WO2019196168A1 - 非金属敷缆连续油管 - Google Patents

非金属敷缆连续油管 Download PDF

Info

Publication number
WO2019196168A1
WO2019196168A1 PCT/CN2018/088252 CN2018088252W WO2019196168A1 WO 2019196168 A1 WO2019196168 A1 WO 2019196168A1 CN 2018088252 W CN2018088252 W CN 2018088252W WO 2019196168 A1 WO2019196168 A1 WO 2019196168A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
layer
reinforcing
coiled tubing
metallic
Prior art date
Application number
PCT/CN2018/088252
Other languages
English (en)
French (fr)
Inventor
赵建强
吕召军
连洪正
Original Assignee
威海鸿通管材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威海鸿通管材股份有限公司 filed Critical 威海鸿通管材股份有限公司
Priority to US16/098,451 priority Critical patent/US10914410B2/en
Priority to RU2018140147A priority patent/RU2733991C1/ru
Publication of WO2019196168A1 publication Critical patent/WO2019196168A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/003Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings with electrically conducting or insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • F16L11/127Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting electrically conducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/16Rigid pipes wound from sheets or strips, with or without reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/10Coatings characterised by the materials used by rubber or plastics
    • F16L58/1009Coatings characterised by the materials used by rubber or plastics the coating being placed inside the pipe
    • F16L58/1045Coatings characterised by the materials used by rubber or plastics the coating being placed inside the pipe the coating being an extruded or a fused layer

Definitions

  • the present disclosure relates to the field of oil field oil recovery technology, and more particularly to a non-metal coiled cable coiled tubing.
  • Oil is an important energy source. Compared with coal, it has a high energy density (equal weight of petroleum burning heat is 50% higher than standard coal), convenient transportation and storage, and less pollution to the atmosphere after combustion. advantage.
  • Fuel oil extracted from petroleum is the main fuel for various furnaces in transportation, power station boilers, metallurgical industry and building materials industries.
  • Liquefied gas and pipeline gas, which are made from petroleum, are high-quality fuels for urban residents. Aircraft, tanks, ships, rockets and other spacecraft also consume large amounts of petroleum fuel. Therefore, many countries have listed oil as a strategic material.
  • the power supply for the downhole tool or the transmission of signals to the downhole instrument is mostly a separate external cable outside the oil pipe, and the cable needs to be separately expensive.
  • the cables need to be separately fixed, the operation efficiency is low, and the cables are easily damaged. Due to the narrow space of the inner ring of the wellbore, the cable is easily exposed to the downhole, which is easy to cause the cable to wear. This phenomenon is particularly prominent in the directional well, and the cable is often damaged after the downhole operation.
  • a non-metallic cable coiled tubing provided by an embodiment of the present disclosure includes: an inner liner tube for forming a passage for conveying a medium;
  • the outer wall of the inner liner tube is sequentially provided with a cable inner layer and a protective sleeve, and the cable inner layer comprises a cable and a plurality of reinforcing strips for resisting torsional deformation and Withstand axial tension;
  • the protective cover is used to prevent the cable from being worn.
  • the number of the cable inlay layers is plural.
  • the material of the reinforcing tape comprises fibers and a resin.
  • a U-shaped hardband is disposed outside the reinforcing strip, and the U-shaped hardband is used to isolate adjacent reinforcing strips.
  • outer wall of the inner liner is provided with a spiral groove that cooperates with the U-shaped wear band.
  • At least two of the reinforcing strips are helically wound around the inner liner tube in an axial direction.
  • the cable is embedded in the reinforcing tape.
  • the number of the cable inlay layers is two and is an inner layer and an outer layer, respectively, the inner layer is disposed outside the inner liner, and the outer layer is disposed outside the inner layer .
  • the cable of the inner layer is a signal cable, and in the inner layer, the signal cable is embedded in the reinforcing tape;
  • the cable of the outer layer is a power cable, and in the outer layer, there is a clearance gap between at least two adjacent reinforcing bands, and the letting gap is used for accommodating the power cable.
  • the power cable is helically wound around the inner liner in the axial direction.
  • the horizontal cross section of the power cable is elliptical, and the horizontal cross section of the signal cable is circular.
  • the reinforcing strips in the inner layer are opposite to the helical direction of the reinforcing strips in the outer layer.
  • the power cable and the signal cable are radially disposed offset to reduce interference between the power cable and the signal cable.
  • a circumferential reinforcing layer is disposed between the inner liner tube and the cable inner layer;
  • the toroidal reinforcement layer includes a first fiber bundle and a second fiber bundle, the first fiber bundle and the second fiber bundle being cross-wound and fixed to the inner liner in different spiral directions.
  • a skeleton layer is disposed between the circumferential reinforcing layer and the cable inner layer;
  • the skeleton layer includes a plurality of fiber ribbons wound around the circumferential reinforcing layer.
  • a plurality of PVC barrier films are disposed between the plurality of fiber ribbons.
  • the line The cable inner layer and the protective sleeve are respectively slidingly sleeved so that any two adjacent structures in the inner liner tube, the hoop reinforcing layer, the skeleton layer, the cable inner layer and the protective sleeve are not mutually Sticky.
  • the reinforcing tape, the hoop reinforcing layer and the fibers in the skeleton layer are formed by wet winding.
  • the material of the protective cover comprises a polymer material.
  • a non-metallic cable continuous oil pipe comprising a liner pipe, a cable inner layer and a protective sleeve which are sequentially connected from the inside to the outside;
  • the cable inner layer includes a cable and a plurality of reinforcing strips, and the plurality of reinforcing strips are spirally wound around an outer wall of the inner liner tube, and the cable is disposed in the reinforcing belt or a plurality of Between the enhancement bands.
  • the non-metallic cable coke tubing includes: an inner liner pipe for forming a medium conveying passage for transporting crude oil. From the inside to the outside, the outer wall of the inner liner is sequentially provided with a cable inner layer and a protective sleeve.
  • the cable inner layer comprises a cable and a plurality of reinforcing strips for resisting torsional deformation and axial tensile force.
  • the protective cover is for preventing the cable from being worn.
  • the cable of the non-metal cable continuous oil pipe provided by the embodiment of the present disclosure is embedded in the cable. In the conventional manner, the cable is externally disposed, and the traditional steel pipe requires an external independent cable for separate armoring, which is time-consuming and labor-intensive. The disadvantages of high cost and easy damage of the cable greatly reduce the wear efficiency of the cable, prolong the service life of the cable, improve the oil recovery efficiency, and reduce the oil production cost.
  • FIG. 1 is a schematic view of a non-metallic cable continuous oil pipe provided by a first embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of a non-metallic cable coiled tubing provided by a first embodiment of the present disclosure
  • Figure 3 is a partial enlarged view of the position A in Figure 2.
  • Icons 100-liner; 200-cable inner layer; 210-reinforced tape; 220-signal cable; 230-power cable; 300-protective sleeve; 400-toroidal reinforcement layer; 500-skeleton layer.
  • connection and “connected” are to be understood broadly, and may be, for example, a fixed connection, a detachable connection, or an integral one, unless specifically stated and defined. Connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal connection of the two elements.
  • intermediate medium which can be the internal connection of the two elements.
  • the non-metallic cable continuous oil pipe provided by the embodiment of the present disclosure includes: a liner pipe 100 for forming a medium conveying passage for transporting crude oil. From the inside to the outside, the outer wall of the inner liner tube 100 is sequentially provided with a cable inner layer 200 and a protective sleeve 300.
  • the cable inner layer 200 includes a cable and a plurality of reinforcing strips 210 for resisting twisting. Deformed and subjected to axial pulling force; the protective cover 300 is used to prevent the cable from being worn.
  • the non-metallic cable continuous oil pipe provided by the embodiment of the present disclosure has a cable embedded therein, and the cable is externally disposed in the conventional manner, which solves the problem that the traditional steel pipe requires an external independent cable for separate armoring, which is time-consuming and labor-intensive.
  • the cost is high and the cable is easily damaged.
  • the wear rate of the cable is greatly reduced, the service life of the cable is prolonged, the oil recovery efficiency is improved, and the oil production cost is reduced.
  • the protective sleeve needs to have wear and corrosion resistance.
  • the material of the protective cover 300 may be a polymer material, and the polymer material has excellent wear and corrosion resistance. In other embodiments, the protective cover may be other wear and corrosion resistant materials.
  • the number of cable inlays 200 may be plural depending on the type and number of cables required.
  • the types of cables embedded in each layer of the cable inlay layer 200 may be the same.
  • the multi-layer cable inlay layer 200 is disposed from the inside to the outside, and is processed layer by layer without affecting each other.
  • the material of the reinforcing tape 210 includes fibers and resins. Specifically, in the actual processing, the reinforcing tape 210 is mixed and infiltrated by a certain ratio of fibers and resin, and then wound onto a layer outside the inner liner tube 100 to be solidified.
  • the layer position refers to a spiral groove outside the inner liner tube 100.
  • the spiral groove cooperates with the U-shaped hardband, and the U-shaped hardband is used to isolate the adjacent reinforcing tape 210 to facilitate the reinforcing tape 210. Molding.
  • the width of the reinforcing strip 210 ranges from 8 to 15 mm. In this embodiment, the width of the reinforcing strip is 12 mm. In other embodiments, the width of the reinforcing strip may also be 10 mm, 14 mm, or the like.
  • the layers between the layers of the multilayer cable inlay 200 and between the reinforcing strips 210 are non-bonded and can be relatively slippery, and the layers and layers, the strips and the strips can be relatively slippery.
  • the engagement of the helical groove and the U-shaped wear band prevents the inner liner 100 from causing wear to the reinforcing tape 210 during slippage.
  • each of the cable inlay layers 200 a plurality of the reinforcing strips 210 are helically wound around the inner liner tube 100 in an axial manner, and the spiral winding manner greatly improves the tensile strength of the non-metallic coiled coiled tubing.
  • the cable can be placed between multiple reinforcing strips or a single reinforcing strip as desired.
  • the cable winding winds the cable onto the inner liner 100 in a manner that replaces the position of the fibril reinforcing tape 210, and the cable is well fixed.
  • the cable can also be directly embedded within the reinforcing strip 210.
  • the non-metallic cable coiled tubing provided by the embodiment of the present disclosure may include the above two embodiments, and the degree of the thickness of the cable fixed according to the need may adopt different fixing manners. Specifically, when the cable is thick, the cable can be fixed by means of a position, that is, the two reinforcing straps 210 are fixed to fix a cable; and when the cable is thin, the cable can be directly processed during processing. It is processed into the reinforcing tape 210. This cable has better protection.
  • the number of the cable inlays 200 provided by the embodiments of the present disclosure may be two and respectively an inner layer and an outer layer, and the inner layer is disposed outside the inner liner 100, and the outer layer is disposed.
  • the cable of the inner layer is the signal cable 220. Because the signal cable 220 is relatively thin, in the inner layer, the signal cable 220 is embedded in the reinforcing tape 210.
  • the cable of the outer layer is the power cable 230. Because the power cable 230 is relatively thick, in the outer layer, there is a clearance gap between at least two adjacent reinforcing bands 210, and the clearance is The power cable 230 is housed to axially wind the power cable 230 around the inner liner 100.
  • the power cable 230 and the signal cable 220 adopt different winding processes, and the power cable 230 is wound around the inner cable by replacing the position of the original reinforcing tape 210.
  • the power cable 230 is well fixed.
  • signal cable 220 winding signal cable 220 is used to wrap the fiber and reinforcing tape 210 is wound onto the tube body.
  • Signal cable 220 is fixed and protected by reinforcing tape 210 to avoid wear.
  • the horizontal cross section of the power cable 230 is elliptical, and the horizontal cross section of the signal cable 220 is circular. Since the cable core has a sintered layer and a sheath layer, the elliptical shape and the circular shape ensure uniformity of the outer layer. Sintering to the sintered layer ensures the quality of the sintering and improves the cable performance.
  • the inner liner tube 100 can adopt a non-metal tube or a metal tube as needed.
  • the inner liner tube 100 is a metal tube, and the non-metal coiled coil can be laid with the power cable 230 and the signal cable 220, Laying other cables or fibers, etc., has a wide range of applications.
  • the liner tube 100 can also be a metal tube.
  • the reinforcing strip 210 in the inner layer is opposite the helical direction of the reinforcing strip 210 in the outer layer.
  • the opposite direction of the spiral resists torsional deformation.
  • the power cable 230 and the signal cable 220 are radially offset from each other for reducing interference between the power cable 230 and the signal cable 220.
  • the power cable 230 and the signal cable 220 are respectively built into the inner and outer cable inner layers 200, and are spirally distributed to avoid the two cables being embedded in the same layer in parallel, and the power cable 230 interferes with the signal cable 220.
  • the number of cable inlay layers 200 may be three or four, and the spiral directions of the reinforcing bands of any two adjacent cable inlay layers 200 are opposite; power cable 230 and signal
  • the horizontal cross-section of the cable 220 can also take other shapes, such as being circular or square.
  • a non-metallic cable continuous oil pipe provided by an embodiment of the present disclosure includes an inner liner 100, a protective cover 300 and a cable inner layer 200.
  • the cable inner layer 200 includes a reinforcing tape 210, a power cable 230, and a signal cable 220.
  • the cable inlay layer 200 is divided into two layers of left-handed and right-handed.
  • the cable inner layer 200 is embedded with a power cable 230 and a signal cable 220.
  • the power cable 230 is used to transmit power to the oil well equipment and the signal cable.
  • 220 provides a channel for signal transmission of the downhole instrument, and the power cable 230 and the signal cable 220 are respectively built in the left and right cable inner layers 200, and are spirally distributed.
  • the protective cover 300 is a polymer material.
  • the power cable 230 is located on the cable inner layer 200 (left-handed) and has the same width as the fiber reinforced tape 210, uniformly wrapped around the cable inner layer 200, and the signal cable 220 is located in the cable inner layer. 200 (right-handed) and located in the middle of the reinforcing strip 210 in the cable inlay 200.
  • the non-metallic cable coiled tubing provided by the embodiment of the present disclosure embeds various cables in different forms in the cable inlay layer 200, thereby protecting the cable from abrasion and causing the cable to have the inner liner The same service life of 100, while increasing the tensile strength of the inner liner 100.
  • a circumferential reinforcing layer 400 is disposed between the inner liner 100 and the cable inner layer 200; the circumferential reinforcing layer 400 includes a first fiber bundle and a second fiber bundle, the first fiber bundle and the second fiber bundle
  • the fiber bundles are cross-wound and fixed to the inner liner 100 in different spiral directions. Specifically, during processing, after the fiber bundle is dipped, it is directly wound onto the layer under tension control, and the first fiber bundle and the second fiber bundle are spirally wound in the left-hand direction and the right-hand direction, respectively, and finally solidified.
  • the cross-wound structure can effectively improve the writing performance of the annular reinforcing layer, thereby improving the bending and torsion resistance of the entire coiled tubing.
  • a skeleton layer 500 is disposed between the circumferential reinforcing layer 400 and the cable inlay layer 200 to further improve the bending and torsion resistance of the entire coiled tubing.
  • the skeleton layer 500 includes a plurality of fiber ribbons wound around the circumferential reinforcing layer 400.
  • the two sets of fiber ribbons may be dipped at a large angle and then wound onto the layer of the inner liner 100 at the same time.
  • L-shaped PVC partition film can be arranged between the fiber belts to ensure that the fiber bands are not bonded to each other after curing, and at the same time, the function of preventing abrasion between the plurality of fiber bands is prevented.
  • the cable inner layer 200 and the protective sleeve 300 are both slidably sleeved. That is to say, the non-metallic cable coiled tubing does not adhere to each other and can slide with each other, and can be realized by wrapping the wear-resistant belt.
  • the non-metallic cable can be relatively slipped between the layers of the coiled tubing to achieve bending of the tubing, rather than bending by elastic deformation of the material, increasing the strength of the tubing and lowering the tensile elongation.
  • the fibers in the reinforcing tape 210, the hoop reinforcing layer 400, and the skeleton layer 500 are formed by wet winding.
  • Wet winding has the following advantages: a, the cost is greatly reduced compared with the dry method; b, the product is airtight, because the winding tension causes the excess resin glue to squeeze out the bubbles and fill the gap; c, the fiber arrangement parallelism Good; d, wet entanglement, the resin glue on the fiber can reduce the wear of the fiber; e, high production efficiency; f, can achieve the production of long-distance continuous pipe; g, can change the resin and fiber at any time according to product demand content.
  • an embodiment of the present disclosure provides a non-metallic cable continuous oil pipe, which comprises an inner liner 100, a cable inner layer 200 and a protective sleeve 300 which are sequentially connected from the inside to the outside;
  • the cable inlay layer comprises a cable and a plurality of reinforcing strips 210, and the plurality of reinforcing strips 210 are spirally wound around the outer wall of the inner liner tube 100, and the cables are disposed in the reinforcing strip 210 or a plurality of the reinforcing strips. Between 210.
  • the present disclosure solves the problem that a conventional steel pipe requires an external independent cable for separate armoring by embedding a cable in a non-metallic cable coiled tubing instead of the conventional method, and the operation is time-consuming and laborious and costly.
  • the disadvantage of high cable damage is that the wear rate of the cable is greatly reduced, the service life of the cable is prolonged, the oil recovery efficiency is improved, and the oil production cost is reduced.
  • an embodiment of the present disclosure provides a non-metallic cable coiled tubing including an inner liner 100, an annular reinforcing layer 400 , a skeleton layer 500 , and a cable inner layer 200 that are movably connected from the inside to the outside. And the protective cover 300.
  • the inner liner tube 100, the annular reinforcing layer 400, the skeleton layer 500, the cable inner layer 200 and the protective sleeve 300 are each substantially annular in cross section, and the "cross section" refers to an axis perpendicular to the axis of the coiled tubing. flat.
  • the cable inlay layer 200 is provided with two inner and outer layers respectively, and the inner liner 100, the annular reinforcing layer 400, the skeleton layer 500, the inner layer, the outer layer and the protective cover 500 are sequentially moved from the inside to the outside. connection.
  • the inner layer includes two signal cables 220 and a plurality of reinforcing strips 210.
  • the plurality of reinforcing strips 210 are spirally wound around the outer wall of the inner liner tube 100 around the axis of the inner liner tube 100, and the two signal wires 220 are respectively embedded in the two inner walls.
  • the inside of the reinforcing strip 210 serves as a channel for signal transmission of the downhole instrument.
  • the outer layer includes two power cables 230 and a plurality of reinforcing strips 210.
  • the plurality of reinforcing strips 210 are spirally wound around the outer wall of the inner liner tube 100 about the axis of the inner liner tube 100, and the spiral direction and inner layer of the outer reinforcing strip 210
  • the reinforcing strips 210 have opposite spiral directions.
  • Two retaining gaps are disposed between the plurality of reinforcing strips 210, one of which is formed by two adjacent reinforcing strips 210, and the other of which is formed by two adjacent reinforcing strips 210, two
  • the power cables 230 are respectively disposed in the two clearance gaps for transmitting power to the oil well equipment.
  • the inner connecting tube 100, the annular reinforcing layer 400, the skeleton layer 500, the cable inner layer 200 and the protective sleeve 300 are movably connected between any two structures, that is, they do not stick to each other and can be relatively moved, so that the oil pipe can be improved.
  • the non-metallic cable continuous oil pipe provided by the present disclosure adopts a method of directly embedding a cable in the oil pipe, which can effectively improve the traditional steel pipe to require an external independent cable for separate armoring, which is time-consuming, labor-intensive and costly, and the cable is easily damaged.
  • the drawbacks have greatly reduced the wear rate of the cable, prolonged the service life of the cable, improved the oil recovery efficiency and reduced the oil production cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)
  • Insulated Conductors (AREA)
  • Flexible Shafts (AREA)

Abstract

一种非金属敷缆连续油管,涉及油田采油技术领域,该非金属敷缆连续油管包括:内衬管(100),内衬管(100)用于形成介质输送的通道;由内向外,内衬管(100)的外壁上依次设置有线缆内嵌层(200)和保护套(300),线缆内嵌层(200)包括线缆和多条增强带(210),增强带(210)用于抵抗扭转变形且承受轴向拉力;保护套(300)用于防止线缆磨损。该非金属敷缆连续油管中嵌入有线缆,而非传统方式中,将线缆外置,解决了传统钢制油管需要外置独立线缆进行单独铠装,作业费时费力且线缆容易损坏的弊端,延长了线缆的使用寿命,提高了采油效率。

Description

非金属敷缆连续油管
相关申请的交叉引用
本申请要求于2018年04月11日提交中国专利局的申请号为201810323257.9、名称为“非金属敷缆连续油管”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及油田采油技术领域,尤其是涉及一种非金属敷缆连续油管。
背景技术
石油在国民经济中的作用石油是重要能源,同煤相比,具有能量密度大(等重的石油燃烧热比标准煤高50%)、运输储存方便、燃烧后对大气的污染程度较小等优点。从石油中提炼的燃料油是运输工具、电站锅炉、冶金工业和建筑材料工业各种窑炉的主要燃料。以石油为原料的液化气和管道煤气是城市居民生活应用的优质燃料。飞机、坦克、舰艇、火箭以及其他航天器,也消耗大量石油燃料。因此,许多国家都把石油列为战略物资。
传统石油开采过程中,在为井下工具供电或为井下仪器传输信号大多是在油管外单独外置线缆,线缆需要单独铠装费用高昂。且开采作业时,线缆需要单独固定方式,操作效率低下且极易损伤线缆。由于井筒内环空间狭小,线缆外置凸出下井作业时,容易造成线缆的磨损,在定向井中这种现象尤为突出,常出现下井作业后线缆就已经损坏无法使用。
发明内容
本公开的目的包括,提供一种非金属敷缆连续油管,以缓解了现有的石油开采系统中,线缆需要单独铠装的麻烦,并且延长了线缆的使用寿命。
第一方面,本公开实施例提供的一种非金属敷缆连续油管,其包括:内衬管,所述内衬管用于形成介质输送的通道;
由内向外,所述内衬管的外壁上依次设置有线缆内嵌层和保护套,所述线缆内嵌层包括线缆和多条增强带,所述增强带用于抵抗扭转变形且承受轴向拉力;
所述保护套用于防止所述线缆磨损。
进一步地,由内向外,所述线缆内嵌层的数量为多个。
进一步地,所述增强带的材质包括纤维和树脂。
进一步地,所述增强带外侧设置有U型耐磨带,所述U型耐磨带用于将相邻的增强带隔离。
进一步地,所述内衬管的外壁设置有与所述U型耐磨带配合的螺旋槽。
进一步地,所述线缆内嵌层中,至少两个所述增强带围绕所述内衬管轴向螺旋缠绕排列。
进一步地,至少有两个相邻的所述增强带之间存在让位间隙,所述让位间隙用于 容纳线缆,以使所述线缆围绕所述内衬管轴向螺旋缠绕。
进一步地,所述线缆内嵌于所述增强带内。
进一步地,所述线缆内嵌层的数量为两个且分别为内层和外层,所述内层设置在所述内衬管的外侧,所述外层设置在所述内层的外侧。
进一步地,所述内层的线缆为信号缆,且在所述内层中,所述信号缆内嵌于所述增强带内;
所述外层的线缆为动力缆,且在所述外层中,至少有两个相邻的所述增强带之间存在让位间隙,所述让位间隙用于容纳所述动力缆,以使所述动力缆围绕所述内衬管轴向螺旋缠绕。
进一步地,动力缆的水平横截面呈椭圆形,信号缆的水平横截面呈圆形。
进一步地,所述内层中的增强带与所述外层中的增强带的螺旋方向相反。
进一步地,所述动力缆与所述信号缆在径向上错位设置,用于降低所述动力缆与所述信号缆彼此之间的干扰。
进一步地,所述内衬管和线缆内嵌层之间设置有环向增强层;
所述环向增强层包括第一纤维集束和第二纤维集束,所述第一纤维集束和第二纤维集束以不同的螺旋方向交叉缠绕固定在所述内衬管上。
进一步地,所述环向增强层和所述线缆内嵌层之间设置有骨架层;
所述骨架层包括多条缠绕在所述环向增强层上的纤维带。
进一步地,多条所述纤维带之间设置有PVC隔断膜。
进一步地,所述内衬管与所述环向增强层之间、所述环向增强层与所述骨架层之间、所述骨架层与所述线缆内嵌层之间、所述线缆内嵌层与所述保护套之间均为滑动套接,以使所述内衬管、环向增强层、骨架层、线缆内嵌层和保护套中任意相邻两个结构互不粘连。
进一步地,所述增强带、环向增强层和骨架层中的纤维采用湿法缠绕的方式成型。
进一步地,所述保护套的材质包括高分子材料。
一种非金属敷缆连续油管,其包括从内到外依次连接的内衬管、线缆内嵌层及保护套;
其中,所述线缆内嵌层包括线缆和多条增强带,多条所述增强带螺旋缠绕于所述内衬管的外壁,所述线缆设置于所述增强带中或者多条所述增强带之间。
本公开实施例带来的有益效果包括:
本公开实施例提供的非金属敷缆连续油管,包括:内衬管,所述内衬管用于形成介质输送的通道,用于运输原油。由内向外,内衬管的外壁上依次设置有线缆内嵌层和保护套, 线缆内嵌层包括线缆和多条增强带,所述增强带用于抵抗扭转变形且承受轴向拉力;所述保护套用于防止所述线缆磨损。本公开实施例提供的非金属敷缆连续油管中嵌入有线缆,而非传统方式中,将线缆外置,改善了传统钢制油管需要外置独立线缆进行单独铠装,作业费时费力且成本高,线缆容易损坏的弊端,从很大程度上降低了线缆的磨损效率,延长了线缆的使用寿命,提高了采油效率,降低采油成本。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开第一实施例提供的非金属敷缆连续油管的示意图;
图2为本公开第一实施例提供的非金属敷缆连续油管的截面图;
图3为图2中A位置的局部放大图。
图标:100-内衬管;200-线缆内嵌层;210-增强带;220-信号缆;230-动力缆;300-保护套;400-环向增强层;500-骨架层。
具体实施方式
下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,如出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等,其指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,如出现术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
另外,在本公开实施例的描述中,除非另有明确的规定和限定,术语“相连”、“连接” 应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
第一实施例:
如图1和图2所示,本公开实施例提供的非金属敷缆连续油管,包括:内衬管100,所述内衬管100用于形成介质输送的通道,用于运输原油。由内向外,内衬管100的外壁上依次设置有线缆内嵌层200和保护套300,线缆内嵌层200包括线缆和多条增强带210,所述增强带210用于抵抗扭转变形且承受轴向拉力;所述保护套300用于防止所述线缆磨损。本公开实施例提供的非金属敷缆连续油管中嵌入有线缆,而非传统方式中,将线缆外置,解决了传统钢制油管需要外置独立线缆进行单独铠装,作业费时费力且成本高,线缆容易损坏的弊端,从很大程度上降低了线缆的磨损速率,延长了线缆的使用寿命,提高了采油效率,降低了采油成本。
因为非金属敷缆连续油管的工作环境特殊,保护套需要具有耐磨耐腐蚀性能。本实施例中,保护套300的材料可以为高分子材料,高分子材料具有优良的耐磨耐腐蚀性能。其它实施例中,保护套可以为其它耐磨耐腐蚀的材料。
根据需要线缆的种类和数量,线缆内嵌层200的数量可以为多个。例如,每一层线缆内嵌层200中嵌入的线缆的种类可以相同,根据种类的不同,由内向外设置多层线缆内嵌层200,逐层加工,互不影响。
具体的,增强带210的材质包括纤维和树脂。具体的,在实际加工过程中,增强带210由纤维和树脂按一定比例混合浸润后缠绕到内衬管100外侧的层位上再固化成型其中层位指的是内衬管100外的螺旋槽,用来形成增强带210的固化形态,当增强带210固化后,螺旋槽就与U型耐磨带相互配合,U型耐磨带用于将相邻的增强带210隔离,方便增强带210的成型。增强带210的宽度范围在8~15mm。本实施例中,增强带的宽度为12mm,其它实施例中,增强带的宽度也可以为10mm、14mm等。
还需要说明的是,多层线缆内嵌层200的层与层之间以及增强带210之间均为非粘结的可以相对滑移的,层与层、带与带之间可以相对滑移,螺旋槽和U型耐磨带的配合避免了内衬管100在滑移时对增强带210造成磨损。
每个线缆内嵌层200中,多个所述增强带210围绕所述内衬管100轴向螺旋缠绕排列,这种螺旋缠绕的方式大大提高了非金属敷缆连续油管的抗拉强度。
如图3所示,线缆可以根据需要设置于多个增强带之间或者单个增强带中。在一个实施方案中,至少有两个相邻的所述增强带210之间存在让位间隙,所述让位间隙用于容纳 线缆,以使所述线缆围绕所述内衬管100轴向螺旋缠绕。线缆缠绕采用取代原纤维增强带210的位置的方式将线缆缠绕至内衬管100上,线缆得到了很好的固定。在另一个实施方案中,线缆也可以直接内嵌于所述增强带210内。
本公开实施例提供的非金属敷缆连续油管可以包括上述两种实施方式,根据需要固定的线缆的粗细程度可以采用不同的固定方式。具体的,当线缆较粗时,可以采用让位的方式固定线缆,也就是两条增强带210夹持固定一条线缆;而当线缆较细时,可以在加工时直接将线缆加工入增强带210中。这样线缆的保护效果更佳。
具体的,本公开实施例提供的线缆内嵌层200的数量可以为两个且分别为内层和外层,所述内层设置在所述内衬管100的外侧,所述外层设置在所述内层的外侧。内层的线缆为信号缆220,因为信号缆220较细,在所述内层中,所述信号缆220内嵌于所述增强带210内。所述外层的线缆为动力缆230,因为动力缆230较粗,在所述外层中,至少有两个相邻的所述增强带210之间存在让位间隙,所述让位间隙用于容纳所述动力缆230,以使所述动力缆230围绕所述内衬管100轴向螺旋缠绕。
由于动力缆230和信号缆220的位置不同,因此动力缆230和信号缆220采用不同的缠绕工艺,对于动力缆230缠绕采用取代原增强带210的位置的方式将动力缆230缠绕至内衬管100上,动力缆230得到了很好的固定。对于信号缆220缠绕采用信号缆220包覆于纤维中和增强带210一起缠绕至管体上,信号缆220受到增强带210的固定和保护,避免了磨损。
详细地,动力缆230的水平横截面呈椭圆形,信号缆220的水平横截面呈圆形,由于线缆缆芯外有烧结层和护套层,因此椭圆形和圆形能够保证外层均匀烧结至烧结层,保证烧结质量,提高线缆使用性能。
内衬管100可以根据需要采用非金属管或金属管,本实施例中,内衬管100采用给金属管,非金属敷缆连续油管中除了可以铺设动力缆230和信号缆220外,还可铺设其他线缆或光纤等,应用范围广范。其它实施例中,内衬管100也可以为金属管。
内层中的增强带210与所述外层中的增强带210的螺旋方向相反。螺旋方向相反可以抵抗扭转变形。
动力缆230与所述信号缆220在径向上错位设置,用于降低所述动力缆230与所述信号缆220彼此之间的干扰。动力缆230和信号缆220分别内置在内外两个线缆内嵌层200内,成螺旋交叉分布,避免两种线缆内嵌于同一层平行排列,动力缆230对信号缆220造成干扰。
需要说明的是,其它实施例中,线缆内嵌层200的数量可以为三个或者四个,任意相邻两个线缆内嵌层200的增强带的螺旋方向相反;动力缆230和信号缆220的水平横截面 也可以呈其它形状,比如均为圆形或者方形。
本公开实施例提供的一种非金属敷缆连续油管,包括内衬管100、保护套300和线缆内嵌层200,线缆内嵌层200包括增强带210、动力缆230、信号缆220,其中所述线缆内嵌层200分为左旋和右旋两层,线缆内嵌层200中嵌有动力缆230、信号缆220,动力缆230用于为油井设备电器输送电力,信号缆220为井下仪器信号传输提供通道,动力缆230和信号缆220分别内置在左右两个线缆内嵌层200内,成螺旋交叉分布。保护套300为高分子材料。
具体地,动力缆230位于线缆内嵌层200(左旋)上,且宽度同纤维增强带210的宽度相同,均布缠绕在线缆内嵌层200上,信号缆220位于线缆内嵌层200(右旋)上,且位于线缆内嵌层200中的增强带210的中间位置。
本公开实施例提供的非金属敷缆连续油管,将各种线缆以不同的形式分别内嵌于线缆内嵌层200中,既保护线缆不受磨损,使线缆具有与内衬管100同等的使用寿命,同时又提高了内衬管100的抗拉强度。
可选地,内衬管100和线缆内嵌层200之间设置有环向增强层400;环向增强层400包括第一纤维集束和第二纤维集束,所述第一纤维集束和第二纤维集束以不同的螺旋方向交叉缠绕固定在所述内衬管100上。具体的,加工时,由纤维集束浸胶后,在张力控制下直接缠绕到层位上,第一纤维集束和第二纤维集束分别沿左旋方向和右旋方向交叉螺旋缠绕最后固化成型。交叉缠绕的结构形式可以有效提高环形增强层的里写性能,从而提高整个连续油管的抗弯扭性能。
环向增强层400和线缆内嵌层200之间设置有骨架层500,以进一步地提高整个连续油管的抗弯扭性能。所述骨架层500包括多条缠绕在所述环向增强层400上的纤维带。具体加工时,可以由两组纤维带浸胶后大角度同时缠绕到内衬管100的层位上。同时,纤维带之间可以设置L型的PVC隔断薄膜,以保证纤维带固化后相互不粘接在一起,同时起到了防止多条纤维带之间磨损的作用。
内衬管100与所述环向增强层400之间、所述环向增强层400与所述骨架层500之间、所述骨架层500与所述线缆内嵌层200之间、所述线缆内嵌层200与所述保护套300之间均为滑动套接。也就是非金属敷缆连续油管中层与层之间是互不粘连,能够相互滑动的,可以通过外包耐磨带的方式实现。通过非金属敷缆连续油管的层与层之间可以相对滑移,来实现管材的弯曲,而非通过材料的弹性变形来实现弯曲,提高管材的强度,拉伸伸长率低。
增强带210、环向增强层400和骨架层500中的纤维采用湿法缠绕的方式成型。湿法缠绕具有以下优点:a、成本较干法缠绕大幅降低;b、产品气密性好,因为缠绕张力使多余 的树脂胶液将气泡挤出,并填满空隙;c、纤维排列平行度好;d、湿法缠绕时,纤维上的树脂胶液可减少纤维的磨损;e、生产效率高;f、可实现长距离连续管的生产;g、可根据产品需求随时更改树脂及纤维的含量。
第二实施例:
请参照图1-2,本公开实施例提供了一种非金属敷缆连续油管,其包括从内到外依次连接的内衬管100、线缆内嵌层200及保护套300;
其中,线缆内嵌层包括线缆和多条增强带210,多条增强带210螺旋缠绕于内衬管100的外壁,所述线缆设置于所述增强带210中或者多条所述增强带210之间。
本公开通过在非金属敷缆连续油管中嵌入有线缆,而非传统方式中,将线缆外置,解决了传统钢制油管需要外置独立线缆进行单独铠装,作业费时费力且成本高,线缆容易损坏的弊端,从很大程度上降低了线缆的磨损速率,延长了线缆的使用寿命,提高了采油效率,降低了采油成本。
第三实施例:
请参照图1,本公开实施例提供了一种非金属敷缆连续油管,其包括从内到外依次活动连接的内衬管100、环形增强层400、骨架层500、线缆内嵌层200及保护套300。内衬管100、环形增强层400、骨架层500、线缆内嵌层200及保护套300的横截面均大致为圆环状,上述“横截面”指的是垂直于连续油管的轴线方向的平面。
其中,线缆内嵌层200设置有两个且分别为内层和外层,内衬管100、环形增强层400、骨架层500、内层、外层及保护套500从内到外依次活动连接。详细地,内层包括两条信号缆220和多个增强带210,多个增强带210绕内衬管100的轴线螺旋缠绕于内衬管100的外壁,两条信号线220分别内嵌于两个增强带210内部,以作为井下仪器信号传输提供通道。
外层包括两条动力缆230和多个增强带210,多个增强带210绕内衬管100的轴线螺旋缠绕于内衬管100的外壁,且外层的增强带210的螺旋方向与内层的增强带210的螺旋方向相反。多个增强带210之间设置有两个让位间隙,其中一个让位间隙由其中两个相邻的增强带210形成,另外一个让位间隙由另外两个相邻的增强带210形成,两条动力缆230分别设置于两个让位间隙中,用于为油井设备电器输送电力。通过将不同作用的信号缆220和动力缆230分别设置于不同的线缆内嵌层200,可以在方便加工的同时,更好地对线缆进行保护。
内衬管100、环形增强层400、骨架层500、线缆内嵌层200及保护套300中任意两个结构之间活动连接,即互不粘连,可以相对移动,这样就可以在保证提高油管强度,降低拉伸率的同时,实现油管的弯曲,有效弥补现有油管弯曲只能通过弹性变形的方式。
最后应说明的是:以上所述实施例,仅为本公开的具体实施方式,用以说明本公开的技术方案,而非对其限制,本公开的保护范围并不局限于此,尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本公开实施例技术方案的精神和范围,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。
工业实用性
总体效果
本公开提供的非金属敷缆连续油管采用在油管中直接嵌入线缆的方式,可以有效改善传统钢制油管需要外置独立线缆进行单独铠装,作业费时费力且成本高,线缆容易损坏的弊端,从很大程度上降低了线缆的磨损速率,延长了线缆的使用寿命,提高了采油效率,降低了采油成本。

Claims (20)

  1. 一种非金属敷缆连续油管,其特征在于,包括:内衬管,所述内衬管用于形成介质输送的通道;
    由内向外,所述内衬管的外壁上依次设置有线缆内嵌层和保护套,所述线缆内嵌层包括线缆和多条增强带,所述增强带用于抵抗扭转变形且承受轴向拉力;
    所述保护套用于防止所述线缆磨损。
  2. 根据权利要求1所述的非金属敷缆连续油管,其特征在于,由内向外,所述线缆内嵌层的数量为多个。
  3. 根据权利要求2所述的非金属敷缆连续油管,其特征在于,所述增强带的材质包括纤维和树脂。
  4. 根据权利要求3所述的非金属敷缆连续油管,其特征在于,所述增强带外侧设置有U型耐磨带,所述U型耐磨带用于将相邻的增强带隔离。
  5. 根据权利要求4所述的非金属敷缆连续油管,其特征在于,所述内衬管的外壁设置有与所述U型耐磨带配合的螺旋槽。
  6. 根据权利要求3所述的非金属敷缆连续油管,其特征在于,所述线缆内嵌层中,至少两个所述增强带围绕所述内衬管轴向螺旋缠绕排列。
  7. 根据权利要求4所述的非金属敷缆连续油管,其特征在于,至少有两个相邻的所述增强带之间存在让位间隙,所述让位间隙用于容纳线缆,以使所述线缆围绕所述内衬管轴向螺旋缠绕。
  8. 根据权利要求4所述的非金属敷缆连续油管,其特征在于,所述线缆内嵌于所述增强带内。
  9. 根据权利要求3所述的非金属敷缆连续油管,其特征在于,所述线缆内嵌层的数量为两个且分别为内层和外层,所述内层设置在所述内衬管的外侧,所述外层设置在所述内层的外侧。
  10. 根据权利要求9所述的非金属敷缆连续油管,其特征在于,所述内层的线缆为信号缆,且在所述内层中,所述信号缆内嵌于所述增强带内;
    所述外层的线缆为动力缆,且在所述外层中,至少有两个相邻的所述增强带之间存在让位间隙,所述让位间隙用于容纳所述动力缆,以使所述动力缆围绕所述内衬管轴向螺旋缠绕。
  11. 根据权利要求10所述的非金属敷缆连续油管,其特征在于,动力缆的水平横截面呈椭圆形,信号缆的水平横截面呈圆形。
  12. 根据权利要求10所述的非金属敷缆连续油管,其特征在于,所述内层中的增 强带与所述外层中的增强带的螺旋方向相反。
  13. 根据权利要求10所述的非金属敷缆连续油管,其特征在于,所述动力缆与所述信号缆在径向上错位设置,用于降低所述动力缆与所述信号缆彼此之间的干扰。
  14. 根据权利要求2所述的非金属敷缆连续油管,其特征在于,所述内衬管和线缆内嵌层之间设置有环向增强层;
    所述环向增强层包括第一纤维集束和第二纤维集束,所述第一纤维集束和第二纤维集束以不同的螺旋方向交叉缠绕固定在所述内衬管上。
  15. 根据权利要求14所述的非金属敷缆连续油管,其特征在于,所述环向增强层和所述线缆内嵌层之间设置有骨架层;
    所述骨架层包括多条缠绕在所述环向增强层上的纤维带。
  16. 根据权利要求15所述的非金属敷缆连续油管,其特征在于,多条所述纤维带之间设置有PVC隔断膜。
  17. 根据权利要求15所述的非金属敷缆连续油管,其特征在于,所述内衬管与所述环向增强层之间、所述环向增强层与所述骨架层之间、所述骨架层与所述线缆内嵌层之间、所述线缆内嵌层与所述保护套之间均为滑动套接,以使所述内衬管、环向增强层、骨架层、线缆内嵌层和保护套中任意相邻两个结构互不粘连。
  18. 根据权利要求15所述的非金属敷缆连续油管,其特征在于,所述增强带、环向增强层和骨架层中的纤维采用湿法缠绕的方式成型。
  19. 根据权利要求1-18任意一项所述的非金属敷缆连续油管,其特征在于,所述保护套的材质包括高分子材料。
  20. 一种非金属敷缆连续油管,其特征在于,包括从内到外依次连接的内衬管、线缆内嵌层及保护套;
    其中,所述线缆内嵌层包括线缆和多条增强带,多条所述增强带螺旋缠绕于所述内衬管的外壁,所述线缆设置于所述增强带中或者多条所述增强带之间。
PCT/CN2018/088252 2018-04-11 2018-05-24 非金属敷缆连续油管 WO2019196168A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/098,451 US10914410B2 (en) 2018-04-11 2018-05-24 Non-metallic cabling continuous oil pipe
RU2018140147A RU2733991C1 (ru) 2018-04-11 2018-05-24 Неметаллическая непрерывная нефтяная труба с кабелями

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810323257.9 2018-04-11
CN201810323257.9A CN108317306A (zh) 2018-04-11 2018-04-11 非金属敷缆连续油管

Publications (1)

Publication Number Publication Date
WO2019196168A1 true WO2019196168A1 (zh) 2019-10-17

Family

ID=62896536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088252 WO2019196168A1 (zh) 2018-04-11 2018-05-24 非金属敷缆连续油管

Country Status (5)

Country Link
US (1) US10914410B2 (zh)
CN (1) CN108317306A (zh)
EC (1) ECSP20054149A (zh)
RU (1) RU2733991C1 (zh)
WO (1) WO2019196168A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931156A (zh) * 2019-12-31 2020-03-27 信达科创(唐山)石油设备有限公司 一种新型电潜泵采油专用管缆及其制造方法
CN111541199B (zh) * 2020-04-23 2023-07-14 湖南易净环保科技有限公司 一种防水电缆导管的生产设备及其生产方法
CN115059411B (zh) * 2022-06-09 2023-01-17 北京探矿工程研究所 一种复合连续油管及制作方法
CN115183067B (zh) * 2022-07-07 2023-07-21 中国船舶科学研究中心 深海矿物与动力一体化混输轻质复合柔性缆管的制造方法
CN118188892A (zh) * 2024-05-17 2024-06-14 浙江大学 一种非金属非粘结型纤维增强复合柔性管及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955600A (en) * 1971-06-07 1976-05-11 Bechtel International Corporation Composite pipeline
CN203867489U (zh) * 2014-06-09 2014-10-08 中石化石油工程机械有限公司研究院 复合连续油管
CN105402503A (zh) * 2015-11-25 2016-03-16 江苏申视新材料科技有限公司 多功能非金属复合管
CN106014289A (zh) * 2016-06-16 2016-10-12 河北恒安泰油管有限公司 一种井下用连续油管
CN207194843U (zh) * 2017-09-07 2018-04-06 浙江恒安泰石油工程有限责任公司 一种智能井下用柔性复合连续油管
CN208041346U (zh) * 2018-04-11 2018-11-02 威海鸿通管材股份有限公司 非金属敷缆连续油管

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6932116B2 (en) * 2002-03-14 2005-08-23 Insituform (Netherlands) B.V. Fiber reinforced composite liner for lining an existing conduit and method of manufacture
FR2885672B1 (fr) * 2005-05-11 2007-06-22 Technip France Sa Conduite tubulaire flexible a gaine anti-usure
RU2375174C1 (ru) * 2008-06-09 2009-12-10 Закрытое акционерное общество "САФИТ" Способ изготовления изделия трубчатой формы (варианты) и изделие трубчатой формы (варианты)
GB2466262A (en) * 2008-12-18 2010-06-23 Technip France Sa Subsea umbilical
CN201934031U (zh) * 2011-01-25 2011-08-17 孟庆义 一种油管
CN102182875B (zh) * 2011-05-23 2012-07-25 文登鸿通管材有限公司 一种非粘接型拉挤复合管
AU2013232843B2 (en) * 2012-03-14 2017-07-27 Purapipe Holding Ltd. Multilayer pipeline in a polymer material, device for manufacture of the multilayer pipeline and a method for manufacturing the multilayer pipeline
CN103032639A (zh) * 2012-12-31 2013-04-10 文登鸿通管材有限公司 一种用于智能钻井的非粘接型拉挤复合管
US10197198B2 (en) * 2014-03-21 2019-02-05 National Oilwell Varco Denmark I/S Flexible pipe
CN104482331B (zh) * 2014-11-20 2016-12-07 南京晨光复合管工程有限公司 一种智能rtp管及其制备方法
CN205877444U (zh) * 2015-11-25 2017-01-11 江苏申视新材料科技有限公司 多功能非金属复合管
CN107327640B (zh) * 2017-09-01 2023-04-11 浙江恒安泰石油工程有限责任公司 一种智能监测型旧管线修复用柔性复合管
CN107355187A (zh) * 2017-09-07 2017-11-17 浙江恒安泰石油工程有限责任公司 一种智能井下用柔性复合连续油管及其制造工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955600A (en) * 1971-06-07 1976-05-11 Bechtel International Corporation Composite pipeline
CN203867489U (zh) * 2014-06-09 2014-10-08 中石化石油工程机械有限公司研究院 复合连续油管
CN105402503A (zh) * 2015-11-25 2016-03-16 江苏申视新材料科技有限公司 多功能非金属复合管
CN106014289A (zh) * 2016-06-16 2016-10-12 河北恒安泰油管有限公司 一种井下用连续油管
CN207194843U (zh) * 2017-09-07 2018-04-06 浙江恒安泰石油工程有限责任公司 一种智能井下用柔性复合连续油管
CN208041346U (zh) * 2018-04-11 2018-11-02 威海鸿通管材股份有限公司 非金属敷缆连续油管

Also Published As

Publication number Publication date
CN108317306A (zh) 2018-07-24
US20200240554A1 (en) 2020-07-30
RU2733991C1 (ru) 2020-10-09
ECSP20054149A (es) 2020-10-30
US10914410B2 (en) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2019196168A1 (zh) 非金属敷缆连续油管
US6401760B2 (en) Subsea flexible pipe of long length and modular structure
US9534719B2 (en) Flexible pipe end fitting
US20190162335A1 (en) Spoolable reinforced thermoplastic pipe for subsea and buried applications
US6691743B2 (en) Flexible pipe with wire or strip winding for maintaining armours
US8671992B2 (en) Multi-cell spoolable composite pipe
CN208041346U (zh) 非金属敷缆连续油管
CN103090126B (zh) 海洋用柔性管
CN104033669B (zh) 连续纤维增强非粘接复合柔性管
US20210142931A1 (en) Provision of electrical continuity and/or radial support
CN104089111A (zh) 混合材料增强型非粘结柔性管
WO2023246205A1 (zh) 海底电缆
US20140373964A1 (en) Flexible pipe body and method
CN203463817U (zh) 海底保温三相混输复合软管
GB2504065A (en) Subsea flexible riser
CN103075580B (zh) 连续纤维增强热塑性复合高压管道
CN109844387B (zh) 互锁层和制造方法
CN102242835A (zh) 钢带嵌入式超高分子量聚乙烯复合管材
CN218063719U (zh) 一种海洋用耐腐蚀柔性管
Kagoura et al. Development of a flexible pipe for pipe-in-pipe technology
CN203215118U (zh) 海洋用柔性管
CN221221771U (zh) 一种抗腐蚀及保温复合材料深海柔性管
CN218670981U (zh) 可盘卷管材
US11592125B2 (en) Pipe body cathodic protection
CN202901571U (zh) 可盘绕式增强塑料复合管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914349

Country of ref document: EP

Kind code of ref document: A1