WO2019196429A1 - 色轮组件及光源系统及投影设备 - Google Patents

色轮组件及光源系统及投影设备 Download PDF

Info

Publication number
WO2019196429A1
WO2019196429A1 PCT/CN2018/118817 CN2018118817W WO2019196429A1 WO 2019196429 A1 WO2019196429 A1 WO 2019196429A1 CN 2018118817 W CN2018118817 W CN 2018118817W WO 2019196429 A1 WO2019196429 A1 WO 2019196429A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel assembly
color wheel
boron nitride
layer
red fluorescent
Prior art date
Application number
PCT/CN2018/118817
Other languages
English (en)
French (fr)
Inventor
戴达炎
周浩
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/047,031 priority Critical patent/US11822052B2/en
Publication of WO2019196429A1 publication Critical patent/WO2019196429A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection

Definitions

  • the present invention relates to the field of optics, and more particularly to a color wheel assembly and a light source system and projection apparatus using the color wheel assembly.
  • the excitation light source and the wavelength conversion device are the most critical components.
  • the wavelength conversion device is a color wheel, and different phosphors which are sequentially irradiated by the excitation light are disposed thereon, and different laser beams are generated after being irradiated by the excitation light. .
  • the red phosphor Since the red phosphor is excited by the excitation light of too high intensity, the light saturation phenomenon is easy to occur, that is, as the intensity of the excitation light increases, the amount of light emitted by the red phosphor to the red fluorescence does not always increase; When the intensity of the excitation light rises to a certain extent, the amount of light emitted by the red phosphor to emit red fluorescence does not increase, but decreases.
  • the yellow/green phosphor can be excited under relatively high intensity excitation light, and the light extraction efficiency does not decrease.
  • the current corresponding to the adjustment of the excitation light causes a problem of difficulty in synchronization, that is, the adjustment step of the excitation light and the red phosphor segment and the yellow/green phosphor segment of the color wheel are located on the excitation light path.
  • the pace may be inconsistent, resulting in a problem of red phosphor brightness decay on the color wheel.
  • the invention provides a color wheel assembly, a light source system and a projection device, which can solve the heat quenching problem of the red phosphor without adjusting the current of the excitation light in real time.
  • a technical solution adopted by the present invention is to provide a color wheel assembly including an excitation light source and a color wheel assembly for emitting excitation light, and the color wheel assembly is provided with receiving excitation light and emitting a fluorescent layer of a laser comprising a red fluorescent region having a red phosphor and a non-red fluorescent region having a light passage through the optical path of the excitation light, wherein one side of the red fluorescent region is provided with a boron nitride coating A glass powder coating is disposed on one side, and the non-red fluorescent region is provided with a glass powder coating on both sides.
  • the color wheel assembly includes a substrate layer and a filter layer disposed on both sides of the fluorescent layer, and the boron nitride coating is disposed between the substrate layer and the fluorescent layer, the glass powder A coating is disposed between the filter layer and the phosphor layer.
  • the boron nitride coating is formed by spraying boron nitride on a surface of the fluorescent region adjacent to the light source.
  • the boron nitride has a spray thickness of 0.01 to 0.030 um.
  • the boron nitride coating is formed by spraying boron nitride on the surface of the substrate.
  • the boron nitride has a spray thickness of 0.01 to 0.050 um.
  • the glass frit coating corresponding to the red fluorescent region is formed by spraying a glass powder on a surface of the fluorescent layer away from the excitation light, and the spray thickness of the glass frit is 0.005 to 0.020 mm.
  • the glass frit coating corresponding to the red fluorescent region is formed by spraying a glass powder on the surface of the substrate, and the glass powder is sprayed to a thickness of 0.005 to 0.030 mm.
  • the second gap layer is formed by spraying a glass powder on a surface of the phosphor layer away from the excitation light.
  • the substrate layer is a blue anti-yellow layer made of sapphire.
  • the non-red fluorescent region is any one of a green fluorescent region, a yellow fluorescent region or a blue fluorescent region.
  • the filter layer is a filter respectively attached to the red fluorescent region and the non-red fluorescent region.
  • the fluorescent layer is a ring structure, a center of the substrate layer is provided with a fixing colloid, the fluorescent layer is disposed around the fixing colloid, and the filter is adhered to the fixing colloid away from the substrate.
  • a fixing colloid a fixing colloid
  • a relay lens is disposed between the excitation light source and the color wheel assembly.
  • a drive motor and a motor connecting device for driving the rotation of the color wheel assembly are further included.
  • the present invention also provides a technical solution for providing a light source system including an excitation light source and a color wheel assembly as described above.
  • the present invention also provides a technical solution of providing a projection apparatus including the light source system as described above.
  • the red fluorescent region of the color wheel assembly of the present invention is provided with a boron nitride coating on one side and a glass powder on the other side, and two sides of the non-red fluorescent region. They are all provided with a glass powder coating.
  • the boron nitride material has better thermal conductivity than the glass powder, and the crystal structure of the boron nitride is a layered structure, which can effectively achieve a light blocking effect.
  • the excitation light incident on the red phosphor can be further reduced, and the attenuation of the red fluorescence under the direct excitation of the strong excitation light can be effectively avoided, so that it is not necessary to specifically adjust the intensity of the excitation light for the red phosphor, and the same is maintained.
  • the excitation light circuit can simultaneously satisfy the excitation of different phosphors, effectively solving the heat quenching problem of the red phosphor powder, so that the system effect is better, the service life is prolonged, and the production cost is effectively reduced.
  • FIG. 1 is a schematic structural view of a light source system of the present invention
  • FIG. 2 is a schematic structural view of a color wheel assembly of the present invention
  • Fig. 3 is a schematic view showing the effect of red fluorescence after boron nitride.
  • the invention provides a light source system which can effectively improve the problem of hot quenching of red phosphor powder and a projection apparatus using the same, which are described below in conjunction with specific embodiments:
  • the light source system of the present invention includes an excitation light source 1, a relay lens 2, a driving device 3, and a color wheel assembly 4.
  • the excitation light source 1 is for emitting excitation light, which is irradiated onto the color wheel assembly 4 by the adjustment of the relay lens 2 to achieve wavelength conversion.
  • the drive unit 3 includes a drive motor 31 and a motor connection unit 32, and the color wheel unit 4 is rotated at a high speed by the drive unit 3.
  • the color wheel assembly 3 includes a substrate layer 41, a first gap layer 42, a fluorescent layer 43, a second gap layer 44, and a filter layer 45 which are sequentially disposed in the irradiation direction of the excitation light.
  • the substrate layer 41 is made of a sapphire material and has an anti-blue transparent layer that reflects blue light and transmits yellow light.
  • the fluorescent layer 43 includes a red fluorescent region 301 having a red phosphor and at least one non-red fluorescent region which are sequentially passed through the optical path of the excitation light.
  • the non-red fluorescent region includes a green fluorescent region 302, a yellow fluorescent region 303, and a blue fluorescent region 304.
  • the color wheel rotates, and the timings of different fluorescent regions pass through the excitation light, and the corresponding kinds of laser light are respectively emitted by the excitation light.
  • the first gap layer 42 and the second gap layer 44 are provided with glass frit, and the excitation light is incident on the fluorescent region through the first gap layer 42 to excite the phosphor to emit laser light, and is emitted through the second gap layer 43 to emit the phosphor.
  • the heat generated during the excitation is thermally conducted through the medium of the void layer to release the heat accumulated at the phosphor on the phosphor layer.
  • a boron nitride material is disposed in the first void layer 42 corresponding to the red fluorescent region 301 of the present invention.
  • the first void layer 42 is a boron nitride coating formed by spraying boron nitride on the lower surface of the red fluorescent region.
  • the thickness of the coating is 0.01 to 0.030 um, due to the spray coating.
  • the powder state is a dry powder honeycomb distribution, which can cause the incident light to be weakened to some extent when passing through the boron nitride coating, thereby causing the incident light intensity incident on the red fluorescent region to be reduced, thereby avoiding the hot quenching of the red phosphor. The resulting attenuation phenomenon, as shown in FIG.
  • high-permeability glass powder as the void layer for other color segments.
  • the light source system of the present invention does not need to specifically reduce the current of the excitation light when the red fluorescent region receives the illumination.
  • the color wheel assembly of the present invention is sprayed with boron nitride, and the attenuation ratio is small during long-time lighting operation. Specifically, the color wheel illuminates and aging for 1000 hours, the attenuation is less than 3%, and the red fluorescence decay is reduced.
  • the color wheel color will be relatively stable before and after aging, and the parameters such as brightness of the light source are also stable. The heat dissipation of the color wheel itself will be solved, and the life of the color wheel will be prolonged.
  • the glass powder at the non-red fluorescent region is also formed on the surface of the fluorescent region by spraying, that is, in the embodiment, the first void layer at the non-red fluorescent region is a glass powder coating formed by spraying, and the glass powder is sprayed.
  • the thickness is 0.005 to 0.020 mm. Spraying glass powder is mainly to reduce the heat generated by the color wheel assembly due to the excitation of the phosphor.
  • the red fluorescent region can be coated with boron nitride without spraying the glass powder, of course, It is also possible to apply boron nitride while coating the glass frit, that is, the first void layer is composed of a mixed coating of boron nitride and glass frit, and can also be carried out.
  • the crystal structure of boron nitride is a layered structure similar to graphite. Compared with glass powder and general ceramic materials, boron nitride material has better thermal conductivity, and therefore can effectively block light due to the characteristics of crystal structure. effect.
  • the red phosphor in the red fluorescent region absorbs higher laser photons and generates a large amount of heat while releasing lower energy fluorescent photons.
  • the red fluorescent region generates more heat than the non-red fluorescent region.
  • the endothermic performance of boron is much higher than that of the glass powder in the non-red fluorescent region, and there is no need to additionally provide heat dissipation or heat absorption layer, which can ensure the stability of the excitation light of the product.
  • the second void layer 44 is a glass frit coating formed by spraying a glass frit on the surface of the phosphor layer 43 away from the excitation light, and its function is also to reduce the heat generated by the color wheel assembly due to the excitation of the phosphor.
  • the filter layer 45 is a filter covering the fluorescent layer 43 and the second void layer 44, and specifically includes a first filter 451 attached to the red fluorescent region 301 and a second attached to the non-red fluorescent region. Filter 452. The laser generated by the phosphor excitation is adjusted by the filtering light layer 45 to form an outgoing light, thereby realizing the exit of the light source system.
  • the color wheel assembly 4 is a circular sandwich structure, wherein the fluorescent layer 43 has a ring structure, the substrate layer 41 has a circular structure, and the center of the substrate layer 41 is provided with a fixing colloid 46, and the filter 45 Bonding to the side of the fixed colloid 46 away from the substrate layer 41 causes the color wheel assembly to form a sandwich structure under the attachment of the fixed colloid 46.
  • the motor connecting device 32 of the driving device 3 is connected to the substrate layer 41, and drives the color wheel assembly 4 to rotate at a high speed under the driving of the driving motor.
  • This embodiment is substantially the same as the first embodiment except that in the present embodiment, boron nitride and glass frit on the first void layer 42 are sprayed on the upper surface of the substrate layer 41, wherein boron nitride
  • the spray thickness is 0.01 to 0.050 um
  • the spray thickness of the glass powder is 0.01 to 0.050 um.
  • the red fluorescent region of the light source system of the present invention is provided with a boron nitride coating on one side, glass powder on the other side, and both sides of the non-red fluorescent region.
  • a boron nitride coating on one side, glass powder on the other side, and both sides of the non-red fluorescent region.
  • Set with a glass powder coating By providing a boron nitride material at a corresponding position in the red fluorescent region, the boron nitride material has better thermal conductivity than the glass powder, and the crystal structure of the boron nitride is a layered structure, which can effectively achieve a light blocking effect.
  • the excitation light incident on the red phosphor can be further reduced, and the attenuation of the red fluorescence under the direct excitation of the strong excitation light can be effectively avoided, so that it is not necessary to specifically adjust the intensity of the excitation light for the red phosphor, and the same is maintained.
  • the excitation light circuit can simultaneously satisfy the excitation of different phosphors, effectively solving the heat quenching problem of the red phosphor powder, so that the system effect is better, the service life is prolonged, and the production cost is effectively reduced.
  • the present invention also provides a projection apparatus comprising the above light source system, the light source of which is stable, the projected image of the product is stable, the reliability is high, and the production cost is low.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)

Abstract

一种色轮组件(4)及包括其的光源系统及投影设备,其中色轮组件的红荧光区(301)对应处的一侧设置有氮化硼涂层,另一侧设置有玻璃粉,非红荧光区的两面均设置有玻璃粉涂层。通过在红荧光区对应位置设置氮化硼材料,相较于玻璃粉,氮化硼材料的导热性更好,且氮化硼的晶体结构为层状结构,可以有效起到光线阻挡的效果,从而使得入射至红荧光粉处的激发光可以进一步减少,可以有效避免红荧光在较强激发光直接照射下而产生的衰减,因此无需专门针对红荧光粉进行激发光线强度的调节,保持同样的激发光电路即可以同时满足不同荧光粉的激发,有效解决了红荧光粉的热淬灭问题,使得系统效果更好,延长了使用寿命,并有效降低生产成本。

Description

色轮组件及光源系统及投影设备 技术领域
本发明涉及光学领域,尤其是涉及一种色轮组件以及使用该色轮组件的光源系统及投影设备。
背景技术
目前,投影设备的技术发展迅速,得到了广泛的应用。在投影设备中,激发光源和波长转换装置作为最关键的部件,通常,波长转换装置为色轮,其上设置有时序经过激发光照射的不同荧光粉,经激发光照射后产生不同的受激光。
由于红荧光粉在过高强度的激发光的激发下,容易产生光饱和现象,即:随着激发光强度的升高,红荧光粉出射红荧光的出光量并不是一直升高;而是当激发光强度上升到一定程度时,红荧光粉出射红荧光的出光量不会上升,反而下降。而黄/绿荧光粉则可以在相对较高强度的激发光下被激发,并且出光效率不会下降。因此,为了保证受激光的稳定性,需要不断调节激发光强度,使得当红荧光粉段位于激发光路时激发光的强度低于黄/绿荧光位于激发光路时激发光的强度。
然而,在色轮高速旋转的状态下,对应调节激发光的电流,会产生同步困难的问题,即激发光的调节步调与色轮的红荧光粉段和黄/绿荧光粉段位于激发光路上的步调有可能不一致,从而导致色轮上的红荧光粉亮度衰减的问题。
因此,有必要提供一种新的色轮组件及光源系统及投影设备以解决上述问题。
发明内容
本发明提供一种色轮组件及光源系统和投影设备,可以解决红荧光 粉的热淬灭问题,而无需实时调整激发光的电流。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种色轮组件,包括用于发出激发光的激发光源和色轮组件,所述色轮组件上设置有用于接收激发光并发出受激光的荧光层,所述荧光层包括时序经过所述激发光的光路的具有红荧光粉的红荧光区和至少一个非红荧光区,所述红荧光区的一面设置有氮化硼涂层、一面设置有玻璃粉涂层,所述非红荧光区的两面均设置有玻璃粉涂层。
优选的,所述色轮组件包括设置在所述荧光层两侧的基板层和滤光层,所述氮化硼涂层设置在所述基板层与所述荧光层之间,所述玻璃粉涂层设置在所述滤光层与所述荧光层之间。
优选的,所述氮化硼涂层为在所述荧光区靠近所述光源的一侧表面喷涂氮化硼形成。
优选的,所述氮化硼的喷涂厚度为0.01~0.030um。
优选的,所述氮化硼涂层为在所述基板表面喷涂氮化硼形成。
优选的,所述氮化硼的喷涂厚度为0.01~0.050um。
优选的,对应所述红荧光区的所述玻璃粉涂层为在所述荧光层远离所述激发光一侧表面喷涂玻璃粉形成,所述玻璃粉的喷涂厚度为0.005~0.020mm。
优选的,对应所述红荧光区的所述玻璃粉涂层为在所述基板表面喷涂玻璃粉形成,所述玻璃粉的喷涂厚度为0.005~0.030mm。
优选的,所述第二空隙层为在所述荧光层远离所述激发光一侧表面喷涂玻璃粉形成。
优选的,所述基板层为蓝宝石制成的透蓝反黄层。
优选的,所述非红荧光区为绿荧光区、黄荧光区或蓝荧光区中的任意一种。
优选的,所述滤光层为分别贴设在所述红荧光区和所述非红荧光区的滤光片。
优选的,所述荧光层为环状结构,所述基板层的中心设置有固定胶体,所述荧光层环绕所述固定胶体设置,所述滤光片粘接在所述固定胶 体远离所述基板层的一侧。
优选的,还包括位于所述激发光源和所述色轮组件之间的中继透镜。
优选的,还包括驱动所色轮组件旋转的驱动马达及马达连接装置。
为解决上述技术问题,本发明还提供一个技术方案是:提供一种光源系统,包括激发光源和如上所述的色轮组件。
为解决上述技术问题,本发明还提供一个技术方案是:提供一种投影设备,包括如上所述的光源系统。
本发明的有益效果是:区别于现有技术的情况,本发明色轮组件的红荧光区对应处一侧设置有氮化硼涂层,另一侧设置有玻璃粉,非红荧光区的两面均设置有玻璃粉涂层。通过在红荧光区对应位置设置氮化硼材料,相较于玻璃粉,氮化硼材料的导热性更好,且氮化硼的晶体结构为层状结构,可以有效起到光线阻挡的效果,从而使得入射至红荧光粉处的激发光可以进一步减少,可以有效避免红荧光在较强激发光直接照射下而产生的衰减,因此无需专门针对红荧光粉进行激发光线强度的调节,保持同样的激发光电路即可以同时满足不同荧光粉的激发,有效解决了红荧光粉的热淬灭问题,使得系统效果更好,延长了使用寿命,并有效降低生产成本。
附图说明
图1是本发明光源系统的结构示意图;
图2是本发明色轮组件的结构示意图;
图3是红色荧光经氮化硼后的效果示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本发明提供一种可以有效改善红荧光粉热淬灭问题的光源系统以及使用该光源系统的投影设备,下面结合具体实施例进行说明:
实施例一
请参阅图1,本发明的光源系统包括激发光源1、中继透镜2、驱动装置3和色轮组件4。
激发光源1用于发出激发光,该激发光通过中继透镜2的调整照射到色轮组件4上实现波长的转换。驱动装置3包括驱动马达31和马达连接装置32,色轮组件4在驱动装置3的带动下高速地旋转。
色轮组件3包括沿激发光的照射方向依次设置的基板层41、第一空隙层42、荧光层43、第二空隙层44和滤光层45。
其中基板层41为蓝宝石材料制成的,具有反射蓝光透过黄光作用的反蓝透黄层。
参照图2所示,荧光层43包括时序经过激发光的光路的具有红荧光粉的红荧光区301和至少一个非红荧光区。在本实施方式中,非红荧光区包括为绿荧光区302、黄荧光区303和蓝荧光区304。在工作状态下,色轮旋转,不同荧光区时序经过激发光的光路上,经过激发光的照射分别发出相应种类的受激光。
第一空隙层42和第二空隙层44内设置有玻璃粉,激发光通过第一空隙层42入射到荧光区激发荧光粉发出受激光,并经过第二空隙层43出射,荧光粉被激发光激发时产生的热会通过空隙层这层介质导热,来释放荧光层上荧光粉处所积累的热。
本发明的红荧光区301对应的第一空隙层42内设置有氮化硼材料。具体在本实施方式中,第一空隙层42为在红荧光区的下表面喷涂氮化硼形成的氮化硼涂层,优选的,该涂层的厚度为0.01~0.030um,由于喷涂后的粉末状态都为干粉蜂窝状分布,可以使得入射光在经过氮化硼涂层时,被一定程度地削弱,从而导致入射到红荧光区的入射光强度减少,避免了红荧光粉热淬灭而导致的衰减现象,参照图3所示,在改善前,在强电流,即强激发光的状态下产生了红荧光的热淬灭,即入射光强度上升,红荧光亮度反而下降的现象;而喷涂过氮化硼涂层后的光学系统在强电流,即强激发光的状态下没有产生红荧光的热淬灭,在高强度的激发光电流下,仍然保证了红荧光亮度的上升。因氮化硼是片状的,导 热性能好且光遮蔽性强,而由于红荧粉相对于绿/黄荧粉而言,发光效率要求没那么高(色轮产品设计需求在白光中占比5%~25%),不需要那么高强度的激发光,从而氮化硼遮蔽一部分光也不影响其红光占比,那其他颜色段可以采用高透过的玻璃粉做空隙层较为理想。
因而本发明的光源系统无需在红荧光区接收照射时专程降低激发光的电流。根据实验验证,本发明的色轮组件采用氮化硼喷涂后在长时间点亮运行中,衰减比例会很小,具体的,色轮点亮老化1000h,衰减3%以内,红荧光衰减少,色轮颜色老化前后一次性会比较平稳,同样光源亮度等参数也很稳定,解决色轮本身散热,色轮寿命也会延长。
非红荧光区处的玻璃粉也通过喷涂形成在荧光区的表面,即在本实施方式中,所述非红荧光区处的第一空隙层为喷涂形成的玻璃粉涂层,玻璃粉的喷涂厚度为0.005~0.020mm。喷涂玻璃粉主要是为了降低色轮组件由于激发荧光粉产生的热度,由于氮化硼也具有良好的导热性,因此红荧光区可以不涂覆玻璃粉,只喷涂氮化硼即可,当然,也可以即喷涂氮化硼同时涂覆玻璃粉,即第一空隙层由氮化硼和玻璃粉的混合涂层构成,也是可以实施的。
氮化硼的晶体结构为类似于石墨的层状结构,相较于玻璃粉及一般的陶瓷材料,氮化硼材料的导热性更好,因而由于晶体结构的特性,可以有效起到光线阻挡的效果。红荧光区的红色荧光粉会吸收较高的激光光子,会在释放出能量较低的荧光光子的同时产生大量的热,相较于非红荧光区,红荧光区产生的热量更大,氮化硼的吸热性能远高于非红荧光区的玻璃粉的吸热性能,无需另外设置散热或吸热层,即可以保证产品激发光的稳定性。
第二空隙层44为在荧光层43远离激发光一侧表面喷涂玻璃粉形成的玻璃粉涂层,其作用同样是为了降低色轮组件由于激发荧光粉产生的热度。
滤光层45为覆盖荧光层43和第二空隙层44的滤光片,具体的,包括分别贴设在红荧光区301的第一滤光片451和贴设在非红荧光区的第二滤光片452。荧光粉激发产生的受激光经过滤光层45的调整形成出 射光,实现光源系统的出射。
具体在本实施方式中,色轮组件4为圆形的三明治结构,其中荧光层43为环状结构,基板层41为圆形结构,基板层41的中心设置有固定胶体46,滤光片45粘接在固定胶体46远离基板层41的一侧,使得色轮组件在固定胶体46的连接下形成三明治结构。
驱动装置3的马达连接装置32与基板层41相连,并在驱动马达的带动下带动色轮组件4高速旋转。
实施例二
本实施方式与第一种实施方式大致相同,区别仅在于,在本实施方式中,第一空隙层42上的氮化硼与玻璃粉喷涂在基板层41的上表面上,其中氮化硼的喷涂厚度为0.01~0.050um,玻璃粉的喷涂厚度为0.01~0.050um。
本发明的有益效果是:区别于现有技术的情况,本发明光源系统的红荧光区对应处一侧设置有氮化硼涂层,另一侧设置有玻璃粉,非红荧光区的两面均设置有玻璃粉涂层。通过在红荧光区对应位置设置氮化硼材料,相较于玻璃粉,氮化硼材料的导热性更好,且氮化硼的晶体结构为层状结构,可以有效起到光线阻挡的效果,从而使得入射至红荧光粉处的激发光可以进一步减少,可以有效避免红荧光在较强激发光直接照射下而产生的衰减,因此无需专门针对红荧光粉进行激发光线强度的调节,保持同样的激发光电路即可以同时满足不同荧光粉的激发,有效解决了红荧光粉的热淬灭问题,使得系统效果更好,延长了使用寿命,并有效降低生产成本。
本发明还提供一种投影设备,其包括如上的光源系统,其光源稳定,产品的投影图像稳定,可靠性能高且生产成本低。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种色轮组件,其特征在于,包括用于接收激发光并发出受激光的荧光层,所述荧光层包括时序经过所述激发光的光路的具有红荧光粉的红荧光区和至少一个非红荧光区,所述红荧光区的一面设置有氮化硼涂层、一面设置有玻璃粉涂层,所述非红荧光区的两面均设置有玻璃粉涂层。
  2. 根据权利要求1所述的色轮组件,其特征在于,包括设置在所述荧光层两侧的基板层和滤光层,所述氮化硼涂层设置在所述基板层与所述荧光层之间,所述玻璃粉涂层设置在所述滤光层与所述荧光层之间。
  3. 根据权利要求2所述的色轮组件,其特征在于,所述氮化硼涂层为在所述荧光区靠近所述光源的一侧表面喷涂氮化硼形成。
  4. 根据权利要求3所述的色轮组件,其特征在于,所述氮化硼涂层的厚度为0.01~0.030um。
  5. 根据权利要求2所述的色轮组件,其特征在于,所述氮化硼涂层为在所述基板表面喷涂氮化硼形成。
  6. 根据权利要求5所述的色轮组件,其特征在于,所述氮化硼的喷涂厚度为0.01~0.050um。
  7. 根据权利要求1所述的色轮组件,其特征在于,对应所述红荧光区的所述玻璃粉涂层为在所述荧光层远离所述激发光一侧表面喷涂玻璃粉形成,所述玻璃粉的喷涂厚度为0.005~0.020mm。
  8. 根据权利要求2所述的色轮组件,其特征在于,对应所述红荧光区的所述玻璃粉涂层为在所述基板表面喷涂玻璃粉形成,所述玻璃粉的喷涂厚度为0.005~0.030mm。
  9. 根据权利要求2所述的色轮组件,其特征在于,所述基板层为蓝宝石制成的透蓝反黄层。
  10. 根据权利要求1所述的色轮组件,其特征在于,所述非红荧光区为绿荧光区、黄荧光区或蓝荧光区中的任意一种。
  11. 根据权利要求2所述的色轮组件,其特征在于,所述滤光层为分 别贴设在所述红荧光区和所述非红荧光区的滤光片。
  12. 根据权利要求9所述的色轮组件,其特征在于,所述荧光层为环状结构,所述基板层的中心设置有固定胶体,所述荧光层环绕所述固定胶体设置,所述滤光片粘接在所述固定胶体远离所述基板层的一侧。
  13. 根据权利要求1所述的色轮组件,其特征在于,还包括位于所述激发光源和所述色轮组件之间的中继透镜。
  14. 根据权利要求1所述的色轮组件,其特征在于,还包括驱动所述色轮组件旋转的驱动马达及马达连接装置。
  15. 一种光源系统,其特征在于,包括激发光源和如权利要求1到14任意一项所述的色轮组件。
  16. 一种投影设备,其特征在于,包括如权利要求15所述的光源系统。
PCT/CN2018/118817 2018-04-12 2018-12-03 色轮组件及光源系统及投影设备 WO2019196429A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/047,031 US11822052B2 (en) 2018-04-12 2018-12-03 Colour wheel assembly, light source system, and projection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810326971.3A CN110376728B (zh) 2018-04-12 2018-04-12 色轮组件及光源系统及投影设备
CN201810326971.3 2018-04-12

Publications (1)

Publication Number Publication Date
WO2019196429A1 true WO2019196429A1 (zh) 2019-10-17

Family

ID=68163911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118817 WO2019196429A1 (zh) 2018-04-12 2018-12-03 色轮组件及光源系统及投影设备

Country Status (3)

Country Link
US (1) US11822052B2 (zh)
CN (2) CN110376728B (zh)
WO (1) WO2019196429A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031420A (zh) * 2021-12-06 2022-02-11 亚细亚建筑材料股份有限公司 一种荧光釉料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478754A (zh) * 2010-11-29 2012-05-30 精工爱普生株式会社 光源装置和投影机
JP5672949B2 (ja) * 2010-10-25 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
CN104769497A (zh) * 2012-11-07 2015-07-08 松下知识产权经营株式会社 光源以及图像投影装置
CN104953014A (zh) * 2014-03-28 2015-09-30 深圳市绎立锐光科技开发有限公司 一种多层结构玻璃荧光粉片及其制备方法及发光装置
CN105785700A (zh) * 2016-01-14 2016-07-20 四川长虹电器股份有限公司 激光显示系统
CN207164363U (zh) * 2017-07-25 2018-03-30 深圳市光峰光电技术有限公司 色轮及应用所述色轮的光源系统、投影系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29614692U1 (de) * 1996-04-30 1996-10-24 Balzers Prozess Systeme Vertri Farbrad und Bilderzeugungsvorrichtung mit einem Farbrad
TW556850U (en) * 2003-02-24 2003-10-01 Prodisc Technology Inc Color wheel
CN202351489U (zh) * 2011-10-28 2012-07-25 深圳市光峰光电技术有限公司 色轮与光源及投影系统
CN103885274B (zh) * 2012-12-20 2018-05-15 深圳市光峰光电技术有限公司 发光装置及相关投影系统
CN104566230B (zh) * 2013-10-15 2017-07-11 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
JP6394144B2 (ja) * 2013-11-08 2018-09-26 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2015118107A (ja) * 2013-11-13 2015-06-25 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
CN203810291U (zh) * 2014-02-24 2014-09-03 扬州吉新光电有限公司 一种利用漫反射基板进行光学设计的荧光粉色轮
CN105093776B (zh) * 2014-05-13 2020-08-25 深圳光峰科技股份有限公司 波长转换装置、光源系统及投影系统
CN206020915U (zh) * 2016-06-30 2017-03-15 扬州红新光电有限公司 一种采用透射基板的波长转换板及发光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672949B2 (ja) * 2010-10-25 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
CN102478754A (zh) * 2010-11-29 2012-05-30 精工爱普生株式会社 光源装置和投影机
CN104769497A (zh) * 2012-11-07 2015-07-08 松下知识产权经营株式会社 光源以及图像投影装置
CN104953014A (zh) * 2014-03-28 2015-09-30 深圳市绎立锐光科技开发有限公司 一种多层结构玻璃荧光粉片及其制备方法及发光装置
CN105785700A (zh) * 2016-01-14 2016-07-20 四川长虹电器股份有限公司 激光显示系统
CN207164363U (zh) * 2017-07-25 2018-03-30 深圳市光峰光电技术有限公司 色轮及应用所述色轮的光源系统、投影系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031420A (zh) * 2021-12-06 2022-02-11 亚细亚建筑材料股份有限公司 一种荧光釉料

Also Published As

Publication number Publication date
US20210373319A1 (en) 2021-12-02
US11822052B2 (en) 2023-11-21
CN110376728A (zh) 2019-10-25
CN110376728B (zh) 2022-03-15
CN114518650A (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
US8894241B2 (en) Light source device and image display device
US9075299B2 (en) Light source with wavelength conversion device and filter plate
US9075293B2 (en) Illumination device, projecting device and lighting device
US6890234B2 (en) LED cross-linkable phosphor coating
EP3557322B1 (en) Light source system and projection device
CN205450551U (zh) 色轮模组、光源模组和投影系统
JP2012247491A5 (zh)
JP6596659B2 (ja) 光源装置、および投写型映像表示装置
CN106324963A (zh) 应用波长转换原理的新型透射式背光光源装置
WO2017077739A1 (ja) 発光体、発光装置、照明装置、および発光体の製造方法
WO2013071742A1 (zh) 发光装置及投影系统
JP2019045778A (ja) 波長変換素子、光源装置およびプロジェクター
JP2017215507A (ja) 波長変換素子、光源装置および画像投射装置
WO2016185860A1 (ja) 蛍光体基板、光源装置および投射型表示装置
WO2019196429A1 (zh) 色轮组件及光源系统及投影设备
JP2019074677A (ja) 波長変換素子、波長変換装置、光源装置およびプロジェクター
TWI810280B (zh) 高效且均勻的鐳射激發式白光生成器
TW201723630A (zh) 色輪模組與光源模組
US11962125B2 (en) Wavelength conversion device and light source system
KR20120103072A (ko) 광원 장치 및 그 제조 방법
US9062847B2 (en) Method for manufacturing a phospor device and lighting apparatus comprising such phosphor device
CN107065411A (zh) 荧光滤色轮及其光源系统、投影系统
JP2021144062A (ja) 波長変換素子、光源装置、車両用前照灯具、表示装置、光源モジュール、投影装置
CN109424941B (zh) 波长转换装置和激光荧光转换型光源
CN206618943U (zh) 应用波长转换原理的新型反射式投影光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914915

Country of ref document: EP

Kind code of ref document: A1