WO2019198373A1 - Endoscope system and motor control system - Google Patents

Endoscope system and motor control system Download PDF

Info

Publication number
WO2019198373A1
WO2019198373A1 PCT/JP2019/007913 JP2019007913W WO2019198373A1 WO 2019198373 A1 WO2019198373 A1 WO 2019198373A1 JP 2019007913 W JP2019007913 W JP 2019007913W WO 2019198373 A1 WO2019198373 A1 WO 2019198373A1
Authority
WO
WIPO (PCT)
Prior art keywords
endoscope
motor
driven
gear
unit
Prior art date
Application number
PCT/JP2019/007913
Other languages
French (fr)
Japanese (ja)
Inventor
豊 正木
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2019198373A1 publication Critical patent/WO2019198373A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to an endoscope system and a motor control system, and more particularly to an endoscope system and a motor control system in which a driven mechanism is driven by a motor provided in an endoscope body.
  • an acceleration sensor is fixed in a case incorporating the rotational drive system, and the output signal of the acceleration sensor is converted into a fast Fourier transform (hereinafter, The state of the rotary drive system is diagnosed by analyzing with an analyzer (referred to as FFT).
  • FFT fast Fourier transform
  • a rotation drive system is used based on a spectrum signal obtained by FFT with a current signal flowing through a drive source such as a motor without using an acceleration sensor or the like.
  • a method for diagnosing abnormalities has also been proposed.
  • endoscopes have been widely used in the medical field and industrial field.
  • Some endoscopes utilize the rotational driving force of a driving source such as a motor.
  • a driving source such as a motor is used for, for example, an insertion assisting operation for the insertion portion to push the inside of a lumen, a bending operation of a bending portion provided in the insertion portion, and the like.
  • the rotational speed of the rotation drive system may change depending on the insertion speed. Further, when the resistance between the insertion portion and the inner wall of the lumen increases, a large load may be applied to the motor used for the insertion assisting tool of the endoscope. In the prior art, in consideration of such a case, it is impossible to diagnose the state of the rotary drive system when a load is actually applied to the motor during the endoscopic examination.
  • the endoscopy will be redone, so it is preferable to make frequent diagnoses such as deterioration of the rotational drive system.
  • the state of the rotary drive system in use could not be diagnosed.
  • an object of the present invention is to provide an endoscope system and a motor control system capable of easily diagnosing a state such as deterioration of the rotational drive system of the endoscope.
  • An endoscope system includes an endoscope main body, devices connected when the endoscope main body is used, a motor provided in the endoscope main body, and the endoscope A driven mechanism having a plurality of gears provided in a mirror body and driven by the motor, and disposed in one of the endoscope body and the device, or connection between the endoscope body and the device
  • a current detector for detecting a current flowing in the motor when the driven mechanism is driven by the motor; and a time passage of a current flowing in the motor obtained by the current detector provided in the device
  • a frequency analysis unit that performs a Fourier transform on a waveform indicating a change caused by the frequency and analyzes an amplitude change according to a frequency, and determines the state of the driven mechanism based on the amplitude change obtained by the frequency analysis unit Do It has a tough, a.
  • An endoscope motor control system is an endoscope motor control system in which a driven mechanism is driven by a motor provided in an endoscope body. An electric current flowing through the motor is detected when the driven mechanism is driven by the motor, which is disposed in a device to which the endoscope main body is connected at the time of use or provided in a connection portion between the endoscope main body and the device.
  • a current detection unit, and a frequency analysis unit that is provided in the device and performs a Fourier transform on a waveform indicating a change with time of the current flowing in the motor obtained by the current detection unit, and analyzes a change in amplitude according to the frequency And having.
  • FIG. 1 is a configuration diagram illustrating a configuration of an endoscope system according to the present embodiment.
  • an endoscope system 1 according to this embodiment is connected to an endoscope main body (hereinafter also referred to as an endoscope) 11 inserted into a lumen of a subject and the endoscope 11.
  • a control system 12 composed of a plurality of units.
  • the endoscope 11 includes an elongated insertion portion 21, an operation portion 22 provided on the proximal end side of the insertion portion 21, and a universal cable 23 extending from the operation portion 22.
  • the control system 12 and the endoscope 11 are connected by a universal cable 23 extending from the operation unit 22.
  • the insertion part 21 has an elongated insertion part main body 31 extending along the longitudinal axis direction and a rotating member 32.
  • the insertion portion main body 31 includes a distal end hard portion 31a, a bending portion 31b, and a flexible tube portion 31c in order from the distal end.
  • the flexible tube portion 31c has flexibility according to the bent shape of the lumen of the subject.
  • the bending portion 31b is formed with a known structure having a plurality of bending pieces.
  • the bending portion 31b can be bent in four directions, up, down, left, and right, according to the operation of the operation unit 22.
  • the distal end hard part 31a of the insertion part 21 is provided with an observation window (not shown) and an illumination window (not shown).
  • An imaging unit (not shown) is provided behind the observation window of the distal end hard portion 31a.
  • the imaging unit has an observation optical system and an imaging element.
  • a light guide 41 composed of a plurality of optical fiber bundles and a signal cable 42 for imaging signals are inserted through the insertion portion 21, the operation portion 22, and the universal cable 23 of the endoscope 11.
  • the motor drive cable 43 is inserted through the operation unit 22 and the universal cable 23.
  • a connector 23 a is provided at the end of the universal cable 23.
  • the connector 23a is provided with a light guide connector 41a, a processor cable 41b, and a controller cable 41c.
  • the connector 23a has a substrate inside, and a memory 23b is mounted on the substrate.
  • the memory 23b is a rewritable nonvolatile memory.
  • the controller 12d of the control system 12 can access the memory 23b through the controller cable 41c, and can write data through a signal line (not shown).
  • the controller 12d constitutes an endoscope motor control system.
  • the signal cable 42 is inserted into the processor cable 41b and can be connected to the processor 12b.
  • the motor drive cable 43 is inserted into the controller cable 41c and can be connected to the controller 12d.
  • the operation unit 22 includes a grip 51, a bend preventing portion 52 that supports the proximal end of the flexible tube 31 c of the insertion portion 21, two knobs 51 a and 51 b provided on the grip 51, and various instructions. And an operation member portion 53 having a plurality of buttons to be assigned.
  • the operation member unit 53 includes a release button, a suction button, an air / water supply button, and the like.
  • the bending prevention part 52 prevents the flexible tube 31c of the insertion part 21 from bending.
  • an operator who is a user of the endoscope 11 can bend the bending portion 31b of the insertion portion 21 shown in FIG. 1 in the vertical direction by rotating the knob 51a.
  • the user can bend the bending portion 31b in the left-right direction by turning the knob 51b.
  • the rotating member 32 is disposed in the insertion portion 21 of the endoscope 11. More specifically, the rotating member 32 is detachably attached from the distal end side of the insertion portion main body 31 to the outer peripheral surface near the distal end portion of the flexible tube 31c, for example, on the proximal end side of the bending portion 31b. Yes.
  • the rotating member 32 has a fin 32a protruding in a spiral shape on the outer peripheral portion.
  • the rotating member 32 can be attached to and detached from a predetermined position of the flexible tube 31c through the distal end hard portion 31a and the bending portion 31b of the insertion portion main body 31.
  • the rotating member 32 constitutes a driven member that rotates around the longitudinal axis of the insertion portion 21 by the driving force of the motor 71.
  • a drive unit 61 for driving the rotating member 32 is provided in a region from the vicinity of the boundary between the insertion portion 21 and the operation portion 22 to, for example, the distal end portion of the flexible tube 31c.
  • the rotating member 32 can be rotated by the driving force of the driving unit 61.
  • the rotation direction of the rotation member 32 is both directions around the central axis CO of the insertion portion main body 31.
  • the rotating member 32 is used as an auxiliary tool for insertion / extraction with respect to the duct, which assists the insertion of the insertion portion main body 31 into the lumen and assists the removal from the inserted state.
  • the drive unit 61 includes a motor unit 62 disposed near the boundary between the insertion unit 21 and the operation unit 22, a gear 63 disposed at, for example, the distal end of the flexible tube 31c, the motor unit 62, and the gear 63.
  • Drive shaft 64 disposed between the two.
  • the motor unit 62 is a rotational driving force generator.
  • the gear 63 is a rotational driving force output unit.
  • the drive shaft 64 is inserted through the flexible tube 31c.
  • the drive shaft 64 which is a rotational driving force transmission part has a support part 65 at its base end part.
  • the support portion 65 is supported through the output end 62 a of the motor unit 62.
  • the support portion 65 is formed longer than the length of the output end 62a in the axial direction.
  • a saddle channel 66 is disposed outside the drive shaft 64.
  • the channel 66 has a tube main body 66a and a fixing portion 66b.
  • a drive shaft 64 is inserted through the tube body 66a, and the tube body 66a protects the outside of the drive shaft 64 over substantially the entire length.
  • the fixing portion 66b is fixed to the proximal end of the tube main body 66a and is fixed to the hard tube 84 (see FIG. 2).
  • the hard tube 84 (see FIG. 2) is fixed to the base 31c4 (see FIG. 2) fixed to the base end of the flexible tube 31c in the bend preventing portion 52.
  • the drive shaft 64 is inserted not only into the tube main body 66a but also into the cylindrical fixing portion 66b.
  • the tube main body 66a is formed of a resin material having electrical insulation properties and flexibility having wear resistance.
  • the support section 65 has a cross section formed in, for example, a D shape.
  • the front end side of the drive shaft 64 relative to the portion supported by the output end 62a has an appropriate stiffness and is flexible.
  • a gear 63 is fixed to the tip of the drive shaft 64.
  • a gear 90 (FIG. 2) is fixed to the support portion 65.
  • the support part 65 is inserted into a D-shaped hole formed in the gear 90 and fixed to the gear 90.
  • the gear 90 rotates, and as a result, the drive shaft 64 rotates around the axis of the drive shaft 64.
  • the rotating member 32 has a cylindrical shape, and has a tooth portion (hereinafter referred to as an inner peripheral tooth portion) 32b on the inner peripheral surface.
  • the inner peripheral tooth portion 32 b may be formed on the inner peripheral surface of the rotating member 32, or may be formed on the inner peripheral surface of a cylindrical member fixed to the inner peripheral surface of the rotating member 32.
  • the gear 63 meshes with the inner peripheral tooth portion 63b. Therefore, when the drive shaft 64 rotates around the axis, the rotating member 32 rotates around the longitudinal axis of the flexible tube 31c as the gear 63 rotates.
  • FIG. 2 is a schematic longitudinal sectional view of the motor unit 62 along the longitudinal axis direction of the operation unit according to the embodiment.
  • the motor unit 62 includes a motor 71 as a drive source and a gear train 72.
  • the motor 71 and the gear train 72 are disposed on the proximal end side of the insertion portion 21.
  • the motor unit 62 is housed in a gear box 73 that is a gear support frame in a state of projecting in the direction orthogonal to the longitudinal direction of the insertion portion 21 from the vicinity of the boundary between the insertion portion 21 and the operation portion 22.
  • a circuit board 74 is also disposed in the gear box 73.
  • the motor 71 is provided in the endoscope 11 which is the endoscope body.
  • the gear train 72 has a plurality of gears that transmit the rotational driving force from the motor 71 built in the endoscope 11.
  • the rotational speed of the drive shaft 71a of the motor 71 is converted into an appropriate torque and an appropriate rotational speed of the drive shaft 64 at the output end 62a.
  • the gear train 72 constitutes a driven mechanism having a plurality of gears provided in the endoscope 11 and driven by the motor 71.
  • the gear box 73 includes a base plate 81, a support 82, and an outer case 83.
  • the exterior case 83 includes a case main body 83a and a cap 83b.
  • the support 82 is fixed to the base plate 81 with screws.
  • the base plate 81 and the support 82 cooperate to support each gear of the gear train 72 and the motor 71.
  • the support body 82 is fixed to the rigid tube 84 in the folding preventing portion 52.
  • the motor 71 is fixed to the support 82 by an insulating plate 85 described later.
  • the large gear 92a of the first gear assembly 92 of the gear train 72 which is a driven mechanism, is meshed with the pinion gear 91 attached to the drive shaft 71a of the motor 71.
  • the first gear assembly 92 has a large gear 92a and a small gear 92b.
  • the first gear assembly 92 is supported by both the base plate 81 and the support body 82.
  • the large gear 93 a of the second gear assembly 93 of the gear train 72 is meshed with the small gear 92 b that rotates together with the large gear 92 a of the first gear assembly 92.
  • the second gear assembly 93 has a large gear 93a and a small gear 93b.
  • the second gear assembly 93 is supported by both the base plate 81 and the support body 82.
  • the third gear assembly 94 of the gear train 72 is meshed with the small gear 93b that rotates together with the large gear 93a of the second gear assembly 93.
  • the third gear assembly 94 is supported by the support body 82.
  • a cylindrical gear 90 as a fourth gear assembly of the gear train 72 is meshed with the third gear assembly 94.
  • the gear 90 is supported by the support body 82.
  • the large gear 92a of the first gear assembly 92 is formed of an electrically insulating material such as a hard resin material.
  • the motor 71 is supported by the support 82 via an insulating plate 85 having electrical insulation. For this reason, the motor 71 and the endoscope 11 are electrically insulated.
  • the ground (GND) of the imaging unit of the endoscope 11 and the ground (GND) of the motor 71 are electrically insulated and separated.
  • One end and the other end of the rotating shaft of the third gear assembly 94 are supported by a support 82 with ball bearings.
  • One end and the other end of the gear 90 are supported on the support 82 by sliding bearings made of a ceramic material.
  • the central axis of the rotation shaft of the third gear assembly 94 to which the rotational driving force is transmitted from the second gear assembly 93 is also the center axis of the rotation shaft of the first gear assembly 92 and the center of the rotation shaft of the second gear assembly 93. Parallel to the axis.
  • the rotational driving force of the motor 71 rotates the drive shaft 64 by the gear train 72.
  • the gear 63 meshes with the inner peripheral tooth portion 32 b of the rotating member 32.
  • the rotating drive shaft 64 rotates the rotating member 32 by the gear 63.
  • the gear train 72 which is a driven mechanism is interposed between the rotating member 32 provided in the endoscope 11 and the motor 71, and transmits the rotational driving force of the motor 71 to the rotating member 32.
  • the control system 12 includes a light source unit 12a, a processor 12b, a monitor 12c, a controller 12d, and an input unit 12e.
  • the light source unit 12a and the processor 12b are connected.
  • a processor 12b and a monitor 12c are also connected.
  • a light source unit 12a and a controller 12d are also connected.
  • a controller 12d and an input unit 12e are also connected.
  • the light source unit 12a emits illumination light for illuminating the observation target. Illumination light from the light source unit 12a enters the light guide connector 41a.
  • the processor 12b includes an image processing unit that processes an image captured by the imaging unit of the observation optical system to generate an endoscopic image.
  • the processor 12b is connected to the imaging unit of the endoscope 11 via the processor cable 41b.
  • the monitor 12c is a display unit that displays the generated endoscopic image.
  • the controller 12d controls the entire endoscope system 1.
  • the controller 12d is a peripheral device connected when the endoscope 11 that is the endoscope body is used.
  • the input unit 12e is a device that inputs instructions and the like to the controller 12d.
  • the input unit 12e is, for example, a keyboard or a foot switch (not shown).
  • the input unit 12e includes a forward switch FS and a backward switch BS that control the motor 71 described above and instruct an advance / retreat operation of the insertion portion 21 with respect to the body cavity.
  • the controller 12d is not limited to a dedicated device, and may be a general-purpose processing device such as a personal computer on which an arbitrary program is mounted.
  • the circuit on the circuit board 74 of the motor unit 62 controls the rotation speed of the motor 71 by servo control or the like in accordance with a command from the controller 12d.
  • the controller 12d controls the rotation direction and the rotation direction of the motor 71.
  • FIG. 3 is a block diagram showing the configuration of the controller 12d.
  • the controller 12d includes a control unit 101, a motor drive control circuit 102, a current sensor 103, a memory 104, and three interface circuits (hereinafter abbreviated as I / F) 105, 106, and 107.
  • the control unit 101 and the three I / Fs 105, 106, and 107 are connected by a bus 108 so that signals can be transmitted and received.
  • the control unit 101 is a processor including a central processing unit (hereinafter referred to as CPU), ROM, ROM and the like.
  • CPU central processing unit
  • ROM read only memory
  • ROM read only memory
  • the control unit 101 including software stored in the memory 104 may be configured by a hardware circuit such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • the motor drive control circuit 102 receives an instruction signal corresponding to the depression of the forward switch FS or the reverse switch BS from the input unit 12e, generates a drive signal corresponding to the instruction signal, and sends it to the motor drive cable 43. This is a hardware circuit to output.
  • the drive signal generated by the motor drive control circuit 102 is supplied to the motor 71 via the current sensor 103.
  • the current sensor 103 is arranged in the middle of the motor driving cable 43 and detects a current flowing through the motor driving cable 43.
  • the detection signal of the current sensor 103 is fed back to the motor drive control circuit 102 and supplied to the control unit 101 via the I / F 105.
  • the current sensor 103 is provided in the controller 12d, it may be provided in the endoscope 11 as the current sensor 103a as shown by a one-dot chain line in FIG. As indicated by a dashed line, the current sensor 103b may be provided in a connection device 12f provided between the endoscope 11 and the controller 12d.
  • the current sensor 103 is disposed in either the endoscope 11 or the controller 12d, or provided in the connecting device 12f that is a connecting portion between the endoscope 11 and the controller 12d.
  • a current detection unit that detects a current flowing through the motor 71 during driving is configured.
  • the control unit 101 receives the detection value of the current sensor 103 via the I / F 105 and the bus 108.
  • the control unit 101 executes various processing programs stored in the memory 104, controls the entire endoscope system 1, and executes a rotational drive system diagnosis program described later. Note that data of a threshold value TH described later is also stored in the memory 104.
  • Various commands generated by the control unit 101 are supplied to the light source unit 12a through the I / F 106.
  • the image signal generated by the control unit 101 is supplied from the light source unit 12a to the processor 12b, and is supplied from the processor 12b to the monitor 12c. Since the processor 12b is connected to the controller 12d via the light source unit 12a, the image signal generated by the control unit 101 can be displayed on the monitor 12c via the controller 12d.
  • control unit 101 can write data to the memory 23b of the endoscope 11 through the I / F 107 as will be described later.
  • FIG. 4 is a block diagram showing the configuration of the rotational drive system diagnostic unit.
  • the rotational drive system diagnostic unit P is a rotational drive system diagnostic program that includes an FFT unit 111, a determination unit 112, a notification unit 113, and a writing unit 114.
  • the rotational drive system diagnosis unit P is stored in the memory 104.
  • Each of the FFT unit 111, the determination unit 112, the notification unit 113, and the writing unit 114 is read by the CPU of the control unit 101, and the functions of the respective units are realized.
  • the data of the current value I of the current sensor 103 is supplied to the FFT unit 111 and the determination unit 112. As described above, the current sensor 103 detects the magnitude of the current flowing through the motor 71.
  • the FFT unit 111 performs fast Fourier transform processing on the data of the current value I and outputs spectrum data.
  • the FFT unit 111 is provided in the controller 12d, and constitutes a frequency analysis unit that Fourier-transforms a waveform indicating a change with time of the current flowing through the motor 71 and analyzes a change in amplitude according to the frequency.
  • the FFT unit 111 has a function of analyzing the frequency by Fourier transforming the waveform by software.
  • the determination unit 112 determines the state of the gear train 72 based on the change in the amplitude of the spectrum data obtained by the FFT unit 111. Here, the determination unit 112 determines whether there is a frequency that exceeds a predetermined threshold TH from the output of the FFT unit 111, and identifies a gear that indicates a deterioration state.
  • the threshold value TH read from the memory 104 is input to the determination unit 112.
  • Each gear has a rotational speed corresponding to an operation instruction from the input unit 12e.
  • FIG. 5 is a table showing the number of rotations of each gear when the motor 71 is fully rotated.
  • the rotation speed is the rotation speed per second.
  • the gear A corresponds to the gear 90 described above.
  • the gear B corresponds to the gear assembly 94 described above.
  • the gear C corresponds to the small gear 93b described above.
  • the gear D corresponds to the large gear 93a described above.
  • the gear E corresponds to the small gear 92b described above.
  • the gear F corresponds to the large gear 92a described above.
  • the gear G corresponds to the pinion gear 91 described above.
  • the motor 71 rotates fully.
  • the rotation speed of the gear A is f1
  • the rotation speed of the gear B is f2
  • the rotation speed of the gear C is f3
  • the rotation speed of the gear D is f4
  • the rotation speed of E is f5
  • the rotation speed of the gear F is f6, and the rotation speed of the gear G is f7.
  • FIG. 6 is a graph of the current value output by the current sensor when the motor 71 is rotating at a certain number of rotations.
  • the horizontal axis is time
  • the vertical axis is current value.
  • the time is seconds (s)
  • the current value is milliamperes (mA).
  • the current value of the current supplied to the motor 71 detected by the current sensor 103 changes with time.
  • FIG. 7 shows spectral peak data output from the FFT unit 111 when there is no deteriorated gear.
  • the horizontal axis represents frequency
  • the vertical axis represents the normalized amplitude value (A) of the spectrum peak data.
  • A normalized amplitude value
  • FIG. 8 shows spectral peak data output from the FFT unit 111 when there is a deteriorated gear.
  • the horizontal axis represents the frequency
  • the vertical axis represents the normalized amplitude value (A) of the spectrum peak data.
  • the amplitude of the spectrum peak data of a specific frequency is large and exceeds the threshold value TH.
  • the user can change the rotation amount of the rotation member 32 in accordance with, for example, the pressing amount of the forward switch FS or the reverse switch BS.
  • the current rotation speed of each gear is equal to or less than the rotation speed when the motor 71 shown in FIG.
  • the determination unit 112 can detect the rotation speed of the motor 71 from the detection signal of the current sensor 103. Therefore, the determination unit 112 can calculate the current rotation speed f of each gear based on the detection signal of the current sensor 103.
  • FIG. 5 shows parameter data of the rotation speed of each gear at the time of full output of the motor 71, so that the determination unit 112 detects the current detection signal detected by the current sensor 103 and the full output of the motor 71. Based on the current detection signal of the current sensor 103, the current rotational speed of each gear can be determined.
  • the determination unit 112 calculates the current rotation speed of each gear based on the detection signal of the current sensor 103, and the spectral data thereof.
  • the gear corresponding to the frequency exceeding the middle threshold value TH can be specified.
  • the FFT unit 111 calculates the amplitude corresponding to the frequency using the parameter data of each of the plurality of gears shown in FIG.
  • f1 is the current rotational speed of the gear A, that is, the gear 90
  • f2 is the current rotational speed of the gear B, that is, the gear assembly 94.
  • the determination unit 112 can determine that the gears A and B are deteriorated. That is, the determination unit 112 can determine a deteriorated gear by comparing the rotation frequency of each of the plurality of gears with the frequency at which the change in amplitude occurs. The determination unit 112 determines the deterioration of each gear in the gear train 72 based on the magnitude of the change in amplitude at the rotation frequency of each of the plurality of gears. In particular, the determination unit 112 determines whether or not the state of the gear train 71 is in a deteriorated state by comparing the amplitude with a predetermined threshold value TH.
  • the determination unit 112 determines that the gears A and B are deteriorated, it notifies the notification unit 113 that the deteriorated gears are the gears A and B.
  • the notification unit 113 generates message data for notifying the user of the gear indicating deterioration when the determination result of the determination unit 112 determines that the gear indicates deterioration, and outputs the message data to the processor 12b.
  • the writing unit 114 performs processing for recording in the memory 23b of the endoscope 11 that there is a gear indicating deterioration in the determination result of the determination unit 112. Therefore, the writing unit 114 constitutes a writing unit that writes information about the state of the gear train 72 determined by the determination unit 112 to the memory 23 b provided in the endoscope 11. For example, information specifying a deteriorated gear may be stored in the memory 23b.
  • the notification unit 113 When the notification unit 113 receives data indicating that the gears A and B are deteriorated, for example, the notification unit 113 generates a message to be displayed on the monitor 12c.
  • the message is, for example, the text “Gears A and B are deteriorated. Check.”
  • the text may be a code indicating deterioration and its location.
  • the notification unit 113 constitutes a display information generation unit that generates display information for displaying the state of the gear train 72 determined by the determination unit 112.
  • the message data is supplied to the processor 12d via the light source unit 12a, and the processor 12d generates an image signal for displaying the message or generates an image signal on which the message is superimposed and outputs it to the monitor 12c. To do.
  • the user can know that there is a gear deterioration during the operation of the endoscope system 1 and can instruct the related person to inspect.
  • the user may be able to know the presence or absence of deterioration immediately after the operation by operating the rotational drive system as a test immediately after the operation of the endoscope system 1 is started.
  • the user can know the presence or absence of deterioration of the rotary drive system immediately after the operation of the endoscope system 1 is started. In that case, the user can also take a selection means of exchanging the endoscope and performing an inspection using another endoscope.
  • the processor 12b since data indicating the presence or absence of deterioration is written in the memory 23b, immediately after the operation of the endoscope system 1 is started, the processor 12b reads the data from the memory 23b, and the deterioration occurs in the past operation. If there is, a predetermined message can be displayed.
  • the predetermined message is, for example, “Since the rotational drive system of the endoscope is deteriorated, please request the manufacturer's service.”

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

This endoscope system 1 comprises: an endoscope 11; a controller 12d; a motor 71; a gear train 72 which comprises multiple gears and which is provided in the endoscope 11 and is driven by the motor 71; a current sensor 103 which is provided in the controller 12d and which detects the current flowing in the motor 71 when the gear train 72 is driven by the motor 71; a fast Fourier transform unit 111 which Fourier-transforms a waveform indicating change over time of the current flowing in the motor 71 and which analyzes changes in amplitude corresponding to frequency; and a determination unit 112 which determines the state of the gear train 72 on the basis of change in the amplitude obtained by the fast Fourier transform unit 111.

Description

内視鏡システム及びモータ制御システムEndoscope system and motor control system
 本発明は、内視鏡システム及びモータ制御システムに関し、特に、内視鏡本体に設けられたモータにより被駆動機構が駆動される内視鏡システム及びモータ制御システムに関する。 The present invention relates to an endoscope system and a motor control system, and more particularly to an endoscope system and a motor control system in which a driven mechanism is driven by a motor provided in an endoscope body.
 従来、複数の歯車からなる回転駆動系の異常の有無を診断する場合、回転駆動系を内蔵するケースなどに、例えば加速度センサを固定し、その加速度センサの出力信号を、高速フーリエ変換(以下、FFTという)アナライザーにより解析して、回転駆動系の状態を診断することが行われている。 Conventionally, when diagnosing the presence or absence of an abnormality in a rotational drive system composed of a plurality of gears, for example, an acceleration sensor is fixed in a case incorporating the rotational drive system, and the output signal of the acceleration sensor is converted into a fast Fourier transform (hereinafter, The state of the rotary drive system is diagnosed by analyzing with an analyzer (referred to as FFT).
 また、例えば日本国特開2015-227889号公報に開示のように、加速度センサなどを用いないで、モータ等の駆動源に流れる電流信号をFFTにより得られたスペクトル信号に基づいて、回転駆動系の異常診断をする方法も提案されている。 Further, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2015-227889, a rotation drive system is used based on a spectrum signal obtained by FFT with a current signal flowing through a drive source such as a motor without using an acceleration sensor or the like. A method for diagnosing abnormalities has also been proposed.
 ところで、従来から内視鏡は医療分野や工業分野において広く利用されている。内視鏡には、モータなどの駆動源の回転駆動力を利用する内視鏡もある。このような内視鏡では、モータなどの駆動源を、例えば管腔内を挿入部が推し進めるための挿入補助動作や、挿入部に設けられた湾曲部の湾曲動作等のために用いている。 Incidentally, endoscopes have been widely used in the medical field and industrial field. Some endoscopes utilize the rotational driving force of a driving source such as a motor. In such an endoscope, a driving source such as a motor is used for, for example, an insertion assisting operation for the insertion portion to push the inside of a lumen, a bending operation of a bending portion provided in the insertion portion, and the like.
 内視鏡に用いられる回転駆動系の状態の診断のために、上述したような加速度センサを用いて、加速度センサの出力信号を解析したり、駆動源に流れる電流信号を解析したりすることはされていなかった。 In order to diagnose the state of the rotary drive system used in an endoscope, it is possible to analyze the output signal of the acceleration sensor or analyze the current signal flowing through the drive source using the acceleration sensor as described above. Was not.
 しかし、上述したような方法により内視鏡の回転駆動系の状態を診断するためには、診断設備を有する会社に内視鏡を送って診断を依頼しなければならず、時間が掛かってしまう。あるいは、内視鏡が使用される病院などの場所に診断設備を設置すれば、直ぐに診断をできるが、コストが掛かってしまう。 However, in order to diagnose the state of the rotational drive system of the endoscope by the method as described above, it is necessary to send the endoscope to a company having diagnostic equipment and request diagnosis, which takes time. . Alternatively, if a diagnosis facility is installed in a place such as a hospital where an endoscope is used, diagnosis can be performed immediately, but the cost is increased.
 内視鏡の挿入補助機能のための挿入補助具の場合、挿入速度に応じて、回転駆動系の回転数が変化する場合がある。また、挿入部と管腔内壁との抵抗が大きくなるとき、内視鏡の挿入補助具に用いられるモータに大きな負荷が掛かる場合がある。 
 従来の技術では、このような場合も考慮して、内視鏡検査中に実際にモータに負荷が掛かったときの回転駆動系の状態を診断することはできない。
In the case of an insertion assisting tool for an insertion assisting function of an endoscope, the rotational speed of the rotation drive system may change depending on the insertion speed. Further, when the resistance between the insertion portion and the inner wall of the lumen increases, a large load may be applied to the motor used for the insertion assisting tool of the endoscope.
In the prior art, in consideration of such a case, it is impossible to diagnose the state of the rotary drive system when a load is actually applied to the motor during the endoscopic examination.
 内視鏡の使用中に回転駆動系が故障すると、内視鏡検査のやり直しとなってしまうため、回転駆動系の劣化などの診断を頻繁に行う方が好ましいが、従来は、内視鏡の使用中の回転駆動系の状態を診断することは出来なかった。 If the rotational drive system breaks down while the endoscope is in use, the endoscopy will be redone, so it is preferable to make frequent diagnoses such as deterioration of the rotational drive system. The state of the rotary drive system in use could not be diagnosed.
 そこで、本発明は、内視鏡の回転駆動系の劣化などの状態の診断を簡易にできる内視鏡システム及びモータ制御システムを提供することを目的とする。 Therefore, an object of the present invention is to provide an endoscope system and a motor control system capable of easily diagnosing a state such as deterioration of the rotational drive system of the endoscope.
 本発明の一態様の内視鏡システムは、内視鏡本体と、前記内視鏡本体が使用されるときに接続される機器と、前記内視鏡本体に設けられたモータと、前記内視鏡本体に設けられかつ前記モータにより駆動される、複数の歯車を有する被駆動機構と、前記内視鏡本体と前記機器のいずれかに配置された若しくは前記内視鏡本体と前記機器との接続部に設けられた、前記モータによる前記被駆動機構の駆動時に前記モータに流れる電流を検出する電流検出部と、前記機器に設けられ、前記電流検出部により得られる前記モータに流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する周波数分析部と、前記周波数分析部により得られた前記振幅の変化に基づいて、前記被駆動機構の状態を判定する判定部と、を有する。 An endoscope system according to an aspect of the present invention includes an endoscope main body, devices connected when the endoscope main body is used, a motor provided in the endoscope main body, and the endoscope A driven mechanism having a plurality of gears provided in a mirror body and driven by the motor, and disposed in one of the endoscope body and the device, or connection between the endoscope body and the device A current detector for detecting a current flowing in the motor when the driven mechanism is driven by the motor; and a time passage of a current flowing in the motor obtained by the current detector provided in the device A frequency analysis unit that performs a Fourier transform on a waveform indicating a change caused by the frequency and analyzes an amplitude change according to a frequency, and determines the state of the driven mechanism based on the amplitude change obtained by the frequency analysis unit Do It has a tough, a.
 本発明の一態様の内視鏡のモータ制御システムは、内視鏡本体に設けられたモータにより被駆動機構を駆動する内視鏡のモータ制御システムであって、前記内視鏡本体または前記内視鏡本体が使用時に接続される機器に配置された若しくは前記内視鏡本体と前記機器との接続部に設けられた、前記モータによる前記被駆動機構の駆動時に前記モータに流れる電流を検出する電流検出部と、前記機器に設けられ、前記電流検出部により得られる前記モータに流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する周波数分析部と、を有する。 An endoscope motor control system according to one aspect of the present invention is an endoscope motor control system in which a driven mechanism is driven by a motor provided in an endoscope body. An electric current flowing through the motor is detected when the driven mechanism is driven by the motor, which is disposed in a device to which the endoscope main body is connected at the time of use or provided in a connection portion between the endoscope main body and the device. A current detection unit, and a frequency analysis unit that is provided in the device and performs a Fourier transform on a waveform indicating a change with time of the current flowing in the motor obtained by the current detection unit, and analyzes a change in amplitude according to the frequency And having.
本発明の実施形態に係わる内視鏡システムの構成を示す構成図である。It is a block diagram which shows the structure of the endoscope system concerning embodiment of this invention. 本発明の実施形態に係わる、操作部の長手軸方向に沿ったモータユニットの概略的な縦断面図である。It is a schematic longitudinal cross-sectional view of the motor unit along the longitudinal-axis direction of the operation part concerning embodiment of this invention. 本発明の実施形態に係わるコントローラの構成を示すブロック図である。It is a block diagram which shows the structure of the controller concerning embodiment of this invention. 本発明の実施形態に係わる回転駆動系診断部の構成を示すブロック図である。It is a block diagram which shows the structure of the rotational drive system diagnostic part concerning embodiment of this invention. 本発明の実施形態に係わる、モータがフルで回転した時における各歯車の回転数を示す表である。It is a table | surface which shows the rotation speed of each gear when the motor rotates fully concerning embodiment of this invention. 本発明の実施形態に係わる、ある回転数でモータが回転しているときの電流センサの出力する電流値のグラフである。It is a graph of the electric current value which a current sensor outputs when a motor rotates with a certain rotation speed concerning embodiment of this invention. 本発明の実施形態に係わる、劣化した歯車がないときの高速フーリエ変換部の出力するスペクトルデータである。It is the spectrum data which a fast Fourier transform part outputs when there is no deteriorated gear concerning an embodiment of the present invention. 本発明の実施形態に係わる、劣化した歯車があるときの高速フーリエ変換部の出力するスペクトルデータである。It is the spectrum data which a fast Fourier transform part outputs when there exists a degraded gear concerning embodiment of this invention.
 以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(構成)
 図1は、本実施形態に係わる内視鏡システムの構成を示す構成図である。図1に示すように、本実施形態の内視鏡システム1は、被検体の管腔内に挿入される内視鏡本体(以下、内視鏡ともいう)11と、内視鏡11に接続される複数のユニットからなるコントロールシステム12とを有する。
(Constitution)
FIG. 1 is a configuration diagram illustrating a configuration of an endoscope system according to the present embodiment. As shown in FIG. 1, an endoscope system 1 according to this embodiment is connected to an endoscope main body (hereinafter also referred to as an endoscope) 11 inserted into a lumen of a subject and the endoscope 11. And a control system 12 composed of a plurality of units.
 内視鏡11は、細長の挿入部21と、挿入部21の基端側に設けられた操作部22と、操作部22から延出するユニバーサルケーブル23とを有する。コントロールシステム12と内視鏡11とは、操作部22から延出されたユニバーサルケーブル23により接続される。 The endoscope 11 includes an elongated insertion portion 21, an operation portion 22 provided on the proximal end side of the insertion portion 21, and a universal cable 23 extending from the operation portion 22. The control system 12 and the endoscope 11 are connected by a universal cable 23 extending from the operation unit 22.
 挿入部21は、長手軸方向に沿って延設される細長い挿入部本体31と、回転部材32とを有する。挿入部本体31は、先端から順に、先端硬質部31aと、湾曲部31bと、可撓管部31cを有している。 The insertion part 21 has an elongated insertion part main body 31 extending along the longitudinal axis direction and a rotating member 32. The insertion portion main body 31 includes a distal end hard portion 31a, a bending portion 31b, and a flexible tube portion 31c in order from the distal end.
 可撓管部31cは、被検体の管腔の曲がり形状に従う可撓性を有している。湾曲部31bは、複数の湾曲駒を有する公知の構造で形成されている。湾曲部31bは、操作部22の操作に応じて、上下左右方向の4方向に湾曲可能である。 The flexible tube portion 31c has flexibility according to the bent shape of the lumen of the subject. The bending portion 31b is formed with a known structure having a plurality of bending pieces. The bending portion 31b can be bent in four directions, up, down, left, and right, according to the operation of the operation unit 22.
 挿入部21の先端硬質部31aには、図示しない観察窓と、図示しない照明窓が設けられている。先端硬質部31aの観察窓の後ろ側には、図示しない撮像部が設けられている。撮像部は、観察光学系と撮像素子を有する。 The distal end hard part 31a of the insertion part 21 is provided with an observation window (not shown) and an illumination window (not shown). An imaging unit (not shown) is provided behind the observation window of the distal end hard portion 31a. The imaging unit has an observation optical system and an imaging element.
 複数の光ファイバ束からなるライトガイド41と撮像信号用の信号ケーブル42が、内視鏡11の挿入部21、操作部22及びユニバーサルケーブル23に挿通されている。モータ駆動用ケーブル43は、操作部22及びユニバーサルケーブル23に挿通されている。 A light guide 41 composed of a plurality of optical fiber bundles and a signal cable 42 for imaging signals are inserted through the insertion portion 21, the operation portion 22, and the universal cable 23 of the endoscope 11. The motor drive cable 43 is inserted through the operation unit 22 and the universal cable 23.
 ユニバーサルケーブル23の先端には、コネクタ23aが設けられている。コネクタ23aは、ライトガイドコネクタ41a、プロセッサ用ケーブル41b及びコントローラ用ケーブル41cが設けられている。 A connector 23 a is provided at the end of the universal cable 23. The connector 23a is provided with a light guide connector 41a, a processor cable 41b, and a controller cable 41c.
 コネクタ23aは、内部に基板を有し、その基板にはメモリ23bが搭載されている。メモリ23bは、書き換え可能な不揮発性メモリである。後述するように、コントロールシステム12のコントローラ12dは、コントローラ用ケーブル41cを介してメモリ23bにアクセス可能であり、図示しない信号線を介してデータを書き込むことができる。コントローラ12dは、内視鏡のモータ制御システムを構成する。 The connector 23a has a substrate inside, and a memory 23b is mounted on the substrate. The memory 23b is a rewritable nonvolatile memory. As will be described later, the controller 12d of the control system 12 can access the memory 23b through the controller cable 41c, and can write data through a signal line (not shown). The controller 12d constitutes an endoscope motor control system.
 信号ケーブル42は、プロセッサ用ケーブル41b内に挿通され、プロセッサ12bに接続可能となっている。モータ駆動用ケーブル43は、コントローラ用ケーブル41cに挿通され、コントローラ12dに接続可能となっている。 The signal cable 42 is inserted into the processor cable 41b and can be connected to the processor 12b. The motor drive cable 43 is inserted into the controller cable 41c and can be connected to the controller 12d.
 操作部22は、把持部51と、挿入部21の可撓管31cの基端部を支持する折れ止め部52と、把持部51に設けられた2つのノブ51a,51bと、各種の指示が割り当てられる複数のボタンを有する操作部材部53とを有する。操作部材部53は、レリーズボタン、吸引ボタン、送気/送水ボタン等を含む。 The operation unit 22 includes a grip 51, a bend preventing portion 52 that supports the proximal end of the flexible tube 31 c of the insertion portion 21, two knobs 51 a and 51 b provided on the grip 51, and various instructions. And an operation member portion 53 having a plurality of buttons to be assigned. The operation member unit 53 includes a release button, a suction button, an air / water supply button, and the like.
 折れ止め部52は、挿入部21の可撓管31cが折れ曲がるのを防止する。内視鏡11のユーザである、例えば術者は、ノブ51aを回動操作することにより、図1に示す挿入部21の湾曲部31bを上下方向に湾曲させることができる。ユーザは、ノブ51bを回動操作することにより、湾曲部31bを左右方向に湾曲させることができる。 The bending prevention part 52 prevents the flexible tube 31c of the insertion part 21 from bending. For example, an operator who is a user of the endoscope 11 can bend the bending portion 31b of the insertion portion 21 shown in FIG. 1 in the vertical direction by rotating the knob 51a. The user can bend the bending portion 31b in the left-right direction by turning the knob 51b.
 図1に示すように、回転部材32は、内視鏡11の挿入部21に配置されている。より具体的には、回転部材32は、湾曲部31bの基端側であって、可撓管31cの例えば先端部近傍の外周面に、挿入部本体31の先端側から着脱可能に取り付けられている。回転部材32は、外周部に、螺旋状に突出したフィン32aを有する。回転部材32は、挿入部本体31の先端硬質部31a及び湾曲部31bを通して可撓管31cの所定の位置に着脱可能である。回転部材32は、モータ71の駆動力によって挿入部21の長手軸周りに回動する被駆動部材を構成する。 As shown in FIG. 1, the rotating member 32 is disposed in the insertion portion 21 of the endoscope 11. More specifically, the rotating member 32 is detachably attached from the distal end side of the insertion portion main body 31 to the outer peripheral surface near the distal end portion of the flexible tube 31c, for example, on the proximal end side of the bending portion 31b. Yes. The rotating member 32 has a fin 32a protruding in a spiral shape on the outer peripheral portion. The rotating member 32 can be attached to and detached from a predetermined position of the flexible tube 31c through the distal end hard portion 31a and the bending portion 31b of the insertion portion main body 31. The rotating member 32 constitutes a driven member that rotates around the longitudinal axis of the insertion portion 21 by the driving force of the motor 71.
 挿入部21と操作部22との境界付近から可撓管31cの例えば先端部にかけての部位には、回転部材32を駆動するための駆動ユニット61が設けられている。回転部材32は、駆動ユニット61の駆動力により回転可能である。回転部材32の回転方向は、挿入部本体31の中心軸COの軸周りの両方向である。そして、回転部材32は、挿入部本体31の管腔内への挿入を補助するとともに、挿入した状態から抜去するのを補助する、管路に対する挿抜用の補助具として用いられる。 A drive unit 61 for driving the rotating member 32 is provided in a region from the vicinity of the boundary between the insertion portion 21 and the operation portion 22 to, for example, the distal end portion of the flexible tube 31c. The rotating member 32 can be rotated by the driving force of the driving unit 61. The rotation direction of the rotation member 32 is both directions around the central axis CO of the insertion portion main body 31. The rotating member 32 is used as an auxiliary tool for insertion / extraction with respect to the duct, which assists the insertion of the insertion portion main body 31 into the lumen and assists the removal from the inserted state.
 駆動ユニット61は、挿入部21と操作部22との境界付近に配設されるモータユニット62と、可撓管31cの例えば先端部に配設される歯車63と、モータユニット62と歯車63との間に配設されるドライブシャフト64とを有する。モータユニット62は、回転駆動力発生部である。歯車63は、回転駆動力出力部である。 The drive unit 61 includes a motor unit 62 disposed near the boundary between the insertion unit 21 and the operation unit 22, a gear 63 disposed at, for example, the distal end of the flexible tube 31c, the motor unit 62, and the gear 63. Drive shaft 64 disposed between the two. The motor unit 62 is a rotational driving force generator. The gear 63 is a rotational driving force output unit.
 図1に示すように、ドライブシャフト64は、可撓管31c内に挿通されている。回転駆動力伝達部であるドライブシャフト64は、その基端部に支持部65を有する。支持部65は、モータユニット62の出力端62aを貫通して支持される。支持部65は、出力端62aの軸方向の長さに対して長く形成されている。 As shown in FIG. 1, the drive shaft 64 is inserted through the flexible tube 31c. The drive shaft 64 which is a rotational driving force transmission part has a support part 65 at its base end part. The support portion 65 is supported through the output end 62 a of the motor unit 62. The support portion 65 is formed longer than the length of the output end 62a in the axial direction.
 ドライブシャフト64の外側には チャンネル66が配設されている。チャンネル66は、チューブ本体66aと固定部66bとを有する。チューブ本体66aには、ドライブシャフト64が挿通され、チューブ本体66aは、ドライブシャフト64の外側を略全長にわたって保護する。固定部66bは、チューブ本体66aの基端に固定されるとともに、硬質管84(図2参照)に固定される。 A saddle channel 66 is disposed outside the drive shaft 64. The channel 66 has a tube main body 66a and a fixing portion 66b. A drive shaft 64 is inserted through the tube body 66a, and the tube body 66a protects the outside of the drive shaft 64 over substantially the entire length. The fixing portion 66b is fixed to the proximal end of the tube main body 66a and is fixed to the hard tube 84 (see FIG. 2).
 硬質管84(図2参照)は、折れ止め部52内において、可撓管31cの基端に固定された口金31c4(図2参照)に対して固定されている。ドライブシャフト64は、チューブ本体66aだけでなく、円筒状の固定部66b内にも挿通されている。チューブ本体66aは電気絶縁性を有するとともに、耐摩耗性を有するフレキシブル性を有する樹脂材で形成されている。 The hard tube 84 (see FIG. 2) is fixed to the base 31c4 (see FIG. 2) fixed to the base end of the flexible tube 31c in the bend preventing portion 52. The drive shaft 64 is inserted not only into the tube main body 66a but also into the cylindrical fixing portion 66b. The tube main body 66a is formed of a resin material having electrical insulation properties and flexibility having wear resistance.
 支持部65は、その横断面が例えばD形状に形成されている。ドライブシャフト64のうち、出力端62aにより支持された部分よりも先端側は、適宜のコシを有するとともに可撓性を有する。ドライブシャフト64の先端に、歯車63が固定されている。 The support section 65 has a cross section formed in, for example, a D shape. The front end side of the drive shaft 64 relative to the portion supported by the output end 62a has an appropriate stiffness and is flexible. A gear 63 is fixed to the tip of the drive shaft 64.
 支持部65には、歯車90(図2)が固定されている。支持部65は、歯車90に形成されたD形状の孔に挿通されて歯車90に固定されている。モータユニット62内のモータが回転すると、歯車90が回転し、その結果、ドライブシャフト64が、ドライブシャフト64の軸周りに回転する。 A gear 90 (FIG. 2) is fixed to the support portion 65. The support part 65 is inserted into a D-shaped hole formed in the gear 90 and fixed to the gear 90. When the motor in the motor unit 62 rotates, the gear 90 rotates, and as a result, the drive shaft 64 rotates around the axis of the drive shaft 64.
 回転部材32は、円筒形状を有しており、内周面に歯部(以下、内周歯部という)32bを有している。内周歯部32bは、回転部材32の内周面に形成されていてもよいし、回転部材32の内周面に固定された円筒部材の内周面に形成されていてもよい。 The rotating member 32 has a cylindrical shape, and has a tooth portion (hereinafter referred to as an inner peripheral tooth portion) 32b on the inner peripheral surface. The inner peripheral tooth portion 32 b may be formed on the inner peripheral surface of the rotating member 32, or may be formed on the inner peripheral surface of a cylindrical member fixed to the inner peripheral surface of the rotating member 32.
 回転部材32が可撓管31cの所定位置に配置されたときに、歯車63は、内周歯部63bと噛み合う。よって、ドライブシャフト64が軸周りに回転すると、歯車63の回転に伴い、回転部材32は、可撓管31cの長手軸周りに回転する。 When the rotating member 32 is disposed at a predetermined position of the flexible tube 31c, the gear 63 meshes with the inner peripheral tooth portion 63b. Therefore, when the drive shaft 64 rotates around the axis, the rotating member 32 rotates around the longitudinal axis of the flexible tube 31c as the gear 63 rotates.
 図2は、実施形態に係る、操作部の長手軸方向に沿ったモータユニット62の概略的な縦断面図である。 FIG. 2 is a schematic longitudinal sectional view of the motor unit 62 along the longitudinal axis direction of the operation unit according to the embodiment.
 図1及び図2に示すように、モータユニット62は、駆動源としてのモータ71と、歯車列72とを有する。モータ71及び歯車列72は、挿入部21の基端側に配置されている。 1 and 2, the motor unit 62 includes a motor 71 as a drive source and a gear train 72. The motor 71 and the gear train 72 are disposed on the proximal end side of the insertion portion 21.
 モータユニット62は、挿入部21と操作部22との境界付近から挿入部21の長手方向に対して直交する方向に突出した状態で、歯車支持フレームであるギアボックス73内に収納されている。ギアボックス73内には、回路基板74も配設されている。 The motor unit 62 is housed in a gear box 73 that is a gear support frame in a state of projecting in the direction orthogonal to the longitudinal direction of the insertion portion 21 from the vicinity of the boundary between the insertion portion 21 and the operation portion 22. A circuit board 74 is also disposed in the gear box 73.
 図1及び図2に示すように、モータ71は、内視鏡本体である内視鏡11に内蔵されて設けられている。歯車列72は、内視鏡11に内蔵されたモータ71からの回転駆動力を伝達する、複数の歯車を有している。歯車列72の複数の歯車の歯車比の調整により、モータ71の駆動軸71aの回転速度は、出力端62aにおけるドライブシャフト64の適宜のトルク及び適宜の回転速度に変換される。 As shown in FIGS. 1 and 2, the motor 71 is provided in the endoscope 11 which is the endoscope body. The gear train 72 has a plurality of gears that transmit the rotational driving force from the motor 71 built in the endoscope 11. By adjusting the gear ratio of the plurality of gears in the gear train 72, the rotational speed of the drive shaft 71a of the motor 71 is converted into an appropriate torque and an appropriate rotational speed of the drive shaft 64 at the output end 62a.
 すなわち、歯車列72は、内視鏡11に設けられかつモータ71により駆動される、複数の歯車を有する被駆動機構を構成する。 That is, the gear train 72 constitutes a driven mechanism having a plurality of gears provided in the endoscope 11 and driven by the motor 71.
 ギアボックス73は、ベースプレート81、支持体82及び外装ケース83を有する。外装ケース83は、ケース本体83aとキャップ83bにより構成されている。支持体82は、ネジによりベースプレート81に固定されている。ベースプレート81及び支持体82は、協働して、歯車列72の各歯車及びモータ71を支持する。支持体82は、折れ止め部52内の硬質管84に固定される。 The gear box 73 includes a base plate 81, a support 82, and an outer case 83. The exterior case 83 includes a case main body 83a and a cap 83b. The support 82 is fixed to the base plate 81 with screws. The base plate 81 and the support 82 cooperate to support each gear of the gear train 72 and the motor 71. The support body 82 is fixed to the rigid tube 84 in the folding preventing portion 52.
 なお、モータ71は、後述する絶縁プレート85により支持体82に固定される。 The motor 71 is fixed to the support 82 by an insulating plate 85 described later.
 モータ71の駆動軸71aに取り付けられたピニオンギア91には、被駆動機構である歯車列72の第1ギアアッセンブリ92の大歯車92aが噛み合わせられる。第1ギアアッセンブリ92は、大歯車92aと小歯車92bとを有する。第1ギアアッセンブリ92は、ベースプレート81及び支持体82の両者に支持されている。 The large gear 92a of the first gear assembly 92 of the gear train 72, which is a driven mechanism, is meshed with the pinion gear 91 attached to the drive shaft 71a of the motor 71. The first gear assembly 92 has a large gear 92a and a small gear 92b. The first gear assembly 92 is supported by both the base plate 81 and the support body 82.
 第1ギアアッセンブリ92の大歯車92aと一緒に回転する小歯車92bには歯車列72の第2ギアアッセンブリ93の大歯車93aが噛み合わせられる。第2ギアアッセンブリ93は、大歯車93aと小歯車93bとを有する。第2ギアアッセンブリ93は、ベースプレート81及び支持体82の両者に支持されている。 The large gear 93 a of the second gear assembly 93 of the gear train 72 is meshed with the small gear 92 b that rotates together with the large gear 92 a of the first gear assembly 92. The second gear assembly 93 has a large gear 93a and a small gear 93b. The second gear assembly 93 is supported by both the base plate 81 and the support body 82.
 第2ギアアッセンブリ93の大歯車93aと一緒に回転する小歯車93bには、歯車列72の第3ギアアッセンブリ94が噛み合わせられる。第3ギアアッセンブリ94は、支持体82に支持されている。 The third gear assembly 94 of the gear train 72 is meshed with the small gear 93b that rotates together with the large gear 93a of the second gear assembly 93. The third gear assembly 94 is supported by the support body 82.
 第3ギアアッセンブリ94には歯車列72の第4ギアアッセンブリとしての筒状の歯車90が噛み合わせられる。歯車90は、支持体82に支持されている。 A cylindrical gear 90 as a fourth gear assembly of the gear train 72 is meshed with the third gear assembly 94. The gear 90 is supported by the support body 82.
 なお、第1ギアアッセンブリ92の大歯車92aは、電気絶縁性を有する、例えば硬質の樹脂材等で形成されている。モータ71は電気絶縁性を有する絶縁プレート85を介して支持体82に支持されている。 このため、モータ71及び内視鏡11は電気的に絶縁されている。そして、内視鏡11の撮像部のグランド(GND)とモータ71のグランド(GND)とを電気的に絶縁し、分離している。 The large gear 92a of the first gear assembly 92 is formed of an electrically insulating material such as a hard resin material. The motor 71 is supported by the support 82 via an insulating plate 85 having electrical insulation. For this reason, the motor 71 and the endoscope 11 are electrically insulated. The ground (GND) of the imaging unit of the endoscope 11 and the ground (GND) of the motor 71 are electrically insulated and separated.
 第1ギアアッセンブリ92の回転軸の一端及び第2ギアアッセンブリ93の回転軸の一端は、ベースプレート81に対してボールベアリングにより支持されている。このため、第1ギアアッセンブリ92の回転軸の中心軸と第2ギアアッセンブリ93の回転軸の中心軸とが平行となる。 One end of the rotation shaft of the first gear assembly 92 and one end of the rotation shaft of the second gear assembly 93 are supported by a ball bearing with respect to the base plate 81. For this reason, the central axis of the rotation shaft of the first gear assembly 92 and the central axis of the rotation shaft of the second gear assembly 93 are parallel to each other.
 なお、第1ギアアッセンブリ92の回転軸の他端及び第2ギアアッセンブリ93の回転軸の他端は、支持体82に対してボールベアリングで支持されている。 It should be noted that the other end of the rotation shaft of the first gear assembly 92 and the other end of the rotation shaft of the second gear assembly 93 are supported by a support 82 with ball bearings.
 第3ギアアッセンブリ94の回転軸の一端及び他端は、支持体82に対してボールベアリングで支持されている。歯車90の一端及び他端は、支持体82に対して セラミック材の滑り軸受で支持されている。 One end and the other end of the rotating shaft of the third gear assembly 94 are supported by a support 82 with ball bearings. One end and the other end of the gear 90 are supported on the support 82 by sliding bearings made of a ceramic material.
 なお、第2ギアアッセンブリ93から回転駆動力が伝達される第3ギアアッセンブリ94の回転軸の中心軸も、第1ギアアッセンブリ92の回転軸の中心軸と第2ギアアッセンブリ93の回転軸の中心軸と平行となる。 The central axis of the rotation shaft of the third gear assembly 94 to which the rotational driving force is transmitted from the second gear assembly 93 is also the center axis of the rotation shaft of the first gear assembly 92 and the center of the rotation shaft of the second gear assembly 93. Parallel to the axis.
 以上のように、モータ71の回転駆動力は、歯車列72によりドライブシャフト64を回転させる。歯車63は、回転部材32の内周歯部32bと噛み合っている。回転するドライブシャフト64は、歯車63により回転部材32を回転させる。 As described above, the rotational driving force of the motor 71 rotates the drive shaft 64 by the gear train 72. The gear 63 meshes with the inner peripheral tooth portion 32 b of the rotating member 32. The rotating drive shaft 64 rotates the rotating member 32 by the gear 63.
 すなわち、被駆動機構である歯車列72は、内視鏡11に設けられた回転部材32とモータ71との間に介在し、モータ71の回転駆動力を回転部材32に伝達する。 That is, the gear train 72 which is a driven mechanism is interposed between the rotating member 32 provided in the endoscope 11 and the motor 71, and transmits the rotational driving force of the motor 71 to the rotating member 32.
 コントロールシステム12は、光源ユニット12aと、プロセッサ12bと、モニタ12cと、コントローラ12dと、入力ユニット12eとを有する。光源ユニット12aとプロセッサ12bは接続されている。プロセッサ12bとモニタ12cも接続されている。光源ユニット12aとコントローラ12dも接続されている。コントローラ12dと入力ユニット12eも接続されている。 The control system 12 includes a light source unit 12a, a processor 12b, a monitor 12c, a controller 12d, and an input unit 12e. The light source unit 12a and the processor 12b are connected. A processor 12b and a monitor 12c are also connected. A light source unit 12a and a controller 12d are also connected. A controller 12d and an input unit 12e are also connected.
 光源ユニット12aは、観察対象を照明するための照明光を出射する。光源ユニット12aの照明光は、ライトガイドコネクタ41aに入射する。 The light source unit 12a emits illumination light for illuminating the observation target. Illumination light from the light source unit 12a enters the light guide connector 41a.
 プロセッサ12bは、観察光学系の撮像部により撮像された画像を処理して内視鏡画像を生成する画像処理ユニットを有する。プロセッサ12bは、プロセッサ用ケーブル41bを介して内視鏡11の撮像部と接続される。 
 モニタ12cは、生成された内視鏡画像を表示する表示部である。
The processor 12b includes an image processing unit that processes an image captured by the imaging unit of the observation optical system to generate an endoscopic image. The processor 12b is connected to the imaging unit of the endoscope 11 via the processor cable 41b.
The monitor 12c is a display unit that displays the generated endoscopic image.
 コントローラ12dは、内視鏡システム1全体を制御する。コントローラ12dは、内視鏡本体である内視鏡11が使用されるときに接続される周辺機器である。 The controller 12d controls the entire endoscope system 1. The controller 12d is a peripheral device connected when the endoscope 11 that is the endoscope body is used.
 入力ユニット12eは、コントローラ12dに指示等を入力する装置である。入力ユニット12eは、例えば図示しないキーボードやフットスイッチ等である。入力ユニット12eは、上述したモータ71を制御し、挿入部21の体腔内に対する進退動作を指示する、前進スイッチFS及び後退スイッチBSを有する。 The input unit 12e is a device that inputs instructions and the like to the controller 12d. The input unit 12e is, for example, a keyboard or a foot switch (not shown). The input unit 12e includes a forward switch FS and a backward switch BS that control the motor 71 described above and instruct an advance / retreat operation of the insertion portion 21 with respect to the body cavity.
 コントローラ12dは、専用装置だけではなく、例えば、任意のプログラムを搭載するパーソナルコンピュータ等の汎用的な処理装置であってもよい。 The controller 12d is not limited to a dedicated device, and may be a general-purpose processing device such as a personal computer on which an arbitrary program is mounted.
 モータユニット62の回路基板74の回路は、コントローラ12dからのコマンドに応じて、モータ71の回転速度をサーボ制御などにより制御する。コントローラ12dは、モータ71の回転方向及び回転方向を制御する。術者が、前進スイッチFSあるいは後退スイッチBSを押下することにより、挿入部21は、被検体の管腔内を前進あるいは後退する。 The circuit on the circuit board 74 of the motor unit 62 controls the rotation speed of the motor 71 by servo control or the like in accordance with a command from the controller 12d. The controller 12d controls the rotation direction and the rotation direction of the motor 71. When the operator presses the forward switch FS or the backward switch BS, the insertion unit 21 advances or retracts in the lumen of the subject.
 図3は、コントローラ12dの構成を示すブロック図である。 FIG. 3 is a block diagram showing the configuration of the controller 12d.
 コントローラ12dは、制御部101と、モータ駆動制御回路102と、電流センサ103と、メモリ104と、3つのインターフェース回路(以下、I/Fと略す)105,106,107を有する。制御部101と、3つのI/F105,106,107は、バス108により信号の送受信が可能に接続されている。 The controller 12d includes a control unit 101, a motor drive control circuit 102, a current sensor 103, a memory 104, and three interface circuits (hereinafter abbreviated as I / F) 105, 106, and 107. The control unit 101 and the three I / Fs 105, 106, and 107 are connected by a bus 108 so that signals can be transmitted and received.
 制御部101は、中央処理装置(以下、CPUという)、ROM、ROMなどを含むプロセッサである。 The control unit 101 is a processor including a central processing unit (hereinafter referred to as CPU), ROM, ROM and the like.
 なお、メモリ104に記憶されるソフトウエアを含めて制御部101は、FPGA(Field Programmable Gate Array)などのハードウエア回路により構成してもよい。 The control unit 101 including software stored in the memory 104 may be configured by a hardware circuit such as an FPGA (Field Programmable Gate Array).
 モータ駆動制御回路102は、入力ユニット12eからの前進スイッチFS又は後退スイッチBSの押下に応じた指示信号を受信して、その指示信号に応じた駆動信号を生成して、モータ駆動用ケーブル43へ出力するハードウエア回路である。モータ駆動制御回路102により生成された駆動信号は、電流センサ103を介してモータ71へ供給される。 The motor drive control circuit 102 receives an instruction signal corresponding to the depression of the forward switch FS or the reverse switch BS from the input unit 12e, generates a drive signal corresponding to the instruction signal, and sends it to the motor drive cable 43. This is a hardware circuit to output. The drive signal generated by the motor drive control circuit 102 is supplied to the motor 71 via the current sensor 103.
 電流センサ103は、モータ駆動用ケーブル43の途中に配置され、モータ駆動用ケーブル43に流れる電流を検出する。電流センサ103の検出信号は、モータ駆動制御回路102にフィードバックされると共に、I/F105を介して制御部101に供給される。 The current sensor 103 is arranged in the middle of the motor driving cable 43 and detects a current flowing through the motor driving cable 43. The detection signal of the current sensor 103 is fed back to the motor drive control circuit 102 and supplied to the control unit 101 via the I / F 105.
 なお、ここでは、電流センサ103は、コントローラ12d内に設けられているが、図1において一点鎖線で示すように、電流センサ103aとして内視鏡11内に設けてもよく、あるいは図1において二点鎖線で示すように、電流センサ103bとして内視鏡11とコントローラ12dの間に設けられた接続装置12f内に設けてもよい。 Here, although the current sensor 103 is provided in the controller 12d, it may be provided in the endoscope 11 as the current sensor 103a as shown by a one-dot chain line in FIG. As indicated by a dashed line, the current sensor 103b may be provided in a connection device 12f provided between the endoscope 11 and the controller 12d.
 よって、電流センサ103は、内視鏡11とコントローラ12dのいずれかに配置された若しくは内視鏡11とコントローラ12dとの接続部である接続装置12fに設けられた、モータ71による歯車列72の駆動時にモータ71に流れる電流を検出する電流検出部を構成する。 Therefore, the current sensor 103 is disposed in either the endoscope 11 or the controller 12d, or provided in the connecting device 12f that is a connecting portion between the endoscope 11 and the controller 12d. A current detection unit that detects a current flowing through the motor 71 during driving is configured.
 制御部101は、I/F105及びバス108を介して、電流センサ103の検出値を受信する。制御部101は、メモリ104に記憶された各種処理プログラムを実行し、内視鏡システム1全体の制御を行うと共に、後述する回転駆動系診断プログラムを実行する。なお、後述する閾値THのデータもメモリ104に記憶されている。 The control unit 101 receives the detection value of the current sensor 103 via the I / F 105 and the bus 108. The control unit 101 executes various processing programs stored in the memory 104, controls the entire endoscope system 1, and executes a rotational drive system diagnosis program described later. Note that data of a threshold value TH described later is also stored in the memory 104.
 制御部101で生成された各種コマンドは、I/F106を通して光源ユニット12aへ供給される。後述するように、制御部101で生成された画像信号などは、光源ユニット12aからプロセッサ12bへ供給され、プロセッサ12bからモニタ12cへ供給される。プロセッサ12bは、光源ユニット12aを介してコントローラ12dと接続されているので、制御部101で生成された画像信号は、コントローラ12dを介してモニタ12cに表示可能となっている。 Various commands generated by the control unit 101 are supplied to the light source unit 12a through the I / F 106. As will be described later, the image signal generated by the control unit 101 is supplied from the light source unit 12a to the processor 12b, and is supplied from the processor 12b to the monitor 12c. Since the processor 12b is connected to the controller 12d via the light source unit 12a, the image signal generated by the control unit 101 can be displayed on the monitor 12c via the controller 12d.
 さらに、制御部101は、後述するように、I/F107を通して内視鏡11のメモリ23bにデータを書き込むことができる。 Further, the control unit 101 can write data to the memory 23b of the endoscope 11 through the I / F 107 as will be described later.
(作用)
 次に、コントローラ12dの制御部101における回転駆動系診断処理について説明する。
(Function)
Next, the rotational drive system diagnosis process in the control unit 101 of the controller 12d will be described.
 図4は、回転駆動系診断部の構成を示すブロック図である。 FIG. 4 is a block diagram showing the configuration of the rotational drive system diagnostic unit.
 回転駆動系診断部Pは、FFT部111、判定部112、告知部113及び書き込み部114を有する回転駆動系診断プログラムである。回転駆動系診断部Pは、メモリ104に格納される。FFT部111、判定部112、告知部113及び書き込み部114の各々は、制御部101のCPUにより読み込まれて、各部の機能が実現される。 The rotational drive system diagnostic unit P is a rotational drive system diagnostic program that includes an FFT unit 111, a determination unit 112, a notification unit 113, and a writing unit 114. The rotational drive system diagnosis unit P is stored in the memory 104. Each of the FFT unit 111, the determination unit 112, the notification unit 113, and the writing unit 114 is read by the CPU of the control unit 101, and the functions of the respective units are realized.
 電流センサ103の電流値Iのデータは、FFT部111及び判定部112に供給される。上述したように、電流センサ103は、モータ71に流れる電流の大きさを検出する。 The data of the current value I of the current sensor 103 is supplied to the FFT unit 111 and the determination unit 112. As described above, the current sensor 103 detects the magnitude of the current flowing through the motor 71.
 FFT部111は、電流値Iのデータに対して高速フーリエ変換処理を行い、スペクトルデータを出力する。 The FFT unit 111 performs fast Fourier transform processing on the data of the current value I and outputs spectrum data.
 ここでは、FFT部111は、コントローラ12dに設けられ、モータ71に流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する周波数分析部を構成する。FFT部111は、波形をフーリエ変換して周波数分析する機能はソフトウエアで構築されている。 Here, the FFT unit 111 is provided in the controller 12d, and constitutes a frequency analysis unit that Fourier-transforms a waveform indicating a change with time of the current flowing through the motor 71 and analyzes a change in amplitude according to the frequency. The FFT unit 111 has a function of analyzing the frequency by Fourier transforming the waveform by software.
 判定部112は、FFT部111により得られたスペクトルデータの振幅の変化に基づいて、歯車列72の状態を判定する。ここでは、判定部112は、FFT部111の出力から、所定の閾値THを超える周波数があるか否かを判定すると共に、劣化状態を示す歯車を特定する。判定部112には、メモリ104から読み出された閾値THが入力される。 The determination unit 112 determines the state of the gear train 72 based on the change in the amplitude of the spectrum data obtained by the FFT unit 111. Here, the determination unit 112 determines whether there is a frequency that exceeds a predetermined threshold TH from the output of the FFT unit 111, and identifies a gear that indicates a deterioration state. The threshold value TH read from the memory 104 is input to the determination unit 112.
 各歯車は、入力ユニット12eからの動作指示に応じた回転数となる。 Each gear has a rotational speed corresponding to an operation instruction from the input unit 12e.
 図5は、モータ71がフルで回転した時における各歯車の回転数を示す表である。ここでは、回転数は、1秒間の回転数である。図5において、歯車Aは、上述した歯車90に対応する。歯車Bは、上述したギアアッセンブリ94に対応する。歯車Cは、上述した小歯車93bに対応する。歯車Dは、上述した大歯車93aに対応する。歯車Eは、上述した小歯車92bに対応する。歯車Fは、上述した大歯車92aに対応する。歯車Gは、上述したピニオンギア91に対応する。 FIG. 5 is a table showing the number of rotations of each gear when the motor 71 is fully rotated. Here, the rotation speed is the rotation speed per second. In FIG. 5, the gear A corresponds to the gear 90 described above. The gear B corresponds to the gear assembly 94 described above. The gear C corresponds to the small gear 93b described above. The gear D corresponds to the large gear 93a described above. The gear E corresponds to the small gear 92b described above. The gear F corresponds to the large gear 92a described above. The gear G corresponds to the pinion gear 91 described above.
 よって、ユーザが、入力ユニット12eの前進スイッチFSあるいは後退スイッチBSを最も深く押下したときモータ71はフルで回転する。モータ71はフルで回転するとき、歯車Aの回転数はf1であり、歯車Bの回転数はf2であり、歯車Cの回転数はf3であり、歯車Dの回転数はf4であり、歯車Eの回転数はf5であり、歯車Fの回転数はf6であり、歯車Gの回転数はf7である。 Therefore, when the user presses the forward switch FS or the reverse switch BS of the input unit 12e most deeply, the motor 71 rotates fully. When the motor 71 rotates at full speed, the rotation speed of the gear A is f1, the rotation speed of the gear B is f2, the rotation speed of the gear C is f3, the rotation speed of the gear D is f4, The rotation speed of E is f5, the rotation speed of the gear F is f6, and the rotation speed of the gear G is f7.
 図6は、ある回転数でモータ71が回転しているときの電流センサの出力する電流値のグラフである。図6において、横軸は、時間であり、縦軸は、電流値である。図6では、時間は、秒(s)であり、電流値は、ミリアンペア(mA)である。図6に示すように、電流センサ103の検出したモータ71へ供給される電流の電流値は、時間経過と共に変化する。 FIG. 6 is a graph of the current value output by the current sensor when the motor 71 is rotating at a certain number of rotations. In FIG. 6, the horizontal axis is time, and the vertical axis is current value. In FIG. 6, the time is seconds (s) and the current value is milliamperes (mA). As shown in FIG. 6, the current value of the current supplied to the motor 71 detected by the current sensor 103 changes with time.
 図7は、劣化した歯車がないときのFFT部111の出力するスペクトルピークデータである。図7において、横軸は、周波数であり、縦軸は、スペクトルピークデータの正規化された振幅値(A)である。図7に示すように、閾値THを超えているスペクトルピークデータはない。 FIG. 7 shows spectral peak data output from the FFT unit 111 when there is no deteriorated gear. In FIG. 7, the horizontal axis represents frequency, and the vertical axis represents the normalized amplitude value (A) of the spectrum peak data. As shown in FIG. 7, there is no spectral peak data exceeding the threshold value TH.
 内視鏡11の場合、挿入部21と管腔内壁との抵抗が大きくなったり、小さくなったりするため、モータ71に掛かる負荷は変化する。しかし、ある回転数でモータ71が回転しているとき、回転駆動系に劣化がなければ、モータに掛かる負荷が変化しても、閾値THを超えるスペクトルピークデータは、現れない。 In the case of the endoscope 11, since the resistance between the insertion portion 21 and the inner wall of the lumen is increased or decreased, the load applied to the motor 71 changes. However, when the motor 71 is rotating at a certain rotational speed, if the rotational drive system is not deteriorated, spectrum peak data exceeding the threshold TH does not appear even if the load applied to the motor changes.
 図8は、劣化した歯車があるときのFFT部111の出力するスペクトルピークデータである。図8において、横軸は、周波数であり、縦軸は、スペクトルピークデータの正規化された振幅値(A)である。図8に示すように、特定の周波数のスペクトルピークデータの振幅が大きく、閾値THを超えている。 FIG. 8 shows spectral peak data output from the FFT unit 111 when there is a deteriorated gear. In FIG. 8, the horizontal axis represents the frequency, and the vertical axis represents the normalized amplitude value (A) of the spectrum peak data. As shown in FIG. 8, the amplitude of the spectrum peak data of a specific frequency is large and exceeds the threshold value TH.
 なお、上述したように、ユーザは、例えば前進スイッチFSあるいは後退スイッチBSの押下量に応じて、回転部材32の回転量を変化させることができる。 Note that, as described above, the user can change the rotation amount of the rotation member 32 in accordance with, for example, the pressing amount of the forward switch FS or the reverse switch BS.
 入力ユニット12eからの動作指示に応じた回転数でモータ71が回転しているとき、歯車列72中のある歯車が劣化すると、その歯車の現時点の回転数に対応するスペクトルデータの振幅が大きくなる。各歯車の現時点の回転数は、図5に示すモータ71がフルで回転した時の回転数以下である。 When the motor 71 is rotating at a rotational speed corresponding to the operation instruction from the input unit 12e, if a certain gear in the gear train 72 is deteriorated, the amplitude of the spectrum data corresponding to the current rotational speed of the gear increases. . The current rotation speed of each gear is equal to or less than the rotation speed when the motor 71 shown in FIG.
 判定部112は、電流センサ103の検出信号から、モータ71の回転数を検出することができる。よって、判定部112は、電流センサ103の検出信号に基づいて、各歯車の現時点の回転数fを算出することができる。 The determination unit 112 can detect the rotation speed of the motor 71 from the detection signal of the current sensor 103. Therefore, the determination unit 112 can calculate the current rotation speed f of each gear based on the detection signal of the current sensor 103.
 例えば、図5は、モータ71のフル出力時の各歯車の回転数のパラメータデータを示しているので、判定部112は、電流センサ103により検出された現時点の検出信号と、モータ71のフル出力時おける電流センサ103の検出信号とに基づいて、各歯車の現時点の回転数を決定することができる。 For example, FIG. 5 shows parameter data of the rotation speed of each gear at the time of full output of the motor 71, so that the determination unit 112 detects the current detection signal detected by the current sensor 103 and the full output of the motor 71. Based on the current detection signal of the current sensor 103, the current rotational speed of each gear can be determined.
 すなわち、入力ユニット12eからの指示信号に応じて各歯車の回転数は変わるので、判定部112は、電流センサ103の検出信号に基づいて、各歯車の現時点の回転数を算出し、そのスペクトルデータ中の閾値THを超えた周波数に対応する歯車を特定することができる。 That is, since the rotation speed of each gear changes according to the instruction signal from the input unit 12e, the determination unit 112 calculates the current rotation speed of each gear based on the detection signal of the current sensor 103, and the spectral data thereof. The gear corresponding to the frequency exceeding the middle threshold value TH can be specified.
 よって、FFT部111は、図5に示す、複数の歯車の各々のパラメータデータを用いて、周波数に応じた振幅を算出する。 Therefore, the FFT unit 111 calculates the amplitude corresponding to the frequency using the parameter data of each of the plurality of gears shown in FIG.
 図8においては、周波数f1とf2において、振幅が大きく、閾値THを超えている。f1は、算出された歯車Aすなわち歯車90の現時点の回転数であり、f2は、算出された歯車Bすなわちギアアッセンブリ94の現時点の回転数である。 In FIG. 8, at frequencies f1 and f2, the amplitude is large and exceeds the threshold value TH. f1 is the current rotational speed of the gear A, that is, the gear 90, and f2 is the current rotational speed of the gear B, that is, the gear assembly 94.
 よって、判定部112は、歯車AとBが劣化していると判定することができる。すなわち、判定部112は、複数の歯車の各々の回転周波数と、振幅の変化が起こっている周波数とを比較することによって、劣化している歯車を判定することができる。判定部112は、複数の歯車の各々の回転周波数における振幅の変化の大きさに基づいて、歯車列72の各歯車の劣化を判定する。特に、判定部112は、振幅と所定の閾値THとを比較することにより、歯車列71の状態が、劣化状態であるかを判定する。 Therefore, the determination unit 112 can determine that the gears A and B are deteriorated. That is, the determination unit 112 can determine a deteriorated gear by comparing the rotation frequency of each of the plurality of gears with the frequency at which the change in amplitude occurs. The determination unit 112 determines the deterioration of each gear in the gear train 72 based on the magnitude of the change in amplitude at the rotation frequency of each of the plurality of gears. In particular, the determination unit 112 determines whether or not the state of the gear train 71 is in a deteriorated state by comparing the amplitude with a predetermined threshold value TH.
 判定部112が、歯車AとBが劣化していると判定すると、告知部113へ劣化歯車が歯車AとBであることを通知する。 If the determination unit 112 determines that the gears A and B are deteriorated, it notifies the notification unit 113 that the deteriorated gears are the gears A and B.
 告知部113は、判定部112の判定結果において劣化を示す歯車が判定されたときに、劣化を示す歯車をユーザに告知するためのメッセージデータを生成し、プロセッサ12bへ出力する。 The notification unit 113 generates message data for notifying the user of the gear indicating deterioration when the determination result of the determination unit 112 determines that the gear indicates deterioration, and outputs the message data to the processor 12b.
 書き込み部114は、判定部112の判定結果において劣化を示す歯車があることを、内視鏡11のメモリ23bに記録する処理を行う。よって、書き込み部114は、判定部112において判定された歯車列72の状態についての情報を、内視鏡11に設けられたメモリ23bに書き込む書き込み部を構成する。例えば、メモリ23bには、劣化した歯車を特定する情報を格納してもよい。 The writing unit 114 performs processing for recording in the memory 23b of the endoscope 11 that there is a gear indicating deterioration in the determination result of the determination unit 112. Therefore, the writing unit 114 constitutes a writing unit that writes information about the state of the gear train 72 determined by the determination unit 112 to the memory 23 b provided in the endoscope 11. For example, information specifying a deteriorated gear may be stored in the memory 23b.
 告知部113は、歯車AとBが劣化しているとのデータを受けると、例えば、モニタ12cに表示するメッセージを生成する。そのメッセージは、例えば「歯車AとBが劣化しています。点検して下さい。」のテキストである。なお、テキストは、劣化及びその箇所を示すコードでもよい。 When the notification unit 113 receives data indicating that the gears A and B are deteriorated, for example, the notification unit 113 generates a message to be displayed on the monitor 12c. The message is, for example, the text “Gears A and B are deteriorated. Check.” The text may be a code indicating deterioration and its location.
 よって、告知部113は、判定部112において判定された歯車列72の状態を表示するための表示情報を生成する表示情報生成部を構成する。 Therefore, the notification unit 113 constitutes a display information generation unit that generates display information for displaying the state of the gear train 72 determined by the determination unit 112.
 そのメッセージデータは、光源ユニット12aを介してプロセッサ12dへ供給され、プロセッサ12dは、そのメッセージを表示する画像信号を生成して、あるいはそのメッセージを重畳した画像信号を生成して、モニタ12cに出力する。 The message data is supplied to the processor 12d via the light source unit 12a, and the processor 12d generates an image signal for displaying the message or generates an image signal on which the message is superimposed and outputs it to the monitor 12c. To do.
 その結果、ユーザは、内視鏡システム1の動作中に歯車の劣化があることを知って、関連する者に点検などを指示することができる。 As a result, the user can know that there is a gear deterioration during the operation of the endoscope system 1 and can instruct the related person to inspect.
 歯車の故障まで至っていない、歯車が劣化している状態が検出されるので、ユーザが内視鏡検査中に、回転駆動系が故障して内視鏡検査ができなくなる確率は低下する。 Since it is detected that the gear is not broken or the gear is deteriorated, the probability that the user cannot perform the endoscopic inspection due to the failure of the rotary drive system during the endoscopic inspection is reduced.
 例えば、ユーザは、内視鏡システム1の動作を開始した直後に、回転駆動系を試しに動作させることで、動作直後における劣化の有無を知ることができる場合がある。 For example, the user may be able to know the presence or absence of deterioration immediately after the operation by operating the rotational drive system as a test immediately after the operation of the endoscope system 1 is started.
 よって、ユーザは、内視鏡システム1の動作を開始した直後に、回転駆動系の劣化の有無を知ることができる。その場合、ユーザは、内視鏡を交換して別の内視鏡を用いて検査を行うという選択手段をとることもできる。 Therefore, the user can know the presence or absence of deterioration of the rotary drive system immediately after the operation of the endoscope system 1 is started. In that case, the user can also take a selection means of exchanging the endoscope and performing an inspection using another endoscope.
 また、メモリ23bには、劣化の有無のデータが書き込まれているので、内視鏡システム1の動作を開始した直後に、プロセッサ12bがメモリ23bからデータを読み出して、過去の動作時において劣化があれば、所定のメッセージを表示することができる。所定のメッセージは、例えば、「本内視鏡の回転駆動系に劣化がみられるので、メーカのサービスを依頼して下さい。」である。 In addition, since data indicating the presence or absence of deterioration is written in the memory 23b, immediately after the operation of the endoscope system 1 is started, the processor 12b reads the data from the memory 23b, and the deterioration occurs in the past operation. If there is, a predetermined message can be displayed. The predetermined message is, for example, “Since the rotational drive system of the endoscope is deteriorated, please request the manufacturer's service.”
 あるいは、劣化の有無のデータ等がメモリ23bにログデータとして書き込まれているので、内視鏡11のメーカのサービスマンが、内視鏡11のメンテナンスを行うときに、劣化の進行具合を確認することもできる。 Alternatively, since data indicating the presence / absence of deterioration is written as log data in the memory 23b, the serviceman of the manufacturer of the endoscope 11 checks the progress of the deterioration when performing maintenance of the endoscope 11. You can also.
 以上のように、上述した実施形態によれば、内視鏡の回転駆動系の劣化などの状態の診断を簡易にできる内視鏡システム及びモータ制御システムを提供することができる。 As described above, according to the above-described embodiment, it is possible to provide an endoscope system and a motor control system that can easily diagnose a state such as deterioration of the rotational drive system of the endoscope.
 本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。 The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 本出願は、2018年4月11日に日本国に出願された特願2018-76033号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。 This application is filed on the basis of the priority claim of Japanese Patent Application No. 2018-76033 filed in Japan on April 11, 2018. The above disclosure is included in the present specification and claims. Shall be quoted.

Claims (16)

  1.  内視鏡本体と、
     前記内視鏡本体が使用されるときに接続される機器と、
     前記内視鏡本体に設けられたモータと、
     前記内視鏡本体に設けられかつ前記モータにより駆動される、複数の歯車を有する被駆動機構と、
     前記内視鏡本体と前記機器のいずれかに配置された若しくは前記内視鏡本体と前記機器との接続部に設けられた、前記モータによる前記被駆動機構の駆動時に前記モータに流れる電流を検出する電流検出部と、
     前記機器に設けられ、前記電流検出部により得られる前記モータに流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する周波数分析部と、
     前記周波数分析部により得られた前記振幅の変化に基づいて、前記被駆動機構の状態を判定する判定部と、
    を有する、内視鏡システム。
    An endoscope body,
    A device connected when the endoscope body is used;
    A motor provided in the endoscope body;
    A driven mechanism having a plurality of gears provided in the endoscope body and driven by the motor;
    Detects a current flowing in the motor when the driven mechanism is driven by the motor, which is disposed in either the endoscope main body and the device, or provided at a connection portion between the endoscope main body and the device. A current detector to
    A frequency analysis unit that is provided in the device and Fourier-transforms a waveform indicating a change with time of the current flowing through the motor obtained by the current detection unit, and analyzes a change in amplitude according to the frequency;
    A determination unit that determines a state of the driven mechanism based on the change in the amplitude obtained by the frequency analysis unit;
    An endoscope system.
  2.  前記判定部は、前記複数の歯車の各々の回転周波数と、前記振幅の変化が起こっている周波数とを比較することによって、劣化している歯車を判定する、請求項1に記載の内視鏡システム。 The endoscope according to claim 1, wherein the determination unit determines a deteriorated gear by comparing a rotation frequency of each of the plurality of gears with a frequency at which the change in the amplitude occurs. system.
  3.  前記判定部は、前記複数の歯車の各々の回転周波数における前記振幅の変化の大きさに基づいて、前記被駆動機構の劣化を判定する、請求項2に記載の内視鏡システム。 3. The endoscope system according to claim 2, wherein the determination unit determines deterioration of the driven mechanism based on a magnitude of change in the amplitude at each rotation frequency of the plurality of gears.
  4.  前記被駆動機構は、前記内視鏡本体に設けられた被駆動部材と前記モータとの間に介在し、前記モータの駆動力を前記被駆動部材に伝達する、請求項1に記載の内視鏡システム。 The endoscope according to claim 1, wherein the driven mechanism is interposed between a driven member provided in the endoscope main body and the motor, and transmits a driving force of the motor to the driven member. Mirror system.
  5.  前記被駆動部材は、前記内視鏡本体の挿入部に配置されており、前記モータ及び前記被駆動機構は前記挿入部の基端側に配置されている、請求項3に記載の内視鏡システム。 The endoscope according to claim 3, wherein the driven member is disposed in an insertion portion of the endoscope main body, and the motor and the driven mechanism are disposed on a proximal end side of the insertion portion. system.
  6.  前記被駆動部材は、前記モータの駆動力によって前記挿入部の長手軸周りに回動する、請求項5に記載の内視鏡システム。 The endoscope system according to claim 5, wherein the driven member is rotated around a longitudinal axis of the insertion portion by a driving force of the motor.
  7.  前記被駆動部材は、外周部に螺旋状のフィンを備えている、請求項6に記載の内視鏡システム。 The endoscope system according to claim 6, wherein the driven member includes a spiral fin on an outer peripheral portion.
  8.  前記周波数分析部は、前記波形をフーリエ変換して周波数分析する機能はソフトウエアで構築され、
     前記ソフトウエアは、前記複数の歯車の各々のパラメータデータを用いて、前記周波数に応じた前記振幅を算出する、請求項1に記載の内視鏡システム。
    The frequency analysis unit is configured by software to perform frequency analysis by Fourier transforming the waveform,
    The endoscope system according to claim 1, wherein the software calculates the amplitude corresponding to the frequency using parameter data of each of the plurality of gears.
  9.  前記判定部は、前記振幅と所定の閾値とを比較することにより、前記被駆動機構の状態が、劣化状態であるかを判定する、請求項1に記載の内視鏡システム。 The endoscope system according to claim 1, wherein the determination unit determines whether or not the state of the driven mechanism is a deteriorated state by comparing the amplitude with a predetermined threshold value.
  10.  前記判定部において判定された前記被駆動機構の状態を表示するための表示情報を生成する表示情報生成部を有する、請求項1に記載に内視鏡システム。 The endoscope system according to claim 1, further comprising: a display information generation unit that generates display information for displaying the state of the driven mechanism determined by the determination unit.
  11.  前記判定部において判定された前記被駆動機構の状態についての情報を、前記内視鏡本体に設けられた不揮発性メモリに書き込む書き込み部を有する、請求項1に記載の内視鏡システム。 The endoscope system according to claim 1, further comprising a writing unit that writes information on the state of the driven mechanism determined by the determination unit in a nonvolatile memory provided in the endoscope main body.
  12.  内視鏡本体に設けられたモータにより被駆動機構を駆動する内視鏡のモータ制御システムであって、
     前記内視鏡本体または前記内視鏡本体が使用時に接続される機器に配置された若しくは前記内視鏡本体と前記機器との接続部に設けられた、前記モータによる前記被駆動機構の駆動時に前記モータに流れる電流を検出する電流検出部と、
     前記機器に設けられ、前記電流検出部により得られる前記モータに流れる電流の時間経過に伴う変化を示す波形をフーリエ変換し、周波数に応じた振幅の変化を分析する周波数分析部と、
    を有する、内視鏡のモータ制御システム。
    An endoscope motor control system for driving a driven mechanism by a motor provided in an endoscope body,
    When the driven mechanism is driven by the motor, which is disposed in the endoscope main body or a device to which the endoscope main body is connected at the time of use, or provided at a connection portion between the endoscope main body and the device. A current detection unit for detecting a current flowing through the motor;
    A frequency analysis unit that is provided in the device and Fourier-transforms a waveform indicating a change with time of the current flowing through the motor obtained by the current detection unit, and analyzes a change in amplitude according to the frequency;
    An endoscope motor control system.
  13.  前記被駆動機構は、前記内視鏡本体に設けられた被駆動部材と前記モータとの間に介在し、前記モータの駆動力を前記被駆動部材に伝達する、請求項12に記載の内視鏡のモータ制御システム。 The endoscope according to claim 12, wherein the driven mechanism is interposed between a driven member provided in the endoscope body and the motor, and transmits a driving force of the motor to the driven member. Mirror motor control system.
  14.  前記被駆動部材は、前記内視鏡本体の挿入部に配置されており、前記モータ及び前記被駆動機構は前記挿入部の基端側に配置されている、請求項13に記載の内視鏡のモータ制御システム。 The endoscope according to claim 13, wherein the driven member is disposed in an insertion portion of the endoscope main body, and the motor and the driven mechanism are disposed on a proximal end side of the insertion portion. Motor control system.
  15.  前記被駆動部材は、前記モータの駆動力によって前記挿入部の長手軸周りに回動する、請求項14に記載の内視鏡のモータ制御システム。 The endoscope motor control system according to claim 14, wherein the driven member is rotated around a longitudinal axis of the insertion portion by a driving force of the motor.
  16.  前記被駆動部材は、外周部に螺旋状のフィンを備えている、請求項15に記載の内視鏡のモータ制御システム。 The endoscope motor control system according to claim 15, wherein the driven member includes a spiral fin on an outer peripheral portion.
PCT/JP2019/007913 2018-04-11 2019-02-28 Endoscope system and motor control system WO2019198373A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018076033A JP2021151276A (en) 2018-04-11 2018-04-11 Endoscope system and motor control system
JP2018-076033 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198373A1 true WO2019198373A1 (en) 2019-10-17

Family

ID=68164123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007913 WO2019198373A1 (en) 2018-04-11 2019-02-28 Endoscope system and motor control system

Country Status (2)

Country Link
JP (1) JP2021151276A (en)
WO (1) WO2019198373A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311591A (en) * 1998-04-28 1999-11-09 Nissan Motor Co Ltd Diagnostic apparatus for machine using motor as driving source
JP2013158569A (en) * 2012-02-07 2013-08-19 Olympus Medical Systems Corp Endoscope
WO2017010128A1 (en) * 2015-07-15 2017-01-19 オリンパス株式会社 Drive force transmission mechanism for medical device
WO2017168796A1 (en) * 2016-03-31 2017-10-05 株式会社高田工業所 Abnormality detection method for rotary mechanical system, abnormality monitoring method for rotary mechanical system using said abnormality detection method, and abnormality monitoring device for rotary mechanical system using said abnormality detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311591A (en) * 1998-04-28 1999-11-09 Nissan Motor Co Ltd Diagnostic apparatus for machine using motor as driving source
JP2013158569A (en) * 2012-02-07 2013-08-19 Olympus Medical Systems Corp Endoscope
WO2017010128A1 (en) * 2015-07-15 2017-01-19 オリンパス株式会社 Drive force transmission mechanism for medical device
WO2017168796A1 (en) * 2016-03-31 2017-10-05 株式会社高田工業所 Abnormality detection method for rotary mechanical system, abnormality monitoring method for rotary mechanical system using said abnormality detection method, and abnormality monitoring device for rotary mechanical system using said abnormality detection method

Also Published As

Publication number Publication date
JP2021151276A (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2015118773A1 (en) Insertion device
JP5500844B2 (en) Endoscope
JP4709513B2 (en) Electric bending control device
US8449455B2 (en) Medical system for a plurality of operators to perform an operation of one medical instrument in collaboration
WO2007007644A1 (en) Endoscope device
WO2015190514A1 (en) Endoscope system
JP7214802B2 (en) Medical image diagnostic apparatus and medical image diagnostic system
JP2006043449A (en) Endoscope system
WO2012102036A1 (en) Ultrasound probe
US20090299183A1 (en) Ultrasound diagnostic apparatus
JP4436638B2 (en) Endoscope apparatus and endoscope insertion operation program
WO2014148068A1 (en) Manipulator
JP7124061B2 (en) Stress estimation system, stress estimation device, and endoscope system
WO2019198373A1 (en) Endoscope system and motor control system
US9603507B2 (en) Insertion device
JP6150579B2 (en) Insertion device
US10314464B2 (en) Insertion apparatus
JP5046609B2 (en) Ultrasonic diagnostic equipment
US20180329198A1 (en) Electrostatic touch assembly of light source device for endoscope and endoscope system including the same
JP2017176534A (en) Excluder and exclusion apparatus
CN111163723A (en) Preventative maintenance of robotic surgical systems
JP2019170638A (en) Endoscope system
JPH03198828A (en) Endoscope apparatus
KR102146307B1 (en) Front-rear driving mechanism combined robotic colonoscope system and high safety control method using it
JP6728493B2 (en) Device, control device and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP