WO2019198378A1 - Compound and use thereof - Google Patents

Compound and use thereof Download PDF

Info

Publication number
WO2019198378A1
WO2019198378A1 PCT/JP2019/008141 JP2019008141W WO2019198378A1 WO 2019198378 A1 WO2019198378 A1 WO 2019198378A1 JP 2019008141 W JP2019008141 W JP 2019008141W WO 2019198378 A1 WO2019198378 A1 WO 2019198378A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
resin composition
compound
formula
Prior art date
Application number
PCT/JP2019/008141
Other languages
French (fr)
Japanese (ja)
Inventor
由貴 中村
Original Assignee
株式会社Moresco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Moresco filed Critical 株式会社Moresco
Priority to CN201980025023.9A priority Critical patent/CN111971322B/en
Priority to JP2020513115A priority patent/JPWO2019198378A1/en
Publication of WO2019198378A1 publication Critical patent/WO2019198378A1/en
Priority to JP2022113487A priority patent/JP7324346B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a compound, a resin composition containing the compound, and a sealant containing the compound or the resin composition.
  • Patent Document 1 As a method for inhibiting crystallization of an epoxy resin, for example, Patent Document 1 is characterized in that an acidic compound is added to an epoxy resin and 5 to 16% of the epoxy groups of the epoxy resin are reacted with the acidic compound to cause ring opening. A method for preventing crystallization of an epoxy resin is disclosed.
  • Patent Document 2 discloses that an aliphatic monocarboxylic acid having 10 or more carbon atoms is added to an uncured epoxy resin obtained by a reaction between an aromatic dihydroxy compound and an epihalohydrin based on an epoxy group of the epoxy resin.
  • a method for preventing crystallization of an uncured epoxy resin is disclosed, which is characterized in that it is added at a ratio of ⁇ 30 equivalent% and heat-treated.
  • the modification rate should be set to sufficiently suppress crystallization. Need to increase. As a result, many epoxy groups are consumed, that is, the active site of the curing reaction is consumed, so that there is a problem that the physical properties are lowered, for example, the curing rate of the resin cured product or the glass transition point is lowered.
  • One embodiment of the present invention has been made in view of the above problems, and an object thereof is to provide a compound having low crystallinity and excellent physical properties even after curing.
  • the present inventor has solved the above problems by a compound obtained by subjecting a compound having two or more epoxy groups and a divalent or higher carboxylic acid or a carboxylic acid derivative to a ring-opening addition reaction.
  • the present inventors have found that the problem can be solved and have completed the present invention. That is, the present invention includes the following configurations.
  • n represents an integer of 2 or more
  • R and R ′ represent an aliphatic group or an aromatic group.
  • a resin composition comprising the compound according to [1] or [2].
  • a sealant comprising the compound according to [1] or [2] or the resin composition according to [3] or [4].
  • sealant according to [5] further comprising at least one component selected from the group consisting of a polymerization initiator, an inorganic compound, and a silane coupling agent.
  • a compound having low crystallinity and exhibiting excellent physical properties after curing can be provided.
  • the compound which concerns on one Embodiment of this invention is a compound represented by following formula (1) or Formula (2),
  • n represents an integer of 2 or more
  • R and R ′ represent an aliphatic group or an aromatic group.
  • R may be different from each other or the same.
  • R and R ′ may be the same or different.
  • the crystallinity is low and excellent physical properties are exhibited after curing (polymerization).
  • a compound having a low crystallinity and a water permeability after curing, and a high curing rate and a high glass transition point after curing can be obtained.
  • low crystallinity intends that a crystal
  • the above compound can be obtained by subjecting a compound having two or more epoxy groups to a ring-opening addition reaction with a divalent or higher carboxylic acid or carboxylic acid derivative.
  • a compound having two or more epoxy groups can be obtained by subjecting a compound having two or more epoxy groups to a ring-opening addition reaction with a divalent or higher carboxylic acid or carboxylic acid derivative.
  • any of the structures of the above formulas (1) and (2) can be taken.
  • the aliphatic group may be linear, branched, or cyclic, and may be saturated or unsaturated.
  • Examples of the aliphatic group include an alkylene group, an alkenylene group, an alkynylene group, a cycloalkylene group, and a cycloalkynylene group.
  • Examples of the cycloalkylene group include a decahydronaphthylene group and a tricyclodecanylene group.
  • Examples of the cycloalkynylene group include a dicyclopentadienylene group.
  • aromatic group examples include a phenylene group, a naphthylene group, a bisphenylene group, an anthrylene group, and a phenanthrenylene group.
  • R is preferably an aromatic group, more preferably a bisphenylene group.
  • the bisphenylene group may be F-type or A-type.
  • F-type bisphenylene group examples include a group represented by the following formula (4). Both ends of formula (4) represent a bond. That is, Formula (4) represents the following structure.
  • A-type bisphenylene group examples include a group represented by the following formula (5). Similar to equation (4), both ends of equation (5) also represent a bond. That is, Formula (5) represents the following structure.
  • R preferably has 3 to 200 carbon atoms, more preferably 5 to 100, and still more preferably 5 to 40. Thereby, the said compound can be made into an appropriate viscosity.
  • R ′ preferably has 1 to 300 carbon atoms, more preferably 2 to 100, and even more preferably 2 to 20. Thereby, the said compound can be made into an appropriate viscosity.
  • the method for producing a compound according to an embodiment of the present invention includes a mixing step of mixing a compound represented by the following formula (3) and a divalent or higher carboxylic acid or carboxylic acid derivative to obtain a mixture, and the above mixture: Heating to obtain a compound by heating
  • said R shows an aliphatic group or an aromatic group.
  • the above R is as described above in the above formula (1) and formula (2).
  • R is a structure derived from the compound represented by the above formula (3)
  • R ′ is a divalent or higher carboxylic acid or carboxylic acid derivative. It is a derived structure.
  • n 0 component
  • the compound represented by the above formula (3) is mixed with a divalent or higher carboxylic acid or carboxylic acid derivative to obtain a mixture.
  • the reaction rate in the heating step can be increased.
  • the compound represented by the above formula (3) is preferably a bisphenol F type epoxy resin or a bisphenol A type epoxy resin.
  • the bisphenol F-type epoxy resin include EXA-830CRP manufactured by DIC, EP-4901HF manufactured by ADEKA, Wells Advanced Materials Co., Ltd. FM-880 manufactured by Ltd., YDF-870GS manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and the like.
  • the bisphenol A type epoxy resin include EPICLON EXA850-CRP manufactured by DIC, EP-4100HF manufactured by ADEKA, and YD-825GS manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • the carboxylic acid is not particularly limited as long as it is divalent or higher, but may be a divalent carboxylic acid (dicarboxylic acid), a trivalent carboxylic acid (tricarboxylic acid), or a tetravalent carboxylic acid (tetracarboxylic acid). Preferably, it is a divalent carboxylic acid or a trivalent carboxylic acid. If the carboxylic acid is a divalent carboxylic acid or a trivalent carboxylic acid, the above compound can have an appropriate viscosity.
  • the carboxylic acid has an aliphatic group or an aromatic group, and the aliphatic group may be linear, branched, or cyclic, and may be saturated or unsaturated.
  • divalent carboxylic acid examples include succinic acid, adipic acid, phthalic acid, isophthalic acid, terephthalic acid, suberic acid, sebacic acid, and long-chain branched divalent carboxylic acid (eg, MMA-10R manufactured by Okamoto Oil Co., Ltd.).
  • trivalent carboxylic acid examples include trimellitic acid, citric acid, 3-butene-1,2,3-tricarboxylic acid, and 1,3,5-benzenetricarboxylic acid.
  • tetravalent carboxylic acid examples include meso-butane-1,2,3,4-tetracarboxylic acid, pyromellitic acid and biphenyl-3,3 ', 5', 5-tetracarboxylic acid.
  • the carboxylic acid derivative is not particularly limited as long as it is a derivative of a divalent or higher carboxylic acid, and examples thereof include carboxylic acid esters, carboxylic acid anhydrides, and carboxylic acid salts.
  • carboxylic acid ester include a block carboxylic acid represented by the following formula (6), isononyl adipate, and dimethyl 4,4′-biphenyldicarboxylate.
  • the carboxylic acid or carboxylic acid derivative preferably has 2 to 500 carbon atoms, more preferably 5 to 300, still more preferably 5 to 100.
  • the compound represented by the said Formula (1) or Formula (2) can be made into appropriate viscosity.
  • the mixing means is not particularly limited, and examples thereof include a flask equipped with a stirring blade, a kneader, a roll, a melting tank, a Banbury mixer, and an extruder.
  • the proportion of the divalent or higher carboxylic acid or carboxylic acid derivative added is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of the compound represented by the above formula (3).
  • the amount is more preferably 01 to 20 parts by weight, and further preferably 0.05 to 10 parts by weight.
  • a reaction accelerator may be mixed in addition to the compound represented by the above formula (3) and the divalent or higher carboxylic acid or carboxylic acid derivative.
  • the reaction accelerator may be a catalyst that can promote a ring-opening addition reaction with a divalent or higher carboxylic acid or carboxylic acid derivative, such as an alkali metal hydroxide, a metal alcoholate, a tertiary amine compound. Quaternary ammonium salts, quaternary phosphonium salts, and tertiary phosphines.
  • alkali metal hydroxide include sodium hydroxide and potassium hydroxide.
  • metal alcoholates include sodium methylate and sodium ethylate.
  • Examples of the tertiary amine compound include triethylamine, triethanolamine, and 2,4,6-tris (dimethylaminomethyl) phenol.
  • Examples of the quaternary ammonium salt include tetramethylammonium chloride and tetrabutylammonium chloride.
  • Examples of the quaternary phosphonium salt include benzyltriphenylphosphonium chloride, tetrabutylphosphonium hydroxide and butyltriphenylphosphonium bromide.
  • Examples of the tertiary phosphine include tributyl phosphine, trioctyl phosphine, triphenyl phosphine, and styryl diphenyl phosphine.
  • Heating process In the heating step, the mixture is heated to obtain a compound.
  • the compound represented by the above formula (3) and a divalent or higher carboxylic acid or carboxylic acid derivative undergo a ring-opening addition reaction, and the above formula (1) or (2)
  • the compounds represented can be obtained.
  • the heating temperature is preferably 80 to 250 ° C, more preferably 100 to 180 ° C, and further preferably 120 to 150 ° C.
  • the efficiency of the ring-opening addition reaction between the compound represented by the above formula (3) and a divalent or higher carboxylic acid or carboxylic acid derivative can be increased. That is, the yield of the compound represented by the above formula (1) or formula (2) can be increased.
  • the heating means is not particularly limited, and examples thereof include a mantle heater, a throwing heater, a hot plate, and an IH heater.
  • the mixing step and the heating step may be performed under an inert gas stream or may be performed in an open system.
  • an inert gas Ar etc. are mentioned, for example.
  • the resin composition which concerns on one Embodiment of this invention contains the compound mentioned above.
  • the resin composition has low crystallinity and excellent physical properties even after curing.
  • a resin composition having a low crystallinity and a water permeability after curing, and a high curing rate and a glass transition point after curing can be obtained.
  • the resin composition may contain either one of the compound represented by the formula (1) and the compound represented by the formula (2), or both of them.
  • the mixture of the compound represented by Formula (1) and the compound represented by Formula (2) is obtained by the above-mentioned manufacturing method. Therefore, the said resin composition may contain the mixture of the compound represented by Formula (1), and the compound represented by Formula (2).
  • the resin composition according to an embodiment of the present invention may further include a compound represented by the following formula (3), In said formula (3), said R shows an aliphatic group or an aromatic group.
  • the ratio of the compound represented by the above formula (3) is preferably 90 area% or less and 100 area% or less with respect to 100 area% of the resin composition. Is more preferable, and it is further more preferable that it is 70 area% or less.
  • the measuring method by GPC gel permeation chromatography
  • the ratio of the compound represented by the above formula (3) is preferably as low as possible and preferably 0 area%, but in reality, the lower limit may be about 30 area%.
  • the sealing agent which concerns on one Embodiment of this invention contains the compound mentioned above or the resin composition mentioned above.
  • the sealing agent has low crystallinity and exhibits excellent physical properties even after curing. Specifically, for example, it is possible to obtain a sealant having low crystallinity and moisture permeability after curing, and high curing rate and glass transition point after curing.
  • the said sealing agent may contain any one of the compound represented by Formula (1) and the compound represented by Formula (2) similarly to the said resin composition, and may contain both of them. Good.
  • the sealant according to an embodiment of the present invention preferably further includes at least one component selected from the group consisting of a polymerization initiator, an inorganic compound, and a silane coupling agent.
  • a polymerization initiator the compound represented by the formula (1) or formula (2) contained in the sealing agent can be polymerized by light irradiation or heating.
  • the sealing agent contains an inorganic compound, the moisture permeability after curing can be lowered.
  • the sealing agent contains a silane coupling agent, the polymer of the compound represented by the formula (1) or the formula (2) can be coupled.
  • the polymerization initiator is preferably a cationic polymerization initiator.
  • the cationic polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator.
  • the cationic photopolymerization initiator is not particularly limited as long as it can generate cations by light irradiation and initiate the curing reaction of the photocationically polymerizable compound.
  • the cationic photopolymerization initiator include sulfonium salts such as triarylsulfonium salts and triphenylsulfonium salts, and iodonium salts.
  • the triarylsulfonium salt include triarylsulfonium borate salt (borate type), triarylsulfonium ⁇ SbF 6 salt (antimony type), triarylsulfonium ⁇ PF 6 salt (phosphorus type), and the like.
  • the triphenylsulfonium salt include triphenylsulfonium tetrafluoroborate.
  • the cationic thermal polymerization initiator is not particularly limited as long as it can generate cations by applying heat and can initiate the curing reaction of the thermal cationic polymerizable compound.
  • examples of the inorganic compound include mica, talc, alumina, clay, colloidal silica, and titanium oxide.
  • silane coupling agent examples include 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl).
  • alkylalkoxysilanes such as ethyltrimethoxysilane.
  • the sealing agent may further contain additives other than the above-described components, if necessary, as long as the crystallinity is low and physical properties after curing are not impaired.
  • additives include stabilizers, antioxidants, compatibilizers, antifoaming agents, adhesion promoters, viscosity modifiers, thixotropic agents, and fillers.
  • the encapsulant according to one embodiment of the present invention has low crystallinity and excellent physical properties even after curing even when the amount of chlorine contained in the encapsulant is low.
  • the manufacturing method of the sealing agent which concerns on one Embodiment of this invention is a compound manufacturing process, and the compound obtained by the compound manufacturing process is at least selected from the group which consists of a polymerization initiator, an inorganic compound, and a silane coupling agent.
  • the compound production process includes the above-described ⁇ compound production method> mixing step and heating step.
  • the compound represented by the above formula (1) or formula (2) is produced.
  • the kneading dispersion step at least one component selected from the group consisting of a polymerization initiator, an inorganic compound and a silane coupling agent is kneaded and dispersed in the compound obtained in the compound production step to obtain a kneaded dispersion.
  • the proportion of the polymerization initiator added is preferably 0.2 to 20 parts by weight and preferably 1 to 15 parts by weight with respect to 100 parts by weight of the compound represented by the above formula (3). More preferred is 2 to 10 parts by weight.
  • the proportion of the polymerization initiator added is 0.2 to 20 parts by weight, the compound represented by the above formula (1) or formula (2) can be efficiently polymerized.
  • the proportion of the inorganic compound added is preferably 20 to 90 parts by weight, more preferably 30 to 90 parts by weight with respect to 100 parts by weight of the compound represented by the above formula (3). More preferably, it is 40 to 80 parts by weight.
  • the proportion of the inorganic compound added is 20 parts by weight or more, the moisture permeability after curing can be lowered.
  • the ratio of adding the inorganic compound is 90 parts by weight or less, it can be adjusted to an appropriate viscosity.
  • the proportion of the silane coupling agent added is preferably 0.1 to 30 parts by weight, and preferably 1 to 20 parts by weight with respect to 100 parts by weight of the compound represented by the above formula (3). Is more preferably 5 to 10 parts by weight.
  • the ratio of adding the silane coupling agent is 0.1 parts by weight or more, the polymer of the compound represented by the formula (1) or the formula (2) can be efficiently coupled.
  • the proportion of the silane coupling agent added is 30 parts by weight or less, appropriate physical properties of the cured product can be maintained.
  • the kneading and dispersing means is not particularly limited, and examples thereof include a flask equipped with a stirring blade, a kneader, a roll, a melting tank, a Banbury mixer, and an extruder.
  • the kneaded dispersion obtained in the kneading and dispersing step is filtered to obtain a sealant.
  • a conventionally known method can be used as the filtering means, and for example, pressure filtration may be used.
  • the cured sealant according to one embodiment of the present invention is [1.
  • the compound] preferably contains a compound obtained by polymerizing the above-described compound.
  • the cured encapsulant according to one embodiment of the present invention is [2. Resin composition] and [3. It is more preferable that each component contained in the resin composition and the sealant described in “Sealant” is included.
  • cured material which does not contain an inorganic compound and a silane coupling agent is also called "resin hardened
  • the cured sealant according to one embodiment of the present invention preferably has a glass transition point of 100 ° C. or higher, and more preferably 120 ° C. or higher.
  • the glass transition point is a value measured by DSC (differential scanning calorimeter). The measuring method of the glass transition point by DSC (differential scanning calorimeter) will be described in detail in Examples described later.
  • DSC differential scanning calorimeter
  • the cured sealant according to an embodiment of the present invention preferably has a moisture permeability of less than 6.5 g / (m 2 ⁇ day), and less than 4.5 g / (m 2 ⁇ day). More preferably.
  • the moisture permeability is a value determined by the cup method. The method for measuring the moisture permeability by the cup method will be described in detail in Examples described later. When the moisture permeability is within the above range, an organic EL element or the like can be sealed when used as a sealant for an organic EL display.
  • An organic EL display including the cured sealant according to an embodiment of the present invention is also included in the present invention.
  • cured material which concerns on one Embodiment of this invention is a method of irradiating light to the sealing agent mentioned above or heating the said sealing agent, and obtaining sealing agent hardened
  • the sealant When the sealant contains a photopolymerization initiator, the sealant is irradiated with light.
  • the wavelength for light irradiation is appropriately selected depending on the type of photopolymerization initiator.
  • the amount of light irradiation and the time for light irradiation are appropriately selected depending on the composition of the sealant. Examples of the means for irradiating light include ultraviolet irradiation lamps such as metal halide lamps, mercury lamps, LEDs, halogen lamps, xenon lamps and deuterium lamps.
  • the sealant contains a thermal polymerization initiator
  • the sealant is heated.
  • the heating temperature and time are appropriately selected depending on the type of thermal polymerization initiator and the composition of the sealant.
  • a post-curing treatment may be performed in which the cured sealant is heated.
  • the heating temperature and time of the post-curing treatment are appropriately selected depending on the composition of the sealant.
  • cured sealant which concerns on one Embodiment of this invention, it is contained in the said sealing agent before hardening with respect to 100 mol% of moles of the epoxy group contained in the said sealing agent before hardening.
  • the ratio (curing rate) of the difference between the number of moles of the epoxy group and the number of moles of the epoxy group of the cured sealant after curing is preferably 70 mol% or more, and more preferably 90 mol% or more. preferable. Thereby, the water
  • Example 1 100 parts by weight of EXA-830CRP (bisphenol F type epoxy resin, manufactured by DIC) as an epoxy resin and 4.7 parts by weight of adipic acid (divalent carboxylic acid) as a carboxylic acid were placed in a flask and mixed with a stirring blade. Then, it heated at 150 degreeC with the mantle heater, and obtained the resin composition. Mixing and heating were performed under an Ar stream.
  • EXA-830CRP bisphenol F type epoxy resin, manufactured by DIC
  • adipic acid divalent carboxylic acid
  • Example 2 FM-880 (bisphenol F type epoxy resin, manufactured by Wells Advanced Materials Co., Ltd.) was used instead of EXA-830CRP, and 3.8 parts by weight of MMA-10R (instead of 4.7 parts by weight of adipic acid (A resin composition was obtained in the same manner as in Example 1 except that long-chain branched divalent carboxylic acid (manufactured by Okamoto Oil Co., Ltd.) was used.
  • Example 3 Instead of 4.7 parts by weight of adipic acid, 0.075 parts by weight of meso-butane-1,2,3,4-tetracarboxylic acid (tetravalent carboxylic acid) was used, and mixing and heating were performed in an open system. A resin composition was obtained in the same manner as in Example 1 except that.
  • Example 4 Example 1 was used except that 9.0 parts by weight of Nocure TN-1 (trivalent carboxylic acid derivative (trimellitic acid ester), manufactured by NOF Corporation) was used instead of 4.7 parts by weight of adipic acid. Similarly, a resin composition was obtained.
  • Nocure TN-1 trivalent carboxylic acid derivative (trimellitic acid ester), manufactured by NOF Corporation
  • Example 21 Exa-850CRP (bisphenol A type epoxy resin, manufactured by DIC) was used instead of EXA-830CRP, and 3.9 parts by weight of MMA-10R was used instead of 4.7 parts by weight of adipic acid. A resin composition was obtained in the same manner as in Example 1.
  • Example 1 was used except that 17.0 parts by weight of oleic acid (monocarboxylic acid) was used instead of 4.7 parts by weight of adipic acid, and 0.05 parts by weight of triphenylphosphine was further added. Thus, a resin composition was obtained.
  • oleic acid monocarboxylic acid
  • triphenylphosphine triphenylphosphine
  • n 0 component amount (GPC (gel permeation chromatography))
  • GPC gel permeation chromatography
  • the equipment includes a system controller manufactured by SHIMAZU: SCL-10AVP, a liquid pump: LC-20AD, a degasser: DGU-12A, an autoinjector: SIL-10A, a column oven: CTO-10AVP, a detector: RI-made by shodex. 71 was used. Chloroform was used as the solvent, and the flow rate was 1 mL / min.
  • Crystal suppression when the number of days required to solidify due to loss of flow is longer than 3 months ⁇ Crystal suppression when 1 to 3 months ⁇ Crystal suppression when 1 to 4 weeks ⁇ When less than 1 week Crystal suppression x.
  • Tables 1 and 2 below show the composition and property evaluation results of the resin compositions prepared in Examples 1 to 4 and 21, and Comparative Examples 1 to 3 and 16.
  • Example 5 To the resin composition produced in Example 1, 2.1 parts by weight of CPI-101A (antimony, manufactured by San Apro) as a cationic photopolymerization initiator was further added and mixed to obtain a resin composition.
  • the resin composition was made into a film using a doctor blade YD-3 type manufactured by Yoshimitsu Seiki Co., Ltd. so as to have a thickness of 100 ⁇ m.
  • the resin composition in the form of a film was irradiated with 6000 mJ / cm 2 ultraviolet rays using a metal halide lamp and subjected to post-curing treatment at 80 ° C. for 1 hour to obtain a cured resin.
  • Example 6 A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Example 2 was used instead of the resin composition prepared in Example 1.
  • Example 7 A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Example 3 was used instead of the resin composition prepared in Example 1 and that 2.0 parts by weight of CPI-101A was used. .
  • Example 8 A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Example 4 was used instead of the resin composition prepared in Example 1 and that CPI-101A was changed to 2.2 parts by weight. .
  • Example 22 A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Example 21 was used instead of the resin composition prepared in Example 1.
  • Example 4 A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Comparative Example 1 was used instead of the resin composition prepared in Example 1 and that 2.0 parts by weight of CPI-101A was used. .
  • Example 5 A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Comparative Example 2 was used instead of the resin composition prepared in Example 1 and that 2.0 parts by weight of CPI-101A was used. .
  • Example 6 A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Comparative Example 3 was used instead of the resin composition prepared in Example 1 and that CPI-101A was changed to 2.3 parts by weight. .
  • Example 17 A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Comparative Example 16 was used instead of the resin composition prepared in Example 1 and that 2.0 parts by weight of CPI-101A was used. .
  • a curing rate of 90% or more was evaluated as ⁇ , 70% or more and less than 90% as ⁇ , 50% or more and less than 70% as ⁇ , and less than 50% as ⁇ .
  • Tg glass transition point
  • Tables 3 and 4 below show the results of composition and property evaluations of the resin compositions prepared in Examples 5 to 8 and 22 and Comparative Examples 4 to 6 and 17.
  • Example 9 Resin composition prepared in Example 1, 5.2 parts by weight of CPI-310B (borate-based, manufactured by San Apro) as a cationic photopolymerization initiator, 57.6 parts by weight of mica as an inorganic compound, and silane coupling As an agent, 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane (epoxy-modified) was kneaded and dispersed with a kneader. Thereafter, pressure filtration was performed to obtain a sealant composition. Thereafter, the sealant composition was formed into a film shape using a doctor blade YD-3 type manufactured by Yoshimitsu Seiki Co., Ltd. so that the thickness was 100 ⁇ m.
  • the sealant composition formed into a film was irradiated with 6000 mJ / cm 2 of ultraviolet rays using a metal halide lamp and subjected to post-curing treatment at 80 ° C. for 1 hour to obtain a cured sealant.
  • Example 10 Using 9.4 parts by weight of CPI-101A in place of 5.2 parts by weight of CPI-310B, using 52.4 parts by weight of talc instead of 57.6 parts by weight of mica, 3-glycidoxypropyl A cured sealant was obtained in the same manner as in Example 9 except that 9.4 parts by weight of triethoxysilane was used.
  • Example 11 Instead of 5.2 parts by weight of CPI-310B, 9.4 parts by weight of CPI-200K (phosphorus-based, manufactured by San Apro) was used, and 57.6 parts by weight of mica was replaced by 47.1 parts by weight of alumina. Used in the same manner as in Example 9 except that 3-glycidoxypropylmethyldimethoxysilane was used instead of 3-glycidoxypropyltriethoxysilane and three rolls were used instead of the kneader. Got.
  • Example 12 Similar to Example 9 except that the resin composition prepared in Example 2 was used instead of the resin composition prepared in Example 1, mica was 57.1 parts by weight, and three rolls were used instead of the kneader. Thus, a cured sealant was obtained.
  • Example 13 The resin composition prepared in Example 2 was used instead of the resin composition prepared in Example 1, 9.3 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B, and 57.
  • Example 9 except that 51.9 parts by weight of talc was used instead of 6 parts by weight of mica, 9.3 parts by weight of 3-glycidoxypropyltriethoxysilane was used, and three rolls were used instead of the kneader. In the same manner as above, a cured sealant was obtained.
  • Example 14 The resin composition prepared in Example 2 was used in place of the resin composition prepared in Example 1, and 5.0 parts by weight of CPI-200K (phosphorus-based, San-Apro) was used instead of 5.2 parts by weight of CPI-310B. 46.7 parts by weight of alumina instead of 57.6 parts by weight of mica, and 3-glycidoxypropylmethyldimethoxysilane instead of 3-glycidoxypropyltriethoxysilane. Except that, the cured sealant was obtained in the same manner as in Example 9.
  • CPI-200K phosphorus-based, San-Apro
  • Example 15 instead of the resin composition prepared in Example 1, the resin composition prepared in Example 3 was used, CPI-310B was 5.0 parts by weight, mica was 55.0 parts by weight, and 3-glycidoxypropyl A cured sealant was obtained in the same manner as in Example 9 except that 5.0 parts by weight of triethoxysilane was used.
  • Example 16 The resin composition prepared in Example 3 was used instead of the resin composition prepared in Example 1, and 9.0 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B.
  • a cured sealant was prepared in the same manner as in Example 9 except that 50.0 parts by weight of talc was used instead of 6 parts by weight of mica, and 9.0 parts by weight of 3-glycidoxypropyltriethoxysilane was used. Obtained.
  • Example 17 The resin composition prepared in Example 3 was used instead of the resin composition prepared in Example 1, 9.0 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B, and 57. 45.0 parts by weight of alumina is used instead of 6 parts by weight of mica, and 5.0 parts by weight of 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane. A cured sealant was obtained in the same manner as in Example 9 except that silane was used and three rolls were used instead of the kneader.
  • Example 18 instead of the resin composition prepared in Example 1, the resin composition prepared in Example 4 was used, CPI-310B was 5.5 parts by weight, mica was 60.0 parts by weight, and 3-glycidoxypropyl A cured sealant was obtained in the same manner as in Example 9 except that 5.5 parts by weight of triethoxysilane was used.
  • Example 19 The resin composition prepared in Example 4 was used instead of the resin composition prepared in Example 1, and 9.8 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B.
  • a cured sealant was prepared in the same manner as in Example 9 except that 54.5 parts by weight of talc was used instead of 6 parts by weight of mica, and 9.8 parts by weight of 3-glycidoxypropyltriethoxysilane was used. Obtained.
  • Example 20 The resin composition prepared in Example 4 was used instead of the resin composition prepared in Example 1, and 9.8 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B. 49.1 parts by weight of alumina is used instead of 6 parts by weight of mica, and 5.5 parts by weight of 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane.
  • a cured sealant was obtained in the same manner as in Example 9 except that silane was used and three rolls were used instead of the kneader.
  • Example 9 is the same as Example 9 except that the resin composition prepared in Example 21 was used instead of the resin composition prepared in Example 1, and CPI-310B was changed to 5.2 parts by weight and mica was changed to 57.1 parts by weight. Similarly, a cured sealant was obtained.
  • Example 24 The resin composition prepared in Example 21 was used instead of the resin composition prepared in Example 1, and 9.4 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B.
  • a cured sealant was prepared in the same manner as in Example 9 except that 52.0 parts by weight of talc was used instead of 6 parts by weight of mica, and 9.4 parts by weight of 3-glycidoxypropyltriethoxysilane was used. Obtained.
  • Example 25 The resin composition prepared in Example 21 was used instead of the resin composition prepared in Example 1, and 9.4 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B. 46.8 parts by weight of alumina is used instead of 6 parts by weight of mica, and 5.2 parts by weight of 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane.
  • a cured sealant was obtained in the same manner as in Example 9 except that silane was used and three rolls were used instead of the kneader.
  • Comparative Example 8 The resin composition prepared in Comparative Example 1 was used instead of the resin composition prepared in Example 1, 9.0 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B, and 57. A cured sealant was prepared in the same manner as in Example 9 except that 50.0 parts by weight of talc was used instead of 6 parts by weight of mica, and 9.0 parts by weight of 3-glycidoxypropyltriethoxysilane was used. Obtained.
  • Comparative Example 9 The resin composition prepared in Comparative Example 1 was used instead of the resin composition prepared in Example 1, 9.0 CPI-200K was used instead of 5.2 parts by weight of CPI-310B, and 57.6 wt. 45.0 parts by weight of alumina is used instead of 5 parts by weight of mica, and 5.0 parts by weight of 3-glycidoxypropylmethyldimethoxysilane is used instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane. A cured sealant was obtained in the same manner as in Example 9 except that three rolls were used instead of the kneader.
  • Comparative Example 11 The resin composition prepared in Comparative Example 2 was used in place of the resin composition prepared in Example 1, 9.2 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B, and 57.
  • Example 9 except that 51.0 parts by weight of talc was used instead of 6 parts by weight of mica, 9.2 parts by weight of 3-glycidoxypropyltriethoxysilane was used, and three rolls were used instead of the kneader. In the same manner as above, a cured sealant was obtained.
  • Comparative Example 12 The resin composition prepared in Comparative Example 2 was used in place of the resin composition prepared in Example 1, 9.2 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B, and 57. 45.9 parts by weight of alumina is used instead of 6 parts by weight of mica, and 5.1 parts by weight of 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane. A cured sealant was obtained in the same manner as in Example 9 except that silane was used.
  • Comparative Example 14 The resin composition prepared in Comparative Example 3 was used instead of the resin composition prepared in Example 1, 10.5 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B, and 57.
  • a cured sealant was prepared in the same manner as in Example 9 except that 58.5 parts by weight of talc was used instead of 6 parts by weight of mica, and 10.5 parts by weight of 3-glycidoxypropyltriethoxysilane was used. Obtained.
  • Comparative Example 15 The resin composition prepared in Comparative Example 3 was used instead of the resin composition prepared in Example 1, 10.5 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B, and 57. 52.7 parts by weight alumina instead of 6 parts by weight mica, and 5.9 parts by weight 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight 3-glycidoxypropyltriethoxysilane A cured sealant was obtained in the same manner as in Example 9 except that silane was used.
  • Comparative Example 19 The resin composition prepared in Comparative Example 16 was used instead of the resin composition prepared in Example 1, 9.0 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B, and 57. Use 50.0 parts by weight of talc instead of 6 parts by weight of mica, 9.0 parts by weight of 3-glycidoxypropyltrimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane A cured sealant was obtained in the same manner as in Example 9 except that silane was used.
  • Comparative Example 20 The resin composition prepared in Comparative Example 16 was used instead of the resin composition prepared in Example 1, 9.0 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B, and 57. 45.0 parts by weight of alumina is used instead of 6 parts by weight of mica, and 5.0 parts by weight of 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane. A cured sealant was obtained in the same manner as in Example 9 except that silane was used.
  • WVTR (g / (m 2 ⁇ day)) Increased mass (g) /0.03 ⁇ 0.03 ⁇ 3.14 (m 2 ) ⁇ 1 (day)
  • WVTR When the WVTR is less than 4.5 g / (m 2 ⁇ day), ⁇ , when it is 4.5 g / (m 2 ⁇ day) or more and less than 6.5 g / (m 2 ⁇ day), ⁇ , 6.5 g / ( When m 2 ⁇ day) or more and less than 15.5 g / (m 2 ⁇ day), ⁇ , when 15.5 g / (m 2 ⁇ day) or more, or when measurement is not possible due to poor curing, ⁇ .
  • Tables 5 to 10 below show the composition and property evaluation results of the cured sealants prepared in Examples 9 to 20 and 23 to 25 and Comparative Examples 7 to 15 and 18 to 20, respectively.
  • the cured sealants of Examples 9 to 20, 23 to 25 and Comparative Examples 7 to 9 and 18 to 20 had lower moisture permeability than the cured sealants of Comparative Examples 10 to 15. It was. Further, the cured sealants of Examples 9, 10, 13, 15, 16, 18 to 20 and 24 and Comparative Examples 7 to 9, 18, and 19 are examples 11, 12, 14, 17, 23, It was confirmed that the moisture permeability was lower than that of the cured sealant of 25 and Comparative Example 20.
  • Examples 1 to 4 and 21 were found to be excellent in crystal suppression.
  • the cured sealants of Examples 5 to 8 and 22 using any one of the resin compositions of Examples 1 to 4 and 21 had a high curing rate and glass transition point.
  • the cured sealants of Examples 9 to 20 and 23 to 25 using any of the resin compositions of Examples 1 to 4 and 21 were found to have low moisture permeability.
  • the resin composition of Comparative Example 3 exhibited the same crystal suppression as that of the example.
  • the encapsulant cured product of Comparative Example 6 using the resin composition of Comparative Example 3 is inferior in that the curing rate is low and the glass transition point cannot be measured, and the resin composition of Comparative Example 3 is inferior.
  • the cured sealants of Comparative Examples 13 to 15 using the product are inferior in that the moisture permeability is high. Further, the cured sealants of Comparative Examples 4, 5 and 17 showed the same curing rate and glass transition point as those of Examples, and the cured sealants of Comparative Examples 7 to 9 and 18 to 20 were equivalent to Examples. The water permeability was shown. However, the resin compositions of Comparative Examples 1, 2, and 16 used in any of the cured sealants of Comparative Examples 4, 5, 7 to 9, and 17 to 20 are inferior in crystal suppression.
  • the present invention can be used as a sealant, an adhesive, and a coating agent that are also suitably used in an organic EL display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

Provided is a compound that has low crystallinity and continues exhibiting excellent properties after being cured. The compound is represented by formula (1) or formula (2). In formula (1) and formula (2), n is an integer of 2 or greater, and R and R' each represent an aliphatic group or an aromatic group.

Description

化合物およびその利用Compounds and their use
 本発明は化合物、当該化合物を含む樹脂組成物、および当該化合物または当該樹脂組成物を含む封止剤に関する。 The present invention relates to a compound, a resin composition containing the compound, and a sealant containing the compound or the resin composition.
 エポキシ樹脂は、封止剤、接着剤、コート剤等に用いられている。エポキシ樹脂は、室温、特に低温下で晶出傾向があった。特に分子蒸留したエポキシ樹脂等、n=0(モノマー)成分量が多いエポキシ樹脂は晶出し易い。 Epoxy resins are used for sealants, adhesives, coating agents, and the like. Epoxy resins tended to crystallize at room temperature, particularly at low temperatures. In particular, epoxy resins having a large amount of n = 0 (monomer) components such as molecularly distilled epoxy resins are easily crystallized.
 エポキシ樹脂の結晶化抑制方法として、例えば、特許文献1には、エポキシ樹脂に酸性化合物を添加しエポキシ樹脂のエポキシ基のうち5~16%を該酸性化合物と反応させて開環させることを特徴とするエポキシ樹脂の晶出防止方法が開示されている。 As a method for inhibiting crystallization of an epoxy resin, for example, Patent Document 1 is characterized in that an acidic compound is added to an epoxy resin and 5 to 16% of the epoxy groups of the epoxy resin are reacted with the acidic compound to cause ring opening. A method for preventing crystallization of an epoxy resin is disclosed.
 また、特許文献2には、芳香族ジヒドロキシ化合物とエピハロヒドリンとの反応により得られる未硬化エポキシ樹脂に対し、炭素数10以上の脂肪族モノカルボン酸を、該エポキシ樹脂のエポキシ基に基づき0.5~30当量%の割合で加え、加熱処理することを特徴する未硬化エポキシ樹脂の晶出防止方法が開示されている。 Patent Document 2 discloses that an aliphatic monocarboxylic acid having 10 or more carbon atoms is added to an uncured epoxy resin obtained by a reaction between an aromatic dihydroxy compound and an epihalohydrin based on an epoxy group of the epoxy resin. A method for preventing crystallization of an uncured epoxy resin is disclosed, which is characterized in that it is added at a ratio of ˜30 equivalent% and heat-treated.
日本国公開特許公報「特開昭50-2797号」Japanese Patent Publication “Japanese Patent Laid-Open No. 50-2797” 日本国公開特許公報「特開平2-189324号」Japanese Patent Publication “JP-A-2-189324”
 しかしながら、上述のような従来技術の方法を、特に分子蒸留したエポキシ樹脂など、n=0成分量が多いために晶出し易い樹脂に適用した場合、十分に晶出を抑えるためには変性率を高める必要がある。その結果、多くのエポキシ基が消費され、すなわち、硬化反応の活性部位が消費されるために、樹脂硬化物の硬化率またはガラス転移点が低下するなど、物性が低下するという問題がある。 However, when the above-described conventional method is applied to a resin that is easily crystallized because of a large amount of n = 0 components, such as an epoxy resin that has been molecularly distilled, the modification rate should be set to sufficiently suppress crystallization. Need to increase. As a result, many epoxy groups are consumed, that is, the active site of the curing reaction is consumed, so that there is a problem that the physical properties are lowered, for example, the curing rate of the resin cured product or the glass transition point is lowered.
 本発明の一態様は、上記の問題点に鑑みてなされたものであり、その目的は、結晶性が低く、かつ、硬化後も優れた物性を示す化合物を提供することにある。 One embodiment of the present invention has been made in view of the above problems, and an object thereof is to provide a compound having low crystallinity and excellent physical properties even after curing.
 上記の課題を解決するために、本発明者は、2以上のエポキシ基を有する化合物と2価以上のカルボン酸またはカルボン酸誘導体とを開環付加反応させることにより得られる化合物によって、上記課題を解決可能であることを見出し、本発明を完成するに至った。すなわち本発明は、以下の構成を含むものである。 In order to solve the above problems, the present inventor has solved the above problems by a compound obtained by subjecting a compound having two or more epoxy groups and a divalent or higher carboxylic acid or a carboxylic acid derivative to a ring-opening addition reaction. The present inventors have found that the problem can be solved and have completed the present invention. That is, the present invention includes the following configurations.
 〔1〕下記式(1)または式(2)で表される化合物であって、
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
上記式(1)および式(2)中、上記nは、2以上の整数を示し、上記RおよびR′は、脂肪族基または芳香族基を示すことを特徴とする化合物。
[1] A compound represented by the following formula (1) or formula (2),
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
In the above formulas (1) and (2), n represents an integer of 2 or more, and R and R ′ represent an aliphatic group or an aromatic group.
 〔2〕上記式(1)および式(2)中、上記Rは、ビスフェニレン基であることを特徴とする〔1〕に記載の化合物。 [2] The compound according to [1], wherein, in the above formulas (1) and (2), R is a bisphenylene group.
 〔3〕〔1〕または〔2〕に記載の化合物を含むことを特徴とする樹脂組成物。 [3] A resin composition comprising the compound according to [1] or [2].
 〔4〕ゲルパーミエーションクロマトグラフィによって測定された下記式(3)で表される化合物の割合が、上記樹脂組成物100面積%に対して、90面積%以下であり、
Figure JPOXMLDOC01-appb-C000006
上記式(3)中、上記Rは、脂肪族基または芳香族基を示すことを特徴とする〔3〕に記載の樹脂組成物。
[4] The ratio of the compound represented by the following formula (3) measured by gel permeation chromatography is 90 area% or less with respect to 100 area% of the resin composition,
Figure JPOXMLDOC01-appb-C000006
In said formula (3), said R shows an aliphatic group or an aromatic group, The resin composition as described in [3] characterized by the above-mentioned.
 〔5〕〔1〕もしくは〔2〕に記載の化合物、または、〔3〕もしくは〔4〕に記載の樹脂組成物を含むことを特徴とする封止剤。 [5] A sealant comprising the compound according to [1] or [2] or the resin composition according to [3] or [4].
 〔6〕重合開始剤、無機化合物およびシランカップリング剤からなる群より選択される少なくとも1種類以上の成分をさらに含むことを特徴とする〔5〕に記載の封止剤。 [6] The sealant according to [5], further comprising at least one component selected from the group consisting of a polymerization initiator, an inorganic compound, and a silane coupling agent.
 〔7〕上記重合開始剤が光重合開始剤であることを特徴とする〔6〕に記載の封止剤。 [7] The sealing agent according to [6], wherein the polymerization initiator is a photopolymerization initiator.
 本発明の一態様によれば、結晶性が低く、かつ、硬化後も優れた物性を示す化合物を提供することができる。 According to one embodiment of the present invention, a compound having low crystallinity and exhibiting excellent physical properties after curing can be provided.
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上B以下」を意図する。また、「質量」と「重量」は同義語であると見なす。 One embodiment of the present invention will be described below, but the present invention is not limited to this. Unless otherwise specified in this specification, “A to B” indicating a numerical range is intended to be “A or more and B or less”. Also, “mass” and “weight” are considered synonymous.
 〔1.化合物〕
 本発明の一実施形態に係る化合物は、下記式(1)または式(2)で表される化合物であって、
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
上記式(1)および式(2)中、上記nは、2以上の整数を示し、上記RおよびR′は、脂肪族基または芳香族基を示す。Rはそれぞれ異なっていてもよく、同じであってもよい。また、RとR′とが同じであっても異なっていてもよい。
[1. Compound〕
The compound which concerns on one Embodiment of this invention is a compound represented by following formula (1) or Formula (2),
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
In the above formulas (1) and (2), n represents an integer of 2 or more, and R and R ′ represent an aliphatic group or an aromatic group. R may be different from each other or the same. R and R ′ may be the same or different.
 上記化合物が上記式(1)または式(2)で表される化合物であることにより、結晶性が低く、かつ、硬化(重合)後も優れた物性を示す。具体的には、例えば、結晶性および硬化後の水分透過率が低く、かつ、硬化率および硬化後のガラス転移点が高い化合物を得ることができる。本明細書において、「結晶性が低い」とは、1ヶ月以上結晶が析出しないことを意図する。 When the compound is a compound represented by the above formula (1) or (2), the crystallinity is low and excellent physical properties are exhibited after curing (polymerization). Specifically, for example, a compound having a low crystallinity and a water permeability after curing, and a high curing rate and a high glass transition point after curing can be obtained. In this specification, "low crystallinity" intends that a crystal | crystallization does not precipitate for one month or more.
 後述のように、上記化合物は、2以上のエポキシ基を有する化合物と2価以上のカルボン酸またはカルボン酸誘導体とを開環付加反応させることにより得られる。エポキシ基の開環する点によって、上記式(1)および式(2)のいずれの構造もとり得る。 As described later, the above compound can be obtained by subjecting a compound having two or more epoxy groups to a ring-opening addition reaction with a divalent or higher carboxylic acid or carboxylic acid derivative. Depending on the point at which the epoxy group is ring-opened, any of the structures of the above formulas (1) and (2) can be taken.
 上記脂肪族基は、直鎖状、分岐状、または環状であってもよく、飽和または不飽和であってもよい。脂肪族基としては、例えば、アルキレン基、アルケニレン基、アルキニレン基、シクロアルキレン基およびシクロアルキニレン基等が挙げられる。シクロアルキレン基としては、例えば、デカヒドロナフチレン基およびトリシクロデカニレン基等が挙げられる。シクロアルキニレン基としては、例えば、ジシクロペンタジエニレン基等が挙げられる。 The aliphatic group may be linear, branched, or cyclic, and may be saturated or unsaturated. Examples of the aliphatic group include an alkylene group, an alkenylene group, an alkynylene group, a cycloalkylene group, and a cycloalkynylene group. Examples of the cycloalkylene group include a decahydronaphthylene group and a tricyclodecanylene group. Examples of the cycloalkynylene group include a dicyclopentadienylene group.
 上記芳香族基としては、例えば、フェニレン基、ナフチレン基、ビスフェニレン基、アントリレン基およびフェナントレニレン基等が挙げられる。 Examples of the aromatic group include a phenylene group, a naphthylene group, a bisphenylene group, an anthrylene group, and a phenanthrenylene group.
 上記式(1)および式(2)中、上記Rは、芳香族基であることが好ましく、ビスフェニレン基であることがより好ましい。上記ビスフェニレン基はF型であってもA型であってもよい。 In the above formulas (1) and (2), R is preferably an aromatic group, more preferably a bisphenylene group. The bisphenylene group may be F-type or A-type.
 F型のビスフェニレン基としては、例えば、下記式(4)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
式(4)の両端は結合手を表している。すなわち、式(4)は、下記の構造を表している。
Examples of the F-type bisphenylene group include a group represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000009
Both ends of formula (4) represent a bond. That is, Formula (4) represents the following structure.
 -CH-O-Ph-CH-Ph-O-CH
 A型のビスフェニレン基としては、例えば、下記式(5)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
式(4)と同様に、式(5)の両端も結合手を表している。すなわち、式(5)は、下記の構造を表している。
—CH 2 —O—Ph—CH 2 —Ph—O—CH 2
Examples of the A-type bisphenylene group include a group represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000010
Similar to equation (4), both ends of equation (5) also represent a bond. That is, Formula (5) represents the following structure.
 -CH-O-Ph-C(CH-Ph-O-CH
 上記式(1)および式(2)中、上記Rは、炭素原子数3~200であることが好ましく、5~100であることがより好ましく、5~40であることがさらに好ましい。これにより、上記化合物を適切な粘度にすることができる。
—CH 2 —O—Ph—C (CH 3 ) 2 —Ph—O—CH 2
In the above formulas (1) and (2), R preferably has 3 to 200 carbon atoms, more preferably 5 to 100, and still more preferably 5 to 40. Thereby, the said compound can be made into an appropriate viscosity.
 上記式(1)および式(2)中、上記R′は、炭素原子数1~300であることが好ましく、2~100であることがより好ましく、2~20であることがさらに好ましい。これにより、上記化合物を適切な粘度にすることができる。 In the above formulas (1) and (2), R ′ preferably has 1 to 300 carbon atoms, more preferably 2 to 100, and even more preferably 2 to 20. Thereby, the said compound can be made into an appropriate viscosity.
 <化合物の製造方法>
 本発明の一実施形態に係る化合物の製造方法は、下記式(3)で表される化合物と、2価以上のカルボン酸またはカルボン酸誘導体とを混合して混合物を得る混合工程と、上記混合物を加熱して化合物を得る加熱工程とを含み、
Figure JPOXMLDOC01-appb-C000011
上記式(3)中、上記Rは、脂肪族基または芳香族基を示す。好ましくは、上記式(3)中、上記Rは、上記式(1)および式(2)において上述した通りである。上述の式(1)または(2)で表される化合物において、Rは上記式(3)で表される化合物に由来する構造であり、R′は2価以上のカルボン酸またはカルボン酸誘導体に由来する構造である。
<Method for producing compound>
The method for producing a compound according to an embodiment of the present invention includes a mixing step of mixing a compound represented by the following formula (3) and a divalent or higher carboxylic acid or carboxylic acid derivative to obtain a mixture, and the above mixture: Heating to obtain a compound by heating
Figure JPOXMLDOC01-appb-C000011
In said formula (3), said R shows an aliphatic group or an aromatic group. Preferably, in the above formula (3), the above R is as described above in the above formula (1) and formula (2). In the compound represented by the above formula (1) or (2), R is a structure derived from the compound represented by the above formula (3), and R ′ is a divalent or higher carboxylic acid or carboxylic acid derivative. It is a derived structure.
 本明細書において、上記式(3)で表される化合物、すなわち2価以上のカルボン酸またはカルボン酸誘導体と反応していない成分を「n=0成分」とも称する。 In the present specification, a compound represented by the above formula (3), that is, a component that has not reacted with a divalent or higher carboxylic acid or carboxylic acid derivative is also referred to as “n = 0 component”.
 (混合工程)
 混合工程では、上記式(3)で表される化合物と、2価以上のカルボン酸またはカルボン酸誘導体とを混合して混合物を得る。上記式(3)で表される化合物と、2価以上のカルボン酸またはカルボン酸誘導体とを混合して均一にすることにより、加熱工程における反応率を高めることができる。
(Mixing process)
In the mixing step, the compound represented by the above formula (3) is mixed with a divalent or higher carboxylic acid or carboxylic acid derivative to obtain a mixture. By mixing the compound represented by the above formula (3) with a divalent or higher carboxylic acid or carboxylic acid derivative to make it uniform, the reaction rate in the heating step can be increased.
 上記カルボン酸またはカルボン酸誘導体が2価以上であることにより、2以上の上記式(3)で表される化合物を、上記カルボン酸またはカルボン酸誘導体を介して連結することができる。このため、上記式(3)で表される化合物よりも結晶性の低い上記式(1)または式(2)で表される化合物を製造することができる。 When the carboxylic acid or carboxylic acid derivative is divalent or higher, two or more compounds represented by the formula (3) can be linked via the carboxylic acid or carboxylic acid derivative. For this reason, the compound represented by the said Formula (1) or Formula (2) whose crystallinity is lower than the compound represented by the said Formula (3) can be manufactured.
 上記式(3)で表される化合物としては、ビスフェノールF型エポキシ樹脂またはビスフェノールA型エポキシ樹脂であることが好ましい。ビスフェノールF型エポキシ樹脂としては、例えば、DIC社製のEXA-830CRP、ADEKA社製のEP-4901HF、Wells Advanced Materials Co.,Ltd製のFM-880および新日鉄住金化学社製のYDF-870GS等が挙げられる。ビスフェノールA型エポキシ樹脂としては、例えば、DIC社製のEPICLON EXA850-CRP、ADEKA社製のEP-4100HFおよび新日鉄住金化学社製のYD-825GS等が挙げられる。 The compound represented by the above formula (3) is preferably a bisphenol F type epoxy resin or a bisphenol A type epoxy resin. Examples of the bisphenol F-type epoxy resin include EXA-830CRP manufactured by DIC, EP-4901HF manufactured by ADEKA, Wells Advanced Materials Co., Ltd. FM-880 manufactured by Ltd., YDF-870GS manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and the like. Examples of the bisphenol A type epoxy resin include EPICLON EXA850-CRP manufactured by DIC, EP-4100HF manufactured by ADEKA, and YD-825GS manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
 上記カルボン酸としては、2価以上のものであれば特に限定されないが、2価カルボン酸(ジカルボン酸)、3価カルボン酸(トリカルボン酸)、4価カルボン酸(テトラカルボン酸)であることが好ましく、2価カルボン酸または3価カルボン酸であることがより好ましい。カルボン酸が2価カルボン酸または3価カルボン酸であれば、上記化合物を適切な粘度にすることができる。上記カルボン酸は脂肪族基または芳香族基を有していており、上記脂肪族基は、直鎖状、分岐状、または環状であってもよく、飽和または不飽和であってもよい。2価カルボン酸としては、例えば、コハク酸、アジピン酸、フタル酸、イソフタル酸、テレフタル酸、スベリン酸、セバシン酸、長鎖分岐2価カルボン酸(例えば岡本製油社製のMMA-10R)等が挙げられる。3価カルボン酸としては、例えば、トリメリット酸、クエン酸、3-ブテン-1,2,3-トリカルボン酸および1,3,5-ベンゼントリカルボン酸等が挙げられる。4価カルボン酸としては、例えば、meso-ブタン-1,2,3,4-テトラカルボン酸、ピロメリット酸およびビフェニル-3,3’,5’,5-テトラカルボン酸等が挙げられる。 The carboxylic acid is not particularly limited as long as it is divalent or higher, but may be a divalent carboxylic acid (dicarboxylic acid), a trivalent carboxylic acid (tricarboxylic acid), or a tetravalent carboxylic acid (tetracarboxylic acid). Preferably, it is a divalent carboxylic acid or a trivalent carboxylic acid. If the carboxylic acid is a divalent carboxylic acid or a trivalent carboxylic acid, the above compound can have an appropriate viscosity. The carboxylic acid has an aliphatic group or an aromatic group, and the aliphatic group may be linear, branched, or cyclic, and may be saturated or unsaturated. Examples of the divalent carboxylic acid include succinic acid, adipic acid, phthalic acid, isophthalic acid, terephthalic acid, suberic acid, sebacic acid, and long-chain branched divalent carboxylic acid (eg, MMA-10R manufactured by Okamoto Oil Co., Ltd.). Can be mentioned. Examples of the trivalent carboxylic acid include trimellitic acid, citric acid, 3-butene-1,2,3-tricarboxylic acid, and 1,3,5-benzenetricarboxylic acid. Examples of the tetravalent carboxylic acid include meso-butane-1,2,3,4-tetracarboxylic acid, pyromellitic acid and biphenyl-3,3 ', 5', 5-tetracarboxylic acid.
 上記カルボン酸誘導体としては、2価以上のカルボン酸の誘導体であれば特に限定されないが、例えば、カルボン酸エステル、カルボン酸の無水物、カルボン酸の塩等が挙げられる。カルボン酸エステルとしては、下記式(6)で表されるブロックカルボン酸、アジピン酸イソノニルおよび4,4'-ビフェニルジカルボン酸ジメチル等が挙げられる。 The carboxylic acid derivative is not particularly limited as long as it is a derivative of a divalent or higher carboxylic acid, and examples thereof include carboxylic acid esters, carboxylic acid anhydrides, and carboxylic acid salts. Examples of the carboxylic acid ester include a block carboxylic acid represented by the following formula (6), isononyl adipate, and dimethyl 4,4′-biphenyldicarboxylate.
Figure JPOXMLDOC01-appb-C000012
 上記カルボン酸またはカルボン酸誘導体は、炭素原子数が2~500であることが好ましく、5~300であることがより好ましく、5~100であることがさらに好ましい。これにより、上記式(1)または式(2)で表される化合物を適切な粘度にすることができる。
Figure JPOXMLDOC01-appb-C000012
The carboxylic acid or carboxylic acid derivative preferably has 2 to 500 carbon atoms, more preferably 5 to 300, still more preferably 5 to 100. Thereby, the compound represented by the said Formula (1) or Formula (2) can be made into appropriate viscosity.
 混合手段としては、特に限定されるものではないが、例えば、攪拌羽根を備えたフラスコ、ニーダー、ロール、溶融槽、バンバリーミキサー、押出機等が挙げられる。 The mixing means is not particularly limited, and examples thereof include a flask equipped with a stirring blade, a kneader, a roll, a melting tank, a Banbury mixer, and an extruder.
 上記2価以上のカルボン酸またはカルボン酸誘導体を添加する割合は、100重量部の上記式(3)で表される化合物に対して、0.01~50重量部であることが好ましく、0.01~20重量部であることがより好ましく、0.05~10重量部であることがさらに好ましい。これにより、上記式(1)または式(2)で表される化合物を効率的に製造することができる。 The proportion of the divalent or higher carboxylic acid or carboxylic acid derivative added is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of the compound represented by the above formula (3). The amount is more preferably 01 to 20 parts by weight, and further preferably 0.05 to 10 parts by weight. Thereby, the compound represented by the said Formula (1) or Formula (2) can be manufactured efficiently.
 混合工程では、上記式(3)で表される化合物と、2価以上のカルボン酸またはカルボン酸誘導体以外にも、反応促進剤を混合してもよい。反応促進剤としては、2価以上のカルボン酸またはカルボン酸誘導体との開環付加反応を促進することができる触媒であればよく、例えば、アルカリ金属水酸化物、金属アルコラート、第三級アミン化合物、第四級アンモニウム塩、第四級ホスホニウム塩および第三級ホスフィン等が挙げられる。アルカリ金属水酸化物としては、例えば、水酸化ナトリウムおよび水酸化カリウム等が挙げられる。金属アルコラートとしては、例えば、ナトリウムメチラートおよびナトリウムエチラート等が挙げられる。第三級アミン化合物としては、例えば、トリエチルアミン、トリエタノールアミンおよび2,4,6-トリス(ジメチルアミノメチル)フェノール等が挙げられる。第四級アンモニウム塩としては、例えば、テトラメチルアンモニウムクロリドおよびテトラブチルアンモニウムクロリド等が挙げられる。第四級ホスホニウム塩としては、例えば、ベンジルトリフェニルホスホニウムクロリド、テトラブチルホスホニウムヒドロオキシドおよびブチルトリフェニルホスホニウムブロミド等が挙げられる。第三級ホスフィンとしては、例えば、トリブチルホスフィン、トリオクチルホスフィン、トリフェニルホスフィンおよびスチリルジフェニルホスフィン等が挙げられる。 In the mixing step, a reaction accelerator may be mixed in addition to the compound represented by the above formula (3) and the divalent or higher carboxylic acid or carboxylic acid derivative. The reaction accelerator may be a catalyst that can promote a ring-opening addition reaction with a divalent or higher carboxylic acid or carboxylic acid derivative, such as an alkali metal hydroxide, a metal alcoholate, a tertiary amine compound. Quaternary ammonium salts, quaternary phosphonium salts, and tertiary phosphines. Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. Examples of metal alcoholates include sodium methylate and sodium ethylate. Examples of the tertiary amine compound include triethylamine, triethanolamine, and 2,4,6-tris (dimethylaminomethyl) phenol. Examples of the quaternary ammonium salt include tetramethylammonium chloride and tetrabutylammonium chloride. Examples of the quaternary phosphonium salt include benzyltriphenylphosphonium chloride, tetrabutylphosphonium hydroxide and butyltriphenylphosphonium bromide. Examples of the tertiary phosphine include tributyl phosphine, trioctyl phosphine, triphenyl phosphine, and styryl diphenyl phosphine.
 (加熱工程)
 加熱工程では、上記混合物を加熱して化合物を得る。上記混合物を加熱することによって、上記式(3)で表される化合物と、2価以上のカルボン酸またはカルボン酸誘導体とが開環付加反応して、上記式(1)または式(2)で表される化合物を得ることができる。加熱温度は、80~250℃であることが好ましく、100~180℃であることがより好ましく、120~150℃であることがさらに好ましい。これにより、上記式(3)で表される化合物と、2価以上のカルボン酸またはカルボン酸誘導体との開環付加反応の効率を高めることができる。即ち、上記式(1)または式(2)で表される化合物の収率を高めることができる。
(Heating process)
In the heating step, the mixture is heated to obtain a compound. By heating the above mixture, the compound represented by the above formula (3) and a divalent or higher carboxylic acid or carboxylic acid derivative undergo a ring-opening addition reaction, and the above formula (1) or (2) The compounds represented can be obtained. The heating temperature is preferably 80 to 250 ° C, more preferably 100 to 180 ° C, and further preferably 120 to 150 ° C. Thereby, the efficiency of the ring-opening addition reaction between the compound represented by the above formula (3) and a divalent or higher carboxylic acid or carboxylic acid derivative can be increased. That is, the yield of the compound represented by the above formula (1) or formula (2) can be increased.
 加熱手段としては、特に限定されるものではないが、例えば、マントルヒーター、投げ込みヒーター、ホットプレート、IH加熱器等が挙げられる。 The heating means is not particularly limited, and examples thereof include a mantle heater, a throwing heater, a hot plate, and an IH heater.
 混合工程および加熱工程は、不活性化ガス気流下で行ってもよいし、開放系で行ってもよい。不活性化ガスとしては、例えば、Ar等が挙げられる。 The mixing step and the heating step may be performed under an inert gas stream or may be performed in an open system. As an inert gas, Ar etc. are mentioned, for example.
 〔2.樹脂組成物〕
 本発明の一実施形態に係る樹脂組成物は、上述した化合物を含んでいることが好ましい。これにより、上記樹脂組成物は、結晶性が低く、かつ、硬化後も優れた物性を示す。具体的には、例えば、結晶性および硬化後の水分透過率が低く、かつ、硬化率および硬化後のガラス転移点が高い樹脂組成物を得ることができる。上記樹脂組成物は、式(1)で表される化合物および式(2)で表される化合物のいずれか一方を含んでいてもよく、その両方を含んでいてもよい。通常、上述の製造方法によって、式(1)で表される化合物と式(2)で表される化合物との混合物が得られる。従って、上記樹脂組成物は、式(1)で表される化合物と式(2)で表される化合物との混合物を含んでいてもよい。
[2. Resin composition]
It is preferable that the resin composition which concerns on one Embodiment of this invention contains the compound mentioned above. Thereby, the resin composition has low crystallinity and excellent physical properties even after curing. Specifically, for example, a resin composition having a low crystallinity and a water permeability after curing, and a high curing rate and a glass transition point after curing can be obtained. The resin composition may contain either one of the compound represented by the formula (1) and the compound represented by the formula (2), or both of them. Usually, the mixture of the compound represented by Formula (1) and the compound represented by Formula (2) is obtained by the above-mentioned manufacturing method. Therefore, the said resin composition may contain the mixture of the compound represented by Formula (1), and the compound represented by Formula (2).
 なお、上記化合物については、〔1.化合物〕において説明した内容と重複する内容に関しては、その説明を繰り返さない。 In addition, about the said compound, [1. The description overlapping the content described in [Compound] will not be repeated.
 本発明の一実施形態に係る樹脂組成物は、下記式(3)で表される化合物をさらに含んでいてもよく、
Figure JPOXMLDOC01-appb-C000013
上記式(3)中、上記Rは、脂肪族基または芳香族基を示す。
The resin composition according to an embodiment of the present invention may further include a compound represented by the following formula (3),
Figure JPOXMLDOC01-appb-C000013
In said formula (3), said R shows an aliphatic group or an aromatic group.
 上記樹脂組成物100面積%に対して、上記式(3)で表される化合物の割合(n=0成分の割合)が、90面積%以下であることが好ましく、80面積%以下であることがより好ましく、70面積%以下であることがさらに好ましい。なお、本明細書において、「式(3)で表される化合物の割合」とは、GPC(ゲルパーミエーションクロマトグラフィ)により得られる樹脂組成物の全てのピークの全体の面積に対する、n=0成分のピークの面積の割合(単位:面積%)を意図する。GPC(ゲルパーミエーションクロマトグラフィ)による測定方法は、後述の実施例に詳述する。n=0成分の割合が100面積%であるとき、結晶が析出してしまうのに対して、n=0成分の割合が90面積%以下であることにより、結晶の析出を抑制することができる。すなわち、当該構成により、上記樹脂組成物における式(1)または式(2)で表される結晶性が低い化合物の割合を高めることができるため、低温(10℃)下においても結晶の析出を抑制することができる。なお、上記式(3)で表される化合物の割合はできるだけ低いことが好ましく、0面積%であることが好ましいが、現実的にはその下限は30面積%程度であってもよい。 The ratio of the compound represented by the above formula (3) (ratio of n = 0 component) is preferably 90 area% or less and 100 area% or less with respect to 100 area% of the resin composition. Is more preferable, and it is further more preferable that it is 70 area% or less. In the present specification, the “ratio of the compound represented by the formula (3)” means n = 0 component with respect to the entire area of all peaks of the resin composition obtained by GPC (gel permeation chromatography). The ratio of the peak area (unit: area%) is intended. The measuring method by GPC (gel permeation chromatography) will be described in detail in Examples described later. When the ratio of the n = 0 component is 100 area%, crystals are precipitated, whereas the ratio of the n = 0 component is 90 area% or less, so that the precipitation of crystals can be suppressed. . That is, since the ratio of the compound having low crystallinity represented by the formula (1) or the formula (2) in the resin composition can be increased by the configuration, the crystal is precipitated even at a low temperature (10 ° C.). Can be suppressed. The ratio of the compound represented by the above formula (3) is preferably as low as possible and preferably 0 area%, but in reality, the lower limit may be about 30 area%.
 <樹脂組成物の製造方法>
 本発明の一実施形態に係る樹脂組成物の製造方法は、上記化合物の製造方法と同様である。
<Method for producing resin composition>
The manufacturing method of the resin composition which concerns on one Embodiment of this invention is the same as the manufacturing method of the said compound.
 〔3.封止剤〕
 本発明の一実施形態に係る封止剤は、上述した化合物、または、上述した樹脂組成物を含んでいることが好ましい。上記封止剤は、結晶性が低く、かつ、硬化後も優れた物性を示す。具体的には、例えば、結晶性および硬化後の水分透過率が低く、かつ、硬化率および硬化後のガラス転移点が高い封止剤を得ることができる。上記封止剤は、上記樹脂組成物と同様、式(1)で表される化合物および式(2)で表される化合物のいずれか一方を含んでいてもよく、その両方を含んでいてもよい。
[3. Sealant)
It is preferable that the sealing agent which concerns on one Embodiment of this invention contains the compound mentioned above or the resin composition mentioned above. The sealing agent has low crystallinity and exhibits excellent physical properties even after curing. Specifically, for example, it is possible to obtain a sealant having low crystallinity and moisture permeability after curing, and high curing rate and glass transition point after curing. The said sealing agent may contain any one of the compound represented by Formula (1) and the compound represented by Formula (2) similarly to the said resin composition, and may contain both of them. Good.
 なお、上記化合物および上記樹脂組成物については、〔1.化合物〕および〔2.樹脂組成物〕において説明した内容と重複する内容に関しては、その説明を繰り返さない。 In addition, about the said compound and the said resin composition, [1. Compound] and [2. The description overlapping the content described in [Resin composition] will not be repeated.
 本発明の一実施形態に係る封止剤は、重合開始剤、無機化合物およびシランカップリング剤からなる群より選択される少なくとも1種類以上の成分をさらに含んでいることが好ましい。上記封止剤が重合開始剤を含んでいることにより、光照射または加熱等によって、上記封止剤に含まれる上記式(1)または式(2)で表される化合物を重合することができる。上記封止剤が無機化合物を含んでいることにより、硬化後の水分透過率を低くすることができる。上記封止剤がシランカップリング剤を含んでいることにより、上記式(1)または式(2)で表される化合物の重合体をカップリングすることができる。 The sealant according to an embodiment of the present invention preferably further includes at least one component selected from the group consisting of a polymerization initiator, an inorganic compound, and a silane coupling agent. When the sealing agent contains a polymerization initiator, the compound represented by the formula (1) or formula (2) contained in the sealing agent can be polymerized by light irradiation or heating. . When the sealing agent contains an inorganic compound, the moisture permeability after curing can be lowered. When the sealing agent contains a silane coupling agent, the polymer of the compound represented by the formula (1) or the formula (2) can be coupled.
 上記重合開始剤は、カチオン系重合開始剤であることが好ましい。上記カチオン系重合開始剤は、光重合開始剤であっても熱重合開始剤であってもよい。 The polymerization initiator is preferably a cationic polymerization initiator. The cationic polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator.
 なお、カチオン系光重合開始剤は、光照射によってカチオンを発生し、光カチオン重合性化合物の硬化反応を開始させることができるものであれば特に限定されない。カチオン系光重合開始剤としては、例えば、トリアリールスルホニウム塩およびトリフェニルスルホニウム塩等のスルホニウム塩、並びに、ヨードニウム塩等が挙げられる。トリアリールスルホニウム塩としては、例えば、トリアリールスルホニウムボレート塩(ボレート系)、トリアリールスルホニウム・SbF塩(アンチモン系)、トリアリールスルホニウム・PF塩(リン系)等が挙げられる。トリフェニルスルホニウム塩としては、トリフェニルスルホニウムテトラフルオロボレート等が挙げられる。 The cationic photopolymerization initiator is not particularly limited as long as it can generate cations by light irradiation and initiate the curing reaction of the photocationically polymerizable compound. Examples of the cationic photopolymerization initiator include sulfonium salts such as triarylsulfonium salts and triphenylsulfonium salts, and iodonium salts. Examples of the triarylsulfonium salt include triarylsulfonium borate salt (borate type), triarylsulfonium · SbF 6 salt (antimony type), triarylsulfonium · PF 6 salt (phosphorus type), and the like. Examples of the triphenylsulfonium salt include triphenylsulfonium tetrafluoroborate.
 また、カチオン系熱重合開始剤は、熱を与えることによってカチオンを発生し、熱カチオン重合性化合物の硬化反応を開始させることができるものであれば特に限定されない。カチオン系熱重合開始剤としては、例えば、トリフルオロ酸の4級アンモニウム塩、1-ナフチルメチルメチルp-ヒドロキシフェニルスルホニウム=ヘキサフルオロアンチモナート、(4-アセトキシフェニル)ベンジル(メチル)スルホニウム=テトラキス(ペンタフルオロフェニル)ボレートおよびベンジルメチルp-ヒドロキシフェニルスルホニウム=ヘキサフルオロアンチモナート等が挙げられる。 Further, the cationic thermal polymerization initiator is not particularly limited as long as it can generate cations by applying heat and can initiate the curing reaction of the thermal cationic polymerizable compound. Examples of the cationic thermal polymerization initiator include quaternary ammonium salts of trifluoro acid, 1-naphthylmethylmethyl p-hydroxyphenylsulfonium = hexafluoroantimonate, (4-acetoxyphenyl) benzyl (methyl) sulfonium = tetrakis ( Pentafluorophenyl) borate and benzylmethyl p-hydroxyphenylsulfonium = hexafluoroantimonate.
 上記無機化合物としては、例えば、マイカ、タルク、アルミナ、クレー、コロイダルシリカおよび酸化チタン等が挙げられる。 Examples of the inorganic compound include mica, talc, alumina, clay, colloidal silica, and titanium oxide.
 上記シランカップリング剤としては、例えば、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシランおよび2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のアルキルアルコキシシラン等が挙げられる。 Examples of the silane coupling agent include 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl). Examples thereof include alkylalkoxysilanes such as ethyltrimethoxysilane.
 上記封止剤は、結晶性の低さ、および、硬化後の物性等を損なわない範囲であれば、必要に応じて、上述した成分以外の添加剤をさらに含んでいてもよい。当該添加剤としては、例えば、安定剤、酸化防止剤、相溶化剤、消泡剤、接着性付与剤、粘度調整剤、チキソトロープ剤および充填剤等が挙げられる。 The sealing agent may further contain additives other than the above-described components, if necessary, as long as the crystallinity is low and physical properties after curing are not impaired. Examples of the additive include stabilizers, antioxidants, compatibilizers, antifoaming agents, adhesion promoters, viscosity modifiers, thixotropic agents, and fillers.
 本発明の一実施形態に係る封止剤は、封止剤に含まれる塩素の量が低い場合であっても、結晶性が低く、かつ、硬化後も優れた物性を示す。 The encapsulant according to one embodiment of the present invention has low crystallinity and excellent physical properties even after curing even when the amount of chlorine contained in the encapsulant is low.
 <封止剤の製造方法>
 本発明の一実施形態に係る封止剤の製造方法は、化合物製造工程と、化合物製造工程で得られた化合物に、重合開始剤、無機化合物およびシランカップリング剤からなる群より選択される少なくとも1種類以上の成分を混練分散して混練分散物を得る混練分散工程と、混練分散工程で得られた混練分散物をろ過して封止剤を得るろ過工程とを含んでいる。
<Method for producing sealant>
The manufacturing method of the sealing agent which concerns on one Embodiment of this invention is a compound manufacturing process, and the compound obtained by the compound manufacturing process is at least selected from the group which consists of a polymerization initiator, an inorganic compound, and a silane coupling agent. A kneading and dispersing step of kneading and dispersing one or more components to obtain a kneaded dispersion; and a filtration step of obtaining a sealant by filtering the kneaded dispersion obtained in the kneading and dispersing step.
 化合物製造工程は、上述した<化合物の製造方法>の混合工程と加熱工程とを含んでいる。化合物製造工程では、上記式(1)または式(2)で表される化合物を製造する。 The compound production process includes the above-described <compound production method> mixing step and heating step. In the compound production process, the compound represented by the above formula (1) or formula (2) is produced.
 混練分散工程では、化合物製造工程で得られた化合物に、重合開始剤、無機化合物およびシランカップリング剤からなる群より選択される少なくとも1種類以上の成分を混練分散して混練分散物を得る。 In the kneading dispersion step, at least one component selected from the group consisting of a polymerization initiator, an inorganic compound and a silane coupling agent is kneaded and dispersed in the compound obtained in the compound production step to obtain a kneaded dispersion.
 上記重合開始剤を添加する割合は、100重量部の上記式(3)で表される化合物に対して、0.2~20重量部であることが好ましく、1~15重量部であることがより好ましく、2~10重量部であることがさらに好ましい。上記重合開始剤を添加する割合が0.2~20重量部であることにより、上記式(1)または式(2)で表される化合物を効率的に重合することができる。 The proportion of the polymerization initiator added is preferably 0.2 to 20 parts by weight and preferably 1 to 15 parts by weight with respect to 100 parts by weight of the compound represented by the above formula (3). More preferred is 2 to 10 parts by weight. When the proportion of the polymerization initiator added is 0.2 to 20 parts by weight, the compound represented by the above formula (1) or formula (2) can be efficiently polymerized.
 上記無機化合物を添加する割合は、100重量部の上記式(3)で表される化合物に対して、20~90重量部であることが好ましく、30~90重量部であることがより好ましく、40~80重量部であることがさらに好ましい。上記無機化合物を添加する割合が20重量部以上であることにより、硬化後の水分透過率を低くすることができる。上記無機化合物を添加する割合が90重量部以下であることにより、適切な粘度に調整することができる。 The proportion of the inorganic compound added is preferably 20 to 90 parts by weight, more preferably 30 to 90 parts by weight with respect to 100 parts by weight of the compound represented by the above formula (3). More preferably, it is 40 to 80 parts by weight. When the proportion of the inorganic compound added is 20 parts by weight or more, the moisture permeability after curing can be lowered. When the ratio of adding the inorganic compound is 90 parts by weight or less, it can be adjusted to an appropriate viscosity.
 上記シランカップリング剤を添加する割合は、100重量部の上記式(3)で表される化合物に対して、0.1~30重量部であることが好ましく、1~20重量部であることがより好ましく、5~10重量部であることがさらに好ましい。上記シランカップリング剤を添加する割合が0.1重量部以上であることにより、上記式(1)または式(2)で表される化合物の重合体を効率的にカップリングすることができる。上記シランカップリング剤を添加する割合が30重量部以下であることにより、適切な硬化物の物性を維持することができる。 The proportion of the silane coupling agent added is preferably 0.1 to 30 parts by weight, and preferably 1 to 20 parts by weight with respect to 100 parts by weight of the compound represented by the above formula (3). Is more preferably 5 to 10 parts by weight. When the ratio of adding the silane coupling agent is 0.1 parts by weight or more, the polymer of the compound represented by the formula (1) or the formula (2) can be efficiently coupled. When the proportion of the silane coupling agent added is 30 parts by weight or less, appropriate physical properties of the cured product can be maintained.
 混練分散手段としては、特に限定されるものではないが、例えば、攪拌羽根を備えたフラスコ、ニーダー、ロール、溶融槽、バンバリーミキサー、押出機等が挙げられる。 The kneading and dispersing means is not particularly limited, and examples thereof include a flask equipped with a stirring blade, a kneader, a roll, a melting tank, a Banbury mixer, and an extruder.
 ろ過工程では、混練分散工程で得られた混練分散物をろ過して封止剤を得る。ろ過手段としては、従来公知の方法を用いることができ、例えば、加圧ろ過であってもよい。 In the filtration step, the kneaded dispersion obtained in the kneading and dispersing step is filtered to obtain a sealant. A conventionally known method can be used as the filtering means, and for example, pressure filtration may be used.
 〔4.封止剤硬化物〕
 本発明の一実施形態に係る封止剤硬化物は、〔1.化合物〕において上述した化合物が重合した化合物を含んでいることが好ましい。
[4. Sealant hardened product)
The cured sealant according to one embodiment of the present invention is [1. The compound] preferably contains a compound obtained by polymerizing the above-described compound.
 本発明の一実施形態に係る封止剤硬化物は、〔2.樹脂組成物〕および〔3.封止剤〕において説明した、樹脂組成物および封止剤に含まれる各成分を含んでいることがより好ましい。なお、本明細書において、無機化合物およびシランカップリング剤を含まない封止剤硬化物を「樹脂硬化物」とも称する。 The cured encapsulant according to one embodiment of the present invention is [2. Resin composition] and [3. It is more preferable that each component contained in the resin composition and the sealant described in “Sealant” is included. In addition, in this specification, the sealing agent hardened | cured material which does not contain an inorganic compound and a silane coupling agent is also called "resin hardened | cured material."
 本発明の一実施形態に係る封止剤硬化物は、ガラス転移点が100℃以上であることが好ましく、120℃以上であることがより好ましい。ガラス転移点は、DSC(示差走査熱量計)により測定される値である。DSC(示差走査熱量計)によるガラス転移点の測定方法は、後述の実施例において詳述する。ガラス転移点が上記範囲内であることにより、有機ELディスプレイの封止剤として用いる場合、有機EL素子等を封止することができる。 The cured sealant according to one embodiment of the present invention preferably has a glass transition point of 100 ° C. or higher, and more preferably 120 ° C. or higher. The glass transition point is a value measured by DSC (differential scanning calorimeter). The measuring method of the glass transition point by DSC (differential scanning calorimeter) will be described in detail in Examples described later. When the glass transition point is within the above range, when used as a sealant for an organic EL display, an organic EL element or the like can be sealed.
 また、本発明の一実施形態に係る封止剤硬化物は、水分透過率が6.5g/(m・day)未満であることが好ましく、4.5g/(m・day)未満であることがより好ましい。水分透過率は、カップ法により求められる値である。カップ法による水分透過率の測定方法は、後述の実施例において詳述する。水分透過率が上記範囲内であることにより、有機ELディスプレイの封止剤として用いる場合、有機EL素子等を封止することができる。 In addition, the cured sealant according to an embodiment of the present invention preferably has a moisture permeability of less than 6.5 g / (m 2 · day), and less than 4.5 g / (m 2 · day). More preferably. The moisture permeability is a value determined by the cup method. The method for measuring the moisture permeability by the cup method will be described in detail in Examples described later. When the moisture permeability is within the above range, an organic EL element or the like can be sealed when used as a sealant for an organic EL display.
 本発明の一実施形態に係る封止剤硬化物を含む有機ELディスプレイ等も本発明に含まれる。 An organic EL display including the cured sealant according to an embodiment of the present invention is also included in the present invention.
 <封止剤硬化物の製造方法>
 本発明の一実施形態に係る封止剤硬化物の製造方法は、上述した封止剤に光照射して、または、当該封止剤を加熱して、封止剤硬化物を得る方法である。
<Method for producing cured sealant>
The manufacturing method of the sealing agent hardened | cured material which concerns on one Embodiment of this invention is a method of irradiating light to the sealing agent mentioned above or heating the said sealing agent, and obtaining sealing agent hardened | cured material. .
 封止剤に光重合開始剤が含まれる場合、封止剤に光照射する。光照射する波長は、光重合開始剤の種類によって適宜選択される。光の照射量および光を照射する時間は、封止剤の組成によって適宜選択される。光照射する手段としては、例えば、メタルハライドランプ、水銀ランプ、LED、ハロゲンランプ、キセノンランプおよび重水素ランプ等の紫外線照射ランプ等が挙げられる。 When the sealant contains a photopolymerization initiator, the sealant is irradiated with light. The wavelength for light irradiation is appropriately selected depending on the type of photopolymerization initiator. The amount of light irradiation and the time for light irradiation are appropriately selected depending on the composition of the sealant. Examples of the means for irradiating light include ultraviolet irradiation lamps such as metal halide lamps, mercury lamps, LEDs, halogen lamps, xenon lamps and deuterium lamps.
 封止剤に熱重合開始剤が含まれる場合、封止剤を加熱する。加熱温度および時間は、熱重合開始剤の種類および封止剤の組成によって適宜選択される。 When the sealant contains a thermal polymerization initiator, the sealant is heated. The heating temperature and time are appropriately selected depending on the type of thermal polymerization initiator and the composition of the sealant.
 封止剤に光照射して、または、封止剤を加熱して、封止剤を硬化させた後に、硬化させた封止剤を加熱する後硬化処理を行ってもよい。後硬化処理の加熱温度および時間は、封止剤の組成によって適宜選択される。 After the sealant is irradiated with light or the sealant is heated to cure the sealant, a post-curing treatment may be performed in which the cured sealant is heated. The heating temperature and time of the post-curing treatment are appropriately selected depending on the composition of the sealant.
 本発明の一実施形態に係る封止剤硬化物の製造方法では、硬化前の上記封止剤に含まれるエポキシ基のモル数100モル%に対して、硬化前の上記封止剤に含まれるエポキシ基のモル数と、硬化後の封止剤硬化物のエポキシ基のモル数との差の割合(硬化率)が、70モル%以上であることが好ましく、90モル%以上であることが好ましい。これにより、上記封止剤硬化物の水分透過率を低くすることができる。 In the manufacturing method of the hardened | cured sealant which concerns on one Embodiment of this invention, it is contained in the said sealing agent before hardening with respect to 100 mol% of moles of the epoxy group contained in the said sealing agent before hardening. The ratio (curing rate) of the difference between the number of moles of the epoxy group and the number of moles of the epoxy group of the cured sealant after curing is preferably 70 mol% or more, and more preferably 90 mol% or more. preferable. Thereby, the water | moisture-content rate of the said sealing agent hardened | cured material can be made low.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 以下、実施例により、本発明をさらに詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
 〔実施例1〕
 エポキシ樹脂として100重量部のEXA-830CRP(ビスフェノールF型エポキシ樹脂、DIC社製)、およびカルボン酸として4.7重量部のアジピン酸(2価カルボン酸)をフラスコに入れ、攪拌羽根で混合した後、マントルヒーターで150℃に加熱して、樹脂組成物を得た。混合および加熱はAr気流下で行った。
[Example 1]
100 parts by weight of EXA-830CRP (bisphenol F type epoxy resin, manufactured by DIC) as an epoxy resin and 4.7 parts by weight of adipic acid (divalent carboxylic acid) as a carboxylic acid were placed in a flask and mixed with a stirring blade. Then, it heated at 150 degreeC with the mantle heater, and obtained the resin composition. Mixing and heating were performed under an Ar stream.
 〔実施例2〕
 EXA-830CRPの代わりにFM-880(ビスフェノールF型エポキシ樹脂、Wells Advanced Materials Co.,Ltd製)を用い、4.7重量部のアジピン酸の代わりに、3.8重量部のMMA-10R(長鎖分岐2価カルボン酸、岡本製油社製)を用いた以外は、実施例1と同様にして樹脂組成物を得た。
[Example 2]
FM-880 (bisphenol F type epoxy resin, manufactured by Wells Advanced Materials Co., Ltd.) was used instead of EXA-830CRP, and 3.8 parts by weight of MMA-10R (instead of 4.7 parts by weight of adipic acid ( A resin composition was obtained in the same manner as in Example 1 except that long-chain branched divalent carboxylic acid (manufactured by Okamoto Oil Co., Ltd.) was used.
 〔実施例3〕
 4.7重量部のアジピン酸の代わりに、0.075重量部のmeso-ブタン-1,2,3,4-テトラカルボン酸(4価カルボン酸)を用い、混合および加熱は開放系で行った以外は、実施例1と同様にして樹脂組成物を得た。
Example 3
Instead of 4.7 parts by weight of adipic acid, 0.075 parts by weight of meso-butane-1,2,3,4-tetracarboxylic acid (tetravalent carboxylic acid) was used, and mixing and heating were performed in an open system. A resin composition was obtained in the same manner as in Example 1 except that.
 〔実施例4〕
 4.7重量部のアジピン酸の代わりに、9.0重量部のノフキュアーTN-1(3価カルボン酸誘導体(トリメリット酸エステル)、日油社製)を用いた以外は、実施例1と同様にして樹脂組成物を得た。
Example 4
Example 1 was used except that 9.0 parts by weight of Nocure TN-1 (trivalent carboxylic acid derivative (trimellitic acid ester), manufactured by NOF Corporation) was used instead of 4.7 parts by weight of adipic acid. Similarly, a resin composition was obtained.
 〔実施例21〕
 EXA-830CRPの代わりにEXA-850CRP(ビスフェノールA型エポキシ樹脂、DIC社製)を用い、4.7重量部のアジピン酸の代わりに、3.9重量部のMMA-10Rを用いた以外は、実施例1と同様にして樹脂組成物を得た。
Example 21
Exa-850CRP (bisphenol A type epoxy resin, manufactured by DIC) was used instead of EXA-830CRP, and 3.9 parts by weight of MMA-10R was used instead of 4.7 parts by weight of adipic acid. A resin composition was obtained in the same manner as in Example 1.
 〔比較例1〕
 アジピン酸を添加しなかった以外は、実施例1と同様にして樹脂組成物を得た。
[Comparative Example 1]
A resin composition was obtained in the same manner as in Example 1 except that adipic acid was not added.
 〔比較例2〕
 4.7重量部のアジピン酸の代わりに、2.0重量部の酢酸(モノカルボン酸)を用い、添加物として0.01重量部の水酸化カリウムをさらに添加し、混合および加熱は開放系で行った以外は、実施例1と同様にして樹脂組成物を得た。
[Comparative Example 2]
Instead of 4.7 parts by weight of adipic acid, 2.0 parts by weight of acetic acid (monocarboxylic acid) was used, 0.01 parts by weight of potassium hydroxide was further added as an additive, and mixing and heating were performed in an open system. A resin composition was obtained in the same manner as in Example 1 except that the above was performed.
 〔比較例3〕
 4.7重量部のアジピン酸の代わりに、17.0重量部のオレイン酸(モノカルボン酸)を用い、0.05重量部のトリフェニルホスフィンをさらに添加した以外は、実施例1と同様にして樹脂組成物を得た。
[Comparative Example 3]
Example 1 was used except that 17.0 parts by weight of oleic acid (monocarboxylic acid) was used instead of 4.7 parts by weight of adipic acid, and 0.05 parts by weight of triphenylphosphine was further added. Thus, a resin composition was obtained.
 〔比較例16〕
 MMA-10Rを添加しなかった以外は、実施例21と同様にして樹脂組成物を得た。
[Comparative Example 16]
A resin composition was obtained in the same manner as in Example 21 except that MMA-10R was not added.
 <樹脂組成物の性状評価>
 (n=0成分量の測定(GPC(ゲルパーミエーションクロマトグラフィ)))
 GPC(ゲルパーミエーションクロマトグラフィ)により、各樹脂組成物におけるn=0成分(カルボン酸と未反応のエポキシ樹脂)量の測定を行った。装置には、SHIMAZU製のシステムコントローラ:SCL-10AVP、送液ポンプ:LC-20AD、デガッサ:DGU-12A、オートインジェクタ:SIL-10A、カラムオーブン:CTO-10AVP、検出器:shodex製のRI-71を使用した。溶媒にクロロホルムを用い、流速1mL/minとした。カラムはshodex製のGPC K-805L(8×300mm)を3本つなぎ、標準物質としてポリスチレンを用いた。クロマトグラフにおいて積算された、全てのピークの全体の面積に対して、n=0成分のピークの面積の割合を面積%比率で算出した。
<Evaluation of properties of resin composition>
(Measurement of n = 0 component amount (GPC (gel permeation chromatography)))
The amount of n = 0 component (carboxylic acid and unreacted epoxy resin) in each resin composition was measured by GPC (gel permeation chromatography). The equipment includes a system controller manufactured by SHIMAZU: SCL-10AVP, a liquid pump: LC-20AD, a degasser: DGU-12A, an autoinjector: SIL-10A, a column oven: CTO-10AVP, a detector: RI-made by shodex. 71 was used. Chloroform was used as the solvent, and the flow rate was 1 mL / min. Three columns of GPC K-805L (8 × 300 mm) manufactured by shodex were connected, and polystyrene was used as a standard substance. The ratio of the area of the peak of the n = 0 component was calculated as an area% ratio with respect to the total area of all peaks integrated in the chromatograph.
 (結晶化試験)
 樹脂組成物20gをガラス瓶に量りとり、60℃で16時間、加熱静置した。室温に戻した後、炭酸カルシウム2gとエタノール2gを加え、均一になるまでガラス棒で撹拌した。ガラス瓶に蓋をして、10℃の冷蔵庫で静置保管し、経過観察をした。1日1回、流動性を確認し、固化するのに要した日数を確認すると共に、流動のある場合には均一になるまで撹拌した。
(Crystallization test)
20 g of the resin composition was weighed into a glass bottle and left to stand at 60 ° C. for 16 hours. After returning to room temperature, 2 g of calcium carbonate and 2 g of ethanol were added and stirred with a glass rod until uniform. The glass bottle was covered and stored in a refrigerator at 10 ° C. for observation. The fluidity was confirmed once a day, and the number of days required for solidification was confirmed.
 流動が無くなり固化するのに要した日数が、3ヶ月より長いときに結晶抑制◎、1~3ヶ月のときに結晶抑制○、1~4週間のときに結晶抑制△、1週間未満のときに結晶抑制×とした。 Crystal suppression when the number of days required to solidify due to loss of flow is longer than 3 months ◎ Crystal suppression when 1 to 3 months ○ Crystal suppression when 1 to 4 weeks △ When less than 1 week Crystal suppression x.
 <結果>
 実施例1~4および21、並びに比較例1~3、および16で作製した各樹脂組成物の組成および性状評価の結果を以下の表1および2に示す。
Figure JPOXMLDOC01-appb-T000014
<Result>
Tables 1 and 2 below show the composition and property evaluation results of the resin compositions prepared in Examples 1 to 4 and 21, and Comparative Examples 1 to 3 and 16.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 実施例1~4および21並びに比較例3の樹脂組成物は、比較例1、2および16の樹脂組成物に比べて長く結晶が析出しなかったため、結晶性が低いことが認められた。また、実施例1および比較例3の樹脂組成物は、実施例2および実施例3の樹脂組成物に比べてより結晶性が低いことが認められた。
Figure JPOXMLDOC01-appb-T000015
The resin compositions of Examples 1 to 4 and 21 and Comparative Example 3 were found to have lower crystallinity because no crystals were precipitated for a longer time than the resin compositions of Comparative Examples 1, 2, and 16. Further, it was confirmed that the resin compositions of Example 1 and Comparative Example 3 had lower crystallinity than the resin compositions of Example 2 and Example 3.
 〔実施例5〕
 実施例1で作製した樹脂組成物にカチオン系光重合開始剤として2.1重量部のCPI-101A(アンチモン系、サンアプロ社製)をさらに添加し、混合して樹脂組成物を得た。樹脂組成物が100μm厚になるようにヨシミツ精機社製ドクターブレード YD-3型を用いて、フィルム状にした。フィルム状にした樹脂組成物に、メタルハライドランプを用いて6000mJ/cmの紫外線を照射し、80℃、1時間の後硬化処理をすることで樹脂硬化物を得た。
Example 5
To the resin composition produced in Example 1, 2.1 parts by weight of CPI-101A (antimony, manufactured by San Apro) as a cationic photopolymerization initiator was further added and mixed to obtain a resin composition. The resin composition was made into a film using a doctor blade YD-3 type manufactured by Yoshimitsu Seiki Co., Ltd. so as to have a thickness of 100 μm. The resin composition in the form of a film was irradiated with 6000 mJ / cm 2 ultraviolet rays using a metal halide lamp and subjected to post-curing treatment at 80 ° C. for 1 hour to obtain a cured resin.
 〔実施例6〕
 実施例1で作製した樹脂組成物の代わりに実施例2で作製した樹脂組成物を用いた以外は実施例5と同様にして樹脂硬化物を得た。
Example 6
A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Example 2 was used instead of the resin composition prepared in Example 1.
 〔実施例7〕
 実施例1で作製した樹脂組成物の代わりに実施例3で作製した樹脂組成物を用い、CPI-101Aを2.0重量部とした以外は実施例5と同様にして樹脂硬化物を得た。
Example 7
A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Example 3 was used instead of the resin composition prepared in Example 1 and that 2.0 parts by weight of CPI-101A was used. .
 〔実施例8〕
 実施例1で作製した樹脂組成物の代わりに実施例4で作製した樹脂組成物を用い、CPI-101Aを2.2重量部とした以外は実施例5と同様にして樹脂硬化物を得た。
Example 8
A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Example 4 was used instead of the resin composition prepared in Example 1 and that CPI-101A was changed to 2.2 parts by weight. .
 〔実施例22〕
 実施例1で作製した樹脂組成物の代わりに実施例21で作製した樹脂組成物を用いた以外は実施例5と同様にして樹脂硬化物を得た。
[Example 22]
A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Example 21 was used instead of the resin composition prepared in Example 1.
 〔比較例4〕
 実施例1で作製した樹脂組成物の代わりに比較例1で作製した樹脂組成物を用い、CPI-101Aを2.0重量部とした以外は実施例5と同様にして樹脂硬化物を得た。
[Comparative Example 4]
A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Comparative Example 1 was used instead of the resin composition prepared in Example 1 and that 2.0 parts by weight of CPI-101A was used. .
 〔比較例5〕
 実施例1で作製した樹脂組成物の代わりに比較例2で作製した樹脂組成物を用い、CPI-101Aを2.0重量部とした以外は実施例5と同様にして樹脂硬化物を得た。
[Comparative Example 5]
A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Comparative Example 2 was used instead of the resin composition prepared in Example 1 and that 2.0 parts by weight of CPI-101A was used. .
 〔比較例6〕
 実施例1で作製した樹脂組成物の代わりに比較例3で作製した樹脂組成物を用い、CPI-101Aを2.3重量部とした以外は実施例5と同様にして樹脂硬化物を得た。
[Comparative Example 6]
A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Comparative Example 3 was used instead of the resin composition prepared in Example 1 and that CPI-101A was changed to 2.3 parts by weight. .
 〔比較例17〕
 実施例1で作製した樹脂組成物の代わりに比較例16で作製した樹脂組成物を用い、CPI-101Aを2.0重量部とした以外は実施例5と同様にして樹脂硬化物を得た。
[Comparative Example 17]
A cured resin was obtained in the same manner as in Example 5 except that the resin composition prepared in Comparative Example 16 was used instead of the resin composition prepared in Example 1 and that 2.0 parts by weight of CPI-101A was used. .
 <樹脂硬化物の性状評価>
 (FT-IR法による硬化率の測定)
 FT-IR(フリーエ変換赤外線分光分析)法により、硬化前の樹脂組成物および硬化後の樹脂硬化物のエポキシ基を測定した。装置にはThermo SCIENTIFIC社製NICOLET iS10を用いた。硬化前の樹脂組成物のエポキシ基のピークの高さから硬化後の樹脂硬化物のエポキシ基のピークの高さへの減少率を硬化率として算出した。波長1508/cm付近のベンゼン環のピークの高さを基準にとり、波長914/cm付近のエポキシ基のピークの高さから、硬化前の樹脂組成物および硬化後の樹脂硬化物のエポキシ基の標準化したピークの高さを算出した。硬化率が90%以上を◎、70%以上90%未満を○、50%以上70%未満を△、50%未満を×とした。
<Evaluation of properties of cured resin>
(Measurement of curing rate by FT-IR method)
The epoxy group of the resin composition before curing and the cured resin product after curing was measured by FT-IR (Freee conversion infrared spectroscopy) method. The apparatus used was NICOLET iS10 manufactured by Thermo SCIENTIFIC. The decreasing rate from the height of the epoxy group peak of the resin composition before curing to the peak height of the epoxy group of the cured resin product after curing was calculated as the curing rate. Based on the height of the peak of the benzene ring near the wavelength of 1508 / cm, from the height of the peak of the epoxy group near the wavelength of 914 / cm, standardize the epoxy group of the resin composition before curing and the cured resin after curing The height of the peak was calculated. A curing rate of 90% or more was evaluated as ◎, 70% or more and less than 90% as ○, 50% or more and less than 70% as Δ, and less than 50% as ×.
 (ガラス転移点(Tg)の測定(DSC))
 装置には、DSC(示差走査熱量計 ASC7000S、ブルカー・エイエックス社製)を使用した。サンプルを樹脂硬化物15mgとし、-100~200℃の温度領域で10℃/minで昇温と冷却を2回繰り返して測定した。2回目の昇温時の変曲点をTgとした。Tgが120℃以上のときを◎、100℃以上120℃未満のときを○、100℃未満のときを△、測定不可のときを×とした。
(Measurement of glass transition point (Tg) (DSC))
A DSC (Differential Scanning Calorimeter ASC7000S, manufactured by Bruker Ax) was used as the apparatus. The sample was a cured resin of 15 mg, and the temperature was measured by repeating heating and cooling twice at 10 ° C./min in the temperature range of −100 to 200 ° C. The inflection point at the second temperature increase was defined as Tg. When Tg was 120 ° C. or higher, ◎, when 100 ° C. or more and less than 120 ° C., ◯, when less than 100 ° C., and when measurement was impossible.
 <結果>
 実施例5~8および22、並びに比較例4~6および17で作製した各樹脂組成物の組成および性状評価の結果を以下の表3および4に示す。
Figure JPOXMLDOC01-appb-T000016
<Result>
Tables 3 and 4 below show the results of composition and property evaluations of the resin compositions prepared in Examples 5 to 8 and 22 and Comparative Examples 4 to 6 and 17.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 実施例5~8および22並びに比較例4、5および17の樹脂硬化物は、比較例6の樹脂硬化物に比べて硬化率およびガラス転移点が高いことが認められた。また、実施例5~8および22、並びに比較例4および17の封止剤硬化物は、比較例5の封止剤硬化物に比べてより硬化率が高いことが認められた。さらに、実施例6、8、および22並びに比較例4および17の封止剤硬化物は、実施例5および7の封止剤硬化物に比べてよりガラス転移点が高いことが認められた。
Figure JPOXMLDOC01-appb-T000017
The cured resins of Examples 5 to 8 and 22 and Comparative Examples 4, 5, and 17 were found to have a higher curing rate and glass transition point than the cured resin of Comparative Example 6. In addition, it was confirmed that the cured sealants of Examples 5 to 8 and 22 and Comparative Examples 4 and 17 had a higher curing rate than the cured sealant of Comparative Example 5. Furthermore, it was recognized that the sealing agent hardened | cured material of Example 6, 8, and 22 and Comparative Examples 4 and 17 had a higher glass transition point compared with the sealing agent hardened | cured material of Example 5 and 7. FIG.
 〔実施例9〕
 実施例1で作製した樹脂組成物、カチオン系光重合開始剤として5.2重量部のCPI-310B(ボレート系、サンアプロ社製)、無機化合物として57.6重量部のマイカ、およびシランカップリング剤として5.2重量部の3-グリシドキシプロピルトリエトキシシラン(エポキシ変性)をニーダーにより混練分散した。その後、加圧ろ過を行い、封止剤組成物を得た。その後、封止剤組成物が100μm厚になるようにヨシミツ精機社製ドクターブレード YD-3型を用いてフィルム状にした。フィルム状にした封止剤組成物に、メタルハライドランプを用いて6000mJ/cmの紫外線を照射し、80℃、1時間の後硬化処理をすることで封止剤硬化物を得た。
Example 9
Resin composition prepared in Example 1, 5.2 parts by weight of CPI-310B (borate-based, manufactured by San Apro) as a cationic photopolymerization initiator, 57.6 parts by weight of mica as an inorganic compound, and silane coupling As an agent, 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane (epoxy-modified) was kneaded and dispersed with a kneader. Thereafter, pressure filtration was performed to obtain a sealant composition. Thereafter, the sealant composition was formed into a film shape using a doctor blade YD-3 type manufactured by Yoshimitsu Seiki Co., Ltd. so that the thickness was 100 μm. The sealant composition formed into a film was irradiated with 6000 mJ / cm 2 of ultraviolet rays using a metal halide lamp and subjected to post-curing treatment at 80 ° C. for 1 hour to obtain a cured sealant.
 〔実施例10〕
 5.2重量部のCPI-310Bの代わりに9.4重量部のCPI-101Aを用い、57.6重量部のマイカの代わりに52.4重量部のタルクを用い、3-グリシドキシプロピルトリエトキシシランを9.4重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
Example 10
Using 9.4 parts by weight of CPI-101A in place of 5.2 parts by weight of CPI-310B, using 52.4 parts by weight of talc instead of 57.6 parts by weight of mica, 3-glycidoxypropyl A cured sealant was obtained in the same manner as in Example 9 except that 9.4 parts by weight of triethoxysilane was used.
 〔実施例11〕
 5.2重量部のCPI-310Bの代わりに9.4重量部のCPI-200K(リン系、サンアプロ社製)を用い、57.6重量部のマイカの代わりに47.1重量部のアルミナを用い、3-グリシドキシプロピルトリエトキシシランの代わりに3-グリシドキシプロピルメチルジメトキシシランを用い、ニーダーの代わりに3本ロールを用いた以外は実施例9と同様にして封止剤硬化物を得た。
Example 11
Instead of 5.2 parts by weight of CPI-310B, 9.4 parts by weight of CPI-200K (phosphorus-based, manufactured by San Apro) was used, and 57.6 parts by weight of mica was replaced by 47.1 parts by weight of alumina. Used in the same manner as in Example 9 except that 3-glycidoxypropylmethyldimethoxysilane was used instead of 3-glycidoxypropyltriethoxysilane and three rolls were used instead of the kneader. Got.
 〔実施例12〕
 実施例1で作製した樹脂組成物の代わりに実施例2で作製した樹脂組成物を用い、マイカを57.1重量部とし、ニーダーの代わりに3本ロールを用いた以外は実施例9と同様にして封止剤硬化物を得た。
Example 12
Similar to Example 9 except that the resin composition prepared in Example 2 was used instead of the resin composition prepared in Example 1, mica was 57.1 parts by weight, and three rolls were used instead of the kneader. Thus, a cured sealant was obtained.
 〔実施例13〕
 実施例1で作製した樹脂組成物の代わりに実施例2で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.3重量部のCPI-101Aを用い、57.6重量部のマイカの代わりに51.9重量部のタルクを用い、3-グリシドキシプロピルトリエトキシシランを9.3重量部とし、ニーダーの代わりに3本ロールを用いた以外は実施例9と同様にして封止剤硬化物を得た。
Example 13
The resin composition prepared in Example 2 was used instead of the resin composition prepared in Example 1, 9.3 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B, and 57. Example 9 except that 51.9 parts by weight of talc was used instead of 6 parts by weight of mica, 9.3 parts by weight of 3-glycidoxypropyltriethoxysilane was used, and three rolls were used instead of the kneader. In the same manner as above, a cured sealant was obtained.
 〔実施例14〕
 実施例1で作製した樹脂組成物の代わりに実施例2で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに5.0重量部のCPI-200K(リン系、サンアプロ社製)を用い、57.6重量部のマイカの代わりに46.7重量部のアルミナを用い、3-グリシドキシプロピルトリエトキシシランの代わりに3-グリシドキシプロピルメチルジメトキシシランを用いた以外は実施例9と同様にして封止剤硬化物を得た。
Example 14
The resin composition prepared in Example 2 was used in place of the resin composition prepared in Example 1, and 5.0 parts by weight of CPI-200K (phosphorus-based, San-Apro) was used instead of 5.2 parts by weight of CPI-310B. 46.7 parts by weight of alumina instead of 57.6 parts by weight of mica, and 3-glycidoxypropylmethyldimethoxysilane instead of 3-glycidoxypropyltriethoxysilane. Except that, the cured sealant was obtained in the same manner as in Example 9.
 〔実施例15〕
 実施例1で作製した樹脂組成物の代わりに実施例3で作製した樹脂組成物を用い、CPI-310Bを5.0重量部とし、マイカを55.0重量部とし、3-グリシドキシプロピルトリエトキシシランを5.0重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
Example 15
Instead of the resin composition prepared in Example 1, the resin composition prepared in Example 3 was used, CPI-310B was 5.0 parts by weight, mica was 55.0 parts by weight, and 3-glycidoxypropyl A cured sealant was obtained in the same manner as in Example 9 except that 5.0 parts by weight of triethoxysilane was used.
 〔実施例16〕
 実施例1で作製した樹脂組成物の代わりに実施例3で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.0重量部のCPI-101Aを用い、57.6重量部のマイカの代わりに50.0重量部のタルクを用い、3-グリシドキシプロピルトリエトキシシランを9.0重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
Example 16
The resin composition prepared in Example 3 was used instead of the resin composition prepared in Example 1, and 9.0 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B. A cured sealant was prepared in the same manner as in Example 9 except that 50.0 parts by weight of talc was used instead of 6 parts by weight of mica, and 9.0 parts by weight of 3-glycidoxypropyltriethoxysilane was used. Obtained.
 〔実施例17〕
 実施例1で作製した樹脂組成物の代わりに実施例3で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.0重量部のCPI-200Kを用い、57.6重量部のマイカの代わりに45.0重量部のアルミナを用い、5.2重量部の3-グリシドキシプロピルトリエトキシシランの代わりに5.0重量部の3-グリシドキシプロピルメチルジメトキシシランを用い、ニーダーの代わりに3本ロールを用いた以外は実施例9と同様にして封止剤硬化物を得た。
Example 17
The resin composition prepared in Example 3 was used instead of the resin composition prepared in Example 1, 9.0 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B, and 57. 45.0 parts by weight of alumina is used instead of 6 parts by weight of mica, and 5.0 parts by weight of 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane. A cured sealant was obtained in the same manner as in Example 9 except that silane was used and three rolls were used instead of the kneader.
 〔実施例18〕
 実施例1で作製した樹脂組成物の代わりに実施例4で作製した樹脂組成物を用い、CPI-310Bを5.5重量部とし、マイカを60.0重量部とし、3-グリシドキシプロピルトリエトキシシランを5.5重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
Example 18
Instead of the resin composition prepared in Example 1, the resin composition prepared in Example 4 was used, CPI-310B was 5.5 parts by weight, mica was 60.0 parts by weight, and 3-glycidoxypropyl A cured sealant was obtained in the same manner as in Example 9 except that 5.5 parts by weight of triethoxysilane was used.
 〔実施例19〕
 実施例1で作製した樹脂組成物の代わりに実施例4で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.8重量部のCPI-101Aを用い、57.6重量部のマイカの代わりに54.5重量部のタルクを用い、3-グリシドキシプロピルトリエトキシシランを9.8重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
Example 19
The resin composition prepared in Example 4 was used instead of the resin composition prepared in Example 1, and 9.8 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B. A cured sealant was prepared in the same manner as in Example 9 except that 54.5 parts by weight of talc was used instead of 6 parts by weight of mica, and 9.8 parts by weight of 3-glycidoxypropyltriethoxysilane was used. Obtained.
 〔実施例20〕
 実施例1で作製した樹脂組成物の代わりに実施例4で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.8重量部のCPI-200Kを用い、57.6重量部のマイカの代わりに49.1重量部のアルミナを用い、5.2重量部の3-グリシドキシプロピルトリエトキシシランの代わりに5.5重量部の3-グリシドキシプロピルメチルジメトキシシランを用い、ニーダーの代わりに3本ロールを用いた以外は実施例9と同様にして封止剤硬化物を得た。
Example 20
The resin composition prepared in Example 4 was used instead of the resin composition prepared in Example 1, and 9.8 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B. 49.1 parts by weight of alumina is used instead of 6 parts by weight of mica, and 5.5 parts by weight of 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane. A cured sealant was obtained in the same manner as in Example 9 except that silane was used and three rolls were used instead of the kneader.
 〔実施例23〕
 実施例1で作製した樹脂組成物の代わりに実施例21で作製した樹脂組成物を用い、CPI-310Bを5.2重量部とし、マイカを57.1重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
Example 23
Example 9 is the same as Example 9 except that the resin composition prepared in Example 21 was used instead of the resin composition prepared in Example 1, and CPI-310B was changed to 5.2 parts by weight and mica was changed to 57.1 parts by weight. Similarly, a cured sealant was obtained.
 〔実施例24〕
 実施例1で作製した樹脂組成物の代わりに実施例21で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.4重量部のCPI-101Aを用い、57.6重量部のマイカの代わりに52.0重量部のタルクを用い、3-グリシドキシプロピルトリエトキシシランを9.4重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
Example 24
The resin composition prepared in Example 21 was used instead of the resin composition prepared in Example 1, and 9.4 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B. A cured sealant was prepared in the same manner as in Example 9 except that 52.0 parts by weight of talc was used instead of 6 parts by weight of mica, and 9.4 parts by weight of 3-glycidoxypropyltriethoxysilane was used. Obtained.
 〔実施例25〕
 実施例1で作製した樹脂組成物の代わりに実施例21で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.4重量部のCPI-200Kを用い、57.6重量部のマイカの代わりに46.8重量部のアルミナを用い、5.2重量部の3-グリシドキシプロピルトリエトキシシランの代わりに5.2重量部の3-グリシドキシプロピルメチルジメトキシシランを用い、ニーダーの代わりに3本ロールを用いた以外は実施例9と同様にして封止剤硬化物を得た。
Example 25
The resin composition prepared in Example 21 was used instead of the resin composition prepared in Example 1, and 9.4 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B. 46.8 parts by weight of alumina is used instead of 6 parts by weight of mica, and 5.2 parts by weight of 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane. A cured sealant was obtained in the same manner as in Example 9 except that silane was used and three rolls were used instead of the kneader.
 〔比較例7〕
 実施例1で作製した樹脂組成物の代わりに比較例1で作製した樹脂組成物を用い、CPI-310Bを5.0重量部とし、マイカを55.0重量部とし、3-グリシドキシプロピルトリエトキシシランを5.0重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 7]
Instead of the resin composition prepared in Example 1, the resin composition prepared in Comparative Example 1 was used, CPI-310B was 5.0 parts by weight, mica was 55.0 parts by weight, and 3-glycidoxypropyl A cured sealant was obtained in the same manner as in Example 9 except that 5.0 parts by weight of triethoxysilane was used.
 〔比較例8〕
 実施例1で作製した樹脂組成物の代わりに比較例1で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.0重量部のCPI-101Aを用い、57.6重量部のマイカの代わりに50.0重量部のタルクを用い、3-グリシドキシプロピルトリエトキシシランを9.0重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 8]
The resin composition prepared in Comparative Example 1 was used instead of the resin composition prepared in Example 1, 9.0 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B, and 57. A cured sealant was prepared in the same manner as in Example 9 except that 50.0 parts by weight of talc was used instead of 6 parts by weight of mica, and 9.0 parts by weight of 3-glycidoxypropyltriethoxysilane was used. Obtained.
 〔比較例9〕
 実施例1で作製した樹脂組成物の代わりに比較例1で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.0のCPI-200Kを用い、57.6重量部のマイカの代わりに45.0重量部のアルミナを用い、5.2重量部の3-グリシドキシプロピルトリエトキシシランの代わりに5.0重量部の3-グリシドキシプロピルメチルジメトキシシランを用い、ニーダーの代わりに3本ロールを用いた以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 9]
The resin composition prepared in Comparative Example 1 was used instead of the resin composition prepared in Example 1, 9.0 CPI-200K was used instead of 5.2 parts by weight of CPI-310B, and 57.6 wt. 45.0 parts by weight of alumina is used instead of 5 parts by weight of mica, and 5.0 parts by weight of 3-glycidoxypropylmethyldimethoxysilane is used instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane. A cured sealant was obtained in the same manner as in Example 9 except that three rolls were used instead of the kneader.
 〔比較例10〕
 実施例1で作製した樹脂組成物の代わりに比較例2で作製した樹脂組成物を用い、CPI-310Bを5.1重量部とし、マイカを56.1重量部とし、3-グリシドキシプロピルトリエトキシシランを5.1重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 10]
Instead of the resin composition prepared in Example 1, the resin composition prepared in Comparative Example 2 was used, CPI-310B was 5.1 parts by weight, mica was 56.1 parts by weight, and 3-glycidoxypropyl A cured sealant was obtained in the same manner as in Example 9 except that 5.1 parts by weight of triethoxysilane was used.
 〔比較例11〕
 実施例1で作製した樹脂組成物の代わりに比較例2で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.2重量部のCPI-101Aを用い、57.6重量部のマイカの代わりに51.0重量部のタルクを用い、3-グリシドキシプロピルトリエトキシシランを9.2重量部とし、ニーダーの代わりに3本ロールを用いた以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 11]
The resin composition prepared in Comparative Example 2 was used in place of the resin composition prepared in Example 1, 9.2 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B, and 57. Example 9 except that 51.0 parts by weight of talc was used instead of 6 parts by weight of mica, 9.2 parts by weight of 3-glycidoxypropyltriethoxysilane was used, and three rolls were used instead of the kneader. In the same manner as above, a cured sealant was obtained.
 〔比較例12〕
 実施例1で作製した樹脂組成物の代わりに比較例2で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.2重量部のCPI-200Kを用い、57.6重量部のマイカの代わりに45.9重量部のアルミナを用い、5.2重量部の3-グリシドキシプロピルトリエトキシシランの代わりに5.1重量部の3-グリシドキシプロピルメチルジメトキシシランを用いた以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 12]
The resin composition prepared in Comparative Example 2 was used in place of the resin composition prepared in Example 1, 9.2 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B, and 57. 45.9 parts by weight of alumina is used instead of 6 parts by weight of mica, and 5.1 parts by weight of 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane. A cured sealant was obtained in the same manner as in Example 9 except that silane was used.
 〔比較例13〕
 実施例1で作製した樹脂組成物の代わりに比較例3で作製した樹脂組成物を用い、CPI-310Bを5.9重量部とし、マイカを64.4重量部とし、3-グリシドキシプロピルトリエトキシシランを5.9重量部とし、ニーダーの代わりに3本ロールを用いた以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 13]
Instead of the resin composition prepared in Example 1, the resin composition prepared in Comparative Example 3 was used, CPI-310B was 5.9 parts by weight, mica was 64.4 parts by weight, and 3-glycidoxypropyl A cured sealant was obtained in the same manner as in Example 9 except that 5.9 parts by weight of triethoxysilane was used and three rolls were used instead of the kneader.
 〔比較例14〕
 実施例1で作製した樹脂組成物の代わりに比較例3で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに10.5重量部のCPI-101Aを用い、57.6重量部のマイカの代わりに58.5重量部のタルクを用い、3-グリシドキシプロピルトリエトキシシランを10.5重量部とした以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 14]
The resin composition prepared in Comparative Example 3 was used instead of the resin composition prepared in Example 1, 10.5 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B, and 57. A cured sealant was prepared in the same manner as in Example 9 except that 58.5 parts by weight of talc was used instead of 6 parts by weight of mica, and 10.5 parts by weight of 3-glycidoxypropyltriethoxysilane was used. Obtained.
 〔比較例15〕
 実施例1で作製した樹脂組成物の代わりに比較例3で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに10.5重量部のCPI-200Kを用い、57.6重量部のマイカの代わりに52.7重量部のアルミナを用い、5.2重量部の3-グリシドキシプロピルトリエトキシシランの代わりに5.9重量部の3-グリシドキシプロピルメチルジメトキシシランを用いた以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 15]
The resin composition prepared in Comparative Example 3 was used instead of the resin composition prepared in Example 1, 10.5 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B, and 57. 52.7 parts by weight alumina instead of 6 parts by weight mica, and 5.9 parts by weight 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight 3-glycidoxypropyltriethoxysilane A cured sealant was obtained in the same manner as in Example 9 except that silane was used.
 〔比較例18〕
 実施例1で作製した樹脂組成物の代わりに比較例16で作製した樹脂組成物を用い、CPI-310Bを5.0重量部とし、マイカを55.0重量部とし、3-グリシドキシプロピルトリエトキシシランを5.0重量部とし、ニーダーの代わりに3本ロールを用いた以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 18]
Instead of the resin composition prepared in Example 1, the resin composition prepared in Comparative Example 16 was used, CPI-310B was 5.0 parts by weight, mica was 55.0 parts by weight, and 3-glycidoxypropyl A cured sealant was obtained in the same manner as in Example 9 except that 5.0 parts by weight of triethoxysilane was used and three rolls were used instead of the kneader.
 〔比較例19〕
 実施例1で作製した樹脂組成物の代わりに比較例16で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.0重量部のCPI-101Aを用い、57.6重量部のマイカの代わりに50.0重量部のタルクを用い、5.2重量部の3-グリシドキシプロピルトリエトキシシランの代わりに9.0重量部の3-グリシドキシプロピルトリメトキシシランを用いた以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 19]
The resin composition prepared in Comparative Example 16 was used instead of the resin composition prepared in Example 1, 9.0 parts by weight of CPI-101A was used instead of 5.2 parts by weight of CPI-310B, and 57. Use 50.0 parts by weight of talc instead of 6 parts by weight of mica, 9.0 parts by weight of 3-glycidoxypropyltrimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane A cured sealant was obtained in the same manner as in Example 9 except that silane was used.
 〔比較例20〕
 実施例1で作製した樹脂組成物の代わりに比較例16で作製した樹脂組成物を用い、5.2重量部のCPI-310Bの代わりに9.0重量部のCPI-200Kを用い、57.6重量部のマイカの代わりに45.0重量部のアルミナを用い、5.2重量部の3-グリシドキシプロピルトリエトキシシランの代わりに5.0重量部の3-グリシドキシプロピルメチルジメトキシシランを用いた以外は実施例9と同様にして封止剤硬化物を得た。
[Comparative Example 20]
The resin composition prepared in Comparative Example 16 was used instead of the resin composition prepared in Example 1, 9.0 parts by weight of CPI-200K was used instead of 5.2 parts by weight of CPI-310B, and 57. 45.0 parts by weight of alumina is used instead of 6 parts by weight of mica, and 5.0 parts by weight of 3-glycidoxypropylmethyldimethoxy instead of 5.2 parts by weight of 3-glycidoxypropyltriethoxysilane. A cured sealant was obtained in the same manner as in Example 9 except that silane was used.
 <封止剤硬化物の性状評価>
 (カップ法による水分透過率(WVTR)の測定)
 厚さ100μm、直径6cmの封止剤硬化物を用いて水分透過率を測定した。7gの塩化カルシウム(キシダ化学社製)を封止剤硬化物とパラフィンで封入し、温度40℃、湿度90%下で24時間静置して重量増加量を測定した。WVTRは以下の式で算出した。
<Evaluation of properties of cured sealant>
(Measurement of water permeability (WVTR) by the cup method)
The moisture permeability was measured using a cured sealant having a thickness of 100 μm and a diameter of 6 cm. 7 g of calcium chloride (manufactured by Kishida Chemical Co., Ltd.) was sealed with a hardened sealant and paraffin, and allowed to stand at a temperature of 40 ° C. and a humidity of 90% for 24 hours, and the amount of weight increase was measured. WVTR was calculated by the following formula.
 WVTR(g/(m・day))=増加質量(g)/0.03×0.03×3.14(m)×1(day)
 WVTRが4.5g/(m・day)未満のときを◎、4.5g/(m・day)以上6.5g/(m・day)未満のときを○、6.5g/(m・day)以上15.5g/(m・day)未満のときを△、15.5g/(m・day)以上のとき、または硬化不良による測定不可のときを×とした。
WVTR (g / (m 2 · day)) = Increased mass (g) /0.03×0.03×3.14 (m 2 ) × 1 (day)
When the WVTR is less than 4.5 g / (m 2 · day), ◎, when it is 4.5 g / (m 2 · day) or more and less than 6.5 g / (m 2 · day), ○, 6.5 g / ( When m 2 · day) or more and less than 15.5 g / (m 2 · day), Δ, when 15.5 g / (m 2 · day) or more, or when measurement is not possible due to poor curing, ×.
 <結果>
 実施例9~20および23~25並びに比較例7~15および18~20で作製した各封止剤硬化物の組成および性状評価の結果を以下の表5~10に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
<Result>
Tables 5 to 10 below show the composition and property evaluation results of the cured sealants prepared in Examples 9 to 20 and 23 to 25 and Comparative Examples 7 to 15 and 18 to 20, respectively.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 実施例9~20、23~25および比較例7~9、18~20の封止剤硬化物は、比較例10~15の封止剤硬化物に比べて水分透過率が低いことが認められた。また、実施例9、10、13、15、16、18~20および24、並びに比較例7~9、18、19の封止剤硬化物は、実施例11、12、14、17、23、25および比較例20の封止剤硬化物に比べて水分透過率がより低いことが認められた。
Figure JPOXMLDOC01-appb-T000023
It was confirmed that the cured sealants of Examples 9 to 20, 23 to 25 and Comparative Examples 7 to 9 and 18 to 20 had lower moisture permeability than the cured sealants of Comparative Examples 10 to 15. It was. Further, the cured sealants of Examples 9, 10, 13, 15, 16, 18 to 20 and 24 and Comparative Examples 7 to 9, 18, and 19 are examples 11, 12, 14, 17, 23, It was confirmed that the moisture permeability was lower than that of the cured sealant of 25 and Comparative Example 20.
 以上のように、実施例1~4、21は、結晶抑制に優れることが認められた。また、この実施例1~4、21のいずれかの樹脂組成物を用いた実施例5~8、22の封止剤硬化物は、硬化率およびガラス転移点が高いことが認められた。さらに、実施例1~4、21のいずれかの樹脂組成物を用いた実施例9~20、および23~25の封止剤硬化物は、水分透過率が低いことが認められた。一方、比較例3の樹脂組成物は実施例と同等の結晶抑制を示した。しかしながら、この比較例3の樹脂組成物を用いた比較例6の封止剤硬化物は、硬化率が低く、ガラス転移点が測定不可能であるほど低い点で劣り、比較例3の樹脂組成物を用いた比較例13~15の封止剤硬化物は、水分透過率が高い点で劣る。また、比較例4、5および17の封止剤硬化物は実施例と同等の硬化率およびガラス転移点を示し、比較例7~9および18~20の封止剤硬化物は実施例と同等の水分透過率を示した。しかしながら、この比較例4、5、7~9、および17~20のいずれかの封止剤硬化物に用いられている比較例1、2および16の樹脂組成物は、結晶抑制に劣る。 As described above, Examples 1 to 4 and 21 were found to be excellent in crystal suppression. In addition, it was confirmed that the cured sealants of Examples 5 to 8 and 22 using any one of the resin compositions of Examples 1 to 4 and 21 had a high curing rate and glass transition point. Furthermore, the cured sealants of Examples 9 to 20 and 23 to 25 using any of the resin compositions of Examples 1 to 4 and 21 were found to have low moisture permeability. On the other hand, the resin composition of Comparative Example 3 exhibited the same crystal suppression as that of the example. However, the encapsulant cured product of Comparative Example 6 using the resin composition of Comparative Example 3 is inferior in that the curing rate is low and the glass transition point cannot be measured, and the resin composition of Comparative Example 3 is inferior. The cured sealants of Comparative Examples 13 to 15 using the product are inferior in that the moisture permeability is high. Further, the cured sealants of Comparative Examples 4, 5 and 17 showed the same curing rate and glass transition point as those of Examples, and the cured sealants of Comparative Examples 7 to 9 and 18 to 20 were equivalent to Examples. The water permeability was shown. However, the resin compositions of Comparative Examples 1, 2, and 16 used in any of the cured sealants of Comparative Examples 4, 5, 7 to 9, and 17 to 20 are inferior in crystal suppression.
 本発明は、有機ELディスプレイにおいても好適に用いられる封止剤、接着剤、コート剤として利用することができる。

 
The present invention can be used as a sealant, an adhesive, and a coating agent that are also suitably used in an organic EL display.

Claims (7)

  1.  下記式(1)または式(2)で表される化合物であって、
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     上記式(1)および式(2)中、上記nは、2以上の整数を示し、
     上記RおよびR′は、脂肪族基または芳香族基を示すことを特徴とする化合物。
    A compound represented by the following formula (1) or formula (2),
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    In the above formula (1) and formula (2), n represents an integer of 2 or more,
    R and R ′ represent an aliphatic group or an aromatic group.
  2.  上記式(1)および式(2)中、上記Rは、ビスフェニレン基であることを特徴とする請求項1に記載の化合物。 In the above formulas (1) and (2), R is a bisphenylene group.
  3.  請求項1または2に記載の化合物を含むことを特徴とする樹脂組成物。 A resin composition comprising the compound according to claim 1 or 2.
  4.  ゲルパーミエーションクロマトグラフィによって測定された下記式(3)で表される化合物の割合が、上記樹脂組成物100面積%に対して、90面積%以下であり、
    Figure JPOXMLDOC01-appb-C000003
    上記式(3)中、上記Rは、脂肪族基または芳香族基を示すことを特徴とする請求項3に記載の樹脂組成物。
    The ratio of the compound represented by the following formula (3) measured by gel permeation chromatography is 90 area% or less with respect to 100 area% of the resin composition,
    Figure JPOXMLDOC01-appb-C000003
    In said formula (3), said R shows an aliphatic group or an aromatic group, The resin composition of Claim 3 characterized by the above-mentioned.
  5.  請求項1もしくは2に記載の化合物、または、請求項3もしくは4に記載の樹脂組成物を含むことを特徴とする封止剤。 An encapsulant comprising the compound according to claim 1 or 2, or the resin composition according to claim 3 or 4.
  6.  重合開始剤、無機化合物およびシランカップリング剤からなる群より選択される少なくとも1種類以上の成分をさらに含むことを特徴とする請求項5に記載の封止剤。 The sealing agent according to claim 5, further comprising at least one component selected from the group consisting of a polymerization initiator, an inorganic compound, and a silane coupling agent.
  7.  上記重合開始剤が光重合開始剤であることを特徴とする請求項6に記載の封止剤。 The sealing agent according to claim 6, wherein the polymerization initiator is a photopolymerization initiator.
PCT/JP2019/008141 2018-04-13 2019-03-01 Compound and use thereof WO2019198378A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980025023.9A CN111971322B (en) 2018-04-13 2019-03-01 Compounds and uses thereof
JP2020513115A JPWO2019198378A1 (en) 2018-04-13 2019-03-01 Compounds and their uses
JP2022113487A JP7324346B2 (en) 2018-04-13 2022-07-14 Compounds and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-077907 2018-04-13
JP2018077907 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019198378A1 true WO2019198378A1 (en) 2019-10-17

Family

ID=68162856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008141 WO2019198378A1 (en) 2018-04-13 2019-03-01 Compound and use thereof

Country Status (4)

Country Link
JP (2) JPWO2019198378A1 (en)
CN (1) CN111971322B (en)
TW (1) TWI706970B (en)
WO (1) WO2019198378A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021090576A1 (en) * 2019-11-06 2021-05-14
JP2022159286A (en) * 2018-04-13 2022-10-17 株式会社Moresco Compound and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330569A (en) * 1986-07-24 1988-02-09 Nippon Paint Co Ltd Underwater curing epoxy paint composition
JPH03285981A (en) * 1990-03-31 1991-12-17 Narumi China Corp Adhesive composition and ceramic package using the same
JPH10330713A (en) * 1997-05-28 1998-12-15 Hitachi Chem Co Ltd Adhesive composition for metal foil and metal-foil-clad laminate prepared by using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542093B2 (en) * 1973-05-11 1980-10-28
JP3285981B2 (en) 1993-01-14 2002-05-27 浜松ホトニクス株式会社 Semiconductor light receiving element
CA2599153A1 (en) * 2005-02-25 2006-08-31 Nippon Kayaku Kabushiki Kaisha Epoxy resin, hardenable resin composition containing the same and use thereof
JP4784698B1 (en) * 2010-05-06 2011-10-05 横浜ゴム株式会社 Thermosetting epoxy resin composition
JP6497639B2 (en) * 2014-03-04 2019-04-10 アイカ工業株式会社 Thermosetting resin composition, cured product and method for producing modified phenolic resin
WO2019198378A1 (en) * 2018-04-13 2019-10-17 株式会社Moresco Compound and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330569A (en) * 1986-07-24 1988-02-09 Nippon Paint Co Ltd Underwater curing epoxy paint composition
JPH03285981A (en) * 1990-03-31 1991-12-17 Narumi China Corp Adhesive composition and ceramic package using the same
JPH10330713A (en) * 1997-05-28 1998-12-15 Hitachi Chem Co Ltd Adhesive composition for metal foil and metal-foil-clad laminate prepared by using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022159286A (en) * 2018-04-13 2022-10-17 株式会社Moresco Compound and use thereof
JP7324346B2 (en) 2018-04-13 2023-08-09 株式会社Moresco Compounds and their uses
JPWO2021090576A1 (en) * 2019-11-06 2021-05-14
WO2021090576A1 (en) * 2019-11-06 2021-05-14 日産化学株式会社 Non-photosensitive resin composition
CN114599694A (en) * 2019-11-06 2022-06-07 日产化学株式会社 Non-photosensitive resin composition
JP7311846B2 (en) 2019-11-06 2023-07-20 日産化学株式会社 Non-photosensitive resin composition
CN114599694B (en) * 2019-11-06 2024-03-22 日产化学株式会社 Non-photosensitive resin composition

Also Published As

Publication number Publication date
TWI706970B (en) 2020-10-11
JP2022159286A (en) 2022-10-17
CN111971322B (en) 2023-08-08
JP7324346B2 (en) 2023-08-09
TW201945419A (en) 2019-12-01
CN111971322A (en) 2020-11-20
JPWO2019198378A1 (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP7324346B2 (en) Compounds and their uses
TWI647248B (en) Epoxy resin composition, cured product thereof, and curable resin composition
CN105308092A (en) Sealing agent for organic EL display elements
JP2007326988A (en) Epoxy resin composition
JP2009167390A (en) Thermosetting resin composition and use thereof
JP5298411B2 (en) Epoxy resin composition and use thereof
TWI588173B (en) A low-release epoxy resin and a partially esterified epoxy resin, the production method, and a curable resin composition containing the same
TW201531556A (en) Curable resin composition for sealing organic electroluminescent display element, curable resin sheet for sealing organic electroluminescent display element, and organic electroluminescent display element
JP7176222B2 (en) Epoxy resin, epoxy resin-containing composition and cured product thereof
JP2017165705A (en) Epoxy compound, curable composition, cured product, method for producing epoxy compound and reactive diluent
TWI598400B (en) Epoxy resin, epoxy resin composition and hardened material
JP5387638B2 (en) Epoxy resin composition
TWI572666B (en) An epoxy resin mixture, an epoxy resin composition and a cured product thereof
JP2007002017A (en) Epoxy resin composition
JP5686629B2 (en) Epoxy resin composition
TW201434883A (en) Organopolysiloxane and manufacturing method thereof
JP5003083B2 (en) Resin composition for color filter protective film and color filter
JP6772685B2 (en) Epoxy compounds, methods for producing epoxy compounds, epoxy compound-containing compositions and cured products thereof
JP7447605B2 (en) Color filter comprising thermosetting resin composition and cured film thereof
JP5897679B2 (en) Low-eluting epoxy resin, partially esterified epoxy resin, production method thereof, and curable resin composition containing the same
JP2021055001A (en) Curable composition, method for producing cured product, and cured product
JP2019172998A (en) Epoxy resin and curable resin composition containing the same
JP2009120747A (en) Epoxy resin, epoxy resin composition and its cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784453

Country of ref document: EP

Kind code of ref document: A1