JP6223803B2 - 直流遮断装置 - Google Patents

直流遮断装置 Download PDF

Info

Publication number
JP6223803B2
JP6223803B2 JP2013254051A JP2013254051A JP6223803B2 JP 6223803 B2 JP6223803 B2 JP 6223803B2 JP 2013254051 A JP2013254051 A JP 2013254051A JP 2013254051 A JP2013254051 A JP 2013254051A JP 6223803 B2 JP6223803 B2 JP 6223803B2
Authority
JP
Japan
Prior art keywords
circuit
parallel
current
power transmission
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013254051A
Other languages
English (en)
Other versions
JP2015115096A (ja
Inventor
俊介 玉田
俊介 玉田
中沢 洋介
洋介 中沢
隆太 長谷川
隆太 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013254051A priority Critical patent/JP6223803B2/ja
Publication of JP2015115096A publication Critical patent/JP2015115096A/ja
Application granted granted Critical
Publication of JP6223803B2 publication Critical patent/JP6223803B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Electronic Switches (AREA)

Description

本発明の実施形態は、直流送電系統の事故点を切り離す直流遮断装置に関する。
環境への負荷低減や、電源の多様化といった観点から、風力発電や太陽光発電などの再生可能エネルギーの普及が進んでいる。また、それら電源の大規模化が進んでおり、例えば、洋上での風力発電や、砂漠地帯での太陽光又は太陽熱発電などが実用化され始めている。洋上や砂漠は、電力需要地となる都市部から地理的に離れていることが多く、送電距離が長くなる。このような長距離の送電には、一般的に用いられている交流送電システムに代わって、高圧直流送電(HVDC;high-voltage, direct current)が適用されることがある。
HVDCは、長距離大電力送電に適用した場合に、従来の交流送電システムに比べて、低コストで送電損失が少ないシステムを構築することが可能である。しかしながら、HVDCにおいては、落雷等に起因する系統事故が生じた場合、事故点を切り離すことが容易ではない。というのも、交流では、電流が周波数50Hzまたは60Hzの半サイクルごとにゼロを横切る点で電流遮断ができるが、直流電流では電流がゼロを横切る点がない。そのため、系統に設けられた断路器の接点を単に切り離しても、接点間にアークが生じて電流が流れ続けてしまう。
HVDCにおける直流遮断装置として、例えば、機械式断路器に並列にLC回路を接続した構成が提案されている。この遮断装置は、電流遮断の際にLC回路から機械式断路器へ共振電流を流し、機械式断路器に流れる電流のゼロ点をつくり遮断を実現している。しかし、共振のゼロ点で遮断を行うため、ゼロ点が継続せず、遮断が完了するまでに時間がかかっていた。
一方、機械式断路器の代わりに半導体遮断器を用いることで、高速遮断を行うことが提案されている。半導体遮断器は、送電系統に直列に接続された半導体素子と、半導体素子に対して並列に接続されたアレスタとを有する。半導体遮断器は、系統事故が生じて事故電流が流れ込んだ際に、半導体素子を非導通に切り換える。流れ込んだ電流はアレスタによって吸収され、電流遮断が実現する。
国際公開WO2010/045360号公報 欧州特許0867998B1
しかしながら、半導体遮断器を用いた場合、送電系統に複数の半導体素子を設ける必要がある。そのため、通常運転時であっても、送電される電力が常時複数の半導体素子を通過することになり、導通損失が発生して送電効率の低下を招く可能性があった。
上記目的を達成するために、実施形態の直流遮断器は、直流送電系統に設けられる機械式断路器と、前記機械式断路器に並列に接続される並列回路と、を備え、前記並列回路は、当該並列回路への前記直流送電系統の電流の供給及び遮断を切り換える半導体遮断器と、前記半導体遮断器に直列に接続され、複数のスイッチング素子及びコンデンサを有し、前記並列回路に前記直流送電系統の電流が供給されると、出力電圧の制御により、前記機械式断路器に流れる電流の量を制御するHブリッジ回路と、を備え、前記並列回路は、前記Hブリッジ回路に並列接続する抵抗を有する。
上記目的を達成するために、実施形態の直流遮断器は、直流送電系統に設けられる機械式断路器と、前記機械式断路器に並列に接続される並列回路と、を備え、前記並列回路は、当該並列回路への前記直流送電系統の電流の供給及び遮断を切り換える半導体遮断器と、前記半導体遮断器に直列に接続され、複数のスイッチング素子及びコンデンサを有し、前記並列回路に前記直流送電系統の電流が供給されると、出力電圧の制御により、前記機械式断路器に流れる電流の量を制御するHブリッジ回路と、を備える。
第1の実施形態に係る直流遮断装置の構成を示す図である。 第2の実施形態に係る直流遮断装置の構成を示す図である。 第3の実施形態に係る直流遮断装置の構成を示す図である。 第4の実施形態に係る直流遮断装置の構成を示す図である。
以下、実施形態に係る直流遮断装置について、図面を参照して説明する。なお、実施形態の説明において「通常時」とは、直流送電系統において正常な電流が流れている状態をいい、「事故時」とは、雷等に起因する系統事故によって、過大な事故電流が生じた状態をいう。
(第1の実施形態)
(構成)
図1に示すように、直流送電系統において、2つの直流送電網A,Bを接続する送電線が設けられている。送電線には正側100と負側101があるが、本実施形態の直流遮断装置1は、正側に設けられている。正側では、直流送電網Aから直流送電網Bへ送電されている。
直流遮断装置1は、送電線100に直列に接続された機械式断路器2と、この機械式断路器2に並列に接続された並列回路3とを備えている。
機械式断路器2は、公知の種々の構成を用いることができる。本実施形態では、後述するように並列回路3を用いて直流電流の遮断が行われるため、機械式断路器2自体に電流遮断能力は不要である。機械接点を持つものであって、接点が切り離された状態で、事故点を切り離すのに必要な直流電圧に耐える絶縁耐圧を持つものであれば足りる。機械式断路器2は、例えば、回路の端子間に回動接触子を設け、この回動接触子が回動して各端子に取り付けられた固定接触子と接離することによって、回路の切り離しを行う構成とすることができる。
機械式断路器2は、通常時にはオン状態、すなわち接点が接触した状態になるように制御される。直流送電網Aからの電流は、機械式断路器2を通過して直流送電網Bへ流れる。事故時は、後述するが、並列回路3に電流が流れるように制御が行われ、機械式断路器2を流れる電流が略ゼロになったところで、オフ状態に切り換えられ、回路が切り離される。
機械式断路器2に並列に接続された並列回路3には、半導体遮断器4と、Hブリッジ群回路5とが直列に設けられている。
半導体遮断器4は、2個以上のスイッチング素子41を、直列かつ相互に反対方向に接続し、それぞれのスイッチング素子41に対して整流ダイオード42を逆並列に接続した構成となっている。スイッチング素子41は、自己消弧能力を持つものが用いられる。
半導体遮断器4はゲート信号の入力によって、導通状態であるオン状態と非導通状態であるオフ状態が切り換えられる。導通状態では、半導体遮断器4を介して直流送電系統から並列回路3へ電流が供給され、非導通状態では直流送電系統から並列回路3への電流は遮断される。
半導体遮断器4には、一定電圧以上が印加されると導通する非線形素子からなるアレスタ43が並列に接続されている。アレスタ43は、半導体遮断器4がオフ状態に切り換えられたときに、サージ電圧を吸収して安全な電流遮断を可能とする。
Hブリッジ群回路5は、1以上のHブリッジ回路50を直列に接続したものである。本実施形態では、2個のHブリッジ回路50が直列に接続されている。各Hブリッジ回路50は、スイッチング素子51を直列に2個接続した2つのレグ52を有する。スイッチング素子51は、それぞれ自己消弧能力を持つものが用いられる。これら2つのレグ52は並列に接続され、さらにコンデンサ53が2つのレグ52と並列接続されている。
半導体遮断器4とHブリッジ回路50の間に導線6が接続され、この導線6は負側の送電線101に接続されている。導線6には充電用抵抗7が直列に接続されている。負側の直流電流は、この導線6を介して並列回路3に流れ、Hブリッジ回路50のそれぞれのコンデンサ53を充電する。コンデンサ53の充電は、通常時に行われている。
事故時、半導体遮断器4をオン状態にして並列回路3に直流送電系統の電流を導通できる状態にし、あらかじめ導線6を介して充電されているHブリッジ回路50のコンデンサ53を急速放電して出力電圧を上げることで、直流送電網Aからの電流をほぼ全て並列回路3に流れ込ませる。結果として機械式断路器2へ流れ込む電流を略ゼロにすることができる。
なお、略ゼロとは、機械式断路器2の接点を切り離したときにアークが発生しない程度の電流の量を意味する。
(作用)
以上の構成を有する直流遮断装置1の動作を、通常時と事故時に分けて説明する。通常時は、機械式断路器2をオン状態、半導体遮断器4およびHブリッジ群回路5をオフ状態に制御する。直流送電網Aからの電流は、機械式断路器2のみを通過して直流送電網Bへ流れ、並列回路3には流れない。
事故時は、まず、半導体遮断器4をオフ状態からオン状態に切り換える。同時に、Hブリッジ群回路5をオンにして出力電圧を制御する。すなわち、各コンデンサ53を急速放電して出力電圧を上げる。これによって、直流送電網Aからの電流はほぼ全て並列回路3に流れ込み、機械式断路器2を通過する電流は略ゼロになる。
機械式断路器2を通過する電流は略ゼロになったところで、機械式断路器2をオフ状態に切り換える。機械式断路器2には電流が流れていないため、接点を切り離しの際にアークが生じて電流が流れ続けることはない。最後に、半導体遮断器4をオフ状態に切り換えて並列回路3に流れる電流を遮断する。このとき発生するサージ電圧はアレスタ43に吸収され、電流遮断が完了する。
(効果)
(1)以上のように、本実施形態では、直流遮断装置1に、送電線100に設けられる機械式断路器2と、機械式断路器2に並列に接続される並列回路3と、を備えた。並列回路3に、並列回路3への送電線100の電流の供給及び遮断を切り換える半導体遮断器4と、半導体遮断器4に直列に接続されるHブリッジ回路50を備えた。Hブリッジ回路50は、複数のスイッチング素子51及びコンデンサ53を有し、並列回路3に送電線100の電流が供給されると、出力電圧の制御により、機械式断路器2に流れる電流の量を制御する。
このような構成とすることによって、通常時には、電流を機械式断路器2のみを通過させることができ、導通損失を低減させることができる。事故時には、Hブリッジ回路50を用いた出力電圧制御により、並列回路3に電流を誘導して機械式断路器2を流れる電流を、アークを生じさせずに回路の切り離しを行うことができる量、例えば略ゼロにすることで、電流遮断能力のない機械式断路器であっても、安全に事故点の切り離しを行うことができる。さらに、並列回路3に設けた半導体遮断器4によって高速の電流遮断を実現することができる。このような効果によって、送電効率の向上、コスト低減及び直流送電における信頼性の向上に寄与することができる。
(2)また、本実施形態では、Hブリッジ回路50を複数直列に接続したHブリッジ群回路5を構成した。各Hブリッジ回路50に備えられているコンデンサ53の数が増えることによって充放電量も増えるため、大きな事故電流にも対応することができる。
(3)機械式断路器2及び並列回路3は、直流送電系統の正側の送電線100に設けられ、並列回路3は、Hブリッジ回路50と機械式断路器2との間で、負側の送電線101へ接続され、Hブリッジ回路50のコンデンサ53は、負側の電力によって充電される。
事故時に放電を行う為には、通常時にHブリッジ回路50のコンデンサ53の充電しておく必要がある。Hブリッジ回路50と機械式断路器2との間から充電用抵抗7を介して負側の送電線101に接続するだけで、直流系統の電圧を利用して常に充電動作を実現することができる。これによって、交流系統等か充電用の電源を別途接続する必要がないため、設備コストを低減することができる。
(第2の実施形態)
第2の実施形態について、図2を用いて説明する。この第2の実施形態では、前述の第1実施形態とは異なる点のみを説明し、前述の第1実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
本実施形態では、充電用抵抗7が設けられている導線6の、充電用抵抗7と負側の送電線101との間に、開閉器8が直列に接続されている。開閉器8は、遮断器又は断路器である。
第1の実施形態で述べたように、Hブリッジ回路50のコンデンサ53は、負側の送電線101からの電力によって充電されている。本実施形態では、コンデンサ53が満充電になった時点で開閉器8をオフにして、充電用抵抗7を負側の送電線101から切り離す。これによって、負側の送電線101の電力を充電に必要な量だけ使うことができ、無駄な電力消費を低減することができる。
(第3の実施形態)
第3の実施形態について、図3を用いて説明する。この第3の実施形態では、前述の第1実施形態とは異なる点のみを説明し、前述の第1実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
本実施形態では、Hブリッジ回路50のそれぞれに対して、並列接続された抵抗9を備えている。これらの抵抗9は分圧器として機能し、コンデンサ53への充電電圧を均一化することができる。また、充電電圧の大きさを抵抗値によって管理することが可能となる。
(第4の実施形態)
第4の実施形態について、図4を用いて説明する。この第4の実施形態では、前述の第1実施形態とは異なる点のみを説明し、前述の第1実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
本実施形態では、Hブリッジ回路50のコンデンサ53に対して並列に接続された抵抗10を設けている。これらの抵抗10は分圧器として機能し、コンデンサ53への充電電圧を均一化することができる。また、充電電圧の大きさを抵抗の値によって管理することが可能となる。
(その他の実施形態)
(1)上述の実施形態では、導線6を負側の送電線101に接続し、Hブリッジ回路50のコンデンサ53を負側の送電線101の電力によって充電したが、導線6を対地や、交流系統等の別の電源に接続して充電を行っても良い。
(2)本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1 直流遮断装置
2 機械式断路器
3 並列回路
4 半導体遮断器
5 Hブリッジ群回路
6 導線
7 充電用抵抗
8 開閉器
9,10 抵抗
41 スイッチング素子
42 整流ダイオード
43 アレスタ
50 Hブリッジ回路
51 スイッチング素子
52 レグ
53 コンデンサ
100 正側の送電線
101 負側の送電線
A,B 直流送電網

Claims (5)

  1. 直流送電系統に設けられる機械式断路器と、
    前記機械式断路器に並列に接続される並列回路と、を備え、
    前記並列回路は、当該並列回路への前記直流送電系統の電流の供給及び遮断を切り換える半導体遮断器と、
    前記半導体遮断器に直列に接続され、複数のスイッチング素子及びコンデンサを有し、前記並列回路に前記直流送電系統の電流が供給されると、出力電圧の制御により、前記機械式断路器に流れる電流の量を制御するHブリッジ回路と、を備え
    前記並列回路は、前記Hブリッジ回路に並列接続する抵抗を有することを特徴とする直流遮断装置。
  2. 直流送電系統に設けられる機械式断路器と、
    前記機械式断路器に並列に接続される並列回路と、を備え、
    前記並列回路は、当該並列回路への前記直流送電系統の電流の供給及び遮断を切り換える半導体遮断器と、
    前記半導体遮断器に直列に接続され、複数のスイッチング素子及びコンデンサを有し、前記並列回路に前記直流送電系統の電流が供給されると、出力電圧の制御により、前記機械式断路器に流れる電流の量を制御するHブリッジ回路と、を備え、
    前記Hブリッジ回路は、前記コンデンサに並列接続する抵抗を有することを特徴とする直流遮断装置。
  3. 前記並列回路には、複数の前記Hブリッジ回路が直列に接続されていることを特徴とする請求項1または2記載の直流遮断装置。
  4. 前記機械式断路器及び前記並列回路は、前記直流送電系統の正側に設けられ、
    前記並列回路は、前記Hブリッジ回路と前記半導体遮断機との間で、前記直流送電系統の負側へ充電用抵抗を介して接続され、前記Hブリッジ回路のコンデンサは、前記負側の電力によって充電されることを特徴とする請求項1〜3いずれか一項に記載の直流遮断装置。
  5. 前記直流送電系統の負側と前記充電用抵抗との間に開閉器が直列に接続されていることを特徴とする請求項記載の直流遮断装置。
JP2013254051A 2013-12-09 2013-12-09 直流遮断装置 Expired - Fee Related JP6223803B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013254051A JP6223803B2 (ja) 2013-12-09 2013-12-09 直流遮断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254051A JP6223803B2 (ja) 2013-12-09 2013-12-09 直流遮断装置

Publications (2)

Publication Number Publication Date
JP2015115096A JP2015115096A (ja) 2015-06-22
JP6223803B2 true JP6223803B2 (ja) 2017-11-01

Family

ID=53528746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254051A Expired - Fee Related JP6223803B2 (ja) 2013-12-09 2013-12-09 直流遮断装置

Country Status (1)

Country Link
JP (1) JP6223803B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102021863B1 (ko) 2015-05-13 2019-09-17 엘에스산전 주식회사 직류 차단기
DE102019135122A1 (de) * 2019-12-19 2021-06-24 Phoenix Contact Gmbh & Co. Kg Technik zur Vermeidung eines Lichtbogens beim Trennen einer Gleichstromverbindung unter Verwendung einer Verlängerung eines Leitungsverbunds
EP4036949A1 (en) 2021-01-29 2022-08-03 Eaton Electrical Ltd. A hybrid dc circuit breaker

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126961A (ja) * 1996-10-17 1998-05-15 Fuji Electric Co Ltd 限流装置
JP3711334B2 (ja) * 2001-10-15 2005-11-02 三菱電機株式会社 開閉装置
JP2006260925A (ja) * 2005-03-17 2006-09-28 Toshiba Mitsubishi-Electric Industrial System Corp 直流高速真空遮断装置
ES2714426T3 (es) * 2012-03-09 2019-05-28 Siemens Ag Dispositivo para conmutar corrientes continuas

Also Published As

Publication number Publication date
JP2015115096A (ja) 2015-06-22

Similar Documents

Publication Publication Date Title
JP6430294B2 (ja) 直流遮断装置
US9478974B2 (en) DC voltage circuit breaker
JP6250153B2 (ja) 高圧直流電流遮断装置及び方法
KR101968459B1 (ko) 직류 전류 차단 장치 및 그 제어 방법
US9800171B2 (en) Protection system for DC power transmission system, AC-DC converter, and method of interrupting DC power transmission system
JP6297619B2 (ja) 直流遮断器
JP6517589B2 (ja) 直流送電システム、その中央サーバ、及び直流送電経路の事故後の復旧方法
Wang et al. A fast switching, scalable DC-Breaker for meshed HVDCSuperGrids
JP2018503952A (ja) 対向電流の発生を有するdc回路遮断器
CN105659459A (zh) 高压直流断路器
CN104756338A (zh) 电路中断设备
KR101766229B1 (ko) 갭 스위치를 이용한 고압 직류 차단 장치 및 방법
JP6591204B2 (ja) 直流電流遮断装置
KR20140095184A (ko) 직류 전류 차단 장치 및 방법
WO2015081615A1 (zh) 一种直流断路器
Negari et al. A new solid-state HVDC circuit breaker topology for offshore wind farms
CN103647263B (zh) 基于半控型电力电子器件的直流断路器
CN104882877B (zh) 一种高压直流断路器
JP6462430B2 (ja) 直流電流遮断装置
ES2563814T3 (es) Disyuntor de tensión continua
JP6223803B2 (ja) 直流遮断装置
RU2695800C1 (ru) Устройство для переключения постоянного тока в полюсе сети постоянного напряжения
JP6391993B2 (ja) 直流遮断装置
KR101475659B1 (ko) 전력 제공 유닛에 대한 dc 공급 유닛
WO2015036457A1 (en) Voltage source converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171004

R151 Written notification of patent or utility model registration

Ref document number: 6223803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees