WO2021090576A1 - Non-photosensitive resin composition - Google Patents

Non-photosensitive resin composition Download PDF

Info

Publication number
WO2021090576A1
WO2021090576A1 PCT/JP2020/034727 JP2020034727W WO2021090576A1 WO 2021090576 A1 WO2021090576 A1 WO 2021090576A1 JP 2020034727 W JP2020034727 W JP 2020034727W WO 2021090576 A1 WO2021090576 A1 WO 2021090576A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
formula
group
composition according
Prior art date
Application number
PCT/JP2020/034727
Other languages
French (fr)
Japanese (ja)
Inventor
安達 勲
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2021554831A priority Critical patent/JP7311846B2/en
Priority to KR1020227013538A priority patent/KR20220098133A/en
Priority to CN202080074452.8A priority patent/CN114599694B/en
Publication of WO2021090576A1 publication Critical patent/WO2021090576A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0018Reflow, i.e. characterized by the step of melting microstructures to form curved surfaces, e.g. manufacturing of moulds and surfaces for transfer etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Definitions

  • the present invention relates to a non-photosensitive resin composition, and a cured film, a protective film, a flattening film, and a microlens formed from the non-photosensitive resin composition.
  • the non-photosensitive resin composition of the present invention is a composition that does not contain a photosensitizer such as a quinonediazide compound, and the copolymer contained in the non-photosensitive resin composition of the present invention is a compound having a protected carboxy group. It is thermally crosslinked to form a cured film.
  • Electronic devices such as liquid crystal displays and CCD / CMOS image sensors are exposed to chemicals such as acid or alkaline solutions and solvents, and to high temperatures such as sputtering, dry etching, and solder reflow in the manufacturing process. Is done.
  • a cured film having resistance to such a treatment is formed on the device as a protective film.
  • Such a protective film is required to have chemical resistance, high transparency, heat resistance and the like.
  • the cured film When the cured film is formed on a surface having irregularities such as a color filter, the cured film has high flattenability from the viewpoint of ensuring a process margin in the subsequent process and ensuring uniformity of device characteristics. Is required. Further, a microlens is also manufactured from such a cured film.
  • the etchback method is known as one of the methods for manufacturing a microlens for a CCD / CMOS image sensor (Patent Documents 1 and 2). That is, a resist pattern is formed on a resin film for a microlens formed on a color filter, and the resist pattern is reflowed by heat treatment to form a lens pattern. Using the lens pattern formed by reflowing this resist pattern as an etching mask, the resin film for microlenses under the lens pattern is etched back, and the shape of the lens pattern is transferred to the resin film for microlenses to form a microlens. To make.
  • Patent Documents 3 to 5 disclose resin compositions used for producing microlenses. However, all of them are photosensitive (radiation-sensitive) resin compositions, and cannot be said to be suitable materials for forming a microlens by the above-mentioned etchback method.
  • Japanese Unexamined Patent Publication No. 1-1066 Japanese Unexamined Patent Publication No. 6-11459 Japanese Unexamined Patent Publication No. 2006-251464 Japanese Unexamined Patent Publication No. 2007-033518 Japanese Unexamined Patent Publication No. 2007-171572
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a resin composition capable of forming a cured film having excellent chemical resistance, heat resistance, transparency and flattening property. is there. Another object of the present invention is to provide a microlens having excellent chemical resistance and transparency.
  • the present invention is a copolymer having a structural unit represented by the following formulas (1) and (2), and the following formula (3) of 5% by mass to 90% by mass with respect to 100% by mass of the copolymer.
  • R 0 independently represents a hydrogen atom or a methyl group
  • Y represents an aromatic hydrocarbon group
  • the aromatic hydrocarbon group is hydrogen.
  • R 1 is a divalent represented by the following formula (I), formula (II) or formula (III).
  • R 1 represents a divalent organic group represented by the following formula (I)
  • the carbonyl group in the above formula (I) is the main structural unit represented by the above formula (2). Bonded to a chain, R 2 represents an organic group with an epoxy group and R 3 represents an alkyl group.)
  • c represents an integer of 0 to 3
  • d represents an integer of 1 to 3
  • e represents an integer of 2 to 6 independently.
  • the structural unit represented by the formula (2) is, for example, a structural unit represented by the following formula (2-1) or formula (2-2).
  • R 0 independently represents a hydrogen atom or a methyl group
  • R 1 independently represents a divalent organic group represented by the above formula (I), formula (II) or formula (III), respectively. .
  • the weight average molecular weight of the copolymer is, for example, 1,000 to 100,000.
  • R 3 represents, for example, an alkyl group having 1 to 4 carbon atoms.
  • the non-photosensitive resin composition of the present invention can further contain a surfactant.
  • the non-photosensitive resin composition of the present invention does not have to contain additives other than the surfactant.
  • the non-photosensitive resin composition of the present invention is, for example, a resin composition for forming a protective film, a resin composition for forming a flattening film, or a resin composition for producing a microlens.
  • the present invention is also a cured film obtained from the non-photosensitive resin composition.
  • the present invention is a protective film, a flattening film or a microlens made from the non-photosensitive resin composition.
  • the microlens is manufactured by the etchback method. That is, a step of applying the non-photosensitive resin composition on a substrate and baking at a temperature of 80 ° C. to 200 ° C. to form a cured film, forming a resist pattern on the cured film, and heat-treating the resist.
  • a microlens is produced by a step of reflowing a pattern to form a lens pattern and a step of etching back the cured film using the lens pattern as a mask and transferring the shape of the lens pattern to the cured
  • the cured film is formed, for example, by baking at a temperature of 80 ° C. to 150 ° C. and then baking at a temperature of 160 ° C. to 200 ° C. in order to evaporate the solvent from the non-photosensitive resin composition.
  • the base material is, for example, a substrate on which a color filter is formed.
  • the cured film formed from the non-photosensitive resin composition of the present invention has excellent chemical resistance, heat resistance, transparency and flattening property.
  • the cured film is exposed to chemicals such as acid or alkaline solutions and solvents in the forming process or the forming process of peripheral devices such as wiring, and is exposed to high temperatures such as sputtering, dry etching, and solder reflow.
  • the possibility of deterioration or damage to the device can be significantly reduced when the exposed treatment is performed.
  • a protective film, a flattening film or a microlens is formed from the non-photosensitive resin composition of the present invention and a resist is applied thereto, or when an electrode / wiring forming step is performed, mixing with the resist is performed.
  • the non-photosensitive resin composition of the present invention contains a compound having a protected carboxy group, it is excellent in storage stability at room temperature.
  • a protective film, a flattening film or a microlens can be formed at a temperature of 80 ° C. to 200 ° C.
  • the non-photosensitive resin composition of the present invention does not require an additive other than a surfactant.
  • the non-photosensitive resin composition of the present invention containing no compound having an unprotected carboxy group does not impair the storage stability, and the additive emerges on the surface of the cured film at the time of baking to form the cured film. No out occurs, and no exudation of additives occurs when the formed cured film comes into contact with the solvent. Therefore, the non-photosensitive resin composition of the present invention is suitable as a material for forming a protective film, a flattening film and a microlens.
  • FIG. 1 is a schematic view showing a cured film formed by applying the non-photosensitive resin composition of the present invention on a stepped substrate and baking it.
  • the present invention is a non-photosensitive resin composition containing a copolymer, a compound having a protected carboxy group, and a solvent.
  • a non-photosensitive resin composition of the present invention containing a copolymer, a compound having a protected carboxy group, and a solvent.
  • the solid content of the non-photosensitive resin composition of the present invention excluding the solvent is usually 1% by mass to 50% by mass.
  • the copolymer contained in the non-photosensitive resin composition of the present invention is a copolymer having structural units represented by the formulas (1) and (2).
  • aromatic hydrocarbon group in the formula (1) examples include a phenyl group, a biphenylyl group, and a naphthyl group.
  • compound (monomer) forming the structural unit represented by the formula (1) include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-tert-. Examples thereof include butylstyrene, 4-methoxystyrene, 4-cyanostyrene, 4-fluorostyrene, 4-chlorostyrene, 4-bromostyrene, 4-vinylbiphenyl, 1-vinylnaphthalene and 2-vinylnaphthalene. These compounds may be used alone or in combination of two or more.
  • the structural unit represented by the formula (2) is a structural unit represented by the formula (2-1) or the formula (2-2), and the structural unit represented by the formula (2-1) or the formula (2-2).
  • Specific examples of the compound (monomer) forming the structural unit represented by the following formulas are the following formulas (2-1-1) to (2-1-8) and formulas (2-2-1) to (2). Examples thereof include the monomers represented by -2-8). In addition, these monomers may be used individually by 1 type, or may use 2 or more types in combination.
  • the sum of the structural units represented by the formula (1) and the structural units represented by the formula (2) is 100 mol%.
  • the content of the structural unit represented by the formula (1) is 20 mol% to 95 mol%, preferably 50 mol% to 90 mol%, more preferably 65 mol% to 85 mol%, and the above formula (1).
  • the content of the structural unit represented by 2) is 5 mol% to 80 mol%, preferably 10 mol% to 50 mol%, and more preferably 15 mol% to 35 mol%.
  • the weight average molecular weight of the copolymer is usually 1,000 to 100,000, preferably 3,000 to 50,000.
  • the weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using polystyrene as a standard sample.
  • the content of the copolymer in the non-photosensitive resin composition of the present invention is usually 1% by mass to 99% by mass based on the content in the solid content of the non-photosensitive resin composition. It is preferably 5% by mass to 95% by mass.
  • the method for obtaining the copolymer is not particularly limited, but in general, a compound (monomer) forming a structural unit represented by the formulas (1) and (2) is used as a polymerization initiator. It is usually obtained by carrying out a polymerization reaction in a solvent in the presence of a temperature of 50 ° C. to 120 ° C. The copolymer thus obtained is usually in a solution state dissolved in a solvent, and can be used in the non-photosensitive resin composition of the present invention without being isolated in this state.
  • the copolymer solution obtained as described above was put into a stirred poor solvent such as hexane, diethyl ether, methanol, and water to reprecipitate the copolymer, and the resulting precipitate was produced.
  • the copolymer can be made into a powder by drying at room temperature or heating under normal pressure or reduced pressure. By such an operation, the polymerization initiator and the unreacted compound coexisting with the copolymer can be removed.
  • the powder of the copolymer may be used as it is, or the powder may be redissolved in, for example, a solvent described later and used as a solution.
  • the solvent is not particularly limited as long as it dissolves the copolymer.
  • examples of such a solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, and propylene glycol from the viewpoint of improving the leveling property of the coating film formed by applying the non-photosensitive resin composition of the present invention on a substrate.
  • Monoethyl ether, propylene glycol monopropyl ether, 2-heptanone, ethyl lactate, butyl lactate, cyclopentanone and cyclohexanone are preferred.
  • the non-photosensitive resin composition of the present invention contains a compound having a protected carboxy group, which is excellent in terms of storage stability, for the purpose of forming a cured film.
  • the content thereof is 5% by mass to 90% by mass, preferably 15% by mass to 70% by mass, based on 100% by mass of the copolymer contained in the non-photosensitive resin composition. If the content of the compound having a protected carboxy group is less than 5% by mass, the film formed may be insufficiently cured and chemical resistance may not be obtained. If it exceeds 90% by mass, the film may be cured. During baking when forming a film, defects such as voids may occur due to the deprotected protecting group.
  • Examples of the compound having a protected carboxy group include a compound represented by the above formula (3) having three carboxy groups protected by an alkyl vinyl ether in the molecule.
  • the compound represented by the formula (3) is not particularly limited as long as the alkyl vinyl ether dissociates and the alkyl vinyl ether volatilizes when the non-photosensitive resin composition applied on the substrate is baked. ..
  • R 3 is an alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl).
  • a compound representing a group (group, tert-butyl group) is more preferable.
  • Examples of commercially available products of the compound represented by the formula (3) include the following products. Novcure® TN-1, TN-4, TN-5 (all manufactured by NOF CORPORATION).
  • the non-photosensitive resin composition of the present invention may also contain a surfactant for the purpose of improving coatability.
  • a surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, and polyoxy.
  • Polyoxyethylene alkylaryl ethers such as ethylene nonylphenyl ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan Polysorbate fatty acid esters such as tristearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc.
  • Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters, Ftop [registered trademark] EF301, EF303, EF352 (all manufactured by Mitsubishi Materials Denshi Kasei Co., Ltd.), Megafuck [registered trademark] F-171 , F-173, R-30, R-40, R-40-LM (above, manufactured by DIC Co., Ltd.), Florard FC430, FC431 (above, manufactured by Sumitomo 3M Co., Ltd.), Asahi Guard [Registered Trademarks] AG710, Surflon [Registered Trademarks] S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Co., Ltd.), FTX-206D, FTX-212D, FTX- 218, FTX-220D, FTX-230D, FTX-240D, FTX-212P, FTX-220P, FTX-228P, FT
  • the content of the surfactant in the non-photosensitive resin composition of the present invention is 0 based on the content in the solid content of the non-photosensitive resin composition. It is .0001% by mass to 3% by mass, preferably 0.001% by mass to 1% by mass, and more preferably 0.01% by mass to 0.5% by mass.
  • the non-photosensitive resin composition of the present invention does not have to contain a curing agent other than the above-mentioned compound having a protected carboxy group. Further, the non-photosensitive resin composition of the present invention does not have to contain additives such as a curing aid, an ultraviolet absorber, a sensitizer, a plasticizer, an antioxidant, and an adhesion aid.
  • the method for preparing the non-photosensitive resin composition of the present invention is not particularly limited, and for example, a copolymer having structural units represented by the formulas (1) and (2) and the above formula (3). Examples thereof include a method of dissolving the represented compound in a solvent to obtain a uniform solution.
  • a method for producing a cured film, a protective film and a flattening film using the non-photosensitive resin composition of the present invention will be described.
  • the present invention is used on a substrate (for example, a semiconductor substrate, a glass substrate, a quartz substrate, a silicon wafer, and a substrate on which various metal films or color filters are formed on the surface of the semiconductor substrate) by an appropriate coating method such as a spinner or a coater.
  • a heating means such as a hot plate or an oven to prepare a cured film, a protective film, or a flattening film.
  • the baking conditions are appropriately selected from a baking temperature of 80 ° C. to 260 ° C., preferably 80 ° C. to 200 ° C., and a baking time of 0.3 minutes to 60 minutes. Baking is preferably carried out in two or more steps because a flat film can be obtained. When the baking is carried out in two or more steps, the first baking is carried out to evaporate the solvent from the non-photosensitive resin composition applied on the substrate.
  • the film thickness of the film formed from the non-photosensitive resin composition of the present invention is, for example, 0.001 ⁇ m to 100 ⁇ m, preferably 0.01 ⁇ m to 10 ⁇ m.
  • the present invention is used on a substrate (for example, a semiconductor substrate, a glass substrate, a quartz substrate, a silicon wafer, and a substrate on which various metal films or color filters are formed on the surface of the semiconductor substrate) by an appropriate coating method such as a spinner or a coater.
  • a heating means such as a hot plate or an oven to prepare a cured film.
  • the baking conditions are appropriately selected from a baking temperature of 80 ° C. to 260 ° C., preferably 80 ° C. to 200 ° C., and a baking time of 0.3 minutes to 60 minutes. Baking is preferably carried out in two or more steps because a flat film can be obtained. When the baking is carried out in two or more steps, the first baking is carried out to evaporate the solvent from the non-photosensitive resin composition applied on the substrate.
  • the film thickness of the cured film formed from the non-photosensitive resin composition of the present invention is, for example, 0.1 ⁇ m to 100 ⁇ m, preferably 0.5 ⁇ m to 10 ⁇ m.
  • a resist is applied onto the produced cured film, exposed through a predetermined mask, and if necessary, heated after exposure (PEB), alkaline developed, rinsed, and dried to obtain a predetermined resist pattern.
  • PEB heated after exposure
  • alkaline developed, rinsed, and dried to obtain a predetermined resist pattern.
  • the exposure for example, g-line, i-line, KrF excimer laser, and ArF excimer laser can be used.
  • the resist pattern is reflowed to form a lens pattern.
  • a microlens is produced by etching back the cured film of the lower layer using this lens pattern as an etching mask and transferring the shape of the lens pattern to the cured film.
  • Example 1 50.0 g of the copolymer solution obtained in Synthesis Example 1 and Nofcure® TN-1 (PGMEA solution having a solid content concentration of 60% by mass) as the compound represented by the above formula (3) (Nichiyu (Nichiyu) 9.3 g (manufactured by DIC Co., Ltd.) and 0.01 g of Megafuck (registered trademark) R-30 (manufactured by DIC Co., Ltd.) as a surfactant were dissolved in 29.5 g of propylene glycol monomethyl ether acetate to prepare a solution. Then, the non-photosensitive resin composition was prepared by filtering using a polyethylene microfilter having a pore size of 0.10 ⁇ m.
  • Example 2 50.0 g of the copolymer solution obtained in Synthesis Example 2, Nofcure [registered trademark] TN-1 (PGMEA solution having a solid content concentration of 60% by mass) as the compound represented by the above formula (3) (Nichiyu (Nichiyu) 8.5 g (manufactured by DIC Co., Ltd.) and 0.01 g of Megafuck (registered trademark) R-30 (manufactured by DIC Co., Ltd.) as a surfactant were dissolved in 28.4 g of propylene glycol monomethyl ether acetate to prepare a solution. Then, the non-photosensitive resin composition was prepared by filtering using a polyethylene microfilter having a pore size of 0.10 ⁇ m.
  • TMAH tetramethylammonium hydroxide
  • Table 1 shows the cross-linking reaction rate calculated from the peak intensity at 906 cm -1.
  • the cross-linking reaction rate is defined as a reaction rate of 0% at a peak intensity of 906 cm-1 of a film formed by baking at 100 ° C. for 1 minute, and a peak intensity of 0 as a reaction rate of 100%, at 180 ° C. with respect to the film. It was calculated from the peak intensity at 906 cm -1 of the film obtained by baking for 5 minutes.
  • Step flatness The non-photosensitive resin compositions prepared in Examples 1 and 2 were applied on a stepped substrate having a height of 0.5 ⁇ m, a line width of 10 ⁇ m, and a space between lines of 10 ⁇ m, respectively, using a spin coater, and placed on a hot plate. Baking was performed at 100 ° C. for 1 minute and further at 180 ° C. for 5 minutes to form a film having a film thickness of 2 ⁇ m. From h1 (step of the stepped substrate) and h2 (difference in film thickness of the cured film) shown in FIG. 1, the flattening rate was determined using "formula: (1- (h2 / h1)) x 100". The evaluation results are shown in Table 1.
  • the non-photosensitive resin compositions prepared in Example 1 and Example 2 were each applied on a silicon wafer using a spin coater, and baked on a hot plate at 100 ° C. for 1 minute and then at 180 ° C. for 5 minutes. , A film having a film thickness of 2 ⁇ m was formed. The dry etching rate of these films was measured using the etcher and the etching gas.
  • a resist solution (THMR-iP1800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)) is applied onto a silicon wafer using a spin coater, baked on a hot plate at 90 ° C. for 1.5 minutes, and has a film thickness of 1 ⁇ m. The resist film was formed and the dry etching rate was measured. Then, the dry etching rate ratio of the film obtained from the non-photosensitive resin compositions prepared in Examples 1 and 2 with respect to the resist film was determined. The evaluation results are shown in Table 1.
  • the film formed from the non-photosensitive resin composition of the present invention is a cured film having high chemical resistance, high transparency, and excellent curability with a cross-linking reaction rate of 70% or more. there were. The higher the cross-linking reaction rate, the more preferable. Further, the film formed from the non-photosensitive resin composition of the present invention had a step flattening property having a flattening rate of 70% or more. Further, in manufacturing a microlens by the etchback method, when the shape of the lens pattern is faithfully transferred to the resin film under the lens pattern, the dry etching rate X of the resist film and the dry resin film under the lens pattern are dried.
  • the film formed from the non-photosensitive resin composition of the present invention results in satisfying this. It was.
  • the film formed from the non-photosensitive resin composition prepared in Comparative Example 1 and Comparative Example 2 has an insufficient cross-linking reaction rate as compared with the film formed from the non-photosensitive resin composition of the present invention. It was found that the film properties are likely to change due to the treatment exposed to high temperature in the subsequent step, and it is not suitable for protective films, flattening films and microlenses.
  • Stepped substrate 2 Hardened film 3: Line width 4: Space between lines h1: Stepped substrate h2: Difference in film thickness of cured film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)

Abstract

[Problem] To provide a thermosetting non-photosensitive resin composition. [Solution] A non-photosensitive resin composition which contains: a copolymer that has structural units represented by formula (1) and formula (2); a compound represented by formula (3); and a solvent. (In formula (1), formula (2) and formula (3), each R0 independently represents a hydrogen atom or a methyl group; Y represents an aromatic hydrocarbon group in which some or all hydrogen atoms may be substituted by alkyl groups, alkoxy groups, cyano groups or halogen atoms; R1 represents a divalent organic group that is represented by formula (I), formula (II) or formula (III); in cases where R1 represents a divalent organic group that is represented by formula (I), a carbonyl group in formula (I) is bonded to the main chain of the structural unit represented by formula (2); R2 represents an organic group that has an epoxy group; and R3 represents an alkyl group.) (In the formulae, c represents an integer from 0 to 3; d represents an integer from 1 to 3; and each e independently represents an integer from 2 to 6.)

Description

非感光性樹脂組成物Non-photosensitive resin composition
本発明は、非感光性樹脂組成物、及び該非感光性樹脂組成物より形成される硬化膜、保護膜、平坦化膜及びマイクロレンズに関するものである。本発明の非感光性樹脂組成物は、キノンジアジド化合物などの感光剤を含有しない組成物であり、本発明の非感光性樹脂組成物に含まれる共重合体は、保護されたカルボキシ基を有する化合物と熱架橋し、硬化膜を形成するものである。 The present invention relates to a non-photosensitive resin composition, and a cured film, a protective film, a flattening film, and a microlens formed from the non-photosensitive resin composition. The non-photosensitive resin composition of the present invention is a composition that does not contain a photosensitizer such as a quinonediazide compound, and the copolymer contained in the non-photosensitive resin composition of the present invention is a compound having a protected carboxy group. It is thermally crosslinked to form a cured film.
液晶ディスプレイ、CCD/CMOSイメージセンサ等の電子デバイスは、その製造工程において、酸又はアルカリ溶液、溶剤等の薬液に曝される処理や、スパッタリング、ドライエッチング、半田リフロー等の高温に曝される処理が行われる。このような処理によって、素子が劣化又は損傷することを防止するために、このような処理に対して耐性を有する硬化膜を保護膜として素子上に形成することが行われている。このような保護膜には、耐薬品性、高透明性及び耐熱性等が要求される。 Electronic devices such as liquid crystal displays and CCD / CMOS image sensors are exposed to chemicals such as acid or alkaline solutions and solvents, and to high temperatures such as sputtering, dry etching, and solder reflow in the manufacturing process. Is done. In order to prevent the device from being deteriorated or damaged by such a treatment, a cured film having resistance to such a treatment is formed on the device as a protective film. Such a protective film is required to have chemical resistance, high transparency, heat resistance and the like.
カラーフィルターのような凹凸が形成された表面上に前記硬化膜を形成する場合、後に続く工程でのプロセスマージンの確保、デバイス特性の均一性の確保等の観点から、平坦化性の高い硬化膜が必要となる。また、このような硬化膜からマイクロレンズを作製することも行われている。 When the cured film is formed on a surface having irregularities such as a color filter, the cured film has high flattenability from the viewpoint of ensuring a process margin in the subsequent process and ensuring uniformity of device characteristics. Is required. Further, a microlens is also manufactured from such a cured film.
CCD/CMOSイメージセンサ用マイクロレンズの作製方法の1つとして、エッチバック法が知られている(特許文献1及び特許文献2)。すなわち、カラーフィルター上に形成したマイクロレンズ用樹脂膜上にレジストパターンを形成し、熱処理によってこのレジストパターンをリフローしてレンズパターンを形成する。このレジストパターンをリフローして形成したレンズパターンをエッチングマスクとして、前記レンズパターン下層のマイクロレンズ用樹脂膜をエッチバックし、前記レンズパターンの形状をマイクロレンズ用樹脂膜に転写することによってマイクロレンズを作製する。 The etchback method is known as one of the methods for manufacturing a microlens for a CCD / CMOS image sensor (Patent Documents 1 and 2). That is, a resist pattern is formed on a resin film for a microlens formed on a color filter, and the resist pattern is reflowed by heat treatment to form a lens pattern. Using the lens pattern formed by reflowing this resist pattern as an etching mask, the resin film for microlenses under the lens pattern is etched back, and the shape of the lens pattern is transferred to the resin film for microlenses to form a microlens. To make.
例えば特許文献3乃至特許文献5には、マイクロレンズの作製に用いられる樹脂組成物が開示されている。しかしながら、いずれも感光性(感放射線性)樹脂組成物であって、上記のエッチバック法によってマイクロレンズを形成するのに好適な材料とはいえない。 For example, Patent Documents 3 to 5 disclose resin compositions used for producing microlenses. However, all of them are photosensitive (radiation-sensitive) resin compositions, and cannot be said to be suitable materials for forming a microlens by the above-mentioned etchback method.
特開平1-10666号公報Japanese Unexamined Patent Publication No. 1-1066 特開平6-112459号公報Japanese Unexamined Patent Publication No. 6-11459 特開2006-251464号公報Japanese Unexamined Patent Publication No. 2006-251464 特開2007-033518号公報Japanese Unexamined Patent Publication No. 2007-033518 特開2007-171572号公報Japanese Unexamined Patent Publication No. 2007-171572
本発明は、前記の事情に基づいてなされたものであり、その目的は、優れた耐薬品性、耐熱性、透明性及び平坦化性を有する硬化膜を形成できる樹脂組成物を提供することである。また、本発明の他の目的は、優れた耐薬品性及び透明性を有するマイクロレンズを提供することである。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide a resin composition capable of forming a cured film having excellent chemical resistance, heat resistance, transparency and flattening property. is there. Another object of the present invention is to provide a microlens having excellent chemical resistance and transparency.
本発明者らは、前記の課題を解決するべく鋭意検討を行った結果、本発明を完成するに至った。すなわち、本発明は、下記式(1)及び式(2)で表される構造単位を有する共重合体、該共重合体100質量%に対して5質量%乃至90質量%の下記式(3)で表される化合物及び溶剤を含有する非感光性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000004
(式(1)、式(2)及び式(3)中、Rはそれぞれ独立に水素原子又はメチル基を表し、Yは芳香族炭化水素基を表し、該芳香族炭化水素基は、水素原子の一部又は全てがアルキル基、アルコキシ基、シアノ基又はハロゲン原子で置換されていてもよく、Rは下記式(I)、式(II)又は式(III)で表される2価の有機基を表し、Rが下記式(I)で表される2価の有機基を表す場合、前記式(I)中のカルボニル基は上記式(2)で表される構造単位の主鎖と結合し、Rはエポキシ基を有する有機基を表し、Rはアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000005
(式中、cは0乃至3の整数を表し、dは1乃至3の整数を表し、eはそれぞれ独立に2乃至6の整数を表す。)
The present inventors have completed the present invention as a result of diligent studies to solve the above-mentioned problems. That is, the present invention is a copolymer having a structural unit represented by the following formulas (1) and (2), and the following formula (3) of 5% by mass to 90% by mass with respect to 100% by mass of the copolymer. ) Is a non-photosensitive resin composition containing a compound and a solvent.
Figure JPOXMLDOC01-appb-C000004
(In formulas (1), (2) and (3), R 0 independently represents a hydrogen atom or a methyl group, Y represents an aromatic hydrocarbon group, and the aromatic hydrocarbon group is hydrogen. A part or all of the atoms may be substituted with an alkyl group, an alkoxy group, a cyano group or a halogen atom, and R 1 is a divalent represented by the following formula (I), formula (II) or formula (III). When R 1 represents a divalent organic group represented by the following formula (I), the carbonyl group in the above formula (I) is the main structural unit represented by the above formula (2). Bonded to a chain, R 2 represents an organic group with an epoxy group and R 3 represents an alkyl group.)
Figure JPOXMLDOC01-appb-C000005
(In the formula, c represents an integer of 0 to 3, d represents an integer of 1 to 3, and e represents an integer of 2 to 6 independently.)
前記式(2)で表される構造単位は、例えば下記式(2-1)又は式(2-2)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000006
(式中、Rはそれぞれ独立に水素原子又はメチル基を表し、Rはそれぞれ独立に前記式(I)、式(II)又は式(III)で表される2価の有機基を表す。)
The structural unit represented by the formula (2) is, for example, a structural unit represented by the following formula (2-1) or formula (2-2).
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 0 independently represents a hydrogen atom or a methyl group, and R 1 independently represents a divalent organic group represented by the above formula (I), formula (II) or formula (III), respectively. .)
前記共重合体の重量平均分子量は、例えば1,000乃至100,000である。 The weight average molecular weight of the copolymer is, for example, 1,000 to 100,000.
前記式(3)中、Rは例えば炭素原子数1乃至4のアルキル基を表す。 In the above formula (3), R 3 represents, for example, an alkyl group having 1 to 4 carbon atoms.
本発明の非感光性樹脂組成物は、界面活性剤をさらに含有することができる。本発明の非感光性樹脂組成物は、前記界面活性剤以外の添加剤を含有しなくてもよい。 The non-photosensitive resin composition of the present invention can further contain a surfactant. The non-photosensitive resin composition of the present invention does not have to contain additives other than the surfactant.
本発明の非感光性樹脂組成物は、例えば保護膜形成用樹脂組成物、平坦化膜形成用樹脂組成物又はマイクロレンズ作製用樹脂組成物である。本発明はまた、前記非感光性樹脂組成物から得られる硬化膜である。さらに本発明は、前記非感光性樹脂組成物から作製される保護膜、平坦化膜又はマイクロレンズである。前記マイクロレンズは、前記のエッチバック法によって作製される。すなわち、前記非感光性樹脂組成物を基材上に塗布し80℃乃至200℃の温度でベークして硬化膜を形成する工程、該硬化膜上にレジストパターンを形成し、加熱処理によって前記レジストパターンをリフローしてレンズパターンを形成する工程、及び該レンズパターンをマスクとして前記硬化膜をエッチバックして該レンズパターンの形状を該硬化膜へ転写する工程によって、マイクロレンズは作製される。 The non-photosensitive resin composition of the present invention is, for example, a resin composition for forming a protective film, a resin composition for forming a flattening film, or a resin composition for producing a microlens. The present invention is also a cured film obtained from the non-photosensitive resin composition. Furthermore, the present invention is a protective film, a flattening film or a microlens made from the non-photosensitive resin composition. The microlens is manufactured by the etchback method. That is, a step of applying the non-photosensitive resin composition on a substrate and baking at a temperature of 80 ° C. to 200 ° C. to form a cured film, forming a resist pattern on the cured film, and heat-treating the resist. A microlens is produced by a step of reflowing a pattern to form a lens pattern and a step of etching back the cured film using the lens pattern as a mask and transferring the shape of the lens pattern to the cured film.
前記硬化膜は、例えば、前記非感光性樹脂組成物から溶剤を蒸発させるために80℃乃至150℃の温度でベークした後、160℃乃至200℃の温度でベークすることにより形成される。前記基材は、例えばカラーフィルターが形成された基板である。 The cured film is formed, for example, by baking at a temperature of 80 ° C. to 150 ° C. and then baking at a temperature of 160 ° C. to 200 ° C. in order to evaporate the solvent from the non-photosensitive resin composition. The base material is, for example, a substrate on which a color filter is formed.
本発明の非感光性樹脂組成物から形成される硬化膜は、優れた耐薬品性、耐熱性、透明性及び平坦化性を有する。これにより、前記硬化膜は、その形成工程、又は配線等の周辺装置の形成工程において、酸又はアルカリ溶液、溶剤等の薬液に曝される処理や、スパッタリング、ドライエッチング、半田リフロー等の高温に曝される処理が行われる場合に、素子が劣化又は損傷する可能性を著しく減少できる。また、本発明の非感光性樹脂組成物から保護膜、平坦化膜又はマイクロレンズを形成し、その上にレジストを塗布する場合、及び電極/配線形成工程を行う場合には、レジストとのミキシングの問題、及び薬液による保護膜、平坦化膜又はマイクロレンズの変形及び剥離といった問題も著しく減少できる。さらに、本発明の非感光性樹脂組成物は、保護されたカルボキシ基を有する化合物を含有するため、室温での保存安定性に優れる。本発明の非感光性樹脂組成物を用いることにより、保護膜、平坦化膜又はマイクロレンズを80℃乃至200℃の温度で形成できる。また、本発明の非感光性樹脂組成物は、界面活性剤以外の添加剤を必要としない。そのため、保護されていないカルボキシ基を有する化合物を含有しない本発明の非感光性樹脂組成物は保存安定性が損なわれず、硬化膜を形成するベーク時に該硬化膜の表面に添加剤が浮き出すブリードアウトが発生せず、形成された硬化膜が溶剤と接触する際に添加剤の染み出しが発生しない。したがって、本発明の非感光性樹脂組成物は、保護膜、平坦化膜及びマイクロレンズを形成する材料として好適である。 The cured film formed from the non-photosensitive resin composition of the present invention has excellent chemical resistance, heat resistance, transparency and flattening property. As a result, the cured film is exposed to chemicals such as acid or alkaline solutions and solvents in the forming process or the forming process of peripheral devices such as wiring, and is exposed to high temperatures such as sputtering, dry etching, and solder reflow. The possibility of deterioration or damage to the device can be significantly reduced when the exposed treatment is performed. Further, when a protective film, a flattening film or a microlens is formed from the non-photosensitive resin composition of the present invention and a resist is applied thereto, or when an electrode / wiring forming step is performed, mixing with the resist is performed. And problems such as deformation and peeling of the protective film, flattening film or microlens due to the chemical solution can be significantly reduced. Furthermore, since the non-photosensitive resin composition of the present invention contains a compound having a protected carboxy group, it is excellent in storage stability at room temperature. By using the non-photosensitive resin composition of the present invention, a protective film, a flattening film or a microlens can be formed at a temperature of 80 ° C. to 200 ° C. Moreover, the non-photosensitive resin composition of the present invention does not require an additive other than a surfactant. Therefore, the non-photosensitive resin composition of the present invention containing no compound having an unprotected carboxy group does not impair the storage stability, and the additive emerges on the surface of the cured film at the time of baking to form the cured film. No out occurs, and no exudation of additives occurs when the formed cured film comes into contact with the solvent. Therefore, the non-photosensitive resin composition of the present invention is suitable as a material for forming a protective film, a flattening film and a microlens.
図1は、段差基板上に本発明の非感光性樹脂組成物を塗布し、ベークして形成される硬化膜を示す模式図である。FIG. 1 is a schematic view showing a cured film formed by applying the non-photosensitive resin composition of the present invention on a stepped substrate and baking it.
本発明は、共重合体、保護されたカルボキシ基を有する化合物及び溶剤を含有する非感光性樹脂組成物である。以下、本発明の非感光性樹脂組成物に含まれる各成分の詳細を説明する。本発明の非感光性樹脂組成物から溶剤を除いた固形分は通常、1質量%乃至50質量%である。 The present invention is a non-photosensitive resin composition containing a copolymer, a compound having a protected carboxy group, and a solvent. Hereinafter, details of each component contained in the non-photosensitive resin composition of the present invention will be described. The solid content of the non-photosensitive resin composition of the present invention excluding the solvent is usually 1% by mass to 50% by mass.
<共重合体>
本発明の非感光性樹脂組成物に含まれる共重合体は、前記式(1)及び式(2)で表される構造単位を有する共重合体である。
<Copolymer>
The copolymer contained in the non-photosensitive resin composition of the present invention is a copolymer having structural units represented by the formulas (1) and (2).
前記式(1)において、芳香族炭化水素基の具体例としては、フェニル基、ビフェニリル基、ナフチル基が挙げられる。前記式(1)で表される構造単位を形成する化合物(モノマー)の具体例としては、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-tert-ブチルスチレン、4-メトキシスチレン、4-シアノスチレン、4-フルオロスチレン、4-クロロスチレン、4-ブロモスチレン、4-ビニルビフェニル、1-ビニルナフタレン、2-ビニルナフタレンが挙げられる。これらの化合物は1種を単独で使用しても、或いは2種以上を組み合わせて使用してもよい。 Specific examples of the aromatic hydrocarbon group in the formula (1) include a phenyl group, a biphenylyl group, and a naphthyl group. Specific examples of the compound (monomer) forming the structural unit represented by the formula (1) include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-tert-. Examples thereof include butylstyrene, 4-methoxystyrene, 4-cyanostyrene, 4-fluorostyrene, 4-chlorostyrene, 4-bromostyrene, 4-vinylbiphenyl, 1-vinylnaphthalene and 2-vinylnaphthalene. These compounds may be used alone or in combination of two or more.
前記式(2)で表される構造単位は、前記式(2-1)又は式(2-2)で表される構造単位であり、前記式(2-1)又は式(2-2)で表される構造単位を形成する化合物(モノマー)の具体例としては、下記式(2-1-1)乃至式(2-1-8)及び式(2-2-1)乃至式(2-2-8)で表されるモノマーが挙げられる。なお、これらのモノマーは1種を単独で使用しても、或いは2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000007
The structural unit represented by the formula (2) is a structural unit represented by the formula (2-1) or the formula (2-2), and the structural unit represented by the formula (2-1) or the formula (2-2). Specific examples of the compound (monomer) forming the structural unit represented by the following formulas are the following formulas (2-1-1) to (2-1-8) and formulas (2-2-1) to (2). Examples thereof include the monomers represented by -2-8). In addition, these monomers may be used individually by 1 type, or may use 2 or more types in combination.
Figure JPOXMLDOC01-appb-C000007
前記式(1)及び式(2)で表される構造単位を有する共重合体において、前記式(1)で表される構造単位及び前記式(2)で表される構造単位の和100mol%に対し、前記式(1)で表される構造単位の含有率は20mol%乃至95mol%であり、好ましくは50mol%乃至90mol%であり、より好ましくは65mol%乃至85mol%であり、前記式(2)で表される構造単位の含有率は5mol%乃至80mol%であり、好ましくは10mol%乃至50mol%であり、より好ましくは15mol%乃至35mol%である。 In the copolymer having the structural units represented by the formulas (1) and (2), the sum of the structural units represented by the formula (1) and the structural units represented by the formula (2) is 100 mol%. On the other hand, the content of the structural unit represented by the formula (1) is 20 mol% to 95 mol%, preferably 50 mol% to 90 mol%, more preferably 65 mol% to 85 mol%, and the above formula (1). The content of the structural unit represented by 2) is 5 mol% to 80 mol%, preferably 10 mol% to 50 mol%, and more preferably 15 mol% to 35 mol%.
前記共重合体の重量平均分子量は通常、1,000乃至100,000であり、好ましくは3,000乃至50,000である。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準試料としてポリスチレンを用いて得られる値である。 The weight average molecular weight of the copolymer is usually 1,000 to 100,000, preferably 3,000 to 50,000. The weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using polystyrene as a standard sample.
また、本発明の非感光性樹脂組成物における前記共重合体の含有量は、前記非感光性樹脂組成物の固形分中の含有量に基づいて通常、1質量%乃至99質量%であり、好ましくは5質量%乃至95質量%である。 The content of the copolymer in the non-photosensitive resin composition of the present invention is usually 1% by mass to 99% by mass based on the content in the solid content of the non-photosensitive resin composition. It is preferably 5% by mass to 95% by mass.
本発明において、前記共重合体を得る方法は特に限定されないが、一般的には、前記式(1)及び式(2)で表される構造単位を形成する化合物(モノマー)を、重合開始剤存在下の溶剤中において、通常50℃乃至120℃の温度下で重合反応させることにより得られる。このようにして得られる共重合体は、通常、溶剤に溶解した溶液状態であり、この状態で単離することなく、本発明の非感光性樹脂組成物に用いることもできる。 In the present invention, the method for obtaining the copolymer is not particularly limited, but in general, a compound (monomer) forming a structural unit represented by the formulas (1) and (2) is used as a polymerization initiator. It is usually obtained by carrying out a polymerization reaction in a solvent in the presence of a temperature of 50 ° C. to 120 ° C. The copolymer thus obtained is usually in a solution state dissolved in a solvent, and can be used in the non-photosensitive resin composition of the present invention without being isolated in this state.
また、上記のようにして得られた共重合体の溶液を、攪拌させたヘキサン、ジエチルエーテル、メタノール、水等の貧溶媒に投入して前記共重合体を再沈殿させ、生成した沈殿物をろ過・洗浄後、常圧又は減圧下で常温乾燥又は加熱乾燥することで、前記共重合体を粉体とすることができる。このような操作により、前記共重合体と共存する重合開始剤や未反応化合物を除去することができる。本発明においては、前記共重合体の粉体をそのまま用いてもよく、あるいはその粉体を、例えば後述する溶剤に再溶解して溶液の状態として用いてもよい。 Further, the copolymer solution obtained as described above was put into a stirred poor solvent such as hexane, diethyl ether, methanol, and water to reprecipitate the copolymer, and the resulting precipitate was produced. After filtration and washing, the copolymer can be made into a powder by drying at room temperature or heating under normal pressure or reduced pressure. By such an operation, the polymerization initiator and the unreacted compound coexisting with the copolymer can be removed. In the present invention, the powder of the copolymer may be used as it is, or the powder may be redissolved in, for example, a solvent described later and used as a solution.
<溶剤>
前記溶剤としては、前記共重合体を溶解するものであれば特に限定されない。そのような溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテル、プロピレングリコールプロピルエーテルアセテート、プロピレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、2-ヘプタノン、γ-ブチロラクトンを挙げることができる。これらの溶剤は、1種を単独で使用しても、或いは2種以上を組み合わせて使用してもよい。
<Solvent>
The solvent is not particularly limited as long as it dissolves the copolymer. Examples of such a solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate. , Propropylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether, propylene glycol propyl ether acetate, propylene glycol monobutyl ether, propylene glycol monobutyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2 -Ethyl hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, 3 -Ethyl ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, 2-heptanone, γ-butyrolactone can be mentioned. These solvents may be used alone or in combination of two or more.
これらの溶剤の中でも、本発明の非感光性樹脂組成物を基材上に塗布して形成される塗膜のレベリング性の向上の観点から、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、2-ヘプタノン、乳酸エチル、乳酸ブチル、シクロペンタノン及びシクロヘキサノンが好ましい。 Among these solvents, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and propylene glycol from the viewpoint of improving the leveling property of the coating film formed by applying the non-photosensitive resin composition of the present invention on a substrate. Monoethyl ether, propylene glycol monopropyl ether, 2-heptanone, ethyl lactate, butyl lactate, cyclopentanone and cyclohexanone are preferred.
<保護されたカルボキシ基を有する化合物>
本発明の非感光性樹脂組成物は、硬化膜を形成させる目的で、保存安定性の観点で優れる、保護されたカルボキシ基を有する化合物を含有する。その含有量は、前記非感光性樹脂組成物に含まれる共重合体100質量%に対して5質量%乃至90質量%であり、好ましくは15質量%乃至70質量%である。保護されたカルボキシ基を有する化合物の含有量が5質量%未満の場合は、形成される膜の硬化が不十分となり耐薬品性が得られないおそれがあり、90質量%を超える場合は、硬化膜を形成する際のベーク時に、脱保護した保護基によってボイド等の不良が発生するおそれがある。
<Compound with protected carboxy group>
The non-photosensitive resin composition of the present invention contains a compound having a protected carboxy group, which is excellent in terms of storage stability, for the purpose of forming a cured film. The content thereof is 5% by mass to 90% by mass, preferably 15% by mass to 70% by mass, based on 100% by mass of the copolymer contained in the non-photosensitive resin composition. If the content of the compound having a protected carboxy group is less than 5% by mass, the film formed may be insufficiently cured and chemical resistance may not be obtained. If it exceeds 90% by mass, the film may be cured. During baking when forming a film, defects such as voids may occur due to the deprotected protecting group.
前記保護されたカルボキシ基を有する化合物としては、アルキルビニルエーテルで保護されたカルボキシ基を分子内に3個有する前記式(3)で表される化合物を挙げることができる。前記式(3)で表される化合物としては、基材上に塗布した非感光性樹脂組成物をベークした際にアルキルビニルエーテルが解離し、かつそのアルキルビニルエーテルが揮発するものであれば特に限定されない。前記式(3)で表される化合物において、Rが炭素原子数1乃至4のアルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基)を表す化合物がより好ましい。 Examples of the compound having a protected carboxy group include a compound represented by the above formula (3) having three carboxy groups protected by an alkyl vinyl ether in the molecule. The compound represented by the formula (3) is not particularly limited as long as the alkyl vinyl ether dissociates and the alkyl vinyl ether volatilizes when the non-photosensitive resin composition applied on the substrate is baked. .. In the compound represented by the formula (3), R 3 is an alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl). A compound representing a group (group, tert-butyl group) is more preferable.
前記式(3)で表される化合物の市販品としては、例えば、下記製品を挙げることができる。ノフキュアー〔登録商標〕TN-1、同TN-4、同TN-5(以上、日油(株)製)。 Examples of commercially available products of the compound represented by the formula (3) include the following products. Novcure® TN-1, TN-4, TN-5 (all manufactured by NOF CORPORATION).
<界面活性剤>
また、本発明の非感光性樹脂組成物は、塗布性を向上させる目的で、界面活性剤を含有することもできる。前記界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップ〔登録商標〕EF301、同EF303、同EF352(以上、三菱マテリアル電子化成(株)製)、メガファック〔登録商標〕F-171、同F-173、同R-30、同R-40、同R-40-LM(以上、DIC(株)製)、フロラードFC430、同FC431(以上、住友スリーエム(株)製)、アサヒガード〔登録商標〕AG710、サーフロン〔登録商標〕S-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(AGC(株)製)、FTX-206D、FTX-212D、FTX-218、FTX-220D、FTX-230D、FTX-240D、FTX-212P、FTX-220P、FTX-228P、FTX-240G等のフタージェントシリーズ((株)ネオス製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)を挙げることができる。これらの界面活性剤は、1種単独で使用しても、2種以上を組み合わせて使用してもよい。
<Surfactant>
In addition, the non-photosensitive resin composition of the present invention may also contain a surfactant for the purpose of improving coatability. Examples of the surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, and polyoxy. Polyoxyethylene alkylaryl ethers such as ethylene nonylphenyl ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan Polysorbate fatty acid esters such as tristearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc. Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters, Ftop [registered trademark] EF301, EF303, EF352 (all manufactured by Mitsubishi Materials Denshi Kasei Co., Ltd.), Megafuck [registered trademark] F-171 , F-173, R-30, R-40, R-40-LM (above, manufactured by DIC Co., Ltd.), Florard FC430, FC431 (above, manufactured by Sumitomo 3M Co., Ltd.), Asahi Guard [Registered Trademarks] AG710, Surflon [Registered Trademarks] S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Co., Ltd.), FTX-206D, FTX-212D, FTX- 218, FTX-220D, FTX-230D, FTX-240D, FTX-212P, FTX-220P, FTX-228P, FTX-240G and other fluorine-based surfactants such as Futergent series (manufactured by Neos Co., Ltd.), Organo Siloxane polymer KP341 (manufactured by Shin-Etsu Chemical Industry Co., Ltd.) can be mentioned. These surfactants may be used alone or in combination of two or more.
また、前記界面活性剤が使用される場合、本発明の非感光性樹脂組成物におけるその界面活性剤の含有量は、前記非感光性樹脂組成物の固形分中の含有量に基づいて、0.0001質量%乃至3質量%であり、好ましくは0.001質量%乃至1質量%であり、より好ましくは0.01質量%乃至0.5質量%である。 When the surfactant is used, the content of the surfactant in the non-photosensitive resin composition of the present invention is 0 based on the content in the solid content of the non-photosensitive resin composition. It is .0001% by mass to 3% by mass, preferably 0.001% by mass to 1% by mass, and more preferably 0.01% by mass to 0.5% by mass.
本発明の非感光性樹脂組成物は、上記保護されたカルボキシ基を有する化合物以外に硬化剤を含有しなくてよい。また、本発明の非感光性樹脂組成物は、硬化助剤、紫外線吸収剤、増感剤、可塑剤、酸化防止剤、密着助剤等の添加剤を含有しなくてよい。 The non-photosensitive resin composition of the present invention does not have to contain a curing agent other than the above-mentioned compound having a protected carboxy group. Further, the non-photosensitive resin composition of the present invention does not have to contain additives such as a curing aid, an ultraviolet absorber, a sensitizer, a plasticizer, an antioxidant, and an adhesion aid.
<非感光性樹脂組成物の調製方法>
本発明の非感光性樹脂組成物の調製方法は、特に限定されないが、例えば、前記式(1)及び式(2)で表される構造単位を有する共重合体、及び前記式(3)で表される化合物を溶剤に溶解し、均一な溶液とする方法が挙げられる。
<Method for preparing non-photosensitive resin composition>
The method for preparing the non-photosensitive resin composition of the present invention is not particularly limited, and for example, a copolymer having structural units represented by the formulas (1) and (2) and the above formula (3). Examples thereof include a method of dissolving the represented compound in a solvent to obtain a uniform solution.
<硬化膜、保護膜及び平坦化膜の作製方法>
本発明の非感光性樹脂組成物を用いた硬化膜、保護膜及び平坦化膜の作製方法について説明する。基材(例えば、半導体基板、ガラス基板、石英基板、シリコンウエハー及びこれらの表面に各種金属膜又はカラーフィルター等が形成された基板)上に、スピナー、コーター等の適当な塗布方法により本発明の非感光性樹脂組成物を塗布後、ホットプレートやオーブン等の加熱手段を用いてベークして硬化させて硬化膜、保護膜、又は平坦化膜を作製する。
<Method of producing cured film, protective film and flattening film>
A method for producing a cured film, a protective film and a flattening film using the non-photosensitive resin composition of the present invention will be described. The present invention is used on a substrate (for example, a semiconductor substrate, a glass substrate, a quartz substrate, a silicon wafer, and a substrate on which various metal films or color filters are formed on the surface of the semiconductor substrate) by an appropriate coating method such as a spinner or a coater. After applying the non-photosensitive resin composition, it is baked and cured using a heating means such as a hot plate or an oven to prepare a cured film, a protective film, or a flattening film.
ベーク条件は、ベーク温度80℃乃至260℃、好ましくは80℃乃至200℃、ベーク時間0.3分乃至60分間の中から適宜選択される。ベークは2ステップ以上で実施するのが、平坦な膜が得られるため好ましい。ベークを2ステップ以上で実施する場合、最初のベークは、前記基材上に塗布された非感光性樹脂組成物から溶剤を蒸発させるために行う。また、発明の非感光性樹脂組成物から形成される膜の膜厚としては、例えば0.001μm乃至100μmであり、好ましくは0.01μm乃至10μmである。 The baking conditions are appropriately selected from a baking temperature of 80 ° C. to 260 ° C., preferably 80 ° C. to 200 ° C., and a baking time of 0.3 minutes to 60 minutes. Baking is preferably carried out in two or more steps because a flat film can be obtained. When the baking is carried out in two or more steps, the first baking is carried out to evaporate the solvent from the non-photosensitive resin composition applied on the substrate. The film thickness of the film formed from the non-photosensitive resin composition of the present invention is, for example, 0.001 μm to 100 μm, preferably 0.01 μm to 10 μm.
<マイクロレンズの作製方法>
本発明の非感光性樹脂組成物を用いたマイクロレンズの作製方法について説明する。基材(例えば、半導体基板、ガラス基板、石英基板、シリコンウエハー及びこれらの表面に各種金属膜又はカラーフィルター等が形成された基板)上に、スピナー、コーター等の適当な塗布方法により本発明の非感光性樹脂組成物を塗布後、ホットプレート、オーブン等の加熱手段を用いてベークして硬化させて硬化膜を作製する。
<How to make a microlens>
A method for producing a microlens using the non-photosensitive resin composition of the present invention will be described. The present invention is used on a substrate (for example, a semiconductor substrate, a glass substrate, a quartz substrate, a silicon wafer, and a substrate on which various metal films or color filters are formed on the surface of the semiconductor substrate) by an appropriate coating method such as a spinner or a coater. After applying the non-photosensitive resin composition, it is baked and cured using a heating means such as a hot plate or an oven to prepare a cured film.
ベーク条件は、ベーク温度80℃乃至260℃、好ましくは80℃乃至200℃、ベーク時間0.3分乃至60分間の中から適宜選択される。ベークは2ステップ以上で実施するのが、平坦な膜が得られるため好ましい。ベークを2ステップ以上で実施する場合、最初のベークは、前記基材上に塗布された非感光性樹脂組成物から溶剤を蒸発させるために行う。また、本発明の非感光性樹脂組成物から形成される硬化膜の膜厚としては、例えば0.1μm乃至100μmであり、好ましくは0.5μm乃至10μmである。 The baking conditions are appropriately selected from a baking temperature of 80 ° C. to 260 ° C., preferably 80 ° C. to 200 ° C., and a baking time of 0.3 minutes to 60 minutes. Baking is preferably carried out in two or more steps because a flat film can be obtained. When the baking is carried out in two or more steps, the first baking is carried out to evaporate the solvent from the non-photosensitive resin composition applied on the substrate. The film thickness of the cured film formed from the non-photosensitive resin composition of the present invention is, for example, 0.1 μm to 100 μm, preferably 0.5 μm to 10 μm.
その後、作製された硬化膜の上にレジストを塗布し、所定のマスクを通して露光し、必要に応じて露光後加熱(PEB)を行い、アルカリ現像、リンス、及び乾燥することにより、所定のレジストパターンを形成する。露光には、例えば、g線、i線、KrFエキシマレーザー、ArFエキシマレーザーを使用することができる。次いで、加熱処理することにより、前記レジストパターンをリフローしてレンズパターンを形成する。このレンズパターンをエッチングマスクとして下層の硬化膜をエッチバックして、前記レンズパターンの形状を前記硬化膜に転写することによってマイクロレンズを作製する。 Then, a resist is applied onto the produced cured film, exposed through a predetermined mask, and if necessary, heated after exposure (PEB), alkaline developed, rinsed, and dried to obtain a predetermined resist pattern. To form. For the exposure, for example, g-line, i-line, KrF excimer laser, and ArF excimer laser can be used. Then, by heat treatment, the resist pattern is reflowed to form a lens pattern. A microlens is produced by etching back the cured film of the lower layer using this lens pattern as an etching mask and transferring the shape of the lens pattern to the cured film.
以下に実施例及び比較例に基づいて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものでない。
〔下記合成例で得られた共重合体の重量平均分子量の測定〕
装置:日本分光(株)製GPCシステム
カラム:Shodex〔登録商標〕KF-804L及びKF-803L
カラムオーブン:40℃
流量:1mL/分
溶離液:テトラヒドロフラン
The present invention will be described in more detail below based on Examples and Comparative Examples, but the present invention is not limited to these Examples.
[Measurement of weight average molecular weight of copolymer obtained in the following synthesis example]
Equipment: JASCO Corporation GPC system Column: Shodex® KF-804L and KF-803L
Column oven: 40 ° C
Flow rate: 1 mL / min Eluent: tetrahydrofuran
[共重合体の合成]
<合成例1>
前記式(2-1-3)で表されるモノマー10.2g、スチレン25.0g及び2,2’-アゾビスイソブチロニトリル0.77gをプロピレングリコールモノメチルエーテルアセテート53.9gに溶解させた後、この溶液を、プロピレングリコールモノメチルエーテルアセテート12.8gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度35質量%)を得た。得られた共重合体の重量平均分子量Mwは30,000(ポリスチレン換算)であった。
[Synthesis of copolymer]
<Synthesis example 1>
10.2 g of the monomer represented by the formula (2-1-3), 25.0 g of styrene and 0.77 g of 2,2′-azobisisobutyronitrile were dissolved in 53.9 g of propylene glycol monomethyl ether acetate. Then, this solution was added dropwise to a flask in which 12.8 g of propylene glycol monomethyl ether acetate was held at 70 ° C. over 4 hours. After completion of the dropping, the reaction was further carried out for 18 hours to obtain a solution of the copolymer (solid content concentration: 35% by mass). The weight average molecular weight Mw of the obtained copolymer was 30,000 (in terms of polystyrene).
<合成例2>
前記式(2-1-3)で表されるモノマー9.0g、4-メチルスチレン25.0g及び2,2’-アゾビスイソブチロニトリル0.68gをプロピレングリコールモノメチルエーテルアセテート52.0gに溶解させた後、この溶液を、プロピレングリコールモノメチルエーテルアセテート12.4gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度35質量%)を得た。得られた共重合体の重量平均分子量Mwは22,000(ポリスチレン換算)であった。
<Synthesis example 2>
9.0 g of the monomer represented by the above formula (2-1-3), 25.0 g of 4-methylstyrene and 0.68 g of 2,2′-azobisisobutyronitrile were added to 52.0 g of propylene glycol monomethyl ether acetate. After dissolution, this solution was added dropwise to a flask containing 12.4 g of propylene glycol monomethyl ether acetate at 70 ° C. over 4 hours. After completion of the dropping, the reaction was further carried out for 18 hours to obtain a solution of the copolymer (solid content concentration: 35% by mass). The weight average molecular weight Mw of the obtained copolymer was 22,000 (in terms of polystyrene).
<合成例3>
前記式(2-1-3)で表されるモノマー6.3g、スチレン18.0g、1-n-ブトキシエチルメタクリレート8.3g及び2,2’-アゾビスイソブチロニトリル1.1gをプロピレングリコールモノメチルエーテルアセテート50.5gに溶解させた後、この溶液を、プロピレングリコールモノメチルエーテルアセテート12.0gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度35質量%)を得た。得られた共重合体の重量平均分子量Mwは15,000(ポリスチレン換算)であった。
<Synthesis example 3>
Propylene containing 6.3 g of the monomer represented by the formula (2-1-3), 18.0 g of styrene, 8.3 g of 1-n-butoxyethyl methacrylate and 1.1 g of 2,2′-azobisisobutyronitrile. After dissolving in 50.5 g of glycol monomethyl ether acetate, this solution was added dropwise to a flask in which 12.0 g of propylene glycol monomethyl ether acetate was held at 70 ° C. over 4 hours. After completion of the dropping, the reaction was further carried out for 18 hours to obtain a solution of the copolymer (solid content concentration: 35% by mass). The weight average molecular weight Mw of the obtained copolymer was 15,000 (in terms of polystyrene).
<合成例4>
前記式(2-1-3)で表されるモノマー19.9g、スチレン38.0g、4-ヒドロキシフェニルメタクリレート10.0g及び2,2’-アゾビスイソブチロニトリル2.3gをプロピレングリコールモノメチルエーテルアセテート105gに溶解させた後、この溶液を、プロピレングリコールモノメチルエーテルアセテート25.1gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度35質量%)を得た。得られた共重合体の重量平均分子量Mwは22,000(ポリスチレン換算)であった。
<Synthesis example 4>
Propylene glycol monomethyl containing 19.9 g of a monomer represented by the above formula (2-1-3), 38.0 g of styrene, 10.0 g of 4-hydroxyphenyl methacrylate and 2.3 g of 2,2′-azobisisobutyronitrile. After dissolving in 105 g of ether acetate, this solution was added dropwise to a flask in which 25.1 g of propylene glycol monomethyl ether acetate was maintained at 70 ° C. over 4 hours. After completion of the dropping, the reaction was further carried out for 18 hours to obtain a solution of the copolymer (solid content concentration: 35% by mass). The weight average molecular weight Mw of the obtained copolymer was 22,000 (in terms of polystyrene).
[非感光性樹脂組成物の調製]
<実施例1>
合成例1で得られた共重合体の溶液50.0g、前記式(3)で表される化合物としてノフキュアー〔登録商標〕TN-1(固形分濃度60質量%のPGMEA溶液)(日油(株)製)9.3g及び界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを、プロピレングリコールモノメチルエーテルアセテート29.5gに溶解させて溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して、非感光性樹脂組成物を調製した。
[Preparation of non-photosensitive resin composition]
<Example 1>
50.0 g of the copolymer solution obtained in Synthesis Example 1 and Nofcure® TN-1 (PGMEA solution having a solid content concentration of 60% by mass) as the compound represented by the above formula (3) (Nichiyu (Nichiyu) 9.3 g (manufactured by DIC Co., Ltd.) and 0.01 g of Megafuck (registered trademark) R-30 (manufactured by DIC Co., Ltd.) as a surfactant were dissolved in 29.5 g of propylene glycol monomethyl ether acetate to prepare a solution. Then, the non-photosensitive resin composition was prepared by filtering using a polyethylene microfilter having a pore size of 0.10 μm.
<実施例2>
合成例2で得られた共重合体の溶液50.0g、前記式(3)で表される化合物としてノフキュアー〔登録商標〕TN-1(固形分濃度60質量%のPGMEA溶液)(日油(株)製)8.5g及び界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを、プロピレングリコールモノメチルエーテルアセテート28.4gに溶解させて溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して、非感光性樹脂組成物を調製した。
<Example 2>
50.0 g of the copolymer solution obtained in Synthesis Example 2, Nofcure [registered trademark] TN-1 (PGMEA solution having a solid content concentration of 60% by mass) as the compound represented by the above formula (3) (Nichiyu (Nichiyu) 8.5 g (manufactured by DIC Co., Ltd.) and 0.01 g of Megafuck (registered trademark) R-30 (manufactured by DIC Co., Ltd.) as a surfactant were dissolved in 28.4 g of propylene glycol monomethyl ether acetate to prepare a solution. Then, the non-photosensitive resin composition was prepared by filtering using a polyethylene microfilter having a pore size of 0.10 μm.
<比較例1>
合成例3で得られた共重合体の溶液50.0g、及び界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを、プロピレングリコールモノメチルエーテルアセテート17.3g及びプロピレングリコールモノメチルエーテル16.8gに溶解させて溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して非感光性樹脂組成物を調製した。本比較例は、前記式(3)で表される化合物を用いない。
<Comparative example 1>
50.0 g of the copolymer solution obtained in Synthesis Example 3 and 0.01 g of Megafuck [registered trademark] R-30 (manufactured by DIC Co., Ltd.) as a surfactant, 17.3 g of propylene glycol monomethyl ether acetate. And propylene glycol monomethyl ether were dissolved in 16.8 g to prepare a solution. Then, a non-photosensitive resin composition was prepared by filtering using a polyethylene microfilter having a pore size of 0.10 μm. This comparative example does not use the compound represented by the above formula (3).
<比較例2>
合成例4で得られた共重合体の溶液50.0g、硬化剤としてトリス(4-ヒドロキシフェニル)メタン2.2g及び界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを、プロピレングリコールモノメチルエーテルアセテート6.8g及びプロピレングリコールモノメチルエーテル16.8gに溶解させて溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して非感光性樹脂組成物を調製した。本比較例で用いた硬化剤は、前記式(3)で表される化合物に該当しない。
<Comparative example 2>
50.0 g of the copolymer solution obtained in Synthesis Example 4, 2.2 g of tris (4-hydroxyphenyl) methane as a curing agent, and Megafuck [registered trademark] R-30 (manufactured by DIC Co., Ltd.) as a surfactant. ) 0.01 g was dissolved in 6.8 g of propylene glycol monomethyl ether acetate and 16.8 g of propylene glycol monomethyl ether to prepare a solution. Then, a non-photosensitive resin composition was prepared by filtering using a polyethylene microfilter having a pore size of 0.10 μm. The curing agent used in this comparative example does not correspond to the compound represented by the above formula (3).
[耐薬品性試験]
実施例1及び実施例2、並びに比較例1及び比較例2で調製した非感光性樹脂組成物をそれぞれ、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに180℃で5分間ベークを行い、膜厚2μmの膜を形成した。これらの膜に対して、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、シクロヘキサノン、γ-ブチロラクトン、2-プロパノール、2-ヘプタノン及び2.38質量%濃度の水酸化テトラメチルアンモニウム(TMAH)水溶液に、それぞれ23℃の温度下、5分間浸漬する試験を行った。浸漬前及び浸漬後の膜厚測定を行い、浸漬前後での膜厚変化を算出した。前記膜を浸漬した溶剤のうち1つでも、浸漬前の膜厚に対して5%以上の膜厚増減があった場合は“×”、全ての溶剤について膜厚増減が5%未満であった場合は“○”として耐薬品性を評価した。評価結果を表1に示す。
[Chemical resistance test]
The non-photosensitive resin compositions prepared in Example 1 and Example 2, and Comparative Examples 1 and 2, respectively, were applied onto a silicon wafer using a spin coater, and placed on a hot plate at 100 ° C. for 1 minute. Further, baking was performed at 180 ° C. for 5 minutes to form a film having a film thickness of 2 μm. For these films, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, cyclohexanone, γ-butyrolactone, 2-propanol, 2-heptanone and 2.38 mass% concentration tetramethylammonium hydroxide (TMAH) A test was conducted in which the mixture was immersed in an aqueous solution at a temperature of 23 ° C. for 5 minutes. The film thickness was measured before and after immersion, and the change in film thickness before and after immersion was calculated. Even one of the solvents in which the film was immersed had a film thickness increase / decrease of 5% or more with respect to the film thickness before immersion, which was "x", and the film thickness increase / decrease was less than 5% for all solvents. In the case, the chemical resistance was evaluated as “○”. The evaluation results are shown in Table 1.
[透過率測定]
実施例1及び実施例2、並びに比較例1及び比較例2で調製した非感光性樹脂組成物をそれぞれ、石英基板上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに180℃で5分間ベークを行い、膜厚2μmの膜を形成した。これらの膜に対して、紫外線可視分光光度計UV-2550((株)島津製作所製)を用いて、波長400nm乃至800nmの範囲で波長を2nmずつ変化させて透過率を測定した。波長400nm乃至800nmの範囲で測定された最低透過率の値を表1に示す。
[Transmittance measurement]
The non-photosensitive resin compositions prepared in Example 1 and Example 2, and Comparative Example 1 and Comparative Example 2, respectively, were applied onto a quartz substrate using a spin coater, and placed on a hot plate at 100 ° C. for 1 minute. Further, baking was performed at 180 ° C. for 5 minutes to form a film having a film thickness of 2 μm. The transmittance of these films was measured using an ultraviolet visible spectrophotometer UV-2550 (manufactured by Shimadzu Corporation) by changing the wavelength by 2 nm in the wavelength range of 400 nm to 800 nm. Table 1 shows the values of the lowest transmittance measured in the wavelength range of 400 nm to 800 nm.
[架橋反応率測定]
実施例1及び実施例2、並びに比較例1及び比較例2で調製した非感光性樹脂組成物をそれぞれ、石英基板上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間ベークを行い、膜厚2μmの膜を形成した。これらの膜に対して、フーリエ変換赤外分光光度計Nicolet6700(サーモフィッシャーサイエンティフィック(株)製)を用いて赤外線吸収スペクトルを測定した。さらにこの膜に対し180℃で5分間ベークを行い、得られた膜に対し再び赤外線吸収スペクトルを測定した。906cm-1におけるピーク強度から算出した架橋反応率を表1に示す。前記架橋反応率は、100℃で1分間ベークを行い形成された膜の906cm-1におけるピーク強度を反応率0%、ピーク強度0を反応率100%と定義し、前記膜に対し180℃で5分間ベークを行い得られた膜の906cm-1におけるピーク強度から算出した。
[Measurement of cross-linking reaction rate]
The non-photosensitive resin compositions prepared in Example 1 and Example 2, and Comparative Example 1 and Comparative Example 2, respectively, were applied onto a quartz substrate using a spin coater, and baked on a hot plate at 100 ° C. for 1 minute. To form a film having a film thickness of 2 μm. Infrared absorption spectra of these films were measured using a Fourier transform infrared spectrophotometer Nicolet 6700 (manufactured by Thermo Fisher Scientific Co., Ltd.). Further, this film was baked at 180 ° C. for 5 minutes, and the infrared absorption spectrum of the obtained film was measured again. Table 1 shows the cross-linking reaction rate calculated from the peak intensity at 906 cm -1. The cross-linking reaction rate is defined as a reaction rate of 0% at a peak intensity of 906 cm-1 of a film formed by baking at 100 ° C. for 1 minute, and a peak intensity of 0 as a reaction rate of 100%, at 180 ° C. with respect to the film. It was calculated from the peak intensity at 906 cm -1 of the film obtained by baking for 5 minutes.
[段差平坦化性]
実施例1及び実施例2で調製した非感光性樹脂組成物を、それぞれ高さ0.5μm、ライン幅10μm、ライン間スペース10μmの段差基板上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに180℃で5分間ベークを行い、膜厚2μmの膜を形成した。図1に示すh1(段差基板の段差)とh2(硬化膜の膜厚差)から、“式:(1-(h2/h1))×100”を用いて平坦化率を求めた。評価結果を表1に示す。
[Step flatness]
The non-photosensitive resin compositions prepared in Examples 1 and 2 were applied on a stepped substrate having a height of 0.5 μm, a line width of 10 μm, and a space between lines of 10 μm, respectively, using a spin coater, and placed on a hot plate. Baking was performed at 100 ° C. for 1 minute and further at 180 ° C. for 5 minutes to form a film having a film thickness of 2 μm. From h1 (step of the stepped substrate) and h2 (difference in film thickness of the cured film) shown in FIG. 1, the flattening rate was determined using "formula: (1- (h2 / h1)) x 100". The evaluation results are shown in Table 1.
[ドライエッチングレートの測定]
ドライエッチングレートの測定に用いたエッチャー及びエッチングガスは、以下の通りである。
エッチャー:RIE-10NR(サムコ(株)製)
エッチングガス:CF
[Measurement of dry etching rate]
The etcher and etching gas used to measure the dry etching rate are as follows.
Etcher: RIE-10NR (manufactured by SAMCO Co., Ltd.)
Etching gas: CF 4
実施例1及び実施例2で調製した非感光性樹脂組成物をそれぞれ、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに180℃で5分間ベークを行い、膜厚2μmの膜を形成した。前記エッチャー及びエッチングガスを用い、これらの膜のドライエッチングレートを測定した。同様に、レジスト溶液(THMR-iP1800(東京応化工業(株)製)を、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において90℃で1.5分間ベークを行い、膜厚1μmのレジスト膜を形成し、ドライエッチングレートを測定した。そして、前記レジスト膜に対する、実施例1及び実施例2で調製した非感光性樹脂組成物から得られた膜のドライエッチングレート比を求めた。評価結果を表1に示す。 The non-photosensitive resin compositions prepared in Example 1 and Example 2 were each applied on a silicon wafer using a spin coater, and baked on a hot plate at 100 ° C. for 1 minute and then at 180 ° C. for 5 minutes. , A film having a film thickness of 2 μm was formed. The dry etching rate of these films was measured using the etcher and the etching gas. Similarly, a resist solution (THMR-iP1800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)) is applied onto a silicon wafer using a spin coater, baked on a hot plate at 90 ° C. for 1.5 minutes, and has a film thickness of 1 μm. The resist film was formed and the dry etching rate was measured. Then, the dry etching rate ratio of the film obtained from the non-photosensitive resin compositions prepared in Examples 1 and 2 with respect to the resist film was determined. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
表1の結果から、本発明の非感光性樹脂組成物から形成された膜は、高耐薬品性、高透明性であると共に、架橋反応率70%以上の優れた硬化性を有する硬化膜であった。なお、架橋反応率は高い値ほど好ましい。また、本発明の非感光性樹脂組成物から形成された膜は、平坦化率70%以上の段差平坦化性を有するものであった。さらに、エッチバック法によるマイクロレンズの作製において、レンズパターンの形状を忠実に該レンズパターンの下層の樹脂膜へ転写するにあたり、レジスト膜のドライエッチングレートXと前記レンズパターンの下層の樹脂膜のドライエッチングレートYが同等(X:Y=1:0.8乃至1.2)であることが求められ、本発明の非感光性樹脂組成物から形成された膜は、これを満足する結果となった。一方、比較例1及び比較例2で調製した非感光性樹脂組成物から形成された膜については、本発明の非感光性樹脂組成物から形成された膜と比較して架橋反応率が不十分であり、その後の工程での高温に曝される処理によって膜特性が変化する可能性が高く、保護膜、平坦化膜及びマイクロレンズ用として適さないことが分かった。 From the results in Table 1, the film formed from the non-photosensitive resin composition of the present invention is a cured film having high chemical resistance, high transparency, and excellent curability with a cross-linking reaction rate of 70% or more. there were. The higher the cross-linking reaction rate, the more preferable. Further, the film formed from the non-photosensitive resin composition of the present invention had a step flattening property having a flattening rate of 70% or more. Further, in manufacturing a microlens by the etchback method, when the shape of the lens pattern is faithfully transferred to the resin film under the lens pattern, the dry etching rate X of the resist film and the dry resin film under the lens pattern are dried. It is required that the etching rates Y are equivalent (X: Y = 1: 0.8 to 1.2), and the film formed from the non-photosensitive resin composition of the present invention results in satisfying this. It was. On the other hand, the film formed from the non-photosensitive resin composition prepared in Comparative Example 1 and Comparative Example 2 has an insufficient cross-linking reaction rate as compared with the film formed from the non-photosensitive resin composition of the present invention. It was found that the film properties are likely to change due to the treatment exposed to high temperature in the subsequent step, and it is not suitable for protective films, flattening films and microlenses.
 1:段差基板
 2:硬化膜
 3:ライン幅
 4:ライン間スペース
 h1:段差基板の段差
 h2:硬化膜の膜厚差
1: Stepped substrate 2: Hardened film 3: Line width 4: Space between lines h1: Stepped substrate h2: Difference in film thickness of cured film

Claims (16)

  1. 下記式(1)及び式(2)で表される構造単位を有する共重合体、該共重合体100質量%に対して5質量%乃至90質量%の下記式(3)で表される化合物及び溶剤を含有する非感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)、式(2)及び式(3)中、Rはそれぞれ独立に水素原子又はメチル基を表し、Yは芳香族炭化水素基を表し、該芳香族炭化水素基は、水素原子の一部又は全てがアルキル基、アルコキシ基、シアノ基又はハロゲン原子で置換されていてもよく、Rは下記式(I)、式(II)又は式(III)で表される2価の有機基を表し、Rが下記式(I)で表される2価の有機基を表す場合、前記式(I)中のカルボニル基は上記式(2)で表される構造単位の主鎖と結合し、Rはエポキシ基を有する有機基を表し、Rはそれぞれ独立にアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、cは0乃至3の整数を表し、dは1乃至3の整数を表し、eはそれぞれ独立に2乃至6の整数を表す。)
    A copolymer having a structural unit represented by the following formulas (1) and (2), and a compound represented by the following formula (3) in an amount of 5% by mass to 90% by mass with respect to 100% by mass of the copolymer. And a non-photosensitive resin composition containing a solvent.
    Figure JPOXMLDOC01-appb-C000001
    (In formulas (1), (2) and (3), R 0 independently represents a hydrogen atom or a methyl group, Y represents an aromatic hydrocarbon group, and the aromatic hydrocarbon group is hydrogen. A part or all of the atoms may be substituted with an alkyl group, an alkoxy group, a cyano group or a halogen atom, and R 1 is a divalent represented by the following formula (I), formula (II) or formula (III). When R 1 represents a divalent organic group represented by the following formula (I), the carbonyl group in the above formula (I) is the main structural unit represented by the above formula (2). Bonded to a chain, R 2 represents an organic group having an epoxy group, and R 3 represents an alkyl group independently.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, c represents an integer of 0 to 3, d represents an integer of 1 to 3, and e represents an integer of 2 to 6 independently.)
  2. 前記式(2)で表される構造単位は下記式(2-1)又は式(2-2)で表される構造単位である、請求項1に記載の非感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R及びRは請求項1に記載の定義と同義である。)
    The non-photosensitive resin composition according to claim 1, wherein the structural unit represented by the formula (2) is a structural unit represented by the following formula (2-1) or formula (2-2).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 0 and R 1 have the same meaning as the definition described in claim 1.)
  3. 前記共重合体の重量平均分子量は1,000乃至100,000である、請求項1又は請求項2に記載の非感光性樹脂組成物。 The non-photosensitive resin composition according to claim 1 or 2, wherein the copolymer has a weight average molecular weight of 1,000 to 100,000.
  4. 前記式(3)中、Rは炭素原子数1乃至4のアルキル基を表す、請求項1乃至請求項3のいずれか一項に記載の非感光性樹脂組成物。 The non-photosensitive resin composition according to any one of claims 1 to 3, wherein R 3 represents an alkyl group having 1 to 4 carbon atoms in the formula (3).
  5. 界面活性剤をさらに含有する請求項1乃至請求項4のいずれか一項に記載の非感光性樹脂組成物。 The non-photosensitive resin composition according to any one of claims 1 to 4, further containing a surfactant.
  6. 前記界面活性剤以外の添加剤を含有しない、請求項5に記載の非感光性樹脂組成物。 The non-photosensitive resin composition according to claim 5, which does not contain additives other than the surfactant.
  7. 保護膜形成用である請求項1乃至請求項6のいずれか一項に記載の非感光性樹脂組成物。 The non-photosensitive resin composition according to any one of claims 1 to 6, which is used for forming a protective film.
  8. 平坦化膜形成用である請求項1乃至請求項6のいずれか一項に記載の非感光性樹脂組成物。 The non-photosensitive resin composition according to any one of claims 1 to 6, which is used for forming a flattening film.
  9. マイクロレンズ作製用である請求項1乃至請求項6のいずれか一項に記載の非感光性樹脂組成物。 The non-photosensitive resin composition according to any one of claims 1 to 6, which is used for producing a microlens.
  10. 請求項1乃至請求項6のいずれか一項に記載の非感光性樹脂組成物から得られる硬化膜。 A cured film obtained from the non-photosensitive resin composition according to any one of claims 1 to 6.
  11. 請求項7に記載の非感光性樹脂組成物から作製される保護膜。 A protective film made from the non-photosensitive resin composition according to claim 7.
  12. 請求項8に記載の非感光性樹脂組成物から作製される平坦化膜。 A flattening film produced from the non-photosensitive resin composition according to claim 8.
  13. 請求項9に記載の非感光性樹脂組成物から作製されるマイクロレンズ。 A microlens made from the non-photosensitive resin composition according to claim 9.
  14. 請求項9に記載の非感光性樹脂組成物を基材上に塗布し80℃乃至200℃の温度でベークして硬化膜を形成する工程、該硬化膜上にレジストパターンを形成し、加熱処理によって前記レジストパターンをリフローしてレンズパターンを形成する工程、及び
    該レンズパターンをマスクとして前記硬化膜をエッチバックして該レンズパターンの形状を該硬化膜へ転写する工程を含む、マイクロレンズの作製方法。
    A step of applying the non-photosensitive resin composition according to claim 9 on a substrate and baking at a temperature of 80 ° C. to 200 ° C. to form a cured film, forming a resist pattern on the cured film and heat-treating. Fabrication of a microlens including a step of reflowing the resist pattern to form a lens pattern and a step of etching back the cured film using the lens pattern as a mask to transfer the shape of the lens pattern to the cured film. Method.
  15. 前記硬化膜は、前記非感光性樹脂組成物から溶剤を蒸発させるために80℃乃至150℃の温度でベークした後、160℃乃至200℃の温度でベークすることにより形成される、請求項14に記載のマイクロレンズの作製方法。 14. The cured film is formed by baking at a temperature of 80 ° C. to 150 ° C. and then baking at a temperature of 160 ° C. to 200 ° C. in order to evaporate the solvent from the non-photosensitive resin composition. The method for producing a microlens described in 1.
  16. 前記基材はカラーフィルターが形成された基板である請求項14又は請求項15に記載のマイクロレンズの作製方法。 The method for producing a microlens according to claim 14 or 15, wherein the base material is a substrate on which a color filter is formed.
PCT/JP2020/034727 2019-11-06 2020-09-14 Non-photosensitive resin composition WO2021090576A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021554831A JP7311846B2 (en) 2019-11-06 2020-09-14 Non-photosensitive resin composition
KR1020227013538A KR20220098133A (en) 2019-11-06 2020-09-14 Non-photosensitive resin composition
CN202080074452.8A CN114599694B (en) 2019-11-06 2020-09-14 Non-photosensitive resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-201726 2019-11-06
JP2019201726 2019-11-06

Publications (1)

Publication Number Publication Date
WO2021090576A1 true WO2021090576A1 (en) 2021-05-14

Family

ID=75849870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034727 WO2021090576A1 (en) 2019-11-06 2020-09-14 Non-photosensitive resin composition

Country Status (5)

Country Link
JP (1) JP7311846B2 (en)
KR (1) KR20220098133A (en)
CN (1) CN114599694B (en)
TW (1) TW202124470A (en)
WO (1) WO2021090576A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023097623A1 (en) * 2021-12-02 2023-06-08 京东方科技集团股份有限公司 Microlens structure and manufacturing method therefor, and display apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578453A (en) * 1991-09-20 1993-03-30 Japan Synthetic Rubber Co Ltd Protecting film material
JP2001350010A (en) * 2000-06-06 2001-12-21 Nof Corp Coating liquid for protective film of color filter and the color filter
JP2006276048A (en) * 2005-03-25 2006-10-12 Nof Corp Resin composition for color filter protective film, and color filter
JP2007332200A (en) * 2006-06-13 2007-12-27 Jsr Corp Thermosetting resin composition, forming method of antihalation film of solid imaging element, antihalation film of solid imaging element, and solid imaging element
WO2013005619A1 (en) * 2011-07-07 2013-01-10 日産化学工業株式会社 Resin compositions
JP2015089916A (en) * 2013-11-06 2015-05-11 日油株式会社 Thermosetting resin composition suitable as color filter protective film, and color filter comprising cured film thereof
WO2019198378A1 (en) * 2018-04-13 2019-10-17 株式会社Moresco Compound and use thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776810B2 (en) 1987-07-03 1998-07-16 ソニー株式会社 Method for manufacturing solid-state imaging device
JP3254759B2 (en) 1992-09-25 2002-02-12 ソニー株式会社 Method of manufacturing optical element and on-chip lens
US20060008735A1 (en) * 2004-07-09 2006-01-12 Jsr Corporation Radiation sensitive resin composition for forming microlens
JP2006251464A (en) 2005-03-11 2006-09-21 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition for lens formation
JP4644857B2 (en) 2005-07-22 2011-03-09 昭和電工株式会社 Photosensitive resin composition
JP4656316B2 (en) 2005-12-22 2011-03-23 Jsr株式会社 Interlayer insulating film, microlens, and manufacturing method thereof
JP2013166872A (en) * 2012-02-16 2013-08-29 Sumitomo Chemical Co Ltd Colored curable resin composition
JP2016071244A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Photosensitive resin composition, cured product and production method of the same, production method of resin pattern, cured film, liquid crystal display device, organic el display device, and touch panel display device
JP6894749B2 (en) * 2016-07-20 2021-06-30 東京応化工業株式会社 Positive photosensitive resin composition for manufacturing microlens patterns and its applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578453A (en) * 1991-09-20 1993-03-30 Japan Synthetic Rubber Co Ltd Protecting film material
JP2001350010A (en) * 2000-06-06 2001-12-21 Nof Corp Coating liquid for protective film of color filter and the color filter
JP2006276048A (en) * 2005-03-25 2006-10-12 Nof Corp Resin composition for color filter protective film, and color filter
JP2007332200A (en) * 2006-06-13 2007-12-27 Jsr Corp Thermosetting resin composition, forming method of antihalation film of solid imaging element, antihalation film of solid imaging element, and solid imaging element
WO2013005619A1 (en) * 2011-07-07 2013-01-10 日産化学工業株式会社 Resin compositions
JP2015089916A (en) * 2013-11-06 2015-05-11 日油株式会社 Thermosetting resin composition suitable as color filter protective film, and color filter comprising cured film thereof
WO2019198378A1 (en) * 2018-04-13 2019-10-17 株式会社Moresco Compound and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023097623A1 (en) * 2021-12-02 2023-06-08 京东方科技集团股份有限公司 Microlens structure and manufacturing method therefor, and display apparatus

Also Published As

Publication number Publication date
CN114599694B (en) 2024-03-22
TW202124470A (en) 2021-07-01
JP7311846B2 (en) 2023-07-20
JPWO2021090576A1 (en) 2021-05-14
KR20220098133A (en) 2022-07-11
CN114599694A (en) 2022-06-07

Similar Documents

Publication Publication Date Title
JP5950125B2 (en) Resin composition
JP2015174877A (en) Resin composition containing specified hardening acceleration catalyst
JP5737538B2 (en) Resin composition
JP6587068B2 (en) Color filter underlayer film forming resin composition
TWI631171B (en) Nonphotosensitive resin composition
WO2021090576A1 (en) Non-photosensitive resin composition
CN106663627B (en) Resin composition for planarizing film or microlens
JP6792207B2 (en) Resin composition
JP6936449B2 (en) Thermosetting resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884486

Country of ref document: EP

Kind code of ref document: A1