WO2019196010A1 - 混合动力变速器和混合动力车辆 - Google Patents

混合动力变速器和混合动力车辆 Download PDF

Info

Publication number
WO2019196010A1
WO2019196010A1 PCT/CN2018/082516 CN2018082516W WO2019196010A1 WO 2019196010 A1 WO2019196010 A1 WO 2019196010A1 CN 2018082516 W CN2018082516 W CN 2018082516W WO 2019196010 A1 WO2019196010 A1 WO 2019196010A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
hybrid
input shaft
internal combustion
hybrid transmission
Prior art date
Application number
PCT/CN2018/082516
Other languages
English (en)
French (fr)
Inventor
李至浩
Original Assignee
舍弗勒技术股份两合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司 filed Critical 舍弗勒技术股份两合公司
Priority to CN201880086918.9A priority Critical patent/CN111615466A/zh
Priority to DE112018007450.1T priority patent/DE112018007450T5/de
Priority to PCT/CN2018/082516 priority patent/WO2019196010A1/zh
Publication of WO2019196010A1 publication Critical patent/WO2019196010A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid transmission for a hybrid vehicle including a first input shaft, a second input shaft, an output shaft, and a planetary gear mechanism including a sun gear, a carrier, and a ring gear, wherein The input shaft is connected to the planet carrier in a rotationally fixed manner, the second input shaft is connected to the sun gear in a rotationally fixed manner, and the output shaft is connected to the ring gear in a rotationally fixed manner. Further, the present invention relates to a hybrid vehicle including the above hybrid transmission.
  • both electric machines are provided in connection with a hybrid transmission, and the internal combustion engine is coupled to the hybrid transmission via a hydraulic clutch, whereby the hybrid transmission is capable of implementing a plurality of operating modes.
  • both traction motors and internal combustion engines can only provide a single gear, which is not sufficient to optimize the operating point of the motor or internal combustion engine.
  • the hydraulic clutch is engaged or disengaged depending on the condition of the internal combustion engine. For example, in highway driving, the internal combustion engine is more efficient and the vehicle speed is higher. At this time, the hydraulic clutch is engaged, the internal combustion engine outputs torque, and the traction motor only operates as a generator and cannot output torque; while in urban driving, the internal combustion engine is very inefficient.
  • the vehicle speed is also low, the hydraulic clutch is disconnected, and the traction motor only outputs torque. Therefore, the low speed performance of the hybrid drive system, especially the gradeability, is not ideal.
  • the traction motor has a limited traction torque, an additional rear wheel drive is usually required, so the hybrid drive system is very costly.
  • the technical problem to be solved by the present invention is to provide a hybrid transmission for a hybrid vehicle that enables the hybrid vehicle to achieve both power performance and fuel economy in various driving situations.
  • a hybrid transmission for a hybrid vehicle including a first input shaft, a second input shaft, an output shaft, and a planetary gear mechanism including a sun gear a carrier and a ring gear, wherein the first input shaft is coupled to the planet carrier in a rotationally fixed manner, the second input shaft is coupled to the sun gear in a rotationally fixed manner, and the output shaft is coupled to the ring gear in a rotationally fixed manner, wherein the hybrid transmission further includes a clutch device.
  • the clutch device has a first side and a second side that can be engaged with each other and disconnected from each other, and the first side and the second side are respectively connected to the carrier and the ring gear in a rotationally fixed manner, or are respectively connected to the sun gear and the ring gear, or They are connected to the sun gear and the planet carrier in a twist-proof manner.
  • the first side of the clutch device When the first side and the second side are respectively connected to the carrier and the ring gear in a rotationally fixed manner, the first side of the clutch device is connected in a rotationally fixed manner between the first input shaft and the planet carrier and the second side and the ring gear are resistant
  • the twisting connection is made, if the clutch device is engaged, the anti-torsion connection between the carrier and the ring gear is realized, so that the carrier and the ring gear rotate at the same rotation speed, and according to the characteristics of the planetary gear mechanism, the sun gear and the carrier are further made. Rotate at the same speed as the ring gear.
  • the clutch device if the clutch device is turned off, the planetary gear mechanism of the hybrid transmission operates according to its own operating principle.
  • the torsional connection of the sun gear and the ring gear is achieved such that the sun gear and the ring gear rotate at the same rotational speed.
  • the torsional connection of the sun gear and the planet carrier is achieved such that the sun gear and the planet carrier rotate at the same rotational speed. Therefore, with the clutch device according to the present invention, more gears can be realized to meet the needs of various driving situations.
  • the first input shaft is connected to the internal combustion engine and the second input shaft is connected to the integrated starter generator.
  • the first input shaft can also be connected to the integrated starter generator and the second input shaft can be connected to the internal combustion engine.
  • the hybrid transmission according to the present invention has various ways of being connected to the hybrid drive, and thus can be flexibly arranged according to the specific conditions of the hybrid vehicle.
  • the ring gear is arranged to be connected to the output shaft via a gear and the gear is connected to the output shaft in a rotationally fixed manner. Thereby, the torque of the planetary gear mechanism via the hybrid transmission is transmitted to the output shaft.
  • the output shaft is arranged in connection with the traction motor.
  • the traction motor provides additional power to the drive wheels, improves the vehicle's dynamic performance, and can be combined with internal combustion engines, integrated starter generators, and clutches to enable multiple modes of operation for a variety of hybrid vehicles.
  • the output shaft of the traction motor is rotationally coupled to the other gear and the other gear meshes with the aforementioned gear that is rotationally coupled to the output shaft of the hybrid transmission.
  • the clutch device is provided as a dog clutch or synchronizer. This makes it possible to achieve cost-effective realization of the sun gear and the planet carrier, or the sun gear and the ring gear, or the engagement and disconnection between the planet carrier and the ring gear.
  • the above technical problem is also solved by a hybrid vehicle including the hybrid transmission having the above features.
  • the following functions can be provided according to different states of the internal combustion engine, the integrated starter engine, the traction motor, and the clutch:
  • the efficiency of the hybrid drive system can be optimized, in particular the operating point of the internal combustion engine can be optimized, so that the hybrid vehicle has good fuel economy, starting and low speed driving in accordance with the invention Among them, the dynamic performance and the efficiency of the drive system are improved.
  • the mode in which the internal combustion engine is directly driven can be employed, so that no additional power is required to adjust the operating point of the internal combustion engine, and therefore, the system efficiency and fuel economy of the hybrid vehicle are optimized.
  • the invention is schematically illustrated below by means of the figures.
  • the figure is:
  • FIG. 1 is a schematic view of a hybrid drive system having a hybrid transmission in accordance with a first preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram of a power transmission of a pure electric drive mode and an equivalent lever diagram of a planetary gear mechanism of the hybrid transmission according to FIG.
  • FIG. 3 is a schematic diagram of a power transmission of the first internal combustion engine starting mode of the hybrid transmission of FIG. 1 and an equivalent lever diagram of the planetary gear mechanism
  • FIG. 4 is a schematic diagram of a power transmission of the second internal combustion engine starting mode of the hybrid transmission of FIG. 1 and an equivalent lever diagram of the planetary gear mechanism
  • FIG. 5 is a schematic diagram of a power transmission of a first hybrid drive mode and an equivalent lever diagram of a planetary gear mechanism of the hybrid transmission of FIG.
  • FIG. 6 is a schematic diagram of a power transmission of a second hybrid drive mode and an equivalent lever diagram of a planetary gear mechanism of the hybrid transmission of FIG.
  • FIG. 7 is a schematic diagram of a power transmission of a third hybrid drive mode of the hybrid transmission of FIG. 1,
  • Figure 8 is a schematic diagram of a power transmission of a fourth hybrid drive mode of the hybrid transmission of Figure 1;
  • FIG. 9 is a schematic diagram of a power transmission of a pure internal combustion engine driving mode of the hybrid transmission according to FIG.
  • FIG. 10 is a schematic diagram of a power transmission diagram of a regenerative charging mode and an equivalent lever diagram of a planetary gear mechanism according to the hybrid transmission of FIG.
  • FIG. 11 is a schematic diagram of a power transmission of a standard charging mode of the hybrid transmission of FIG. 1 and an equivalent lever diagram of the planetary gear mechanism,
  • Figure 12 is a schematic illustration of a hybrid drive system having a hybrid transmission in accordance with a second preferred embodiment of the present invention
  • Figure 13 is a schematic illustration of a hybrid drive system having a hybrid transmission in accordance with a third preferred embodiment of the present invention.
  • Figure 14 is a schematic view of a variant according to a first preferred embodiment
  • Figure 15 is a schematic view of a modification according to a second preferred embodiment
  • Figure 16 is a schematic view of a modification according to a third preferred embodiment.
  • Fig. 17 is a schematic view showing a further modification according to the first preferred embodiment.
  • R represents the ring gear of the planetary gear mechanism
  • C represents the planet carrier of the planetary gear mechanism
  • S represents the sun gear of the planetary gear mechanism
  • n TM is the ring gear R on the side of the traction motor TM
  • the rotational speed, n ISG is the rotational speed of the integrated starter engine ISG, and n ICE is the rotational speed of the internal combustion engine ICE.
  • the hybrid drive system comprises two separate electric machines, an integrated starter generator ISG and a traction motor TM, an internal combustion engine ICE and a hybrid transmission according to the first preferred embodiment.
  • the hybrid transmission has a planetary gear mechanism and a clutch K1.
  • the planetary gear mechanism comprises a planet carrier C, a sun gear S and a ring gear R, wherein the planet carrier C and the ring gear R can each be connected to the first side and the second side of the clutch K1 in a rotationally fixed manner.
  • the planet carrier C is connected to the internal combustion engine ICE via a dual mass flywheel via a first input shaft 1 of the hybrid transmission;
  • the sun gear S is connected to the integrated starter engine ISG by means of a hybrid transmission second transmission shaft 2 .
  • the ring gear R meshes with a gear Z32 that is torsionally disposed on the transmission output shaft 3, thereby constituting an output shaft of the hybrid transmission.
  • the traction motor TM is also connected to the output shaft 3 via a pair of meshing gears Z33-Z32, wherein the gear Z33 is arranged in a rotationally fixed manner on the traction motor shaft.
  • the output shaft 3 can be connected to the wheel via a differential.
  • the different operating states of the internal combustion engine ICE, the integrated starting engine ISG, the traction motor TM, and the clutch K1 can provide the following modes of operation:
  • a first internal combustion engine starting mode in which the internal combustion engine starting is performed in a stopped state of the vehicle.
  • the traction motor TM does not work, the clutch K1 is opened, and the torque of the integrated start engine ISG is transmitted to the first input shaft 1 of the transmission through the sun gear S and the carrier C in sequence, thereby The internal combustion engine ICE is started in a state where the vehicle is stopped.
  • a second internal combustion engine starting mode in which the starting of the internal combustion engine is performed while the vehicle is running.
  • the clutch K1 is disconnected, the traction motor TM and the integrated starter engine ISG are working, and the torque of the traction motor TM drives the transmission output shaft 3 through the gear pair Z33-Z32, thereby driving the wheel to rotate, integrating
  • the torque of the starter engine ISG is transmitted to the first input shaft 1 of the transmission through the sun gear S and the carrier C in order, thereby starting the internal combustion engine ICE during the running of the vehicle.
  • the traction motor rotates at a speed of n TM
  • the clutch K1 is disconnected, the torque of the traction motor TM drives the transmission output shaft 3 through the gear pair Z33-Z32, and the torque of the internal combustion engine ICE passes through the dual mass flywheel, the carrier C, and the ring gear in turn.
  • the R and the gear Z32 are also transmitted to the transmission output shaft 3, thereby jointly driving the wheel, and the integrated starter engine ISG is used as a generator to convert the mechanical energy (torque) transmitted from the internal combustion engine ICE via the carrier C and the sun gear S into electric energy, and is stored. In the battery.
  • n ISG - (1 + p) (n TM - n ICE ), where p is the gear ratio between the ring gear R and the sun gear S.
  • the clutch K1 is disconnected, and the torque of the traction motor TM drives the transmission output shaft 3 through the gear pair Z33-Z32.
  • the torque of the internal combustion engine ICE passes through the dual mass flywheel, the carrier C, and the ring gear R in turn.
  • the gear Z32 is also transmitted to the transmission output shaft 3, and the torque of the integrated starter engine ISG also transmits the transmission input shaft 3 via the sun gear S, the carrier C, the ring gear R and the gear Z32, thereby collectively driving the wheel to rotate.
  • the clutch K1 is engaged, and the torque of the internal combustion engine ICE is sequentially transmitted to the transmission output shaft 3 through the dual mass flywheel, the ring gear R and the gear Z32, thereby driving the wheel to rotate, and at the same time, if the vehicle travels, it is not required to be generated by the internal combustion engine ICE.
  • All power, integrated starter engine ISG can also be used as a generator to convert the excess kinetic energy of the internal combustion engine ICE transmitted through the carrier C and the sun gear S into electrical energy, which is stored in the battery and thus charged.
  • This mode of anti-torque connection of the internal combustion engine ICE to the ring gear R and direct output of power to the transmission output shaft helps to reduce system power loss during highway travel.
  • the clutch K1 is engaged, and the torque of the internal combustion engine ICE is sequentially transmitted to the transmission output shaft 3 via the dual mass flywheel, the ring gear R and the gear Z32, and the integrated starter engine ISG is used as the traction motor, and its torque passes through the sun gear S.
  • the carrier C, the ring gear R and the gear Z32 also transmit the transmission input shaft 3, and if necessary, the traction motor TM also outputs torque, which is attached to the output shaft 3 through the gear pair Z33-Z32, thereby collectively driving the wheel to rotate. .
  • This connects the internal combustion engine ICE to the ring gear R in a rotationally fixed manner and outputs power directly to the transmission output shaft, helping to reduce system power losses particularly during highway travel.
  • Standard charging mode as shown in the power transmission diagram above Figure 11, the traction motor TM does not work, the integrated starting engine ISG acts as a generator, converting the kinetic energy of the internal combustion engine ICE transmitted via the carrier C and the sun gear S into The electrical energy is stored in the battery and is thus charged by the standard.
  • Figure 12 illustrates a hybrid drive system having a hybrid transmission in accordance with a second preferred embodiment of the present invention.
  • the carrier C is also rotationally coupled to the first input shaft 1 of the hybrid transmission, the first input shaft 1 of the hybrid transmission being coupled to the internal combustion engine ICE via a dual mass flywheel;
  • the sun gear S is also The second input shaft 2 of the hybrid transmission is connected, the second input shaft 2 of the hybrid transmission is connected to the integrated starter engine ISG;
  • the ring gear R is also meshed with the gear Z32 which is rotationally fixed on the transmission output shaft 3, thereby forming The output shaft of the hybrid transmission.
  • the difference is that the sun gear S and the ring gear R can be connected to each other or disconnected from each other by the clutch K1, whereby the rotational speeds of n TM , n ICE and n ISG are the same when the clutch K1 is engaged.
  • Figure 13 shows a hybrid drive system having a hybrid transmission in accordance with a third preferred embodiment of the present invention.
  • the carrier C is also rotationally coupled to the first input shaft 1 of the hybrid transmission, the first input shaft 1 of the hybrid transmission being coupled to the internal combustion engine ICE via a dual mass flywheel;
  • the sun gear S is also The second input shaft 2 of the hybrid transmission is connected, the second input shaft 2 of the hybrid transmission is connected to the integrated starter engine ISG;
  • the ring gear R is also meshed with the gear Z32 which is rotationally fixed on the transmission output shaft 3, thereby forming The output shaft of the hybrid transmission.
  • the sun gear S and the carrier C can be connected to each other or disconnected from each other by the clutch K1, whereby the rotational speeds of n TM , n ICE and n ISG are the same when the clutch K1 is engaged.
  • the clutch K1 can connect or disconnect the carrier C and the sun gear S in a rotationally fixed manner.
  • the ring gear R is still meshed as an output shaft with a gear Z32 that is rotationally fixed on the transmission output shaft 3, and differs from FIGS. 1, 12 and 13 in the hybrid transmission.
  • the first input shaft 1 is coupled to the integrated starter engine ISG; the second input shaft 2 of the hybrid transmission is coupled to the internal combustion engine ICE via a dual mass flywheel.
  • the hybrid transmission according to the present invention can be rationally arranged in accordance with the specific situation of the hybrid vehicle.
  • the dog clutch can be able to connect the ring gear R and the carrier C in a rotationally fixed manner, and can be integrated according to the internal combustion engine ICE, the integrated starting engine ISG, the traction motor TM, the clutch (the different states of the K1 are realized by the traction motor pure Electric drive, internal combustion engine starting in vehicle stop state, internal combustion engine starting during vehicle running, hybrid drive with ECVT mode, hybrid drive driven directly by internal combustion engine, pure internal combustion engine drive, regenerative charging and standard charging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种混合动力变速器和混合动力车辆,所述混合动力变速器包括第一输入轴(1)、第二输入轴(2)、输出轴(3)和行星齿轮机构,所述行星齿轮机构包括太阳轮(S)、行星架(C)和齿圈(R),其中,所述第一输入轴(1)与所述行星架(C)抗扭连接,所述第二输入轴(2)与所述太阳轮(S)抗扭连接,所述输出轴(3)与所述齿圈(R)抗扭连接,其中所述混合动力变速器还包括离合装置(K1),所述离合装置(K1)具有能相互接合和相互断开的第一侧和第二侧,所述第一侧和第二侧分别与所述行星架(C)和所述齿圈(R)抗扭连接,或者分别与所述太阳轮(S)和所述齿圈(R)抗扭连接,或者分别与所述太阳轮(S)和所述行星架(C)抗扭连接。

Description

混合动力变速器和混合动力车辆 技术领域
本发明涉及一种用于混合动力车辆的混合动力变速器,包括第一输入轴、第二输入轴、输出轴和行星齿轮机构,行星齿轮机构包括太阳轮、行星架和齿圈,其中,第一输入轴与行星架抗扭连接,第二输入轴与太阳轮抗扭连接,输出轴与所述齿圈抗扭连接。此外,本发明还涉及一种包括上述混合动力变速器的混合动力车辆。
背景技术
在一种当前的插电式混合动力驱动系统中,设置两个电机与混合动力变速器连接,并且内燃机通过液压式离合器与混合动力变速器连接,由此,该混合动力变速器能够实现多种工作模式。但是,牵引电机和内燃机均只能提供单一的挡位,不足以优化电机或内燃机的工作点。液压式离合器根据内燃机的情况接合或断开。例如在公路行驶中,内燃机效率较高、车速较高,此时液压式离合器接合,内燃机输出扭矩,而牵引电机仅作为发电机运行,不能输出扭矩;而在城市行驶中,内燃机效率非常低,车速也较低,液压式离合器断开,仅靠牵引电机输出扭矩。因此,混合驱动系统的低速性能,尤其是爬坡性能并不理想。此外,由于牵引电机的牵引扭矩有限,所以通常需要额外的后轮驱动装置,因此混合动力驱动系统成本非常高。
发明内容
本发明所要解决的技术问题是,提供一种用于混合动力车辆的混合动力变速器,使得混合动力车辆在各种行驶状况中均能够兼顾动力性能和燃油经济性。
根据本发明,该技术问题通过一种用于混合动力车辆的混合动力变速 器解决,该混合动力变速器包括第一输入轴、第二输入轴、输出轴和行星齿轮机构,该行星齿轮机构包括太阳轮、行星架和齿圈,其中,第一输入轴与行星架抗扭连接,第二输入轴与太阳轮抗扭连接,输出轴与齿圈抗扭连接,其中,混合动力变速器还包括离合装置,离合装置具有能相互接合和相互断开的第一侧和第二侧,第一侧和第二侧分别与行星架和齿圈抗扭连接,或者分别与太阳轮和齿圈抗扭连接,或者分别与太阳轮和行星架抗扭连接。
当第一侧和第二侧分别与行星架和齿圈抗扭连接时,即离合装置的第一侧被抗扭地连接在第一输入轴和行星架之间且第二侧与齿圈抗扭连接时,若接合离合装置,则实现行星架和齿圈之间的抗扭连接,使得行星架和齿圈以相同的转速转动,根据行星齿轮机构的特性,还进一步使得太阳轮、行星架和齿圈以相同的转速转动。在本实施方式中,若断开离合装置,混合动力变速器的行星齿轮机构则根据其自身的工作原理运行。同理,在第一侧和第二侧分别与太阳轮和齿圈抗扭连接的实施方式中,实现太阳轮和齿圈的抗扭连接,使得太阳轮和齿圈以相同转速转动。并且在第一侧和第二侧分别与太阳轮和行星架抗扭连接的实施方式中,实现太阳轮和行星架的抗扭连接,使得太阳轮和行星架以相同转速转动。因此,利用根据本发明的离合装置能够实现更多的挡位,满足各行驶状况的需求。
在一种优选的实施方式中,设置第一输入轴与内燃机连接,第二输入轴与集成式起动发电机相连。备选地,也能将第一输入轴与集成式起动发电机相连,并且将第二输入轴与内燃机连接。由此,根据本发明的混合动力变速器具有多种与混合动力驱动装置连接的方式,因此能够根据混合动力车辆的具体情况灵活地布置。
在另外的优选实施方式中,设置齿圈通过齿轮与输出轴连接,且齿轮与输出轴抗扭连接。由此,经由混合动力变速器的行星齿轮机构的扭矩被传递至输出轴。
在另外的优选实施方式中,设置输出轴与牵引电机相连。通过牵引电机,能够向驱动轮提供额外的动力,提高车辆的动力性能,并且通过与内燃机、集成式起动发电机和离合装置的配合混,能够实现多种混合动力车 辆的多种工作模式。有利地,牵引电机的输出轴与另一齿轮抗扭连接,且另一齿轮与上述和混合动力变速器的输出轴抗扭连接的齿轮啮合。由此,能够通过合理地设置齿轮参数,得到所需的传动比,改善车辆动力性能。
在另外的优选实施方式中,设置离合装置是犬牙式离合器或同步器。由此能够节省成本地实现太阳轮和行星架,或着太阳轮和齿圈,或者行星架和齿圈之间的接合与断开。
根据本发明,上述技术问题还通过一种用种混合动力车辆解决,该混合动力车辆包括具有上述特征的混合动力变速器。
由此,根据本发明,能够根据内燃机、集成式起动发动机、牵引电机和离合器的不同状态提供以下功能:
●通过牵引电机的纯电动驱动
●在车辆停止状态下的内燃机起动
●在车辆行驶过程中的内燃机启动
●具有ECVT模式的混合驱动
●通过内燃机直接驱动的混合驱动
●纯内燃机驱动
●回收充电
●标准充电
特别是在具有ECVT模式的混合驱动模式中,能够优化混合动力驱动系统的效率,特别能优化内燃机的工作点,因此混合动力车辆具有良好的燃油经济性,在根据本发明的车辆起步和低速行驶中,其动力性能和驱动系统的效率均有提升。在高速行驶时,能够采用内燃机直接驱动的模式,因此无需损失额外的功率来调整内燃机的工作点,因此,混合动力车辆的系统效率和燃油经济性得到优化。
附图说明
下面通过附图来示意性地阐述本发明。附图为:
图1是具有根据本发明的第一优选实施方式的混合动力变速器的混合驱动系统的示意图,
图2是根据图1的混合动力变速器的纯电动驱动模式的动力传动示意图和行星齿轮机构的等效杠杆图,
图3是根据图1的混合动力变速器的第一内燃机起动模式的动力传动示意图和行星齿轮机构的等效杠杆图,
图4是根据图1的混合动力变速器的第二内燃机起动模式的动力传动示意图和行星齿轮机构的等效杠杆图,
图5是根据图1的混合动力变速器的第一混合驱动模式的动力传动示意图和行星齿轮机构的等效杠杆图,
图6是根据图1的混合动力变速器的第二混合驱动模式的动力传动示意图和行星齿轮机构的等效杠杆图,
图7是根据图1的混合动力变速器的第三混合驱动模式的动力传动示意图,
图8是根据图1的混合动力变速器的第四混合驱动模式的动力传动示意图,
图9是根据图1的混合动力变速器的纯内燃机驱动模式的动力传动示意图,
图10是根据图1的混合动力变速器的回收充电模式的动力传动示意图和行星齿轮机构的等效杠杆图,
图11是根据图1的混合动力变速器的标准充电模式的动力传动示意图和行星齿轮机构的等效杠杆图,
图12是具有根据本发明的第二优选实施方式的混合动力变速器的混合驱动系统的示意图,
图13是具有根据本发明的第三优选实施方式的混合动力变速器的混合驱动系统的示意图,
图14是根据第一优选实施方式的变形方案的示意图,
图15是根据第二优选实施方式的变形方案的示意图,
图16是根据第三优选实施方式的变形方案的示意图,以及
图17是是根据第一优选实施方式的另外的变形方案的示意图。
在行星齿轮机构的等效杠杆图中,R代表行星齿轮机构的齿圈,C代 表行星齿轮机构的行星架,S代表行星齿轮机构的太阳轮,n TM是齿圈R在牵引电机TM侧的转速,n ISG是集成式起动发动机ISG的转速,n ICE是内燃机ICE的转速。
具体实施方式
图1示出了具有根据本发明第一优选实施方式的混合动力变速器的混合动力驱动系统。混合动力驱动系统包括两个独立的电机,即集成式起动发电机ISG和牵引电机TM,内燃机ICE和根据第一优选实施方式的混合动力变速器。该混合动力变速器具有一套行星齿轮机构和离合器K1。如图所示,行星齿轮机构包括行星架C、太阳轮S和齿圈R,其中,行星架C和齿圈R能够分别与离合器K1的第一侧和第二侧相互抗扭连接。此外,行星架C借助混合动力变速器的第一输入轴1通过双质量飞轮与内燃机ICE连接;太阳轮S借助混合动力变速器第二输轴2与集成式起动发动机ISG连接。
齿圈R与被抗扭安置在变速器输出轴3上的齿轮Z32啮合,由此构成混合动力变速器的输出轴。附加地,牵引电机TM通过一对啮合的齿轮Z33-Z32也连接到输出轴3,其中,齿轮Z33被抗扭地安置在牵引电机轴上。输出轴3能够通过差速器与车轮连接。
通过根据本优选实施方式的混合动力变速器,能够根据内燃机ICE,集成式起动发动机ISG,牵引电机TM,离合器K1的不同状态提供以下工作模式:
1)纯电动驱动模式,即只通过牵引电机TM驱动的模式,如图2上方的动力传动示意图所示,内燃机ICE和集成式起动发动机ISG均不工作,离合器K1断开,牵引电机TM作为唯一的动力源驱动车辆。牵引电机TM的扭矩经过齿轮对Z33-Z32带动变速器输出轴3,从而带动车轮转动。如图2下方的等效杠杆图所示,内燃机ICE转速为0,即n ICE=0,集成式起动发动机ISG的转速是n ISG=-p*n TM,其中,p是齿圈R和太阳轮S之间的传动比。
2)第一内燃机起动模式,其中,内燃机起动在车辆停止状态下进 行。如图3上方的动力传动示意图所示,牵引电机TM不工作,离合器K1断开,集成式起动发动机ISG的扭矩依次经过太阳轮S和行星架C传递到变速器第一输入轴1,由此在车辆停止的状态下起动内燃机ICE。如图3下方的等效杠杆图所示,牵引电机转速为0,即n TM=0,集成式起动发动机ISG带动内燃机ICE转动,n ISG=(1+p)*n ICE,其中,p是齿圈R和太阳轮S之间的传动比。
3)第二内燃机起动模式,其中,内燃机起动在车辆行驶过程中进行。如图4上方的动力传动示意图所示,离合器K1断开,牵引电机TM和集成式起动发动机ISG工作,牵引电机TM的扭矩通过齿轮对Z33-Z32带动变速器输出轴3,从而带动车轮转动,集成式起动发动机ISG的扭矩依次经过太阳轮S和行星架C传递到变速器第一输入轴1,由此在车辆行驶过程中起动内燃机ICE。如图4下方的等效杠杆图所示,牵引电机以n TM的转速转动,集成式起动发动机ISG带动内燃机ICE转动,n ICE=1/(1+p)*n ISG+n TM,其中,p是齿圈R和太阳轮S之间的传动比。
4)第一混合驱动模式,其中,该驱动模式具有ECVT功能,并且集成式起动发动机ISG作为发电机工作。如图5上方的动力传动示意图所示,离合器K1断开,牵引电机TM的扭矩通过齿轮对Z33-Z32带动变速器输出轴3,而内燃机ICE的扭矩依次经过双质量飞轮、行星架C、齿圈R和齿轮Z32也传递到变速器输出轴3,从而共同带动车轮转动,集成式起动发动机ISG作为发电机,将内燃机ICE经行星架C和太阳轮S传递来的机械能(扭矩)转换为电能,储存在蓄电池中。如图5下方的等效杠杆图所示,牵引电机TM和内燃机ICE分别以n TM和n ICE的转速转动,集成式起动发动机ISG反转,n ISG=-(1+p)(n TM-n ICE),其中,p是齿圈R和太阳轮S之间的传动比。
5)第二混合驱动模式,其中,该驱动模式具有ECVT功能,并且集成式起动发动机ISG作为牵引电机工作。如图6上方的动力传动示意图所示,离合器K1断开,牵引电机TM的扭矩通过齿轮对Z33-Z32带动变速器输出轴3,内燃机ICE的扭矩依次经过双质量飞轮、行星架C、齿圈R和齿轮Z32也传递到变速器输出轴3,集成式起动发动机ISG的扭矩经过 太阳轮S、行星架C、齿圈R和齿轮Z32同样传递变速器输入轴3,从而共同带动车轮转动。如图6下方的等效杠杆图所示,牵引电机TM、内燃机ICE和集成式起动发动机ISG分别以n TM、n ICE和n ISG的转速转动,其中,n ISG=-(1+p)(n TM-n ICE),其中,p是齿圈R和太阳轮S之间的传动比。
6)第三混合驱动模式,其中,通过内燃机直接驱动的混合驱动,并且并且集成式起动发动机ISG作为发电机工作。如图7所示,离合器K1接合,内燃机ICE的扭矩依次经过双质量飞轮、齿圈R和齿轮Z32传递到变速器输出轴3,从而带动车轮转动,同时,若车辆行驶不需要由内燃机ICE产生的全部动力,集成式起动发动机ISG还能作为发电机,将经行星架C和太阳轮S传递来的内燃机ICE多余的动能转换为电能,储存在蓄电池中,由此充电。这种将内燃机ICE与齿圈R抗扭连接并且直接向变速器输出轴输出动力的模式,有助于在高速公路行驶期间降低系统功率失利。
7)第四混合驱动模式,其中,通过内燃机直接驱动的混合驱动,并且集成式起动发动机ISG作为牵引电机工作。如图8所示,离合器K1接合,内燃机ICE的扭矩依次经过双质量飞轮、齿圈R和齿轮Z32传递到变速器输出轴3,同时,集成式起动发动机ISG作为牵引电机,其扭矩经过太阳轮S、行星架C、齿圈R和齿轮Z32同样传递变速器输入轴3,必要时,还能使得牵引电机TM也输出扭矩,通过齿轮对Z33-Z32附加到输出轴3上,从而共同地带动车轮转动。这样将内燃机ICE与齿圈R抗扭连接并且直接向变速器输出轴输出动力,有助于特别在高速公路行驶期间降低系统功率失利。
8)纯内燃机驱动模式,如图9所示,集成式起动发动机ISG和牵引电机TM不工作,离合器K1接合,内燃机ICE是唯一的动力来源,其扭矩依次经过双质量飞轮、齿圈R和齿轮Z32传递到变速器输出轴3,从而带动车轮。在纯内燃机驱动模式下,特别是在车速大于80km/h的公路行驶期间,由于离合器K1接合,n TM、n ICE和n ISG的转速相同。
9)回收充电模式,如图10上方的动力传动示意图所示,内燃机ICE和集成式起动发动机ISG均不工作,离合器K1断开,牵引电机TM以发 电机模式回收经过齿轮对Z32-Z33传递的车轮的制动动力,将机械能转变为电能。如图10下方的等效杠杆图所示,在回收充电期间,内燃机ICE转速为0,即n ICE=0,集成式起动发动机ISG的转速n ISG=-p*n TM,其中,p是齿圈R和太阳轮S之间的传动比。
10)标准充电模式,如图11上方的动力传动示意图所示,牵引电机TM不工作,集成式起动发动机ISG作为发电机,将经行星架C和太阳轮S传递来的内燃机ICE的动能转换为电能,储存在蓄电池中,由此标准充电。如图11下方的等效杠杆图所示,在标准充电期间,牵引电机转速为0,即n TM=0,内燃机ICE带动集成式起动发动机ISG转动,其转速关系通过n ISG=(1+p)*n ICE表示,其中,p是齿圈R和太阳轮S之间的传动比。
图12示出了具有根据本发明第二优选实施方式的混合动力变速器的混合动力驱动系统。与图1的优选实施方式类似,行星架C同样与混合动力变速器的第一输入轴1抗扭连接,混合动力变速器的第一输入轴1通过双质量飞轮与内燃机ICE连接;太阳轮S同样与混合动力变速器的第二输入轴2连接,混合动力变速器第二输入轴2与集成式起动发动机ISG连接;齿圈R同样与被抗扭安置在变速器输出轴3上的齿轮Z32啮合,由此构成混合动力变速器的输出轴。其不同之处在于,太阳轮S和齿圈R能够通过离合器K1相互连接或者相互断开,由此在接合离合器K1时,n TM、n ICE和n ISG的转速相同。
图13示出了具有根据本发明第三优选实施方式的混合动力变速器的混合动力驱动系统。与图1的优选实施方式类似,行星架C同样与混合动力变速器的第一输入轴1抗扭连接,混合动力变速器的第一输入轴1通过双质量飞轮与内燃机ICE连接;太阳轮S同样与混合动力变速器的第二输入轴2连接,混合动力变速器第二输入轴2与集成式起动发动机ISG连接;齿圈R同样与被抗扭安置在变速器输出轴3上的齿轮Z32啮合,由此构成混合动力变速器的输出轴。其不同之处在于,太阳轮S和行星架C能够通过离合器K1相互连接或相互断开,由此在接合离合器K1时,n TM、n ICE和n ISG的转速相同。
图14至图16分别示出根据第一优选实施方式、第二优选实施方式和第三优选实施方式的变形方案,其中,行星架C同样与混合动力变速器的第一输入轴1抗扭连接,太阳轮S同样与混合动力变速器的第二输入轴2连接,其中,离合器K1的连接方式分别对应于第一、第二和第三优选实施方式,即在图14的变形方案中,离合器K1能够将齿圈R和行星架C抗扭连接或断开,在图15的变形方案中,离合器K1能够将齿圈R和太阳轮S抗扭连接或断开,在图16的变形方案中,离合器K1能够将行星架C和太阳轮S抗扭连接或断开。在图14至图16中,齿圈R依然作为输出轴与被抗扭安置在变速器输出轴3上的齿轮Z32啮合,与图1、图12和图13的不同之处在于,混合动力变速器的第一输入轴1与集成式起动发动机ISG连接;混合动力变速器第二输入轴2通过双质量飞轮与内燃机ICE连接。由此,能够根据混合动力车辆的具体情况,合理布置根据本发明的混合动力变速器。
此外,为了节省成本,还能够将上述的离合器K1替换为同步器或犬牙离合器等其它离合装置。在图17中实例性地示出了设置有犬牙离合器的根据第一优选实施方式的混合动力变速器的变形方案。在这种情况下,犬牙离合器能够将能够将齿圈R和行星架C抗扭连接,并且能够根据内燃机ICE,集成式起动发动机ISG,牵引电机TM,离合器(K1的不同状态实现通过牵引电机纯电动驱动、在车辆停止状态下的内燃机起动、在车辆行驶过程中的内燃机起动、具有ECVT模式的混合驱动、通过内燃机直接驱动的混合驱动、纯内燃机驱动、回收充电和标准充电的功能。
虽然在上述说明中示例性地描述了可能的实施例,但是应该理解到,仍然通过所有已知的和此外技术人员容易想到的技术特征和实施方式的组合存在大量实施例的变化。此外还应该理解到,示例性的实施方式仅仅作为一个例子,这种实施例绝不以任何形式限制本发明的保护范围、应用和构造。通过前述说明更多地是向技术人员提供一种用于转化至少一个示例性实施方式的技术指导,其中,只要不脱离权利要求书的保护范围,便可以进行各种改变,尤其是关于所述部件的功能和结构方面的改变。

Claims (8)

  1. 一种用于混合动力车辆的混合动力变速器,包括第一输入轴(1)、第二输入轴(2)、输出轴(3)和行星齿轮机构,所述行星齿轮机构包括太阳轮(S)、行星架(C)和齿圈(R),其中,所述第一输入轴(1)与所述行星架(C)抗扭连接,所述第二输入轴(2)与所述太阳轮(S)抗扭连接,所述输出轴(3)与所述齿圈(R)抗扭连接,
    其特征在于,所述混合动力变速器还包括离合装置(K1),所述离合装置(K1)具有能相互接合和相互断开的第一侧和第二侧,
    所述第一侧和第二侧分别与所述行星架(C)和所述齿圈(R)抗扭连接,或者
    分别与所述太阳轮(S)和所述齿圈(R)抗扭连接,或者
    分别与所述太阳轮(S)和所述行星架(C)抗扭连接。
  2. 根据权利要求1所述的混合动力变速器,其特征在于,所述第一输入轴(1)与内燃机(ICE)连接,所述第二输入轴(2)与集成式起动发电机(ISG)相连。
  3. 根据权利要求1所述的混合动力变速器,其特征在于,所述第一输入轴(1)与集成式起动发电机(ISG)相连,所述第二输入轴(2)与内燃机(ICE)连接。
  4. 根据权利要求1所述的混合动力变速器,其特征在于,所述齿圈(R)通过齿轮(Z32)与所述输出轴(3)连接,且所述齿轮(Z32)与所述输出轴(3)抗扭连接。
  5. 根据权利要求1所述的混合动力变速器,其特征在于,所述输出轴(3)与牵引电机(TM)连接。
  6. 根据权利要求4所述的混合动力变速器,其特征在于,所述牵引电机(TM)的输出轴与另一齿轮(Z33)抗扭连接,且所述另一齿轮(Z33)与所述齿轮(Z32)啮合。
  7. 根据权利要求1所述的混合动力变速器,其特征在于,所述离合装置是犬牙式离合器或同步器。
  8. 一种混合动力车辆,包括根据权利要求1-7中任一项所述的混合动力变速器。
PCT/CN2018/082516 2018-04-10 2018-04-10 混合动力变速器和混合动力车辆 WO2019196010A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880086918.9A CN111615466A (zh) 2018-04-10 2018-04-10 混合动力变速器和混合动力车辆
DE112018007450.1T DE112018007450T5 (de) 2018-04-10 2018-04-10 Hybridgetriebe und Hybridfahrzeug
PCT/CN2018/082516 WO2019196010A1 (zh) 2018-04-10 2018-04-10 混合动力变速器和混合动力车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082516 WO2019196010A1 (zh) 2018-04-10 2018-04-10 混合动力变速器和混合动力车辆

Publications (1)

Publication Number Publication Date
WO2019196010A1 true WO2019196010A1 (zh) 2019-10-17

Family

ID=68163082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082516 WO2019196010A1 (zh) 2018-04-10 2018-04-10 混合动力变速器和混合动力车辆

Country Status (3)

Country Link
CN (1) CN111615466A (zh)
DE (1) DE112018007450T5 (zh)
WO (1) WO2019196010A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111516482A (zh) * 2020-02-24 2020-08-11 绿传(北京)汽车科技股份有限公司 一种动力耦合传动装置、混合动力车辆及其操作方法
CN114475565A (zh) * 2022-03-30 2022-05-13 东风汽车集团股份有限公司 混合动力车辆及起步控制方法、分配系统和车载控制器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247969A (zh) * 2005-06-24 2008-08-20 丰田自动车株式会社 车辆驱动装置
DE102010036510A1 (de) * 2010-07-20 2012-01-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Parallelhybrid-Antriebsstrang und Verfahren zum Betreiben eines Parallelhybrid-Antriebsstrangs
CN102651586A (zh) * 2011-02-24 2012-08-29 杨泰和 结合可操控游星轮组的双动型电机
US20130017916A1 (en) * 2011-07-11 2013-01-17 Toyota Jidosha Kabushiki Kaisha Vehicle drive device
US20150099605A1 (en) * 2013-10-07 2015-04-09 Hyundai Motor Company Transmission system of hybrid electric vehicle
US20160047439A1 (en) * 2010-12-10 2016-02-18 Means Industries, Inc. High-efficiency drive system including a transmission for a hybrid electric vehicle
US20160116046A1 (en) * 2014-10-23 2016-04-28 Jaguar Land Rover Limited Transfer case
CN206718950U (zh) * 2017-05-16 2017-12-08 福建万润新能源科技有限公司 一种单电机深度混合驱动系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059940A (zh) * 2010-12-07 2011-05-18 重庆长安汽车股份有限公司 一种汽车油电全混合动力系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247969A (zh) * 2005-06-24 2008-08-20 丰田自动车株式会社 车辆驱动装置
DE102010036510A1 (de) * 2010-07-20 2012-01-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Parallelhybrid-Antriebsstrang und Verfahren zum Betreiben eines Parallelhybrid-Antriebsstrangs
US20160047439A1 (en) * 2010-12-10 2016-02-18 Means Industries, Inc. High-efficiency drive system including a transmission for a hybrid electric vehicle
CN102651586A (zh) * 2011-02-24 2012-08-29 杨泰和 结合可操控游星轮组的双动型电机
US20130017916A1 (en) * 2011-07-11 2013-01-17 Toyota Jidosha Kabushiki Kaisha Vehicle drive device
US20150099605A1 (en) * 2013-10-07 2015-04-09 Hyundai Motor Company Transmission system of hybrid electric vehicle
US20160116046A1 (en) * 2014-10-23 2016-04-28 Jaguar Land Rover Limited Transfer case
CN206718950U (zh) * 2017-05-16 2017-12-08 福建万润新能源科技有限公司 一种单电机深度混合驱动系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111516482A (zh) * 2020-02-24 2020-08-11 绿传(北京)汽车科技股份有限公司 一种动力耦合传动装置、混合动力车辆及其操作方法
CN114475565A (zh) * 2022-03-30 2022-05-13 东风汽车集团股份有限公司 混合动力车辆及起步控制方法、分配系统和车载控制器
CN114475565B (zh) * 2022-03-30 2024-03-29 东风汽车集团股份有限公司 混合动力车辆及起步控制方法、分配系统和车载控制器

Also Published As

Publication number Publication date
DE112018007450T5 (de) 2021-01-21
CN111615466A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN109130830B (zh) 用于混合动力车辆的变速器及动力系统
US20170282702A1 (en) Hybrid transmission having fixed gear shift stage
CN111655524B (zh) 混合动力变速器和车辆
JP4355444B2 (ja) ハイブリッド電気自動車用動力伝達装置
US10017040B2 (en) Drive unit for a hybrid vehicle
US11391348B2 (en) Transmission and power system for use in hybrid vehicle
EP3057818B1 (en) Electrically variable transmission
US11186161B2 (en) Hybrid transmission and hybrid electric vehicle
CN111251865B (zh) 混合动力驱动系统及车辆
CN107599823B (zh) 差动多模混合动力车辆驱动系统
WO2020125465A1 (zh) 双电机双行星排多模式机电耦合传动装置
CN111655525A (zh) 混合动力变速器和车辆
CN108944411A (zh) 混合动力模块和车辆
CN110576730A (zh) 混合动力变速器和车辆
WO2020093301A1 (zh) 混合动力模块和车辆
WO2020197463A1 (en) A powertrain for a vehicle, an all-electric vehicle, and a method of controlling a powertrain
CN108944412A (zh) 用于车辆的混合动力模块
CN111746262A (zh) 混合动力变速器
CN111098695B (zh) 混合动力驱动系统及车辆
WO2019196010A1 (zh) 混合动力变速器和混合动力车辆
CN111376700B (zh) 混合动力耦合系统及车辆
CN110816250B (zh) 混合动力驱动系统及混合动力汽车
CN212737732U (zh) 一种混合动力耦合系统和混合动力汽车
KR102336402B1 (ko) 하이브리드 차량용 파워트레인
CN113799592A (zh) 一种混合动力耦合系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914624

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18914624

Country of ref document: EP

Kind code of ref document: A1