WO2019196172A1 - 一种5g mimo天线结构 - Google Patents

一种5g mimo天线结构 Download PDF

Info

Publication number
WO2019196172A1
WO2019196172A1 PCT/CN2018/088831 CN2018088831W WO2019196172A1 WO 2019196172 A1 WO2019196172 A1 WO 2019196172A1 CN 2018088831 W CN2018088831 W CN 2018088831W WO 2019196172 A1 WO2019196172 A1 WO 2019196172A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiator
mimo
component
pcb
Prior art date
Application number
PCT/CN2018/088831
Other languages
English (en)
French (fr)
Inventor
赵安平
任周游
Original Assignee
深圳市信维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市信维通信股份有限公司 filed Critical 深圳市信维通信股份有限公司
Priority to US16/474,825 priority Critical patent/US10804613B2/en
Publication of WO2019196172A1 publication Critical patent/WO2019196172A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a 5G MIMO antenna structure.
  • the fifth generation (5G) wireless communication system mainly uses the following two frequency bands: a low frequency band below 6 GHz and a millimeter wave frequency band above 6 GHz.
  • the 3.5GHz and 28GHz will be one of the main 5G bands of the millimeter wave below 6GHz and above 6GHz.
  • MIMO Multiple-Input Multiple-Output antennas will be used to increase the transmission rate in 5G systems.
  • the number of MIMO antennas is generally about 8. Since the space of handheld devices such as mobile phones is limited, how to design a small-sized antenna will be a primary problem in the design of MIMO antenna systems. . In addition, another problem that MIMO antenna systems face is how to reduce the isolation between the antennas. The problem of reducing the isolation between antennas has been extensively studied and discussed, such as by adding spacers between two adjacent antennas, opening gaps in the system PCB, using isolation networks, and joining between antennas. Neutral lines with isolation effects, etc. Regardless of which of the above designs is used, the complexity of the antenna and the difficulty of the design are increased, and the difficulty of later debugging is added.
  • the technical problem to be solved by the present invention is to provide a 5G MIMO antenna structure, which is not only simple in structure, has a small size, but also can solve the problem of isolation well.
  • the technical solution adopted by the present invention is:
  • a 5G MIMO antenna structure includes a PCB board and one or more first antenna components, one or more first antenna components are spaced apart from the PCB board;
  • the first antenna component includes a feed branch and respectively feeds a first radiating body coupled to the branch and two second radiating bodies, wherein the first radiating body is an inverted U-shaped structure, and both ends of the first radiating body are connected to a grounding point on the PCB board;
  • An electric branch is located in the first radiator and corresponds to a position of a feeding point on the PCB;
  • two second radiators are located in the first radiator and are respectively connected to the first radiator, two second The radiators are respectively located on both sides of the feed branch.
  • the beneficial effects of the present invention are as follows: the first radiator of the antenna of the present invention and the PCB board enclose a closed structure, and the first antenna radiator not only has the function of antenna radiation, but also functions with the adjacent antenna component.
  • the isolation function makes the antenna assembly self-isolated; the introduction of the second radiator increases the effective length of the current path of the antenna assembly, and the longer the effective length of the antenna, the smaller the size of the antenna can be.
  • the length of the antenna assembly of the present invention is significantly reduced compared to conventional antenna structures.
  • FIG. 1 is a schematic overall structural diagram of a 5G MIMO antenna structure according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view showing the structure of a 5G MIMO antenna according to Embodiment 1 of the present invention
  • FIG. 3 is an S-parameter diagram of a 5G MIMO antenna structure according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural view of a conventional antenna
  • FIG. 7 is a comparison diagram of return loss of a 5G MIMO antenna structure and a conventional antenna according to Embodiment 1 of the present invention.
  • FIG. 8 is a comparison diagram of current distribution of a 5G MIMO antenna structure and a conventional antenna according to Embodiment 1 of the present invention.
  • FIG. 9 is a side view showing the structure of a 5G MIMO antenna according to Embodiment 2 of the present invention.
  • FIG. 10 is a side view showing a structure of a 5G MIMO antenna according to Embodiment 3 of the present invention.
  • the most critical idea of the present invention is: an inverted U-shaped first radiator 22 is provided, the two ends of the first radiator 22 are connected to the PCB board 1, and the first radiator 22 is provided with a feeding branch 21 and two The second radiator 23, the two second radiators 23 are respectively located on the left and right sides of the feeding branch 21, and one end of the second radiator 23 is connected to the first radiator 22.
  • a 5G MIMO antenna structure includes a PCB board 1 and one or more first antenna assemblies 2, and one or more first antenna assemblies 2 are spaced apart from the PCB board 1;
  • An antenna assembly 2 includes a feed branch 21 and a first radiator 22 and two second radiators 23 respectively coupled to the feed branch 21, the first radiator 22 being an inverted U-shaped structure, the first The two ends of a radiator 22 are connected to a grounding point on the PCB 1; the feeding branch 21 is located in the first radiator 22 and corresponds to the position of the feeding point on the PCB 1;
  • the two radiators 23 are both located in the first radiator 22 and are both connected to the first radiator 22, and the two second radiators 23 are respectively located on both sides of the feeding branch 21.
  • the first radiator 22 of the present invention and the PCB board 1 enclose a closed structure, and the first antenna radiator not only has the function of antenna radiation, but also plays a role.
  • the isolation between the adjacent antenna components makes the antenna assembly self-isolated; the introduction of the second radiator 23 significantly increases the effective length of the current path of the antenna assembly, and the longer the effective length of the antenna, the size of the antenna The smaller the achievable, the significantly shorter the length of the antenna assembly of the present invention compared to conventional antenna structures.
  • top end of the second radiator 23 is connected to the first radiator 22, and the bottom end of the second radiator 23 is spaced from the PCB 1.
  • the second radiator 23 is combined with the first radiator 22 to increase the effective path of the current.
  • the feeding branch 21 is T-shaped.
  • the first antenna assembly 2 is an axisymmetric structure, and the axis of symmetry is a center line of the feed branch 21.
  • the effective lengths of the currents on the left and right sides of the first antenna assembly 2 can be kept consistent.
  • the number of the first antenna components 2 is an even number of four or more, and the even number of the first antenna assemblies 2 of four or more are symmetrically distributed on opposite sides of the PCB board 1.
  • the 5G 8x8 MIMO antenna system is more suitable for handheld devices, and a plurality of first antenna assemblies 2 are respectively disposed on the left and right sides of the PCB board 1, and the intervals between the plurality of first day components may be uniform or uneven.
  • a slit 24 is provided in the middle of the top of the first radiator 22 to divide the U-shaped structure into two separate L-shaped structures.
  • a small slit 24 is opened in the middle of the antenna first radiator 22, and the resonance frequency of the antenna can be finely adjusted.
  • the second antenna component 3 and the third antenna component 4 are respectively disposed at opposite ends of the PCB board 1, the first antenna component 2 It is disposed in the middle of the PCB board 1.
  • disposing the first antenna assembly 2 between the second antenna assembly 3 and the third antenna assembly 4 can make the entire antenna structure have a small size, and The individual antenna components can be isolated from each other by adjacent antenna components.
  • the second antenna assembly 3 and the third antenna assembly 4 respectively use only half of the first antenna assembly 2, and the second antenna assembly 3 is adjacent to the left half of the first antenna assembly 2.
  • the left half of the first antenna component 2 is disposed back to back with good isolation between the two; similarly, the third antenna component 4 is adjacent to the right half of the first antenna component 2, and the first antenna component
  • the right half of the 2 is set back to back, and the two also have good isolation; not only can achieve the same radiation effect, but also can further reduce the overall size of the antenna structure.
  • a plastic bracket is further included, and the first antenna component 2, the second antenna component 3, and the third antenna component 4 are all fixed on the plastic bracket.
  • the two L-shaped structures are symmetrical with respect to the slit.
  • the first antenna assembly having the slit still maintains left-right symmetry.
  • a first embodiment of the present invention is a 5G MIMO antenna structure, which is mainly used for 5G communication of a communication device such as a mobile phone, and coexists with a 4G LTE communication system (and other antennas such as GPS).
  • the existing 4G LTE antenna has been placed on the two short sides of the phone, so 5G The best place for the MIMO antenna system to be placed in the phone will be the two long sides of the phone.
  • the 5G MIMO antenna structure mainly includes a PCB board 1 and one or more first antenna assemblies 2, and one or more first antenna assemblies 2 are spaced apart from the PCB board 1.
  • the size of the PCB board 1 is 150 mm.
  • X75mmx0.8mm the number of the first antenna assemblies 2 is eight, and the eight first antenna assemblies 2 are symmetrically distributed at the two long sides of the PCB board 1, between the first antenna assemblies 2 on each side. Evenly spaced.
  • the first antenna assembly 2 comprises a T-shaped feed branch 21 and a first radiator 22 and two second radiators 23 respectively coupled to the feed branch 21.
  • the feeding branch 21, the first radiator 22 and the second radiator 23 are both supported on the plastic support.
  • the first radiator 22 is an inverted U-shaped structure, and both ends of the first radiator 22 are connected to a grounding point on the PCB 1;
  • the feeding branch 21 is located in the first radiator 22 and Corresponding to the position of the feeding point on the PCB 1;
  • the two second radiators 23 are both located in the first radiator 22 and are both connected to the first radiator 22, and the two second radiators 23 are respectively located Both sides of the feed branch 21.
  • the second radiator 23 may be linear or non-linear.
  • the second radiator 23 is a linear structure, and the second radiator 23 is parallel to both sides of the first radiator 22; the top end of the second radiator 23 is connected to the first radiator 22, and the second A gap is provided between the bottom end of the radiator 23 and the PCB board 1.
  • the first antenna assembly 2 is an axisymmetric structure, and the axis of symmetry is the center line of the feed branch 21.
  • the length of the first antenna assembly 2 that is, the distance between the two ground points of the antenna first radiator 22, is denoted by L.
  • L the length of the first antenna assembly 2
  • the second radiator 23 coupled thereto and the distance between them, it will be possible to generate the resonant frequency required in the 5G MIMO antenna system.
  • L 17.5mm
  • Figure 3 shows the S-parameters of the four first antenna assemblies 2 on one side of the PCB (Note: due to this The 5G MIMO antenna structure has symmetry centered on the PCB board 1, so only the results of the necessary antenna elements are given in the above figures, the same below). It can be seen from Fig.
  • the working range of the antenna is between 3.4 and 3.6 GHz, and the isolation between the antennas is close to about 20 dB, which can well meet the design requirements of the MIMO antenna system. Since the result in FIG. 3 is obtained when the distance between the feeding points of the four antenna elements is equidistant, the isolation between the antennas can be further optimized by appropriately adjusting the distance between the antenna elements. .
  • FIG. 5 is a diagram showing the current distribution of the antenna when the first two antenna assemblies 2 are respectively operated. From Fig. 5, it can be clearly seen that the maximum intensity of the current distribution will be concentrated inside the working antenna assembly instead of isolation. Like a good MIMO antenna system, there is a strong current or energy that penetrates into the antenna unit adjacent to the working unit.
  • the first radiator 22 of the first antenna assembly 2 of the present invention not only has the effect of antenna radiation, but also functions as an adjacent antenna.
  • the role of isolation between components we can call the antenna structure proposed in this case to have self-isolation characteristics.
  • FIG. 6 is a schematic side view of the conventional antenna, which is substantially the same as the small-sized antenna structure proposed by the present invention, and the antenna still has a T-feed.
  • the electric branch 21 and a first radiator 22, and both ends of the antenna first radiator 22 are also connected to the ground of the PCB board 1.
  • FIG. 7 compares the return loss comparison diagram of the antenna structure of the present invention and the conventional antenna structure. It can be seen from FIG. 7 that the antenna structure and the conventional antenna structure of the present invention both operate in the frequency band of 3.4-3.6 GHz, but This result of the conventional antenna of 7 is obtained under the condition that the length of L1 is 25 mm. Therefore, the antenna structure of the present invention can reduce the length of the antenna by about 30% compared to the conventional antenna structure. To further illustrate the reason why the antenna structure of the present invention has a small size, FIG.
  • FIG. 8 shows a current distribution diagram of the first antenna assembly 2 and the conventional antenna assembly of the present invention at an operating frequency of 3.5 GHz.
  • the current is always 0 at the center point M of the antenna due to the symmetry of the antenna.
  • the current path of the antenna is ABM, and the intensity of the current gradually decreases from point A to point M until it is zero.
  • the current intensity of the antenna structure of the present invention at point D is very different from the current intensity at point M: the current at point M is zero but the current at point D is not zero and strong.
  • the current has two paths: ABCD and ABCM, and ABCD is the main path of the current due to the current intensity.
  • ABCD is the main path of the current due to the current intensity.
  • the embodiment is an improvement based on the first embodiment.
  • a slit 24 is provided in the middle of the top of the first radiator 22 of the first antenna assembly 2, so that The U-shaped structure is divided into two separate L-shaped structures that are symmetrical with respect to the slit. Setting the slit 24 can fine tune the resonant frequency of the antenna, but the left-right symmetrical characteristics of the antenna still need to be preserved.
  • the embodiment is an improvement based on the second embodiment.
  • the number of the first antenna components 2 is four
  • the 5G MIMO antenna structure further includes two Two antenna assemblies 3 and two third antenna assemblies 4, the second antenna assembly 3 and the third antenna assembly 4 are respectively disposed at opposite ends of the PCB board 1, and the first antenna assembly 2 is disposed on the The middle of the PCB board 1.
  • the second antenna component 3 and the third antenna component 4 are respectively disposed on the left and right sides of the first antenna component 2, and the structure of the second antenna component 3 and the first The structure of the right half of the antenna assembly 2 is the same, and the structure of the third antenna assembly 4 is the same as that of the left half of the first antenna assembly 2.
  • This design using half of the antenna structure at both ends of the handset is also applicable to the case where the micro-slit 24 is not opened in the middle of the first radiator 22.
  • This embodiment can further reduce the overall size of the 5G MIMO antenna structure.
  • the 5G MIMO antenna structure provided by the present invention not only has good radiation effect, but also can meet the requirements of the 5G system below 6 GHz, and has good isolation and large size, which is in line with the current pursuit of small size. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本发明公开了一种5G MIMO天线结构,包括PCB板和一个以上的第一天线组件,一个以上的第一天线组件间隔设置于所述PCB板上;所述第一天线组件包括馈电分支以及分别与馈电分支相耦合的第一辐射体和两个第二辐射体,所述第一辐射体为倒置的U型结构,所述第一辐射体的两末端与PCB板上的接地点相连;所述馈电分支位于所述第一辐射体内且与PCB板上的馈电点的位置相对应;两个第二辐射体均位于所述第一辐射体内且均与第一辐射体连接,两个第二辐射体分别位于所述馈电分支的两侧。本发明提供的5G MIMO天线结构不仅具有良好的辐射效果,能够满足6GHz以下的5G系统的使用要求,而且隔离度好,尺寸也能大大减小,符合当前对于小尺寸的追求。

Description

一种5G MIMO天线结构 技术领域
本发明涉及无线通信技术领域,尤其涉及一种5G MIMO天线结构。
背景技术
随着无线通信技术的快速发展,第五代(5G)无线通信系统将逐渐商业化。5G无线通信系统主要使用下面两个频段:6GHz以下的低频段和6GHz以上的毫米波频段。而3.5GHz和28GHz将分别作为6GHz以下和6GHz以上毫米波的主要5G频段之一。对于6GHz以下的5G系统,MIMO (Multiple-Input Multiple-Output)天线将被使用,以达到在5G系统中增加传输速率的目的。
为了达到5G传输速率的要求,MIMO天线的个数一般要在8个左右,由于手持设备比如手机的空间有限,因此如何设计出小尺寸的天线将是MIMO天线系统设计中所要面临的一个首要问题。此外,MIMO天线系统还要面临的另外一个问题是如何减少天线之间的隔离度。降低天线之间的隔离度的问题已经被广泛地研究和讨论过,比如通过在两个相邻天线之间加入隔离条、在系统的PCB板上开缝隙、使用隔离网络、在天线之间加入具有隔离效果的中和线等。无论使用上述哪种设计,都会增加天线的复杂程度和设计的难度,同时还会为后期的调试增加难度。
技术问题
本发明所要解决的技术问题是:提供一种5G MIMO天线结构,不仅结构简单,具有较小的尺寸,而且能够很好的解决隔离度的问题。
技术解决方案
为了解决上述技术问题,本发明采用的技术方案为:
一种5G MIMO天线结构,包括PCB板和一个以上的第一天线组件,一个以上的第一天线组件间隔设置于所述PCB板上;所述第一天线组件包括馈电分支以及分别与馈电分支相耦合的第一辐射体和两个第二辐射体,所述第一辐射体为倒置的U型结构,所述第一辐射体的两末端与PCB板上的接地点相连;所述馈电分支位于所述第一辐射体内且与PCB板上的馈电点的位置相对应;两个第二辐射体均位于所述第一辐射体内且均与第一辐射体连接,两个第二辐射体分别位于所述馈电分支的两侧。
有益效果
本发明的有益效果在于:本发明中的天线第一辐射体与PCB板围成一封闭结构,第一天线辐射体除了具有天线辐射的作用之外,同时还起到了与相邻天线组件之间的隔离作用,使天线组件具有自隔离的特点;第二辐射体的引入使得天线组件的电流路径的有效长度明显增加,而天线的有效长度越长,天线的尺寸就可以做的越小,与传统的天线结构相比,本发明的天线组件的长度明显减小。
附图说明
图1为本发明实施例一的5G MIMO天线结构的整体结构示意图;
图2为本发明实施例一的5G MIMO天线结构的侧视图;
图3为本发明实施例一的5G MIMO天线结构的S-参数图;
图4为本发明实施例一的5G MIMO天线结构的辐射效率和天线总效率随频率变化的曲线图
图5为本发明实施例一中的两个天线第一组件分别工作时的电流分布图;
图6为传统天线的结构示意图;
图7为本发明实施例一的5G MIMO天线结构和传统天线的回波损耗比较图;
图8为本发明实施例一的5G MIMO天线结构和传统天线的电流分布对比图;
图9为本发明实施例二的5G MIMO天线结构侧视图;
图10 为本发明实施例三的5G MIMO天线结构侧视图;
标号说明:
1、PCB板;2、第一天线组件;21、馈电分支;22、第一辐射体;23、第二辐射体;24、缝隙;3、第二天线组件;4、第三天线组件。
本发明的实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
本发明最关键的构思在于: 设置一个倒置的U型的第一辐射体22,第一辐射体22的两末端与PCB板1连接,第一辐射体22内设置有馈电分支21和两个第二辐射体23,两个第二辐射体23分别位于馈电分支21的左右两侧,且第二辐射体23的一端与第一辐射体22连接。
请参照图1以及图2,一种5G MIMO天线结构,包括PCB板1和一个以上的第一天线组件2,一个以上的第一天线组件2间隔设置于所述PCB板1上;所述第一天线组件2包括馈电分支21以及分别与馈电分支21相耦合的第一辐射体22和两个第二辐射体23,所述第一辐射体22为倒置的U型结构,所述第一辐射体22的两末端与PCB板1上的接地点相连;所述馈电分支21位于所述第一辐射体22内且与PCB板1上的馈电点的位置相对应;两个第二辐射体23均位于所述第一辐射体22内且均与第一辐射体22连接,两个第二辐射体23分别位于所述馈电分支21的两侧。
从上述描述可知,本发明的有益效果在于:本发明中的天线第一辐射体22与PCB板1围成一封闭结构,第一天线辐射体除了具有天线辐射的作用之外,同时还起到了与相邻天线组件之间的隔离作用,使天线组件具有自隔离的特点;第二辐射体23的引入使得天线组件的电流路径的有效长度明显增加,而天线的有效长度越长,天线的尺寸就可以做的越小,与传统的天线结构相比,本发明的天线组件的长度明显减小。
进一步的,第二辐射体23的顶端连接于第一辐射体22,第二辐射体23的底端与PCB板1之间设有间距。
由上述描述可知,第二辐射体23与第一辐射体22结合,可使电流的有效路径增长。
进一步的,所述馈电分支21为T型。
进一步的,所述第一天线组件2为轴对称结构,对称轴为所述馈电分支21的中心线。
由上述描述可知,第一天线组件2的左右两侧的电流有效长度能够保持一致。
进一步的,所述第一天线组件2的数目为四以上的偶数,四以上的偶数个第一天线组件2对称分布于所述PCB板1的相对两侧。
由上述描述可知,5G 8x8 MIMO天线系统比较适用于手持设备,PCB板1的左右两侧分别设置多个第一天线组件2,多个第一天组件之间的间隔可以均匀也可以不均匀。
进一步的,所述第一辐射体22的顶部的中间设有缝隙24,以使所述U型结构分为两个分离的L型结构。
由上述描述可知,在天线第一辐射体22的中间开一个微小的缝隙24,可以对天线的谐振频率进行微调。
进一步的,还包括第二天线组件3和第三天线组件4,所述第二天线组件3和第三天线组件4分别设置于所述PCB板1的相对两端,所述第一天线组件2设置于所述PCB板1的中间。
由上述描述可知,因为第一天线组件2的小尺寸和自隔离特点,将第一天线组件2设置在第二天线组件3和第三天线组件4之间可以使整个天线结构具有小尺寸,且各个天线组件与相邻的天线组件能够相互隔离。
进一步的,所述第二天线组件3和第三天线组件4分别设置于所述第一天线组件2的左侧和右侧,所述第二天线组件3的结构与所述第一天线组件2的右半部分的结构相同,所述第三天线组件4的结构与所述第一天线组件2的左半部分的结构相同。
由上述描述可知,在该天线结构中,第二天线组件3和第三天线组件4分别只使用第一天线组件2的一半,且第二天线组件3与第一天线组件2的左半边相邻,与第一天线组件2的左半边之间为背对背设置,两者之间具有良好的隔离度;同理第三天线组件4与第一天线组件2的右半边相邻,与第一天线组件2的右半边之间为背对背设置,两者之间也具有很好的隔离度;不仅能够达到相同的辐射效果,而且能够进一步减小该天线结构的整体尺寸。
进一步的,还包括塑胶支架,所述第一天线组件2、第二天线组件3和第三天线组件4均固定于所述塑胶支架上。
进一步的,所述两个L型结构相对于所述缝隙对称。
由上述描述可知,具有缝隙的第一天线组件仍然保持左右对称性。
实施例一
请参照图1和图2,本发明的实施例一为:一种5G MIMO天线结构,主要用于手机等通讯设备的5G 通讯,将和4G LTE通讯系统(以及其它天线如GPS等)共存,现有的4G LTE天线已经被放置在手机的两短边上,因此,5G MIMO天线系统在手机中放置的最佳位置将是手机的两长边。
该5G MIMO天线结构主要包括PCB板1和一个以上的第一天线组件2,一个以上的第一天线组件2间隔设置于所述PCB板1上。在本实施例中,所述PCB板1的尺寸为150mm x75mmx0.8mm,所述第一天线组件2的数目为八个,八个第一天线组件2对称分布于所述PCB板1的两长边处,每一边上的第一天线组件2之间的间隔均匀。
所述第一天线组件2包括T型的馈电分支21以及分别与馈电分支21相耦合的第一辐射体22和两个第二辐射体23。所述馈电分支21、第一辐射体22和第二辐射体23均依托于塑胶支架上。所述第一辐射体22为倒置的U型结构,所述第一辐射体22的两末端与PCB板1上的接地点相连;所述馈电分支21位于所述第一辐射体22内且与PCB板1上的馈电点的位置相对应;两个第二辐射体23均位于所述第一辐射体22内且均与第一辐射体22连接,两个第二辐射体23分别位于所述馈电分支21的两侧。所述第二辐射体23可以为直线型,也可以为非直线型。优选的,所述第二辐射体23为直线形结构,第二辐射体23与第一辐射体22的两侧边相平行;第二辐射体23的顶端连接于第一辐射体22,第二辐射体23的底端与PCB板1之间设有间距。所述第一天线组件2为轴对称结构,对称轴为所述馈电分支21的中心线。
第一天线组件2的长度,也即天线第一辐射体22的两个接地点之间的距离,用L表示。通过调节天线的馈电分支21和与其耦合的第一辐射体22、第二辐射体23的尺寸以及它们之间的距离,将能够产生5G MIMO天线系统中所需要的谐振频率。在L=17.5mm的情况下,我们对该8x8 MIMO天线进行了仿真,并得到如下结果:图3为PCB单侧边上的四个第一天线组件2的S-参数图(注:由于该5G MIMO天线结构具有以PCB板1为中心的对称性,所以上述图中只给出了必要天线单元的结果,下同)。从图3中可以看出该天线的工作范围在3.4-3.6GHz之间,同时天线之间的隔离度接近20dB左右,可以很好地满足MIMO天线系统的设计要求。由于图3中的结果是在4个天线单元的馈电点之间的距离为等距时得到的,因此天线之间的隔离度还可以通过适当地调节天线单元之间的距离进行进一步的优化。
图4为天线的辐射效率和天线总效率随频率变化的曲线图。从图4中可以看出,天线的频率在3.4-3.6GHz的范围内时,天线总效率均好于60% 。图3和图4中给出的天线指标完全可以满足6GHz 以下的5G MIMO 天线结构在手机中的使用要求。
通过观察和分析PCB板1一侧边上的四个第一天线组件2在频率为3.5GHz时天线电流在不同天线单元上的分布图,可以直观的看出该天线结构的工作原理。为了简化,我们将只对前两个第一天线组件2分别工作时的情况进行分析和讨论。图5为前两个第一天线组件2分别工作时天线的电流分布图,从图5中我们可以清晰地看出电流分布的最大强度将集中在工作天线组件的内部,而非像隔离度不好的MIMO天线系统那样,有很强的电流或能量渗透到与工作单元相邻的天线单元里。这也正是本案提出的天线系统中具有很好的隔离的原因,具体是因为本发明第一天线组件2的第一辐射体22除了具有天线辐射的作用外,同时还起到了与相邻天线组件之间相隔离的作用。基于上面的原因,我们可以称本案提出的天线结构具有自隔离的特点。
本发明的天线结构具有较小尺寸的主要原因是因为第二辐射体23的引入或使用,为了说明第二的辐射体在减少天线尺寸的作用和效果,我们将本发明的天线结构与传统天线(只有第一辐射体22而没有第二辐射体23)进行比较和分析,图6为传统天线的侧面结构示意图,与本发明提出的小尺寸天线结构大致相同,该天线依然有一个T型馈电分支21和一个第一辐射体22,而且天线第一辐射体22的两端还是与PCB板1的地相连接。传统天线结构的长度,也即天线第一辐射体22两个接地点之间的距离,用L1表示,同时天线的高度保持不变。图7比较了本发明的天线结构和传统的天线结构的回波损耗对比图,从图7中可以看出本案的天线结构和传统的天线结构均工作在3.4-3.6GHz的频段上,但图7中的传统天线的这个结果是在L1长度为25mm的条件下得到的。因此,和传统的天线结构相比,本发明的天线结构可以使天线的长度减小30%左右。为了进一步说明本案天线结构具有小尺寸的原因,图8给出了本发明的第一天线组件2和传统天线组件在工作频率为3.5GHz的电流分布图。从图8中可以看出,无论是传统天线结构还是本发明的天线结构,由于天线的对称性导致在天线的中心点M处电流始终为0。但是,对于传统天线而言,天线的电流路径为ABM,并且电流的强度从A点到M点是逐渐变小直至为0。与之对比,本发明的天线结构在D点处的电流强度和M点处的电流强度有很大的区别:M点处的电流为0但是D点处的电流不为零而且较强。因此,在本发明的天线结构中,电流有两个路径:ABCD和ABCM,并且由于电流强度的原因,ABCD为电流的主要路径。上述的这个特点将直接导致如下的结果:与传统的天线结构相比,本发明天线结构的电流路径的有效长度明显增加(注:这里有效长度指的是天线的物理长度和电流强度的叠加),在辐射体的物理长度固定的情况下,所通过的电流越强,天线的有效长度越长;天线的有效长度越长,天线的尺寸就可以做得越小。因此,与传统的天线结构相比,本发明的天线结构的长度可以明显地被减小。
实施例二
请参考图9,本实施例是在实施例一的基础上进行的改进:在本实施例中,所述第一天线组件2的第一辐射体22的顶部的中间设有缝隙24,以使所述U型结构分为两个分离的L型结构,所述两个L型结构相对于所述缝隙对称。设置该缝隙24可以对天线的谐振频率进行微调,但是天线左右对称的特性仍然需要保留。
实施例三
请参考图10,本实施例是在实施例二的基础上进行的改进:在本实施例中,所述第一天线组件2的数目为四个,另外该5G MIMO天线结构还包括两个第二天线组件3和两个第三天线组件4,所述第二天线组件3和第三天线组件4分别设置于所述PCB板1的相对两端,所述第一天线组件2设置于所述PCB板1的中间。如图10 所示,所述第二天线组件3和第三天线组件4分别设置于所述第一天线组件2的左侧和右侧,所述第二天线组件3的结构与所述第一天线组件2的右半部分的结构相同,所述第三天线组件4的结构与所述第一天线组件2的左半部分的结构相同。这种在手机两端使用天线结构一半的设计也适用于第一辐射体22中间没开有微小缝隙24的情况。本实施例能够进一步减少5G MIMO天线结构的整体尺寸。
综上所述,本发明提供的5G MIMO天线结构不仅具有良好的辐射效果,能够满足6GHz以下的5G系统的使用要求,而且隔离度好,尺寸也能大大减小,符合当前对于小尺寸的追求。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种5G MIMO天线结构,其特征在于,包括PCB板和一个以上的第一天线组件,一个以上的第一天线组件间隔设置于所述PCB板上;所述第一天线组件包括馈电分支以及分别与馈电分支相耦合的第一辐射体和两个第二辐射体,所述第一辐射体为倒置的U型结构,所述第一辐射体的两末端与PCB板上的接地点相连;所述馈电分支位于所述第一辐射体内且与PCB板上的馈电点的位置相对应;两个第二辐射体均位于所述第一辐射体内且均与第一辐射体连接,两个第二辐射体分别位于所述馈电分支的两侧。
  2. 如权利要求1所述的5G MIMO天线结构,其特征在于,所述第二辐射体的顶端连接于所述第一辐射体,第二辐射体的底端与所述PCB板之间设有间距。
  3. 如权利要求1所述的5G MIMO天线结构,其特征在于,所述馈电分支为T型。
  4. 如权利要求1所述的5G MIMO天线结构,其特征在于,所述第一天线组件为轴对称结构,对称轴为所述馈电分支的中心线。
  5. 如权利要求1所述的5G MIMO天线结构,其特征在于,所述第一天线组件的数目为四以上的偶数,且四以上的偶数个第一天线组件对称分布于所述PCB板的相对两侧。
  6. 如权利要求1所述的5G MIMO天线结构,其特征在于,所述第一辐射体的顶部的中间设有缝隙,以使所述U型结构分为两个分离的L型结构。
  7. 如权利要求1或6所述的5G MIMO天线结构,其特征在于,还包括第二天线组件和第三天线组件,所述第二天线组件和第三天线组件分别设置于所述PCB板的相对两端,所述第一天线组件设置于所述PCB板的中间。
  8. 如权利要求7所述的5G MIMO天线结构,其特征在于,所述第二天线组件和第三天线组件分别设置于所述第一天线组件的左侧和右侧,所述第二天线组件的结构与所述第一天线组件的右半部分的结构相同,所述第三天线组件的结构与所述第一天线组件的左半部分的结构相同。
  9. 如权利要求7所述的5G MIMO天线结构,其特征在于,还包括塑胶支架,所述第一天线组件、第二天线组件和第三天线组件均固定于所述塑胶支架上。
  10. 如权利要求6所述的5G MIMO天线结构,其特征在于,所述两个L型结构相对于所述缝隙对称。
PCT/CN2018/088831 2018-04-08 2018-05-29 一种5g mimo天线结构 WO2019196172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/474,825 US10804613B2 (en) 2018-04-08 2018-05-29 5G MIMO antenna structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810305369.1 2018-04-08
CN201810305369.1A CN108493600B (zh) 2018-04-08 2018-04-08 一种5g mimo天线结构

Publications (1)

Publication Number Publication Date
WO2019196172A1 true WO2019196172A1 (zh) 2019-10-17

Family

ID=63314984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088831 WO2019196172A1 (zh) 2018-04-08 2018-05-29 一种5g mimo天线结构

Country Status (3)

Country Link
US (1) US10804613B2 (zh)
CN (1) CN108493600B (zh)
WO (1) WO2019196172A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10680332B1 (en) 2018-12-28 2020-06-09 Industrial Technology Research Institute Hybrid multi-band antenna array
US10804602B2 (en) 2019-01-14 2020-10-13 Shenzhen Sunway Communication Co., Ltd. 5G MIMO antenna system and handheld device
CN109713432A (zh) * 2019-01-14 2019-05-03 深圳市信维通信股份有限公司 5g mimo天线系统及手持设备
CN110137681A (zh) * 2019-05-08 2019-08-16 清华大学 一种电容解耦的宽带5g mimo手机天线
WO2020258199A1 (zh) * 2019-06-28 2020-12-30 瑞声声学科技(深圳)有限公司 Pcb天线
CN114336034A (zh) * 2022-01-28 2022-04-12 哈尔滨工业大学 用于移动终端的自解耦mimo天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832461A (zh) * 2012-07-31 2012-12-19 深圳光启创新技术有限公司 多天线组件
WO2016034900A1 (en) * 2014-09-05 2016-03-10 Smart Antenna Technologies Ltd Reconfigurable multi-band antenna with four to ten ports
CN105811087A (zh) * 2016-03-15 2016-07-27 合肥联宝信息技术有限公司 贴片天线及笔记本电脑
CN106856261A (zh) * 2015-12-08 2017-06-16 财团法人工业技术研究院 天线阵列

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW506164B (en) * 2001-12-26 2002-10-11 Accton Technology Corp Twin monopole antenna
US7453402B2 (en) * 2006-06-19 2008-11-18 Hong Kong Applied Science And Research Institute Co., Ltd. Miniature balanced antenna with differential feed
TWI396331B (zh) * 2007-04-17 2013-05-11 Quanta Comp Inc Dual frequency antenna
US8350774B2 (en) * 2007-09-14 2013-01-08 The United States Of America, As Represented By The Secretary Of The Navy Double balun dipole
TWI420741B (zh) * 2008-03-14 2013-12-21 Advanced Connectek Inc Multi-antenna module
US7973718B2 (en) * 2008-08-28 2011-07-05 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods employing coupling elements to increase antenna isolation
TWI478437B (zh) * 2008-08-29 2015-03-21 Chi Mei Comm Systems Inc 天線模組及使用該天線模組之可攜式電子裝置
CN102055072B (zh) * 2009-10-29 2014-06-25 光宝电子(广州)有限公司 宽波束多环形天线模块
JP5532847B2 (ja) * 2009-11-20 2014-06-25 船井電機株式会社 マルチアンテナ装置および携帯機器
CN103004018A (zh) * 2010-07-19 2013-03-27 莱尔德技术股份有限公司 具有提高的隔离性和指向性的多天线系统
US8890763B2 (en) * 2011-02-21 2014-11-18 Funai Electric Co., Ltd. Multiantenna unit and communication apparatus
JP5673270B2 (ja) * 2011-03-22 2015-02-18 船井電機株式会社 マルチアンテナ装置および通信機器
CN102760949A (zh) * 2011-04-27 2012-10-31 鸿富锦精密工业(深圳)有限公司 多输入输出天线
US9444129B2 (en) * 2011-05-13 2016-09-13 Funai Electric Co., Ltd. Multi-band compatible multi-antenna device and communication equipment
JP5794312B2 (ja) * 2011-11-25 2015-10-14 株式会社村田製作所 アンテナ装置および電子機器
JP5708475B2 (ja) * 2011-12-26 2015-04-30 船井電機株式会社 マルチアンテナ装置および通信機器
TWI511378B (zh) * 2012-04-03 2015-12-01 Ind Tech Res Inst 多頻多天線系統及其通訊裝置
JP5631921B2 (ja) * 2012-04-17 2014-11-26 太陽誘電株式会社 マルチアンテナ及び電子装置
US20140085164A1 (en) * 2012-09-26 2014-03-27 Kabushiki Kaisha Toshiba Antenna device and electronic apparatus with the antenna device
US9118117B2 (en) * 2013-10-18 2015-08-25 Southern Taiwan University Of Science And Technology Receiving and transmitting device for wireless transceiver
CN104183903B (zh) * 2014-09-10 2017-12-05 信维创科通信技术(北京)有限公司 用于无线路由器的双频段WiFi天线系统
TWI539674B (zh) * 2014-09-26 2016-06-21 宏碁股份有限公司 天線系統
CN205543193U (zh) * 2016-01-21 2016-08-31 瑞声精密制造科技(常州)有限公司 天线装置
TW201739105A (zh) * 2016-04-28 2017-11-01 智易科技股份有限公司 雙頻天線
CN106058456B (zh) * 2016-08-12 2017-09-19 上海安费诺永亿通讯电子有限公司 紧凑型激励地板正交辐射的高隔离度天线及其mimo通信系统
TWI632736B (zh) * 2016-12-27 2018-08-11 財團法人工業技術研究院 多天線通訊裝置
US10511078B2 (en) * 2017-01-23 2019-12-17 Wistron Neweb Corp. Antenna system
CN108736137B (zh) * 2017-04-20 2021-04-16 惠州硕贝德无线科技股份有限公司 一种应用于5g移动终端的天线阵列装置
CN208157622U (zh) * 2018-04-08 2018-11-27 深圳市信维通信股份有限公司 一种5g mimo天线结构
KR102533667B1 (ko) * 2018-08-24 2023-05-17 삼성전자주식회사 인쇄 회로 기판의 경사진 측면에 형성된 안테나를 포함하는 안테나 조립체 및 그를 포함하는 전자 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832461A (zh) * 2012-07-31 2012-12-19 深圳光启创新技术有限公司 多天线组件
WO2016034900A1 (en) * 2014-09-05 2016-03-10 Smart Antenna Technologies Ltd Reconfigurable multi-band antenna with four to ten ports
CN106856261A (zh) * 2015-12-08 2017-06-16 财团法人工业技术研究院 天线阵列
CN105811087A (zh) * 2016-03-15 2016-07-27 合肥联宝信息技术有限公司 贴片天线及笔记本电脑

Also Published As

Publication number Publication date
CN108493600A (zh) 2018-09-04
US10804613B2 (en) 2020-10-13
CN108493600B (zh) 2024-01-16
US20190348765A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2019196172A1 (zh) 一种5g mimo天线结构
CN109346833B (zh) 具有wifi mimo天线的终端设备
EP3531502B1 (en) Communication terminal
Wong et al. High‐isolation conjoined loop multi‐input multi‐output antennas for the fifth‐generation tablet device
CN104134871B (zh) 高隔离半槽缝隙天线阵列
CN108565544B (zh) 一种超宽带5g mimo天线结构
CN104124527B (zh) 高隔离缝隙天线阵列
US10367266B2 (en) Multi-antenna communication device
US10892552B2 (en) Antenna structure
KR20120139090A (ko) 다중대역 특성을 갖는 mimo 안테나
US9577338B2 (en) Antenna for achieving effects of MIMO antenna
WO2019100599A1 (zh) 5g mimo 天线系统及手持设备
US10720705B2 (en) 5G wideband MIMO antenna system based on coupled loop antennas and mobile terminal
CN110492237A (zh) 基于金属边框的mimo天线结构及移动设备
CN109841943B (zh) 应用于5g通信的三频mimo天线系统及移动终端
US20170084997A1 (en) Antenna module
KR20150081179A (ko) 모노폴 또는 다이폴 안테나를 이용한 다채널 mimo 안테나 장치
WO2020147172A1 (zh) 5g mimo 天线系统及手持设备
Ibrahim et al. Review isolation techniques of the MIMO antennas for Sub-6
Zou et al. Design of 6× 6 dual-band MIMO antenna array for 4.5 G/5G smartphone applications
US10804602B2 (en) 5G MIMO antenna system and handheld device
WO2020103314A1 (zh) 基于耦合式环形天线的5g宽频mimo天线系统及移动终端
CN110832703A (zh) 一种天线结构和终端设备
CN204271242U (zh) 一种用于全金属结构通信终端设备的可调天线
Aminu-Baba et al. Compact patch MIMO antenna with low mutual coupling for WLAN applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914295

Country of ref document: EP

Kind code of ref document: A1