WO2019198125A1 - 電磁放射線検出装置及び方法 - Google Patents
電磁放射線検出装置及び方法 Download PDFInfo
- Publication number
- WO2019198125A1 WO2019198125A1 PCT/JP2018/014892 JP2018014892W WO2019198125A1 WO 2019198125 A1 WO2019198125 A1 WO 2019198125A1 JP 2018014892 W JP2018014892 W JP 2018014892W WO 2019198125 A1 WO2019198125 A1 WO 2019198125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wave height
- electromagnetic radiation
- scintillator
- pulse
- signal
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 69
- 230000005670 electromagnetic radiation Effects 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims description 11
- 238000004458 analytical method Methods 0.000 claims abstract description 32
- 230000005251 gamma ray Effects 0.000 claims description 48
- 239000000463 material Substances 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 230000003321 amplification Effects 0.000 claims description 8
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 230000008719 thickening Effects 0.000 claims description 2
- 238000000295 emission spectrum Methods 0.000 abstract description 21
- 238000001228 spectrum Methods 0.000 abstract description 10
- 102100021277 Beta-secretase 2 Human genes 0.000 description 37
- 101710150190 Beta-secretase 2 Proteins 0.000 description 29
- 230000000694 effects Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 102100021257 Beta-secretase 1 Human genes 0.000 description 13
- 101710150192 Beta-secretase 1 Proteins 0.000 description 13
- 101100165118 Homo sapiens BACE2 gene Proteins 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 101100333868 Homo sapiens EVA1A gene Proteins 0.000 description 6
- 102100031798 Protein eva-1 homolog A Human genes 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- SMVNDPAZIJEDPF-UHFFFAOYSA-N 3,5-dioxa-4lambda4-thia-2,6-diazatricyclo[5.3.1.04,11]undeca-1,4(11),6-triene Chemical compound C1CCC2=NOS3=C2C1=NO3 SMVNDPAZIJEDPF-UHFFFAOYSA-N 0.000 description 2
- 102100037831 DNL-type zinc finger protein Human genes 0.000 description 2
- 101710106778 DNL-type zinc finger protein Proteins 0.000 description 2
- 101100310674 Tenebrio molitor SP23 gene Proteins 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 101150004909 asp23 gene Proteins 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/2008—Measuring radiation intensity with scintillation detectors using a combination of different types of scintillation detectors, e.g. phoswich
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/17—Circuit arrangements not adapted to a particular type of detector
- G01T1/172—Circuit arrangements not adapted to a particular type of detector with coincidence circuit arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/36—Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/36—Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
- G01T1/361—Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with a combination of detectors of different types, e.g. anti-Compton spectrometers
Definitions
- Embodiments described herein relate generally to an electromagnetic radiation detection apparatus and method.
- a scintillator when obtaining an energy spectrum of electromagnetic radiation, a scintillator, a photomultiplier tube (PMT) and a multi-pulse wave height analysis (MCA) are used in the following procedure.
- the electromagnetic radiation incident on the scintillator gives energy to the electrons in the scintillator to cause ionization, and the secondary electrons avalanche further cause ionization, and these ionized and excited electrons recombine with holes.
- a number of photons proportional to the incident energy is generated.
- photons generated by the scintillator are converted into photoelectrons by the photoelectric effect on the photocathode of the photomultiplier tube.
- Photoelectrons converted on the photocathode of the photomultiplier tube are amplified in the photomultiplier tube, then output as a current proportional to the incident energy of electromagnetic radiation, and converted into a voltage pulse.
- the converted voltage pulses are obtained as a pulse height distribution (energy spectrum) by being counted as the number of pulses of each peak value at a fixed time by a multi-wave height analyzer.
- the present invention has been made in view of the above, and is an electromagnetic radiation detection capable of detecting another emission spectrum (photoelectric spectrum) located in the energy band while suppressing the emission spectrum corresponding to Compton scattering.
- An object is to provide an apparatus and method.
- An electromagnetic radiation detection apparatus includes a first scintillation detector that detects incidence of electromagnetic radiation, and scattered electromagnetic radiation generated by Compton scattering of electromagnetic radiation inside the first scintillation detector, wherein the first scintillation detection First scintillation detection other than when the second scintillation detector that detects the scattered electromagnetic radiation that has gone out of the apparatus, the detection timing of the first scintillation detector, and the detection timing of the second scintillation detector are considered to be the same.
- a multi-wave height analyzer that performs multi-wave height analysis based on the detection result of the detector.
- FIG. 1 is an explanatory diagram of an example of an energy spectrum at the time of ⁇ -ray detection.
- FIG. 2 is a schematic configuration block diagram of a ⁇ -ray detection apparatus as the electromagnetic radiation detection apparatus according to the first embodiment.
- FIG. 3 is a diagram illustrating the principle of the embodiment.
- FIG. 4 is an explanatory diagram of the concealed photoelectric peak.
- FIG. 5 is an explanatory diagram for revealing the concealed photoelectric peak.
- FIG. 6 is a schematic configuration block diagram of a ⁇ -ray detection apparatus as an electromagnetic radiation detection apparatus according to the second embodiment.
- FIG. 7 is an operation process flowchart of the multi-wave height analyzer.
- FIG. 8 is a schematic configuration block diagram of a ⁇ -ray detection apparatus as an electromagnetic radiation detection apparatus according to the third embodiment.
- FIG. 1 is an explanatory diagram of an example of an energy spectrum at the time of ⁇ -ray detection.
- the energy spectrum at the time of ⁇ -ray detection obtained as a result of the above three types of phenomena includes total absorption peak PE, Compton continuity CC, Compton edge CE, backscattering peak RS, KX-ray peak KX. Etc.
- the total absorption peak (photoelectric peak) PE causes a photoelectric effect, it causes Compton scattering, but the energy of ⁇ rays after Compton scattering is also given to other electrons, etc. All energy is consumed in the scintillator It is equivalent to.
- the Compton continuation CC is such that when the ⁇ -rays go out of the scintillator after Compton scattering and carry away a part of the energy, the remaining energy given to the electrons continuously depends on the scattering angle between the ⁇ -rays and the electrons. Since it is distributed, the emission energy is also distributed continuously.
- Compton edge CE corresponds to the case where the scattering angle is 180 degrees and the maximum energy is given to electrons in Compton scattering.
- ⁇ -rays cause Compton scattering with surrounding materials such as shielding materials and measuring devices, and as a result, ⁇ -rays that have lost some energy are incident on the scintillator and light emission is caused by the photoelectric effect. It is.
- the KX-ray peak KX is the result of ⁇ rays incident on the surrounding material ionizing the K-shell electrons of the material, the outer orbital electrons falling into the orbital space of the K-shell, generating characteristic X-rays and leading to light emission. It is.
- an emission spectrum other than the emission spectrum caused by Compton scattering is included and concealed. May have been. Therefore, for example, when a plurality of radiation sources are identified and specified, there is a possibility that a corresponding emission spectrum cannot be found.
- the emission spectrum (Compton continuous portion CC and Compton edge CE) corresponding to Compton scattering is suppressed, and another emission spectrum located in the energy band is detected.
- a second scintillator is arranged on a surface other than the incident surface and the PMT installation surface of a first scintillator that is a scintillator that performs normal electromagnetic radiation detection, and detects gamma rays with reduced energy after Compton scattering.
- the emission spectrum corresponding to Compton scattering (Compton continuous part CC and Compton) is controlled by controlling so as not to detect light emission that should be detected at the detection timing (controlling so as not to be subject to multiple wave height analysis).
- the edge CE is suppressed and other desired emission spectra are detected.
- FIG. 2 is a block diagram of a schematic configuration of a ⁇ -ray detection apparatus as an electromagnetic radiation detection apparatus according to a first embodiment.
- the ⁇ -ray detection device 10 receives ⁇ -rays that are electromagnetic radiation from an incident surface 11 i, emits light by ionization, and outputs photons from the emission surface 11 o, and the emission surface 11 o of the first scintillator 11.
- the second photomultiplier tube 14 that is output as the pulse height signal SP2, the first amplifier 15 that amplifies the first pulse height signal SP1 and outputs the first amplified pulse height signal ASP1, and the second pulse height signal SP2 are amplified.
- MCA multi-wave height analyzer
- the first scintillator 11, the first photomultiplier tube 12, and the first amplifier 15 constitute a first scintillation detector
- the second scintillator 13, the second photomultiplier tube 14, and the second amplifier 16 are The 2nd scintillation detector is comprised.
- FIG. 3 is a diagram illustrating the principle of the embodiment.
- the electrons (e ⁇ ) and the corresponding holes that have transitioned to the conduction band can freely move within the scintillator material constituting the first scintillator 11. Then, when the electrons that have transitioned to the conduction band encounter holes while moving, they again transition to the valence band and generate photons (indicated by asterisks in FIG. 3).
- the generated photons reach the photocathode 12PE of the first photomultiplier tube 12, they are photoelectrically converted into photoelectrons (e ⁇ ), and the first photomultiplier tube 12 performs electron multiplication. Eventually, the first pulse wave height signal SP1 is output.
- the photons that have reached the second scintillator 13 are not incident on the second scintillator because the second scintillator 13 is configured not to transmit visible light.
- the scattered ⁇ -rays ⁇ s generated by Compton scattering enter the second scintillator 13 and collide with electrons in the second scintillator 13 to give Compton scattering or photoelectrical energy that gives a part of energy to the electrons.
- the electrons constituting the scintillator substance of the second scintillator 13 are finally excited to make a transition to the conduction band.
- the electrons (e ⁇ ) and the corresponding holes that have transitioned to the conduction band freely move within the scintillator material that constitutes the second scintillator 13. Then, the electrons that have transitioned to the conduction band transition to the valence band again when they encounter holes during movement, generate photons, and when they reach the photocathode 14PE of the second photomultiplier tube 14, photoelectric conversion occurs. As a result, photomultiplier (e ⁇ ) is obtained, which is subjected to electron multiplication in the second photomultiplier tube 14 and finally outputted as the second pulse wave height signal SP2.
- the output timing of the first pulse wave height signal SP1 and the output timing of the second pulse wave height signal SP2 due to one Compton scattering generated in the first scintillator 11 are as follows. I can think of it at the same time.
- the second pulse wave height signal SP2 when the second pulse wave height signal SP2 is output, the first pulse wave height signal SP1 output at the same time is excluded from the multiple wave height analysis target in the multi-wave height analyzer 18, more specifically, Since the ting circuit 17 cuts off the output of the first photomultiplier tube 12 at the timing when the second amplified pulse height signal ASP2 is output, the counting due to Compton scattering in the energy spectrum is suppressed. is there.
- the emission spectrum count caused by Compton scattering is reduced, and other emission spectra (photoelectric peaks) concealed in the emission spectrum caused by Compton scattering can be detected.
- the influence of Compton scattering is suppressed and the corresponding emission spectrum is detected more reliably.
- the first scintillator 11 of the ⁇ -ray detection apparatus 10 is irradiated with ⁇ -rays that are electromagnetic radiation from the incident surface 11i.
- the electrons receiving the energy of ⁇ rays are:
- photons are generated.
- the generated photons are output from the emission surface 11o of the first scintillator 11, are incident on the first photomultiplier tube 12, are photoelectrically converted to generate photoelectrons, and a first pulse wave height signal corresponding to the total absorption peak. Is output to the first amplifier 15.
- the incident energy of the incident ⁇ -ray is 1.022 MeV or more
- an electron-pair generation that generates a pair of electrons and positrons using all the energy of the ⁇ -ray is performed.
- the incident ⁇ rays do not have incident energy that can generate electron pairs is considered.
- the scintillator powder is made into a paste so that the second scintillator 13 itself has no visible light impermeability.
- it may be constituted by compression drying solidification and thickening.
- a reflective material that transmits electromagnetic radiation (here, ⁇ rays) and reflects visible light, or an opaque material that transmits electromagnetic radiation and does not transmit visible light.
- a material may be provided between the second scintillator 13 and the first scintillator 11.
- the scattered ⁇ rays incident on the second scintillator 13 give energy to the electrons by the photoelectric effect or Compton scattering.
- the electrons that have received energy by the scattered ⁇ -rays finally make a transition to the conduction band, move in the second scintillator 13, and transition to the valence band again when they are combined with holes, generating photons.
- the generated photons are output from the emission surface 13o of the second scintillator 13, enter the second photomultiplier tube 14, are photoelectrically converted to generate photoelectrons, and the second pulse height signal SP2 is supplied to the second amplifier 16. Is output.
- the second amplifier 16 amplifies the second pulse height signal SP2 and outputs the second amplified pulse height signal ASP2 to the gating circuit 17.
- the gating circuit 17 cuts off the output of the first photomultiplier tube 12 at the timing when the second amplified pulse height signal ASP2 is output.
- the first amplifier 15 receives scattered ⁇ rays and incident ⁇ rays.
- the first pulse wave height signal SP1 of the photon corresponding to the electrons sharing the energy should have been output.
- the output of the first photomultiplier tube 12 is blocked by the gating circuit 17, the output of the first pulse wave height signal SP1 disappears, and therefore the first pulse wave height signal SP1 corresponding to a photon whose amount of energy is indefinite due to Compton scattering.
- the multi-wave height analyzer 18 are not output to the multi-wave height analyzer 18 as the first amplified pulse height signal ASP1.
- the output of the first photomultiplier tube 12 is cut off each time the second amplified pulse height signal ASP2 is output to the gating circuit 17, so that the first pulse caused by Compton scattering is relatively produced.
- the count number of the crest signal that is, the count number corresponding to the Compton continuous part CC and the Compton edge CE can be suppressed.
- the number of counts of other photoelectric peaks that are hidden by the count of the Compton continuous part CC or the Compton edge CE can be made relatively high, and these photoelectric peaks can be made obvious. is there.
- FIG. 4 is an explanatory diagram of the concealed photoelectric peak. As shown in FIG. 4, when the output of the first photomultiplier tube by Compton scattering is performed as usual, for example, two photoelectric peaks HEP1 and HEP2 are buried in the Compton continuous part CC or Compton edge CE and concealed. It is assumed that it was in a state.
- FIG. 5 is an explanatory diagram for revealing the concealed photoelectric peak. As a result, as shown in FIG. 5, two buried photopeaks HEP1 and HEP2 become apparent. Therefore, since a desired photoelectric peak can be identified, a plurality of radiation sources can be discriminated and specified.
- the second scintillator does not transmit visible light.
- the second scintillator blocks visible light and transmits gamma rays that are electromagnetic radiation. It is also possible to configure the filter so as to be laminated on the incident surface of the second scintillator. By comprising in this way, desired performance can be exhibited, without receiving to the influence of a composition, structure, etc. of a 2nd scintillator.
- FIG. 6 is a schematic configuration block diagram of a ⁇ -ray detection apparatus as an electromagnetic radiation detection apparatus according to the second embodiment.
- the same parts as those in FIG. 6 differs from the first embodiment of FIG. 1 in that the timing determination unit 19A has a function corresponding to the gating circuit 17, and the timing determination unit 19A is based on the output of the second amplifier 16. It is determined whether or not the first amplified pulse height signal ASP1 that is the output of the amplifier 15 can be used, and based on the determination result, the multiple wave height analyzer 18A performs multiple wave height analysis based on the first amplified pulse height signal ASP1 to be analyzed. It is a point to do.
- ⁇ -rays which are electromagnetic radiation
- the photoelectric effect or Compton scattering occurs in the first scintillator 11, but the ⁇ after Compton scattering.
- Photons generated when all energy is consumed in the scintillator 11 by giving the energy of the line to other electrons, for example, are output from the emission surface 11o of the first scintillator 11, and are multiplied by the first photomultiplier.
- the light enters the tube 12 and is photoelectrically converted to generate photoelectrons, and a first pulse wave height signal corresponding to the total absorption peak is output to the first amplifier 15.
- the incident ⁇ -ray causes Compton scattering in the first scintillator
- the energy of a part of the ⁇ -ray is given to the electrons to be blown off, and the ⁇ -ray is scattered and scattered as scattered ⁇ -rays in the second scintillator 13. It will enter into.
- the pulse wave height signal SP1 is output to the first amplifier 15.
- the first amplifier 15 amplifies the first pulse wave height signal SP1 and outputs the first amplified pulse wave height signal ASP1 to the timing determination unit 19A.
- the scattered ⁇ -rays incident on the second scintillator 13 give energy to electrons by the photoelectric effect or Compton scattering.
- the electrons receiving energy by the scattered ⁇ rays move in the second scintillator 13 and generate photons when they are combined with holes.
- the generated photons are output from the emission surface 13o of the second scintillator 13, enter the second photomultiplier tube 14, are photoelectrically converted to generate photoelectrons, and the second pulse height signal SP2 is supplied to the second amplifier 16. Is output.
- the second amplifier 16 amplifies the second pulse wave height signal SP2 and outputs the second amplified pulse wave height signal ASP2 to the timing determination unit 19A.
- FIG. 7 is an operation process flowchart of the timing determination unit and the multi-wave height analyzer.
- the timing determination unit 19A first performs detection processing of the first amplified pulse height signal ASP1 and the second amplified pulse height signal ASP2 (step S11).
- the timing determination unit 19A determines whether or not the output timing of the first amplified pulse height signal ASP1 and the output timing of the second amplified pulse height signal ASP2 are the same timing (step S12).
- step S12 If the output timing of the first amplified pulse wave height signal ASP1 and the output timing of the second amplified pulse wave height signal ASP2 are the same timing in the determination of step S12 (step S12; Yes), the timing determination unit 19A Assuming that the first amplified pulse height signal ASP1 is caused by Compton scattering, the first amplified pulse height signal ASP1 output at the same timing as the output timing of the second amplified pulse height signal ASP2 is excluded from the target of wave height analysis. The output to the multi-wave height analyzer 18A is prohibited (step S13), and the process proceeds to step S15.
- step S12 when there is no first amplified pulse peak signal ASP1 output at the same timing as the output timing of the second amplified pulse peak signal ASP2 (step S12; No), the timing determination unit 19A
- the 1 amplified pulse wave height signal ASP1 is not caused by Compton scattering, that is, is caused by the photoelectric effect or the like, and the first amplified pulse wave height signal ASP1 is set as a wave height analysis target to the multiple wave height analyzer 18A.
- the multi-wave height analyzer 18A outputs the multi-wave height analyzer and counts it (step S14).
- the timing determination unit 19A determines whether or not a predetermined wave height analysis period has elapsed and it is the display timing of the wave height analysis result (step S15).
- step S15 If it is determined in step S15 that the predetermined wave height analysis period has not yet elapsed and the display timing of the wave height analysis result has not yet been reached (step S15; No), processing is performed to continue the wave height analysis. The process again proceeds to step S11, and the above-described processing (steps S11 to S15) is performed.
- step S15 when it is determined in step S15 that the predetermined wave height analysis period has elapsed and the display timing of the wave height analysis result is reached (step S15; Yes), the waveform analysis result is displayed in a predetermined format (step S15). Step S16).
- the multi-wave height analyzer 18A excludes the first amplified pulse wave height signal corresponding to the timing at which the second amplified pulse wave height signal is output as a pulse wave height signal corresponding to Compton scattering from the target of wave height analysis. Yes (not counting).
- the first amplified pulse height signal subjected to the pulse height analysis does not correspond to a photon whose amount of energy is indefinite due to Compton scattering. That is, the count number corresponding to the Compton continuous part and the Compton edge can be suppressed.
- the count number of other photoelectric peaks that are hidden by the count of the Compton continuous part CC or the Compton edge CE can be made relatively high, and these photoelectric peaks can be revealed.
- FIG. 8 is a schematic configuration block diagram of a ⁇ -ray detection apparatus as an electromagnetic radiation detection apparatus according to the third embodiment.
- FIG. 8 the same parts as those in FIG. 8.
- the incident surfaces 13i of the second scintillators 13-1 to 13-4 are arranged on the peripheral surfaces except the incident surface 11i and the emission surface 11o of the first scintillator 11.
- second photomultiplier tubes 14-1 to 14-4 are arranged on the exit surfaces 13o of the second scintillators 13-1 to 13-4, respectively, and based on the outputs of the second amplifiers 16-1 to 16-4.
- a timing determination unit 19B is provided for determining whether or not the first amplified pulse height signal that is the output of the first amplifier 15 can be adopted.
- the first scintillator 11 has a quadrangular prism shape for easy understanding, and has four peripheral surfaces in addition to the incident surface 11i and the output surface 11o.
- the incident ⁇ -ray ⁇ i is incident from the front side to the back side of the paper surface of FIG. 8, and the first photomultiplier tube 12 is disposed in the back side of the first scintillator 11. To do.
- the ⁇ -ray detection device 10B receives a ⁇ -ray that is electromagnetic radiation from an incident surface 11i, emits light by ionization, and outputs photons from the emission surface 11o, and from the emission surface 11o of the first scintillator 11.
- the photon that is output is subjected to photoelectric conversion to generate photoelectrons, the electron multiplication is performed and the first photomultiplier tube 12 that outputs the first pulse wave height signal, and the visible light generated in the first scintillator 11 is transmitted.
- the scattered ⁇ -rays generated by the Compton scattering of ⁇ -rays are incident on the first scintillator 11 from the incident surface 13 i arranged so as to face the first peripheral surface of the first scintillator 11.
- the second scintillator 13-1 that emits light by ionization and outputs photons from the exit surface 13o
- the first scintillator 11 Scattered ⁇ rays generated by Compton scattering of ⁇ rays in the first scintillator 11 from the incident surface 13 i arranged so as not to transmit light and disposed so as to face the second peripheral surface of the first scintillator 11.
- the first scintillator 11 is configured not to transmit visible light generated in the first scintillator 11.
- Scattered ⁇ -rays generated by Compton scattering of ⁇ -rays are incident on the first scintillator 11 from the incident surface 13i arranged so as to face the third peripheral surface of the first light, and light is emitted by the ionization action to emit photons.
- the second scintillator 13-3 output from the first scintillator 11 and the visible light generated by the first scintillator 11 are not transmitted.
- scattered ⁇ -rays generated by Compton scattering of ⁇ -rays are incident on the first scintillator 11 from the incident surface 13i arranged so as to face the fourth peripheral surface of the first scintillator 11, and are ionized.
- a second scintillator 13-4 that emits light and outputs photons from the exit surface 13o.
- Generating photoelectrons, and a second photomultiplier tube 14-4 to be output as the second pulse height signal SP24 performing electron multiplication ( current amplification), the.
- the second scintillators 13-1 to 13-4 are configured so as not to transmit the visible light generated in the first scintillator 11, the second scintillators 13-1 to 13-4 themselves do not transmit visible light.
- the scintillator powder may be made into a paste, compressed, dried, solidified, and thickened so as to have permeability.
- a reflecting material that transmits electromagnetic radiation here, ⁇ rays
- An opaque material that does not transmit visible light may be provided between each of the second scintillators 13-1 to 13-4 and the first scintillator 11.
- the ⁇ -ray detection device 10B amplifies the first pulse wave height signal SP1 and amplifies the first pulse wave height signal output from the first amplifier 15 that outputs the first amplified pulse wave height signal and the second scintillator 13-1.
- a second amplifier 16-3 that amplifies the second pulse wave height signal output from the second scintillator 13-3 and outputs a second amplified pulse wave height signal, and a second pulse output from the second scintillator 13-4
- the second amplifier 16-4 that amplifies the wave height signal and outputs the second amplified pulse wave height signal, and a timing determination unit 19B, and the timing determination unit 19B includes the second amplifiers 16-1 to 16-4.
- a multi-wave height analyzer 18B that determines whether or not the first amplified pulse wave height signal that is the output of the first amplifier 15 can be adopted based on the force, and performs multi-wave height analysis based on the adopted first amplified pulse wave height signal; It has.
- the first scintillator 11, the first photomultiplier tube 12, and the first amplifier 15 constitute a first scintillation detector
- Each of the photomultiplier tube 14-X and the second amplifier 16-X constitutes a second scintillation detector.
- the incident ⁇ -ray causes Compton scattering in the first scintillator
- the ⁇ -ray is scattered by giving a part of energy of the ⁇ -ray to the electron, and the scattered ⁇ -ray depends on the scattering direction.
- the light enters one of the four second scintillators 13-1 to 13-4.
- the pulse wave height signal SP1 is output to the first amplifier 15.
- the first amplifier 15 amplifies the first pulse wave height signal SP1 and outputs the first amplified pulse wave height signal ASP1 to the timing determination unit 19B.
- the scattered ⁇ rays incident on the second scintillators 13-1 to 13-4 give energy to the electrons by the photoelectric effect or Compton scattering.
- the electrons that receive energy by the scattered ⁇ rays move in the second scintillators 13-1 to 13-4, and generate photons when they are combined with holes.
- the generated photons are output from the exit surfaces 13o of the second scintillators 13-1 to 13-4, enter the corresponding second photomultiplier tubes 14-1 to 14-4, and are photoelectrically converted. Photoelectrons are generated and the second pulse height signals SP21 to SP24 are output to the corresponding second amplifiers 16-1 to 16-4.
- the second amplifier 16-1 amplifies the second pulse wave height signal SP21 and outputs the second amplified pulse wave height signal ASP21 to the timing determination unit 19B.
- the second amplifier 16-2 amplifies the second pulse wave height signal SP22 and outputs the second amplified pulse wave height signal ASP22 to the timing determination unit 19B
- the second amplifier 16-3 outputs the second pulse wave height signal SP23.
- the second amplified pulse wave height signal ASP23 is output to the timing determination unit 19B
- the second amplifier 16-4 amplifies the second pulse wave height signal SP24 and supplies the second amplified pulse wave height signal ASP24 to the timing determination unit 19B. Output to.
- the timing determination unit 19B determines whether or not the output timing of the first amplified pulse height signal ASP1 is the same as the output timing of any of the second amplified pulse height signals ASP21 to ASP24 (step S12). .
- step S12 If it is determined in step S12 that the output timing of the first amplified pulse height signal ASP1 and the output timing of any of the second amplified pulse height signals ASP21 to ASP24 are the same timing (step S12; Yes), the timing The determination unit 19B assumes that the first amplified pulse wave height signal ASP1 is caused by Compton scattering, and outputs the first amplification signal output at the same timing as the output timing of any of the second amplified pulse wave height signals ASP21 to ASP24.
- the pulse wave height signal ASP1 is excluded from the wave height analysis object and is not sent to the multiple wave height analyzer 18B (step S13), and the process proceeds to step S15.
- the timing determination unit 19B The first amplified pulse height signal ASP1 is not caused by Compton scattering, that is, caused by the photoelectric effect, etc., so that the first amplified pulse height signal ASP1 is subjected to the multiple wave height analysis using the first amplified pulse height signal ASP1. To the machine 18B.
- the multi-wave height analyzer 18B has the first amplified pulse height signal ASP1 whose output timing of the first amplified pulse height signal ASP1 is the same as the output timing of any of the second amplified pulse height signals ASP21 to ASP24.
- the first amplified pulse height signal ASP1 that is excluded from the analysis target and the output timing of the first amplified pulse height signal ASP1 is not the same as the output timing of all the second amplified pulse height signals ASP21 to ASP24 is multiplexed as the height analysis target. Wave height analysis is performed and counted (step S14).
- the first amplified pulse height signal ASP1 subjected to wave height analysis does not correspond to a photon having an indefinite amount of energy due to Compton scattering, and thus is relatively caused by Compton scattering detected in various directions.
- the number of counts of the first pulse height signal SP1 to be performed that is, the number of counts corresponding to the Compton continuous portion CC or the Compton edge CE can be suppressed.
- the generation timing of the scattered ⁇ -ray can be detected regardless of the scattering direction of the scattered ⁇ -ray due to Compton scattering, and is hidden by the count of the Compton continuous part.
- the count number of other photoelectric peaks can be made relatively high, and these photoelectric peaks can be manifested more reliably as compared with the second embodiment.
- the first scintillator 11 has been described as having a quadrangular prism shape. However, even if the first scintillator 11 has a polygonal prism shape (more than a triangular prism shape), a cylindrical shape, a spherical shape, etc.
- the present invention can be similarly applied as long as one or more sets of second scintillators and second photomultiplier tubes can be arranged at positions where electromagnetic radiation can be detected.
- the output timing of the first pulse height signal SP1 which is the detection result of the first scintillator 11 and the first photomultiplier tube 12, is the second scintillator 13-1 to 13-4 and the second photoelectron.
- the timing determination unit 19B of the multi-wave height analyzer 18B determines whether it is the same as any of the output timings of the second pulse wave height signals SP21 to SP24, which are detection results of the multipliers 14-1 to 14-4.
- a gating circuit to which the second pulse wave height signals SP21 to SP24 are input may be provided to block the output of the first photomultiplier tube 12. Is possible.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
シンチレータに入射した電磁放射線は、シンチレータ内の電子にエネルギーを与えて電離させ、その2次電子が雪崩的にさらに電離を引き起こし、これらの電離・励起された電子が正孔と再結合することによって最終的に入射エネルギーに比例した数の光子を生成する。
次にシンチレータで生成された光子は、光電子増倍管の光電面において光電効果により光電子に変換される。
光電子倍増管の光電面において変換された光電子は、光電子倍増管内で増幅された後、電磁放射線の入射エネルギーに比例した電流として出力され、電圧パルスに変換される。
変換された電圧パルスは多重波高分析器で一定時間ごとの各波高値のパルス数としてカウントされることにより、パルス波高分布(エネルギースペクトル)として得られることとなっていた。
そして、コンプトン散乱に対応するエネルギー帯(エネルギースペクトル部分)、特に、コンプトン連続部及びコンプトンエッジに相当するエネルギー帯においては、コンプトン散乱に起因する発光スペクトル以外の発光スペクトルが含まれて、隠蔽されている可能性がある。
したがって、例えば、複数の放射線源を弁別して特定するような場合には、対応する発光スペクトルを見いだせない虞があった。
まず、実施形態の説明に先立ち、実施形態の電磁放射線検出装置の原理について説明する。
以下の説明においては、電磁放射線としてγ線を検出する場合を例として電磁放射線検出装置の原理について説明する。
電磁放射線検出装置としてのγ線検出装置では、シンチレータに入射したγ線は、各種電離過程を経て最終的にシンチレータ結晶の結晶格子上の価電子にエネルギーを与え、電子を伝導帯に押し上げる。
これらの結果、伝導帯の電子と価電子帯の正孔は各々自由に動き回り、電子と正孔とが出会うと、電子は伝導帯から価電子帯に落ち、エネルギーを放出することとなり、このエネルギーが光として放出されて発光が起きる。
(1)光電効果
(2)コンプトン散乱
(3)電子対生成
また、コンプトン散乱においては、γ線のエネルギーの一部が電子に運動エネルギーとして与えられて電子がはじき飛ばされ、γ線は残ったエネルギーにより元の進んでいた方向とは別の方向に進み、シンチレータ内でさらに他の電子をはじき出しながら減衰するか、あるいは、シンチレータ外に出て行くこととなる。
図1に示すように、上記三種類の現象の結果として得られるγ線検出時のエネルギースペクトルとしては、全吸収ピークPE、コンプトン連続部CC、コンプトンエッジCE、後方散乱ピークRS、KX線ピークKX等が挙げられる。
したがって、例えば、複数の放射線源を弁別して特定するような場合には、対応する発光スペクトルを見いだせない虞がある。
図2は、第1実施形態の電磁放射線検出装置としてのγ線検出装置の概要構成ブロック図である。
γ線検出装置10は、入射面11iから電磁放射線であるγ線が入射され、電離作用により発光して光子を出射面11oから出力する第1シンチレータ11と、第1シンチレータ11の出射面11oから出力される光子の光電変換を行って光電子を生成し、電子増倍(=電流増幅)を行って第1パルス波高信号SP1として出力する第1光電子増倍管12と、可視光を透過させないように構成されるとともに、入射面13iから第1シンチレータ11においてγ線のコンプトン散乱により生成された散乱γ線が入射され、電離作用により発光して光子を出射面13oから出力する第2シンチレータ13と、第2シンチレータ13の出射面13oから出力される光子の光電変換を行って光電子を生成し、電子増倍(=電流増幅)を行って第2パルス波高信号SP2として出力する第2光電子増倍管14と、第1パルス波高信号SP1を増幅して第1増幅パルス波高信号ASP1を出力する第1アンプ15と、第2パルス波高信号SP2を増幅して第2増幅パルス波高信号ASP2を出力する第2アンプ16と、第2増幅パルス波高信号ASP2が出力されたタイミングで第1光電子増倍管12の出力を遮断するゲーティング回路17と、第1増幅パルス波高信号ASP1に基づいて多重波高分析を行う多重波高分析機(MCA)18と、を備えている。
図3は、実施形態の原理説明図である。
第1シンチレータ11の入射面11iから入射した入射γ線γiは、第1シンチレータ11内において電子に衝突して、電子にエネルギーの一部を与えるコンプトン散乱を起こすと、最終的に第1シンチレータ11のシンチレータ物質を構成している電子を励起して伝導帯に遷移させるとともに、残りのエネルギーを有する散乱γ線γsとなる。
そして、伝導帯に遷移した電子は、移動中に正孔と出会うと再び価電子帯に遷移し、光子(図3中、☆印で示す)を生成する。
そして、伝導帯に遷移した電子は、移動中に正孔と出会うと再び価電子帯に遷移し、光子を生成し、第2光電子増倍管14の光電面14PEに到ると、光電変換がなされて光電子(e-)となって、第2光電子増倍管14において電子増倍がなされて最終的には、第2パルス波高信号SP2として出力されることとなる。
γ線検出装置10の第1シンチレータ11には、入射面11iから電磁放射線であるγ線が入射される。
この場合において、第2シンチレータ13を可視光は透過できないため、散乱γ線のみが入射することとなる。
あるいは、第2シンチレータ13と第1シンチレータ11との間に、電磁放射線(ここでは、γ線)を透過し可視光を反射する反射材、あるいは、電磁放射線を透過し可視光を透過しない不透過材を設けるようにすればよい。
この結果、ゲーティング回路17は、第2増幅パルス波高信号ASP2が出力されたタイミングで第1光電子増倍管12の出力を遮断する。
図4に示すように、コンプトン散乱による第1光電子増倍管の出力を通常通り行った場合には、例えば、二つの光電ピークHEP1、HEP2がコンプトン連続部CCあるいはコンプトンエッジCEに埋もれて隠蔽された状態となっていたものとする。
この結果、図5に示すように、埋もれていた二つの光電ピークHEP1、HEP2が顕在化することとなる。
従って、所望の光電ピークを識別できるので、複数の放射線源を弁別して特定することが可能となる。
以上の第1実施形態においては、第2シンチレータが可視光を透過しない構成としていたが、可視光を遮断し、電磁放射線であるγ線を透過するフィルタを第2シンチレータの入射面に積層するように構成することも可能である。
このように構成することにより、第2シンチレータの組成、構造などの影響を受けることなく、所望の性能を発揮できる。
次に第2実施形態について説明する。
図6は、第2実施形態の電磁放射線検出装置としてのγ線検出装置の概要構成ブロック図である。図6において、図1と同様の部分には、同一の符号を付すものとする。
図6において、図1の第1実施形態と異なる点は、ゲーティング回路17に相当する機能をタイミング判定部19Aに持たせ、タイミング判定部19Aが第2アンプ16の出力に基づいて、第1アンプ15の出力である第1増幅パルス波高信号ASP1の採用可否を判別し、この判別結果に基づいて多重波高分析機18Aが波高分析対象の第1増幅パルス波高信号ASP1に基づいて多重波高分析を行う点である。
γ線検出装置10Aの第1シンチレータ11には、入射面11iから電磁放射線であるγ線が入射されると、第1シンチレータ11内において、光電効果あるいはコンプトン散乱を起こしたがコンプトン散乱後のγ線のエネルギーも他の電子に与える等して全てのエネルギーをシンチレータ11内で消費した場合に起因して生成された光子は、第1シンチレータ11の出射面11oから出力され、第1光電子増倍管12に入射して、光電変換されて光電子を生成し、全吸収ピークに相当する第1パルス波高信号が第1アンプ15に出力される。
散乱γ線によりエネルギーを受け取った電子は、第2シンチレータ13内を移動し、正孔と結合した時点で光子を生成する。生成された光子は、第2シンチレータ13の出射面13oから出力され、第2光電子増倍管14に入射して、光電変換されて光電子を生成し、第2パルス波高信号SP2が第2アンプ16に出力される。
第2アンプ16は、第2パルス波高信号SP2を増幅して第2増幅パルス波高信号ASP2をタイミング判定部19Aに出力する。
タイミング判定部19Aは、まず第1増幅パルス波高信号ASP1及び第2増幅パルス波高信号ASP2の検出処理を行う(ステップS11)。
次に第3実施形態について説明する。
図8は、第3実施形態の電磁放射線検出装置としてのγ線検出装置の概要構成ブロック図である。図8において、図1と同様の部分には、同一の符号を付すものとする。
あるいは、第2シンチレータ13-1~13-4のそれぞれと第1シンチレータ11との間に、電磁放射線(ここでは、γ線)を透過し可視光を反射する反射材、あるいは、電磁放射線を透過し可視光を透過しない不透過材を設けるようにすればよい。
γ線検出装置10Bの第1シンチレータ11には、入射面11iから電磁放射線であるγ線が入射されると、第1シンチレータ11内において、光電効果あるいはコンプトン散乱を起こしたがコンプトン散乱後のγ線のエネルギーも他の電子に与える等して全てのエネルギーをシンチレータ11内で消費した場合に起因して生成された光子は、第1シンチレータ11の出射面11oから出力され、第1光電子増倍管12に入射して、光電変換されて光電子を生成し、全吸収ピークに相当する第1パルス波高信号が第1アンプ15に出力される。
散乱γ線によりエネルギーを受け取った電子は、第2シンチレータ13-1~13-4内を移動し、正孔と結合した時点で光子を生成する。生成された光子は、第2シンチレータ13-1~13-4のそれぞれの出射面13oから出力され、対応する第2光電子増倍管14-1~14-4に入射して、光電変換されて光電子を生成し、第2パルス波高信号SP21~SP24がそれぞれ対応する第2アンプ16-1~16-4に出力される。
同様に第2アンプ16-2は、第2パルス波高信号SP22を増幅して第2増幅パルス波高信号ASP22をタイミング判定部19Bに出力し、第2アンプ16-3は、第2パルス波高信号SP23を増幅して第2増幅パルス波高信号ASP23をタイミング判定部19Bに出力し、第2アンプ16-4は、第2パルス波高信号SP24を増幅して第2増幅パルス波高信号ASP24をタイミング判定部19Bに出力する。
以上の説明においては、第1シンチレータ11は、四角柱状である場合について説明したが、多角柱状(三角柱以上)、あるいは、円柱状、球状などであっても、散乱電磁放射線を検出可能な位置に一組以上の第2シンチレータ及び第2光電子増倍管を配置可能な形状であれば同様に適用が可能である。
11 第1シンチレータ(第1シンチレーション検出器)
11i 入射面
11o 出射面
12 第1光電子増倍管(第1シンチレーション検出器)
12PE 光電面
13、13-1~13-4 第2シンチレータ(第2シンチレーション検出器)
13i 入射面
13o 出射面
14、14-1~14-4 第2光電子増倍管(第2シンチレーション検出器)
14PE 光電面
15 第1アンプ
16、16-1~16-4 第2アンプ
17 ゲーティング回路
18、18A、18B 多重波高分析機
19 タイミング判定部
19A タイミング判定部
19B タイミング判定部
ASP1 第1増幅パルス波高信号
ASP2、ASP21~ASP24 第2増幅パルス波高信号
CC コンプトン連続部
CE コンプトンエッジ
KX KX線ピーク
PE 全吸収ピーク
RS 後方散乱ピーク
SP1 第1パルス波高信号
SP2、SP21~SP24 第2パルス波高信号
γi 入射γ線
γs 散乱γ線
Claims (10)
- 電磁放射線の入射を検出する第1シンチレーション検出器と、
前記第1シンチレーション検出器内部で前記電磁放射線のコンプトン散乱により生じた散乱電磁放射線であって、前記第1シンチレーション検出器外に出た前記散乱電磁放射線を検出する第2シンチレーション検出器と、
前記第1シンチレーション検出器の検出タイミングと前記第2シンチレーション検出器の検出タイミングとが同一と見做せる場合以外の前記第1シンチレーション検出器の検出結果に基づいて多重波高分析を行う多重波高分析機と、
を備えた電磁放射線検出装置。 - 前記第1シンチレーション検出器は、電磁放射線の入射により光子を出力する第1シンチレータと、前記第1シンチレータにより出力された光子の光電変換を行い、第1パルス波高信号を出力する第1光電子増倍管と、前記第1パルス波高信号を増幅し、第1増幅パルス波高信号を前記検出結果として出力する第1増幅器と、を備え、
前記第2シンチレーション検出器は、前記第1シンチレータに隣接して配置され、前記第1シンチレータにおいてコンプトン散乱により生じた散乱電磁放射線であって、前記第1シンチレータから出た前記散乱電磁放射線の入射により光子を出力する第2シンチレータと、第2シンチレータにより出力された光子の光電変換を行い第2パルス波高信号を出力する第2光電子増倍管と前記第2パルス波高信号を増幅し、第2増幅パルス波高信号を出力する第2増幅器と、を備え、
前記多重波高分析機は、前記第1パルス波高信号の出力タイミングと前記第2パルス波高信号の出力タイミングとが同一と見做せる前記第1パルス波高信号以外の前記第1パルス波高信号に対応する前記第1増幅パルス信号を前記検出結果として前記多重波高分析を行う、
請求項1記載の電磁放射線検出装置。 - 前記第2シンチレータは、前記第1シンチレータにおいて生成された可視光を前記第2光電子増倍管側に透過させないように構成されている、
請求項2記載の電磁放射線検出装置。 - 前記第2シンチレータは、可視光の非透過性を有するように、シンチレータパウダーをペースト化して圧縮乾燥固化、厚膜化して構成されている、
請求項3記載の電磁放射線検出装置。 - 前記第2シンチレータと前記第1シンチレータとの間に、前記電磁放射線を透過し可視光を反射する反射材、あるいは、前記電磁放射線を透過し可視光を透過しない不透過材を設けた、
請求項3記載の電磁放射線検出装置。 - 前記第2パルス波高信号が出力された場合に、前記第1光電子増倍管の出力を遮断するゲーティング回路を備えた、
請求項2記載の電磁放射線検出装置。 - 前記多重波高分析機の前段に設けられ、入力された前記第1増幅パルス波高信号及び前記第2増幅パルス波高信号に基づいて、前記第2パルス波高信号の出力タイミングと前記第1パルス波高信号の出力タイミングとが同一と見做せるか否かを判定し、前記第1パルス波高信号の出力タイミングと前記第2パルス波高信号の出力タイミングとが同一と見做せる前記第1パルス波高信号に対応する前記第1増幅パルス信号を除外して、前記第1増幅パルス信号を出力するタイミング判定部を備え、
前記多重波高分析機は、前記タイミング判定部から出力された前記第1増幅パルス信号に基づいて前記多重波高分析を行う、
請求項2記載の電磁放射線検出装置。 - 前記第2シンチレータ及び当該第2シンチレータに対応する第2光電子増倍管及び第2増幅器を複数組み備え、
前記多重波高分析機の前段に設けられ、入力された前記第1増幅パルス波高信号及び複数の前記第2増幅パルス波高信号に基づいて、複数の前記第2パルス波高信号のそれぞれの出力タイミングと前記第1パルス波高信号の出力タイミングとが同一と見做せるか否かを判定し、前記第1パルス波高信号の出力タイミングといずれかの前記第2パルス波高信号の出力タイミングとが同一と見做せる前記第1パルス波高信号に対応する前記第1増幅パルス信号を除外して、前記第1増幅パルス信号を出力するタイミング判定部を備え、
前記多重波高分析機は、前記タイミング判定部から出力された前記第1増幅パルス信号に基づいて前記多重波高分析を行う、
請求項2記載の電磁放射線検出装置。 - 前記電磁放射線は、X線あるいはγ線である、
請求項1乃至請求項5のいずれかに記載の電磁放射線検出装置。 - 電磁放射線の入射を検出する第1シンチレーション検出器と、前記第1シンチレーション検出器内部で前記電磁放射線のコンプトン散乱により生じた散乱電磁放射線であって、前記第1シンチレーション検出器外に出た前記散乱電磁放射線を検出する第2シンチレーション検出器と、多重波高分析を行う多重波高分析機と、を備えた電磁放射線検出装置で実行される方法であって、
前記第1シンチレーション検出器の検出タイミングと前記第2シンチレーション検出器の検出タイミングとが同一と見做せるか否かを判定する過程と、
前記第1シンチレーション検出器の検出タイミングと前記第2シンチレーション検出器の検出タイミングとが同一と見做せる場合の前記第1シンチレーション検出器の検出結果を除外した前記第1シンチレーション検出器の検出結果に基づいて多重波高分析を行う過程と、
を備えた方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/046,179 US11194060B2 (en) | 2018-04-09 | 2018-04-09 | Electromagnetic radiation detector and method |
PCT/JP2018/014892 WO2019198125A1 (ja) | 2018-04-09 | 2018-04-09 | 電磁放射線検出装置及び方法 |
KR1020207028938A KR102202550B1 (ko) | 2018-04-09 | 2018-04-09 | 전자 방사선 검출 장치 및 방법 |
EP18914074.2A EP3764128B1 (en) | 2018-04-09 | 2018-04-09 | Electromagnetic radiation detection device and method |
JP2018555301A JP6480648B1 (ja) | 2018-04-09 | 2018-04-09 | 電磁放射線検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/014892 WO2019198125A1 (ja) | 2018-04-09 | 2018-04-09 | 電磁放射線検出装置及び方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019198125A1 true WO2019198125A1 (ja) | 2019-10-17 |
Family
ID=65718291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014892 WO2019198125A1 (ja) | 2018-04-09 | 2018-04-09 | 電磁放射線検出装置及び方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11194060B2 (ja) |
EP (1) | EP3764128B1 (ja) |
JP (1) | JP6480648B1 (ja) |
KR (1) | KR102202550B1 (ja) |
WO (1) | WO2019198125A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102596529B1 (ko) * | 2021-06-25 | 2023-10-31 | 한국원자력연구원 | 저준위 방사능 측정 장치 및 그 방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62115351A (ja) * | 1985-09-18 | 1987-05-27 | コ−ジエント リミテイド | 物質分析系 |
JPH01165984A (ja) * | 1987-11-10 | 1989-06-29 | Thomson Csf | 映像を電気信号に変換する装置 |
JPH09101371A (ja) * | 1995-10-06 | 1997-04-15 | Rikagaku Kenkyusho | ガンマ線検出方法及び検出装置 |
JP2001235546A (ja) * | 2000-02-23 | 2001-08-31 | Hitachi Ltd | 放射性ガス測定装置と燃料破損検出システム |
US20100072385A1 (en) * | 2008-04-28 | 2010-03-25 | Hua Peng | Radioactive material detecting and identifying device and method |
JP2013037008A (ja) * | 2012-10-01 | 2013-02-21 | National Agriculture & Food Research Organization | プラスチックシンチレータを検出器とした放射能探査装置 |
JP2014190754A (ja) | 2013-03-26 | 2014-10-06 | Sumitomo Heavy Ind Ltd | 中性子線量測定装置及び中性子捕捉療法装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3568054A (en) * | 1968-02-09 | 1971-03-02 | Hewlett Packard Co | Pulse height spectrum analysis method and means |
US3777144A (en) | 1972-01-19 | 1973-12-04 | Intertechnique Sa | Gamma spectrometry system for sample analysis |
JPS6215351A (ja) | 1985-07-08 | 1987-01-23 | 三菱レイヨン株式会社 | 仮撚複合スラブ糸からなる織編物 |
DE10058810A1 (de) * | 2000-11-27 | 2002-06-06 | Philips Corp Intellectual Pty | Röntgendetektormodul |
JP4601838B2 (ja) * | 2001-02-08 | 2010-12-22 | 株式会社東芝 | 燃焼度評価方法および装置 |
US7879284B2 (en) | 2006-01-30 | 2011-02-01 | Momentive Performance Materials Inc. | Method for making sintered cubic halide scintillator material |
JP4486623B2 (ja) * | 2006-08-11 | 2010-06-23 | 独立行政法人理化学研究所 | コンプトン撮像カメラ |
WO2008095257A1 (en) | 2007-02-09 | 2008-08-14 | University Of Wollongong | Dual radiation detector |
US8101919B2 (en) * | 2007-04-10 | 2012-01-24 | Lawrence Livermore National Security, Llc | Isotopic response with small scintillator based gamma-ray spectrometers |
JP2009047559A (ja) | 2007-08-20 | 2009-03-05 | Institute Of National Colleges Of Technology Japan | 窒素含有化合物の検知方法および装置 |
JP2019023579A (ja) * | 2017-07-24 | 2019-02-14 | コニカミノルタ株式会社 | シンチレータ |
CN206990810U (zh) * | 2017-07-31 | 2018-02-09 | 四川省核工业地质调查院 | 一种便携式反康普顿探测仪 |
-
2018
- 2018-04-09 EP EP18914074.2A patent/EP3764128B1/en active Active
- 2018-04-09 WO PCT/JP2018/014892 patent/WO2019198125A1/ja unknown
- 2018-04-09 KR KR1020207028938A patent/KR102202550B1/ko active IP Right Grant
- 2018-04-09 JP JP2018555301A patent/JP6480648B1/ja active Active
- 2018-04-09 US US17/046,179 patent/US11194060B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62115351A (ja) * | 1985-09-18 | 1987-05-27 | コ−ジエント リミテイド | 物質分析系 |
JPH01165984A (ja) * | 1987-11-10 | 1989-06-29 | Thomson Csf | 映像を電気信号に変換する装置 |
JPH09101371A (ja) * | 1995-10-06 | 1997-04-15 | Rikagaku Kenkyusho | ガンマ線検出方法及び検出装置 |
JP2001235546A (ja) * | 2000-02-23 | 2001-08-31 | Hitachi Ltd | 放射性ガス測定装置と燃料破損検出システム |
US20100072385A1 (en) * | 2008-04-28 | 2010-03-25 | Hua Peng | Radioactive material detecting and identifying device and method |
JP2013037008A (ja) * | 2012-10-01 | 2013-02-21 | National Agriculture & Food Research Organization | プラスチックシンチレータを検出器とした放射能探査装置 |
JP2014190754A (ja) | 2013-03-26 | 2014-10-06 | Sumitomo Heavy Ind Ltd | 中性子線量測定装置及び中性子捕捉療法装置 |
Non-Patent Citations (2)
Title |
---|
ISHIKAWA ET AL.: "Development of Real-time Thermal Neutron Monitor for Boron Neutron Capture Therapy", IONIZING RADIATION, vol. 31, no. 4, 2005, pages 279 - 285 |
See also references of EP3764128A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019198125A1 (ja) | 2020-04-30 |
US20210173101A1 (en) | 2021-06-10 |
US11194060B2 (en) | 2021-12-07 |
KR102202550B1 (ko) | 2021-01-13 |
KR20200123253A (ko) | 2020-10-28 |
EP3764128B1 (en) | 2024-09-18 |
JP6480648B1 (ja) | 2019-03-13 |
EP3764128A1 (en) | 2021-01-13 |
EP3764128A4 (en) | 2021-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8993970B2 (en) | Photomultiplier and detection systems | |
US8044357B2 (en) | Radiation dosimeter and radiation dose computing program | |
US20030160178A1 (en) | Scintillators for neutron detection and neutron detectors using the same | |
JPH0527043A (ja) | k吸収端フイルタおよびX線装置 | |
JP6480648B1 (ja) | 電磁放射線検出装置 | |
US8766206B2 (en) | Neutron detection based on energy spectrum characteristics | |
JP5431866B2 (ja) | 検出結果補正方法、その検出結果補正方法を用いた放射線検出装置、その検出結果補正方法を実行するためのプログラム、及びそのプログラムを記録する記録媒体 | |
Gridin et al. | Pulse shape analysis of individual gamma events—Correlation to energy resolution and the possibility of its improvement | |
Prosper et al. | Characterisation of cerium-doped lanthanum bromide scintillation detector | |
WO1997036310A1 (en) | A direct conversion x-ray/gamma-ray photocathode | |
KR102609389B1 (ko) | 복사선-기반의 두께 게이지 | |
RU2593617C1 (ru) | Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра | |
Johnson | Investigation of source-dependent contributions to photomultiplier noise | |
USH755H (en) | Optical remote diagnostics of atmospheric propagating beams of ionizing radiation | |
JP6327916B2 (ja) | 線種弁別放射線検出装置並びにこれを使用したサーベイメータ、放射線モニタ及び個人被ばく線量計 | |
RU2365944C1 (ru) | Детектор черенкова для регистрации импульсов гамма-излучения нано- и субнаносекундной длительности | |
Shu-Wei et al. | Monitoring the energy variation of an electron linac using a Cerenkov detector | |
Baskov et al. | Spectrometer–telescope calibration by cosmic muons | |
WO2023076325A3 (en) | Systems and methods for suppressing x-ray interference in radiation portal monitors | |
JP2019219264A (ja) | 放射線計測装置 | |
Yoshimori et al. | Positron annihilation radiation and> 10 MeV gamma-rays from the 1997 November 6 flare | |
Salvadori et al. | Monitoring of the ANTARES optical module efficiencies using 40 K decays in sea water | |
Bui-Van et al. | Gamma-Ray Spectrometry of Galactic Sources in the Energy Range 0.2–3.0 MeV | |
JPS6011187A (ja) | 放射線検出器 | |
Thompson | X-Ray Data Booklet Section 4.5 X-RAY DETECTORS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018555301 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18914074 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207028938 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018914074 Country of ref document: EP Effective date: 20201009 |