WO2019196427A1 - 基于支撑故障事件约束机组组合的备用优化方法和装置 - Google Patents

基于支撑故障事件约束机组组合的备用优化方法和装置 Download PDF

Info

Publication number
WO2019196427A1
WO2019196427A1 PCT/CN2018/118375 CN2018118375W WO2019196427A1 WO 2019196427 A1 WO2019196427 A1 WO 2019196427A1 CN 2018118375 W CN2018118375 W CN 2018118375W WO 2019196427 A1 WO2019196427 A1 WO 2019196427A1
Authority
WO
WIPO (PCT)
Prior art keywords
lolp
event
marginal
scene
standby
Prior art date
Application number
PCT/CN2018/118375
Other languages
English (en)
French (fr)
Inventor
王明强
杨明
韩学山
张利
王勇
王孟夏
王成福
董晓明
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US16/959,908 priority Critical patent/US20200334562A1/en
Publication of WO2019196427A1 publication Critical patent/WO2019196427A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the invention belongs to the field of rotating standby optimization, and particularly relates to a standby optimization method and device for constraining a unit combination based on a supporting fault event.
  • Rotating standby is an important resource in the power system.
  • the rotary standby is mainly provided by a network-operated generator and can be input into the system within a specified time to cope with power fluctuations caused by load fluctuations and component failures in the system, thereby avoiding system load loss.
  • a sufficient rotation reserve can reduce the possibility of loss of load and improve the reliability of the power system.
  • there is a cost associated with providing a spin reserve because a new genset may be required to access the system or force the unit being commissioned to deviate from its optimal operating point. Therefore, the rotation reserve needs scientific and reasonable planning, taking into account the economic and reliability of the system.
  • the rotating standby configuration uses a deterministic approach that determines the number of rotating spares based on a ratio of total load to maximum on-line unit capacity. This method is simple and easy to operate, but it is easy to cause the alternate configuration to be conservative or aggressive.
  • Literature [4] establishes an alternate cost model based on storage theory, and combines the probability of spare capacity utilization in historical data, and uses the decision-making algorithm to solve the optimal spare capacity, which can obtain the optimal economy under the premise of ensuring the security of the system. Spare capacity.
  • Spare capacity the risk analysis of the rotating reserve scheme is carried out from the perspective of power generation system.
  • the utility function and utility value are used to reflect the satisfaction degree of different types of decision makers on the rotating reserve profit and loss, and the utility expectation value decision model of rotating reserve profit and loss is proposed. These two alternative configuration schemes are more in line with economic laws, to a certain extent, taking into account the economics and reliability of the system, and more adapt to the power system in the market environment. With the continuous access of new energy sources, the uncertainty in the system is gradually increasing, which makes the probabilistic backup optimization method pay more attention.
  • the probabilistic backup optimization method mainly includes an optimization model with reliability index constraints and an optimization model based on cost-benefit compromise.
  • An optimization model with reliability index constraints refers to adding a reliability indicator not exceeding a certain set value as a constraint to the scheduling model.
  • the optimization model based on the cost-benefit compromise refers to quantifying the loss caused by the loss of load and adding it to the objective function, which is minimized together with the running cost, so that the standby optimization can automatically balance the economy and reliability.
  • VOLL lost load
  • Loss of load probability (LOLP) is the probability of a user's power outage due to various disturbances in the system at a given time. This indicator directly reflects the reliability of the system operation, the concept is simple and clear, intuitive and reasonable.
  • the LOLP can be accurately expressed as a function of the generator's start-stop state, output, output reserve, system rotation reserve, expected events, and probability of occurrence of an expected event.
  • LOLP expressions are highly nonlinear and combined, and contain not only many continuous variables, but also a large number of 0/1 variables, not only related to the scheduling results, but also to the expected event scenarios considered.
  • the number of scenes has a combination of features and a large scale.
  • the present invention provides an alternate optimization method and apparatus for constraining unit combinations based on supporting fault events, converting highly nonlinear and combined LOLP constraints into a series of linear expressions, only Optimization based on the constraints of some of the key marginal scenarios, effectively improving the efficiency of standby optimization.
  • the present invention adopts the following technical solutions:
  • An alternate optimization method based on supporting fault events to constrain a combination of units includes the following steps:
  • Step 1 Run a basic unit combination backup optimization model to obtain the basic unit combination scheduling results
  • Step 2 Establish a running capacity missing table based on the scheduling result, calculate LOLP, and find a marginal event therefrom;
  • Step 3 Add the linear constraint corresponding to the marginal event to the alternate optimization model to obtain a new scheduling result, and return to step 2 until the result meets the LOLP requirement.
  • the basic unit combination standby optimization model in the step 1 is a rotation standby optimization model that does not include the LOLP constraint.
  • the row of the operational capacity loss table represents a fault event that may occur in the unit, and the column represents the missing capacity, the probability of failure, and the cumulative probability.
  • LOLP is expressed as:
  • n is the number of rows of CCOPT, which indicates the number of fault events that may occur in the unit during t-time;
  • p i,t represents the probability of failure of event i;
  • b i,t is the variable of 0/1, and it is judged whether the corresponding fault scene in t period Loss of load, b i, t is 1 means that if the scene will cause loss of load, b i, t is 0 means that the scene will not cause load loss if it occurs.
  • ⁇ CC i,t is the missing capacity of the fault event i in the t period, indicating the sum of the power and the standby of all the units in the event
  • SSR t is the total standby of the system in the t period
  • ⁇ * indicates the fault event that will not cause the loss of load
  • s represents a marginal event.
  • the LOLP sum caused by the fault scene with the number of rows greater than or equal to i in CCOPT does not exceed LOLP max , but the number of rows is greater than or equal to i-1
  • the sum of LOLP does not exceed LOLP max ;
  • the i-1th line scene is a marginal scene, and the same type of fault scene as the marginal scene is also a marginal scene.
  • the present invention also discloses a backup optimization apparatus for constraining a unit combination based on a support failure event, comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, The processor executes:
  • Step 1 Run a basic unit combination backup optimization model to obtain the basic unit combination scheduling results
  • Step 2 Establish a running capacity missing table based on the scheduling result, calculate LOLP, and find a marginal event therefrom;
  • Step 3 Add the linear constraint corresponding to the marginal event to the alternate optimization model to obtain a new scheduling result, and return to step 2 until the result meets the LOLP requirement.
  • a third object of the present invention there is also a computer readable storage medium having stored thereon a computer program executed by a processor to perform:
  • Step 1 Run a basic unit combination backup optimization model to obtain the basic unit combination scheduling results
  • Step 2 Establish a running capacity missing table based on the scheduling result, calculate LOLP, and find a marginal event therefrom;
  • Step 3 Add the linear constraint corresponding to the marginal event to the alternate optimization model to obtain a new scheduling result, and return to step 2 until the result meets the LOLP requirement.
  • the present invention is based on a LOLP constrained alternate optimization model that converts highly nonlinear and combined LOLP constraints into a series of linear expressions. Since most of the series of equivalent linear constraints are slack constraints, only a small number of key marginal scene constraints can be found. Only based on representative scene constraints can improve the efficiency of standby optimization.
  • the present invention proposes a constraint addition method for a UC model with representative scene constraints. Specifically, in combination with CCOPT, iteratively, the marginal scene is searched successively and optimized as constraints until the result satisfies the LOLP constraint.
  • the present invention takes into account multiple compromises in the problem and simplifies the LOLP constraint so that the model can be solved accurately and efficiently.
  • the optimization method of the invention has good accuracy and effectiveness in single-time and multi-machine multi-time systems.
  • FIG. 1 is a flow chart of an alternate optimization method for constraining a unit combination based on a support fault event according to the present invention
  • Figure 2 shows the standby at different reliability levels
  • Figure 3 shows the optimized spares for different sized systems
  • Figure 4 shows the comparison between the different sizes of the system.
  • the LOLP constraint is expressed as a series of linear constraints, and most of the constraints in this series of equivalent linear constraints are relaxation constraints, so only a small number of tight constraints can be considered.
  • This article gradually adds constraints in an iterative manner. Starting from a basic unit combination problem, a committed capacity outage probability table (CCOPT) is established based on the scheduling result, and a marginal event is sought from it. Add the linear constraint corresponding to the marginal event to the next alternate optimization model. As the iteration progresses, constraints are added until the results meet the LOLP requirements.
  • CCOPT committed capacity outage probability table
  • the constrained addition method proposed in this paper solves the alternate optimization problem with LOLP constraints, considers the multiple compromises in the problem, and simplifies the LOLP constraint so that the model can be solved accurately and efficiently.
  • the objective function in the ROMP-based rotation reserve optimization model is the sum of the running cost and the standby cost:
  • N T is the number of periods in a study period
  • N G is the number of generators that can be dispatched
  • U i,t is the start-stop state of unit i in period t
  • P i,t is the unit i of period t Output
  • q i,t is the reserve price of unit i in period t
  • R i,t is the reserve capacity of unit i in period t
  • C it (P it ,U it ) is the running cost of unit i in period t
  • Three-stage linear function representation SUC i is the starting cost of unit i
  • K i,t is 0/1 variable, satisfying
  • P t D is the load value at time t.
  • P i max is the maximum output of unit i; It is the climbing speed of unit i; ⁇ is the time taken for the unit to release the standby. In this paper, ⁇ is set to 0.5h.
  • the upper type constraint usually includes the upper and lower limit constraints of the genset output power, the minimum start and stop time constraint, the initial condition constraint, and the unit output power rate constraint.
  • the fault can be divided into first-order, second-order, third-order and other faults according to the number of simultaneous faults of the unit.
  • the following only gives the expression of the first two orders of LOLP:
  • p i,t is the probability that unit i will fail during t period
  • p i,j,t is the probability that units i and j will simultaneously fail during t period
  • SSR t is the total backup of the system at time t, which satisfies:
  • Formulas (8) and (9) can be linearized according to the method of [7, 19].
  • equation (8) can be linearized as:
  • the probability of failure p i,t ,p i,j,t can be expressed as:
  • u i is the fault replacement rate, equal to r i ⁇ T in the ⁇ T period
  • r i is the failure rate of unit i, where ⁇ T is 1h.
  • This embodiment discloses an alternate optimization method for constraining a unit combination based on a support fault event, including the following steps:
  • Step 1 Run a basic unit combination backup optimization model to obtain the basic unit combination scheduling results
  • Step 2 Establish a running capacity missing table based on the scheduling result, calculate LOLP, and find a marginal event therefrom;
  • Step 3 Add the linear constraint corresponding to the marginal event to the alternate optimization model to obtain a new scheduling result, and return to step 2 until the result meets the LOLP requirement.
  • the basic unit combination standby optimization model the objective function is as in formula (1), and the constraint conditions are as in formulas (2)-(5).
  • the operation capacity loss table in the step 2 includes a missing capacity, a failure probability, and a cumulative probability.
  • CCOPT is established according to the scheduling result, as shown in Table 1.
  • n is the number of CCOPT lines, and indicates the number of fault events that may occur in the unit during t-time;
  • p i,t represents the probability of failure of event i. From equation (12-13), p i,t is greater than CCOPT. 0;
  • b i, t is a 0/1 variable, and it is judged whether the fault scene corresponds to a fault situation in the t period.
  • b i, t is 1 means that if the scene occurs, the load will be lost, and b i, t is 0, indicating that the scene occurs. Will not cause loss of load.
  • ⁇ CC i,t is the missing capacity of the t-time fault event i, which represents the sum of the power and the standby of all the units in the event.
  • event i is the simultaneous failure of the x and y units
  • ⁇ CC i,t P x +R x +P y +R y
  • SSR t is the total system backup for the t period.
  • the fault event is divided into two parts, one is a fault event that will not cause loss of load, and constitutes a set ⁇ * ; part of it is a fault event that will cause loss of load, constitute a set ⁇ * and
  • the complete set of fault events may occur when the optimal scheduling of the system is formed, and the probability sum is 1. Therefore, all missing volumes in the optimal solution that do not cause LOLP and cause LOLP are satisfied:
  • Equation (16) Equation (16) with Are all parameters, ⁇ * and The events in the event are also ok. Obviously the optimal solution can't be known in advance, but if you can determine ⁇ * and The event in which you can know in advance which events cause LOLP and which events do not cause LOLP, Equation (16) can be converted to:
  • Equation (17) ⁇ * and The events in the event are deterministic, but ⁇ CC s, t and SSR t are variables. Substituting equation (17) for LOLP constraint (7), after optimization, it is clear that the optimal solution can be obtained.
  • a large number of constraints in equation (18) are slack.
  • the fault capacity of many events in the optimal solution is significantly smaller than the standby, and the constraint in equation (18) corresponding to these events is slack. That is to say, most of the events in ⁇ * are slack and can be covered by a small number of events in ⁇ * . Therefore, it is only necessary to find a few key events in ⁇ * to form the constraint (19), and the optimal solution can be obtained after optimization.
  • the key to dealing with alternate optimization problems with LOLP constraints translates into finding a few key events in ⁇ * .
  • the missing capacity of this small number of key events is at Nearby, it can be called a marginal event, and the corresponding constraint is called a marginal constraint.
  • the method for finding the marginal event in the step 2 is:
  • CCOPT is established based on the scheduling result.
  • the meaning of the above formula is that the LOLP sum caused by the fault scene on the ith line and below in the COPT does not exceed LOLP max , but if the probability of the fault scene in the i-1th line is added, the LOLP sum will be greater than LOLP max .
  • the i-th line is the boundary line that the system is allowed to not cause LOLP, and the minimum external demand for the system to meet the reliability requirements is reflected.
  • the scene in the i-1th line in CCOPT is a marginal scene.
  • the system has the same type of fault scene as the marginal scene (the same type of scene, that is, the scene contains the same type of unit). If it is above the i-1th line in CCOPT, the same type of scene is also a marginal scene.
  • the present invention also provides a backup optimization apparatus for constraining a unit combination based on a support fault event, comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, The processor executes:
  • Step 1 Run a basic unit combination backup optimization model to obtain the basic unit combination scheduling results
  • Step 2 Establish a running capacity missing table based on the scheduling result, calculate LOLP, and find a marginal event therefrom;
  • Step 3 Add the linear constraint corresponding to the marginal event to the alternate optimization model to obtain a new scheduling result, and return to step 2 until the result meets the LOLP requirement.
  • the present invention also provides a computer readable storage medium having stored thereon a computer program, wherein the program is executed by the processor:
  • Step 1 Run a basic unit combination backup optimization model to obtain the basic unit combination scheduling results
  • Step 2 Establish a running capacity missing table based on the scheduling result, calculate LOLP, and find a marginal event therefrom;
  • Step 3 Add the linear constraint corresponding to the marginal event to the alternate optimization model to obtain a new scheduling result, and return to step 2 until the result meets the LOLP requirement.
  • the steps involved in the above two devices are corresponding to the method embodiments.
  • the term "computer-readable storage medium” shall be taken to mean a single medium or a plurality of mediums including one or more sets of instructions; it should also be understood to include any medium that can be stored, encoded or carried for use by a processor.
  • the set of instructions executed and causes the processor to perform any of the methods of the present invention.
  • the system contains 26 units.
  • the unit combination data and the climbing rate limit are obtained by the literature [20].
  • the starting cost and reliability data of the generator set are obtained by the literature [21].
  • the reserve price is equal to 10% of the maximum incremental cost of power generation.
  • the output of the unit at the initial time is determined by the economic dispatch when the load in the first period is 1700 MW. Considering a time period, when LOLP max is 0.001, the problem proposed in this paper is used to solve the alternate optimization problem with LOLP constraints.
  • the marginal combination is found. Since the LOLP max is 0.001, the cumulative probability of the 15th line in CCOPT is 0.00182014, the cumulative probability of the 15th line is 0.000916849, 0.000916849 ⁇ 0.001 ⁇ 0.00182014, so the 25th generator in the 15th line is faulty. It is the marginal scene.
  • the fault scenario contained in ⁇ is the failure of the 25th unit.
  • CCOPT the method of this paper, find the marginal scene, you can get the marginal scene for the 24th unit to fail, and add it to the set ⁇ to establish the constraint of the form (18).
  • the optimized scheduling result is shown in Appendix A2.
  • the backup is gradually increased with the iteration, because the marginal scene is added to the set ⁇ successively, and the corresponding constraints are more and more, which increases the requirements for system backup and optimizes each iteration.
  • the post system backup is always equal to the missing capacity of the newly added marginal scene.
  • the process of standby growth is also a process of gradual decline in economy, and moves toward the direction of reliability improvement, and finally meets the reliability requirements.
  • the LOLPmax is transformed, and the calculation system satisfies the cost corresponding to different LOLP constraints.
  • two methods are used to solve the same problem. The first method uses the original model to solve, and the second method uses the method proposed in this paper. The results are shown in Table 4.
  • the method of this paper can solve the problem that cannot be solved by the original model. Also taking the IEEE-RTS system as an example, considering the 26-machine system, the optimization period is 24 hours, and it is necessary to find the marginal unit for each time period. For the different LOLP max , the alternate obtained by the method of this paper is shown in Figure 2. Considering the second-order fault, the original model and the proposed method are used for the alternate optimization under different LOLP max , and the time used is as shown in Table 5.
  • the model used in this paper is coded in GAM.
  • the calculation tool is the large-scale MILP solver CPLEX combined with Visual C.
  • the dual interval of MILP is 0.1%.
  • the computer CPU used is 3.6GHz and the running memory is 4G.
  • the present invention is based on a LOLP constrained alternate optimization model that converts highly nonlinear and combined LOLP constraints into a series of linear expressions. Since most of the series of equivalent linear constraints are slack constraints, only a small number of key marginal scene constraints can be found. Only based on representative scene constraints can improve the efficiency of standby optimization.
  • the present invention proposes a constraint addition method for a UC model with representative scene constraints. Specifically, in combination with CCOPT, iteratively, the marginal scene is searched successively and optimized as constraints until the result satisfies the LOLP constraint.
  • the present invention takes into account multiple compromises in the problem and simplifies the LOLP constraint so that the model can be solved accurately and efficiently.
  • the optimization method of the invention has good accuracy and effectiveness in single-time and multi-machine multi-time systems.
  • modules or steps of the present invention described above can be implemented in a general-purpose computer device. Alternatively, they can be implemented in program code executable by a computing device so that they can be stored in storage.
  • the devices are implemented by computing devices, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the invention is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Optimization (AREA)
  • Computing Systems (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Educational Administration (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种基于支撑故障事件约束机组组合的备用优化方法和装置,所述方法包括以下步骤:步骤1:运行一个基本的机组组合备用优化模型,获取基本机组组合调度结果;步骤2:基于所述调度结果建立投运容量缺失表,计算LOLP,并从中寻找边际事件;步骤3:将边际事件对应的线性约束添加到备用优化模型,得到新的调度结果,返回步骤2,直至结果满足LOLP要求。本方法考虑了问题中的多重折中,简化了LOLP约束使模型可以精确高效求解。

Description

基于支撑故障事件约束机组组合的备用优化方法和装置 技术领域
本发明属于旋转备用优化领域,尤其涉及一种基于支撑故障事件约束机组组合的备用优化方法和装置。
背景技术
旋转备用是电力系统里的一种重要资源。旋转备用主要由联网运行的发电机提供,在规定的时间内能够输入系统中,应对系统中负荷变动以及元件故障事故造成的功率波动,避免系统的失负荷。配置充足的旋转备用能够减少失负荷的可能,改善电力系统的可靠性。但是提供旋转备用会产生一定的费用,因为可能需要新的发电机组接入系统,或强迫正在投入的机组偏离其最佳运行点。因此旋转备用需要科学合理的规划,兼顾系统的经济性与可靠性。
传统上,旋转备用的配置采用确定性方法,即按照总负荷和最大在线机组容量的某个比例确定旋转备用数量。这种方法简单易操作,但容易导致备用配置保守或冒进。文献[4]基于存储理论建立备用成本模型,并结合历史数据资料中备用容量利用的概率,运用决策论的算法求解最优备用容量,能在保障系统安全性不变的前提下获得最优经济备用容量。文献[5]从发电系统角度对旋转备用方案进行风险分析,利用效用函数和效用值反映不同类型决策者对旋转备用损益的满意程度,提出旋转备用损益的效用期望值决策模型。这两种备用配置方案更符合经济规律,一定程度上兼顾系统的经济性与可靠性,更适应市场环境下的电力系统。随着新能源的不断接入,系统中的不确定性逐渐增强,这都使的概率性备用优化方法受到进一步的重视。概率性备用优化方法主要包括带可靠性指标约束的优化模型,以及基于成本效益折中的优化模型。带可靠性指标约束的优化模型,指将可靠性指标不超过某一设定值作为约束加入到调度模型中。基于成本效益折中的优化模型,是指将失负荷造成的损失量化后加入到目标函数中,与运行费用一起最小化,这样备用优化能够使系统自动在经济性与可靠性之间取得平衡。但是在量化失负荷损失时,往往需要失负荷价值(value of lost load,VOLL)信息。该值对结果影响显著,且往往与具体电力系统以及运行状态有关,很难获得一个合理的VOLL。失负荷概率(loss of load probability,LOLP)指在给定时间内由于系统中各 种扰动造成的用户停电概率。该指标直接反应系统运行的可靠性,概念简单清晰,直观合理。
LOLP可以精确表达为发电机的启停状态、出力、输出备用、系统旋转备用、预想事件和预想事件发生概率的函数。LOLP的表达式具有高度非线性和组合特性,不仅包含众多连续变量,还包含大量0/1变量,不仅与调度结果有关,还与所考虑的预想事件场景有关。而场景的数量具有组合特性,规模庞大。当考虑高阶故障和多时段时,即使对较小的系统,计算机内存也很容易耗尽而导致问题无法求解。
因此,如何既保证带有LOLP约束的模型能够高效求解,又解决多重折中问题,是本领域技术人员目前迫切解决的技术问题。
发明内容
为克服上述现有技术的不足,本发明提供了一种基于支撑故障事件约束机组组合的备用优化方法和装置,将高度非线性和组合性的LOLP约束等价转换为一系列线性表达式,仅基于其中部分关键的边际场景对应的约束进行优化,有效提高了备用优化效率。
为实现上述目的,本发明采用如下技术方案:
一种基于支撑故障事件约束机组组合的备用优化方法,包括以下步骤:
步骤1:运行一个基本的机组组合备用优化模型,获取基本机组组合调度结果;
步骤2:基于所述调度结果建立投运容量缺失表,计算LOLP,并从中寻找边际事件;
步骤3:将边际事件对应的线性约束添加到备用优化模型,得到新的调度结果,返回步骤2,直至结果满足LOLP要求。
进一步地,所述步骤1中基本的机组组合备用优化模型为不包括LOLP约束的旋转备用优化模型。
进一步地,所述投运容量缺失表的行代表机组可能发生的故障事件,列代表缺失容量、故障概率和累计概率。
进一步地,LOLP表示为:
Figure PCTCN2018118375-appb-000001
式中:n为CCOPT的行数,表示t时段机组可能发生的故障事件数;p i,t表示事件i发生的故障概率;b i,t是0/1变量,判断t时段对应故障场景是否出现失负荷, b i,t为1表示该场景如果发生会造成失负荷,b i,t为0表示该场景如果发生不会造成失负荷。
进一步地,
Figure PCTCN2018118375-appb-000002
式中,ΔCC i,t是t时段故障事件i的缺失容量,表示事件中所有机组的功率与备用之和;SSR t为t时段的系统总备用。
进一步地,所述边际事件满足边际约束:
Figure PCTCN2018118375-appb-000003
式中:ΔCC i,t是t时段故障事件i的缺失容量,表示事件中所有机组的功率与备用之和,SSR t为t时段的系统总备用,Ω *表示不会造成失负荷的故障事件,s表示边际事件。
进一步地,所述寻找边际事件方法为:
在CCOPT中找出第i-1行和第i行,累计概率满足:在CCOPT中行数大于等于i的故障场景造成的LOLP总和不超过LOLP max,但行数大于等于i-1的故障场景造成的LOLP总和不超过LOLP max
第i-1行场景为边际场景,与边际场景同类型的故障场景也是边际场景。
根据本发明的第二目的,本发明还公开了一种基于支撑故障事件约束机组组合的备用优化装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行:
步骤1:运行一个基本的机组组合备用优化模型,获取基本机组组合调度结果;
步骤2:基于所述调度结果建立投运容量缺失表,计算LOLP,并从中寻找边际事件;
步骤3:将边际事件对应的线性约束添加到备用优化模型,得到新的调度结果,返回步骤2,直至结果满足LOLP要求。
根据本发明的第三目的,本发明还公开了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时执行:
步骤1:运行一个基本的机组组合备用优化模型,获取基本机组组合调度结果;
步骤2:基于所述调度结果建立投运容量缺失表,计算LOLP,并从中寻找 边际事件;
步骤3:将边际事件对应的线性约束添加到备用优化模型,得到新的调度结果,返回步骤2,直至结果满足LOLP要求。
本发明的有益效果
1、本发明基于LOLP约束的备用优化模型,将高度非线性和组合性的LOLP约束等价转换为一系列线性表达式。由于这一系列等效线性约束中大多数属于松弛约束,只需找到少部分关键的边际场景对应的约束即可,仅基于具有代表性的场景约束能够提高备用优化效率。
2、本发明对于具有代表性的场景约束的UC模型,提出约束添加法求解。具体来说,结合CCOPT,采取迭代的方式,逐次寻找边际场景并作为约束进行优化,直至结果满足LOLP约束。本发明考虑了问题中的多重折中,简化了LOLP约束使模型可以精确高效求解。
3、本发明的优化方法在单时段和多机多时段系统下,都具有较好的准确性和有效性。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明基于支撑故障事件约束机组组合的备用优化方法流程图;
图2为不同可靠性水平下的备用;
图3为不同大小系统的优化所得备用;
图4为不同大小系统下用时对比。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和 /或它们的组合。
在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明提出的总体思路:
本文通过对LOLP约束自身特点的分析,将LOLP约束等效表达为一系列线性约束,并且这一系列等效线性约束中大多数约束属于松弛约束,因此只考虑少量紧约束即可。本文采用迭代的方式逐渐添加约束。从一个基本的机组组合问题开始,基于调度结果建立投运容量缺失表(committed capacity outage probability table,CCOPT),并从中寻找边际事件。将边际事件对应的线性约束添加到下一步的备用优化模型中。随着迭代的进行,不断添加约束,直至结果满足LOLP要求。本文提出的约束添加法求解带LOLP约束的备用优化问题,考虑了问题中的多重折中,简化了LOLP约束使模型可以精确高效求解。
基于LOLP约束的旋转备用优化模型(LCUC)
基于LOLP约束的旋转备用优化模型中的目标函数为运行费用与备用费用之和:
Figure PCTCN2018118375-appb-000004
式中:N T为一个研究周期内的时段数;N G为可调度的发电机数;U i,t为t时段内机组i的启停状态;P i,t为t时段内机组i的出力;q i,t为t时段内机组i的备用价格;R i,t为t时段内机组i的备用容量;C it(P it,U it)为t时段内机组i的运行成本,由三段线性函数表示;SUC i为机组i的启动成本;K i,t为0/1变量,满足
Figure PCTCN2018118375-appb-000005
目标函数要满足以下约束:
1)功率平衡约束
Figure PCTCN2018118375-appb-000006
式中:P t D为t时刻的负荷值。
2)旋转备用约束
Figure PCTCN2018118375-appb-000007
式中:P i max为机组i的最大出力;
Figure PCTCN2018118375-appb-000008
为机组i的爬坡速度;τ为机组释放备用所耗时间,本文中τ设定为0.5h。
3)机组运行约束
Figure PCTCN2018118375-appb-000009
上式的约束中通常包含发电机组输出功率的上下限约束,最小启停时间约束,初始条件约束,机组输出功率速率约束。
4)系统可靠性约束,即系统的LOLP值应小于给定值。
LOLP<LOLP max     (6)
本文中,计算LOLP时仅考虑机组故障。因此故障可以按机组同时出现故障的个数分为一阶、二阶、三阶等故障。简洁起见,以下只给出前二阶LOLP的表达式:
Figure PCTCN2018118375-appb-000010
式中:p i,t为机组i在t时段内发生故障的概率;p i,j,t为机组i和j在t时段内同时发生故障的概率。
二进制变量b i,t,b i,j,t满足:
Figure PCTCN2018118375-appb-000011
Figure PCTCN2018118375-appb-000012
式中:SSR t为t时刻系统总备用,满足:
Figure PCTCN2018118375-appb-000013
式(8)和(9)可以按照文献[7,19]的方法线性化。例如式(8)可以线性化为:
Figure PCTCN2018118375-appb-000014
故障概率p i,t,p i,j,t可以表示为:
Figure PCTCN2018118375-appb-000015
Figure PCTCN2018118375-appb-000016
式中:u i为故障替换率,在ΔT时段内等于r iΔT,r i是机组i的故障率,这里ΔT为1h。
本实施例公开了一种基于支撑故障事件约束机组组合的备用优化方法,包括以下步骤:
步骤1:运行一个基本的机组组合备用优化模型,获取基本机组组合调度结果;
步骤2:基于所述调度结果建立投运容量缺失表,计算LOLP,并从中寻找边际事件;
步骤3:将边际事件对应的线性约束添加到备用优化模型,得到新的调度结果,返回步骤2,直至结果满足LOLP要求。
所述步骤1中基本的机组组合备用优化模型,目标函数如公式(1),约束条件如公式(2)-(5)。
所述步骤2中投运容量缺失表包括缺失容量、故障概率和累计概率。
具体地,CCOPT是根据调度结果建立的,如表1所示。
表1容量缺失表
Figure PCTCN2018118375-appb-000017
LOLP可由CCOPT计算出来,LOLP表示为:
Figure PCTCN2018118375-appb-000018
式中:n为CCOPT的行数,同时表示t时段机组可能发生的故障事件数;p i,t表示事件i发生的故障概率,由式(12-13)可知在CCOPT中p i,t大于0;b i,t是0/1变量,判断t时段对应故障场景是否出现失负荷,b i,t为1表示该场景如果发生会 造成失负荷,b i,t为0表示该场景如果发生不会造成失负荷。
判断式为:
Figure PCTCN2018118375-appb-000019
式中:ΔCC i,t是t时段故障事件i的缺失容量,表示事件中所有机组的功率与备用之和,例如事件i为x和y台机组同时发生故障,则ΔCC i,t=P x+R x+P y+R y;SSR t为t时段的系统总备用。
对于基于LOLP约束的备用优化问题,如果已经得到最优解,可得此时备用
Figure PCTCN2018118375-appb-000020
并可建立此时的CCOPT。
由判断式(15),
Figure PCTCN2018118375-appb-000021
在CCOPT中将故障事件分为两部分,一部分是不会造成失负荷的故障事件,构成集合Ω *;一部分是会造成失负荷的故障事件,构成集合
Figure PCTCN2018118375-appb-000022
Ω *
Figure PCTCN2018118375-appb-000023
构成系统最优调度时可能发生故障事件的全集,其概率和为1。因此,最优解中所有不造成LOLP和造成LOLP的事件的缺失容量满足:
Figure PCTCN2018118375-appb-000024
式(16)中
Figure PCTCN2018118375-appb-000025
Figure PCTCN2018118375-appb-000026
均是参数,Ω *
Figure PCTCN2018118375-appb-000027
中的事件也是确定的。显然最优解不能提前获知,但如果能够确定Ω *
Figure PCTCN2018118375-appb-000028
中的事件,即能提前获知哪些事件造成LOLP和哪些事件不造成LOLP,式(16)可转变为:
Figure PCTCN2018118375-appb-000029
式(17)中,Ω *
Figure PCTCN2018118375-appb-000030
中的事件是确定的,但ΔCC s,t和SSR t均是变量。将式(17)替换LOLP约束式(7),进行优化后,显然可求得最优解。
进一步,如果只提前获知Ω *中的事件,式(17)转变为:
ΔCC s,t-SSR t≤0  s∈Ω *(18)
由于Ω *
Figure PCTCN2018118375-appb-000031
的互补性,两者的事件故障概率之和为1,因此用式(18)替换原LOLP约束式(7),进行优化后,也可求得最优调度结果。但是,Ω *中的事件 提前也无法获知,要全部列举出式(18)中的约束既不现实又不可行。
进一步,式(18)中大量的约束是松弛的,比如最优解中很多事件的故障容量显著小于备用,这些事件对应的式(18)中约束就是松弛的。也就是说Ω *中大部分事件是松弛的,可以由Ω *中很少的一部分事件覆盖。因此,只需要找出Ω *中很少的一部分关键事件,构成约束式(19),进行优化后就可得到最优解。处理带LOLP约束的备用优化问题的关键就转化为如何寻找Ω *中少部分关键事件。在基于最优解建立的CCOPT中,这少部分关键事件的缺失容量处于
Figure PCTCN2018118375-appb-000032
附近,可称之为边际事件,对应的约束称为边际约束。
Figure PCTCN2018118375-appb-000033
将LOLP约束进行等价转换有以下优点:
1)LOLP约束关注所有故障事件,控制造成LOLP的事件故障概率之和小于LOLP max;等价转换后,焦点转移到不造成LOLP的事件上,可只关注CCOPT中上部分少量边际事件,下部分大量事件不作考虑,避免了利用CCOPT时的截断问题。
2)式(19)中没有明确考虑故障概率,故障概率的作用会在寻找Ω *中边际事件过程中得以间接体现。
3)高阶非线性LOLP约束被转换为一系列线性约束,同时LOLP约束中的组合特性被消除,只需考虑少部分边际事件,因此计算效率会极大改善。
所述步骤2中寻找边际事件的方法为:
每次迭代中如何找出边际场景约束是问题的关键所在,本文根据给定的LOLPmax及各机组故障概率并结合CCOPT逐步寻找边际场景。
1)每次迭代后,基于调度结果建立CCOPT。
2)在CCOPT中找出第i-1行和第i行,累计概率满足:
Figure PCTCN2018118375-appb-000034
上式的意义是在COPT中第i行及以下的故障场景造成的LOLP总和不超过LOLP max,但如果再加上第i-1行故障场景的概率,则LOLP总和将大于LOLP max。对本次调度结果而言,第i行是系统允不允许造成LOLP的分界线,反应此系统为达到可靠性要求的最小外来备用需求。
3)在CCOPT中第i-1行场景为边际场景。另外,系统中有与边际场景同类型的故障场景(同类型场景即场景中包含机组种类相同),如果在CCOPT中处于第i-1行之上,那么同类型的场景也是边际场景。
作为本发明的另一优选实施例,本发明还提供了一种基于支撑故障事件约束机组组合的备用优化装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行:
步骤1:运行一个基本的机组组合备用优化模型,获取基本机组组合调度结果;
步骤2:基于所述调度结果建立投运容量缺失表,计算LOLP,并从中寻找边际事件;
步骤3:将边际事件对应的线性约束添加到备用优化模型,得到新的调度结果,返回步骤2,直至结果满足LOLP要求。
作为本发明的另一优选实施例,本发明还提供了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时执行:
步骤1:运行一个基本的机组组合备用优化模型,获取基本机组组合调度结果;
步骤2:基于所述调度结果建立投运容量缺失表,计算LOLP,并从中寻找边际事件;
步骤3:将边际事件对应的线性约束添加到备用优化模型,得到新的调度结果,返回步骤2,直至结果满足LOLP要求。
以上两个装置中涉及的各步骤与方法实施例相对应,具体实施方式可参见实施例一的相关说明部分。术语“计算机可读存储介质”应该理解为包括一个或多个指令集的单个介质或多个介质;还应当被理解为包括任何介质,所述任何介质能够存储、编码或承载用于由处理器执行的指令集并使处理器执行本发明中的任一方法。
为了使本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例一
以IEEE-RTS系统为例,验证本文所提方法的有效性。系统中包含26台机组,机组组合数据及爬坡率限制由文献[20]获得,发电机组的启动成本和可靠性数据由文献[21]获得。简便起见,备用价格等于发电最大增量成本的10%。机组在初始时 刻的出力由第一时段负荷为1700MW时的经济调度决定。考虑一个时段,LOLP max为0.001时,用本文提出的方法解决带LOLP约束的备用优化问题。
运行一个不考虑旋转备用的基本的机组组合,各发电机状态及出力如表2所示,以此建立CCOPT如表3所示,三阶以上故障概率很小可忽略不计。
表2基本机组组合调度结果
Figure PCTCN2018118375-appb-000035
表3基于基本UC调度结果建立的CCOPT
Figure PCTCN2018118375-appb-000036
Figure PCTCN2018118375-appb-000037
按照本文的方法寻找边际组合,由于LOLP max为0.001,CCOPT中第15行累计概率为0.00182014,第15行累计概率为0.000916849,0.000916849<0.001<0.00182014,因此第15行中第25台发电机发生故障就是边际场景。
找到边际场景后,构成边际场景集合Ω,此时LOLP约束可以简化为:
Figure PCTCN2018118375-appb-000038
式中:Ω中包含的故障场景为第25台机组发生故障,
因此k为第25台发电机。优化后机组调度结果见附录A1。
优化后备用为300MW,LOLP after=0.001700>LOLP max,不满足迭代停止条件,须基于优化结果继续寻迭代。继续建立CCOPT按照本文方法寻找边际场景,可以得到边际场景为第24台机组发生故障,并将其加入集合Ω中,建立形如式(18)的约束式,优化后调度结果见附录A2。优化后备用为333.50MW,LOLP after=0.00093575<LOLP max,满足迭代停止条件。
从优化过程来看,随着迭代的进行备用是逐渐增加的,因为边际场景被逐次添加进集合Ω中,对应的约束越来越多,这就对系统备用提高了要求,并且每次迭代优化后系统备用总等于新加入的边际场景的缺失容量。备用增长的过程也是经济性逐渐下降的过程,并向着可靠性提高的方向移动,最终满足可靠性要求。
方法有效性与准确性
以IEEE-RTS 26机系统为例,变换LOLPmax,计算系统满足不同LOLP约束 对应的成本。为比较本文所提方法的效果,现利用两种方法对同一个问题进行求解。第一种方法利用原模型求解,第二种方法利用本文提出的方法,结果如表4所示。
表4不同LOLP max下分别采用三种采用方法的成本对比
Figure PCTCN2018118375-appb-000039
对比可见,本文提出的方法与利用原模型计算出的结果近似相等,说明本文所提方法的有效性及准确性。
方法的效率
对于多机多时段系统,采用本文的方法可解决利用原模型无法求解的问题。同样以IEEE-RTS系统为例,考虑26机系统,优化时段为24个小时,需要对每个时段找出边际机组。对不同的LOLP max,采用本文的方法得到的备用如图2所示。考虑到二阶故障,在不同LOLP max下分别采用原模型和本文提出的方法进行备用优化,所用时间对比如表5所示。
表5原模型与本文方法用时对比
Figure PCTCN2018118375-appb-000040
Figure PCTCN2018118375-appb-000041
图2可见,备用随着LOLP max的减小总趋势是逐渐增大的,某些时刻备用保持不变,此时系统具备一定的抗干扰能力,可以用来应对负荷波动及新能源接入后带来的不确定性。可以综合不同LOLP max及对应的成本并根据经验在经济性与可靠性之间选择系统合理的运行区间。
从表5可见,利用原模型时,考虑到二阶故障时,在有些LOLP max下计算机内存已耗尽,如果考虑到更高阶故障更是难以计算,这就是原模型中LOLP约束带来的计算瓶颈。采用本文提出的方法用时明显减少,可快速计算出利用原模型无法求解的问题,因为本文方法每次迭代用时与备用限定的机组组合模型(RCUC)用时近似,与迭代次数有关。例如LOLP max为0.006时要寻找两次边际组合,LOLP max为0.000 5时只需寻找一次就够了。当LOLP max为0.000 5时,优化后备用刚好是最大在线机组缺失容量,此时备用可以应对所有的一阶故障,最优解容易找到,因此采用原模型计算时间也很短。根据求解的经验来看,只需要迭代几次就可停止。
为了验证方法对于多机系统的高效性,通过复制IEEE-RTS 26系统分别创造3,5和10倍的原机组数目的大系统,同时复制同等的倍数的负荷。LOLP max均为0.001时,不同大小的系统备用优化结果如图3所示,用时如图4所示。
本文采用的模型在GAM中编码,计算工具是大规模的MILP求解器CPLEX并结合了Visual C。MILP的对偶间隔为0.1%。所采用的计算机CPU为3.6GHz,运行内存为4G。
本发明的有益效果
1、本发明基于LOLP约束的备用优化模型,将高度非线性和组合性的LOLP约束等价转换为一系列线性表达式。由于这一系列等效线性约束中大多数属于松弛约束,只需找到少部分关键的边际场景对应的约束即可,仅基于具有代表性的场景约束能够提高备用优化效率。
2、本发明对于具有代表性的场景约束的UC模型,提出约束添加法求解。具体来说,结合CCOPT,采取迭代的方式,逐次寻找边际场景并作为约束进行优化,直至结果满足LOLP约束。本发明考虑了问题中的多重折中,简化了LOLP约束使模型可以精确高效求解。
3、本发明的优化方法在单时段和多机多时段系统下,都具有较好的准确性和有效性。
本领域技术人员应该明白,上述本发明的各模块或各步骤可以用通用的计算机装置来实现,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。本发明不限制于任何特定的硬件和软件的结合。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (9)

  1. 一种基于支撑故障事件约束机组组合的备用优化方法,其特征在于,包括以下步骤:
    步骤1:运行一个基本的机组组合备用优化模型,获取基本机组组合调度结果;
    步骤2:基于所述调度结果建立投运容量缺失表,计算LOLP,并从中寻找边际事件;
    步骤3:将边际事件对应的线性约束添加到备用优化模型,得到新的调度结果,返回步骤2,直至结果满足LOLP要求。
  2. 如权利要求1所述的基于支撑故障事件约束机组组合的备用优化方法,其特征在于,所述步骤1中基本的机组组合备用优化模型为不包括LOLP约束的旋转备用优化模型。
  3. 如权利要求1所述的基于支撑故障事件约束机组组合的备用优化方法,其特征在于,所述投运容量缺失表的行代表机组可能发生的故障事件,列代表缺失容量、故障概率和累计概率。
  4. 如权利要求3所述的基于支撑故障事件约束机组组合的备用优化方法,其特征在于,LOLP表示为:
    Figure PCTCN2018118375-appb-100001
    式中:n为CCOPT的行数,表示t时段机组可能发生的故障事件数;p i,t表示事件i发生的故障概率;b i,t是0/1变量,判断t时段对应故障场景是否出现失负荷,b i,t为1表示该场景如果发生会造成失负荷,b i,t为0表示该场景如果发生不会造成失负荷。
  5. 如权利要求4所述的基于支撑故障事件约束机组组合的备用优化方法,其特征在于,
    Figure PCTCN2018118375-appb-100002
    式中,ΔCC i,t是t时段故障事件i的缺失容量,表示事件中所有机组的功率与备用之和;SSR t为t时段的系统总备用。
  6. 如权利要求5所述的基于支撑故障事件约束机组组合的备用优化方法,其特征在于,所述边际事件满足边际约束:
    Figure PCTCN2018118375-appb-100003
    式中:ΔCC i,t是t时段故障事件i的缺失容量,表示事件中所有机组的功率与备用之和,SSR t为t时段的系统总备用,Ω *表示不会造成失负荷的故障事件,s表示边际事件。
  7. 如权利要求5所述的基于支撑故障事件约束机组组合的备用优化方法,其特征在于,所述寻找边际事件方法为:
    在CCOPT中找出第i-1行和第i行,累计概率满足:在CCOPT中行数大于等于i的故障场景造成的LOLP总和不超过LOLP max,但行数大于等于i-1的故障场景造成的LOLP总和不超过LOLP max
    第i-1行场景为边际场景,与边际场景同类型的故障场景也是边际场景。
  8. 一种基于支撑故障事件约束机组组合的备用优化装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行如权利要求1-7任一项所述的方法。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时执行如权利要求1-7任一项所述的基于支撑故障事件约束机组组合的备用优化方法。
PCT/CN2018/118375 2018-04-11 2018-11-30 基于支撑故障事件约束机组组合的备用优化方法和装置 WO2019196427A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/959,908 US20200334562A1 (en) 2018-04-11 2018-11-30 Reserve optimization method and apparatus based on support outage event constrained unit commitment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810321864.1 2018-04-11
CN201810321864.1A CN108334997B (zh) 2018-04-11 2018-04-11 基于支撑故障事件约束机组组合的备用优化方法和装置

Publications (1)

Publication Number Publication Date
WO2019196427A1 true WO2019196427A1 (zh) 2019-10-17

Family

ID=62932950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118375 WO2019196427A1 (zh) 2018-04-11 2018-11-30 基于支撑故障事件约束机组组合的备用优化方法和装置

Country Status (3)

Country Link
US (1) US20200334562A1 (zh)
CN (1) CN108334997B (zh)
WO (1) WO2019196427A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221391A (zh) * 2021-12-13 2022-03-22 清华四川能源互联网研究院 一种电力系统备用容量确定方法、装置及相关设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108334997B (zh) * 2018-04-11 2020-12-29 山东大学 基于支撑故障事件约束机组组合的备用优化方法和装置
CN109193617B (zh) * 2018-07-30 2020-04-14 山东大学 基于紧约束识别的电力系统脆弱点评价方法及系统
CN113537703B (zh) * 2021-06-04 2022-12-02 广东电网有限责任公司广州供电局 配电网灾前应急资源部署方法、装置和计算机设备
CN113659621B (zh) * 2021-08-15 2023-04-04 国网福建省电力有限公司 计及机组启停特性的区域电量传输可行域计算方法
CN114243687A (zh) * 2021-12-09 2022-03-25 国网甘肃省电力公司电力科学研究院 一种基于成本和效益的风电提供旋转备用服务定价方法
CN115347570B (zh) * 2022-10-17 2023-01-24 国网浙江省电力有限公司宁波供电公司 一种基于主配协同的区域停电范围分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322566A (zh) * 2015-11-06 2016-02-10 山东大学 考虑预测误差时序分布的含风电机组组合模型建立方法
CN106253351A (zh) * 2016-08-11 2016-12-21 中国电力科学研究院 一种基于简化失负荷概率约束式的电力系统旋转备用优化方法
CN106295226A (zh) * 2016-08-26 2017-01-04 山东电力工程咨询院有限公司 统筹考虑电力系统可靠性与经济性的备用决策方法
CN108334997A (zh) * 2018-04-11 2018-07-27 山东大学 基于支撑故障事件约束机组组合的备用优化方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305282B2 (en) * 2003-05-13 2007-12-04 Siemens Power Transmission & Distribution, Inc. Very short term load prediction in an energy management system
WO2010129059A1 (en) * 2009-05-08 2010-11-11 Consert Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
CN104362673B (zh) * 2014-10-29 2016-04-13 国网甘肃省电力公司 基于调峰裕度的风电并网协调调度优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322566A (zh) * 2015-11-06 2016-02-10 山东大学 考虑预测误差时序分布的含风电机组组合模型建立方法
CN106253351A (zh) * 2016-08-11 2016-12-21 中国电力科学研究院 一种基于简化失负荷概率约束式的电力系统旋转备用优化方法
CN106295226A (zh) * 2016-08-26 2017-01-04 山东电力工程咨询院有限公司 统筹考虑电力系统可靠性与经济性的备用决策方法
CN108334997A (zh) * 2018-04-11 2018-07-27 山东大学 基于支撑故障事件约束机组组合的备用优化方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, M. Q. ET AL.: "Spinning Reserve Optimization Using Reliability Constrained Unit Commitment", 2013 IEEE INTERNATIONAL CONFERENCE OF IEEE REGION 10 (TENCON 2013), 1 November 2015 (2015-11-01), pages 1 - 5, XP032844825 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221391A (zh) * 2021-12-13 2022-03-22 清华四川能源互联网研究院 一种电力系统备用容量确定方法、装置及相关设备
CN114221391B (zh) * 2021-12-13 2024-02-06 清华四川能源互联网研究院 一种电力系统备用容量确定方法、装置及相关设备

Also Published As

Publication number Publication date
CN108334997A (zh) 2018-07-27
US20200334562A1 (en) 2020-10-22
CN108334997B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2019196427A1 (zh) 基于支撑故障事件约束机组组合的备用优化方法和装置
Eldali et al. Employing ARIMA models to improve wind power forecasts: A case study in ERCOT
CN107239863B (zh) 一种电网安全约束的鲁棒机组组合方法
CN110266031B (zh) 储能并网充放电量控制方法、装置、服务器及存储介质
Chen et al. A distributed framework for solving and benchmarking security constrained unit commitment with warm start
CN112104005B (zh) 一种考虑新能源预测不确定性的电网调度方法和系统
US20180284706A1 (en) Gas turbine dispatch optimizer
CN112308411B (zh) 基于动态碳交易模型的综合能源站随机规划方法及系统
JP6582758B2 (ja) 発電計画作成装置、発電計画作成プログラム及び発電計画作成方法
CN113779874B (zh) 一种离网微电网建设的多目标优化方法
JP2016143336A (ja) 分散型エネルギーシステムの構成最適化方法及び装置
Yu et al. A dynamic lot sizing model with carbon emission constraint and multi-mode production: A general property and a polynomially solvable case
AU2020200488A1 (en) Operation plan creating apparatus, operation plan creating method, and program
CN109787217B (zh) 基于风电多状态模型及机会成本修正的备用出清方法
CN116070757A (zh) 一种综合能源系统优化调度方法、装置、设备及存储介质
CN112134275B (zh) 一种计算含风电场电力系统的可靠性方法及系统
Ke et al. Uncertain resource leveling problem
AU2020200492A1 (en) Operation plan creating apparatus, operation plan creating method, and program
Liu et al. Two-stage robust optimal dispatch method considering wind power and load correlation
CN115065102B (zh) 一种火电机组启停调度的方法及装置
CN116646994B (zh) 一种电力系统优化调度方法及装置
Khan Data Center Load Forecast Using Dependent Mixture Model
CN113642937B (zh) 风机集群的运维排程方法、装置、电子设备及存储介质
US20240104589A1 (en) Prediction of consumer demand for a supply in a geographic zone based on unreliable and non-stationary data
CN114386236A (zh) 一种新能源消纳合理利用率的规划方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914536

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914536

Country of ref document: EP

Kind code of ref document: A1