。 The sealing agent for organic EL display elements of the present invention includes a silane coupling agent, a surface modifier, a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, an ultraviolet absorber, an antioxidant and the like as necessary. An additive may be contained.
In the case of containing the additive, from the viewpoint of being excellent in repellency prevention starting from the foreign matter of the sealing agent for organic EL display element obtained, and in conformity to irregularities of the substrate and the inorganic material film, The maximum difference in SP value between each component contained in the curable resin and the additive is preferably 5 (J / cm 3 ) 1/2 or less.
上記シランカップリング剤は、本発明の有機EL表示素子用封止剤と基板や無機材料膜との密着性を更に向上させる役割を有する。
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤は単独で用いられてもよいし、2種以上が併用されてもよい。 The said silane coupling agent has a role which further improves the adhesiveness of the sealing agent for organic EL display elements of this invention, and a board | substrate or an inorganic material film.
Examples of the silane coupling agent include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane coupling agents may be used independently and 2 or more types may be used together.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤は単独で用いられてもよいし、2種以上が併用されてもよい。 The said silane coupling agent has a role which further improves the adhesiveness of the sealing agent for organic EL display elements of this invention, and a board | substrate or an inorganic material film.
Examples of the silane coupling agent include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane coupling agents may be used independently and 2 or more types may be used together.
上記シランカップリング剤の含有量は、上記重合性化合物100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、余剰のシランカップリング剤がブリードアウトすることを抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。
The content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the polymerizable compound. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness is suppressed while suppressing the excess silane coupling agent from bleeding out. The minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
上記表面改質剤は、本発明の有機EL表示素子用封止剤の塗膜の平坦性を更に向上させる役割を有する。
上記表面改質剤としては、例えば、界面活性剤やレベリング剤等が挙げられる。 The said surface modifier has a role which further improves the flatness of the coating film of the sealing agent for organic EL display elements of this invention.
Examples of the surface modifier include surfactants and leveling agents.
上記表面改質剤としては、例えば、界面活性剤やレベリング剤等が挙げられる。 The said surface modifier has a role which further improves the flatness of the coating film of the sealing agent for organic EL display elements of this invention.
Examples of the surface modifier include surfactants and leveling agents.
上記表面改質剤としては、例えば、シリコーン系やフッ素系等のものが挙げられる。
上記表面改質剤のうち市販されているものとしては、例えば、ビックケミー・ジャパン社製の表面改質剤、AGCセイミケミカル社製の表面改質剤等が挙げられる。
上記ビックケミー・ジャパン社製の表面改質剤としては、例えば、BYK-340、BYK-345等が挙げられる。
上記AGCセイミケミカル社製の表面改質剤としては、例えば、サーフロンS-611等が挙げられる。 Examples of the surface modifier include silicone-based and fluorine-based ones.
Examples of commercially available surface modifiers include surface modifiers manufactured by Big Chemie Japan, and surface modifiers manufactured by AGC Seimi Chemical.
Examples of the surface modifier made by Big Chemie Japan include BYK-340, BYK-345, and the like.
Examples of the surface modifier made by AGC Seimi Chemical include Surflon S-611.
上記表面改質剤のうち市販されているものとしては、例えば、ビックケミー・ジャパン社製の表面改質剤、AGCセイミケミカル社製の表面改質剤等が挙げられる。
上記ビックケミー・ジャパン社製の表面改質剤としては、例えば、BYK-340、BYK-345等が挙げられる。
上記AGCセイミケミカル社製の表面改質剤としては、例えば、サーフロンS-611等が挙げられる。 Examples of the surface modifier include silicone-based and fluorine-based ones.
Examples of commercially available surface modifiers include surface modifiers manufactured by Big Chemie Japan, and surface modifiers manufactured by AGC Seimi Chemical.
Examples of the surface modifier made by Big Chemie Japan include BYK-340, BYK-345, and the like.
Examples of the surface modifier made by AGC Seimi Chemical include Surflon S-611.
本発明の有機EL表示素子用封止剤は、粘度調整等を目的として溶剤を含有してもよいが、残存した溶剤により、有機発光材料層が劣化したりアウトガスが発生したりする等の問題が生じるおそれがあるため、溶剤の含有量が0.05重量%以下であることが好ましく、溶剤を含有しないことが最も好ましい。
The encapsulant for organic EL display elements of the present invention may contain a solvent for the purpose of adjusting the viscosity, but problems such as deterioration of the organic light emitting material layer and generation of outgas due to the remaining solvent. Therefore, the content of the solvent is preferably 0.05% by weight or less, and most preferably no solvent is contained.
本発明の有機EL表示素子用封止剤を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、重合開始剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。
上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。 As a method for producing the sealing agent for organic EL display elements of the present invention, for example, using a mixer, additives such as a curable resin, a polymerization initiator, and a silane coupling agent to be added as necessary. And the like.
Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three roll.
上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。 As a method for producing the sealing agent for organic EL display elements of the present invention, for example, using a mixer, additives such as a curable resin, a polymerization initiator, and a silane coupling agent to be added as necessary. And the like.
Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three roll.
本発明の有機EL表示素子用封止剤の硬化物の波長380nm以上800nm以下における光の全光線透過率の好ましい下限は80%である。上記全光線透過率が80%以上であることにより、得られる有機EL表示素子が光学特性により優れるものとなる。上記全光線透過率のより好ましい下限は85%である。
上記全光線透過率は、例えば、分光計を用いて測定することができる。上記分光計としては、例えば、AUTOMATIC HAZE METER MODEL TC-III DPK(東京電色社製)等が挙げられる。
また、上記光線透過率、並びに、後述する透湿度及び含水率の測定に用いる硬化物は、例えば、LEDランプ等の光源を用いて波長365nmの紫外線を3000mJ/cm2照射することにより得ることができる。 The preferable minimum of the total light transmittance of the light in the wavelength of 380 nm or more and 800 nm or less of the hardened | cured material of the sealing agent for organic EL display elements of this invention is 80%. When the total light transmittance is 80% or more, the obtained organic EL display element has superior optical characteristics. A more preferable lower limit of the total light transmittance is 85%.
The total light transmittance can be measured using, for example, a spectrometer. Examples of the spectrometer include AUTOMATIC HAZE METER MODEL TC-III DPK (manufactured by Tokyo Denshoku Co., Ltd.).
Moreover, the hardened | cured material used for the measurement of the said light transmittance and the water vapor transmission rate and moisture content mentioned later can be obtained by irradiating 3000 mJ / cm < 2 > of ultraviolet rays with a wavelength of 365 nm using light sources, such as an LED lamp, for example. it can.
上記全光線透過率は、例えば、分光計を用いて測定することができる。上記分光計としては、例えば、AUTOMATIC HAZE METER MODEL TC-III DPK(東京電色社製)等が挙げられる。
また、上記光線透過率、並びに、後述する透湿度及び含水率の測定に用いる硬化物は、例えば、LEDランプ等の光源を用いて波長365nmの紫外線を3000mJ/cm2照射することにより得ることができる。 The preferable minimum of the total light transmittance of the light in the wavelength of 380 nm or more and 800 nm or less of the hardened | cured material of the sealing agent for organic EL display elements of this invention is 80%. When the total light transmittance is 80% or more, the obtained organic EL display element has superior optical characteristics. A more preferable lower limit of the total light transmittance is 85%.
The total light transmittance can be measured using, for example, a spectrometer. Examples of the spectrometer include AUTOMATIC HAZE METER MODEL TC-III DPK (manufactured by Tokyo Denshoku Co., Ltd.).
Moreover, the hardened | cured material used for the measurement of the said light transmittance and the water vapor transmission rate and moisture content mentioned later can be obtained by irradiating 3000 mJ / cm < 2 > of ultraviolet rays with a wavelength of 365 nm using light sources, such as an LED lamp, for example. it can.
本発明の有機EL表示素子用封止剤は、硬化物に紫外線を100時間照射した後の400nmにおける透過率が20μmの光路長にて85%以上であることが好ましい。上記紫外線を100時間照射した後の透過率が85%以上であることにより、透明性が高く、発光の損失が小さくなり、かつ、色再現性により優れるものとなる。上記紫外線を100時間照射した後の透過率のより好ましい下限は90%、更に好ましい下限は95%である。
上記紫外線を照射する光源としては、例えば、キセノンランプ、カーボンアークランプ等、従来公知の光源を用いることができる。 In the sealing agent for organic EL display elements of the present invention, the transmittance at 400 nm after irradiating the cured product with ultraviolet rays for 100 hours is preferably 85% or more at an optical path length of 20 μm. When the transmittance after irradiating the ultraviolet rays for 100 hours is 85% or more, the transparency is high, the loss of light emission is small, and the color reproducibility is excellent. A more preferable lower limit of the transmittance after irradiation with the ultraviolet rays for 100 hours is 90%, and a more preferable lower limit is 95%.
As the light source for irradiating the ultraviolet rays, a conventionally known light source such as a xenon lamp or a carbon arc lamp can be used.
上記紫外線を照射する光源としては、例えば、キセノンランプ、カーボンアークランプ等、従来公知の光源を用いることができる。 In the sealing agent for organic EL display elements of the present invention, the transmittance at 400 nm after irradiating the cured product with ultraviolet rays for 100 hours is preferably 85% or more at an optical path length of 20 μm. When the transmittance after irradiating the ultraviolet rays for 100 hours is 85% or more, the transparency is high, the loss of light emission is small, and the color reproducibility is excellent. A more preferable lower limit of the transmittance after irradiation with the ultraviolet rays for 100 hours is 90%, and a more preferable lower limit is 95%.
As the light source for irradiating the ultraviolet rays, a conventionally known light source such as a xenon lamp or a carbon arc lamp can be used.
本発明の有機EL表示素子用封止剤は、JIS Z 0208に準拠して、硬化物を85℃、85%RHの環境下に24時間暴露して測定した100μm厚での透湿度が100g/m2以下であることが好ましい。上記透湿度が100g/m2以下であることにより、硬化物中の水分による有機発光材料層の劣化を防止する効果により優れるものとなり、得られる有機EL表示素子が信頼性により優れるものとなる。
The sealant for an organic EL display device of the present invention has a moisture permeability of 100 g / 100 μm when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours in accordance with JIS Z 0208. m is preferably 2 or less. When the moisture permeability is 100 g / m 2 or less, the effect of preventing deterioration of the organic light-emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability.
本発明の有機EL表示素子用封止剤は、硬化物を85℃、85%RHの環境下に24時間暴露したときに、硬化物の含水率が0.5%未満であることが好ましい。上記硬化物の含水率が0.5%未満であることにより、硬化物中の水分による有機発光材料層の劣化を防止する効果により優れるものとなり、得られる有機EL表示素子が信頼性により優れるものとなる。上記硬化物の含水率のより好ましい上限は0.3%である。
上記含水率の測定方法としては、例えば、JIS K 7251に準拠してカールフィッシャー法により求める方法や、JIS K 7209-2に準拠して吸水後の重量増分を求める等の方法が挙げられる。 In the encapsulant for organic EL display elements of the present invention, the moisture content of the cured product is preferably less than 0.5% when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours. When the moisture content of the cured product is less than 0.5%, the effect of preventing the deterioration of the organic light emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability. It becomes. A more preferable upper limit of the moisture content of the cured product is 0.3%.
Examples of the method for measuring the moisture content include a method of obtaining by a Karl Fischer method in accordance with JIS K 7251, and a method of obtaining a weight increment after water absorption in accordance with JIS K 7209-2.
上記含水率の測定方法としては、例えば、JIS K 7251に準拠してカールフィッシャー法により求める方法や、JIS K 7209-2に準拠して吸水後の重量増分を求める等の方法が挙げられる。 In the encapsulant for organic EL display elements of the present invention, the moisture content of the cured product is preferably less than 0.5% when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours. When the moisture content of the cured product is less than 0.5%, the effect of preventing the deterioration of the organic light emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability. It becomes. A more preferable upper limit of the moisture content of the cured product is 0.3%.
Examples of the method for measuring the moisture content include a method of obtaining by a Karl Fischer method in accordance with JIS K 7251, and a method of obtaining a weight increment after water absorption in accordance with JIS K 7209-2.
本発明の有機EL表示素子用封止剤を用いて有機EL表示素子を製造する方法としては、例えば、インクジェット法により、本発明の有機EL表示素子用封止剤を基材に塗布する工程と、塗布した有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程とを有する方法等が挙げられる。
As a method for producing an organic EL display element using the sealing agent for organic EL display elements of the present invention, for example, a step of applying the sealing agent for organic EL display elements of the present invention to a substrate by an inkjet method, And a method of curing the applied sealing agent for organic EL display elements by light irradiation and / or heating.
本発明の有機EL表示素子用封止剤を基材に塗布する工程において、本発明の有機EL表示素子用封止剤は、基材の全面に塗布してもよく、基材の一部に塗布してもよい。塗布により形成される本発明の有機EL表示素子用封止剤の封止部の形状としては、有機発光材料層を有する積層体を外気から保護しうる形状であれば特に限定されず、該積層体を完全に被覆する形状であってもよいし、該積層体の周辺部に閉じたパターンを形成してもよいし、該積層体の周辺部に一部開口部を設けた形状のパターンを形成してもよい。
In the step of applying the organic EL display element sealant of the present invention to the substrate, the organic EL display element sealant of the present invention may be applied to the entire surface of the substrate, or on a part of the substrate. It may be applied. The shape of the sealing portion of the sealing agent for organic EL display elements of the present invention formed by coating is not particularly limited as long as it is a shape that can protect the laminate having the organic light emitting material layer from the outside air. A shape that completely covers the body may be formed, a closed pattern may be formed in the peripheral portion of the laminate, or a pattern having a shape in which a partial opening is provided in the peripheral portion of the laminate. It may be formed.
本発明の有機EL表示素子用封止剤を光照射により硬化させる場合、本発明の有機EL表示素子用封止剤は、300nm以上400nm以下の波長及び300mJ/cm2以上3000mJ/cm2以下の積算光量の光を照射することによって好適に硬化させることができる。
When curing the organic EL display element sealing agent of the present invention by light irradiation, the organic EL display sealant element of the present invention, 300 nm or more 400nm or less wavelength and 300 mJ / cm 2 or more 3000 mJ / cm 2 or less of It can be suitably cured by irradiating with an accumulated amount of light.
上記光照射に用いる光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、エキシマレーザ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、ナトリウムランプ、ハロゲンランプ、キセノンランプ、LEDランプ、蛍光灯、太陽光、電子線照射装置等が挙げられる。これらの光源は、単独で用いられてもよく、2種以上が併用されてもよい。
これらの光源は、上記光カチオン重合開始剤や光ラジカル重合開始剤の吸収波長に合わせて適宜選択される。 Examples of the light source used for the light irradiation include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, a sodium lamp, a halogen lamp, and a xenon. A lamp, an LED lamp, a fluorescent lamp, sunlight, an electron beam irradiation apparatus, etc. are mentioned. These light sources may be used independently and 2 or more types may be used together.
These light sources are appropriately selected according to the absorption wavelength of the photocationic polymerization initiator or the photoradical polymerization initiator.
これらの光源は、上記光カチオン重合開始剤や光ラジカル重合開始剤の吸収波長に合わせて適宜選択される。 Examples of the light source used for the light irradiation include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, a sodium lamp, a halogen lamp, and a xenon. A lamp, an LED lamp, a fluorescent lamp, sunlight, an electron beam irradiation apparatus, etc. are mentioned. These light sources may be used independently and 2 or more types may be used together.
These light sources are appropriately selected according to the absorption wavelength of the photocationic polymerization initiator or the photoradical polymerization initiator.
本発明の有機EL表示素子用封止剤への光の照射手段としては、例えば、各種光源の同時照射、時間差をおいての逐次照射、同時照射と逐次照射との組み合わせ照射等が挙げられ、いずれの照射手段を用いてもよい。
Examples of the light irradiation means to the organic EL display element sealant of the present invention include simultaneous irradiation of various light sources, sequential irradiation with a time difference, combined irradiation of simultaneous irradiation and sequential irradiation, and the like. Any irradiation means may be used.
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程により得られる硬化物は、更に無機材料膜で被覆されていてもよい。
上記無機材料膜を構成する無機材料としては、従来公知のものを用いることができ、例えば、窒化珪素(SiNx又はSiOXNY)や酸化珪素(SiOx)等が挙げられる。上記無機材料膜は、1層からなるものであってもよく、複数種の層を積層したものであってもよい。また、上記無機材料膜と本発明の有機EL表示素子用封止剤からなる樹脂膜とを、交互に繰り返して上記積層体を被覆してもよい。 The cured product obtained by the step of curing the organic EL display element sealing agent by light irradiation and / or heating may be further coated with an inorganic material film.
As the inorganic material forming the inorganic material layer can be a conventionally known, for example, silicon nitride (SiN x or SiO X N Y), silicon oxide (SiO x), and the like. The inorganic material film may be a single layer or may be a laminate of a plurality of types of layers. Moreover, you may coat | cover the said laminated body by repeating alternately the said inorganic material film | membrane and the resin film which consists of the sealing agent for organic EL display elements of this invention.
上記無機材料膜を構成する無機材料としては、従来公知のものを用いることができ、例えば、窒化珪素(SiNx又はSiOXNY)や酸化珪素(SiOx)等が挙げられる。上記無機材料膜は、1層からなるものであってもよく、複数種の層を積層したものであってもよい。また、上記無機材料膜と本発明の有機EL表示素子用封止剤からなる樹脂膜とを、交互に繰り返して上記積層体を被覆してもよい。 The cured product obtained by the step of curing the organic EL display element sealing agent by light irradiation and / or heating may be further coated with an inorganic material film.
As the inorganic material forming the inorganic material layer can be a conventionally known, for example, silicon nitride (SiN x or SiO X N Y), silicon oxide (SiO x), and the like. The inorganic material film may be a single layer or may be a laminate of a plurality of types of layers. Moreover, you may coat | cover the said laminated body by repeating alternately the said inorganic material film | membrane and the resin film which consists of the sealing agent for organic EL display elements of this invention.
上記有機EL表示素子を製造する方法は、本発明の有機EL表示素子用封止剤を塗布した基材(以下、「一方の基材」ともいう)と他方の基材とを貼り合わせる工程を有していてもよい。
本発明の有機EL表示素子用封止剤を塗布する基材(以下、「一方の基材」ともいう)は、有機発光材料層を有する積層体の形成されている基材であってもよく、該積層体の形成されていない基材であってもよい。
上記一方の基材が上記積層体の形成されていない基材である場合、上記他方の基材を貼り合わせた際に、上記積層体を外気から保護できるように上記一方の基材に本発明の有機EL表示素子用封止剤を塗布すればよい。即ち、他方の基材を貼り合わせた際に上記積層体の位置となる場所に全面的に塗布するか、又は、他方の基材を貼り合わせた際に上記積層体の位置となる場所が完全に収まる形状に、閉じたパターンの封止剤部を形成してもよい。 The method for producing the organic EL display element comprises a step of bonding a base material (hereinafter also referred to as “one base material”) coated with the organic EL display element sealing agent of the present invention and the other base material. You may have.
The substrate on which the sealing agent for organic EL display elements of the present invention is applied (hereinafter also referred to as “one substrate”) may be a substrate on which a laminate having an organic light emitting material layer is formed. A base material on which the laminate is not formed may be used.
When the one substrate is a substrate on which the laminate is not formed, the present invention is applied to the one substrate so that the laminate can be protected from the outside air when the other substrate is bonded. What is necessary is just to apply | coat the sealing agent for organic EL display elements. That is, apply the entire surface to the location of the laminate when the other substrate is bonded, or the location of the laminate is complete when the other substrate is bonded. The sealing agent portion having a closed pattern may be formed in a shape that fits in the shape.
本発明の有機EL表示素子用封止剤を塗布する基材(以下、「一方の基材」ともいう)は、有機発光材料層を有する積層体の形成されている基材であってもよく、該積層体の形成されていない基材であってもよい。
上記一方の基材が上記積層体の形成されていない基材である場合、上記他方の基材を貼り合わせた際に、上記積層体を外気から保護できるように上記一方の基材に本発明の有機EL表示素子用封止剤を塗布すればよい。即ち、他方の基材を貼り合わせた際に上記積層体の位置となる場所に全面的に塗布するか、又は、他方の基材を貼り合わせた際に上記積層体の位置となる場所が完全に収まる形状に、閉じたパターンの封止剤部を形成してもよい。 The method for producing the organic EL display element comprises a step of bonding a base material (hereinafter also referred to as “one base material”) coated with the organic EL display element sealing agent of the present invention and the other base material. You may have.
The substrate on which the sealing agent for organic EL display elements of the present invention is applied (hereinafter also referred to as “one substrate”) may be a substrate on which a laminate having an organic light emitting material layer is formed. A base material on which the laminate is not formed may be used.
When the one substrate is a substrate on which the laminate is not formed, the present invention is applied to the one substrate so that the laminate can be protected from the outside air when the other substrate is bonded. What is necessary is just to apply | coat the sealing agent for organic EL display elements. That is, apply the entire surface to the location of the laminate when the other substrate is bonded, or the location of the laminate is complete when the other substrate is bonded. The sealing agent portion having a closed pattern may be formed in a shape that fits in the shape.
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程は、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なってもよいし、上記一方の基材と上記他方の基材とを貼り合わせる工程の後に行なってもよい。
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程を、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なう場合、本発明の有機EL表示素子用封止剤は、光照射及び/又は加熱してから硬化反応が進行して接着ができなくなるまでの可使時間が1分以上であることが好ましい。上記可使時間が1分以上であることにより、上記一方の基材と上記他方の基材とを貼り合わせる前に硬化が進行し過ぎることなく、より高い接着強度を得ることができる。 The step of curing the organic EL display element sealant by light irradiation and / or heating may be performed before the step of bonding the one base material and the other base material, You may perform after the process of bonding a base material and said other base material.
When the step of curing the organic EL display element sealant by light irradiation and / or heating is performed before the step of bonding the one base material and the other base material, the organic EL display of the present invention. The device sealant preferably has a pot life of 1 minute or longer after irradiation with light and / or heating until the curing reaction proceeds and adhesion becomes impossible. When the pot life is 1 minute or longer, higher adhesion strength can be obtained without excessive curing before the one base material and the other base material are bonded together.
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程を、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なう場合、本発明の有機EL表示素子用封止剤は、光照射及び/又は加熱してから硬化反応が進行して接着ができなくなるまでの可使時間が1分以上であることが好ましい。上記可使時間が1分以上であることにより、上記一方の基材と上記他方の基材とを貼り合わせる前に硬化が進行し過ぎることなく、より高い接着強度を得ることができる。 The step of curing the organic EL display element sealant by light irradiation and / or heating may be performed before the step of bonding the one base material and the other base material, You may perform after the process of bonding a base material and said other base material.
When the step of curing the organic EL display element sealant by light irradiation and / or heating is performed before the step of bonding the one base material and the other base material, the organic EL display of the present invention. The device sealant preferably has a pot life of 1 minute or longer after irradiation with light and / or heating until the curing reaction proceeds and adhesion becomes impossible. When the pot life is 1 minute or longer, higher adhesion strength can be obtained without excessive curing before the one base material and the other base material are bonded together.
上記一方の基材と上記他方の基材とを貼り合わせる工程において、上記一方の基材と上記他方の基材とを貼り合わせる方法は特に限定されないが、減圧雰囲気下で貼り合わせることが好ましい。
上記減圧雰囲気下の真空度の好ましい下限は0.01kPa、好ましい上限は10kPaである。上記減圧雰囲気下の真空度がこの範囲であることにより、真空装置の気密性や真空ポンプの能力から真空状態を達成するのに長時間を費やすことなく、上記一方の基材と上記他方の基材とを貼り合わせる際の本発明の有機EL表示素子用封止剤中の気泡をより効率的に除去することができる。 In the step of bonding the one base material and the other base material, a method of bonding the one base material and the other base material is not particularly limited, but it is preferable to bond them in a reduced-pressure atmosphere.
The preferable lower limit of the degree of vacuum in the reduced-pressure atmosphere is 0.01 kPa, and the preferable upper limit is 10 kPa. When the degree of vacuum in the reduced-pressure atmosphere is within this range, the one base material and the other base material are not spent for a long time to achieve a vacuum state due to the airtightness of the vacuum device and the ability of the vacuum pump. Bubbles in the sealing agent for organic EL display elements of the present invention when the material is bonded can be more efficiently removed.
上記減圧雰囲気下の真空度の好ましい下限は0.01kPa、好ましい上限は10kPaである。上記減圧雰囲気下の真空度がこの範囲であることにより、真空装置の気密性や真空ポンプの能力から真空状態を達成するのに長時間を費やすことなく、上記一方の基材と上記他方の基材とを貼り合わせる際の本発明の有機EL表示素子用封止剤中の気泡をより効率的に除去することができる。 In the step of bonding the one base material and the other base material, a method of bonding the one base material and the other base material is not particularly limited, but it is preferable to bond them in a reduced-pressure atmosphere.
The preferable lower limit of the degree of vacuum in the reduced-pressure atmosphere is 0.01 kPa, and the preferable upper limit is 10 kPa. When the degree of vacuum in the reduced-pressure atmosphere is within this range, the one base material and the other base material are not spent for a long time to achieve a vacuum state due to the airtightness of the vacuum device and the ability of the vacuum pump. Bubbles in the sealing agent for organic EL display elements of the present invention when the material is bonded can be more efficiently removed.
本発明によれば、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where it thins, the sealing agent for organic EL display elements which is excellent in the applicability | paintability with respect to a board | substrate or an inorganic material film | membrane can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(SiO2基板の作製)
無アルカリガラス上に、ICP-CVD装置(セルバック社製)にてSiO2を1000nmの膜厚にて化学蒸着を行ってSiO2基版を作製した。蒸着後の表面自由エネルギーを、接触角計を用いて水とヨウ化メチレンの接触角から、Owens-Wendy方式による評価方法で測定したところ73.0mN/mであった。接触角計としては、MSA(KRUSS社製)を用いた。更に、XPS装置(アルバックファイ社製)にて、このSiO2膜中の原子比率を測定したところ、Si原子が31.3%に対して、O原子が63.2%であった。 (Production of SiO 2 substrate)
On the alkali-free glass, SiO 2 was chemically deposited with an ICP-CVD apparatus (manufactured by Celbach) at a film thickness of 1000 nm to prepare a SiO 2 base plate. The surface free energy after vapor deposition was measured by an evaluation method according to the Owens-Wendy method from the contact angle between water and methylene iodide using a contact angle meter, and found to be 73.0 mN / m. As a contact angle meter, MSA (made by KRUSS) was used. Furthermore, when the atomic ratio in the SiO 2 film was measured with an XPS apparatus (manufactured by ULVAC-PHI), the Si atom was 31.3% and the O atom was 63.2%.
無アルカリガラス上に、ICP-CVD装置(セルバック社製)にてSiO2を1000nmの膜厚にて化学蒸着を行ってSiO2基版を作製した。蒸着後の表面自由エネルギーを、接触角計を用いて水とヨウ化メチレンの接触角から、Owens-Wendy方式による評価方法で測定したところ73.0mN/mであった。接触角計としては、MSA(KRUSS社製)を用いた。更に、XPS装置(アルバックファイ社製)にて、このSiO2膜中の原子比率を測定したところ、Si原子が31.3%に対して、O原子が63.2%であった。 (Production of SiO 2 substrate)
On the alkali-free glass, SiO 2 was chemically deposited with an ICP-CVD apparatus (manufactured by Celbach) at a film thickness of 1000 nm to prepare a SiO 2 base plate. The surface free energy after vapor deposition was measured by an evaluation method according to the Owens-Wendy method from the contact angle between water and methylene iodide using a contact angle meter, and found to be 73.0 mN / m. As a contact angle meter, MSA (made by KRUSS) was used. Furthermore, when the atomic ratio in the SiO 2 film was measured with an XPS apparatus (manufactured by ULVAC-PHI), the Si atom was 31.3% and the O atom was 63.2%.
(SiN基板の作製)
無アルカリガラス上に、ICP-CVD装置(セルバック社製)にてSiNを1000nmの膜厚にて化学蒸着を行ってSiN基版を作製した。蒸着後の表面自由エネルギーを、接触角計を用いて水とヨウ化メチレンの接触角から、Owens-Wendy方式による評価方法で測定したところ58.0mN/mであった。接触角計としては、MSA(KRUSS社製)を用いた。更に、XPS装置(アルバックファイ社製)にて、このSiN膜中の原子比率を測定したところ、Si原子が44.8%に対して、N原子が48.0%であった。 (Production of SiN substrate)
On an alkali-free glass, SiN was chemically deposited with an ICP-CVD apparatus (manufactured by Cellvac) at a film thickness of 1000 nm to prepare a SiN base plate. The surface free energy after the deposition was measured by an evaluation method according to the Owens-Wendy method from the contact angle between water and methylene iodide using a contact angle meter, and found to be 58.0 mN / m. As a contact angle meter, MSA (made by KRUSS) was used. Further, when the atomic ratio in the SiN film was measured with an XPS apparatus (manufactured by ULVAC-PHI), N atoms were 48.0% with respect to 44.8% Si atoms.
無アルカリガラス上に、ICP-CVD装置(セルバック社製)にてSiNを1000nmの膜厚にて化学蒸着を行ってSiN基版を作製した。蒸着後の表面自由エネルギーを、接触角計を用いて水とヨウ化メチレンの接触角から、Owens-Wendy方式による評価方法で測定したところ58.0mN/mであった。接触角計としては、MSA(KRUSS社製)を用いた。更に、XPS装置(アルバックファイ社製)にて、このSiN膜中の原子比率を測定したところ、Si原子が44.8%に対して、N原子が48.0%であった。 (Production of SiN substrate)
On an alkali-free glass, SiN was chemically deposited with an ICP-CVD apparatus (manufactured by Cellvac) at a film thickness of 1000 nm to prepare a SiN base plate. The surface free energy after the deposition was measured by an evaluation method according to the Owens-Wendy method from the contact angle between water and methylene iodide using a contact angle meter, and found to be 58.0 mN / m. As a contact angle meter, MSA (made by KRUSS) was used. Further, when the atomic ratio in the SiN film was measured with an XPS apparatus (manufactured by ULVAC-PHI), N atoms were 48.0% with respect to 44.8% Si atoms.
(実施例1~9、比較例1~4)
表1、2に記載された配合比に従い、各材料を、ホモディスパー型撹拌混合機を用い、撹拌速度300rpmで均一に撹拌混合することにより、実施例1~9、比較例1~4の各有機EL表示素子用封止剤を作製した。ホモディスパー型撹拌混合機としては、ホモディスパーL型(プライミクス社製)を用いた。表中におけるシロキサン骨格を有する化合物としては、いずれも他の成分と混合する前に予め蒸留により精製したものを用いた。
表中のシロキサン骨格を有するオキセタン化合物としては、以下の方法で得られたものを用いた。即ち、1,1,3,3-テトラメチルジシロキサン0.1molと、アリルオキシオキセタン0.2molと、白金(0)-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体溶液(シグマ・アルドリッチ社製)100ppmとを混合し、80℃で5時間加熱した。アリルオキシオキセタンとしては、AL-OX(四日市合成社製)を用いた。NMRで反応の終了を確認し、得られた溶液を蒸留により精製することで、シロキサン骨格を有するオキセタン化合物として高純度のオキセタン変性ジシロキサン化合物を得た。1H-NMR、GPC、及び、FT-IR分析により、得られたオキセタン変性ジシロキサン化合物は、下記式(3)で表される化合物であることを確認した。
実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を用いて、上記「(SiO2基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO2基板及び上記「(SiN基板の作製)」で得られた表面自由エネルギーが58.0mN/mのSiN基板にそれぞれ吐出した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用い、封止剤の吐出は、25℃、液滴量10pL、800μmピッチ、基板から0.5mmの高さからの滴下、及び、周波数20kHzの条件で行った。着弾から約10秒後の封止剤の液滴について、接触角計の基板観察カメラにて取り込んだ画像を、画像処理ソフトを用いて測定した各基板に対する接触角を表1、2に示した。接触角計としては、CAM200(KSV INSTRUMENTS社製)を用い、画像処理ソフトとしては、CAM2008を用いた。
実施例及び比較例で得られた各有機EL表示素子用封止剤について、Fedorsの推算法により算出した硬化性樹脂全体のSP値及び各硬化性樹脂間のSP値の最大差を表1、2に示した。
また、実施例及び比較例で得られた各有機EL表示素子用封止剤について、25℃において表面張力計を用いてWilhelmy法により測定した表面張力を表1、2に示した。表面張力計としては、DY-300(協和界面科学社製)を用いた。
更に、実施例及び比較例で得られた各有機EL表示素子用封止剤について、E型粘度計を用いて、25℃、100rpmの条件において測定した粘度を表1、2に示した。E型粘度計としては、VISCOMETER TV-22(東機産業社製)を用いた。 (Examples 1 to 9, Comparative Examples 1 to 4)
According to the blending ratios described in Tables 1 and 2, each material was uniformly stirred and mixed at a stirring speed of 300 rpm using a homodisper type stirring mixer, whereby each of Examples 1 to 9 and Comparative Examples 1 to 4 was A sealant for an organic EL display element was produced. As a homodisper type stirring mixer, a homodisper L type (manufactured by Primics) was used. As the compound having a siloxane skeleton in the table, those purified in advance by distillation before mixing with other components were used.
As the oxetane compound having a siloxane skeleton in the table, one obtained by the following method was used. That is, 1,1,3,3-tetramethyldisiloxane 0.1 mol, allyloxyoxetane 0.2 mol, platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane A complex solution (manufactured by Sigma-Aldrich) 100 ppm was mixed and heated at 80 ° C. for 5 hours. As allyloxyoxetane, AL-OX (manufactured by Yokkaichi Synthesis) was used. The completion of the reaction was confirmed by NMR, and the resulting solution was purified by distillation to obtain a high-purity oxetane-modified disiloxane compound as an oxetane compound having a siloxane skeleton. It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the obtained oxetane-modified disiloxane compound was a compound represented by the following formula (3).
Each of the organic EL display element sealants obtained in the examples and comparative examples is 73.0 mN / m in surface free energy obtained in the above-mentioned “(Preparation of SiO 2 substrate)” using an inkjet discharge device. The SiO 2 substrate and the SiN substrate having the surface free energy of 58.0 mN / m obtained in the above-mentioned “(Preparation of SiN substrate)” were respectively discharged. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet Co., Ltd.) was used, and the sealant was discharged at 25 ° C., a droplet volume of 10 pL, a pitch of 800 μm, a drop from a height of 0.5 mm from the substrate, and a frequency of 20 kHz. It went on condition of. Tables 1 and 2 show contact angles with respect to the respective substrates measured by using image processing software for images taken with a substrate observation camera of a contact angle meter for a sealant droplet about 10 seconds after landing. . CAM200 (manufactured by KSV INSTRUMENTS) was used as the contact angle meter, and CAM2008 was used as the image processing software.
For each sealing agent for organic EL display elements obtained in Examples and Comparative Examples, the maximum difference between the SP value of the entire curable resin and the SP value between the curable resins calculated by the Fedors estimation method is shown in Table 1. It was shown in 2.
Moreover, about the sealing agent for organic EL display elements obtained by the Example and the comparative example, the surface tension measured by Wilhelmy method at 25 degreeC using the surface tension meter was shown to Table 1,2. As a surface tension meter, DY-300 (manufactured by Kyowa Interface Science Co., Ltd.) was used.
Further, Tables 1 and 2 show the viscosities of the encapsulants for organic EL display elements obtained in Examples and Comparative Examples, measured using an E-type viscometer under the conditions of 25 ° C. and 100 rpm. As the E-type viscometer, VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.) was used.
表1、2に記載された配合比に従い、各材料を、ホモディスパー型撹拌混合機を用い、撹拌速度300rpmで均一に撹拌混合することにより、実施例1~9、比較例1~4の各有機EL表示素子用封止剤を作製した。ホモディスパー型撹拌混合機としては、ホモディスパーL型(プライミクス社製)を用いた。表中におけるシロキサン骨格を有する化合物としては、いずれも他の成分と混合する前に予め蒸留により精製したものを用いた。
表中のシロキサン骨格を有するオキセタン化合物としては、以下の方法で得られたものを用いた。即ち、1,1,3,3-テトラメチルジシロキサン0.1molと、アリルオキシオキセタン0.2molと、白金(0)-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体溶液(シグマ・アルドリッチ社製)100ppmとを混合し、80℃で5時間加熱した。アリルオキシオキセタンとしては、AL-OX(四日市合成社製)を用いた。NMRで反応の終了を確認し、得られた溶液を蒸留により精製することで、シロキサン骨格を有するオキセタン化合物として高純度のオキセタン変性ジシロキサン化合物を得た。1H-NMR、GPC、及び、FT-IR分析により、得られたオキセタン変性ジシロキサン化合物は、下記式(3)で表される化合物であることを確認した。
実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を用いて、上記「(SiO2基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO2基板及び上記「(SiN基板の作製)」で得られた表面自由エネルギーが58.0mN/mのSiN基板にそれぞれ吐出した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用い、封止剤の吐出は、25℃、液滴量10pL、800μmピッチ、基板から0.5mmの高さからの滴下、及び、周波数20kHzの条件で行った。着弾から約10秒後の封止剤の液滴について、接触角計の基板観察カメラにて取り込んだ画像を、画像処理ソフトを用いて測定した各基板に対する接触角を表1、2に示した。接触角計としては、CAM200(KSV INSTRUMENTS社製)を用い、画像処理ソフトとしては、CAM2008を用いた。
実施例及び比較例で得られた各有機EL表示素子用封止剤について、Fedorsの推算法により算出した硬化性樹脂全体のSP値及び各硬化性樹脂間のSP値の最大差を表1、2に示した。
また、実施例及び比較例で得られた各有機EL表示素子用封止剤について、25℃において表面張力計を用いてWilhelmy法により測定した表面張力を表1、2に示した。表面張力計としては、DY-300(協和界面科学社製)を用いた。
更に、実施例及び比較例で得られた各有機EL表示素子用封止剤について、E型粘度計を用いて、25℃、100rpmの条件において測定した粘度を表1、2に示した。E型粘度計としては、VISCOMETER TV-22(東機産業社製)を用いた。 (Examples 1 to 9, Comparative Examples 1 to 4)
According to the blending ratios described in Tables 1 and 2, each material was uniformly stirred and mixed at a stirring speed of 300 rpm using a homodisper type stirring mixer, whereby each of Examples 1 to 9 and Comparative Examples 1 to 4 was A sealant for an organic EL display element was produced. As a homodisper type stirring mixer, a homodisper L type (manufactured by Primics) was used. As the compound having a siloxane skeleton in the table, those purified in advance by distillation before mixing with other components were used.
As the oxetane compound having a siloxane skeleton in the table, one obtained by the following method was used. That is, 1,1,3,3-tetramethyldisiloxane 0.1 mol, allyloxyoxetane 0.2 mol, platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane A complex solution (manufactured by Sigma-Aldrich) 100 ppm was mixed and heated at 80 ° C. for 5 hours. As allyloxyoxetane, AL-OX (manufactured by Yokkaichi Synthesis) was used. The completion of the reaction was confirmed by NMR, and the resulting solution was purified by distillation to obtain a high-purity oxetane-modified disiloxane compound as an oxetane compound having a siloxane skeleton. It was confirmed by 1 H-NMR, GPC, and FT-IR analysis that the obtained oxetane-modified disiloxane compound was a compound represented by the following formula (3).
Each of the organic EL display element sealants obtained in the examples and comparative examples is 73.0 mN / m in surface free energy obtained in the above-mentioned “(Preparation of SiO 2 substrate)” using an inkjet discharge device. The SiO 2 substrate and the SiN substrate having the surface free energy of 58.0 mN / m obtained in the above-mentioned “(Preparation of SiN substrate)” were respectively discharged. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet Co., Ltd.) was used, and the sealant was discharged at 25 ° C., a droplet volume of 10 pL, a pitch of 800 μm, a drop from a height of 0.5 mm from the substrate, and a frequency of 20 kHz. It went on condition of. Tables 1 and 2 show contact angles with respect to the respective substrates measured by using image processing software for images taken with a substrate observation camera of a contact angle meter for a sealant droplet about 10 seconds after landing. . CAM200 (manufactured by KSV INSTRUMENTS) was used as the contact angle meter, and CAM2008 was used as the image processing software.
For each sealing agent for organic EL display elements obtained in Examples and Comparative Examples, the maximum difference between the SP value of the entire curable resin and the SP value between the curable resins calculated by the Fedors estimation method is shown in Table 1. It was shown in 2.
Moreover, about the sealing agent for organic EL display elements obtained by the Example and the comparative example, the surface tension measured by Wilhelmy method at 25 degreeC using the surface tension meter was shown to Table 1,2. As a surface tension meter, DY-300 (manufactured by Kyowa Interface Science Co., Ltd.) was used.
Further, Tables 1 and 2 show the viscosities of the encapsulants for organic EL display elements obtained in Examples and Comparative Examples, measured using an E-type viscometer under the conditions of 25 ° C. and 100 rpm. As the E-type viscometer, VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.) was used.
<評価>
実施例及び比較例で得られた各有機EL表示素子用封止剤について以下の評価を行った。結果を表1、2に示した。 <Evaluation>
The following evaluation was performed about each sealing agent for organic EL display elements obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
実施例及び比較例で得られた各有機EL表示素子用封止剤について以下の評価を行った。結果を表1、2に示した。 <Evaluation>
The following evaluation was performed about each sealing agent for organic EL display elements obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(1)濡れ広がり性
上記「(SiO2基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO2基板に実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を用いて、10pLの液滴量にて、48μmピッチで8cm×8cm大の面積になるように塗布した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用いた。塗布から3分後の基板上の封止剤を目視にて観察し、濡れ広がらずに筋状となった未塗布部分の数を確認した。
筋状の未塗布部分の数が0本であった場合を「◎」、1本以上2本未満であった場合を「○」、2本以上5本未満であった場合を「△」、5本以上であった場合を「×」として濡れ広がり性を評価した。 (1) Wetting and spreading property Each of the organic EL display element seals obtained in Examples and Comparative Examples was obtained on the SiO 2 substrate having a surface free energy of 73.0 mN / m obtained in the above-mentioned “(Preparation of SiO 2 substrate)”. The stop agent was applied using an inkjet discharge device so as to have an area of 8 cm × 8 cm at a pitch of 48 μm with a droplet amount of 10 pL. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet) was used. The sealing agent on the substrate 3 minutes after application was visually observed, and the number of uncoated parts that became streaks without spreading out was confirmed.
“◎” when the number of streaky uncoated portions is 0, “◯” when 1 or more and less than 2, and “△” when 2 or more and less than 5. The case where there were 5 or more was evaluated as “×” and the wet spreading property was evaluated.
上記「(SiO2基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO2基板に実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を用いて、10pLの液滴量にて、48μmピッチで8cm×8cm大の面積になるように塗布した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用いた。塗布から3分後の基板上の封止剤を目視にて観察し、濡れ広がらずに筋状となった未塗布部分の数を確認した。
筋状の未塗布部分の数が0本であった場合を「◎」、1本以上2本未満であった場合を「○」、2本以上5本未満であった場合を「△」、5本以上であった場合を「×」として濡れ広がり性を評価した。 (1) Wetting and spreading property Each of the organic EL display element seals obtained in Examples and Comparative Examples was obtained on the SiO 2 substrate having a surface free energy of 73.0 mN / m obtained in the above-mentioned “(Preparation of SiO 2 substrate)”. The stop agent was applied using an inkjet discharge device so as to have an area of 8 cm × 8 cm at a pitch of 48 μm with a droplet amount of 10 pL. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet) was used. The sealing agent on the substrate 3 minutes after application was visually observed, and the number of uncoated parts that became streaks without spreading out was confirmed.
“◎” when the number of streaky uncoated portions is 0, “◯” when 1 or more and less than 2, and “△” when 2 or more and less than 5. The case where there were 5 or more was evaluated as “×” and the wet spreading property was evaluated.
(2)異物カバー性
上記「(SiO2基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO2基板上に、窒化珪素粒子及びシリカ粒子を散布機により散布した。窒化珪素粒子としては、SN-E10(宇部興産社製)を用い、シリカ粒子としては、シーホスター(日本触媒社製)を用いた。得られたSiO2基板に実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を用いて、10pLの液滴量にて、48μmピッチで8cm×8cm大の面積になるように塗布した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用いた。塗布から3分後に照度1000mW/cm2の395nmUVLEDで、積算光量が1000mJ/cm2となるように照射し、散布した窒化珪素粒子やシリカ粒子を異物と想定し、任意に抽出した異物10個当りのピンホールの数を確認した。
異物10個当りのピンホールの数が0個であった場合を「◎」、1個以上2個未満であった場合を「○」、2個以上3個未満であった場合を「△」、3個以上であった場合を「×」として異物カバー性を評価した。なお、濡れ広がり不良により評価できなかったものについては「-」とした。 (2) Foreign matter covering property Silicon nitride particles and silica particles were dispersed by a spreader on the SiO 2 substrate having a surface free energy of 73.0 mN / m obtained in the above-mentioned “(Preparation of SiO 2 substrate)”. SN-E10 (manufactured by Ube Industries) was used as the silicon nitride particles, and Seahoster (manufactured by Nippon Shokubai Co., Ltd.) was used as the silica particles. Each of the sealing agents for organic EL display elements obtained in Examples and Comparative Examples was applied to the obtained SiO 2 substrate with an 8 cm × 8 cm size at a pitch of 48 μm at a droplet volume of 10 pL using an inkjet discharge device. It apply | coated so that it might become an area. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet) was used. Three minutes after application, irradiating with a 395 nm UV LED with an illuminance of 1000 mW / cm 2 so that the integrated light quantity becomes 1000 mJ / cm 2 , and assuming the dispersed silicon nitride particles and silica particles as foreign matters, per 10 extracted foreign matters The number of pinholes was confirmed.
“◎” when the number of pinholes per 10 foreign objects is 0, “◯” when 1 or more and less than 2, and “△” when 2 or more and less than 3 The case of 3 or more was evaluated as “x”, and the foreign matter covering property was evaluated. In addition, “−” was given for those that could not be evaluated due to poor wetting and spreading.
上記「(SiO2基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO2基板上に、窒化珪素粒子及びシリカ粒子を散布機により散布した。窒化珪素粒子としては、SN-E10(宇部興産社製)を用い、シリカ粒子としては、シーホスター(日本触媒社製)を用いた。得られたSiO2基板に実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を用いて、10pLの液滴量にて、48μmピッチで8cm×8cm大の面積になるように塗布した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用いた。塗布から3分後に照度1000mW/cm2の395nmUVLEDで、積算光量が1000mJ/cm2となるように照射し、散布した窒化珪素粒子やシリカ粒子を異物と想定し、任意に抽出した異物10個当りのピンホールの数を確認した。
異物10個当りのピンホールの数が0個であった場合を「◎」、1個以上2個未満であった場合を「○」、2個以上3個未満であった場合を「△」、3個以上であった場合を「×」として異物カバー性を評価した。なお、濡れ広がり不良により評価できなかったものについては「-」とした。 (2) Foreign matter covering property Silicon nitride particles and silica particles were dispersed by a spreader on the SiO 2 substrate having a surface free energy of 73.0 mN / m obtained in the above-mentioned “(Preparation of SiO 2 substrate)”. SN-E10 (manufactured by Ube Industries) was used as the silicon nitride particles, and Seahoster (manufactured by Nippon Shokubai Co., Ltd.) was used as the silica particles. Each of the sealing agents for organic EL display elements obtained in Examples and Comparative Examples was applied to the obtained SiO 2 substrate with an 8 cm × 8 cm size at a pitch of 48 μm at a droplet volume of 10 pL using an inkjet discharge device. It apply | coated so that it might become an area. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet) was used. Three minutes after application, irradiating with a 395 nm UV LED with an illuminance of 1000 mW / cm 2 so that the integrated light quantity becomes 1000 mJ / cm 2 , and assuming the dispersed silicon nitride particles and silica particles as foreign matters, per 10 extracted foreign matters The number of pinholes was confirmed.
“◎” when the number of pinholes per 10 foreign objects is 0, “◯” when 1 or more and less than 2, and “△” when 2 or more and less than 3 The case of 3 or more was evaluated as “x”, and the foreign matter covering property was evaluated. In addition, “−” was given for those that could not be evaluated due to poor wetting and spreading.
(3)有機EL表示素子の信頼性
(3-1)有機発光材料層を有する積層体が配置された基板の作製
長さ25mm、幅25mm、厚さ0.7mmのガラスにITO電極を1000Åの厚さとなるように成膜したものを基板とした。上記基板をアセトン、アルカリ水溶液、イオン交換水、及び、イソプロピルアルコールにてそれぞれ15分間超音波洗浄した後、煮沸させたイソプロピルアルコールにて10分間洗浄し、更に、UV-オゾンクリーナにて直前処理を行った。UV-オゾンクリーナとしては、NL-UV253(日本レーザー電子社製)を用いた。
次に、直前処理後の基板を真空蒸着装置の基板ホルダーに固定し、素焼きの坩堝にN,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(α-NPD)を200mg入れ、別の素焼き坩堝にトリス(8-キノリノラト)アルミニウム(Alq3)を200mg入れ、真空チャンバー内を、1×10-4Paまで減圧した。その後、α-NPDの入った坩堝を加熱し、α-NPDを蒸着速度15Å/sで基板に堆積させ、膜厚600Åの正孔輸送層を成膜した。次いで、Alq3の入った坩堝を加熱し、15Å/sの蒸着速度で膜厚600Åの有機発光材料層を成膜した。その後、正孔輸送層及び有機発光材料層が形成された基板を、タングステン製抵抗加熱ボートを有する別の真空蒸着装置に移し、真空蒸着装置内のタングステン製抵抗加熱ボートの1つにフッ化リチウム200mgを入れ、別のタングステン製抵抗加熱ボートにアルミニウム線1.0gを入れた。その後、真空蒸着装置の蒸着器内を2×10-4Paまで減圧してフッ化リチウムを0.2Å/sの蒸着速度で5Å成膜した後、アルミニウムを20Å/sの速度で1000Å成膜した。窒素により蒸着器内を常圧に戻し、10mm×10mmの有機発光材料層を有する積層体が配置された基板を取り出した。 (3) Reliability of organic EL display element (3-1) Fabrication of a substrate on which a laminate having an organic light emitting material layer is disposed A glass substrate having a length of 25 mm, a width of 25 mm, and a thickness of 0.7 mm, and an ITO electrode of 1000 mm The substrate was formed to have a thickness. The substrate was ultrasonically cleaned with acetone, an aqueous alkali solution, ion-exchanged water, and isopropyl alcohol for 15 minutes, then washed with boiled isopropyl alcohol for 10 minutes, and further subjected to a previous treatment with a UV-ozone cleaner. went. As the UV-ozone cleaner, NL-UV253 (manufactured by Nippon Laser Electronics Co., Ltd.) was used.
Next, the substrate after the last treatment is fixed to the substrate holder of the vacuum evaporation apparatus, and 200 mg of N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine (α-NPD) is put in an unglazed crucible. In another unglazed crucible, 200 mg of tris (8-quinolinolato) aluminum (Alq 3 ) was put, and the pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa. Thereafter, the crucible containing α-NPD was heated, and α-NPD was deposited on the substrate at a deposition rate of 15 s / s to form a 600 正 孔 hole transport layer. Next, the crucible containing Alq 3 was heated to form an organic light emitting material layer having a thickness of 600 で at a deposition rate of 15 Å / s. Thereafter, the substrate on which the hole transport layer and the organic light emitting material layer are formed is transferred to another vacuum vapor deposition apparatus having a tungsten resistance heating boat, and lithium fluoride is added to one of the tungsten resistance heating boats in the vacuum vapor deposition apparatus. 200 mg was charged, and 1.0 g of aluminum wire was put in another tungsten resistance heating boat. After that, the inside of the vapor deposition unit of the vacuum vapor deposition apparatus is depressurized to 2 × 10 −4 Pa to form a lithium fluoride film with a thickness of 5 mm at a deposition rate of 0.2 kg / s, and then aluminum with a film thickness of 1000 mm at a rate of 20 kg / s. did. The inside of the vapor deposition unit was returned to normal pressure with nitrogen, and the substrate on which the laminate having the organic light emitting material layer of 10 mm × 10 mm was arranged was taken out.
(3-1)有機発光材料層を有する積層体が配置された基板の作製
長さ25mm、幅25mm、厚さ0.7mmのガラスにITO電極を1000Åの厚さとなるように成膜したものを基板とした。上記基板をアセトン、アルカリ水溶液、イオン交換水、及び、イソプロピルアルコールにてそれぞれ15分間超音波洗浄した後、煮沸させたイソプロピルアルコールにて10分間洗浄し、更に、UV-オゾンクリーナにて直前処理を行った。UV-オゾンクリーナとしては、NL-UV253(日本レーザー電子社製)を用いた。
次に、直前処理後の基板を真空蒸着装置の基板ホルダーに固定し、素焼きの坩堝にN,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(α-NPD)を200mg入れ、別の素焼き坩堝にトリス(8-キノリノラト)アルミニウム(Alq3)を200mg入れ、真空チャンバー内を、1×10-4Paまで減圧した。その後、α-NPDの入った坩堝を加熱し、α-NPDを蒸着速度15Å/sで基板に堆積させ、膜厚600Åの正孔輸送層を成膜した。次いで、Alq3の入った坩堝を加熱し、15Å/sの蒸着速度で膜厚600Åの有機発光材料層を成膜した。その後、正孔輸送層及び有機発光材料層が形成された基板を、タングステン製抵抗加熱ボートを有する別の真空蒸着装置に移し、真空蒸着装置内のタングステン製抵抗加熱ボートの1つにフッ化リチウム200mgを入れ、別のタングステン製抵抗加熱ボートにアルミニウム線1.0gを入れた。その後、真空蒸着装置の蒸着器内を2×10-4Paまで減圧してフッ化リチウムを0.2Å/sの蒸着速度で5Å成膜した後、アルミニウムを20Å/sの速度で1000Å成膜した。窒素により蒸着器内を常圧に戻し、10mm×10mmの有機発光材料層を有する積層体が配置された基板を取り出した。 (3) Reliability of organic EL display element (3-1) Fabrication of a substrate on which a laminate having an organic light emitting material layer is disposed A glass substrate having a length of 25 mm, a width of 25 mm, and a thickness of 0.7 mm, and an ITO electrode of 1000 mm The substrate was formed to have a thickness. The substrate was ultrasonically cleaned with acetone, an aqueous alkali solution, ion-exchanged water, and isopropyl alcohol for 15 minutes, then washed with boiled isopropyl alcohol for 10 minutes, and further subjected to a previous treatment with a UV-ozone cleaner. went. As the UV-ozone cleaner, NL-UV253 (manufactured by Nippon Laser Electronics Co., Ltd.) was used.
Next, the substrate after the last treatment is fixed to the substrate holder of the vacuum evaporation apparatus, and 200 mg of N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine (α-NPD) is put in an unglazed crucible. In another unglazed crucible, 200 mg of tris (8-quinolinolato) aluminum (Alq 3 ) was put, and the pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa. Thereafter, the crucible containing α-NPD was heated, and α-NPD was deposited on the substrate at a deposition rate of 15 s / s to form a 600 正 孔 hole transport layer. Next, the crucible containing Alq 3 was heated to form an organic light emitting material layer having a thickness of 600 で at a deposition rate of 15 Å / s. Thereafter, the substrate on which the hole transport layer and the organic light emitting material layer are formed is transferred to another vacuum vapor deposition apparatus having a tungsten resistance heating boat, and lithium fluoride is added to one of the tungsten resistance heating boats in the vacuum vapor deposition apparatus. 200 mg was charged, and 1.0 g of aluminum wire was put in another tungsten resistance heating boat. After that, the inside of the vapor deposition unit of the vacuum vapor deposition apparatus is depressurized to 2 × 10 −4 Pa to form a lithium fluoride film with a thickness of 5 mm at a deposition rate of 0.2 kg / s, and then aluminum with a film thickness of 1000 mm at a rate of 20 kg / s. did. The inside of the vapor deposition unit was returned to normal pressure with nitrogen, and the substrate on which the laminate having the organic light emitting material layer of 10 mm × 10 mm was arranged was taken out.
(3-2)無機材料膜Aによる被覆
得られた積層体が配置された基板の該積層体全体を覆うように、13mm×13mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Aを形成した。プラズマCVD法は、原料ガスとしてSiH4ガス及び窒素ガスを用い、各々の流量をSiH4ガス10sccm、窒素ガス200sccmとし、RFパワーを10W(周波数2.45GHz)、チャンバー内温度を100℃、チャンバー内圧力を0.9Torrとする条件で行った。形成された無機材料膜Aの厚さは、約1μmであった。 (3-2) Coating with Inorganic Material Film A A mask having an opening of 13 mm × 13 mm is installed so as to cover the entire laminated body of the substrate on which the obtained laminated body is arranged, and inorganic by plasma CVD method. A material film A was formed. In the plasma CVD method, SiH 4 gas and nitrogen gas are used as source gases, the flow rates of each are SiH 4 gas 10 sccm, nitrogen gas 200 sccm, RF power 10 W (frequency 2.45 GHz), chamber temperature 100 ° C., chamber The test was performed under the condition that the internal pressure was 0.9 Torr. The formed inorganic material film A had a thickness of about 1 μm.
得られた積層体が配置された基板の該積層体全体を覆うように、13mm×13mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Aを形成した。プラズマCVD法は、原料ガスとしてSiH4ガス及び窒素ガスを用い、各々の流量をSiH4ガス10sccm、窒素ガス200sccmとし、RFパワーを10W(周波数2.45GHz)、チャンバー内温度を100℃、チャンバー内圧力を0.9Torrとする条件で行った。形成された無機材料膜Aの厚さは、約1μmであった。 (3-2) Coating with Inorganic Material Film A A mask having an opening of 13 mm × 13 mm is installed so as to cover the entire laminated body of the substrate on which the obtained laminated body is arranged, and inorganic by plasma CVD method. A material film A was formed. In the plasma CVD method, SiH 4 gas and nitrogen gas are used as source gases, the flow rates of each are SiH 4 gas 10 sccm, nitrogen gas 200 sccm, RF power 10 W (frequency 2.45 GHz), chamber temperature 100 ° C., chamber The test was performed under the condition that the internal pressure was 0.9 Torr. The formed inorganic material film A had a thickness of about 1 μm.
(3-3)樹脂保護膜の形成
得られた基板に対し、実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を使用して基板にパターン塗布した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用いた。その後、LEDランプを用いて波長365nmの紫外線を3000mJ/cm2照射して有機EL表示素子用封止剤を硬化させて樹脂保護膜を形成した。 (3-3) Formation of Resin Protective Film Each of the organic EL display element sealants obtained in Examples and Comparative Examples was applied to the substrate by patterning on the substrate using an inkjet discharge apparatus. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet) was used. Thereafter, an ultraviolet ray having a wavelength of 365 nm was irradiated with 3000 mJ / cm 2 using an LED lamp to cure the organic EL display element sealant to form a resin protective film.
得られた基板に対し、実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を使用して基板にパターン塗布した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用いた。その後、LEDランプを用いて波長365nmの紫外線を3000mJ/cm2照射して有機EL表示素子用封止剤を硬化させて樹脂保護膜を形成した。 (3-3) Formation of Resin Protective Film Each of the organic EL display element sealants obtained in Examples and Comparative Examples was applied to the substrate by patterning on the substrate using an inkjet discharge apparatus. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet) was used. Thereafter, an ultraviolet ray having a wavelength of 365 nm was irradiated with 3000 mJ / cm 2 using an LED lamp to cure the organic EL display element sealant to form a resin protective film.
(3-4)無機材料膜Bによる被覆
樹脂保護膜を形成した後、12mm×12mmの開口部を有するマスクを、該樹脂保護膜を覆うようにして設置し、プラズマCVD法にて無機材料膜Bを形成して有機EL表示素子を得た。プラズマCVD法は、上記「(3-2)無機材料膜Aによる被覆」と同様の条件で行った。形成された無機材料膜Bの厚さは、約1μmであった。 (3-4) After forming the covering resin protective film by the inorganic material film B, a mask having an opening of 12 mm × 12 mm is placed so as to cover the resin protective film, and the inorganic material film is formed by plasma CVD method. B was formed to obtain an organic EL display element. The plasma CVD method was performed under the same conditions as in “(3-2) Coating with inorganic material film A”. The formed inorganic material film B had a thickness of about 1 μm.
樹脂保護膜を形成した後、12mm×12mmの開口部を有するマスクを、該樹脂保護膜を覆うようにして設置し、プラズマCVD法にて無機材料膜Bを形成して有機EL表示素子を得た。プラズマCVD法は、上記「(3-2)無機材料膜Aによる被覆」と同様の条件で行った。形成された無機材料膜Bの厚さは、約1μmであった。 (3-4) After forming the covering resin protective film by the inorganic material film B, a mask having an opening of 12 mm × 12 mm is placed so as to cover the resin protective film, and the inorganic material film is formed by plasma CVD method. B was formed to obtain an organic EL display element. The plasma CVD method was performed under the same conditions as in “(3-2) Coating with inorganic material film A”. The formed inorganic material film B had a thickness of about 1 μm.
(3-5)有機EL表示素子の発光状態
得られた有機EL表示素子を、温度85℃、湿度85%の環境下で100時間暴露した後、3Vの電圧を印加し、有機EL表示素子の発光状態(ダークスポット及び画素周辺消光の有無)を目視で観察した。
ダークスポットや周辺消光が無く均一に発光した場合を「○」、ダークスポットや周辺消光はないものの輝度に僅かな低下が認められた場合を「△」、ダークスポットや周辺消光が認められた場合を「×」として有機EL表示素子の信頼性を評価した。 (3-5) Light-emitting state of organic EL display element The obtained organic EL display element was exposed for 100 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, and then a voltage of 3 V was applied to the organic EL display element. The light emission state (the presence or absence of dark spots and pixel periphery quenching) was visually observed.
“○” when there is no dark spot or peripheral quenching, and “△” when there is no dark spot or peripheral quenching, but “△” when there is a slight decrease in brightness, when dark spot or peripheral quenching is observed The reliability of the organic EL display element was evaluated with “×”.
得られた有機EL表示素子を、温度85℃、湿度85%の環境下で100時間暴露した後、3Vの電圧を印加し、有機EL表示素子の発光状態(ダークスポット及び画素周辺消光の有無)を目視で観察した。
ダークスポットや周辺消光が無く均一に発光した場合を「○」、ダークスポットや周辺消光はないものの輝度に僅かな低下が認められた場合を「△」、ダークスポットや周辺消光が認められた場合を「×」として有機EL表示素子の信頼性を評価した。 (3-5) Light-emitting state of organic EL display element The obtained organic EL display element was exposed for 100 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, and then a voltage of 3 V was applied to the organic EL display element. The light emission state (the presence or absence of dark spots and pixel periphery quenching) was visually observed.
“○” when there is no dark spot or peripheral quenching, and “△” when there is no dark spot or peripheral quenching, but “△” when there is a slight decrease in brightness, when dark spot or peripheral quenching is observed The reliability of the organic EL display element was evaluated with “×”.
(4)表面ムラ
上記「(SiO2基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO2基板に実施例6、7及び比較例1、2で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を用いて、10pLの液滴量にて、48μmピッチで8cm×8cm大の面積になるように塗布した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用いた。塗布から3分後の基板上の封止剤に、LEDランプを用いて波長365nmの紫外線を3000mJ/cm2照射して封止剤を硬化させた。硬化後の封止剤について、JIS1982に従い、表面粗さ測定器にて、2CRフィルタ及びR2μmの触針を用い、送り速さ0.2mm/sの条件で凸部の高さの測定を行った。表面粗さ測定器としては、SE300(小坂研究所社製)を用いた。凸部の高さは、表面の凹み部を0として確認した。
凸部の高さが0.5μm未満であった場合を「◎」、0.5μm以上1.0μm未満であった場合を「○」、1.0μm以上1.5μm未満であった場合を「△」、高さが1.5μm以上であった場合を「×」として表面ムラを評価した。なお、表面ムラの評価を行わなかったものについては「-」とした。 (4) Surface unevenness Each organic obtained in Examples 6 and 7 and Comparative Examples 1 and 2 on the SiO 2 substrate having a surface free energy of 73.0 mN / m obtained in “(Preparation of SiO 2 substrate)”. The sealing agent for EL display elements was applied using an ink jet discharge device so as to have an area of 8 cm × 8 cm at a pitch of 48 μm with a droplet amount of 10 pL. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet) was used. The sealant on the substrate 3 minutes after the coating was irradiated with 3000 mJ / cm 2 of ultraviolet light having a wavelength of 365 nm using an LED lamp to cure the sealant. About the sealing agent after hardening, according to JIS1982, the height of a convex part was measured on condition of a feed rate of 0.2 mm / s using a 2CR filter and a stylus of R2 μm with a surface roughness measuring instrument. . As a surface roughness measuring instrument, SE300 (manufactured by Kosaka Laboratory) was used. The height of the convex portion was confirmed by setting the concave portion on the surface to zero.
The case where the height of the convex part is less than 0.5 μm is “◎”, the case where it is 0.5 μm or more and less than 1.0 μm is “◯”, the case where it is 1.0 μm or more and less than 1.5 μm, [Delta] ", when the height was 1.5 [mu] m or more, the surface unevenness was evaluated as" x ". In addition, “−” was given for the case where the surface unevenness was not evaluated.
上記「(SiO2基板の作製)」で得られた表面自由エネルギーが73.0mN/mのSiO2基板に実施例6、7及び比較例1、2で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置を用いて、10pLの液滴量にて、48μmピッチで8cm×8cm大の面積になるように塗布した。インクジェット吐出装置としては、NanoPrinter500(マイクロジェット社製)を用いた。塗布から3分後の基板上の封止剤に、LEDランプを用いて波長365nmの紫外線を3000mJ/cm2照射して封止剤を硬化させた。硬化後の封止剤について、JIS1982に従い、表面粗さ測定器にて、2CRフィルタ及びR2μmの触針を用い、送り速さ0.2mm/sの条件で凸部の高さの測定を行った。表面粗さ測定器としては、SE300(小坂研究所社製)を用いた。凸部の高さは、表面の凹み部を0として確認した。
凸部の高さが0.5μm未満であった場合を「◎」、0.5μm以上1.0μm未満であった場合を「○」、1.0μm以上1.5μm未満であった場合を「△」、高さが1.5μm以上であった場合を「×」として表面ムラを評価した。なお、表面ムラの評価を行わなかったものについては「-」とした。 (4) Surface unevenness Each organic obtained in Examples 6 and 7 and Comparative Examples 1 and 2 on the SiO 2 substrate having a surface free energy of 73.0 mN / m obtained in “(Preparation of SiO 2 substrate)”. The sealing agent for EL display elements was applied using an ink jet discharge device so as to have an area of 8 cm × 8 cm at a pitch of 48 μm with a droplet amount of 10 pL. As an inkjet discharge device, NanoPrinter 500 (manufactured by Microjet) was used. The sealant on the substrate 3 minutes after the coating was irradiated with 3000 mJ / cm 2 of ultraviolet light having a wavelength of 365 nm using an LED lamp to cure the sealant. About the sealing agent after hardening, according to JIS1982, the height of a convex part was measured on condition of a feed rate of 0.2 mm / s using a 2CR filter and a stylus of R2 μm with a surface roughness measuring instrument. . As a surface roughness measuring instrument, SE300 (manufactured by Kosaka Laboratory) was used. The height of the convex portion was confirmed by setting the concave portion on the surface to zero.
The case where the height of the convex part is less than 0.5 μm is “◎”, the case where it is 0.5 μm or more and less than 1.0 μm is “◯”, the case where it is 1.0 μm or more and less than 1.5 μm, [Delta] ", when the height was 1.5 [mu] m or more, the surface unevenness was evaluated as" x ". In addition, “−” was given for the case where the surface unevenness was not evaluated.
本発明によれば、薄膜化する場合であっても基板や無機材料膜に対する塗布性に優れる有機EL表示素子用封止剤を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where it thins, the sealing agent for organic EL display elements which is excellent in the applicability | paintability with respect to a board | substrate or an inorganic material film | membrane can be provided.
Claims (4)
- 硬化性樹脂と重合開始剤とを含有し、
25℃における表面張力が25mN/m以上38mN/m以下であり、かつ、
表面自由エネルギーが70mN/m以上80mN/m以下のSiO2基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板との25℃における接触角がいずれも13度以下である
ことを特徴とする有機EL表示素子用封止剤。 Containing a curable resin and a polymerization initiator,
The surface tension at 25 ° C. is 25 mN / m or more and 38 mN / m or less, and
The contact angle at 25 ° C. with a SiO 2 substrate having a surface free energy of 70 mN / m or more and 80 mN / m or less and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less is 13 ° or less. An organic EL display element sealant. - 25℃における粘度が5mPa・s以上30mPa・s以下である請求項1記載の有機EL表示素子用封止剤。 The encapsulant for organic EL display elements according to claim 1, which has a viscosity at 25 ° C. of 5 mPa · s to 30 mPa · s.
- インクジェット法による塗布に用いられる有機EL表示素子用封止剤であって、
硬化性樹脂と重合開始剤とを含有し、
25℃における表面張力が25mN/m以上38mN/m以下であり、かつ、
表面自由エネルギーが70mN/m以上80mN/m以下のSiO2基板及び表面自由エネルギーが50mN/m以上60mN/m以下のSiN基板との25℃における接触角がいずれも13度以下である
ことを特徴とする有機EL表示素子用封止剤。 An organic EL display element sealing agent used for coating by an inkjet method,
Containing a curable resin and a polymerization initiator,
The surface tension at 25 ° C. is 25 mN / m or more and 38 mN / m or less, and
The contact angle at 25 ° C. with a SiO 2 substrate having a surface free energy of 70 mN / m or more and 80 mN / m or less and a SiN substrate having a surface free energy of 50 mN / m or more and 60 mN / m or less is 13 ° or less. An organic EL display element sealant. - 硬化性樹脂全体の溶解度パラメータが16.5(J/cm3)1/2以上19.5(J/cm3)1/2以下である請求項1、2又は3記載の有機EL表示素子用封止剤。 4. The organic EL display element according to claim 1, wherein the solubility parameter of the entire curable resin is 16.5 (J / cm 3 ) 1/2 or more and 19.5 (J / cm 3 ) 1/2 or less. Sealant.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980021211.4A CN111972046A (en) | 2018-03-30 | 2019-03-22 | Sealing agent for organic EL display element |
KR1020207018789A KR20200136878A (en) | 2018-03-30 | 2019-03-22 | Sealant for organic EL display devices |
JP2019521508A JP7474052B2 (en) | 2018-03-30 | 2019-03-22 | Sealant for organic EL display devices |
JP2023196812A JP2024019191A (en) | 2018-03-30 | 2023-11-20 | Encapsulant for oled display element |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-069116 | 2018-03-30 | ||
JP2018069116 | 2018-03-30 | ||
JP2018-207356 | 2018-11-02 | ||
JP2018207356 | 2018-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019188805A1 true WO2019188805A1 (en) | 2019-10-03 |
Family
ID=68059056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012141 WO2019188805A1 (en) | 2018-03-30 | 2019-03-22 | Organic el display element sealing agent |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP7474052B2 (en) |
KR (1) | KR20200136878A (en) |
CN (1) | CN111972046A (en) |
TW (1) | TWI834647B (en) |
WO (1) | WO2019188805A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6902816B1 (en) * | 1999-04-06 | 2005-06-07 | Rhodia Chimie | Silicone composition used in the production of antifriction varnishes, method for the application of said varnishes to a support and support thus treated |
WO2016014690A1 (en) * | 2014-07-25 | 2016-01-28 | Kateeva, Inc. | Organic thin film ink compositions and methods |
WO2016167347A1 (en) * | 2015-04-17 | 2016-10-20 | 積水化学工業株式会社 | Sealant for electronic device, and method for manufacturing electronic device |
JP2017523549A (en) * | 2014-04-23 | 2017-08-17 | サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. | Composition for sealing organic light emitting element and organic light emitting element display device manufactured using the same |
JP2017228414A (en) * | 2016-06-22 | 2017-12-28 | 積水化学工業株式会社 | Sealant for organic electroluminescent display element |
WO2018074510A1 (en) * | 2016-10-19 | 2018-04-26 | 積水化学工業株式会社 | Organic el display element sealing agent |
JP2019001995A (en) * | 2017-06-13 | 2019-01-10 | パナソニックIpマネジメント株式会社 | Ultraviolet-curable resin composition, method of manufacturing organic el light-emitting device, and organic el light-emitting device |
WO2019082996A1 (en) * | 2017-10-26 | 2019-05-02 | デンカ株式会社 | Sealing agent for organic electroluminescent display elements |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3817081B2 (en) | 1999-01-29 | 2006-08-30 | パイオニア株式会社 | Manufacturing method of organic EL element |
JP2001307873A (en) * | 2000-04-21 | 2001-11-02 | Toppan Printing Co Ltd | Organic electroluminescence display element and its manufacturing method |
US8808457B2 (en) * | 2002-04-15 | 2014-08-19 | Samsung Display Co., Ltd. | Apparatus for depositing a multilayer coating on discrete sheets |
JP2008153211A (en) | 2006-11-22 | 2008-07-03 | Fujifilm Corp | Barrier performance film substrate and its manufacturing method |
KR102048952B1 (en) * | 2013-02-06 | 2019-11-27 | 삼성디스플레이 주식회사 | Organic light emitting display and manufacturing method thereof |
WO2015064410A1 (en) * | 2013-10-30 | 2015-05-07 | 積水化学工業株式会社 | Sealing agent for organic el display elements |
CN105940767B (en) * | 2014-05-20 | 2018-02-09 | 积水化学工业株式会社 | Organic electro-luminescent display unit sealant |
JP7048314B2 (en) * | 2016-01-26 | 2022-04-05 | 積水化学工業株式会社 | Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element |
-
2019
- 2019-03-22 JP JP2019521508A patent/JP7474052B2/en active Active
- 2019-03-22 WO PCT/JP2019/012141 patent/WO2019188805A1/en active Application Filing
- 2019-03-22 CN CN201980021211.4A patent/CN111972046A/en active Pending
- 2019-03-22 KR KR1020207018789A patent/KR20200136878A/en not_active Application Discontinuation
- 2019-03-25 TW TW108110258A patent/TWI834647B/en active
-
2023
- 2023-11-20 JP JP2023196812A patent/JP2024019191A/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6902816B1 (en) * | 1999-04-06 | 2005-06-07 | Rhodia Chimie | Silicone composition used in the production of antifriction varnishes, method for the application of said varnishes to a support and support thus treated |
JP2017523549A (en) * | 2014-04-23 | 2017-08-17 | サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. | Composition for sealing organic light emitting element and organic light emitting element display device manufactured using the same |
WO2016014690A1 (en) * | 2014-07-25 | 2016-01-28 | Kateeva, Inc. | Organic thin film ink compositions and methods |
WO2016167347A1 (en) * | 2015-04-17 | 2016-10-20 | 積水化学工業株式会社 | Sealant for electronic device, and method for manufacturing electronic device |
JP2017228414A (en) * | 2016-06-22 | 2017-12-28 | 積水化学工業株式会社 | Sealant for organic electroluminescent display element |
WO2018074510A1 (en) * | 2016-10-19 | 2018-04-26 | 積水化学工業株式会社 | Organic el display element sealing agent |
JP2019001995A (en) * | 2017-06-13 | 2019-01-10 | パナソニックIpマネジメント株式会社 | Ultraviolet-curable resin composition, method of manufacturing organic el light-emitting device, and organic el light-emitting device |
WO2019082996A1 (en) * | 2017-10-26 | 2019-05-02 | デンカ株式会社 | Sealing agent for organic electroluminescent display elements |
Also Published As
Publication number | Publication date |
---|---|
TWI834647B (en) | 2024-03-11 |
TW201942316A (en) | 2019-11-01 |
JPWO2019188805A1 (en) | 2021-02-12 |
CN111972046A (en) | 2020-11-20 |
JP2024019191A (en) | 2024-02-08 |
KR20200136878A (en) | 2020-12-08 |
JP7474052B2 (en) | 2024-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6200591B2 (en) | Sealant for electronic device for inkjet coating and method for producing electronic device | |
JP6997062B2 (en) | A method for manufacturing a sealant for an organic EL display element and a sealant for an organic EL display element. | |
JP6985228B2 (en) | Encapsulant for organic EL display elements | |
JP7457686B2 (en) | Encapsulant for organic EL display elements | |
JP2022027778A (en) | Organic el display element sealing agent | |
JP7007272B2 (en) | Encapsulant for organic EL display elements | |
JP2024022608A (en) | Encapsulant for organic el display element | |
WO2019203120A1 (en) | Sealant for organic el display element | |
JP7474052B2 (en) | Sealant for organic EL display devices | |
JP7397666B2 (en) | Encapsulant for organic EL display elements | |
JP2019029355A (en) | Sealing agent for organic EL display element | |
JP7479843B2 (en) | Sealant for organic EL display devices | |
JP2024012375A (en) | Curable resin composition, cured product, and organic EL display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019521508 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19774369 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19774369 Country of ref document: EP Kind code of ref document: A1 |