WO2019196432A1 - 激光驱动装置 - Google Patents

激光驱动装置 Download PDF

Info

Publication number
WO2019196432A1
WO2019196432A1 PCT/CN2018/118834 CN2018118834W WO2019196432A1 WO 2019196432 A1 WO2019196432 A1 WO 2019196432A1 CN 2018118834 W CN2018118834 W CN 2018118834W WO 2019196432 A1 WO2019196432 A1 WO 2019196432A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
conversion module
laser driving
power
laser
Prior art date
Application number
PCT/CN2018/118834
Other languages
English (en)
French (fr)
Inventor
黄国生
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019196432A1 publication Critical patent/WO2019196432A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the utility model relates to the technical field of laser illumination, in particular to a laser driving device.
  • the function corresponding to the power supply is lost after a power failure, especially when the power supply of the main control system is lost, the whole machine cannot work, and can only wait for maintenance and reuse, time cost Too high. If the volume and cost are reduced, the power is concentrated, but the fuses are shared by the incoming line. Once a component fails, the fuse will burn out and the whole machine will be out of power. If the communication power supply adopts mutual backup redundancy, it takes more power and the cost increases, which leads to excessive product cost and lower product competitiveness.
  • the technical problem to be solved by the present invention is how to provide a more reliable laser driving device.
  • a laser driving apparatus comprising:
  • a first laser driving circuit comprising a first breaking module and a first constant current converting module connected in series, the first breaking module is connected to a power supply, and the first constant current conversion module is connected to the first laser module;
  • a second laser driving circuit comprising a second disconnecting module and a second constant current converting module connected in series, the second breaking module is connected to the power supply, and the second constant current conversion module is connected to the second laser module;
  • a first constant voltage conversion module one end of which is connected between the first circuit breaking module and the first constant current converting module, and the other end of which is connected to the switching control module;
  • a second constant voltage conversion module one end of which is connected between the second circuit breaking module and the second constant current conversion module, and the other end of which is connected to the switching control module;
  • the first laser driving circuit further includes a first power conversion module
  • the first circuit breaking module, the first power conversion module and the first constant current conversion module are connected in series;
  • One end of the first constant voltage conversion module is connected between the first circuit breaking module and the first power conversion module, and the other end thereof is connected to the switching control module.
  • the first laser driving circuit further includes a first power conversion module
  • the first circuit breaking module, the first power conversion module and the first constant current conversion module are connected in series;
  • One end of the first constant voltage conversion module is connected between the first power conversion module and the first constant current conversion module, and the other end thereof is connected to the switching control module.
  • the second laser driving circuit further includes a second power conversion module
  • the second circuit breaking module, the second power conversion module and the second constant current conversion module are connected in series;
  • One end of the second constant voltage conversion module is connected between the second circuit breaking module and the second power conversion module, and the other end thereof is connected to the switching control module.
  • the second laser driving circuit further includes a second power conversion module
  • the second circuit breaking module, the second power conversion module and the second constant current conversion module are connected in series;
  • One end of the second constant voltage conversion module is connected between the second power conversion module and the second constant current conversion module, and the other end thereof is connected to the switching control module.
  • the switching control module is connected to at least one of a heat sink, a communication device, and a micro control unit MCU (Microcontroller Unit).
  • MCU Microcontroller Unit
  • the switching control module is connected to at least one of a heat sink, a communication device, and a micro control unit MCU.
  • the switching control module is connected to at least one of a heat sink, a communication device, and a micro control unit MCU.
  • the first circuit breaking module and the second circuit breaking module include any one of the following:
  • Fuses self-recovery fuses, varistors, and transient suppression diodes.
  • a laser light source comprising the above laser driving device.
  • the laser driving device of the present disclosure independently backs up key parts such as a constant voltage conversion module and a constant current conversion module to form a special double backup, which not only reduces the cost of backup but also affects the main functions of various parts in the laser device. It makes the laser equipment very robust against the failure of some of its components.
  • FIG. 1 is a structural diagram of a laser driving device according to an exemplary embodiment.
  • FIG. 2 is a structural diagram of a laser driving apparatus according to an example of an exemplary embodiment.
  • FIG. 3 is a structural diagram of a laser driving apparatus according to an example of another exemplary embodiment.
  • FIG. 4 is a structural diagram of a laser driving apparatus according to an example of another exemplary embodiment.
  • FIG. 5 is a structural diagram of a laser driving apparatus according to an example of another exemplary embodiment.
  • FIG. 6 is a structural diagram of a laser driving device according to an example of another exemplary embodiment.
  • FIG. 7 is a structural diagram of a laser driving apparatus according to an example of another exemplary embodiment.
  • FIG. 1 is a structural diagram of a laser driving device according to an exemplary embodiment. As shown in FIG. 1, the laser driving device may include:
  • the first laser driving circuit includes a first breaking module 20 and a first constant current converting module 21 connected in series.
  • the first breaking module 20 is connected to a power supply, and the first constant current converting module 21 is connected to the first laser module 22.
  • the second laser driving circuit includes a second breaking module 30 and a second constant current converting module 31 connected in series, the second breaking module 30 is connected to the power supply 10, and the second constant current converting module 31 is connected to the second laser module 32.
  • the first constant voltage conversion module 41 has one end connected between the first breaking module 20 and the first constant current converting module 21, and the other end of which is connected to the switching control module 43.
  • the second constant voltage conversion module 42 has one end connected between the second breaking module 30 and the second constant current converting module 31, and the other end of which is connected to the switching control module 43.
  • the switching control module 43 is connected to the common power load 50.
  • the power supply is respectively connected to two laser driving circuits, and the laser driving circuit can convert the electric energy output from the power supply into a laser driving signal for driving the laser module to emit laser light.
  • the first constant current converting module 21 can convert the electric energy from the power supply source 10 into a constant current to drive the first laser module 22 to emit laser light.
  • the second constant current converting module 31 can convert the electric energy from the power supply source 10 into a constant current to drive the second laser module 32 to emit laser light.
  • the first constant current conversion module 21 is connected to the power supply 10 via the first disconnecting module 20, and the second constant current conversion module 31 is connected to the power supply 10 via the second disconnecting module 30 to form a backup of the constant current conversion module.
  • the first laser module 22 can include N first laser light emitting sub-modules, where N is a positive integer.
  • the first constant current conversion module 21 can convert the current of the first laser driving circuit into N constant currents, so that each constant current can drive one of the first laser emitting sub-modules to emit laser light.
  • the second laser module 32 can include an M-way second laser-emitting sub-module, where M is a positive integer.
  • the second constant current conversion module 31 can convert the current of the first laser driving circuit into a M constant current, so that each constant current can drive one second laser emitting submodule to emit laser light.
  • M and N may be the same or different, and a person skilled in the art may select an appropriate number of laser illuminating sub-modules as needed, which is not limited herein.
  • the first breaking module 20 can control the on and off between the first constant current conversion module 21 and the power supply 10, and the on and off between the first constant voltage conversion module 41 and the power supply 10.
  • the second breaking module 30 can control the on and off between the second constant current conversion module 31 and the power supply 10, and the on and off between the second constant voltage conversion module 42 and the power supply 10.
  • the first circuit breaking module 20 and the second circuit breaking module 30 cooperate to realize backup of the laser driving and system power consumption.
  • the first breaking module and the second breaking module may include any one of the following: a fuse, a self-recovering fuse, a varistor, and a transient suppression diode.
  • the fuse can also be called a current fuse, which can serve as an overload protection.
  • the fuse When the fuse is correctly placed in the circuit, the fuse will cut off the current when the current abnormally rises to a certain height and heat, thus protecting the safe operation of the circuit.
  • the self-recovering fuse can be an overcurrent electronic protection component.
  • the polymer organic polymer can be processed by a special process after being mixed with a conductive particle material under the conditions of high pressure, high temperature and vulcanization reaction.
  • the heat generated by the large current flowing through the self-recovering fuse causes the polymer resin to melt, the volume rapidly increases, the high-resistance state is formed, and the operating current is rapidly reduced, thereby limiting and protecting the circuit.
  • the self-recovery fuse When the fault is removed, the self-recovery fuse re-cools and crystallizes, the volume shrinks, the conductive particles re-form the conductive path, and the self-recovery fuse returns to a low-resistance state, thereby completing the protection of the circuit without manual replacement.
  • VDR Voltage Dependent Resistor
  • VDR can be a resistive device with nonlinear volt-ampere characteristics. It can be used to clamp the voltage when the circuit is under overvoltage, absorbing excess current to protect sensitive components.
  • the Transient Voltage Suppressor can be a high-performance protection device in the form of a diode.
  • the high-impedance between the two poles can be quickly changed to a low impedance, and the surge power of up to several kilowatts can be absorbed, so that the voltage between the two poles is clamped to a predetermined value, which is effective.
  • the ground protects the precision components in the electronic circuit from various surge pulses.
  • the first laser driving circuit and the second laser driving circuit can work at the same time or can back up each other.
  • the first constant current may be disconnected by the first breaking module 20.
  • the second constant current conversion module 31 of the second laser driving circuit can work normally to ensure that the second laser module 32 continues to emit light normally.
  • the first laser driving circuit is operated and the second laser driving circuit is backed up
  • the first constant current converting module 21 and the power supply 10 can be disconnected by the first breaking module 20. Connection.
  • the second constant current conversion module 31 of the second laser driving circuit and the power supply 10 can be connected by the second breaking module 30, so that the second laser module 32 emits light.
  • the operation of the second laser driving circuit and the backup of the first laser driving circuit are similar to those of the first laser driving circuit and the second laser driving circuit, and are not described herein again.
  • the first constant voltage conversion module and the second constant voltage conversion module can work at the same time or can back up each other.
  • the first constant voltage conversion module 41 and the second constant voltage conversion module 42 may use respective partial powers. If the function of the first constant voltage conversion module 41 and/or the first laser driving circuit fails, the connection between the first constant voltage conversion module 41 and the power supply source 10 can be disconnected by the first breaking module 20. At this time, the second constant voltage conversion module 42 can work normally to supply power for the common power load. The second constant voltage conversion module 42 can use all of its own power, and can also use its own partial power.
  • the power used by the first constant voltage conversion module 41 and the second constant voltage conversion module 42 can be selected as needed by a person skilled in the art, which is not limited herein.
  • the first constant voltage conversion module 41 and the power supply 10 can be disconnected by the first breaking module 20 the connection between.
  • the second constant voltage conversion module 42 can be connected to the power supply 10 through the second breaking module 30, and the power supply for supplying the common power load of the system is switched to the second constant voltage conversion by the switching control module 43. Module 42, thereby powering the utility load.
  • the principle of the second constant voltage conversion module working and the first constant voltage conversion module backup is similar to the operation of the first constant voltage conversion module and the second constant voltage conversion module backup, and details are not described herein again.
  • the laser driving device of the present disclosure independently backs up key parts such as a constant voltage conversion module and a constant current conversion module to form a special double backup, which not only reduces the cost of backup but also affects the main functions of various parts in the laser device. It makes the laser equipment very robust against the failure of some of its components. Therefore, the durability of the device can be enhanced, and the problem of the customer complaint caused by the interruption of the laser device or the inability to show the projector can be avoided.
  • FIG. 2 is a structural diagram of a laser driving apparatus according to an example of an exemplary embodiment. As shown in FIG. 2, the difference between FIG. 2 and FIG. 1 is that the first laser driving circuit further includes a first power conversion module 23.
  • the first circuit breaking module 20, the first power conversion module 23 and the first constant current conversion module 21 are connected in series.
  • the first constant voltage conversion module 41 has one end connected between the first circuit breaking module 20 and the first power conversion module 23, and the other end of which is connected to the switching control module 43.
  • the first power conversion module 23 can be used to implement power conversion to improve the power factor of the first constant current conversion module 21 and the first laser module 22, and reduce power loss.
  • FIG. 3 is different from FIG. 2 in that one end of the first constant voltage conversion module 41 is connected to the first power conversion module 23 and the The other end of the first constant current conversion module 21 is connected to the switching control module 43.
  • the first power conversion module 23 can be used to implement power conversion to improve the first constant current conversion module 21, the first laser module 22, the first constant voltage conversion module 41, the switching control module 43, and the public power supply.
  • the power factor of the load 50 reduces the power loss.
  • FIG. 4 is a structural diagram of a laser driving apparatus according to an example of another exemplary embodiment. As shown in FIG. 4, the difference between FIG. 4 and FIG. 1 is that the second laser driving circuit further includes a second power conversion module 33.
  • the second breaking module 30, the second electric energy conversion module 33 and the second constant current conversion module 31 are connected in series.
  • the second constant voltage conversion module 42 has one end connected between the second breaking module 30 and the second power conversion module 33, and the other end of which is connected to the switching control module 43.
  • the second power conversion module 33 can be used to implement power conversion to improve the power factor of the second constant current conversion module 31 and the second laser module 32, and reduce power loss.
  • FIG. 5 is different from FIG. 4 in that one end of the second constant voltage conversion module 42 is connected to the second power conversion module 33 and the second. The other end of the constant current conversion module 31 is connected to the switching control module 43.
  • the second power conversion module 33 can be used to implement power conversion to improve the second constant current conversion module 31, the second laser module 32, the second constant voltage conversion module 42, the switching control module 43, and the public power
  • the power factor of the load 50 reduces the power loss.
  • the first power conversion module 23 and the second power conversion module 33 may be PFC (Power Factor Correction) or a high voltage converter, which is not limited herein.
  • the first laser driving circuit further includes a first power conversion module 23, and the second laser driving circuit further includes a second power conversion module 33.
  • the first circuit breaking module 20, the first power conversion module 23 and the first constant current conversion module 21 are connected in series.
  • One end of the first constant voltage conversion module 41 may be connected between the first circuit breaking module 20 and the first power conversion module 23, or may be connected to the first power conversion module 23 and the first Between the constant current conversion modules 21, the other end of the first constant voltage conversion module 41 is connected to the switching control module 43.
  • the second breaking module 30, the second electric energy conversion module 33 and the second constant current conversion module 31 are connected in series.
  • One end of the second constant voltage conversion module 42 may be connected between the second circuit breaking module 30 and the second power conversion module 33, or may be connected to the second power conversion module 33 and the second constant current conversion module 31.
  • the other end of the first constant voltage conversion module 41 is connected to the switching control module 43.
  • a first power conversion module and a second power conversion module can be respectively connected to different positions in the laser driving device according to requirements to adjust power components of different parts of the circuit. There is no limit here.
  • the laser driving device of the present disclosure independently backs up key parts such as a constant voltage conversion module and a constant current conversion module to form a special double backup, which not only reduces the cost of backup but also affects the main functions of various parts in the laser device. It makes the laser equipment very robust against the failure of some of its components. Therefore, the durability of the device can be enhanced, and the problem of the customer complaint caused by the interruption of the laser device or the inability to show the projector can be avoided.
  • Fig. 7 is a block diagram showing a laser driving apparatus according to an example of another exemplary embodiment.
  • the common electrical load of the device such as the internal system of the projector, also includes, but is not limited to, a heat sink 501, a communication device 502, and a micro control unit MCU 503.
  • the switching control module 43 is connected to at least one of the heat sink 501, the communication device 502, and the micro control unit MCU 503.
  • the outputs of the first constant voltage conversion module 41 and the second constant voltage conversion module 42 are combined by the constant voltage output to the switching control module 43 to supply power to the common power load 50.
  • the common electrical load can be obtained from another unbroken disconnecting module, that is, in a single failure mode, the public electrical load cannot be prevented from being powered. A phenomenon occurs.
  • the power supply mode may include but is not limited to any of the following:
  • Method 1 Only one constant voltage conversion module is used to supply power to the common power load. When the constant voltage conversion module fails, it automatically switches to another constant voltage conversion module to supply power.
  • the first constant voltage conversion module 41 can be used to supply power to the common power load 50.
  • the second constant voltage conversion module 42 is automatically switched to supply power to the common power load 50. The first constant voltage conversion module 41 and the second constant voltage conversion module 42 are fully operated when power is supplied.
  • Method 2 Two constant voltage conversion modules are used to simultaneously supply power to the common power load. When co-powered, each constant voltage conversion module uses only a portion of its power. When one of the two constant voltage conversion modules fails, the other constant voltage conversion module uses its full power to power the common power load. For example, the first constant voltage conversion module 41 and the second constant voltage conversion module 42 can simultaneously supply power to the common power load 50. Wherein, in the case of the common power supply, the first constant voltage conversion module 41 and the second constant voltage conversion module 42 both use only the respective partial powers. When the first constant voltage conversion module 41 fails, the two constant voltage conversion modules 42 independently supply power to the common power load 50 using the full power.
  • a main function for example, a laser driving circuit
  • a main function for example, a laser driving circuit
  • a safety circuit breaker member for example, a first circuit breaker module and a second circuit breaker module
  • a safety circuit breaker member is used for each input end. In this way, a single failure of the back end (for example, any laser drive circuit failure) will disconnect the corresponding safety circuit breaker and supply the other part to continue normal operation.
  • Each laser driving circuit respectively includes a constant current conversion module, and the constant current conversion module is used to convert the energy into multiple constant currents, and drives the corresponding multiple laser modules to emit laser light, and the specific number of paths may be determined according to different items.
  • Each of the laser driving circuits further includes a power conversion module, and the power conversion module may be a power factor correction PFC or a high voltage conversion module, etc., for implementing the power conversion function.
  • System components are powered from two constant voltage conversion modules.
  • the function of the two constant voltage conversion modules is the same after the electric energy conversion module can be taken before the electric energy conversion module can be taken.
  • Any constant voltage conversion module can support the power supply of the system.
  • the constant voltage conversion module fails, it automatically switches to another constant voltage conversion module output.
  • two constant voltage conversion modules output at the same time only use their respective partial power. When one of them fails, the other uses full power to independently power the entire system component.
  • the public power part inside the power supply such as the MCU and communication power supply, or the cooling fan power supply, is powered by the self-backup constant voltage output. In this way, in the mode of failure of a single laser drive circuit, there is no way to supply power.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本实用新型涉及一种激光驱动装置,包括:第一激光驱动电路,其包括第一断路模块和第一恒流转换模块。第一断路模块与供电电源连接。第一恒流转换模块与第一激光模块连接。第二激光驱动电路,其包括第二断路模块和第二恒流转换模块。第二断路模块与供电电源连接。第二恒流转换模块与第二激光模块连接。第一恒压转换模块,其一端连接在第一断路模块和第一恒流转换模块之间,其另一端连接切换控制模块。第二恒压转换模块,其一端连接在第二断路模块和第二恒流转换模块之间,其另一端连接切换控制模块。切换控制模块,连接公共用电负载。本公开的激光驱动装置,既降低了备份的成本,又不影响激光设备中的各部分的主要功能可以增强设备的耐用性。

Description

激光驱动装置 技术领域
本实用新型涉及激光照明技术领域,尤其涉及一种激光驱动装置。
背景技术
在影院的激光驱动电源中,当有个别电源失效,特别是供控制系统的恒压电源失效时,会导致观影中止,或启动失效。如果工程人员来不及维修则将延误电影的上映并影响影院的其他节目安排,造成客诉上升。在使用高性能工程机进行展示播放时,如果其电源突然失效,会导致展示播放受阻,造成困扰。
相关技术中,如果采用多个电源分别供电,某电源失效后,对应被供电的功能就丧失,特别是主控系统供电丧失时,整个整机都无法工作,只能等待维修再用,时间成本过高。如果为降低体积和成本,集中起来供电,但进线共用保险丝,一旦某组件功能失效将导致保险丝烧毁,整机同样没电。如果采用通讯电源采用相互备份冗余,需占用更多的功率而成本上升,会导致产品的成本过高,降低产品竞争力。
实用新型内容
技术问题
有鉴于此,本实用新型要解决的技术问题是,如何提供一种更加可靠的激光驱动装置。
解决方案
根据本公开实施例的第一方面,提供一种激光驱动装置,包括:
第一激光驱动电路,其包括串联的第一断路模块和第一恒流转换模块, 第一断路模块与供电电源连接,第一恒流转换模块与第一激光模块连接;
第二激光驱动电路,其包括串联的第二断路模块和第二恒流转换模块,第二断路模块与供电电源连接,第二恒流转换模块与第二激光模块连接;
第一恒压转换模块,其一端连接在第一断路模块和第一恒流转换模块之间,其另一端连接切换控制模块;
第二恒压转换模块,其一端连接在第二断路模块和第二恒流转换模块之间,其另一端连接切换控制模块;
切换控制模块,连接公共用电负载。
对于上述激光驱动装置,在一种可能的实现方式中,
所述第一激光驱动电路还包括第一电能转换模块;
所述第一断路模块、所述第一电能转换模块和所述第一恒流转换模块依次串联;
所述第一恒压转换模块的一端连接在所述第一断路模块和所述第一电能转换模块之间,其另一端连接切换控制模块。
对于上述激光驱动装置,在一种可能的实现方式中,
所述第一激光驱动电路还包括第一电能转换模块;
所述第一断路模块、所述第一电能转换模块和所述第一恒流转换模块依次串联;
所述第一恒压转换模块的一端连接在所述第一电能转换模块和所述第一恒流转换模块之间,其另一端连接切换控制模块。
对于上述激光驱动装置,在一种可能的实现方式中,
所述第二激光驱动电路还包括第二电能转换模块;
所述第二断路模块、所述第二电能转换模块和所述第二恒流转换模块依次串联;
所述第二恒压转换模块的一端连接在所述第二断路模块和所述第二电 能转换模块之间,其另一端连接切换控制模块。
对于上述激光驱动装置,在一种可能的实现方式中,
所述第二激光驱动电路还包括第二电能转换模块;
所述第二断路模块、所述第二电能转换模块和所述第二恒流转换模块依次串联;
所述第二恒压转换模块的一端连接在所述第二电能转换模块和所述第二恒流转换模块之间,其另一端连接切换控制模块。
对于上述激光驱动装置,在一种可能的实现方式中,所述切换控制模块连接散热装置、通讯装置和微控制单元MCU(Microcontroller Unit,微控制单元)中的至少一个。
对于上述激光驱动装置,在一种可能的实现方式中,所述切换控制模块连接散热装置、通讯装置和微控制单元MCU中的至少一个。
对于上述激光驱动装置,在一种可能的实现方式中,所述切换控制模块连接散热装置、通讯装置和微控制单元MCU中的至少一个。
对于上述激光驱动装置,在一种可能的实现方式中,所述第一断路模块和第二断路模块包括以下任意一项:
保险丝、自恢复熔断器、压敏电阻和瞬态抑制二极管。
根据本公开实施例的第二方面,提供一种激光光源,包括上述激光驱动装置。
有益效果
本公开的激光驱动装置,分别对恒压转换模块和恒流转换模块等关键部分进行独立备份,形成特殊的双重备份,既降低了备份的成本,又不影响激光设备中的各部分的主要功能,使激光设备面对其部分组件失效时具备很强的鲁棒性。
根据下面参考附图对示例性实施例的详细说明,本实用新型的其它特征 及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本实用新型的示例性实施例、特征和方面,并且用于解释本实用新型的原理。
图1是根据一示例性实施例示出的一种激光驱动装置的结构图。
图2是根据一示例性实施例的一个示例示出的一种激光驱动装置的结构图。
图3是根据另一示例性实施例的一个示例示出的一种激光驱动装置的结构图。
图4是根据另一示例性实施例的一个示例示出的一种激光驱动装置的结构图。
图5是根据另一示例性实施例的一个示例示出的一种激光驱动装置的结构图。
图6是根据另一示例性实施例的一个示例示出的一种激光驱动装置的结构图。
图7是根据另一示例性实施例的一个示例示出的一种激光驱动装置的结构图。
具体实施方式
以下将参考附图详细说明本实用新型的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本实用新型,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本实用新型同样可以实施。在一些实例中,对于本领域技术人员熟知的LED驱动器、手段、元件和电路未作详细描述,以便于凸显本实用新型的主旨。
图1是根据一示例性实施例示出的一种激光驱动装置的结构图。如图1所示,该激光驱动装置可以包括:
第一激光驱动电路,其包括串联的第一断路模块20和第一恒流转换模块21,第一断路模块20与供电电源连接,第一恒流转换模块21与第一激光模块22连接。
第二激光驱动电路,其包括串联的第二断路模块30和第二恒流转换模块31,第二断路模块30与供电电源10连接,第二恒流转换模块31与第二激光模块32连接。
第一恒压转换模块41,其一端连接在第一断路模块20和第一恒流转换模块21之间,其另一端连接切换控制模块43。
第二恒压转换模块42,其一端连接在第二断路模块30和第二恒流转换模块31之间,其另一端连接切换控制模块43。
切换控制模块43,连接公共用电负载50。
在本实施例中,供电电源分别连接两个激光驱动电路,激光驱动电路能够将供电电源输出的电能转换为激光驱动信号,用来驱动激光模块发出激光。具体而言,在第一激光驱动电路中,第一恒流转换模块21可以将来自供电电源10的电能转换为恒定电流以驱动第一激光模块22发出激光。在第二激光驱动电路中,第二恒流转换模块31可以将来自供电电源10的电能转换为恒定电流以驱动第二激光模块32发出激光。并且,第一恒流转换模块21通过第一断路模块20与供电电源10连接,第二恒流转换模块31通过第二断路模块30与供电电源10连接,形成恒流转换模块的备份。
在一种可能的实现方式中,第一激光模块22可以包括N路第一激光发光子模块,其中,N为正整数。相对应的,第一恒流转换模块21可以将第一激光驱动电路的电流转换为N路恒定电流,以使每路恒定电流可以驱动一路第一激光发光子模块发出激光。
在一种可能的实现方式中,第二激光模块32可以包括M路第二激光发光子模块,其中,M为正整数。相对应的,第二恒流转换模块31可以将第一激光驱动电路的电流转换为M路恒定电流,以使每路恒定电流可以驱动一路第二激光发光子模块发出激光。
需要说明的是,M与N可以相同,也可以不同,本领域技术人员可以根据需要选择合适数量的激光发光子模块,在此不做限定。
在本公开中,第一断路模块20可以控制第一恒流转换模块21与供电电源10之间的通断,以及第一恒压转换模块41与供电电源10之间的通断。第二断路模块30可以控制第二恒流转换模块31与供电电源10之间的通断,以及第二恒压转换模块42与供电电源10之间的通断。第一断路模块20和第二断路模块30配合实现激光驱动与系统用电的备份。
作为本实施例的一个示例,所述第一断路模块和第二断路模块可以包括以下任意一项:保险丝、自恢复熔断器、压敏电阻和瞬态抑制二极管。
其中,保险丝(fuse)也可以被称为电流保险丝,可以起过载保护作用。电路中正确安置保险丝,保险丝就会在电流异常升高到一定的高度和热度的时候,自身熔断切断电流,保护了电路安全运行。
自恢复保险丝可以是一种过流电子保护元件。可以采用高分子有机聚合物在高压、高温,硫化反应的条件下,掺加导电粒子材料后,经过特殊的工艺加工而成。当线路发生短路或过载时,流经自恢复保险丝的大电流产生的热量使聚合树脂融化,体积迅速增长,形成高阻状态,工作电流迅速减小,从而对电路进行限制和保护。当故障排除后,自恢复保险丝重新冷却结晶, 体积收缩,导电粒子重新形成导电通路,自恢复保险丝恢复为低阻状态,从而完成对电路的保护,无须人工更换。
压敏电阻(Voltage Dependent Resistor,VDR)可以是一种具有非线性伏安特性的电阻器件。其可以用于在电路承受过压时进行电压钳位,吸收多余的电流以保护敏感器件。
瞬态抑制二极管(Transient Voltage Suppressor,TVS),可以是一种二极管形式的高效能保护器件。当TVS的两极受到反向瞬态高能量冲击时,能以快速将其两极间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值,有效地保护电子线路中的精密元器件,免受各种浪涌脉冲的损坏。
需要说明的是,本领域技术人员可以根据需要选择其他合适的过载/过流保护元件作为第一断路模块和第二断路模块,在此不做限定。
在实际应用场景中,第一激光驱动电路和第二激光驱动电路可以同时工作,也可以互相备份。
在第一激光驱动电路和第二激光驱动电路同时工作的情况下,如果第一激光驱动电路的功能失效例如第一激光模块过流或短路,可以通过第一断路模块20断开第一恒流转换模块21与供电电源10之间的连接。这时第二激光驱动电路的第二恒流转换模块31能够正常工作,保证第二激光模块32继续正常发光。
在第一激光驱动电路工作、第二激光驱动电路备份的情况下,如果第一激光驱动电路的功能失效,可以通过第一断路模块20断开第一恒流转换模块21与供电电源10之间的连接。这时,通过第二断路模块30可以使得第二激光驱动电路的第二恒流转换模块31与供电电源10之间连接,从而使得第二激光模块32发光。此外,第二激光驱动电路工作、第一激光驱动电路备份的原理与第一激光驱动电路工作、第二激光驱动电路备份类似,在此不再赘述。
在实际应用场景中,第一恒压转换模块和第二恒压转换模块可以同时工作,也可以互相备份。
在第一恒压转换模块41和第二恒压转换模块42同时工作的情况下,第一恒压转换模块41和第二恒压转换模块42可以使用各自的部分功率。如果第一恒压转换模块41和/或第一激光驱动电路的功能失效,可以通过第一断路模块20断开第一恒压转换模块41与供电电源10之间的连接。这时第二恒压转换模块42能够正常工作,为公共用电负载正常供电,其中,第二恒压转换模块42可以使用自身全部功率,也可以使用自身部分功率。
需要说明的是,本领域技术人员可以根据需要选择合适的功率数值作为第一恒压转换模块41和第二恒压转换模块42工作时所使用的功率,在此不做限定。
在第一恒压转换模块工作、第二恒压转换模块备份的情况下,如果第一激光驱动电路的功能失效,可以通过第一断路模块20断开第一恒压转换模块41与供电电源10之间的连接。这时,通过第二断路模块30可以使得第二恒压转换模块42与供电电源10之间连接,并通过切换控制模块43将为系统的公共用电负载供电的电源切换到第二恒压转换模块42,从而为公共用电负载供电。此外,第二恒压转换模块工作、第一恒压转换模块备份的原理与第一恒压转换模块工作、第二恒压转换模块备份类似,在此不再赘述。
本公开的激光驱动装置,分别对恒压转换模块和恒流转换模块等关键部分进行独立备份,形成特殊的双重备份,既降低了备份的成本,又不影响激光设备中的各部分的主要功能,使激光设备面对其部分组件失效时具备很强的鲁棒性。因此,可以增强设备的耐用性,避免由于激光设备放映中断或无法放映等产生的客诉问题。
图2是根据一示例性实施例的一个示例示出的一种激光驱动装置的结构图。如图2所示,图2与图1之间的区别在于,所述第一激光驱动电路还包括 第一电能转换模块23。所述第一断路模块20、所述第一电能转换模块23和所述第一恒流转换模块21依次串联。其中,所述第一恒压转换模块41的一端连接在所述第一断路模块20和所述第一电能转换模块23之间,其另一端连接切换控制模块43。
在本实施例中,第一电能转换模块23可以用于实现电能转换以提高第一恒流转换模块21、第一激光模块22的功率因数,减小供电损失。
在一种可能的实现方式中,如图3所示,图3与图2的不同之处在于,所述第一恒压转换模块41的一端连接在所述第一电能转换模块23和所述第一恒流转换模块21之间,其另一端连接切换控制模块43。
在本实施例中,第一电能转换模块23可以用于实现电能转换以提高第一恒流转换模块21、第一激光模块22、第一恒压转换模块41、切换控制模块43和公共用电负载50的功率因数,减小供电损失。
图4是根据另一示例性实施例的一个示例示出的一种激光驱动装置的结构图。如图4所示,图4与图1之间的区别在于,所述第二激光驱动电路还包括第二电能转换模块33。所述第二断路模块30、所述第二电能转换模块33和所述第二恒流转换模块31依次串联。其中,所述第二恒压转换模块42的一端连接在所述第二断路模块30和所述第二电能转换模块33之间,其另一端连接切换控制模块43。
在本实施例中,第二电能转换模块33可以用于实现电能转换以提高第二恒流转换模块31、第二激光模块32的功率因数,减小供电损失。
在一种可能的实现方式中,如图5所示,图5与图4的不同之处在于,所述第二恒压转换模块42的一端连接在所述第二电能转换模块33与第二恒流转换模块31之间,其另一端连接切换控制模块43。
在本实施例中,第二电能转换模块33可以用于实现电能转换以提高第二恒流转换模块31、第二激光模块32、第二恒压转换模块42、切换控制模块43 和公共用电负载50的功率因数,减小供电损失。
在本实施例中,第一电能转换模块23和第二电能转换模块33可以为PFC(Power Factor Correction,功率因数校正)或高压转换器,在此不做限定。
在一种可能的实现方式中,如图6所示,所述第一激光驱动电路还包括第一电能转换模块23,并且所述第二激光驱动电路还包括第二电能转换模块33。
所述第一断路模块20、所述第一电能转换模块23和所述第一恒流转换模块21依次串联。其中,所述第一恒压转换模块41的一端既可以连接在所述第一断路模块20和所述第一电能转换模块23之间,也可以连接在所述第一电能转换模块23和第一恒流转换模块21之间,第一恒压转换模块41的另一端连接切换控制模块43。
所述第二断路模块30、所述第二电能转换模块33和所述第二恒流转换模块31依次串联。其中,所述第二恒压转换模块42的一端既可以连接在第二断路模块30和第二电能转换模块33之间,也可以连接在第二电能转换模块33与第二恒流转换模块31之间,第一恒压转换模块41的另一端连接切换控制模块43。
需要说明的是,本领域技术人员可以根据需要将第一电能转换模块和第二电能转模块分别连接在所述激光驱动装置中的不同位置,以调整电路不同部分功率因数。在此不做限定。
本公开的激光驱动装置,分别对恒压转换模块和恒流转换模块等关键部分进行独立备份,形成特殊的双重备份,既降低了备份的成本,又不影响激光设备中的各部分的主要功能,使激光设备面对其部分组件失效时具备很强的鲁棒性。因此,可以增强设备的耐用性,避免由于激光设备放映中断或无法放映等产生的客诉问题。
图7是根据另一示例性实施例的一个示例示出的一种激光驱动装置的结 构图。如图7所示,设备例如投影仪内部系统的公共用电负载还包括但不限于连接散热装置501、通讯装置502和微控制单元MCU503。所述切换控制模块43连接散热装置501、通讯装置502和微控制单元MCU503中的至少一个。
作为本实施例的一个示例,第一恒压转换模块41与第二恒压转换模块42的输出,通过恒压输出汇合到切换控制模块43为公共用电负载50供电。这样,可以保障在其中一个断路模块断开的情况下,能够保证公共用电负载可以从另一个未断开的断路模块处获得供电,即在单一失效模式下,防止公共用电负载无法供电的现象发生。
在本示例中,供电方式可以包括但不限于以下任意一种:
方式一:只采用一个恒压转换模块对公共用电负载供电,在该恒压转换模块失效时,自动切换至另一个恒压转换模块供电。例如,可以只采用第一恒压转换模块41对公共用电负载50供电,当第一恒压转换模块41失效时,自动切换为第二恒压转换模块42对公共用电负载50供电。其中,第一恒压转换模块41与第二恒压转换模块42在供电时满额工作。
方式二:采用两个恒压转换模块同时对公共用电负载供电。在共同供电时,各恒压转换模块只使用各自的部分功率。当其中一个两个恒压转换模块失效时,另一个恒压转换模块使用其满额功率为公共用电负载供电。例如,可以同时采第一恒压转换模块41与第二恒压转换模块42同时对公共用电负载50供电。其中,在共同供电时,第一恒压转换模块41与第二恒压转换模块42都只使用各自的部分功率。当第一恒压转换模块41失效时,二恒压转换模块42使用满额功率独立为公共用电负载50供电。
在一种应用示例中,把主要功能(例如激光驱动电路)分成2部分(例如第一激光驱动电路和第二激光驱动电路)。每一部分的输入端分别用一个保险断路器件(例如第一断路模块和第二断路模块)。这样后端的单一失效(例如任一激光驱动电路失效),将对应的保险断路器件断开供电,另一部 分可以继续正常工作。
每个激光驱动电路分别包含恒流转换模块,恒流转换模块用于把能量转成多路恒流的方式,驱动相应的多路激光模块发出激光,具体路数可以根据不同项目而定。
每个激光驱动电路还分别包含电能转换模块,电能转换模块可以是功率因数校正PFC或高压转换模块等,用于实现电能转换功能。
系统元件(例如上述的公共用电负载)取电自两个恒压转换模块。可以取电自电能转换模块之前,也可取电子电能转换模块之后,两个恒压转换模块的功能是一样的。任一个恒压转换模块即能支撑系统的供电。两个恒压转换模块的输出,通过恒压输出汇合的自切换备份部分(例如切换控制模块)。平时只有一个恒压转换模块输出。当该恒压转换模块失效时,自动切换为另一个恒压转换模块输出。或两个恒压转换模块同时输出,都只使用各自的部分功率。当其中一个失效时,另一个使用满额功率独立为整个系统元件供电。
电源内部的公共用电部分,如MCU及通讯供电,或散热风扇供电,由自备份后的恒压输出供电。这样在单一激光驱动电路失效的模式下,就不会没法供电。
以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种激光驱动装置,其特征在于,包括:
    第一激光驱动电路,其包括串联的第一断路模块和第一恒流转换模块,第一断路模块与供电电源连接,第一恒流转换模块与第一激光模块连接;
    第二激光驱动电路,其包括串联的第二断路模块和第二恒流转换模块,第二断路模块与供电电源连接,第二恒流转换模块与第二激光模块连接;
    第一恒压转换模块,其一端连接在第一断路模块和第一恒流转换模块之间,其另一端连接切换控制模块;
    第二恒压转换模块,其一端连接在第二断路模块和第二恒流转换模块之间,其另一端连接切换控制模块;
    切换控制模块,连接公共用电负载。
  2. 根据权利要求1所述的激光驱动装置,其特征在于,
    所述第一激光驱动电路还包括第一电能转换模块;
    所述第一断路模块、所述第一电能转换模块和所述第一恒流转换模块依次串联;
    所述第一恒压转换模块的一端连接在所述第一断路模块和所述第一电能转换模块之间,其另一端连接切换控制模块。
  3. 根据权利要求1所述的激光驱动装置,其特征在于,
    所述第一激光驱动电路还包括第一电能转换模块;
    所述第一断路模块、所述第一电能转换模块和所述第一恒流转换模块依次串联;
    所述第一恒压转换模块的一端连接在所述第一电能转换模块和所述第一恒流转换模块之间,其另一端连接切换控制模块。
  4. 根据权利要求1至3中任一项所述的激光驱动装置,其特征在于,
    所述第二激光驱动电路还包括第二电能转换模块;
    所述第二断路模块、所述第二电能转换模块和所述第二恒流转换模块依 次串联;
    所述第二恒压转换模块的一端连接在所述第二断路模块和所述第二电能转换模块之间,其另一端连接切换控制模块。
  5. 根据权利要求1至3中任一项所述的激光驱动装置,其特征在于,
    所述第二激光驱动电路还包括第二电能转换模块;
    所述第二断路模块、所述第二电能转换模块和所述第二恒流转换模块依次串联;
    所述第二恒压转换模块的一端连接在所述第二电能转换模块和所述第二恒流转换模块之间,其另一端连接切换控制模块。
  6. 根据权利要求1至3中任意一项所述的激光驱动装置,其特征在于,所述切换控制模块连接散热装置、通讯装置和微控制单元MCU中的至少一个。
  7. 根据权利要求1至3中任意一项所述的激光驱动装置,其特征在于,所述第一断路模块和第二断路模块包括以下任意一项:
    保险丝、自恢复熔断器、压敏电阻和瞬态抑制二极管。
  8. 一种激光光源,其特征在于,包括权利要求1至7中任意一项所述的激光驱动装置。
PCT/CN2018/118834 2018-04-11 2018-12-03 激光驱动装置 WO2019196432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820511895.9U CN208226667U (zh) 2018-04-11 2018-04-11 激光驱动装置
CN201820511895.9 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019196432A1 true WO2019196432A1 (zh) 2019-10-17

Family

ID=64514787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118834 WO2019196432A1 (zh) 2018-04-11 2018-12-03 激光驱动装置

Country Status (2)

Country Link
CN (1) CN208226667U (zh)
WO (1) WO2019196432A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209881490U (zh) * 2019-06-19 2019-12-31 深圳光峰科技股份有限公司 电源切换电路及电源装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070110111A1 (en) * 2005-11-14 2007-05-17 Shipp David D Power system for ultraviolet lighting
CN102646917A (zh) * 2012-05-11 2012-08-22 中国科学院半导体研究所 一种激光投影机激光光源的驱动电路
CN203840581U (zh) * 2014-05-16 2014-09-17 重庆瑞升康博电气有限公司 具有冗余功能的led灯具驱动电源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070110111A1 (en) * 2005-11-14 2007-05-17 Shipp David D Power system for ultraviolet lighting
CN102646917A (zh) * 2012-05-11 2012-08-22 中国科学院半导体研究所 一种激光投影机激光光源的驱动电路
CN203840581U (zh) * 2014-05-16 2014-09-17 重庆瑞升康博电气有限公司 具有冗余功能的led灯具驱动电源

Also Published As

Publication number Publication date
CN208226667U (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
JP7250842B2 (ja) 光起電力快速遮断システムの起動方法、応用装置及びシステム
AU2009268165B2 (en) High-speed circuit breaker for a high-performance battery in an isolated direct current network
CN103096561B (zh) 一种led光源的恒流驱动器
CN103618286B (zh) 一种瞬时过压保护电路
WO2019196432A1 (zh) 激光驱动装置
CN105049017B (zh) 一种带自分断的固态继电器
KR20180132695A (ko) 본질 안전 전기 출력 전력 및 방폭형 조명기구를 제공하기 위한 모듈
CN105794065A (zh) 机器人控制装置的保护电路
TWI451658B (zh) 接線盒、電力系統及其控制方法
JP2011010483A (ja) 電流分離器及び電流遮断装置
JP2012147518A (ja) 隔離型交流故障電流制限回路
TWM464913U (zh) 不斷電系統電壓異常保護電路
JP6223803B2 (ja) 直流遮断装置
CN203352914U (zh) 一种led保护装置
US9312678B2 (en) Surge protection device
CN114744586A (zh) 一种电源短路防护和备份电源自动切换系统
JP2018198222A (ja) 電源装置の保護装置
JP2004215323A (ja) 保護回路
JP2012133939A (ja) 発光ダイオード点灯装置及び該発光ダイオード点灯装置を用いた照明装置
CN112260248A (zh) 一种过电压保护电路及电子设备
WO2020083393A1 (zh) 电源的过温保护电路、方法及系统
CN215897280U (zh) 继电电路、继电装置以及端子台
JP6553252B2 (ja) 電源装置の保護装置
CN219018458U (zh) 一种电源自切断保护电路及电子设备
KR101563278B1 (ko) 엘이디 조명 제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914034

Country of ref document: EP

Kind code of ref document: A1