WO2019196806A1 - 灯具 - Google Patents

灯具 Download PDF

Info

Publication number
WO2019196806A1
WO2019196806A1 PCT/CN2019/081794 CN2019081794W WO2019196806A1 WO 2019196806 A1 WO2019196806 A1 WO 2019196806A1 CN 2019081794 W CN2019081794 W CN 2019081794W WO 2019196806 A1 WO2019196806 A1 WO 2019196806A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
lamp body
light source
luminaire according
lamp
Prior art date
Application number
PCT/CN2019/081794
Other languages
English (en)
French (fr)
Inventor
刘动
朱增龙
刘金花
卫庆军
王洪波
Original Assignee
苏州欧普照明有限公司
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州欧普照明有限公司, 欧普照明股份有限公司 filed Critical 苏州欧普照明有限公司
Publication of WO2019196806A1 publication Critical patent/WO2019196806A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements

Definitions

  • the present application relates to the field of lighting technologies, and in particular, to a lighting fixture.
  • the illuminating unit of the luminaire (such as the LED lamp bead) generates a large amount of heat while emitting light. If the heat is not exported in time, it will seriously affect the performance and safety of the illuminating unit. Therefore, the luminaire in the related art usually The thermal module will be set.
  • the embodiment of the present application provides a lamp to solve the above problem.
  • the embodiment of the present application provides a light fixture, including a light source module, a heat equalizing plate, a heat dissipation module, and a lamp body;
  • the light source module includes a light emitting unit and a light source substrate, the light source substrate has a first surface and a second surface facing away from each other, the light emitting unit is arranged on the first surface, and the heat equalizing plate is pasted Said second surface;
  • the heat-dissipating module is disposed between the heat-receiving plate and the lamp body, and the heat-dissipating module includes a plurality of heat-dissipating portions, and the heat-dissipating module is disposed between the heat-receiving plate and the lamp body.
  • the heat conducting portion is arranged along a surface of the heat equalizing plate, one end of the heat conducting portion is in thermal contact with a surface of the heat equalizing plate facing away from the light source substrate, and the other end of the heat conducting portion is connected to the lamp body .
  • the number and position of the heat conducting portions are in one-to-one correspondence with the light emitting unit.
  • the heat dissipation module further includes a first connecting portion, and the plurality of the light emitting units are arranged at least along the first direction, and any two of the heat conducting portions adjacent to the first direction are arbitrarily arranged Both are connected by the first connecting portion, wherein the first direction is parallel to the first surface.
  • the illuminating unit is arranged in a two-dimensional planar array along the first direction and the second direction
  • the heat dissipation module further includes a second connecting portion, optionally along the second direction
  • the adjacent heat conducting portions are connected by the second connecting portion, and the first connecting portion and the second connecting portion are also arranged in a rectangular array along the first direction and the second direction, wherein The second direction is parallel to the first surface and intersects the first direction, and the two adjacent first connecting portions, the two second connecting portions, and the four heat conducting portions are surrounded by Into a closed area.
  • the first connecting portion and/or the second connecting portion are provided with a notch, and two adjacent closed regions are communicated through the notch.
  • the closed area forms at least one air flow passage through the notch, and both ends of the air flow passage are communicated with the outside by the notch disposed at an edge of the two-dimensional planar array.
  • At least one row of the first connecting portions arranged along the second direction is provided with a first ventilation gap, and in the second direction, the first ventilation gap is formed correspondingly.
  • the first direction is a length direction of the array, and at least one row of the first connecting portions is spaced between two adjacent first air flow channels.
  • At least one row of the second connecting portions arranged along the first direction is provided with a second ventilation gap, and in the first direction, the second ventilation gap is formed correspondingly The second air flow passage.
  • the second connecting portion arranged along the first direction in each row is provided with a second ventilation gap.
  • the first direction is perpendicular to the second direction.
  • the luminaire further includes a lamp cover, the lamp cover covers the first surface, and the lamp cover and the lamp body together form a sealed space.
  • a sealing member is further included, and the sealing member seals the connection between the lamp cover and the lamp body.
  • the heat dissipation module is integrally formed with the lamp body.
  • the illuminator disclosed in the embodiment of the present invention can directly transfer the heat transfer plate to the second surface of the light source substrate, and the heat dissipation module is disposed between the heat equalization plate and the lamp body, so that the heat transferred from the light emitting unit to the light source substrate can be quickly transmitted to
  • the heat equalizing plates are evenly dispersed so that heat does not locally accumulate on the light source substrate, and then the heat is transferred from the heat conducting plate to the lamp body through the heat conducting portion, and finally transmitted from the lamp body to the outside of the lamp. Since the heat dissipation module is covered by the lamp body, it does not affect the shape of the lamp, and can also be protected by the lamp body to prevent surface area dust.
  • FIG. 1 is an exploded view of a light fixture disclosed in an embodiment of the present application.
  • the heat dissipation module of FIG. 2 only includes a heat conducting portion
  • the heat dissipation module of FIG. 3 includes a heat conducting portion and a first connecting portion.
  • the heat dissipation module of FIG. 4 includes a heat conducting portion, a first connecting portion, and a second connecting portion.
  • the heat dissipation module of FIG. 5 is further provided with a first ventilation gap and a second ventilation gap on the basis of FIG. 4 .
  • 10-light source module 100-lighting unit, 102-light source substrate, 102a first surface, 11-heating plate, 12-heating module, 120-heat conducting portion, 122-first connecting portion, 122a-first ventilation Notch, 124 - second connection, 124a - second ventilation notch, 13 - lamp body, 14 - lamp cover, 15-seal.
  • the embodiment of the present application discloses a lamp.
  • the lamp includes a light source module 10 , a heat equalizing plate 11 , a heat dissipation module 12 , and a lamp body 13 , and generally includes a lamp cover 14 .
  • the light source module 10 includes a light emitting unit 100 and a light source substrate 102.
  • the light emitting unit 100 is usually an LED lamp bead, and emits light and heat after being energized.
  • the light source substrate 102 is a PCB having a first surface 102a and a second surface (not shown) facing away from each other.
  • the light emitting unit 100 is arranged on the first surface 102a, and the light source substrate 102 obtains electric energy, control signals and the like.
  • the heat equalizing plate 11 is made of a material with high thermal conductivity, and the heat can be quickly transferred inside the heat equalizing plate 11 to achieve the purpose of dispersing heat evenly.
  • the heat equalizing plate 11 is attached to the second surface.
  • the lamp body 13 covers the surface of the heat-receiving plate 11 facing away from the light source substrate 102. In the case where the lamp comprises the lamp cover 14, the lamp cover 14 covers the first surface 102a, and the lamp body 13 will be enclosed with the lamp cover 14 to form a sealed surface.
  • the space is accommodating other components including the light-emitting module 10, the heat-receiving plate 11, and the heat-dissipating module 12.
  • a seal 15 may be provided at the joint of the globe 14 and the lamp body 13 to perform sealing.
  • the lamp body 13 can also be made of a material having a high thermal conductivity, but it is not excluded that the lamp body 13 can transfer heat quickly by other means such as a cooling system or the like.
  • the heat dissipating module 12 is disposed between the heat equalizing plate 11 and the lamp body 13.
  • the heat dissipating module 12 is made of a material having a high thermal conductivity. As shown in FIG. 2, the heat dissipating module 12 includes a plurality of heat conducting portions 120. The surface of the hot plate 11 is arranged, and one end of the heat conducting portion 120 is attached or otherwise in thermal contact with a side surface of the heat equalizing plate 11 facing away from the light source substrate 102, and the other end of the heat conducting portion 120 is connected to the lamp body 13.
  • the light emitting unit 100 generates a large amount of heat simultaneously when the light is emitted, and the heat is diffused and transmitted to the light source substrate 102 around the light emitting unit 100. Since the substrate of the light source substrate 102 is usually a resin material, the thermal conductivity is generally low, and the heat conduction performance is poor, so that heat accumulation is likely to occur. The problem that the heat equalizing plate 11 is adhered to the light source substrate 102 can effectively alleviate the problem. Since the heat conducting plate 11 itself has strong heat conduction capability and the contact area with the light source substrate 102 is large, the heat on the light source substrate 102 can pass through a large amount. The contact area is transferred to transfer heat on the light source substrate 102 to the heat equalizing plate 11 quickly.
  • the heat equalizing plate 11 transfers heat to the lamp body 13 through the heat conducting portion 120. Since the heat equalizing plate 11 has a high thermal conductivity, even if the contact area of the heat conducting portion 120 and the heat equalizing plate 11 is small, the heat equalizing plate 11 is Heat can also be quickly conducted to the heat conducting portion 120 and ultimately transfer heat to the outside through the lamp body 13.
  • the heat dissipation module 12 since the heat dissipation module 12 is covered by the lamp body 13, it does not affect the shape of the lamp, and can also be protected by the lamp body 13 to prevent surface area dust.
  • the heat dissipation module 12 and the lamp body 13 can be integrally formed to simplify the assembly process of the two.
  • the vicinity of the light-emitting unit 100 is the area where the heat is most concentrated.
  • the number and position of the heat-conducting portions 120 in this embodiment may be one-to-one corresponding to the light-emitting unit 100, such that the heat transfer portion
  • the distance between the 120 and the light emitting unit 100 is short, and most of the heat can be directly transmitted in a direction perpendicular to the first surface 102a, thereby reducing the heat transferred laterally to the light source substrate 102, further reducing the heat locality of the light source substrate 102.
  • the degree of accumulation is the degree of accumulation.
  • the light emitting unit 100 can be arranged in various manners, such as a rectangle, a circle, a ring, and the like. Assuming that there is a first direction a parallel to the first surface 102a, the light emitting units 100 are arranged at least along the first direction a, for example, when the light emitting unit 100 is arranged only along the first direction a. Of course, the usage of such an arrangement is low, and usually the light-emitting unit 100 is arranged in two directions to form a two-dimensional planar array.
  • the light emitting unit 100 can be arranged along the first direction a and the second direction b at the same time.
  • the most common case is that the first direction a and the second direction b are perpendicular to each other, so that the light emitting units 100 are arranged in a rectangular array.
  • the heat conducting portions 120 are also arranged in a corresponding rectangular array (see FIGS. 2 to 5).
  • first direction a and the second direction b may not be perpendicular, and may be arranged in a non-rectangular parallelogram array.
  • the number of the light-emitting units 100 in each row of the arrangement array shape is equal. If the number of the light-emitting units 100 in each row is not equal, it may be arranged in a plurality of array shapes such as a triangle, a trapezoid, or the like. Let me repeat.
  • heat transfer portion 120 Since the heat transfer portion 120 is directly connected to the heat equalizing plate 11 and the lamp body 13, heat can be substantially transmitted only from the heat equalizing plate 11 to the lamp body 13 in the heat transfer portion 120 without considering heat radiation. However, in the middle of the array, since the number of the light-emitting units 100 is large and the heat is relatively concentrated, such single-direction heat conduction by the heat-conducting portion 120 alone may not satisfy the long-time high-intensity lighting operation requirement.
  • the first connecting portion 122 is disposed in the heat dissipation module 12, and the two heat conducting portions 120 adjacent in the first direction a are all connected through the first connection.
  • the portion 122 is connected.
  • the heat in the heat conducting portion 120 can be conducted to the adjacent other heat conducting portion 120 in the first direction a while being conducted to the lamp body 13, and in this way, the heat along the central portion of the array can be
  • the first direction a is directly transmitted to the heat conducting portion 120 at the edge of the array, thereby dispersing the heat more quickly and uniformly, and more effectively preventing heat accumulation in the central portion of the array.
  • the heat dissipation module 12 may further include the second connecting portion 124, any along the edge.
  • the heat conducting portions 120 adjacent to each other in the second direction b are connected by the second connecting portion 124.
  • the first connecting portion 122 and the second connecting portion 124 may have the same size as the heat conducting portion 120 to have an integrated structure.
  • the flowing air is also a good heat transfer medium.
  • the heat dissipation module 12 includes only the first connecting portion 122, air is circulated around the heat conducting portion 120, and the heat dissipating module 12 includes the first connecting portion at the same time. 122 and the second connecting portion 124, the space around the heat conducting portion 120 is completely sealed by the adjacent two first connecting portions 122, the adjacent two second connecting portions 124 and the heat conducting portion 120 itself, forming a closed region Therefore, the air cannot flow in a direction parallel to the first surface 102a, and the heat-sealing plate 11 and the sealing of the lamp body 13 may even form a completely closed space. The air in this space is difficult to flow, so it can only accumulate heat and cannot be used for heat dissipation.
  • a gap may be provided on the first connecting portion 122 or the second connecting portion 124. Due to the existence of the notch, the adjacent two closed regions can communicate through the notch, and the gas can be formed between the adjacent closed regions. A certain gas circulates to transfer heat.
  • the closed areas form at least one air flow passage through the connection of the notches, and both ends of the air flow passage are communicated with the outside by the gaps disposed at the edges of the two-dimensional array, so that the closed area in the air flow passage is Gas circulation and heat exchange can be performed outside the rectangular array of the heat dissipation module 12.
  • first ventilation gaps 122a may be disposed on at least one row of first connection portions 122 arranged along the second direction b. In the second direction b, the first ventilation gaps 122a are formed correspondingly.
  • the first air flow channel (not labeled in the figure).
  • the first ventilation gap 122a may be located at an edge of the first connection portion 122 or may be located at a middle portion of the first connection portion 122 as long as the first connection portion 122 is not completely cut off. Due to the presence of the first air flow passage, the air around the heat transfer portion 120 can be made to flow, thereby discharging the hot air and entering the cold air to improve the heat dissipation effect.
  • the second ventilation portion 124a may be disposed on the second connection portion 124 arranged along the first direction a in the at least one row, and in the first direction a, the second ventilation gap 124a correspondingly forms the second air flow passage ( Not marked in the figure). In this way, air circulation can be performed simultaneously through the first air flow passage and the second air flow passage, and the heat dissipation effect is better.
  • the first ventilation gaps 122a may be disposed on each of the first connecting portions 122 arranged along the second direction b, or the second connections may be arranged in the first direction a in each row.
  • a second ventilation notch 124a is provided in each of the portions 124. This enables each of the spaces enclosed by the first connecting portion 122 and the second connecting portion 124 to be communicated by the first air flow passage and the second air flow passage.
  • this method causes the structure of the heat dissipation module 12 to be too complicated, resulting in an increase in processing cost.
  • a row or rows of first connecting portions 122 may be spaced between adjacent two first air flow channels.
  • the lamp provided by the embodiment of the present application is covered by the lamp body through the heat dissipation module, so that the shape of the lamp is not affected, and the surface of the dust can be prevented by the protection of the lamp body.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

本申请公开了一种灯具,包括光源模组、均热板、散热模组以及灯体;所述光源模组包括发光单元以及光源基板,所述光源基板具有相互背离的第一表面以及第二表面,所述发光单元排布在所述第一表面上,所述均热板贴合所述第二表面;所述灯体罩住所述均热板背离所述光源基板的一侧表面,所述散热模组位于所述均热板与所述灯体之间,所述散热模组包括若干导热部,若干所述导热部沿所述均热板的表面规则排列,所述导热部的一端与所述均热板背离所述光源基板的一侧表面热接触,所述导热部的另一端连接所述灯体。本申请实施例所提供的灯具通过散热模组被灯体所掩盖,因此不会影响灯具的造型,也可以受到灯体的保护而防止表面积尘。

Description

灯具 技术领域
本申请涉及照明技术领域,尤其涉及一种灯具。
背景技术
灯具的发光单元(例如LED灯珠)在发出光线的同时还会产生大量的热量,这些热量如果不能及时导出则会对发光单元的性能以及使用安全带来严重影响,因此相关技术中的灯具通常都会设置散热模组。
在相关技术中,为了获得良好的散热效果,大部分灯具均采用散热模组外置的方式,也就是将散热模组暴露在灯具的表面。
然而,这种设置方式会影响灯具的造型美观,且散热模组的表面极易积尘,不易清洗,最终影响灯具散热效果。
实用新型内容
本申请实施例提供一种灯具,以解决上述问题。
本申请实施例采用下述技术方案:
本申请实施例提供了一种灯具,包括光源模组、均热板、散热模组以及灯体;
所述光源模组包括发光单元以及光源基板,所述光源基板具有相互背离的第一表面以及第二表面,所述发光单元排布在所述第一表面上,所述均热板贴合所述第二表面;
所述灯体罩住所述均热板背离所述光源基板的一侧表面,所述散热模组位于所述均热板与所述灯体之间,所述散热模组包括若干导热部,若干所述导热部沿所述均热板的表面排列,所述导热部的一端与所述均热板背离所述光源基板的一侧表面热接触,所述导热部的另一端连接所述灯体。
优选地,上述的灯具中,所述导热部的数量与位置均与所述发光单元一一对应。
优选地,上述的灯具中,所述散热模组还包括第一连接部,若干所述发光单元至少沿第一方向排布,且任意沿所述第一方向相邻的两个所述导热部均通过所述第一连接部相连,其中,所述第一方向与所述第一表面相平行。
优选地,上述的灯具中,所述发光单元沿所述第一方向以及第二方向呈二维平面阵列排布,所述散热模组还包括第二连接部,任意沿所述第二方向相邻的所述导热部均通过所述第二连接部相连,所述第一连接部以及所述第二连接部也均沿所述第一方向以及所述第二方向呈矩形阵列排布,其中,所述第二方向与所述第一表面相平行且与所述第一方向相交,相邻的两个所述第一连接部、两个所述第二连接部以及四个导热部共同围成一个封闭区域。
优选地,上述的灯具中,所述第一连接部和/或所述第二连接部上设置有缺口,相邻的两个所述封闭区域通过所述缺口连通。
优选地,上述的灯具中,所述封闭区域通过所述缺口至少形成一条气流通道,所述气流通道的两端均由设置在所述二维平面阵列的边缘的所述缺口与外界连通。
优选地,上述的灯具中,至少一排沿所述第二方向排布的所述第一连接部上均设置有第一通气缺口,沿所述第二方向,所述第一通气缺口对应形成第一气流通道。
优选地,上述的灯具中,所述第一方向为所述阵列的长度方向,相邻两条所述第一气流通道之间至少间隔一排所述第一连接部。
优选地,上述的灯具中,至少一排沿所述第一方向排布的所述第二连接部上均设置有第二通气缺口,沿所述第一方向,所述第二通气缺口对应形成第二气流通道。
优选地,上述的灯具中,每一排沿所述第一方向排布的所述第二连接部上均设置有第二通气缺口。
优选地,上述的灯具中,所述第一方向与所述第二方向相垂直。
优选地,上述的灯具中,还包括灯罩,所述灯罩罩住所述第一表面,且所述灯罩与所述灯体共同围成密闭空间。
优选地,上述的灯具中,还包括密封件,所述密封件密封所述灯罩与所述灯体的连接处。
优选地,上述的灯具中,所述散热模组与所述灯体一体成型。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
本申请实施例公开的灯具通过在光源基板的第二表面贴合均热板,并将散热模组设置在均热板与灯体之间,能够使发光单元传递至光源基板的热量迅速传导至均热板并被平均分散,从而使热量不会在光源基板产生局部堆积,之后热量会再通过导热部由均热板传递至灯体,最终由灯体传导至灯具外部。由于散热模组被灯体所掩盖,因此不会影响灯具的造型,也可以受到灯体的保护而防止表面积尘。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例公开的灯具的爆炸视图;
图2至图5均为散热模组与灯体的俯视结构视图;其中:
图2中散热模组仅包括导热部,
图3中散热模组包括导热部与第一连接部,
图4中散热模组包括导热部、第一连接部以及第二连接部,
图5中散热模组在图4的基础上还设置有第一通气缺口以及第二通气缺口。
附图标记说明:
10-光源模组、100-发光单元、102-光源基板、102a第一表面、11-均热板、12-散热模组、120-导热部、122-第一连接部、122a-第一通气缺口、124-第二连接部、124a-第二通气缺口、13-灯体、14-灯罩、15-密封件。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
本申请实施例公开了一种灯具,如图1所示,灯具包括光源模组10、均热板11、散热模组12以及灯体13,通常还会包括灯罩14。光源模组10包括发光单元100以及光源基板102,发光单元100通常为LED灯珠,通电后会发出光和热。光源基板102为PCB,其具有相互背离的第一表面102a以及第二表面(图中未示出),发光单元100排布在第一表面102a上,通过光源基板102获得电能、控制信号等。
均热板11采用高导热率的材料制作,热量能够在均热板11内部快速传递,达到平均分散热量的目的。均热板11贴合在第二表面上。灯体13罩住均热板11背离光源基板102的一侧表面,在灯具包括灯罩14的情形下,灯罩14会罩住第一表面102a,同时灯体13将与灯罩14共同围成一个密闭空间,荣来容纳包括发光模组10、均热板11以及散热模组12在内的其它部件。此时,为了提高密闭空间的防水性能,可以在灯罩14与灯体13的连接处设置密封件15进行密封。为了能够快速传递热量,灯体13也可以采用高导热率的材料制作,但也不排除灯体13采用其它方式(例如冷却系统等)快速传递热量。
散热模组12位于均热板11与灯体13之间,散热模组12采用高导热率的 材料制造,如图2所示,散热模组12包括若干导热部120,若干导热部120沿均热板11的表面排列,导热部120的一端贴合或以其它方式与均热板11背离光源基板102的一侧表面形成热接触,导热部120的另一端则连接灯体13。
发光单元100在发出光线的同时会同步产生大量的热量,这些热量会以发光单元100为中心扩散传递至光源基板102上。由于光源基板102的基材通常为树脂材料,导热率普遍较低,热传导性能较差,因此易造成热量堆积。而将均热板11贴合在光源基板102上可以有效缓解该问题,由于均热板11自身热传导能力强,并且与光源基板102的接触面积大,因此光源基板102上的热量能够通过很大的接触面积进行传递,从而将光源基板102上的热量快速传递至均热板11上。之后均热板11再将热量通过导热部120传递至灯体13上,因为均热板11自身导热率高,因此即使导热部120与均热板11的接触面积较小,均热板11的热量也能够快速传导至导热部120上,并最终通过灯体13将热量传递至外界。
上述结构中由于散热模组12被灯体13所掩盖,因此不会影响灯具的造型,也可以受到灯体13的保护而防止表面积尘。在优选的方案中,散热模组12与灯体13可以一体成型,简化二者的装配工序。
由于热量由发光单元100发出,因此发光单元100附近是热量最集中的区域,为了提高散热效率,本实施例中的导热部120的数量与位置可以均与发光单元100一一对应,这样导热部120与发光单元100之间的距离较短,大部分热量可以直接沿着垂直于第一表面102a的方向传递,从而减小横向传递至光源基板102上的热量,进一步降低光源基板102的热量局部堆积程度。
如图1所示,在本实施例中,发光单元100可以呈各种方式排布,例如矩形、圆形、环形等。假定存在一个与第一表面102a相平行的第一方向a,这些发光单元100至少沿着第一方向a排布,例如当发光单元100仅沿第一方向a排布时会构成一条直线。当然,这种排布的使用率较低,通常发光单元100都会沿着两个方向排布,从而构成二维平面阵列。假定存在一个与第一表面102a 相平行并且与第一方向a相交(即不平行)的第二方向b,则发光单元100可以同时沿着第一方向a以及第二方向b进行排布。而最常见的情形是第一方向a与第二方向b相互垂直,从而使发光单元100呈矩形阵列排布。此时,因为发光单元100与导热部120是一一对应的,因此导热部120也会排成相应地矩形阵列(参见图2至图5)。当然,第一方向a与第二方向b也可以不垂直,此时可以排布成非矩形的平行四边形阵列。并且,上述排布阵列形状每一排的发光单元100的数量均相等,如果每一排的发光单元100的数量不等,则还可以排布为三角形、梯形等更多阵列形状,在此不再赘述。
导热部120由于直连接均热板11以及灯体13,因此在不考虑热辐射的前提下,热量在导热部120内基本只能够由均热板11向灯体13传导。而处于阵列中部的区域由于发光单元100数量较多,热量相对更为集中,因此仅依靠导热部120的这种单方向热传导可能并不能满足长时间高强度的照明作业需求。
为了应对这种情形,如图3所示,本实施例中可以考虑在散热模组12内设置第一连接部122,任意沿第一方向a相邻的两个导热部120均通过第一连接部122进行连接。这样,导热部120内的热量在传导至灯体13的同时还可以沿第一方向a传导至相邻的其它导热部120上,并且,通过这种方式,能够将位于阵列中部区域的热量沿第一方向a直接传递至位于阵列边缘的导热部120上,从而使热量分散的更为快速、均匀,更为有效地防止阵列中部区域的热量堆积。
同样的,如图4所示,当发光单元100与导热部120沿第一方向a与第二方向b同时延伸形成平面阵列时,散热模组12还可同时包括第二连接部124,任意沿第二方向b相邻的导热部120均通过所述第二连接部124相连。这样,位于阵列中部区域的热量可以同时沿着第一方向a以及第二方向b传递至边缘位置的导热部120上,散热效果更好。第一连接部122、第二连接部124可以与导热部120采用同一尺寸,使之成为一体结构。
流动的空气也是一种较好的传热介质,在散热模组12仅包括第一连接部 122时,导热部120的周围还能够进行空气流通,而当散热模组12同时包括第一连接部122与第二连接部124时,导热部120周围的空间会被相邻的两个第一连接部122、相邻的两个第二连接部124以及导热部120自身完全封住,形成封闭区域,使得空气无法沿着平行于第一表面102a的方向流动,再加上均热板11以及灯体13的封堵,甚至可能形成完全密闭的空间。该空间内的空气很难进行流动,因此只能够堆积热量而无法用于散热。
为了提高散热效果,可以在第一连接部122或者第二连接部124上设置缺口,由于缺口的存在,相邻的两个封闭区域能够通过缺口连通,气体可以在相邻的封闭区域之间形成一定的气体流通以传递热量。在较为优选的方案中,这些封闭区域通过缺口的连接至少形成一条气流通道,并且气流通道的两端均由设置在二维阵列的边缘的缺口与外界连通,这样处于该气流通道内的封闭区域便可与散热模组12的矩形阵列外界进行气体流通和热量交换。
具体地,如图5所示,可以在至少一排沿第二方向b排布的第一连接部122上均设置第一通气缺口122a,沿第二方向b,这些第一通气缺口122a对应形成第一气流通道(图中未标号)。第一通气缺口122a可以位于第一连接部122的边缘,也可以位于第一连接部122的中部,只要不将第一连接部122完全截断即可。由于第一气流通道的存在,便可使导热部120周围的空气能够进行流动,从而将热空气排出,冷空气进入,提高散热效果。
同样的,也可以在至少一排沿第一方向a排布的第二连接部124上均设置有第二通气缺口124a,沿第一方向a,第二通气缺口124a对应形成第二气流通道(图中未标号)。这样,可以通过第一气流通道与第二气流通道同时进行空气流通,散热效果更好。
在本实施例中,可以在每一排沿第二方向b排布的第一连接部122上均设置第一通气缺口122a,也可以在每一排沿第一方向a排布的第二连接部124上均设置第二通气缺口124a。这样能够使每个由第一连接部122以及第二连接部124所封闭的空间均被第一气流通道以及第二气流通道所连通。然而,这种方 式会造成散热模组12结构过于复杂,造成加工成本的上升。对于具有明显长度的阵列结构,例如以第一方向a为长度方向的阵列结构,相邻两条第一气流通道之间可以间隔一排或几排第一连接部122。
本申请实施例所提供的灯具通过散热模组被灯体所掩盖,因此不会影响灯具的造型,也可以受到灯体的保护而防止表面积尘。
本申请上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

  1. 一种灯具,其特征在于,包括光源模组、均热板、散热模组以及灯体;
    所述光源模组包括发光单元以及光源基板,所述光源基板具有相互背离的第一表面以及第二表面,所述发光单元排布在所述第一表面上,所述均热板贴合所述第二表面;
    所述灯体罩住所述均热板背离所述光源基板的一侧表面,所述散热模组位于所述均热板与所述灯体之间,所述散热模组包括若干导热部,若干所述导热部沿所述均热板的表面排列,所述导热部的一端与所述均热板背离所述光源基板的一侧表面热接触,所述导热部的另一端连接所述灯体。
  2. 根据权利要求1所述的灯具,其特征在于,所述导热部的数量与位置均与所述发光单元一一对应。
  3. 根据权利要求2所述的灯具,其特征在于,所述散热模组还包括第一连接部,若干所述发光单元至少沿第一方向排布,且任意沿所述第一方向相邻的两个所述导热部均通过所述第一连接部相连,其中,所述第一方向与所述第一表面相平行。
  4. 根据权利要求3所述的灯具,其特征在于,所述发光单元沿所述第一方向以及第二方向呈二维平面阵列排布,所述散热模组还包括第二连接部,任意沿所述第二方向相邻的所述导热部均通过所述第二连接部相连,所述第一连接部以及所述第二连接部也均沿所述第一方向以及所述第二方向呈矩形阵列排布,其中,所述第二方向与所述第一表面相平行且与所述第一方向相交,相邻的两个所述第一连接部、两个所述第二连接部以及四个导热部共同围成一个封闭区域。
  5. 根据权利要求4所述的灯具,其特征在于,所述第一连接部和/或所述第二连接部上设置有缺口,相邻的两个所述封闭区域通过所述缺口连通。
  6. 根据权利要求5所述的灯具,其特征在于,所述封闭区域通过所述缺口至少形成一条气流通道,所述气流通道的两端均由设置在所述二维平面阵列的边缘的所述缺口与外界连通。
  7. 根据权利要求6所述的灯具,其特征在于,至少一排沿所述第二方向排布的所述第一连接部上均设置有第一通气缺口,沿所述第二方向,所述第一通气缺口对应形成第一气流通道。
  8. 根据权利要求7所述的灯具,其特征在于,所述第一方向为所述阵列的长度方向,相邻两条所述第一气流通道之间至少间隔一排所述第一连接部。
  9. 根据权利要求4至8任一项所述的灯具,其特征在于,至少一排沿所述第一方向排布的所述第二连接部上均设置有第二通气缺口,沿所述第一方向,所述第二通气缺口对应形成第二气流通道。
  10. 根据权利要求9所述的灯具,其特征在于,每一排沿所述第一方向排布的所述第二连接部上均设置有第二通气缺口。
  11. 根据权利要求4至8任一项所述的灯具,其特征在于,所述第一方向与所述第二方向相垂直。
  12. 根据权利要求1至8任一项所述的灯具,其特征在于,还包括灯罩,所述灯罩罩住所述第一表面,且所述灯罩与所述灯体共同围成密闭空间。
  13. 根据权利要求12所述的灯具,其特征在于,还包括密封件,所述密封件密封所述灯罩与所述灯体的连接处。
  14. 根据权利要求1至8任一项所述的灯具,其特征在于,所述散热模组与所述灯体一体成型。
PCT/CN2019/081794 2018-04-09 2019-04-08 灯具 WO2019196806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820491560.5 2018-04-09
CN201820491560.5U CN207936021U (zh) 2018-04-09 2018-04-09 灯具

Publications (1)

Publication Number Publication Date
WO2019196806A1 true WO2019196806A1 (zh) 2019-10-17

Family

ID=63656685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081794 WO2019196806A1 (zh) 2018-04-09 2019-04-08 灯具

Country Status (2)

Country Link
CN (1) CN207936021U (zh)
WO (1) WO2019196806A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207936021U (zh) * 2018-04-09 2018-10-02 苏州欧普照明有限公司 灯具
CN109780485B (zh) * 2019-03-28 2023-12-01 苏州欧普照明有限公司 灯具
CN115102014A (zh) * 2022-07-11 2022-09-23 中国工程物理研究院激光聚变研究中心 光纤激光器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567341A (zh) * 2008-04-23 2009-10-28 富准精密工业(深圳)有限公司 均热板散热装置
CN201507851U (zh) * 2009-09-11 2010-06-16 光炬科技有限公司 发光二极管路灯
KR20140067392A (ko) * 2012-11-26 2014-06-05 주식회사 포스코엘이디 엘이디 조명 장치
CN206478486U (zh) * 2017-02-10 2017-09-08 众普森科技(株洲)有限公司 一种led泛光灯
CN206709024U (zh) * 2017-03-20 2017-12-05 成都众望联谊信息技术有限公司 一种大屏显示设备
CN206918664U (zh) * 2017-07-14 2018-01-23 厦门奈福电子有限公司 一种高寿命高透明散热快新型led灯具
CN207936021U (zh) * 2018-04-09 2018-10-02 苏州欧普照明有限公司 灯具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567341A (zh) * 2008-04-23 2009-10-28 富准精密工业(深圳)有限公司 均热板散热装置
CN201507851U (zh) * 2009-09-11 2010-06-16 光炬科技有限公司 发光二极管路灯
KR20140067392A (ko) * 2012-11-26 2014-06-05 주식회사 포스코엘이디 엘이디 조명 장치
CN206478486U (zh) * 2017-02-10 2017-09-08 众普森科技(株洲)有限公司 一种led泛光灯
CN206709024U (zh) * 2017-03-20 2017-12-05 成都众望联谊信息技术有限公司 一种大屏显示设备
CN206918664U (zh) * 2017-07-14 2018-01-23 厦门奈福电子有限公司 一种高寿命高透明散热快新型led灯具
CN207936021U (zh) * 2018-04-09 2018-10-02 苏州欧普照明有限公司 灯具

Also Published As

Publication number Publication date
CN207936021U (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
US7267461B2 (en) Directly viewable luminaire
US20170211801A1 (en) Air cooled horticulture lighting fixture with internal ballast
WO2019196806A1 (zh) 灯具
CN101566325B (zh) 发光二极管灯具
WO2018006621A1 (zh) 一种高效散热的防水舞台灯
EP2365246B1 (en) Convective heat-dissipating led illumination lamp
WO2017173778A1 (zh) 一种全方位对流的主动型散热器及应用该散热器的舞台灯
TW200949153A (en) Light-emitting diode module with heat dissipating structure and lamp with light-emitting diode module
US9752770B2 (en) Light-emitting diode light fixture with channel-type heat dissipation system
KR20090012385A (ko) Led 램프용 냉각장치
KR20080006979A (ko) 방열장치가 설치된 가로등 등기구
JP3203785U (ja) 流体冷却式ランプ
CN208124077U (zh) 一种高效散热的led筒灯
GB2464518A (en) Outdoor light emitting diode lamp with sunshade
US20180017245A1 (en) Lighting fixture
CN212132068U (zh) 灯具
TWI784587B (zh) 集魚燈具
WO2014036816A1 (zh) 照明装置
KR102334505B1 (ko) 디스플레이 냉각장치
CN111140799A (zh) 一种灯具
US20100073943A1 (en) Outdoor Light-Emitting Diode Light Fixture and Lamp Casing Device Thereof
CN204114671U (zh) Led灯
TWM548768U (zh) 雙效散熱型照明燈
CN206637430U (zh) 一种超薄led吸顶灯
CN211176573U (zh) 一种灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784523

Country of ref document: EP

Kind code of ref document: A1