WO2019194559A1 - 구동력 전달 구조체 및 이를 이용한 절단 생검기구 - Google Patents

구동력 전달 구조체 및 이를 이용한 절단 생검기구 Download PDF

Info

Publication number
WO2019194559A1
WO2019194559A1 PCT/KR2019/003915 KR2019003915W WO2019194559A1 WO 2019194559 A1 WO2019194559 A1 WO 2019194559A1 KR 2019003915 W KR2019003915 W KR 2019003915W WO 2019194559 A1 WO2019194559 A1 WO 2019194559A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
elastic portion
block
support
elastic part
Prior art date
Application number
PCT/KR2019/003915
Other languages
English (en)
French (fr)
Inventor
고형진
Original Assignee
주식회사 플라워메디칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180038742A external-priority patent/KR102134468B1/ko
Priority claimed from KR1020180038896A external-priority patent/KR102134469B1/ko
Application filed by 주식회사 플라워메디칼 filed Critical 주식회사 플라워메디칼
Publication of WO2019194559A1 publication Critical patent/WO2019194559A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/02Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction
    • F16F3/04Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction composed only of wound springs

Definitions

  • One embodiment of the present invention relates to a driving force transmission structure and a cutting biopsy device using the same.
  • machines, apparatuses, devices, devices, etc. are used in daily life and industrial sites.
  • a driving member for providing a driving force is required for the movement of the movement member.
  • the driving force may be provided in various forms, for example, an external power source such as electricity or electronics may be used.
  • the driving force When the driving force is transmitted, the driving force may be provided without the external power source or together with the external power source, for example, a relatively small device or a convenient device. There is a limit in delivering precise and efficient driving force while improving space utilization in transmitting such driving force.
  • a method of injecting an apparatus capable of sampling biological tissues into biological tissues and collecting tissues to be sampled from among biological tissues is used.
  • This type includes aspiration biopsy and excisional biopsy.
  • cutting biopsies can be obtained by cutting a tissue by the shape of a needle to obtain histological form intact and to increase diagnostic accuracy.
  • a cleaved biopsy while minimizing the diameter of the needle inserted into the affected part, minimizing repetitive invasive behavior, and allowing precise procedures for a small sample, it is being used more recently than aspiration biopsy.
  • the cutting biopsy type specimen apparatus described in Korean Patent Nos. 10-1463867 and 10-1551311, etc. has a dense coat structure or a hard material during the advancement of the inner ear by firing the inner ear in the cutting mechanism and the outer ear. It may be unable to penetrate or bend the travertine tissue, etc. This may cause the nodules to be pushed backward or the inner ear can not reach the exact tissue area to be collected, it has been pointed out that the procedure is very difficult.
  • the technology for improving accuracy such as using an ultrasonic guide equipment to accurately reach the needle set to the above-described tissue to be collected has been developed a lot.
  • the operator generally changes the shape of holding the biopsy device or is loaded with both hands. Therefore, there is a possibility that the targeting of the ultrasonic guide may be disturbed, especially when multiple repetitions are required.
  • the present invention can provide a driving force transmission structure that can improve space utilization and deliver a precise and efficient driving force.
  • An object of the present invention is to provide a cutting biopsy device that can be easily carried out by minimizing the change of the phage form with only one hand holding the cutting biopsy device.
  • Another object of the present invention is to provide a cutting biopsy mechanism capable of newly presenting a relationship of movement between firing the needle and the outer shell to further improve the accuracy of tissue collection and further increase the safety at the time of collection.
  • Another object of the present invention is to provide a cutting biopsy device that can easily recover the tissue collected by the biopsy device.
  • Another object of the present invention is to provide a cutting biopsy mechanism that can significantly reduce the number of components to further reduce the cost of production.
  • An embodiment of the present invention includes a first elastic portion having a length in a first direction and including a tension spring shape and a second elastic portion having a length in the first direction and including a compression spring shape, wherein the first elastic portion The portion is connected to the second elastic portion, and applying a force to the first elastic portion or the second elastic portion is formed to provide a driving force in one direction parallel to the first direction and one direction opposite thereto Start the structure.
  • by applying a force to the first elastic portion may be formed to compress the second elastic portion when the first elastic portion is tensioned.
  • the present invention when applying a force to the first elastic portion or the second elastic portion, between the first elastic portion, the second elastic portion or between the first elastic portion and the second elastic portion It may further include a fixing point formed to correspond to the region.
  • the first elastic portion or the second elastic portion after applying a force to the first elastic portion or the second elastic portion, it may be formed so as to maintain or release the fixing point when removing the force.
  • the present invention includes at least an intermediate support formed to correspond to a region including a region that is connected to the first elastic portion and the second elastic portion, the first elastic portion through the movement of the intermediate support A tensile force may be applied or a compressive force may be provided to the second elastic portion.
  • At least an area of the first elastic part includes a first support part formed at an end opposite to the area connected to the second elastic part, and the first support part includes a motion of the first elastic part. According to the movement or may be formed to limit the movement of the first elastic portion.
  • At least an area of the second elastic part includes a second support part formed at an end opposite to the area connected to the first elastic part, and the second support part includes the movement of the second elastic part. According to the movement or may be formed to limit the movement of the second elastic portion.
  • the cutting biopsy device in order to achieve the above object, extending in the axial direction, the hollow portion extending in the axial direction therein And a housing having at least one opening in communication with the hollow portion, an inner needle having a tissue collecting groove at one end thereof, and an outer shell provided on a pipe to accommodate the inner needle, and a needle set partially positioned at the hollow portion. And a master block connected to one end of the outer shell and penetrated by the inner needle, positioned in the hollow portion so as to be movable in the axial direction, and provided through the inner needle so as to be movable in the axial direction.
  • a hub block located in the hollow portion and a first portion coupled to the hub block to penetrate the hub block, and protruding toward one side of the hub block; A second portion coupled to the master block and protruding to the other side of the hub block, a spring coupled to the housing, a first support unit selectively coupled to the master block at least at the loading position, and the hub at least at the loading position A second support unit selectively coupled to the block, a loading unit for moving the hub block to the loading position, and a firing unit provided to selectively release engagement of at least the first support unit and the master block; Can be.
  • the first portion and the second portion may have different spring pitches.
  • the first portion is provided to apply a first elastic force with respect to the master block
  • the second portion is provided to apply a second elastic force in a direction different from the first elastic force with respect to the hub block. Can be.
  • the first portion and the second portion may be provided to have different diameters.
  • the hub block includes a first through hole through which the first part passes, and a second through hole through which the second part passes, and includes a fixed end positioned between the first through hole and the second through hole. It may further include.
  • the driving force transmission structure according to the present invention can provide a driving force transmission structure that can improve space utilization and deliver precise and efficient driving force.
  • the user manipulates the loading unit in such a way as to apply a holding force in a gripped state, and is pushed backwards through it so that the restraint and the outer cover in the loading state are such that a restoring force is applied to the first and second springs.
  • the outer shell After entering the inside of the body, the outer shell is retracted from the acupuncture and has a reciprocating motion structure to advance, thereby minimizing the change of the gripping form with only one hand holding the biopsy device to perform one or multiple loadings easily.
  • the user when using the ultrasonic guide, the user can carry out the loading and firing with only one hand while holding the ultrasonic guide, the targeting is maintained accurately has the effect of increasing the accuracy of the procedure.
  • the loading can be easily performed by minimizing the change of the phage form with only one hand holding the cutting biopsy mechanism.
  • the present invention newly suggests a moving relationship between firing the needle and the outer shell to further improve the accuracy of tissue collection and further increase the safety at the time of collection.
  • the present invention can easily recover the collected tissue, and can be performed only by the hand holding the device, it is possible to increase the freedom of the other hand.
  • the rotation angle of the first handle can be briefly interrupted, thereby making it easy to load with one hand.
  • the loading preliminary operation can also be performed with one hand, thereby increasing the freedom of the other hand.
  • the connector is immediately placed in the loadable state so that the loading can be performed immediately.
  • FIG. 1 is a front view schematically showing a driving force transmission structure according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of K of FIG. 1.
  • FIG. 3 is an enlarged view of L of FIG. 1.
  • 4 to 7 are views for explaining the operation of the driving force transmission structure of FIG.
  • FIG. 8 is a front view schematically showing a driving force transmission structure according to another embodiment of the present invention.
  • 9 to 11 are views for explaining the operation of the driving force transmission structure of FIG.
  • FIG. 12 is a view schematically showing a driving force transmission structure according to another embodiment of the present invention.
  • FIG. 13 is a view schematically showing a driving force transmission structure according to another embodiment of the present invention.
  • FIG. 14 is a view schematically showing a driving force transmission structure according to another embodiment of the present invention.
  • 15 to 17 are views for explaining the operation of the driving force transmission structure of FIG.
  • FIG. 18 illustrates a cut biopsy instrument according to one embodiment.
  • FIG. 19 is a partial cross-sectional view of the cutting biopsy instrument of FIG. 18.
  • FIG. 19 is a partial cross-sectional view of the cutting biopsy instrument of FIG. 18.
  • 20 is a cross-sectional view of a housing of a cutting biopsy instrument in accordance with one embodiment.
  • 21 is a diagram for explaining a structure of a needle set according to one embodiment
  • FIG. 22 illustrates a cut biopsy instrument according to one embodiment.
  • FIG. 23 is an exploded view showing a master block of the cut biopsy instrument according to one embodiment.
  • FIG. 24 illustrates a hub block of a cut biopsy instrument according to one embodiment.
  • 25 illustrates an arrangement of a spring, master block, and hub block in accordance with one embodiment.
  • FIG. 26 illustrates a coupling state of a spring and a hub block according to an embodiment.
  • FIG. 27 illustrates an operating step of a cutting biopsy instrument according to one embodiment.
  • FIG. 28 is a perspective view for schematically illustrating a hub block according to a modification of the present invention.
  • the x-axis, y-axis and z-axis are not limited to three axes on the Cartesian coordinate system, but may be interpreted in a broad sense including the same.
  • the x-axis, y-axis, and z-axis may be orthogonal to each other, but may refer to different directions that are not orthogonal to each other.
  • the driving force transmission structure 100 may include a first elastic portion 110 and a second elastic portion 120.
  • the first elastic part 110 may be a spring having a structure having elasticity and having a coil shape, for example.
  • the first elastic part 110 may have a length extending in one direction.
  • it may have a length extending in the first direction (direction parallel to D1 and D2 in FIG. 1).
  • the first elastic part 110 may include a tension spring having a resistance to tension when the first elastic part 110 is tensioned in the first direction.
  • the first elastic part 110 may include an end 111, a connection part 112, and a main body part 113.
  • connection part 112 is an area connected to the second elastic part 120, and the end 111 may include an edge in a direction opposite to the connection part 112 of the area of the first elastic part 110.
  • the main body 113 may be a region disposed between the end 111 and the connecting portion 112, and may be a main region in which the deformation of the first elastic portion 110 occurs.
  • the first elastic part 110 may be an area where tension is mainly generated when the first elastic part 110 is tensioned.
  • the body portion 113 of the first elastic portion 110 may have a smaller width than the second elastic portion 120 to be described later.
  • the first elastic portion ( 110 and the second elastic portion 120 can be easily controlled to drive independently of each other.
  • the driving force transmission structure 100 may be accommodated in a housing (not shown) having an inner space corresponding to the width of the first elastic portion 110 and the second elastic portion 120.
  • the first elastic part 110 may form the connection part 112 to have a width larger than that of the main body part 113.
  • the connection part 112 is formed. It is possible to reduce or prevent deformation in.
  • the first elastic part 110 may have an end portion 111 having a width greater than that of the body portion 113. Through this, various members (not shown) may be connected to the end 111. Also as an additional example, it may include an end middle portion 114 having a width of a size between the width of the body portion 113 and the width of the end portion 111 between the body portion 113 and the end portion 111. .
  • the second elastic part 120 may be a spring having a structure having elasticity and having a coil shape, for example.
  • the second elastic part 120 may have a length extending in one direction.
  • it may have a length extending in the first direction (direction parallel to D1 and D2 in FIG. 1).
  • the second elastic part 120 may include a form of a compression spring having a resistance to compression when compressed in the first direction.
  • the first elastic part 110 and the second elastic part 120 may be formed to be connected to each other.
  • the first elastic part 110 and the second elastic part 120 may be connected in the first direction.
  • the first elastic part 110 and the second elastic part 120 may be integrally formed.
  • it may include a configuration directly connected between the first elastic portion 110 and the second elastic portion 120 without forming a connection member, a fastening member, or the like.
  • the first elastic portion 110 and the second elastic portion 120 may be a structure formed integrally, not separately bonded after being manufactured.
  • the driving force transmission structure 100 may be in the form of a spring, a structure having both a tension spring and a compression spring.
  • FIG. 4 to 7 are views for explaining the operation of the driving force transmission structure of FIG.
  • the first elastic portion 110 is stretched in the direction D1 to show the first elastic portion 110 ′ in the tensioned state.
  • the first elastic portion 110 ′ is tensioned based on the fixing point ST, and the second elastic portion 120 may not be deformed or moved.
  • the fixing point ST may be formed in the connection region of the first elastic portion 110 and the second elastic portion 120, and may correspond to, for example, the connection portion 112 of the first elastic portion 110. .
  • the fixed point ST may be maintained during removal to transfer the force while the end 111 of the first elastic portion 110 ′ moves in the D2 direction.
  • the first elastic part 110 and the second elastic part 120 may be separately applied based on the fixing point ST of FIG. 4, by applying a compressive force to the second elastic part 120.
  • the first elastic portion 110 may be maintained without movement or deformation, and thus the independent first elastic portion 110 and the second elastic portion 120 may be maintained. Control may also be possible.
  • the first elastic part 110 is tensioned after the fixing point ST is positioned differently from FIG. 4.
  • the first elastic part 110 is tensioned in the direction D2 to show the first elastic part 110 ′ in the tensioned state.
  • the fixing point ST is an end portion of the region corresponding to the end portion 111 of the first elastic portion 110 and the region opposite to the region connected to the first elastic portion 110 among the regions of the second elastic portion 120. Each may correspond to an area.
  • the first elastic part 110 ′ may be tensioned based on the fixing point ST.
  • the second elastic part 120 ′ may be in a compressed state.
  • the fixing point ST corresponding to the end 111 of the first elastic portion 110 ′ is released and the first elastic portion 110 ′ is removed.
  • the end portion 111 of the first elastic portion 110 ′ may move in the D2 direction to transmit a force.
  • the second elastic portion 120 ' An end portion of 120 ' may transmit force while moving in the D2 direction.
  • the compressive force is applied to the second elastic portion 120 'in the compressed state and then removed, for example, the compression force is removed while the fixing point ST corresponding to the end of the second elastic portion 120' is maintained.
  • the compressed second elastic part 120 ′ may extend in the D1 direction to transmit a force.
  • the first elastic part 110 is stretched in the direction D2 to show the first elastic part 110 ′ in the tensioned state.
  • the first elastic portion 110 ′ is tensioned based on the fixing point ST, and the second elastic portion 120 may not be deformed or moved.
  • the fixing point ST may correspond to the end 111 of the first elastic part 110.
  • the second elastic part 120 is compressed after the fixing point ST is positioned.
  • the second elastic part 120 is compressed in the D1 direction to show the second elastic part 120 ′ in a compressed state.
  • the fixing point ST may correspond to an area including a boundary line between the first elastic part 110 and the second elastic part 120.
  • the second elastic part 120 ′ may be tensioned based on the fixing point ST, and the first elastic part 110 may be in a deformed or non-moving state.
  • the second elastic portion 120 ′ When the compressive force is applied to the second elastic portion 120 ′ in the compressed state and then removed, for example, when the fixing point ST is released, the second elastic portion 120 ′ may transfer the force while moving in the D2 direction. .
  • the second elastic portion 120 ′ when the compressive force is applied to the second elastic portion 120 'in the compressed state and then removed, for example, the second elastic portion is fixed when the region corresponding to the end of the second elastic portion 120' is fixed and the compressive force is removed. 120 ′ may move in the direction D1 and thus the first elastic part 110 may also move in the direction D1.
  • the driving force transmission structure of the present embodiment may include at least a first elastic portion and a second elastic portion, the first elastic portion may include a tension spring form, and the second elastic portion may include a compression spring form.
  • the first elastic portion is connected to the second elastic portion, and after the fixed point is selectively positioned in an area such as a connection region between the first elastic portion and the second elastic portion, an end portion of the first elastic portion, or an end portion of the second elastic portion,
  • the tension force may be applied to the first elastic part and the second elastic part, and the fixed point may be selectively positioned when the tension force and the compression force are removed to provide various driving forces in various directions, that is, D1 or D2.
  • Various mechanical motion members, in particular drive members, which require driving, can be produced.
  • the compressive force can be exerted on the first elastic portion and the second elastic portion through one movement, and then through the placement and release of the fixation point in the D direction and without providing additional tensile and compressive forces.
  • the driving force in the D2 direction can be provided, whereby a driving member can be manufactured that provides precise and efficient movement.
  • a driving member can be manufactured that provides precise and efficient movement.
  • it can be used to provide driving force for members requiring movement, such as various tools, toys, laboratory equipment, measuring equipment, and the like.
  • it can be easily used to the device that requires the operation on the human body, such as injection equipment, biopsy equipment, surgical equipment can easily secure the safety and precision necessary for operation on the human body.
  • the space in which the driving force transmission structure is disposed can be narrowly applied through a single spring structure in which the first elastic portion and the second elastic portion are directly connected, for example, integrally connected, thereby increasing space utilization.
  • the driving force transmission structure 200 includes a first elastic part 210, a second elastic part 220, a first support part 260, a second support part 250, and an intermediate support part 270. It may include.
  • the first elastic portion 210 may be a spring having a structure having elasticity and having a coil shape, for example.
  • the first elastic portion 210 may have a length extending in one direction.
  • it may have a length extending in the first direction (direction parallel to D1 and D2 of FIG. 8).
  • the first elastic part 210 may include a tension spring form having a resistance to tension when tensioning in the first direction.
  • the first elastic portion 210 may include an end portion, a connecting portion, and a main body portion. The description thereof is the same as described above in the structure of FIGS. 1 to 3 and will be omitted.
  • the first elastic portion (a center of the connection point between the first elastic portion 210 and the second elastic portion 220) 210 and the second elastic part 220 can be easily controlled to drive independently of each other.
  • the driving force transmission structure 200 may be accommodated in a housing (not shown) having an inner space corresponding to the width of the first elastic portion 210 and the second elastic portion 220.
  • the second elastic part 220 may be a spring having a structure having elasticity and having a coil shape, for example.
  • the second elastic part 220 may have a length extending in one direction.
  • it may have a length extending in the first direction (direction parallel to D1 and D2 of FIG. 8).
  • the second elastic part 220 may include a compression spring form having a resistance to compression when compressed in the first direction.
  • the first elastic part 210 and the second elastic part 220 may be formed to be connected to each other.
  • the first elastic part 210 and the second elastic part 220 may be connected in the first direction.
  • the first elastic part 210 and the second elastic part 220 may be integrally formed.
  • it may include a configuration directly connected between the first elastic portion 210 and the second elastic portion 220 without forming a connection member, a fastening member, or the like.
  • the first elastic part 210 and the second elastic part 220 may be formed integrally with each other instead of being manufactured and bonded separately.
  • the driving force transmission structure 200 may be in the form of a spring, a structure having both a tension spring and a compression spring.
  • the first support part 260 may be connected to the first elastic part 210.
  • the first support part 260 may be formed to move while supporting the first elastic part 210.
  • a fixed point may selectively correspond.
  • the first support 260 may move in the D1 direction or the D2 direction, and the first support 260 may provide various movements through the movement of the first support 260.
  • the second support part 250 may be connected to the second elastic part 220.
  • the second support part 250 may be fixed while supporting the second elastic part 220.
  • the second support part 250 may correspond to a fixed point. Through this, the second elastic part 220 may move in the direction D1 after the compressive force is applied.
  • the intermediate support part 270 may be connected to the connection area between the first elastic part 210 and the second elastic part 220. In some embodiments, the intermediate support part 270 may be connected to the second elastic part 220 in the area of the first elastic part 210 and the first elastic part 210 in the area of the second elastic part 220. It may be arranged to overlap with the region to be connected.
  • the intermediate support part 270 may be formed to move while supporting the first elastic part 210 and the second elastic part 220.
  • a force may be applied to the first elastic part 210 or the second elastic part 220 through the movement of the intermediate support part 270, and a fixed point may selectively correspond to the intermediate support part 270 after the force is applied. It may be.
  • FIG. 9 to 11 are views for explaining the operation of the driving force transmission structure of FIG. 9 to 11, the second support part 250 may be fixed so as not to move.
  • the first elastic part 210 is tensioned after the fixing point ST is positioned to correspond to the first support part 260, that is, after fixing the first support part 260. have.
  • the intermediate support 270 may move in the D2 direction through the movement of the intermediate support 270.
  • first elastic portion 210 connected to the intermediate support 270 is shown as a first elastic portion 210 ′ in tension in the D2 direction and connected to the intermediate support 270.
  • 220 is shown as the second elastic portion 220 ′ compressed in the D2 direction.
  • the second support part 250 is fixed, and the first support part 260 is fixed through the first fixing point ST1.
  • the second fixing point ST2 may correspond to the intermediate support 270 to maintain this state.
  • the first fixing point ST1 and the second fixing point ST2 may have various shapes and limit the movement of the first support part 260 and the second support part 250. In addition, the fixing can be released as described later.
  • the first fixing point ST1 and the second fixing point ST2 may be formed in a lever form so as to be fixed by pressing it once and then pressing it again to release it.
  • the first fixing point ST1 and the second fixing point ST2 may be formed to be fixed when the protrusion is pushed in, and to release when the protrusion is pulled out.
  • the first fixing point ST1 when the first fixing point ST1 is released and the second fixing point ST2 is maintained to remove the tensile force from the first elastic part 210 ′ in the tensioned state, the first elastic part ST1 is released.
  • 210 ' has made a back reaction (movement in the direction of arrow R).
  • the first elastic portion 210 is shown in the original state by removing the tensile force applied to the first elastic portion 210 ', and thus, the first support portion through the rear reaction motion, the movement in the direction D2 on the drawing.
  • 260 has moved.
  • the second fixing point ST2 is held, and the second support part 250 is also fixed, so that the second elastic part 220 'is kept in a compressed state.
  • first elastic portion 210 and the first support portion 260 connected to the front rebound movement the movement in the D1 direction on the drawing is shown.
  • the second fixing point ST2 is held, and the second support part 250 is also fixed, so that the second elastic part 220 'is kept in a compressed state.
  • the second support part 250 is fixed and the first support part 260 sequentially swings back.
  • this is for convenience of description and may include that the first support part 260 is fixed and the second support part 250 sequentially rebounds.
  • the intermediate support part 270 is first moved in the D2 direction, and then the fixing point corresponding to the second support part 250 is released to allow the second support part 250 to move in the D2 direction.
  • the second elastic part 220 and the second support part 250 connected to the intermediate support part 270 by sequentially releasing the fixing point corresponding to the intermediate support part 270 so that the intermediate support part 270 rebounds in the direction D1 are also provided. Recoil movement can be made in the direction D1.
  • the driving force transmission structure of the present embodiment may include at least a first elastic portion and a second elastic portion, the first elastic portion may include a tension spring form, and the second elastic portion may include a compression spring form.
  • the first elastic part may be connected to the second elastic part, and may include a first support part connected to the first elastic part, a second support part connected to the second elastic part, and an intermediate support part therebetween. One movement of the intermediate support may apply a tensile force to the first elastic portion and a compressive force to the second elastic portion.
  • the fixed points corresponding to the first support and the intermediate support can be selectively released to allow the intermediate support and the second support to move, for example, to enable the first support to perform the back reaction and the forward reaction.
  • Using the driving force transmission structure of the present embodiment can provide a variety of driving force in a variety of directions, that is, D1 or D2 direction, it is possible to manufacture a variety of mechanical motion members, in particular a drive member that requires driving. For example, it is possible to easily implement a first shot through the back reaction, the second idea through the front reaction and the like.
  • the driving force transmission structure 300 of the present embodiment may include a housing 301, a first elastic portion 310, and a second elastic portion 320.
  • the first elastic portion 310 may be a spring having a structure having elasticity and having a coil shape, for example.
  • the first elastic part 310 may have a length extending in one direction.
  • it may have a length extending in the first direction.
  • the first elastic part 310 may include a tension spring form having resistance to tension when the first elastic part 310 is tensioned in the first direction. Since the first elastic part 310 is the same as the structure described with reference to FIGS. 1 to 3, the detailed description thereof will be omitted.
  • the second elastic part 320 may be a spring having a structure having elasticity and having a coil shape, for example.
  • the second elastic part 320 may have a length extending in one direction.
  • it may have a length extending in the first direction.
  • the second elastic part 320 may include a compression spring form having a resistance to compression when compressed in the first direction. Since the second elastic part 320 is the same as the structure described with reference to FIGS. 1 to 3, the detailed description thereof will be omitted.
  • the first elastic portion 310 and the second elastic portion 320 may be formed to be connected to each other.
  • the first elastic part 310 and the second elastic part 320 may be connected in the first direction.
  • the first elastic part 310 and the second elastic part 320 may be integrally formed.
  • it may include a configuration directly connected between the first elastic portion 310 and the second elastic portion 320 without forming a connection member, a fastening member, or the like.
  • the first elastic part 310 and the second elastic part 320 may be formed in one body instead of separately manufactured and bonded to each other.
  • the driving force transmission structure 300 may be a structure having both a tension spring and a compression spring in the form of a spring.
  • the housing 301 may be formed to have an accommodation space therein, and the first elastic portion 310 and the second elastic portion 320 may be disposed in the accommodation space.
  • one region of the first elastic portion 310 or the second elastic portion 320 may be fixed to one region of the housing 301, for example, a wall inside the housing 301.
  • an end portion of the second elastic portion 320 may be fixed to an inner wall of the housing 301.
  • the second support part 250 may be fixed to the inner wall of the housing 301, or the inner wall of the housing 301 may replace the second support part 250.
  • the accommodation space inside the housing 301 may have a region having a different width to have a width corresponding to the width of the first elastic portion 310 and a width corresponding to the width of the second elastic portion 320. It can be formed to have. Through this, the receiving space inside the housing 301 may implement a function as a fixed point.
  • the driving force transmission structure 400 of the present embodiment includes a housing 401, a first elastic portion 410, a second elastic portion 420, a first support portion 460, a second support portion 450, and Intermediate support 470 may be included.
  • the first elastic portion 410 may be a spring having a structure having elasticity and having a coil shape, for example.
  • the first elastic portion 410 may have a length extending in one direction.
  • it may have a length extending in the first direction.
  • the first elastic part 410 may include a tension spring form having a resistance to tension when the first elastic part 410 is tensioned in the first direction. Since the first elastic portion 410 is the same as described above in the structure of FIGS. 1 to 3, more detailed description thereof will be omitted.
  • the second elastic portion 420 may be a spring having a structure having elasticity and having a coil shape, for example.
  • the second elastic portion 420 may have a length extending in one direction.
  • it may have a length extending in the first direction.
  • the second elastic part 420 may include a compression spring form having a resistance to compression when compressed in the first direction. Since the second elastic part 420 is the same as the structure described with reference to FIGS. 1 to 3, detailed description thereof will be omitted.
  • the first elastic portion 410 and the second elastic portion 420 may be formed to be connected to each other.
  • the first elastic portion 410 and the second elastic portion 420 may be connected in the first direction.
  • the first elastic portion 410 and the second elastic portion 420 may be integrally formed.
  • it may include a configuration directly connected between the first elastic portion 410 and the second elastic portion 420 without forming a connection member, a fastening member, or the like.
  • the first elastic part 410 and the second elastic part 420 may have a structure formed integrally with each other instead of being manufactured and bonded separately.
  • the driving force transmission structure 400 is in the form of a spring, and may have a structure having both a tension spring and a compression spring.
  • the first support part 460 may be connected to the first elastic part 410.
  • the first support part 460 may be formed to move while supporting the first elastic part 410.
  • a fixed point may selectively correspond.
  • the first support part 460 may move in the D1 direction or the D2 direction, and the first support part 460 may provide various movements through the movement of the first support part 460.
  • the second support part 450 may be connected to the second elastic part 420.
  • the second support part 450 may be fixed while supporting the second elastic part 420.
  • the second support portion 450 may correspond to a fixed point. Through this, the second elastic portion 420 may move in the direction D1 after the compressive force is applied.
  • the intermediate support part 470 may be connected to a connection area between the first elastic part 410 and the second elastic part 420. In some embodiments, the intermediate support part 470 may be connected to the second elastic part 420 of the area of the first elastic part 410 and the first elastic part 410 of the area of the second elastic part 420. It may be arranged to overlap with the region to be connected.
  • the intermediate support part 470 may be formed to move while supporting the first elastic part 410 and the second elastic part 420.
  • a force may be applied to the first elastic portion 410 or the second elastic portion 420 through the movement of the intermediate support 470, and the fixed point may selectively correspond to the intermediate support 470 after the force is applied. It may be.
  • the movement of the intermediate support 470 and the fixed point may allow the first support 460 to freely move to D1 or D2.
  • the housing 401 may be formed to have an accommodation space therein, and the first elastic portion 410 and the second elastic portion 420 may be disposed in the accommodation space.
  • one region of the first elastic portion 410 or the second elastic portion 420 may be fixed to one region of the housing 401, for example, a wall inside the housing 401.
  • the second support part 450 may be fixed to the inner wall of the housing 401.
  • an inner wall of the housing 401 may replace the second support 450.
  • the first fixing point ST1 and the second fixing point ST2 may correspond to the first support part 460 and the intermediate support part 470, respectively, and are fixed to the first support part 460 and the intermediate support part 470. And release to proceed.
  • the first fixing point ST1 and the second fixing point ST2 may have various shapes and control the movement of the first support part 460 and the intermediate support part 470.
  • the first fixing point ST1 and the second fixing point ST2 may be formed in a lever form so as to be fixed by pressing it once and then pressing it again to release it.
  • the first fixing point ST1 and the second fixing point ST2 may be formed to be fixed when the protrusion is pushed in, and to release when the protrusion is pulled out.
  • the first fixing point ST1 and the second fixing point ST2 may be connected to the wall of the housing 401, and as an additional example, at least one region may be exposed to the outside of the housing 401.
  • the first fixed point ST1 and the second fixed point ST2 may be easily controlled by controlling the exposed area.
  • FIG. 14 is a view schematically showing a driving force transmission structure according to another embodiment of the present invention.
  • 15 to 17 are views for explaining the operation of the driving force transmission structure of FIG.
  • the driving force transmission structure 500 of the present embodiment includes a first elastic part 510, a second elastic part 520, a first support part 560, a second support part 550, and an intermediate support part 570. It may include.
  • the first elastic portion 510 may be a spring having a structure having elasticity and having a coil shape, for example.
  • the first elastic portion 510 may have a length extending in one direction.
  • it may have a length extending in the first direction (direction parallel to D1 and D2 of FIG. 14).
  • the first elastic portion 510 may include a tension spring having a resistance to tension when the first elastic portion 510 is tensioned in the first direction.
  • the first elastic portion 510 may include an end portion, a connecting portion, and a main body portion. The description thereof is the same as described above in the structure of FIGS. 1 to 3 and will be omitted.
  • the first elastic portion (the center of the connection between the first elastic portion 510 and the second elastic portion 520)
  • the 510 and the second elastic part 520 may be easily controlled to be driven independently of each other.
  • the driving force transmission structure 500 may be accommodated in a housing (not shown) having an inner space corresponding to the width of the first elastic portion 510 and the second elastic portion 520.
  • the second elastic portion 520 may be a spring having a structure having elasticity and having a coil shape, for example.
  • the second elastic portion 520 may have a length extending in one direction.
  • it may have a length extending in the first direction (direction parallel to D1 and D2 of FIG. 8).
  • the second elastic portion 520 may include a compression spring form having a resistance to compression when compressed in the first direction.
  • the first elastic part 510 and the second elastic part 520 may be formed to be connected to each other.
  • the first elastic part 510 and the second elastic part 520 may be connected in the first direction.
  • the first elastic part 510 and the second elastic part 520 may be integrally formed.
  • it may include a configuration directly connected between the first elastic portion 510 and the second elastic portion 520 without separately forming a connecting member, a fastening member, or the like.
  • the first elastic part 510 and the second elastic part 520 may be formed in a unitary structure instead of separately manufactured and bonded.
  • the driving force transmission structure 500 may be in the form of a spring, having a tension spring and a compression spring.
  • the first support part 560 may be connected to the first elastic part 510.
  • the first support part 560 may be formed to move while supporting the first elastic part 510.
  • a fixed point may selectively correspond.
  • the first support part 560 may move in the D1 direction or the D2 direction, and the first support part 560 may provide various movements through the movement of the first support part 560.
  • the second support part 550 may be connected to the second elastic part 520. In addition, when a force is applied to the second elastic portion 520, a fixed point may selectively correspond. In some embodiments, the second support 550 may move in the D1 direction or the D2 direction, and the second support 550 may provide various movements through the movement of the second support 550.
  • the intermediate support part 570 may be connected to the connection area between the first elastic part 510 and the second elastic part 520. In some embodiments, the intermediate support part 570 may be connected to the second elastic part 520 in the area of the first elastic part 510 and the first elastic part 510 in the area of the second elastic part 520. It may be arranged to overlap with the region to be connected.
  • the intermediate support part 570 may be formed to move while supporting the first elastic part 510 and the second elastic part 520.
  • a force may be applied to the first elastic portion 510 or the second elastic portion 520 through the movement of the intermediate support 570, and the fixed point may selectively correspond to the intermediate support 570 after the force is applied. It may be.
  • the movement of the intermediate support 570 and the fixing point may allow the first support 560 to freely move to D1 or D2.
  • 15 to 17 are views for explaining the operation of the driving force transmission structure of FIG.
  • the first elastic part 510 may be tensioned. It is shown.
  • the intermediate support 570 may move in the direction D2 through the movement of the intermediate support 570.
  • the first elastic portion 510 connected to the intermediate support 570 is illustrated as the first elastic portion 510 ′ stretched in the D2 direction, and is connected to the intermediate support 570.
  • 520 is illustrated as a second elastic portion 520 ′ compressed in the D2 direction.
  • the intermediate support 570 is fixed to D2 after fixing the second support 550.
  • the second elastic portion 520 ′ is illustrated in a state in which the second elastic portion 520 is compressed and compressed in a direction.
  • a fixation point may correspond to the intermediate support 570 to maintain this state.
  • the first fixing point ST1 and the second fixing point ST2 may have various shapes and limit the movement of the first support part 560 and the second support part 550. In addition, the fixing can be released as described later.
  • FIG. 17 for example, when removing the tensile force applied to the first elastic portion 510 ′ in the tensioned state or removing the compressive force applied to the second elastic portion 520 ′ in the compressed state, for example, It is shown that the first elastic portion 510 'is subjected to the forward reaction movement (movement in the direction of arrow F) or the second elastic portion 520' performs the forward reaction movement by releasing the support 570.
  • FIG. As a specific example, the tensile force applied to the first elastic portion 510 'is removed to show the first elastic portion 510 in its original state, and the intermediate support portion 570 is also moved through the movement in the direction D1 on the drawing. Is shown. In this case, the second fixing point ST2 may be maintained and the second support part 550 may be fixed.
  • the force in the direction D1 may be transmitted to the first support part 560 due to the forward recoil movement (movement in the direction of the arrow F) of the first elastic part 510 and the second elastic part 520.
  • the driving force may be transmitted to a driving member (not shown) connected to the first support part 560.
  • the first support part 560 when a force in the D1 direction is transmitted to the first support part 560 due to the front recoil movement (movement in the arrow F direction) of the first elastic part 510 and the second elastic part 520, When the first fixing point ST1 is released or the front rebound motion (movement in the direction of arrow F) of the first elastic part 510 and the second elastic part 520 is applied, the force in the D1 direction is applied to the first fixing point ( When it is large enough to release ST1), the first support part 560 may move in the direction D1, and the first support part 560 may perform a function of directly providing a driving force.
  • the second fixing point ST2 is released differently from FIG. 16. That is, when the compression force is removed from the second elastic portion 520 'in the compressed state by releasing the second fixing point ST2, the second elastic portion 520' performs the back reaction (movement in the direction of the arrow R). One is shown. As a concrete example, the compressive force applied to the second elastic portion 520 'is removed to show the second elastic portion 520 in its original state, and accordingly, the second support portion is provided through the rear reaction movement, the movement in the direction D2 on the drawing. It is shown that 550 has moved. In this case, the third fixing point SD3 may correspond to the intermediate support part 570 to limit the movement of the intermediate support part 570.
  • the driving force transmission structure of the present embodiment may include at least a first elastic portion and a second elastic portion, the first elastic portion may include a tension spring form, and the second elastic portion may include a compression spring form.
  • the first elastic part may be connected to the second elastic part, and may include a first support part connected to the first elastic part, a second support part connected to the second elastic part, and an intermediate support part therebetween. Through the movement of the intermediate support, a tensile force may be applied to the first elastic part and a compressive force may be applied to the second elastic part.
  • the fixing points corresponding to the first support part and the intermediate support part can be selectively released to allow the intermediate support part and the second support part to move, for example, to allow the first support part to perform the back reaction motion and the forward reaction motion.
  • FIG. 18 is a side view of the cut biopsy instrument according to one embodiment, and FIG. 19 is a partial cross-sectional view of FIG. 18.
  • a cutting biopsy device may include a housing 10, a needle set 200, a master block 30, a hub block 40, a spring 50, and a loading unit ( 500 and launch unit 180.
  • the housing 10 is formed to extend in the axial direction D, and may include a hollow portion 11 extending in the axial direction D therein.
  • the hollow part 11 may form a substantially enclosed space except that the needle set 200 to be described later penetrates.
  • the housing 10 has a first opening 110 in communication with the hollow portion 11, through which the hub block 40 and the loading unit 500 can be connected as described below. Can be.
  • a hole 12 is formed at an end portion of the housing 10 in the first direction D1, and the hole 12 communicates with the hollow part 11, and as described later, through the hole 12.
  • the needle set 200 may pass through.
  • the partition wall 102 is provided adjacent to the hole 12, and the hollow part 11 is divided by the partition wall 102 to have the partition 103.
  • a hole aligned with the hole 12 is formed in the partition wall 102 so that the needle set 200 passes through the partition wall 102.
  • the support block 15 to be described later is coupled to the compartment 103.
  • the housing 10 may include a second opening 111.
  • the second opening 111 may be formed at a position opposite to the first opening 110 and may communicate with the hollow part 11. .
  • the firing unit 180 may be located in the housing 10, which may be located adjacent to the second opening 111.
  • the firing unit 180 may include a first firing unit 182 and a second firing unit 183.
  • the first firing unit 182 may have elasticity in a direction substantially perpendicular to the axial direction D, that is, a vertical direction of the drawing, and may extend from the housing 10 to be spaced apart from the second opening 111.
  • the second firing unit 183 extends from the end of the first firing unit 182 toward the second opening 111, and selectively opens the second opening 111 as the user presses the firing unit 180. It may be provided to face.
  • the launch unit 180 may be integrally formed with the housing 10.
  • the first firing unit 182 may be formed so that one end is connected to the housing 10.
  • the first handle 51 of the loading unit 500 which will be described later, may be hinged to the hinge shaft 17.
  • the hinge axis 17 is located at the end of the first direction D1 of the housing 10, but the present invention is not necessarily limited thereto, and the hinge axis 17 is a housing. It may be located at the end of the second direction (D2) of (10).
  • the locking unit 161 which will be described later, may be positioned at an end portion of the housing 10 in the first direction D1.
  • a protrusion 101 protruding outward may be further formed at an approximately center portion of the housing 10, and the protrusion 101 may include the first handle 51 of the loading unit 500 as described below. It may be provided to press the first handle 51 when in close contact with the first handle 51 to have an elastic force in a direction away from the housing 10.
  • one end of the housing 10 may further include a support block 15 adjacent to the hole 12.
  • the compartment 103 may be disposed. All can be combined to fill.
  • the support block 15 is provided to communicate with the hole 12, and the support guide 151 may extend further to the tip of the first direction D1 to penetrate the hole 12.
  • the support guide 151 is formed in the shape of a pipe and arranged coaxially with the hole 12, thereby communicating with the hole 12.
  • a needle set 200 to be described later may be installed to penetrate the support block 15. Therefore, at least the support guide 151 of the support block 15 may allow the inner diameter to have a size corresponding to the outer diameter of the needle set 200.
  • the support block 15 may minimize the shaking of the needle set 200 during the procedure, thereby helping to accurately collect the target site.
  • the needle set 200 having various sizes is used.
  • the embodiment of the present invention supports the support block 15 to correspond to the size of the needle set 200, in particular, a support guide.
  • the inner diameter of the 151 By forming the inner diameter of the 151 to correspond to the outer diameter of the needle set 200, it is possible to change the support block 15 when changing the needle set has the advantage that the needle set 200 of various sizes can be used as a single mechanism In addition, the setting of the needle set 200 can be simplified.
  • the housing 10 may further include a first stopper 171.
  • the first stopper 171 may be located between the hole 12 and the hinge axis 17, and may be located closer to the hinge axis 17.
  • the rotation angle of the first handle 51 may be controlled within a predetermined range by the first stopper 171 and / or the second stopper 516 described later.
  • the loading unit 500 may include a first handle 51 and a connector 52. One end of the first handle 51 may be hinged to the hinge shaft 17 of the housing 10, and the other end 512 may be open.
  • the first handle 51 may include a second stopper 516 positioned adjacent to the first stopper 171.
  • the second stopper 516 is in contact with the first stopper 171 in a state where the first handle 51 is rotated at the maximum angle about the hinge axis 17 so that the first handle 51 is connected to the hinge axis 17. It is possible to stop the rotation around the center.
  • the present invention is not necessarily limited thereto, and the first stopper 171 and the second stopper 516 are not limited thereto. It may be sufficient to include at least one.
  • the connector 52 may be provided such that one end 521 is hinged rotatably near the center of the first handle 51 and the other end 522 faces the hub block 40.
  • a separate elastic member 53 may be connected between the connector 52 and the first handle 51, thereby allowing the other end 522 of the connector 52 to receive an elastic force in the first direction D1.
  • the first handle 51 may include a groove 514 formed at a position where the connector 52 rotates and overlaps with the first handle 51, whereby the first handle 51 may include the housing 10. Since the connector 52 is located in the groove 514 in a state of being rotated adjacent to the connector 52, the connector 52 may not interfere with the movement of the first handle 51.
  • the locking unit 161 may be located at the other end of the housing 10, that is, at an end opposite to the hinge shaft 17.
  • the locking unit 161 extends in a direction perpendicular to the axial direction D. Referring to FIG. 19, the locking unit 161 is formed in a hook shape, and thus the hole 515 of the other end 512 of the first handle 51 is formed. It is equipped to take.
  • the locking unit 161 may be provided to have elasticity in a direction perpendicular to the longitudinal direction, and as a result, the locking unit 161 may be released from the first handle 51 by a simple operation of a user as described below.
  • the locking unit 161 is not necessarily coupled to the housing 10, but may be coupled to the other end 512 of the first handle 51. Of course, in this case, the hole 515 may be formed in the housing 10.
  • the first handle 51 may be provided to have a predetermined curvature R in its longitudinal direction while being coupled to the housing 10 by the locking unit 161.
  • the first handle 51 may be formed of a metal and / or a synthetic resin material, and may have a predetermined elasticity by the characteristics of the material. Since the first handle 51 is pressed by the locking unit 161 to the housing 10, the middle portion of the longitudinal direction is pressed against the protrusion 101 of the housing 10, and thus, the first handle 51 in this state.
  • the 51 may have an elastic force in a direction substantially perpendicular to the longitudinal direction thereof, for example, in a direction opposite to the locking unit 161.
  • the first handle 51 when the first handle 51 has an elastic force in a direction perpendicular to the longitudinal direction, the first handle 51 has a potential in the direction of releasing the engagement by the locking unit 161, and thus the user has a hook shape. By lightly touching the locking unit 161, the engagement of the locking unit 161 of the first handle 51 can be released. This may further improve the handling of the user's first handle 51.
  • the housing 10 may include a first support unit 13 and a second support unit 14.
  • the first support unit 13 may be selectively coupled to the master block 30 at least at the loading position to provide the master block 30 with resistance to the elastic force of the spring 50.
  • the first support unit 13 may be an end portion of the second opening D2 of the second opening 111 formed in the housing 10.
  • the above-described second firing unit 183 is located adjacent to the first supporting unit 13, and presses a part of the master block 30 which is caught by the first supporting unit 13 when firing the first supporting unit. The engagement of the master block 30 with respect to 13 can be released.
  • the second support unit 14 may be selectively coupled to the hub block 40 at least at the loading position to provide the hub block 40 with resistance to the elastic force of the spring 50.
  • the second support unit 14 may be an elastic support formed to extend toward the second direction D2 from the first opening 110 formed in the housing 10.
  • One end 141 of the second support unit 14 is coupled to the housing 10, and the other end 142 extends from the one end 141 to be inclined toward the hollow portion 11.
  • the other end 142 of the second support unit 14 may be separated from the housing 10 and may elastically move to a certain extent about the one end 141. Accordingly, as the master block 30 moves toward the hub block 40 by the user's launching operation as described later, the hub block 40 as the master block 30 presses the second support unit 14. And selective coupling between the second support unit 14 can be released.
  • the housing 10 may further include a third opening 121.
  • the third opening 121 may be formed at one side of the housing 10.
  • the third opening 121 may be formed at the side of the housing 10 adjacent to the firing unit 180.
  • the second handle 331 is exposed to the outside of the housing 10 through the third opening 121, and the user may manipulate the second handle 331.
  • the needle set 200 may include a needle 20 and an outer shell 21.
  • the needle 20 has a tissue collecting groove 202 formed at one end thereof, and the tissue collecting groove 202 has a structure of a groove open toward an upper side or a lower side.
  • the second needle 20 may be installed to penetrate the housing 10 in the axial direction D, and the other end 201 of the second needle 20 may be fixed to an end portion of the second direction D2 of the housing 10.
  • the outer shell 21 is provided on the pipe so that the inner needle 20 is accommodated therein, and may be formed to have a shorter length than the inner needle 20.
  • the outer surface 21 has a blade 212 formed at one end to cut the tissue accommodated in the tissue collection groove 202, it may be provided to reciprocate relative to the inner needle 20.
  • the blade 212 may be provided at an inclination in a direction different from that of the end of the needle 20, but is not necessarily limited thereto and may be provided to have an inclination in the same direction as the end of the needle 20.
  • the needle set 200 protrudes outward through the front end hole 12 of the housing 10 through the housing 10. Therefore, a part of the needle set 200 is located in the hollow portion 11.
  • a predetermined space may be formed between the outer shell 21 and the inner needle 20, and the space may be connected to the tissue collection groove 202.
  • a hole 211 may be formed at the other end of the outer shell 21, and the hole 211 may be formed in a direction perpendicular to the axial direction D, and may communicate with the space inside the outer shell 21. have. When the master block 30 is moved through the hole 211, a negative pressure may be formed in the inner space of the outer cover 21.
  • At least the outer surface 21 of the needle set 200 may be fixedly coupled to the master block 30 to move in conjunction with the movement of the master block 30.
  • the master block 30 is located in the hollow part 11.
  • the needle 20 may be installed to penetrate the master block 30, it may be provided so as not to be coupled to the master block (30).
  • the master block 30 may include a base 301 and a cover 302.
  • the base 301 has a space 304 to be coupled to the connecting bar 33 to be described later, an opening 305 is formed on one side through which the second handle 331 of the connecting bar 33 is exposed. You can do that.
  • the base 301 may include a third support unit 303 positioned adjacent the opening 305.
  • the third support unit 303 may have a wedge shape protruding from the bottom sidewall of the base 301 toward the inner space 304, and thus may be provided to selectively block the movement of the connection bar 33.
  • the present invention is not limited thereto, and may have a protrusion shape protruding toward the space 304. For example, any shape may be applied as long as it selectively blocks the movement of the connection bar 33.
  • the connecting bar 33 may be fixedly coupled to the end of the outer shell 21, and may be provided to penetrate through the lower bar 20 without being coupled to the inner needle 20.
  • connection bar 33 is embedded in the master block 30, which may be mounted in the master block 30, and provided to move along the longitudinal direction of the master block 30.
  • the other part of the connection bar 33 except for the part connected to the outer cover 21 may include an elastic part 335 having a predetermined elasticity in a direction perpendicular to the longitudinal direction of the master block 30.
  • the second handle 331 may be positioned to be exposed to the outside of the master block 30 adjacent to one end 336 of the elastic part 335.
  • the second handle 331 is exposed to the outside of the master block 30 through the above-described opening 305, which refers to FIG. 1 through the third opening 121 formed in the housing 10. ) May be exposed to the outside.
  • the elastic part 335 of the connection bar 33 may be selectively fixed in position by the aforementioned third support unit 303. That is, while the connection bar 33 is positioned at one end of the master block 30, the end 336 of the elastic part 335 may be held in the third support unit 303 described above. When the elastic part 335 is bent in a direction perpendicular to the longitudinal direction of the master block 30 by external pressure, the locked state of the end portion 336 and the third support unit 303 may be released.
  • the connecting bar 33 When the user manipulates the second handle 331, first, the user presses the second handle 331 in a direction perpendicular to the longitudinal direction of the master block 30, and then presses the master block 30 of the third opening 121. By moving along the longitudinal direction, the connecting bar 33 can be moved. As the connecting bar 33 moves in this way, the outer cover 21 coupled to the connecting bar 33 may move in the same manner, and as shown in FIG. 21, the tissue collecting groove 202 of the inner ear 20 is moved. Can be exposed outward.
  • the fixing block 337 provided to penetrate the needle 20 may be further adjacent to the connection bar 33.
  • the fixed block 337 may be fixedly coupled to the master block 30.
  • a fixing groove 306 may be formed in the base 301 in the second direction D2, and an end portion of the first direction D1 of the spring 50 shown in FIG. 24 is coupled to the fixing groove 306. Can be.
  • the end portion of the first direction D1 of the spring 50 may be provided with a third portion 503 wound larger in diameter than the adjacent first portion 501, and the first portion 501 and the first portion 501 may be provided.
  • the three portions 503 may be integrally formed.
  • the present invention is not necessarily limited thereto, and an end portion of the first direction D1 of the spring 50 may be coupled to the base 301 without the third portion 503.
  • the cover 302 is coupled to the base 301, the surface of the cover 302 has a first fixing unit 31 provided to be able to elastically move in a direction perpendicular to the longitudinal direction of the master block 30 It may be provided.
  • the first fixing unit 31 is provided to protrude from the surface of the cover 302, and can move with elasticity in the direction opposite to the protruding direction. In the loaded state, this first fixed unit 31 is caught by the first support unit 13, so that the movement of the master block 30 can be constrained by the first support unit 13 (see FIG. 3). .
  • the second firing unit 182 of the firing unit 180 described above is to press the first fixing unit 31 by the user's operation, so that the first support unit 13 of the first fixing unit 31 The lock on can be released.
  • the master block 30 may further include a release unit 32.
  • the release unit 32 is located at a portion of the master block 30 facing the hub block. According to an embodiment, the release unit 32 may be provided to extend in the second direction D2 toward the hub block 40. According to an embodiment, the release unit 32 may be a plate member extending toward the hub block 40.
  • the hub block 40 may be located in the hollow part 11, and the needle 20 is provided to penetrate, and is aligned in-line along the master block 30 and the axial direction D. It may be arranged to. Referring to FIG. 2, the hub block 40 may be located adjacent to the master block 30.
  • a spring 50 may be coupled to penetrate the hub block 40 according to an embodiment.
  • the spring 50 may be formed integrally with the first portion 501 and the second portion 502, through the hub block 40, the first portion 501 and the second portion 502
  • the hub block 40 may be fixed to the hub block 40 so as to protrude outward.
  • the hub block 40 may include a fourth support unit 443.
  • the fourth support unit 443 may be formed toward the loading unit 500. According to an embodiment with reference to FIG. 24, the fourth support unit 443 may be provided to have a step on the bottom surface of the hub block 40. Referring to FIG. 19, the fourth support unit 443 may be provided to support the other end 522 of the connector 52. Therefore, as the user grasps the first handle 51 and pushes in the direction of the housing 10 with one hand, the hub block 40 is supported in the second direction while the connector 52 is supported by the fourth support unit 443. It moves to (D2).
  • the hub block 40 may include a second fixing unit 42.
  • the second fixing unit 42 may be a stepped portion formed in the hub block 40 in a direction perpendicular to the axial direction D. FIG.
  • the hub block 40 may be fixed to the second support unit 14 in the loaded state after the hub block 40 proceeds in the second direction D2.
  • the second fixing unit 42 and the release unit 32 of the master block 30 may be formed to correspond to each other in a shape that can be coupled to each other.
  • the hub block 40 proceeds beyond the second support unit 14, and the other end of the second support unit 14 that is not fixed to the housing 10 ( 142 touches the second fixing unit 42 to fix the hub block 40.
  • the hub block 40 may further include an extension unit 45 extending in the second direction D2.
  • the extension unit 45 may maintain the state in which the hollow part 11 is sealed by blocking the first opening 110 in at least one state, for example, in an unloaded state. Since the inside of the hollow part 11 maintains a substantially closed shape, the volume change of the space generated by the master block 30 according to the retreat movement of the master block 30, that is, the movement in the second direction D2 at the time of launching. In this case, the space formed between the outer shell 21 and the inner ear 20 and the inside of the tissue collecting groove 202 may perform a function of forming a negative pressure. The negative pressure allows the tissue to be better seated in the tissue collecting groove 202, thereby preventing the tissue from being pushed when cutting the tissue and cutting the tissue more effectively.
  • the present invention is not necessarily limited thereto, and the extension unit 45 may not be selectively adopted.
  • the spring 50 may be located in the hollow portion 11 to be aligned inline with the master block 30 and the hub block 40 along the axial direction (D).
  • the spring 50 may include a first portion 501 and a second portion 502, as seen in FIGS. 25 and 26.
  • the first portion 501 protruding to one side of the hub block 40 is fixedly coupled to the master block 30, and the second portion 502 protruding to the other side of the hub block 40 is the housing. Combined with (10).
  • the first portion 501 has a second direction parallel to the axial direction D with respect to the master block 30.
  • D2) may provide a first elastic force
  • the second portion 60 may provide a second elastic force in the first direction D1 parallel to the axial direction D with respect to the hub block 40.
  • the first portion 501 and the second portion 502 may be provided to have a different spring pitch, the spring pitch of the first portion 501 is less than the spring pitch of the second portion 502 Can be.
  • the first part 501 and the second part 502 have different spring pitches, but each part may be provided to have a uniform spring pitch.
  • the first portion 501 may have a tensile pitch relatively than the second portion 502, and the second portion 502 may have a compression pitch relatively greater than that of the first portion 501. It may be to have.
  • the first portion 501 may be wound to be a tension spring, and the second portion 502 may be wound to be a compression spring.
  • the first portion 501 and the second portion in a state of being loaded that is, in a state in which only the hub block 40 is moved in the second direction D2 while the master block 30 is fixed and then fixed, 502 is in a state having all the elastic force in the first direction D1 with respect to the hub block 40.
  • the hub block 40 After the fixing of the inside of the hollow portion 11 of the master block 30 by the operation of the firing unit 180, the hub block 40 is still fixed in the hollow portion 11, the first The master block 30 moves in the second direction D2 by the restoring force of the portion 501. Thereafter, when the master block 30 releases the hub block 40 in contact with the hub block 40, the master block 30 and the hub block 40 by the restoring force of the second part 502.
  • tissue may be collected in the tissue collection groove 202.
  • first portion 501 and the second portion 502 may have different diameters.
  • first portion 501 having a tensile pitch may be provided to have a smaller radius than the second portion 502 having a compression pitch.
  • the spring 50 may be installed to penetrate the through hole 400 of the hub block 40.
  • the through hole 400 may include a first through hole 401 through which the first portion 501 of the spring 50 passes and a second through hole 402 through which the second portion 502 passes. .
  • the first through hole 401 and the second through hole 402 may be connected to each other.
  • the first through hole 401 may be formed to have a first diameter d1 to correspond to the diameter of the first part 501, and the second through hole 402 may include a second part ( The second diameter d2 may be formed to correspond to the diameter of 502.
  • the first diameter d1 may be smaller than the second diameter d2. Therefore, when the spring 50 is inserted into the through hole 400, the first portion 501 may be inserted from the second through hole 402.
  • the fixed end 403 may be located between the first through hole 401 and the second through hole 402. Between the first portion 501 and the second portion 502 is located at the position of the fixed end 403, the spring 50 may be fixed to the hub block 40 at the fixed end 403. .
  • the fixed end 403 may be formed in a stepped structure according to the difference in diameter between the first through hole 401 and the second through hole 402. As described above, an end of the second portion 502 may be in close contact with the fixed end 403 due to the difference in diameter between the first portion 501 and the second portion 502.
  • the hub block 40 moves in the second direction D2 by the loading operation, and the fixed end 403 pushes the end of the second part 502 in the second direction D2 to the second part 502. This is compressed. At this time, since the end portion of the second portion 502 is in close contact with the fixed end 403, the spring 50 may be fixed in the hub block 50.
  • the hub block 40 may move in the first direction D1. .
  • the spring 50 may be fixedly coupled to the hub block 40 without a separate fixing mechanism.
  • the present invention is not necessarily limited thereto, and a separate pin (not shown) is inserted into the hub block 40 from the outside of the fixed end 403, so that the first part 501 and the second part 502 of the spring 50 are inserted.
  • the spring 50 can be fixed in the hub block 40 by being sandwiched between.
  • an open confirmation window 122 is formed in one region of the housing 10, and a marking is formed in an area corresponding to the confirmation window 122 among the outer surfaces of the hub block 40. Therefore, the user can confirm whether or not the loading state by confirming this marking with the confirmation window 122.
  • FIG. 27 shows the operational flow of a cutting biopsy instrument in accordance with one embodiment of the present invention having the above-described structure.
  • Step S1 is ready.
  • the first handle 51 is in a state in which the hole 515 is locked to the locking unit 161, and the other end 522 of the connector 52 is in a state of not supporting the fourth support unit 443. Can be.
  • the first handle 51 is in a state of having a predetermined elastic force in a direction in which the lock is released, the end handle of the user exposed to the outside of the hole 515 of the locking unit 161 is released in the unlocking direction (eg, The first handle 51 can be unlocked only by lightly touching in one direction D1).
  • step S2 the first handle 51 is spaced apart from the housing 10 as the state immediately before the loading progression, and the other end 522 of the connector 52 is in a state of supporting the fourth support unit 443.
  • Step S3 is a loaded state, in which the connector 52 applies a force in the second direction D2 to the fourth support unit 443 according to the hinge movement mechanism as the user applies the pressing force to the first handle 51.
  • the block 40 is moved in the second direction D2 by the preset distance a to complete the loading.
  • the second fixing unit 42 of the hub block 40 may be fixed to the second support unit 14 so that the position of the hub block 40 may be fixed.
  • This loading operation is performed by the user holding the cutting biopsy instrument with one hand and pressing the first handle 51 in the direction of the housing 10 so that the user can still maintain the freedom of the other hand,
  • the loading operation can be simply completed by loading with only the force for pushing the first handle 51.
  • the spring 50 is spaced apart from the master block 30 and the hub block 40 by the predetermined distance a.
  • the first portion 501 of the tension is tensioned, thereby generating an elastic force in the first portion 501.
  • the second portion 502 is in a compressed state to have elastic force.
  • the user may simultaneously insert the outer skin 21 and the inner ear 20 of the cutting biopsy instrument into the patient's tissue and prepare for firing.
  • the first firing stage S4 proceeds. That is, when a pressing force P is applied to the firing unit 180, the second firing unit 182 presses the first fixing unit 31, and thus, the first supporting unit 13 of the first fixing unit 31. ) Can be released. Accordingly, the master block 30 is moved in the second direction D2 by the predetermined distance b by the restoring force of the first portion 501 of the spring 50, and is simultaneously fixed to the master block 30. 21 also moves in the second direction D2 by the distance b to expose the tissue collecting groove 202. At this time, the tissue to be collected into the tissue collecting groove 202 may be pushed and seated.
  • the second firing stage S5 proceeds. That is, as the master block 30 is moved in the second direction D2, the release unit 32 of the master block 30 is coupled to the second fixing unit 42, whereby the release unit 32 The other end 142 of the second support unit 14 is pressed, and as a result, the support of the second fixing unit 42 of the other end 142 is released.
  • the master block 30 and the hub block 40 advance in the first direction D1 by the second portion 502 of the spring 50, and at the same time, the outer surface fixed to the master block 30 ( 21 also covers the tissue collecting groove 202 while proceeding in the first direction D1 to cut the upper part of the tissue seated in the tissue collecting groove 202 so that the cut tissue is sealed in the tissue collecting groove 202. (S5).
  • Each of the preset distances a, b, and c described above is preferably the same in the present invention, but it may be understood that some errors occur in performing the functions of the present invention, so that a, b, and c may be set differently. have.
  • the tissue recovery stage S6 described above may proceed. That is, the user presses the second handle 331 of the connection bar 33 to release the fixing by the third support unit 303 and moves the second handle 331 in the second direction D2 to connect the connection bar ( The outer cover 21 fixed to 33 can be moved in the second direction D2. Accordingly, the tissue harvesting groove 202 of the spit 20 can be exposed to recover the collected tissue.
  • the hub block 40 of the present modification may include an extension unit 45, and the extension unit 45 may correspond to the lower end of the body of the hub block 40.
  • the hub block 40 may have an extended area formed on one region or a side of the extension unit 45 to accommodate one region of the connector 52.
  • the present invention enables the recovery of tissue collected by a simple operation, the user can recover the tissue with only the hand holding the cut biopsy tool, thereby still maintaining the freedom of the other hand. Therefore, the user may proceed to the next tissue collection operation, thereby facilitating a plurality of continuous tissue collection.
  • Using the driving force transmission structure of the present embodiment can provide a variety of driving force in a variety of directions, that is, D1 or D2 direction, it is possible to manufacture a variety of mechanical motion members, in particular a drive member that requires driving.
  • the first shot through the back reaction, the second shot through the front reaction can be easily implemented.
  • the above-described loading, firing, and withdrawal operations can be performed only by the hand holding the cutting biopsy instrument while the ultrasonic instrument is still positioned at the target position, so that the entire procedure operation can be made very simple.

Abstract

본 발명은 파지 형태의 변경을 최소화하여 장전을 쉽게 수행할 수 있는 절단 생검기구에 관한 것으로, 속침과 겉침의 발사 시의 이동 관계를 새롭게 제시하여, 조직 채취의 정확도를 더욱 향상시키고, 채취 시의 안전성을 더욱 높일 수 있으며, 채취된 조직의 회수를 간단하게 할 수 있는 절단 생검기구와 이에 사용되는 구동력 전달 구조체에 관한 것이다.

Description

구동력 전달 구조체 및 이를 이용한 절단 생검기구
본 발명의 일 실시예는 구동력 전달 구조체 및 이를 이용한 절단 생검기구에 관한 것이다.
과학 기술 및 산업의 발달에 따라 다양한 기계, 기구, 소자, 장치 등이 생활 및 산업 현장에서 사용되고 있다. 기술 발달과 사용자의 요구 수준 향상에 따라 더 복잡하고 다양한 용도의 기구 들이 기계, 기구, 소자, 장치 등에 필요한 것이 현실이다. 또한, 이러한 기계, 기구, 소자, 장치 등에는 하나 이상의 운동을 제공하는 운동 부재가 포함될 수 있다. 이러한 운동 부재의 운동을 위해서 구동력을 제공하는 구동 부재가 필요한데, 이러한 구동력은 다양한 형태로 제공될 수 있고, 예를 들면 전기나 전자 등의 외부 전원을 이용할 수 있다.
이러한 구동력 전달 시 상기 외부의 전원이 없이 또는 외부의 전원과 함께 구동력을 제공하는 경우도 있는데, 비교적 소형의 기구 또는 사용하기 편리한 기구가 그 예이다. 이러한 구동력 전달 시 공간 활용을 향상하면서 정밀하고 효율적인 구동력을 전달하는데 한계가 있다.
한편, 일반적으로 생체조직의 검사를 위해서는, 생체조직 내에 생체조직을 검체할 수 있는 기구를 주입하고, 생체조직 중 검체 대상이 되는 조직을 채취하는 방식을 사용하고 있다. 이러한 유형으로는 흡인생검과 절단생검이 존재한다.
최근에는 조직을 바늘의 형태에 의하여 절단하여 조직학적 형태를 온전히 유지한 상태로 얻을 수 있고 진단정확도를 높일 수 있는 절단생검이 많이 활용되고 있다. 절단생검의 경우, 환부에 삽입되는 바늘의 구경을 최소화하면서도, 반복적 침습행위를 최소화하고, 소형 검체에 대한 정밀한 시술이 가능하여 최근 흡인생검에 비하여 많이 활용되고 있다.
한국등록특허 10-1463867 및 10-1551311 등에 기재되어 있는 절단생검 방식의 검체 기구는, 절단메커니즘에 있어서 속침이 먼저 발사되고 겉침이 발사되어, 두께가 매우 얇은 속침이 전진하는 도중 치밀한 피막조직 또는 단단한 석회화조직 등을 관통하지 못하거나 휘어질 수 있으며, 이로 인하여 결절이 후방으로 밀리거나 정확한 채취 대상 조직 영역에 속침이 도달하지 못할 수 있어, 시술이 매우 어려워지는 문제점이 지적되어 왔다.
한편 상술한 채취 대상 조직에 바늘셋이 정확하게 도달하도록 하기 위하여 초음파가이드 장비를 이용하는 등 정확도 향상에 대한 기술은 많이 발전하여 왔다. 그러나 상기의 종래의 기술의 경우 시술자가 일반적으로 생검기구를 파지하는 형태를 변경하거나 양손으로 장전이 이루어지며, 이 때문에 특히 여러 차례 반복채취가 필요한 경우 초음파가이드의 타겟팅이 흐트러질 가능성이 있다.
본 발명은 공간 활용을 향상하고 정밀하고 효율적인 구동력을 전달할 수 있는 구동력 전달 구조체를 제공할 수 있다.
본 발명은 절단 생검기구를 파지한 한 손만으로 파지 형태의 변경을 최소화하여 장전을 쉽게 수행할 수 있는 절단 생검기구를 제공하는 데 일 목적이 있다.
또한 본 발명은, 속침과 겉침의 발사 시의 이동 관계를 새롭게 제시하여, 조직 채취의 정확도를 더욱 향상시키고, 채취 시의 안전성을 더욱 높일 수 있는 절단 생검기구를 제공하는 데 다른 일 목적이 있다.
또한, 본 발명은 생검기구에 의하여 채취된 조직을 쉽게 회수할 수 있는 절단 생검기구를 제공하는 데 또 다른 일 목적이 있다.
또한, 본 발명은 구성 부품의 수를 대폭 줄여 생산 원가를 더욱 낮출 수 있는 절단 생검기구를 제공하는 데 또 다른 일 목적이 있다.
본 발명의 일 실시예는 제1 방향으로 길이를 갖고 인장 스프링 형태를 포함하는 제1 탄성부 및 상기 제1 방향으로 길이를 갖고 압축 스프링 형태를 포함하는 제2 탄성부를 포함하고, 상기 제1 탄성부는 상기 제2 탄성부에 연결되고, 상기 제1 탄성부 또는 상기 제2 탄성부에 대한 힘을 가하여 상기 제1 방향과 나란한 일 방향 및 그와 반대의 일 방향으로의 구동력을 제공하도록 형성된 구동력 전달 구조체를 개시한다.
본 발명의 일 실시예에 있어서 상기 제1 탄성부에 힘을 가하여 상기 제1 탄성부가 인장시에 상기 제2 탄성부는 압축되도록 형성될 수 있다.
본 발명의 일 실시예에 있어서 상기 제1 탄성부 또는 상기 제2 탄성부에 힘을 가할 때, 상기 제1 탄성부, 상기 제2 탄성부 또는 상기 제1 탄성부와 상기 제2 탄성부의 사이의 영역에 대응되도록 형성된 고정점을 더 포함할 수 있다.
본 발명의 일 실시예에 있어서 상기 제1 탄성부 또는 상기 제2 탄성부에 힘을 가한 후, 상기 힘을 제거 시 상기 고정점의 유지 또는 해제가 가능하도록 형성될 수 있다.
본 발명의 일 실시예에 있어서 적어도 상기 제1 탄성부와 상기 제2 탄성부가 연결되는 영역을 포함하는 영역에 대응하도록 형성된 중간 지지부를 포함하고, 상기 중간 지지부의 운동을 통하여 상기 제1 탄성부에 인장력을 가하거나 상기 제2 탄성부에 압축력을 제공할 수 있다.
본 발명의 일 실시예에 있어서 적어도 상기 제1 탄성부의 영역 중 상기 제2 탄성부와 연결되는 영역의 반대쪽의 단부에 형성되는 제1 지지부를 포함하고, 상기 제1 지지부는 상기 제1 탄성부의 운동에 따라 운동하거나 상기 제1 탄성부의 운동을 제한하도록 형성될 수 있다.
본 발명의 일 실시예에 있어서 적어도 상기 제2 탄성부의 영역 중 상기 제1 탄성부와 연결되는 영역의 반대쪽의 단부에 형성되는 제2 지지부를 포함하고, 상기 제2 지지부는 상기 제2 탄성부의 운동에 따라 운동하거나 상기 제2 탄성부의 운동을 제한하도록 형성될 수 있다.
본 발명의 일 실시예에 따른 절단 생검기구는, 상술한 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 절단 생검기구는, 축 방향으로 연장되고, 내부에 상기 축방향으로 연장된 중공부 및 상기 중공부와 연통된 적어도 하나의 개구를 갖는 하우징과, 일단에 조직 채취 홈을 갖는 속침과 상기 속침이 수용되도록 파이프 상으로 구비된 겉침을 포함하고, 일부가 상기 중공부에 위치하는 니들 셋과, 상기 겉침의 일단에 연결되고, 상기 속침이 관통하도록 구비되며, 상기 축방향으로 운동 가능하도록 상기 중공부 내에 위치하는 마스터 블록과, 상기 속침이 관통하도록 구비되고, 상기 축방향으로 운동 가능하도록 상기 중공부 내에 위치하는 허브 블록과, 상기 허브 블록을 관통하도록 허브 블록에 결합되고, 상기 허브 블록 일측으로 돌출된 제1부분이 상기 마스터 블록과 결합되고, 상기 허브 블록 타측으로 돌출된 제2부분이 상기 하우징과 결합된 스프링과, 적어도 장전 위치에서 상기 마스터 블록에 선택적으로 결합되는 제1 지지 유닛과, 적어도 장전 위치에서 상기 허브 블록에 선택적으로 결합되는 제2 지지 유닛과, 상기 허브 블록을 상기 장전 위치로 이동시키는 장전 유닛과, 적어도 상기 제1 지지 유닛과 상기 마스터 블록의 결합을 선택적으로 해제하도록 구비된 발사 유닛을 포함할 수 있다.
상기 제1 부분과 상기 제2 부분은 서로 다른 스프링 피치를 가질 수 있다.
상기 장전 위치에서, 상기 제1 부분은 상기 마스터 블록에 대하여 제1 탄성력을 가하도록 구비되고, 상기 제2 부분은 상기 허브 블록에 대하여 상기 제1 탄성력과 다른 방향의 제2 탄성력을 가하도록 구비될 수 있다.
상기 제1 부분과 상기 제2 부분은 서로 다른 직경을 갖도록 구비될 수 있다.
상기 허브 블록은, 상기 제1 부분이 관통하는 제1 관통공과, 상기 제2 부분이 관통하는 제2 관통공을 포함하고, 상기 제1 관통공과 상기 제2 관통공의 사이에 위치하는 고정단을 더 포함할 수 있다.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
본 발명에 관한 구동력 전달 구조체는 공간 활용을 향상하고 정밀하고 효율적인 구동력을 전달할 수 있는 구동력 전달 구조체를 제공할 수 있다.
본 발명의 각 실시예에 따르면, 사용자는 파지한 상태로 쥐는 힘을 가하는 방식으로 장전 유닛을 조작하고, 이를 통해 뒤로 밀려나 제1 스프링 및 제2 스프링에 복원력이 가해지도록 한 장전 상태에서 속침과 겉침이 함께 신체 내부에 진입한 뒤, 겉침이 속침으로부터 후퇴하였다가 전진하는 왕복 운동 구조를 갖도록 함으로써, 생검기구를 파지한 한 손만으로 파지 형태의 변경을 최소화하여 1회 장전 또는 복수회 장전을 쉽게 수행할 수 있고, 소량 또는 다량의 채취를 위한 장전 형태를 쉽게 변경할 수 있는 장전 및 발사 구조를 갖는 생검기구를 제공하는 효과가 있으며, 속침의 전진 발사에 의한 치밀한 피막조직 또는 단단한 석회화조직 등을 관통하지 못하거나 휘어질 수 있으며, 이로 인하여 결절이 후방으로 밀리거나 정확한 채취 대상 조직 영역에 속침이 도달하지 못할 수 있어, 시술이 매우 어려워지는 문제점을 해결할 수 있다.
한편, 초음파가이드를 사용 시, 사용자가 초음파가이드를 파지한채로 한 손만으로 장전 및 발사를 수행할 수 있어, 타겟팅이 정확하게 유지되어 시술의 정확성이 증가하는 효과가 있다.
한편, 겉침이 고정되는 마스터 블록의 겉침 연결 바의 결합 구조에 의하여 조직 채취 후 겉침 연결바를 이동시키는 것을 통해 별도의 다른 조작 없이 간편하게 속침의 조직채취홈에 존재하는 조직을 회수할 수 있어, 한손으로 간편한 검체 회수가 가능한 효과가 있다.
한편, 마스터블록의 진행방향길이를 길게 하고 하우징의 중공부에 밀착 이동되도록 크게 하여 추가기능을 더 구현할 수 있고, 안정적인 슬라이딩동작을 함으로써 정밀한 시술을 가능하게 하는 효과가 있다.
본 발명의 실시예들에 의한 절단 생검기구에 따르면, 절단 생검기구를 파지한 한 손만으로 파지 형태의 변경을 최소화하여 장전을 쉽게 수행할 수 있다.
또한 본 발명은, 속침과 겉침의 발사 시의 이동 관계를 새롭게 제시하여, 조직 채취의 정확도를 더욱 향상시키고, 채취 시의 안전성을 더욱 높일 수 있다.
또한, 본 발명은 채취된 조직을 쉽게 회수할 수 있고, 이를 장치를 파지한 손 만으로 수행할 수 있기 때문에, 다른 한 손의 자유도를 높일 수 있다.
그리고, 제1 핸들의 회동 각도를 간단히 단속할 수 있고, 이에 따라 한손으로 장전이 용이하게 이뤄지도록 할 수 있다.
제1 핸들이 하우징으로부터 쉽게 잠금 해제될 수 있기 때문에 장전 예비 동작도 한 손으로 수행할 수 있어 다른 한 손의 자유도를 높일 수 있다.
제1 핸들의 잠금 해제와 동시에 커넥터가 장전 가능 상태로 바로 위치하도록 함으로써 즉시 장전을 수행할 수 있다.
구성 부품의 수를 대폭 줄일 수 있기 때문에 생산 원가를 더욱 낮출 수 있다.
도 1은 본 발명의 일실시예에 의한 구동력 전달 구조체를 개략적으로 도시한 정면도이다.
도 2는 도 1의 K의 확대도이다.
도 3은 도 1의 L의 확대도이다.
도 4 내지 도 7은 도 1의 구동력 전달 구조체의 동작을 설명하기 위한 도면들이다.
도 8은 본 발명의 다른 실시예에 의한 구동력 전달 구조체를 개략적으로 도시한 정면도이다.
도 9 내지 도 11은 도 8의 구동력 전달 구조체의 동작을 설명하기 위한 도면들이다.
도 12는 본 발명의 또 다른 실시예에 의한 구동력 전달 구조체를 개략적으로 도시한 도면이다.
도 13은 본 발명의 또 다른 실시예에 의한 구동력 전달 구조체를 개략적으로 도시한 도면이다.
도 14는 본 발명의 또 다른 실시예에 의한 구동력 전달 구조체를 개략적으로 도시한 도면이다.
도 15 내지 도 17은 도 14의 구동력 전달 구조체의 동작을 설명하기 위한 도면들이다.
도 18은 일 실시예에 따른 절단 생검기구를 나타내는 도면.
도 19는 도 18의 절단 생검기구에 대한 부분 단면도.
도 20은 일 실시예에 따른 절단 생검기구의 하우징에 대한 단면도.
도 21은 일 실시예의 구현에 따른 니들셋의 구조를 설명하기 위한 도면.
도 22는 일 실시예에 따른 절단 생검기구를 나타내는 도면.
도 23은 일 실시예에 따른 절단 생검기구의 마스터 블록을 나타내는 분해도.
도 24는 일 실시예에 따른 절단 생검기구의 허브 블록을 나타내는 도면.
도 25는 일 실시예들에 따른 스프링, 마스터 블록 및 허브 블록의 배치 상태를 도시한 도면.
도 26은 일 실시예에 따른 스프링 및 허브 블록의 결합 상태를 도시한 도면.
도 27은 일 실시예에 따른 절단 생검기구의 작동 단계를 설명하는 도면.
도 28은 본 발명의 일 변형예에 따른 허브 블록을 개략적으로 설명하기 위한 사시도.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. 이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
이하의 실시예에서, x축, y축 및 z축은 직교 좌표계 상의 세 축으로 한정되지 않고, 이를 포함하는 넓은 의미로 해석될 수 있다. 예를 들어, x축, y축 및 z축은 서로 직교할 수도 있지만, 서로 직교하지 않는 서로 다른 방향을 지칭할 수도 있다.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명하고자 한다.
도 1 내지 도 3을 참조하면 본 실시예의 구동력 전달 구조체(100)는 제1 탄성부(110) 및 제2 탄성부(120)를 포함할 수 있다.
제1 탄성부(110)는 탄성을 갖는 구조를 갖고 예를들면 코일 형태를 갖는 스프링일 수 있다. 선택적 실시예로서 제1 탄성부(110)는 일 방향으로 연장된 길이를 가질 수 있다. 예를들면 제1 방향(도 1의 D1, D2와 평행한 방향)으로 길게 연장된 길이를 가질 수 있다. 선택적 실시예로서 제1 탄성부(110)는 상기 제1 방향으로 인장 시 인장에 대한 저항력을 갖는 인장 스프링 형태를 포함할 수 있다. 선택적 실시예로서 제1 탄성부(110)는 단부(111), 연결부(112) 및 본체부(113)를 포함할 수 있다.
연결부(112)는 제2 탄성부(120)와 연결되는 영역이고, 단부(111)는 제1 탄성부(110)의 영역 중 연결부(112)와 반대 방향의 가장자리를 포함할 수 있다.
본체부(113)는 단부(111)와 연결부(112)의 사이에 배치되는 영역으로서 제1 탄성부(110)의 변형이 일어나는 주된 영역일 수 있다. 예를들면 제1 탄성부(110)가 인장 시 인장이 주로 발생하는 영역일 수 있다. 선택적 실시예로서 제1 탄성부(110)의 본체부(113)는 후술할 제2 탄성부(120)보다 작은 폭을 가질 수 있다.
제1 탄성부(110)와 제2 탄성부(120)의 폭을 상이하게 하여 제1 탄성부(110)와 제2 탄성부(120)의 사이에 연결되는 지점을 중심으로 제1 탄성부(110)와 제2 탄성부(120)를 서로 독립적으로 구동하도록 용이하게 제어할 수 있다. 예를들면 제1 탄성부(110)와 제2 탄성부(120)의 폭에 대응하는 내측 공간을 갖는 하우징(미도시)의 내에 구동력 전달 구조체(100)를 수용할 수 있다.
선택적 실시예로서 제1 탄성부(110)는 본체부(113)보다 큰 폭을 갖도록 연결부(112)를 형성할 수 있다. 이를 통하여 제1 탄성부(110)의 본체부(113)보다 큰 폭을 갖는 제2 탄성부(120)가 제1 탄성부(110)에 연결 시 폭의 변동이 심하지 않도록 하고, 연결부(112)에서의 변형을 감소하거나 방지할 수 있다.
또한 추가적인 예로서 본체부(113)와 연결부(112)의 사이에 본체부(113)의 폭과 연결부(112)의 폭의 사이의 크기의 폭을 갖는 연결 중간부(115)를 포함할 수 있다. 선택적 실시예로서 제1 탄성부(110)는 본체부(113)보다 큰 폭을 갖도록 단부(111)를 형성할 수 있다. 이를 통하여 단부(111)에 다양한 부재(미도시)를 연결할 수 있다. 또한 추가적인 예로서 본체부(113)와 단부(111)의 사이에 본체부(113)의 폭과 단부(111)의 폭의 사이의 크기의 폭을 갖는 단부 중간부(114)를 포함할 수 있다.
제2 탄성부(120)는 탄성을 갖는 구조를 갖고 예를들면 코일 형태를 갖는 스프링일 수 있다.
선택적 실시예로서 제2 탄성부(120)는 일 방향으로 연장된 길이를 가질 수 있다. 예를들면 상기 제1 방향(도 1의 D1, D2와 평행한 방향)으로 길게 연장된 길이를 가질 수 있다.
선택적 실시예로서 제2 탄성부(120)는 상기 제1 방향으로 압축 시 압축에 대한 저항력을 갖는 압축 스프링 형태를 포함할 수 있다.
제1 탄성부(110)와 제2 탄성부(120)는 서로 연결되도록 형성될 수 있다. 예를들면 상기 제1 방향을 따라서 제1 탄성부(110)와 제2 탄성부(120)는 연결될 수 있다. 구체적인 예로서 제1 탄성부(110)와 제2 탄성부(120)는 일체로 형성될 수 있다. 예를들면 제1 탄성부(110)와 제2 탄성부(120)의 사이에 연결 부재, 체결 부재등을 별도로 형성하지 않고 직접 연결된 구성을 포함할 수 있다.
선택적 실시예로서 제1 탄성부(110)와 제2 탄성부(120)는 별도로 제조후 접합한 것이 아닌 일체로 형성한 구조일 수 있다. 예를들면 구동력 전달 구조체(100)는 하나의 스프링 형태로서, 인장 스프링과 압축 스프링을 모두 갖는 구조일 수 있다.
도 4 내지 도 7은 도 1의 구동력 전달 구조체의 동작을 설명하기 위한 도면들이다. 도 4를 참조하면 제1 탄성부(110)는 D1방향으로 인장되어 인장 상태의 제1 탄성부(110')가 도시되어 있다. 이 때 고정점(ST)을 기준으로 제1 탄성부(110')는 인장된 것으로서, 제2 탄성부(120)는 변형되거나 이동하지 않을 수 있다. 고정점(ST)은 제1 탄성부(110)와 제2 탄성부(120)의 연결 영역에 형성될 수 있고, 예를들면 제1 탄성부(110)의 연결부(112)에 대응될 수 있다.
인장된 상태의 제1 탄성부(110')에 인장력을 가한 후 제거 시 고정점(ST)을 유지하여 제1 탄성부(110')의 단부(111)가 D2방향으로 이동하면서 힘을 전달할 수 있다.
도시하지 않았으나, 도 4의 고정점(ST)을 기준으로 제1 탄성부(110)와 제2 탄성부(120)에 별도로 힘을 줄 수 있는 바, 제2 탄성부(120)에 압축력을 가하여 제2 탄성부(120)가 D2 방향으로 운동 시 제1 탄성부(110)는 운동하거나 변형이 없이 유지될 수 있고, 이를 통하여 독립적인 제1 탄성부(110)와 제2 탄성부(120)의 제어도 가능할 수 있다.
도 5를 참조하면 도 4와 다르게 고정점(ST)을 위치한 후 제1 탄성부(110)를 인장하는 것을 도시하고 있다. 구체적으로 제1 탄성부(110)는 D2방향으로 인장되어 인장 상태의 제1 탄성부(110')가 도시되어 있다.
이 때 고정점(ST)은 제1 탄성부(110)의 단부(111)에 대응하는 영역 및 제2 탄성부(120)의 영역 중 제1 탄성부(110)와 연결되는 영역의 반대쪽의 단부 영역에 각각 대응될 수 있다. 고정점(ST)을 기준으로 제1 탄성부(110')는 인장된 것일 수 있다. 제2 탄성부(120')는 압축된 상태일 수 있다.
인장된 상태의 제1 탄성부(110')에 인장력을 가한 후 제거 시, 예를들면 제1 탄성부(110')의 단부(111)에 대응되는 고정점(ST)을 해제하고 제1 탄성부(110')와 제2 탄성부(120')의 사이의 영역을 고정하면 제1 탄성부(110')의 단부(111)가 D2방향으로 이동하면서 힘을 전달할 수 있다.
또한, 압축된 상태의 제2 탄성부(120')에 압축력을 가한 후 제거 시, 예를들면 제2 탄성부(120')의 단부에 대응되는 고정점(ST)을 해제하면 제2 탄성부(120')의 단부가 D2방향으로 이동하면서 힘을 전달할 수 있다.
또한, 압축된 상태의 제2 탄성부(120')에 압축력을 가한 후 제거 시, 예를들면 제2 탄성부(120')의 단부에 대응되는 고정점(ST)을 유지한 상태에서 압축력 제거 시 또는 제1 탄성부(110')와 제2 탄성부(120')의 사이의 영역을 고정하지 않고 해제하면 압축된 제2 탄성부(120')가 D1방향으로 늘어나면서 힘을 전달할 수 있다.
도 6을 참조하면 제1 탄성부(110)는 D2방향으로 인장되어 인장 상태의 제1 탄성부(110')가 도시되어 있다. 이 때 고정점(ST)을 기준으로 제1 탄성부(110')는 인장된 것으로서, 제2 탄성부(120)는 변형되거나 이동하지 않을 수 있다. 고정점(ST)은 제1 탄성부(110)의 단부(111)에 대응될 수 있다. 인장된 상태의 제1 탄성부(110')에 인장력을 가한 후 제거 시 고정점(ST)을 유지하여 제1 탄성부(110')의 본체부(113)가 D1방향으로 이동하면서 힘을 전달할 수 있다.
도 7을 참조하면 고정점(ST)을 위치한 후 제2 탄성부(120)를 압축하는 것을 도시하고 있다. 구체적으로 제2 탄성부(120)는 D1방향으로 압축되어 압축 상태의 제2 탄성부(120')가 도시되어 있다. 이 때 고정점(ST)은 제1 탄성부(110)와 제2 탄성부(120)의 경계선을 포함하는 영역에 대응될 수 있다.
고정점(ST)을 기준으로 제2 탄성부(120')는 인장된 것일 수 있고, 제1 탄성부(110)는 변형되지 않거나 운동하지 않은 상태일 수 있다.
압축된 상태의 제2 탄성부(120')에 압축력을 가한 후 제거 시, 예를들면 고정점(ST)을 해제하면 제2 탄성부(120')가 D2방향으로 이동하면서 힘을 전달할 수 있다.
또한, 압축된 상태의 제2 탄성부(120')에 압축력을 가한 후 제거 시, 예를들면 제2 탄성부(120')의 단부에 대응되는 영역을 고정한 후 압축력을 제거 시 제2 탄성부(120')가 D1 방향으로 이동하고 이에 따라 제1 탄성부(110)도 D1방향으로 이동할 수 있다.
본 실시예의 구동력 전달 구조체는 적어도 제1 탄성부 및 제2 탄성부를 포함하고, 제1 탄성부는 인장 스프링 형태를 포함하고, 제2 탄성부는 압축 스프링 형태를 포함할 수 있다. 제1 탄성부가 제2 탄성부와 연결된 형태로서, 제1 탄성부와 제2 탄성부의 중간의 연결 영역, 제1 탄성부의 단부 또는 제2 탄성부의 단부등의 영역에 고정점을 선택적으로 위치 후 제1 탄성부에 인장력 및 제2 탄성부에 압축력을 가할 수 있고, 인장력 및 압축력을 제거 시 고정점을 선택적으로 위치하여 다양한 방향, 즉 D1 또는 D2 방향으로의 다양한 구동력을 제공할 수 있고, 이를 통한 다양한 기계적 운동 부재, 특히 구동이 필요한 구동 부재를 제조할 수 있다.
또한, 선택적 실시예로서 한번의 이동을 통하여 제1 탄성부에 인장력 및 제2 탄성부에 압축력을 가할 수 있고, 그리고 나서 고정점의 배치 및 해제를 통하여 추가적인 인장력 및 압축력의 제공이 없이 D 방향 및 D2 방향으로의 구동력을 제공할 수 있어 정밀하고 효율적 운동을 제공하는 구동 부재를 제조할 수 있다. 예를들어 다양한 공구, 장난감, 실험 장비, 측정 장비 등과 같이 운동이 필요한 부재의 구동력을 제공하는데 사용될 수 있다. 또한, 주사 장비, 생검 장비, 시술 장비와 같이 인체에 대한 동작이 필요한 장치에 사용되어 인체에 대한 동작에 필수적인 안전성 및 정밀성을 용이하게 확보할 수 있다.
또한, 제1 탄성부와 제2 탄성부의 직접적인 연결, 예를들면 일체화되어 연결된 하나의 스프링 구조를 통하여 구동력 전달 구조체가 배치되는 공간을 감소하여 협소하게 적용할 수 있어 공간 활용도를 증대할 수 있다.
도 8은 본 발명의 다른 실시예에 의한 구동력 전달 구조체를 개략적으로 도시한 정면도이다. 도 8을 참조하면 본 실시예의 구동력 전달 구조체(200)는 제1 탄성부(210), 제2 탄성부(220), 제1 지지부(260), 제2 지지부(250) 및 중간 지지부(270)를 포함할 수 있다.
제1 탄성부(210)는 탄성을 갖는 구조를 갖고 예를들면 코일 형태를 갖는 스프링일 수 있다. 선택적 실시예로서 제1 탄성부(210)는 일 방향으로 연장된 길이를 가질 수 있다. 예를들면 제1 방향(도 8의 D1, D2와 평행한 방향)으로 길게 연장된 길이를 가질 수 있다. 다른 선택적 실시예로서 제1 탄성부(210)는 상기 제1 방향으로 인장 시 인장에 대한 저항력을 갖는 인장 스프링 형태를 포함할 수 있다. 또 다른 선택적 실시예로서 제1 탄성부(210)는 단부, 연결부 및 본체부를 포함할 수 있다. 이에 대한 설명은 전술한 도 1 내지 도 3의 구조에서 설명한 바와 동일하므로 생략한다.
제1 탄성부(210)와 제2 탄성부(220)의 폭을 상이하게 하여 제1 탄성부(210)와 제2 탄성부(220)의 사이에 연결되는 지점을 중심으로 제1 탄성부(210)와 제2 탄성부(220)를 서로 독립적으로 구동하도록 용이하게 제어할 수 있다. 예를들면 제1 탄성부(210)와 제2 탄성부(220)의 폭에 대응하는 내측 공간을 갖는 하우징(미도시)의 내에 구동력 전달 구조체(200)를 수용할 수 있다.
제2 탄성부(220)는 탄성을 갖는 구조를 갖고 예를들면 코일 형태를 갖는 스프링일 수 있다. 선택적 실시예로서 제2 탄성부(220)는 일 방향으로 연장된 길이를 가질 수 있다. 예를들면 상기 제1 방향(도 8의 D1, D2와 평행한 방향)으로 길게 연장된 길이를 가질 수 있다. 다른 선택적 실시예로서 제2 탄성부(220)는 상기 제1 방향으로 압축 시 압축에 대한 저항력을 갖는 압축 스프링 형태를 포함할 수 있다.
제1 탄성부(210)와 제2 탄성부(220)는 서로 연결되도록 형성될 수 있다. 예를들면 상기 제1 방향을 따라서 제1 탄성부(210)와 제2 탄성부(220)는 연결될 수 있다. 구체적인 예로서 제1 탄성부(210)와 제2 탄성부(220)는 일체로 형성될 수 있다. 예를들면 제1 탄성부(210)와 제2 탄성부(220)의 사이에 연결 부재, 체결 부재등을 별도로 형성하지 않고 직접 연결된 구성을 포함할 수 있다. 선택적 실시예로서 제1 탄성부(210)와 제2 탄성부(220)는 별도로 제조후 접합한 것이 아닌 일체로 형성한 구조일 수 있다. 예를들면 구동력 전달 구조체(200)는 하나의 스프링 형태로서, 인장 스프링과 압축 스프링을 모두 갖는 구조일 수 있다.
제1 지지부(260)는 제1 탄성부(210)에 연결될 수 있다. 제1 지지부(260)는 제1 탄성부(210)를 지지한 채 운동할 수 있도록 형성될 수 있다. 또한, 제1 탄성부(210)에 힘이 가해질 때 고정점이 선택적으로 대응될 수도 있다. 선택적 실시예로서 제1 지지부(260)는 D1 방향 또는 D2 방향으로 운동할 수 있고, 제1 지지부(260)의 운동을 통하여 제1 지지부(260)는 다양한 움직임을 제공할 수 있다.
제2 지지부(250) 제2 탄성부(220)에 연결될 수 있다. 제2 지지부(250)는 제2 탄성부(220)를 지지한 채 고정될 수 있다. 예를들면 제2 탄성부(220)에 힘이 가해질 때 제2 지지부(250)는 고정점에 대응될 수 있다. 이를 통하여 제2 탄성부(220)는 압축력이 가해진 후에 D1 방향으로 운동할 수 있다.
중간 지지부(270)는 제1 탄성부(210)와 제2 탄성부(220)의 연결 영역에 연결될 수 있다. 선택적 실시예로서 중간 지지부(270)는 제1 탄성부(210)의 영역 중 제2 탄성부(220)와 연결되는 영역 및 제2 탄성부(220)의 영역 중 제1 탄성부(210)와 연결되는 영역과 중첩되도록 배치될 수 있다.
중간 지지부(270)는 제1 탄성부(210) 및 제2 탄성부(220)를 지지한 채 운동할 수 있도록 형성될 수 있다. 또한, 중간 지지부(270)의 운동을 통하여 제1 탄성부(210) 또는 제2 탄성부(220)에 힘이 가해질 수 있고, 이러한 힘이 가해진 후에 중간 지지부(270)에 고정점이 선택적으로 대응될 수도 있다.
중간 지지부(270)의 운동 및 고정점을 통하여 제1 지지부(260)가 D1 또는 D2로의 자유로운 운동이 가능할 수 있다.
도 9 내지 도 11은 도 8의 구동력 전달 구조체의 동작을 설명하기 위한 도면들이다. 도 9 내지 도 11에 걸쳐서 제2 지지부(250)는 운동하지 않도록 고정될 수 있다.
도 9를 참조하면 고정점(ST)을 제1 지지부(260)에 대응하도록 위치한 후, 즉 제1 지지부(260)을 고정할 수 있도록 한 후에 제1 탄성부(210)를 인장하는 것을 도시하고 있다. 구체적으로 중간 지지부(270)의 운동을 통하여 중간 지지부(270)가 D2 방향으로 이동하도록 할 수 있다.
이에 따라 중간 지지부(270)에 연결된 제1 탄성부(210)는 D2방향으로 인장되어 인장 상태의 제1 탄성부(210')로 도시되어 있고, 중간 지지부(270)에 연결된 제2 탄성부(220)는 D2방향으로 압축되어 압축 상태의 제2 탄성부(220')로 도시되어 있다.
중간 지지부(270)의 D2 방향으로의 운동 시, 전술한 대로 제2 지지부(250)는 고정되어 있고, 제1 지지부(260)는 제1 고정점(ST1)을 통하여 고정되어 있다. 그리고 나서, 선택적 실시예로서 이러한 상태를 유지하도록 중간 지지부(270)에 제2 고정점(ST2)이 대응될 수 있다.
제1 고정점(ST1) 및 제2 고정점(ST2)은 다양한 형태를 가지고 제1 지지부(260) 및 제2 지지부(250)의 운동을 제한할 수 있다. 또한, 후술하는 것과 같이 고정을 해제할 수 있다. 선택적 실시예로서 제1 고정점(ST1) 및 제2 고정점(ST2)은 레버 형태로서 한번 누르면 고정, 한번 더 누르면 해제를 하도록 형성될 수 있다. 다른 선택적 실시예로서 제1 고정점(ST1) 및 제2 고정점(ST2)은 돌출부 형태로서 돌출부를 밀어넣으면 고정, 돌출부를 인출하면 해제를 하도록 형성될 수 있다.
그리고 나서 도 10을 참조하면 제1 고정점(ST1)을 해제하고, 제2 고정점(ST2)은 유지하여 인장된 상태의 제1 탄성부(210')에 인장력을 제거 시, 제1 탄성부(210')가 후방 반동 운동(화살표 R 방향의 운동)을 한 것이 도시되어 있다. 구체적 예로서 제1 탄성부(210')에 가해진 인장력이 제거되어 원래 상태의 제1 탄성부(210)가 도시되어 있고, 그에 따라 후방 반동 운동, 도면상의 D2 방향으로의 운동을 통하여 제1 지지부(260)가 이동한 것이 도시되어 있다. 이 때, 제2 고정점(ST2)은 유지하고, 제2 지지부(250)도 고정되어 있어 제2 탄성부(220')는 압축 상태를 유지하고 있다.
그리고 나서 도 11을 참조하면 제2 고정점(ST2)을 해제하여 압축된 상태의 제2 탄성부(220')에 압축력을 제거 시, 제2 탄성부(220')가 전방 반동 운동(화살표 F 방향의 운동)을 한 것이 도시되어 있다. 구체적 예로서 제2 탄성부(220')에 가해진 압축력이 제거되어 원래 상태의 제2 탄성부(220)가 도시되어 있고, 그에 따라 전방 반동 운동, 도면상의 D1 방향으로의 운동을 통하여 중간 지지부(270)가 이동한 것이 도시되어 있다.
또한, 이에 연결된 제1 탄성부(210) 및 제1 지지부(260)도 전방 반동 운동, 도면상의 D1 방향으로의 운동을 진행한 것이 도시되어 있다. 이 때, 제2 고정점(ST2)은 유지하고, 제2 지지부(250)도 고정되어 있어 제2 탄성부(220')는 압축 상태를 유지하고 있다.
상술한 후방 반동 운동(R방향으로의 운동) 및 전방 반동 운동(F방향으로의 운동)은 설명의 편의를 위한 것으로서 실제로 운동하는 부재인 제1 지지부(260)의 운동 방향을 기준으로 설명한 것으로서, "전방" 및 "후방"을 상호 교환하여 사용하여도 무방할 것이다.
본 실시예에서는 제2 지지부(250)가 고정되고 제1 지지부(260)가 순차적으로 반동 운동하는 것을 설명하였다. 그러나 이는 설명의 편의를 위한 것으로서 제1 지지부(260)가 고정되고 제2 지지부(250)가 순차적으로 반동 운동하는 것을 포함할 수 있다. 예를들면 전술한 것과 반대로 중간 지지부(270)를 먼저 D2 방향으로 이동한 후에, 제2 지지부(250)에 대응된 고정점을 해제하여 제2 지지부(250)가 D2 방향으로 반동 운동하도록 하고, 순차적으로 중간 지지부(270)에 대응된 고정점을 해제하여 중간 지지부(270)가 D1 방향으로 반동 운동하도록 하여 중간 지지부(270)에 연결된 제2 탄성부(220) 및 제2 지지부(250)도 D1 방향으로 반동 운동하도록 할 수 있다.
본 실시예의 구동력 전달 구조체는 적어도 제1 탄성부 및 제2 탄성부를 포함하고, 제1 탄성부는 인장 스프링 형태를 포함하고, 제2 탄성부는 압축 스프링 형태를 포함할 수 있다. 제1 탄성부가 제2 탄성부와 연결된 형태로서, 제1 탄성부에 연결되는 제1 지지부, 제2 탄성부에 연결되는 제2 지지부 및 그 사이의 중간 지지부를 포함할 수 있다. 중간 지지부의 한번의 이동을 통하여 제1 탄성부에 인장력을 가하고 제2 탄성부에 압축력을 가할 수 있다.
그리고 나서, 제1 지지부 및 중간 지지부에 대응되는 고정점을 선택적으로 해제하여 중간 지지부 및 제2 지지부가 운동하도록 하고, 예를들면 제1 지지부가 후방 반동 운동 및 전방 반동 운동을 할 수 있도록 할 수 있다.
본 실시예의 구동력 전달 구조체를 이용하여 다양한 방향, 즉 D1 또는 D2 방향으로의 다양한 구동력을 제공할 수 있고, 이를 통한 다양한 기계적 운동 부재, 특히 구동이 필요한 구동 부재를 제조할 수 있다. 예를들면 후방 반동을 통한 1차 발사, 전방 반동을 통한 2차 발상 등의 운동을 용이하게 구현할 수 있다.
도 12는 본 발명의 또 다른 실시예에 의한 구동력 전달 구조체를 개략적으로 도시한 도면이다. 도 12를 참조하면 본 실시예의 구동력 전달 구조체(300)는 하우징(301), 제1 탄성부(310) 및 제2 탄성부(320)를 포함할 수 있다.
제1 탄성부(310)는 탄성을 갖는 구조를 갖고 예를들면 코일 형태를 갖는 스프링일 수 있다. 선택적 실시예로서 제1 탄성부(310)는 일 방향으로 연장된 길이를 가질 수 있다. 예를들면 제1 방향으로 길게 연장된 길이를 가질 수 있다. 다른 선택적 실시예로서 제1 탄성부(310)는 상기 제1 방향으로 인장 시 인장에 대한 저항력을 갖는 인장 스프링 형태를 포함할 수 있다. 제1 탄성부(310)는 전술한 도 1 내지 도 3의 구조에서 설명한 바와 동일하므로 더 구체적인 설명은 생략한다.
제2 탄성부(320)는 탄성을 갖는 구조를 갖고 예를들면 코일 형태를 갖는 스프링일 수 있다. 선택적 실시예로서 제2 탄성부(320)는 일 방향으로 연장된 길이를 가질 수 있다. 예를들면 상기 제1 방향으로 길게 연장된 길이를 가질 수 있다. 다른 선택적 실시예로서 제2 탄성부(320)는 상기 제1 방향으로 압축 시 압축에 대한 저항력을 갖는 압축 스프링 형태를 포함할 수 있다. 제2 탄성부(320)는 전술한 도 1 내지 도 3의 구조에서 설명한 바와 동일하므로 더 구체적인 설명은 생략한다.
제1 탄성부(310)와 제2 탄성부(320)는 서로 연결되도록 형성될 수 있다. 예를들면 상기 제1 방향을 따라서 제1 탄성부(310)와 제2 탄성부(320)는 연결될 수 있다. 구체적인 예로서 제1 탄성부(310)와 제2 탄성부(320)는 일체로 형성될 수 있다. 예를들면 제1 탄성부(310)와 제2 탄성부(320)의 사이에 연결 부재, 체결 부재등을 별도로 형성하지 않고 직접 연결된 구성을 포함할 수 있다. 선택적 실시예로서 제1 탄성부(310)와 제2 탄성부(320)는 별도로 제조후 접합한 것이 아닌 일체로 형성한 구조일 수 있다. 예를들면 구동력 전달 구조체(300)는 하나의 스프링 형태로서, 인장 스프링과 압축 스프링을 모두 갖는 구조일 수 있다.
하우징(301)은 내측에 수용 공간을 갖도록 형성될 수 있고, 이러한 수용 공간에 제1 탄성부(310) 및 제2 탄성부(320)가 배치될 수 있다. 선택적 실시예로서 제1 탄성부(310) 또는 제2 탄성부(320)의 일 영역은 하우징(301)의 일 영역, 예를들면 하우징(301)의 내측의 벽에 고정될 수 있다. 구체적 예를들면 제2 탄성부(320)의 단부가 하우징(301)의 내벽에 고정될 수 있다. 또한 다른 예를들면 전술한 도 8의 실시예에서 제2 지지부(250)가 하우징(301)의 내벽에 고정되거나 하우징(301)의 내벽이 제2 지지부(250)를 대신할 수도 있다. 다른 선택적 실시예로서 하우징(301)의 내측의 수용 공간은 제1 탄성부(310)의 폭에 대응하는 폭 및 제2 탄성부(320)의 폭에 대응하는 폭을 갖도록 상이한 폭을 갖는 영역을 갖도록 형성될 수 있다. 이를 통하여 하우징(301)의 내측의 수용 공간이 고정점으로서의 기능을 구현할 수도 있다.
도 13은 본 발명의 또 다른 실시예에 의한 구동력 전달 구조체를 개략적으로 도시한 도면이다. 도 13을 참조하면 본 실시예의 구동력 전달 구조체(400)는 하우징(401), 제1 탄성부(410), 제2 탄성부(420), 제1 지지부(460), 제2 지지부(450) 및 중간 지지부(470)를 를 포함할 수 있다.
제1 탄성부(410)는 탄성을 갖는 구조를 갖고 예를들면 코일 형태를 갖는 스프링일 수 있다. 선택적 실시예로서 제1 탄성부(410)는 일 방향으로 연장된 길이를 가질 수 있다. 예를들면 제1 방향으로 길게 연장된 길이를 가질 수 있다. 다른 선택적 실시예로서 제1 탄성부(410)는 상기 제1 방향으로 인장 시 인장에 대한 저항력을 갖는 인장 스프링 형태를 포함할 수 있다. 제1 탄성부(410)는 전술한 도 1 내지 도 3의 구조에서 설명한 바와 동일하므로 더 구체적인 설명은 생략한다.
제2 탄성부(420)는 탄성을 갖는 구조를 갖고 예를들면 코일 형태를 갖는 스프링일 수 있다. 선택적 실시예로서 제2 탄성부(420)는 일 방향으로 연장된 길이를 가질 수 있다. 예를들면 상기 제1 방향으로 길게 연장된 길이를 가질 수 있다. 다른 선택적 실시예로서 제2 탄성부(420)는 상기 제1 방향으로 압축 시 압축에 대한 저항력을 갖는 압축 스프링 형태를 포함할 수 있다. 제2 탄성부(420)는 전술한 도 1 내지 도 3의 구조에서 설명한 바와 동일하므로 더 구체적인 설명은 생략한다.
제1 탄성부(410)와 제2 탄성부(420)는 서로 연결되도록 형성될 수 있다. 예를들면 상기 제1 방향을 따라서 제1 탄성부(410)와 제2 탄성부(420)는 연결될 수 있다. 구체적인 예로서 제1 탄성부(410)와 제2 탄성부(420)는 일체로 형성될 수 있다. 예를들면 제1 탄성부(410)와 제2 탄성부(420)의 사이에 연결 부재, 체결 부재등을 별도로 형성하지 않고 직접 연결된 구성을 포함할 수 있다. 선택적 실시예로서 제1 탄성부(410)와 제2 탄성부(420)는 별도로 제조후 접합한 것이 아닌 일체로 형성한 구조일 수 있다. 예를들면 구동력 전달 구조체(400)는 하나의 스프링 형태로서, 인장 스프링과 압축 스프링을 모두 갖는 구조일 수 있다.
제1 지지부(460)는 제1 탄성부(410)에 연결될 수 있다. 제1 지지부(460)는 제1 탄성부(410)를 지지한 채 운동할 수 있도록 형성될 수 있다. 또한, 제1 탄성부(410)에 힘이 가해질 때 고정점이 선택적으로 대응될 수도 있다. 선택적 실시예로서 제1 지지부(460)는 D1 방향 또는 D2 방향으로 운동할 수 있고, 제1 지지부(460)의 운동을 통하여 제1 지지부(460)는 다양한 움직임을 제공할 수 있다.
제2 지지부(450)는 제2 탄성부(420)에 연결될 수 있다. 제2 지지부(450)는 제2 탄성부(420)를 지지한 채 고정될 수 있다. 예를들면 제2 탄성부(420)에 힘이 가해질 때 제2 지지부(450)는 고정점에 대응될 수 있다. 이를 통하여 제2 탄성부(420)는 압축력이 가해진 후에 D1 방향으로 운동할 수 있다.
중간 지지부(470)는 제1 탄성부(410)와 제2 탄성부(420)의 연결 영역에 연결될 수 있다. 선택적 실시예로서 중간 지지부(470)는 제1 탄성부(410)의 영역 중 제2 탄성부(420)와 연결되는 영역 및 제2 탄성부(420)의 영역 중 제1 탄성부(410)와 연결되는 영역과 중첩되도록 배치될 수 있다.
중간 지지부(470)는 제1 탄성부(410) 및 제2 탄성부(420)를 지지한 채 운동할 수 있도록 형성될 수 있다. 또한, 중간 지지부(470)의 운동을 통하여 제1 탄성부(410) 또는 제2 탄성부(420)에 힘이 가해질 수 있고, 이러한 힘이 가해진 후에 중간 지지부(470)에 고정점이 선택적으로 대응될 수도 있다.
중간 지지부(470)의 운동 및 고정점을 통하여 제1 지지부(460)가 D1 또는 D2로의 자유로운 운동이 가능할 수 있다.
하우징(401)은 내측에 수용 공간을 갖도록 형성될 수 있고, 이러한 수용 공간에 제1 탄성부(410) 및 제2 탄성부(420)가 배치될 수 있다. 선택적 실시예로서 제1 탄성부(410) 또는 제2 탄성부(420)의 일 영역은 하우징(401)의 일 영역, 예를들면 하우징(401)의 내측의 벽에 고정될 수 있다. 구체적 예를들면 제2 지지부(450)가 하우징(401)의 내벽에 고정될 수 있다. 선택적 실시예로서 하우징(401)의 내벽이 제2 지지부(450)를 대신할 수도 있다.
제1 고정점(ST1) 및 제2 고정점(ST2)은 각각 제1 지지부(460) 및 중간 지지부(470)에 대응될 수 있고, 제1 지지부(460) 및 중간 지지부(470)에 대한 고정 및 해제를 진행하도록 형성될 수 있다.
제1 고정점(ST1) 및 제2 고정점(ST2)은 다양한 형태를 가지고 제1 지지부(460) 및 중간 지지부(470)의 운동을 제어할 수 있다. 선택적 실시예로서 제1 고정점(ST1) 및 제2 고정점(ST2)은 레버 형태로서 한번 누르면 고정, 한번 더 누르면 해제를 하도록 형성될 수 있다. 다른 선택적 실시예로서 제1 고정점(ST1) 및 제2 고정점(ST2)은 돌출부 형태로서 돌출부를 밀어넣으면 고정, 돌출부를 인출하면 해제를 하도록 형성될 수 있다. 구체적 예로서 제1 고정점(ST1) 및 제2 고정점(ST2)은 하우징(401)의 벽에 연결될 수 있고, 추가적 예로서 하우징(401)의 외부에 적어도 일 영역이 노출될 수 있고, 이를 통하여 노출된 영역에 대한 제어를 통하여 제1 고정점(ST1) 및 제2 고정점(ST2)을 용이하게 제어할 수 있다.
도 14는 본 발명의 또 다른 실시예에 의한 구동력 전달 구조체를 개략적으로 도시한 도면이다. 도 15 내지 도 17은 도 14의 구동력 전달 구조체의 동작을 설명하기 위한 도면들이다.
도 15를 참조하면 본 실시예의 구동력 전달 구조체(500)는 제1 탄성부(510), 제2 탄성부(520), 제1 지지부(560), 제2 지지부(550) 및 중간 지지부(570)를 포함할 수 있다.
제1 탄성부(510)는 탄성을 갖는 구조를 갖고 예를들면 코일 형태를 갖는 스프링일 수 있다. 선택적 실시예로서 제1 탄성부(510)는 일 방향으로 연장된 길이를 가질 수 있다. 예를들면 제1 방향(도 14의 D1, D2와 평행한 방향)으로 길게 연장된 길이를 가질 수 있다. 다른 선택적 실시예로서 제1 탄성부(510)는 상기 제1 방향으로 인장 시 인장에 대한 저항력을 갖는 인장 스프링 형태를 포함할 수 있다. 또 다른 선택적 실시예로서 제1 탄성부(510)는 단부, 연결부 및 본체부를 포함할 수 있다. 이에 대한 설명은 전술한 도 1 내지 도 3의 구조에서 설명한 바와 동일하므로 생략한다.
제1 탄성부(510)와 제2 탄성부(520)의 폭을 상이하게 하여 제1 탄성부(510)와 제2 탄성부(520)의 사이에 연결되는 지점을 중심으로 제1 탄성부(510)와 제2 탄성부(520)를 서로 독립적으로 구동하도록 용이하게 제어할 수 있다. 예를들면 제1 탄성부(510)와 제2 탄성부(520)의 폭에 대응하는 내측 공간을 갖는 하우징(미도시)의 내에 구동력 전달 구조체(500)를 수용할 수 있다.
제2 탄성부(520)는 탄성을 갖는 구조를 갖고 예를들면 코일 형태를 갖는 스프링일 수 있다. 선택적 실시예로서 제2 탄성부(520)는 일 방향으로 연장된 길이를 가질 수 있다. 예를들면 상기 제1 방향(도 8의 D1, D2와 평행한 방향)으로 길게 연장된 길이를 가질 수 있다. 다른 선택적 실시예로서 제2 탄성부(520)는 상기 제1 방향으로 압축 시 압축에 대한 저항력을 갖는 압축 스프링 형태를 포함할 수 있다.
제1 탄성부(510)와 제2 탄성부(520)는 서로 연결되도록 형성될 수 있다. 예를들면 상기 제1 방향을 따라서 제1 탄성부(510)와 제2 탄성부(520)는 연결될 수 있다. 구체적인 예로서 제1 탄성부(510)와 제2 탄성부(520)는 일체로 형성될 수 있다. 예를들면 제1 탄성부(510)와 제2 탄성부(520)의 사이에 연결 부재, 체결 부재등을 별도로 형성하지 않고 직접 연결된 구성을 포함할 수 있다. 선택적 실시예로서 제1 탄성부(510)와 제2 탄성부(520)는 별도로 제조후 접합한 것이 아닌 일체로 형성한 구조일 수 있다. 예를들면 구동력 전달 구조체(500)는 하나의 스프링 형태로서, 인장 스프링과 압축 스프링을 모두 갖는 구조일 수 있다.
제1 지지부(560)는 제1 탄성부(510)에 연결될 수 있다. 제1 지지부(560)는 제1 탄성부(510)를 지지한 채 운동할 수 있도록 형성될 수 있다. 또한, 제1 탄성부(510)에 힘이 가해질 때 고정점이 선택적으로 대응될 수도 있다. 선택적 실시예로서 제1 지지부(560)는 D1 방향 또는 D2 방향으로 운동할 수 있고, 제1 지지부(560)의 운동을 통하여 제1 지지부(560)는 다양한 움직임을 제공할 수 있다.
제2 지지부(550) 제2 탄성부(520)에 연결될 수 있다. 또한, 제2 탄성부(520)에 힘이 가해질 때 고정점이 선택적으로 대응될 수도 있다. 선택적 실시예로서 제2 지지부(550)는 D1 방향 또는 D2 방향으로 운동할 수 있고, 제2 지지부(550)의 운동을 통하여 제2 지지부(550)는 다양한 움직임을 제공할 수 있다.
중간 지지부(570)는 제1 탄성부(510)와 제2 탄성부(520)의 연결 영역에 연결될 수 있다. 선택적 실시예로서 중간 지지부(570)는 제1 탄성부(510)의 영역 중 제2 탄성부(520)와 연결되는 영역 및 제2 탄성부(520)의 영역 중 제1 탄성부(510)와 연결되는 영역과 중첩되도록 배치될 수 있다.
중간 지지부(570)는 제1 탄성부(510) 및 제2 탄성부(520)를 지지한 채 운동할 수 있도록 형성될 수 있다. 또한, 중간 지지부(570)의 운동을 통하여 제1 탄성부(510) 또는 제2 탄성부(520)에 힘이 가해질 수 있고, 이러한 힘이 가해진 후에 중간 지지부(570)에 고정점이 선택적으로 대응될 수도 있다.
중간 지지부(570)의 운동 및 고정점을 통하여 제1 지지부(560)가 D1 또는 D2로의 자유로운 운동이 가능할 수 있다.
도 15 내지 도 17은 도 14의 구동력 전달 구조체의 동작을 설명하기 위한 도면들이다.
도 15를 참조하면 제1 고정점(ST1)을 제1 지지부(560)에 대응하도록 위치한 후, 즉 제1 지지부(560)을 고정할 수 있도록 한 후에 제1 탄성부(510)를 인장하는 것을 도시하고 있다. 구체적으로 중간 지지부(570)의 운동을 통하여 중간 지지부(570)가 D2 방향으로 이동하도록 할 수 있다.
이에 따라 중간 지지부(570)에 연결된 제1 탄성부(510)는 D2방향으로 인장되어 인장 상태의 제1 탄성부(510')로 도시되어 있고, 중간 지지부(570)에 연결된 제2 탄성부(520)는 D2방향으로 압축되어 압축 상태의 제2 탄성부(520')로 도시되어 있다.
중간 지지부(570)의 D2 방향으로의 운동 시, 제2 고정점(ST2)이 제2 지지부(550)에 대응되도록 위치한 후, 즉 제2 지지부(550)를 고정한 후에 중간 지지부(570)가 D2 방향으로 이동하여 제2 탄성부(520)가 압축되어 압축된 상태의 제2 탄성부(520')가 도시되어 있다.
그리고 나서, 선택적 실시예로서 이러한 상태를 유지하도록 중간 지지부(570)에 고정점(미도시)이 대응될 수도 있다.
제1 고정점(ST1) 및 제2 고정점(ST2)은 다양한 형태를 가지고 제1 지지부(560) 및 제2 지지부(550)의 운동을 제한할 수 있다. 또한, 후술하는 것과 같이 고정을 해제할 수 있다.
그리고 나서 도 17을 참조하면 인장된 상태의 제1 탄성부(510')에 인가된 인장력을 제거 또는 압축된 상태의 제2 탄성부(520')에 인가된 압축력을 제거 시, 예를들면 중간 지지부(570)의 고정을 해제하여 제1 탄성부(510')가 전방 반동 운동 (화살표 F 방향의 운동) 또는 제2 탄성부(520')가 전방 반동 운동을 한 것이 도시되어 있다. 구체적 예로서 제1 탄성부(510')에 가해진 인장력이 제거되어 원래 상태의 제1 탄성부(510)가 도시되어 있고, 중간 지지부(570)도 도면상의 D1 방향으로의 운동을 통하여 이동한 것이 도시되어 있다. 이 때, 제2 고정점(ST2)은 유지하고, 제2 지지부(550)는 고정되어 있을 수 있다.
이 경우 제1 탄성부(510) 및 제2 탄성부(520)의 전방 반동 운동(화살표 F 방향의 운동)으로 인하여 D1 방향으로의 힘이 제1 지지부(560)에 전달될 수 있고, 이러한 힘을 이용하여 다양한 구동력을 제공할 수 있다. 예를들면 제1 지지부(560)에 연결되는 구동 부재(미도시)에 이러한 구동력이 전달될 수 있다.
또한, 다른 예로서 제1 탄성부(510) 및 제2 탄성부(520)의 전방 반동 운동(화살표 F 방향의 운동)으로 인하여 D1 방향으로의 힘이 제1 지지부(560)에 전달될 때, 제1 고정점(ST1)을 해제하거나, 제1 탄성부(510) 및 제2 탄성부(520)의 전방 반동 운동(화살표 F 방향의 운동)으로 인하여 D1 방향으로의 힘이 제1 고정점(ST1)을 해제할 수 있을 정도로 클 경우 제1 지지부(560)는 D1 방향으로 운동할 수 있고, 제1 지지부(560)가 직접적으로 구동력을 제공하는 기능을 수행할 수도 있다.
또 다른 예로서 도 17을 참조하면 도 16과 다르게 제2 고정점(ST2)을 해제한 것이 도시되어 있다. 즉, 제2 고정점(ST2)을 해제하여 압축된 상태의 제2 탄성부(520')에 압축력을 제거 시, 제2 탄성부(520')가 후방 반동 운동(화살표 R 방향의 운동)을 한 것이 도시되어 있다. 구체적 예로서 제2 탄성부(520')에 가해진 압축력이 제거되어 원래 상태의 제2 탄성부(520)가 도시되어 있고, 그에 따라 후방 반동 운동, 도면상의 D2 방향으로의 운동을 통하여 제2 지지부(550)가 이동한 것이 도시되어 있다. 이 때, 중간 지지부(570)에는 제3 고정점(SD3)이 대응되어 중간 지지부(570)의 운동을 제한할 수 있다.
상술한 후방 반동 운동(R방향으로의 운동) 및 전방 반동 운동(F방향으로의 운동)은 설명의 편의를 위한 것으로서 실제로 운동하는 부재인 제1 지지부(560)의 운동 방향을 기준으로 설명한 것으로서, "전방" 및 "후방"을 상호 교환하여 사용하여도 무방할 것이다.
본 실시예의 구동력 전달 구조체는 적어도 제1 탄성부 및 제2 탄성부를 포함하고, 제1 탄성부는 인장 스프링 형태를 포함하고, 제2 탄성부는 압축 스프링 형태를 포함할 수 있다.
제1 탄성부가 제2 탄성부와 연결된 형태로서, 제1 탄성부에 연결되는 제1 지지부, 제2 탄성부에 연결되는 제2 지지부 및 그 사이의 중간 지지부를 포함할 수 있다. 중간 지지부의 이동을 통하여 제1 탄성부에 인장력을 가하고 제2 탄성부에 압축력을 가할 수 있다.
그리고 나서, 제1 지지부 및 중간 지지부에 대응되는 고정점을 선택적으로 해제하여 중간 지지부 및 제2 지지부가 운동하도록 하고, 예를 들면 제1 지지부가 후방 반동 운동 및 전방 반동 운동을 할 수 있도록 할 수 있다.
다음으로, 상기와 같은 구동력 전달 구조체를 이용한 하나의 구현예인 절단 생검기구의 실시예들을 보다 구체적으로 설명한다.
도 18은 일 실시예에 따른 절단 생검기구의 측면도이고, 도 19는 도 18의 부분 단면도이다.
도 18 및 도 19를 참조하면, 일 실시예에 따른 절단 생검기구는, 하우징(10), 니들셋(200), 마스터 블록(30), 허브 블록(40), 스프링(50), 장전 유닛(500) 및 발사 유닛(180)을 포함할 수 있다.
상기 하우징(10)은 도 20에서 볼 수 있듯이, 축 방향(D)으로 연장되도록 형성된 것으로, 내부에 축 방향(D)으로 연장된 중공부(11)를 포함할 수 있다. 이 중공부(11)는 후술하는 니들셋(200)이 관통하는 것 외에는 대략 밀폐된 공간을 형성할 수 있다. 하우징(10)은 중공부(11)와 연통하는 제1 개구(110)를 가지며, 이 제1 개구(110)를 통해 후술하는 바와 같이 허브 블록(40)과 장전 유닛(500)이 연결되도록 할 수 있다.
하우징(10)의 제1 방향(D1) 단부에는 홀(12)이 형성되어 있는 데, 이 홀(12)은 상기 중공부(11)와 연통되며, 후술하는 바와 같이 이 홀(12)을 통해 니들셋(200)이 통과할 수 있다.
상기 홀(12)에 인접하게 격벽(102)이 설치되며, 이 격벽(102)에 의해 중공부(11)가 분할되어 격실(103)을 갖게 된다. 상기 격벽(102)에는 상기 홀(12)과 정렬된 홀이 형성되어 이를 통해 니들셋(200)이 통과하게 된다.
상기 격실(103)에는 후술하는 지지 블록(15)이 결합된다.
하우징(10)은 제2 개구(111)를 포함할 수 있는 데, 제2 개구(111)는 상기 제1 개구(110)와는 반대의 위치에 형성되며, 중공부(11)와 연통될 수 있다.
이러한 하우징(10)에는 발사 유닛(180)이 위치할 수 있는 데, 일 실시예에 따르면 상기 제2 개구(111)에 인접하게 위치할 수 있다.
상기 발사 유닛(180)은 제1 발사 유닛(182) 및 제2 발사 유닛(183)을 포함할 수 있다. 상기 제1 발사 유닛(182)은 상기 축 방향(D)에 대략 직각인 방향, 즉 도면의 상하 방향으로 탄성을 가지며, 상기 제2 개구(111)와 이격되도록 하우징(10)으로부터 연장될 수 있다. 제2 발사 유닛(183)은 제1 발사 유닛(182)의 단부로부터 제2 개구(111)를 향해 연장된 것으로, 사용자가 발사 유닛(180)을 누름에 따라 선택적으로 제2 개구(111)를 향하도록 구비될 수 있다.
이러한 발사 유닛(180)은 하우징(10)과 일체로 형성될 수 있다. 특히 상기 제1 발사 유닛(182)은 일단이 하우징(10)에 연결되도록 형성될 수 있다. 이처럼 발사 유닛(180)을 하우징(10)과 일체로 성형함으로써, 부품의 개수를 줄일 수 있고, 발사 유닛(180)과 하우징(10)의 조립이라는 공정을 줄일 수 있어, 양산성을 더욱 극대화할 수 있다.
하우징(10)의 일단에는 홀(12)에 인접하게 힌지 축(17)이 위치하는 데, 상기 힌지 축(17)은 상기 중공부(11)를 중심으로, 발사 유닛(180)의 반대측에 위치할 수 있다. 이 힌지 축(17)에 후술하는 장전 유닛(500)의 제1 핸들(51)이 힌지 결합될 수 있다. 도면에 도시된 실시예들에 따르면, 상기 힌지 축(17)은 하우징(10)의 제1 방향(D1) 단부에 위치하나, 본 발명은 반드시 이에 한정되는 것은 아니고, 힌지 축(17)은 하우징(10)의 제2 방향(D2) 단부에 위치할 수 있다. 물론 이 경우에는 후술하는 잠금 유닛(161)은 하우징(10)의 제1 방향(D1) 단부에 위치할 수 있다.
하우징(10)의 대략 중앙부에는 외측으로 돌출된 돌기(101)가 더 형성될 수 있으며, 이 돌기(101)는 후술하는 바와 같이 장전 유닛(500)의 제1 핸들(51)이 하우징(10)에 밀착될 때에 제1 핸들(51)을 누르도록 구비되어 제1 핸들이 하우징(10)으로부터 멀어지는 방향으로 탄성력을 갖도록 할 수 있다.
도 19에 도시된 일 실시예에 따르면, 상기 하우징(10)의 일단에는 홀(12)과 인접하게 지지 블록(15)이 더 위치할 수 있는 데, 일 실시예에 따르면 상기 격실(103)을 모두 채우도록 결합될 수 있다.
이 지지 블록(15)은 내부가 홀(12)과 연통되도록 구비되는 데, 제1 방향(D1)의 선단으로 지지 가이드(151)가 더 연장되어 홀(12)을 관통할 수 있다. 지지 가이드(151)는 파이프 상으로 형성되어 홀(12)과 동축상으로 배열되며, 이에 따라 홀(12)과 연통될 수 있다.
지지 블록(15)을 관통하도록 후술하는 니들 셋(200)이 설치될 수 있다. 따라서 지지 블록(15)의 적어도 지지 가이드(151)는 내경이 니들 셋(200)의 외경에 대응되는 크기를 갖도록 할 수 있다. 이러한 지지 블록(15)은 시술 과정에서 니들 셋(200)이 흔들리는 것을 최소화할 수 있으며, 이에 따라 타겟 부위에 대한 정확한 채취를 도울 수 있다. 뿐만 아니라, 타겟 조직 및 시술 내용에 따라 다양한 사이즈의 니들 셋(200)을 사용하게 되는 데, 본 발명의 실시예는 지지 블록(15)을 니들 셋(200)의 사이즈에 대응되도록, 특히 지지 가이드(151)의 내경을 니들 셋(200) 외경에 대응되도록 형성함으로써, 니들 셋 변경 시 지지 블록(15)을 변경할 수 있기 때문에 하나의 기구로 여러 사이즈의 니들 셋(200)을 사용할 수 있는 장점이 있으며, 니들 셋(200)의 셋팅도 간단히 할 수 있다.
상기 하우징(10)은 제1 스토퍼(171)를 더 포함할 수 있다. 상기 제1 스토퍼(171)는 홀(12)과 힌지 축(17)의 사이에 위치할 수 있는 데, 힌지 축(17)에 보다 근접하게 위치할 수 있다. 제1 스토퍼(171) 및/또는 후술하는 제2 스토퍼(516)에 의해 제1 핸들(51)의 회동 각도가 일정 범위 내로 단속될 수 있다.
장전 유닛(500)은 제1 핸들(51)과 커넥터(52)를 포함할 수 있다. 제1 핸들(51)은 일단(511)이 하우징(10)의 힌지 축(17)에 힌지 결합되고, 타단(512)은 개방된 것일 수 있다. 제1 핸들(51)은 상기 제1 스토퍼(171)와 인접하게 위치한 제2 스토퍼(516)를 포함할 수 있다. 제2 스토퍼(516)는 제1 핸들(51)이 힌지 축(17)을 중심으로 최대 각도로 회동한 상태에서 제1 스토퍼(171)와 닿게 됨으로써 제1 핸들(51)이 힌지 축(17)을 중심으로 더 이상 회동하지 않도록 할 수 있다. 이러한 일 실시예는 제1 스토퍼(171)와 제2 스토퍼(516) 모두를 포함하는 것으로 나타내었으나, 본 발명은 반드시 이에 한정되는 것은 아니고, 제1 스토퍼(171) 및 제2 스토퍼(516) 중 적어도 하나를 포함하는 것으로 충분할 수 있다.
상기 커넥터(52)는 일단(521)이 제1 핸들(51)의 대략 중앙 부근에 회동 가능하게 힌지 결합되고, 타단(522)이 허브 블록(40)을 향하도록 구비될 수 있다. 커넥터(52)와 제1 핸들(51)의 사이에는 별도의 탄성 부재(53)가 연결될 수 있으며, 이에 따라 커넥터(52)의 타단(522)이 제1 방향(D1)으로 탄성력을 받도록 할 수 있다. 제1 핸들(51)은, 커넥터(52)가 회동해 제1 핸들(51)과 중첩되는 자리에 형성된 홈(514)을 포함할 수 있으며, 이에 따라 제1 핸들(51)이 하우징(10)에 인접하게 회동한 상태에서 커넥터(52)는 홈(514) 내에 위치하므로, 커넥터(52)가 제1 핸들(51)의 운동을 간섭하지 않도록 할 수 있다.
하우징(10)의 타단, 즉 힌지 축(17)과 반대측 단부에는 잠금 유닛(161)이 위치할 수 있다. 상기 잠금 유닛(161)은 축 방향(D)에 수직한 방향으로 연장되며, 도 19를 참조하면 단부가 갈고리 형상으로 형성되어 있어, 제1 핸들(51) 타단(512)의 홀(515)에 걸릴 수 있도록 구비되어 있다. 상기 잠금 유닛(161)은 그 길이 방향에 수직한 방향으로 탄성을 갖도록 구비될 수 있으며, 이에 따라 후술하는 바와 같이 사용자의 간단한 조작에 의해 제1 핸들(51)에 대한 고정을 해제할 수 있다. 이러한 잠금 유닛(161)은 반드시 하우징(10)에 결합되는 것은 아니며, 제1 핸들(51)의 타단(512)에 결합될 수도 있다. 물론 이 경우 홀(515)은 하우징(10)에 형성될 수 있을 것이다.
한편, 상기 제1 핸들(51)은 도 22에서 볼 수 있듯이, 잠금 유닛(161)에 의해 하우징(10)에 결합된 상태에서 그 길이 방향으로 소정의 곡률(R)을 갖도록 구비될 수 있다. 제1 핸들(51)은 금속 및/또는 합성수지재로 형성될 수 있는 데, 재질의 특성에 의해 소정의 탄성을 가질 수 있다. 제1 핸들(51)은 잠금 유닛(161)에 의해 하우징(10)에 결합된 상태에서 하우징(10)의 돌기(101)에 길이 방향의 대략 중간 부분이 눌리게 되므로, 이 상태에서 제1 핸들(51)은 그 길이 방향에 대략 수직한 방향, 예컨대 잠금 유닛(161)의 반대 방향으로 탄성력을 가질 수 있다. 이렇게 제1 핸들(51)이 길이 방향에 수직한 방향으로 탄성력을 갖는 경우 제1 핸들(51)이 잠금 유닛(161)에 의한 결합을 해제하는 방향으로 포텐셜을 갖게 되며, 이에 따라 사용자가 갈고리 형태의 잠금 유닛(161)을 가볍게 터치함으로써 제1 핸들(51)의 잠금 유닛(161)에 의한 결합을 해제할 수 있다. 이는 사용자의 제1 핸들(51)에 대한 핸들링성을 더욱 높일 수 있다.
상기 하우징(10)은 제1 지지 유닛(13) 및 제2 지지 유닛(14)을 포함할 수 있다.
상기 제1 지지 유닛(13)은 적어도 장전 위치에서 마스터 블록(30)에 선택적으로 결합되어 상기 마스터 블록(30)에게 스프링(50)의 탄성력에 대한 저항력을 제공하도록 구비될 수 있다. 이를 위하여 일 실시예에 따르면, 상기 제1 지지 유닛(13)은 하우징(10)에 형성된 제2 개구(111)의 제2 방향(D2)의 단부가 될 수 있다. 전술한 제2 발사 유닛(183)은, 이 제1 지지 유닛(13)에 인접하게 위치하며, 발사 시 제1 지지 유닛(13)에 걸려 있는 마스터 블록(30)의 일부를 눌러 제1 지지 유닛(13)에 대한 마스터 블록(30)의 걸림을 해제할 수 있다.
상기 제2 지지 유닛(14)은 적어도 장전 위치에서 허브 블록(40)에 선택적으로 결합되어 상기 허브 블록(40)에게 스프링(50)의 탄성력에 대한 저항력을 제공하도록 구비될 수 있다. 이를 위하여 일 실시예에 따르면, 상기 제2 지지 유닛(14)은 하우징(10)에 형성된 제1 개구(110)로부터 제2 방향(D2)을 향해 연장되도록 형성된 탄성 지지체일 수 있다. 제2 지지 유닛(14)의 일단(141)은 하우징(10)에 결합되어 있고, 타단(142)은 일단(141)으로부터 중공부(11)를 향해 경사지도록 연장되어 있다. 상기 제2 지지 유닛(14)의 타단(142)은 하우징(10)으로부터 분리되어 일단(141)을 중심으로 일정 정도 탄성 운동할 수 있다. 이에 따라 후술하는 바와 같이 사용자의 발사 동작에 의해 마스터 블록(30)이 허브 블록(40)을 향해 이동함에 따라 마스터 블록(30)이 제2 지지 유닛(14)을 누름에 따라 허브 블록(40)과 제2 지지 유닛(14)간의 선택적 결합을 해제할 수 있다.
한편, 상기 하우징(10)은 도 18에서 볼 수 있듯이, 제3 개구(121)를 더 포함할 수 있다. 상기 제3 개구(121)는 하우징(10)의 일측에 형성될 수 있는 데, 예컨대 도 18에서 볼 수 있듯이 발사 유닛(180)에 인접한 하우징(10)의 측면에 형성될 수 있다. 제3 개구(121)를 통해 후술하는 바와 같이 제2 핸들(331)이 하우징(10)의 외측으로 노출되며, 사용자가 제2 핸들(331)을 조작할 수 있게 된다.
상기 니들셋(200)은 속침(20)과 겉침(21)을 포함할 수 있다.
도 21을 참조하면, 상기 속침(20)은 일단에 조직 채취홈(202)이 형성되어 있는 데, 이 조직 채취홈(202)은 상측 또는 하측을 향해 개방된 홈의 구조를 갖는다. 속침(20)은 하우징(10)을 축 방향(D)으로 관통하도록 설치되고, 속침(20)의 타단(201)은 하우징(10)의 제2 방향(D2) 단부에 고정될 수 있다.
상기 겉침(21)은 속침(20)이 내부에 수용되도록 파이프 상으로 구비되며, 속침(20)보다 짧은 길이를 갖도록 형성될 수 있다. 상기 겉침(21)은 조직 채취홈(202)에 수용된 조직을 절단하도록 일단에 날(212)이 형성되어 있으며, 속침(20)을 기준으로 왕복 운동하도록 구비될 수 있다. 상기 날(212)은 속침(20)의 단부와 상이한 방향의 경사로 구비될 수 있으나, 반드시 이에 한정되는 것은 아니고 속침(20)의 단부와 동일한 방향의 경사를 갖도록 구비될 수 있다.
이러한 니들셋(200)은 상기 하우징(10)을 통과해 하우징(10)의 선단 홀(12)을 통해 외측으로 돌출되어 있다. 따라서 니들셋(200)의 일부는 중공부(11) 내에 위치한다.
도면에 도시하지는 않았지만, 일 실시예에 따르면, 겉침(21)과 속침(20)의 사이에는 소정의 공간이 형성될 수 있고, 이 공간은 조직 채취 홈(202)에 연결될 수 있다. 그리고 겉침(21)의 타단에는 홀(211)이 형성될 수 있는 데, 이 홀(211)은 축 방향(D)에 수직한 방향으로 형성되고, 겉침(21) 내부의 상기 공간과 연통될 수 있다. 이 홀(211)을 통해 마스터 블록(30)의 이동 시 겉침(21)의 내부 공간에 음압을 형성시킬 수 있다.
이러한 니들 셋(200)의 적어도 겉침(21)은 마스터 블록(30)에 고정적으로 결합되어 마스터 블록(30)의 운동에 연동하여 운동할 수 있다. 상기 마스터 블록(30)은 상기 중공부(11) 내에 위치한다. 그리고 속침(20)은 마스터 블록(30)을 관통하도록 설치될 수 있으며, 마스터 블록(30)에는 결합되지 않도록 구비될 수 있다.
도 23을 참조하면, 상기 마스터 블록(30)은 베이스(301)와 커버(302)를 포함할 수 있다. 베이스(301)는 후술하는 연결 바(33)가 결합될 수 있도록 공간(304)을 구비하며, 일측에 개구(305)가 형성되어 이를 통해 연결 바(33)의 제2 핸들(331)이 노출되도록 할 수 있다. 상기 베이스(301)는 개구(305)에 인접하게 위치한 제3 지지 유닛(303)을 포함할 수 있다. 상기 제3 지지 유닛(303)은 베이스(301)의 바닥 측벽으로부터 내측 공간(304)을 향해 돌출된 쐐기 형상일 수 있는 데, 이에 따라 연결 바(33)의 움직임을 선태적으로 차단하도록 구비될 수 있다. 그러나 반드시 이에 한정되는 것은 아니고 상기 공간(304)을 향해 돌출된 돌기 형상일 수 있는 데, 예컨대 연결 바(33)의 움직임을 선태적으로 차단하는 것이면 어떠한 형상이든 적용 가능함은 물론이다.
연결 바(33)는 겉침(21)의 단부와 고정적으로 결합될 수 있고, 속침(20)과는 결합되지 않고 관통시키도록 구비될 수 있다.
이러한 연결 바(33)는 마스터 블록(30)에 내장되는 데, 마스터 블록(30) 내에 장착될 수 있고, 마스터 블록(30)의 길이 방향을 따라 움직일 수 있도록 구비된다. 그리고 이러한 연결 바(33) 중 겉침(21)과 연결된 부분을 제외한 다른 부분은 마스터 블록(30)의 길이 방향에 수직인 방향으로 소정의 탄성을 갖는 탄성부(335)를 포함할 수 있다. 탄성부(335)의 일단(336)에 인접하게 마스터 블록(30)의 외측으로 노출되도록 구비된 제2 핸들(331)이 위치할 수 있다. 이 제2 핸들(331)은 전술한 개구(305)를 통해 마스터 블록(30)의 외측으로 노출되고, 이는 도 1을 참조하면 하우징(10)에 형성된 제3 개구(121)를 통해 하우징(10) 외측으로 노출될 수 있다. 이러한 연결 바(33)의 탄성부(335)는 전술한 제3 지지 유닛(303)에 의해 선택적으로 위치가 고정될 수 있다. 즉, 연결 바(33)가 마스터 블록(30)의 일단에 위치한 상태에서 탄성부(335)의 단부(336)는 전술한 제3 지지 유닛(303)에 걸려 있는 상태가 유지될 수 있다. 탄성부(335)가 외부 압력에 의해 마스터 블록(30)의 길이 방향에 직각인 방향으로 휘어질 경우, 상기 단부(336)와 제3 지지 유닛(303)의 걸림 상태는 해제될 수 있다.
사용자는 제2 핸들(331)을 조작할 때에, 먼저 제2 핸들(331)을 마스터 블록(30)의 길이 방향에 직각이 되는 방향으로 누른 후 마스터 블록(30)을 제3 개구(121)의 길이 방향을 따라 이동시킴으로써, 연결 바(33)를 이동시킬 수 있다. 이렇게 연결 바(33)가 이동함에 따라 연결 바(33)에 결합되어 있는 겉침(21)도 동일하게 이동할 수 있고, 이에 따라 도 21에서 볼 수 있듯이 속침(20)의 조직 채취홈(202)이 외측으로 노출될 수 있다.
이러한 연결 바(33)에 인접하게 상기 속침(20)이 관통하도록 구비된 고정 블록(337)이 더 위치할 수 있다. 이 고정 블록(337)은 마스터 블록(30) 내부에 고정 결합될 수 있다.
베이스(301)에는 제2 방향(D2)으로 고정 홈(306)이 형성될 수 있으며, 이 고정 홈(306)에 도 24에서 볼 수 있는 스프링(50)의 제1 방향(D1) 단부가 결합될 수 있다. 이를 위해 스프링(50)의 제1 방향(D1)의 단부는 인접하는 제1 부분(501)보다 직경이 크게 권취된 제3 부분(503)이 구비될 수 있으며, 제1 부분(501)과 제3 부분(503)은 일체로 형성될 수 있다. 그러나 본 발명은 반드시 이에 한정되는 것은 아니고, 제3 부분(503) 없이 스프링(50)의 제1 방향(D1) 단부가 베이스(301)에 결합될 수 있다.
상기 커버(302)는 베이스(301)와 결합되는 데, 커버(302)의 표면에는 마스터 블록(30)의 길이 방향에 수직한 방향으로 탄력적으로 움직일 수 있게 구비된 제1 고정 유닛(31)이 구비될 수 있다. 상기 제1 고정 유닛(31)은 커버(302)의 표면으로부터 돌출되도록 구비되고, 돌출된 방향의 반대 방향으로 탄성을 갖게 움직일 수 있다. 장전 상태에서 이 제1 고정 유닛(31)이 제1 지지 유닛(13)에 걸리게 되고, 따라서 마스터 블록(30)의 움직임이 제1 지지 유닛(13)에 의해 구속될 수 있다(도 3 참조). 전술한 발사 유닛(180)의 제2 발사 유닛(182)은 사용자의 조작에 의해 제1 고정 유닛(31)을 누르게 되는 데, 이에 따라 제1 고정 유닛(31)의 제1 지지 유닛(13)에 대한 고정이 해제될 수 있다.
상기 마스터 블록(30)은 해제 유닛(32)을 더 포함할 수 있다. 상기 해제 유닛(32)은 마스터 블록(30)의 허브 블록을 향한 부분에 위치하는 데, 일 실시예에 따르면 허브 블록(40)을 향해 제2 방향(D2)으로 연장되도록 구비될 수 있다. 일 실시예에 따르면 상기 해제 유닛(32)은 허브 블록(40)을 향해 연장된 판상 부재일 수 있다.
상기 허브 블록(40)은 상기 중공부(11) 내에 위치할 수 있는 데, 상기 속침(20)이 관통하도록 구비되고, 상기 마스터 블록(30)과 상기 축 방향(D)을 따라 인라인상으로 정렬되도록 배치될 수 있다. 도 2를 참조하면, 허브 블록(40)은 마스터 블록(30)과 인접하게 위치할 수 있다.
도 24를 참조하면, 일 실시예에 따른 상기 허브 블록(40)을 관통하도록 스프링(50)이 결합될 수 있다. 상기 스프링(50)은 제1 부분(501)과 제2 부분(502)이 일체로 형성될 수 있는 데, 허브 블록(40)을 관통하여 상기 제1 부분(501)과 제2 부분(502)이 허브 블록(40) 외측으로 돌출되도록 상기 허브 블록(40)에 고정 설치될 수 있다.
상기 허브 블록(40)은 제 4 지지 유닛(443)을 포함할 수 있다. 상기 제4 지지 유닛(443)은 장전 유닛(500)을 향해 형성될 수 있는 데, 도 24를 참조한 일 실시예에 따르면, 허브 블록(40)의 바닥면에 단차를 갖도록 구비될 수 있다. 제4 지지 유닛(443)은 도 19를 참조하면, 커넥터(52)의 타단(522)이 지지될 수 있도록 구비된다. 따라서 사용자가 제1 핸들(51)을 잡고 한 손으로 하우징(10)의 방향으로 쥠에 따라 커넥터(52)가 제4 지지 유닛(443)에 지지된 상태로 허브 블록(40)이 제2 방향(D2)으로 이동하게 된다.
허브 블록(40)은 제2 고정 유닛(42)을 포함할 수 있다. 제2 고정 유닛(42)은 허브 블록(40)에 상기 축 방향(D)에 수직한 방향으로 형상된 단차부일 수 있다. 이러한 제2 고정 유닛(42)에 의해 허브 블록(40)이 제2 방향(D2)으로 진행한 후 장전 상태에서, 제2 지지 유닛(14)에 고정될 수 있다. 일 실시예에 따르면 이러한 제2 고정 유닛(42)과, 마스터 블록(30)의 해제 유닛(32)은 서로 결합 가능한 형상으로 대응되게 형성될 수 있다. 장전 시 허브 블록(40)이 제2 방향(D2)으로 진행할 때 제2 지지 유닛(14)을 넘어 진행하게 되는 데, 하우징(10)에 고정되어 있지 않은 제2 지지 유닛(14)의 타단(142)이 제2 고정 유닛(42)에 닿아 허브 블록(40)을 고정시킨다. 이 상태에서 사용자의 발사 조작에 의해 마스터 블록(30)이 허브 블록(40)에 가까워지도록 진행하면 마스터 블록(30)의 해제 유닛(32)이 제2 고정 유닛(42)에 결합되는 데, 이에 따라 제2 지지 유닛(14)의 타단(142)을 누르게 되고, 결국 상기 타단(142)의 제2 고정 유닛(42)에 대한 지지는 해제된다. 이 경우 스프링(50)에 의해 마스터 블록(30)과 허브 블록(40)이 서로 결합된 상태에서 동시에 제1 방향(D1)으로 진행하게 된다.
상기 허브 블록(40)은 제2 방향(D2)으로 연장된 연장 유닛(45)을 더 포함할 수 있다. 상기 연장 유닛(45)은 적어도 일 상태, 예컨대 장전되지 않은 상태에서 상기 제1 개구(110)를 차단해 중공부(11)가 밀폐되는 상태를 유지하도록 할 수 있다. 중공부(11) 내부가 대략 밀폐된 형태를 유지함으로써, 발사 시 마스터 블록(30)의 후퇴 이동, 즉 제2 방향(D2)으로의 이동에 따라서 마스터 블록(30)이 생성하는 공간의 부피 변화가 일어나고, 이에 따라 겉침(21)과 속침(20)의 사이에 형성된 공간 및 조직 채취 홈(202) 내부에 음압을 형성시키는 기능을 수행할 수 있다. 이러한 음압에 의해 조직 채취 홈(202)에 조직이 보다 잘 안착될 수 있고, 이에 따라 조직의 절단 시 조직이 밀리는 것을 방지하고 보다 효과적으로 조직을 절단할 수 있다. 본 발명은 반드시 이에 한정되는 것은 아니고, 상기 연장 유닛(45)은 선택적으로 채택하지 않을 수 있다.
일 실시예에 따르면, 상기 스프링(50)은 상기 마스터 블록(30) 및 허브 블록(40)과 축 방향(D)을 따라 인라인상으로 정렬되도록 상기 중공부(11) 내에 위치할 수 있다.
상기 스프링(50)은 도 25 및 도 26에서 볼 수 있듯이, 제1 부분(501) 및 제2 부분(502)을 포함할 수 있다. 상기 허브 블록(40)의 일측으로 돌출된 제1 부분(501)은 상기 마스터 블록(30)과 고정되게 결합되고, 상기 허브 블록(40)의 타측으로 돌출된 제2 부분(502)은 상기 하우징(10)과 결합된다.
장전된 상태, 즉 마스터 블록(30)과 허브 블록(40)이 충분히 이격된 상태에서 상기 제1 부분(501)은 상기 마스터 블록(30)에 대하여 축방향(D)과 평행한 제2 방향(D2)으로의 제1 탄성력을 제공할 수 있고, 제2 부분(60)은 상기 허브 블록(40)에 대하여 상기 축방향(D)과 평행한 제1 방향(D1)으로 제2 탄성력을 제공할 수 있다.
상기 제1 부분(501)과 제2 부분(502)은 서로 다른 스프링 피치를 갖도록 구비될 수 있는 데, 상기 제1 부분(501)의 스프링 피치가 상기 제2 부분(502)의 스프링 피치보다 작을 수 있다. 제1 부분(501)과 제2 부분(502)은 서로 다른 스프링 피치를 가지나, 각 부분은 균일한 스프링 피치를 갖도록 구비될 수 있다. 일 실시예에 따르면, 상기 제1 부분(501)은 제2 부분(502)보다 상대적으로 인장 피치를 갖는 것일 수 있고, 제2 부분(502)은 제1 부분(501)보다 상대적으로 압축 피치를 갖는 것일 수 있다. 다른 일 실시예에 따르면, 상기 제1 부분(501)은 인장 스프링이 되도록 권취된 것일 수 있고, 상기 제2 부분(502)은 압축 스프링이 되도록 권취된 것일 수 있다.
이러한 실시예에 따르면, 장전 상태, 즉 마스터 블록(30)이 고정된 상태에서 허브 블록(40)만을 제2 방향(D2)으로 이동시킨 뒤 고정한 상태에서, 제1 부분(501) 및 제2 부분(502)은 허브 블록(40)에 대하여 모두 제1 방향(D1)으로 탄성력을 갖는 상태가 된다. 이 후 발사 유닛(180)의 조작에 의하여 마스터 블록(30)의 중공부(11) 내부에서의 고정이 해제되면, 허브 블록(40)이 여전히 중공부(11) 내에 고정된 상태이므로, 제1 부분(501)의 복원력에 의하여 마스터 블록(30)이 제2 방향(D2)으로 이동한다. 이 후 마스터 블록(30)이 허브 블록(40)과 접함에 따라 허브 블록(40)의 고정을 해제하게 되면, 제2 부분(502)의 복원력에 의하여 마스터 블록(30)과 허브 블록(40)이 동시에 제1 방향(D1)으로 이동한다. 이렇게 마스터 블록(30)의 제2 방향(D2)으로의 이동 및 제1 방향(D1)으로의 이동에 따라 마스터 블록(30)에 결합되어 있는 겉침(21)이 동시에 제2 방향(D2) 및 제1 방향(D1)으로 순차 이동하게 되고 이에 따라 조직 채취 홈(202)에 조직이 채취될 수 있다.
한편, 상기 제1 부분(501)과 제2 부분(502)은 서로 다른 직경을 가질 수 있다. 일 실시예에 따르면, 인장 피치를 갖는 제1 부분(501)은 압축 피치를 갖는 제2 부분(502)보다 작은 반경을 갖도록 구비될 수 있다.
이러한 스프링(50)은 도 26에서 볼 수 있듯이 허브 블록(40)의 관통공(400)을 관통하도록 설치될 수 있다.
상기 관통공(400)은 스프링(50)의 제1 부분(501)이 관통하는 제1 관통공(401)과 제2 부분(502)이 관통하는 제2 관통공(402)을 포함할 수 있다. 이러한 제1 관통공(401)과 제2 관통공(402)은 서로 연결될 수 있다.
일 실시예에 따르면, 상기 제1 관통공(401)은 제1 부분(501)의 직경에 대응되도록 제1 직경(d1)으로 형성될 수 있고, 제2 관통공(402)은 제2 부분(502)의 직경에 대응되도록 제2 직경(d2)으로 형성될 수 있다. 상기 제1 직경(d1)은 제2 직경(d2)보다 작을 수 있다. 따라서 스프링(50)을 관통공(400)에 삽입할 때에 제1 부분(501)을 제2 관통공(402)으로부터 삽입할 수 있다.
상기 제1 관통공(401)과 제2 관통공(402)의 사이에는 고정단(403)이 위치할 수 있다. 이 고정단(403)의 위치에 제1 부분(501)과 제2 부분(502)의 사이가 위치하게 되며, 고정단(403)에서 스프링(50)은 허브 블록(40)에 고정될 수 있다.
상기 고정단(403)은 제1 관통공(401)과 제2 관통공(402)의 직경 차이에 따른 단차 구조로 형성될 수 있다. 전술한 바와 같이 제1 부분(501)과 제2 부분(502)의 직경 차이로 인하여 제2 부분(502)의 단부가 고정단(403)에 밀착될 수 있다.
허브 블록(40)은 장전 동작에 의해 제2 방향(D2)으로 이동하는 데, 고정단(403)이 제2 부분(502)의 단부를 제2 방향(D2)으로 밀어 제2 부분(502)이 압축된다. 이 때, 제2 부분(502)의 단부가 고정단(403)에 밀착되므로 스프링(50)은 허브 블록(50) 내에 고정될 수 있다.
사용자의 발사 조작 시에도 제2 부분(502)의 단부가 제2 부분(502)의 복원력에 의해 고정단(403)을 밀게 되므로, 허브 블록(40)은 제1 방향(D1)으로 이동할 수 있다.
이처럼 스프링(50)은 별도의 고정 기구 없이도 허브 블록(40)에 고정적으로 결합될 수 있다. 그러나 본 발명은 반드시 이에 한정되는 것은 아니고 고정단(403) 외측으로부터 별도의 핀(미도시)이 허브 블록(40)에 삽입되어 스프링(50)의 제1 부분(501)과 제2 부분(502)의 사이에 끼워짐으로써 스프링(50)이 허브 블록(40) 내에 고정될 수 있다.
한편, 도 18을 참조하면, 하우징(10)의 일 영역에는 개방된 확인 창(122)이 형성되어 있으며, 허브 블록(40)의 외면 중 확인 창(122)에 대응되는 영역에 마킹이 형성되어 있어, 사용자가 이 마킹을 확인 창(122)으로 확인함으로써, 장전 상태인지 여부를 확인할 수 있다.
도 27에는 상술한 구조를 갖는 본 발명의 일 실시예에 따른 절단 생검기구의 동작 흐름이 도시되어 있다.
S1 단계는 준비 상태이다. 이 때, 제1 핸들(51)은 잠금 유닛(161)에 홀(515)이 걸려 있는 상태가 되고, 커넥터(52)의 타단(522)은 제4 지지 유닛(443)을 지지하지 않은 상태일 수 있다. 이 때, 제1 핸들(51)은 잠금이 해제되는 방향으로 소정의 탄성력을 갖고 있는 상태가 되므로, 사용자가 잠금 유닛(161)의 홀(515) 외측으로 노출된 단부를 잠금 해제 방향(예컨대 제1 방향(D1))으로 가볍게 터치하는 것만으로 제1 핸들(51)의 잠금이 풀릴 수 있다. 이렇게 잠금이 풀리게 되면, 제1 스토퍼(171) 및/또는 제2 스토퍼(516)에 의해 제1 핸들(51)의 회동 각도가 단속되므로, 제1 핸들(51)은 자동적으로 장전 진행 직전의 상태(S2)가 될 수 있다. 그리고 이 위치에서 커넥터(52)의 타단(522)은 제4 지지 유닛(443)을 지지하는 위치로 자동 이동할 수 있다.
S2 단계는 장전 진행 직전의 상태로서 제1 핸들(51)이 하우징(10)으로부터 이격되고, 커넥터(52)의 타단(522)은 제4 지지 유닛(443)을 지지하는 상태가 된다.
S3 단계는 장전 상태로서 사용자가 제1 핸들(51)에 누름 힘을 가함에 따라 힌지 이동 메커니즘에 따라서 커넥터(52)가 제4 지지 유닛(443)에 제2 방향(D2)의 힘을 가하여 허브 블록(40)이 기 설정된 거리(a)만큼 제2 방향(D2)으로 이동되어 장전이 완료된다. 이 때 허브 블록(40)의 제2 고정 유닛(42)이 제2 지지 유닛(14)에 고정되어 허브 블록(40)의 위치가 고정될 수 있다.
이러한 장전 동작은 사용자가 한 손으로 절단 생검기구를 파지하고 제1 핸들(51)을 하우징(10)의 방향으로 누르는 동작에 의해 이루어지기 때문에 사용자는 다른 한 손의 자유도를 여전히 유지할 수 있고, 단지 제1 핸들(51)을 누르는 힘만으로 장전함으로써 간단히 장전 동작을 마칠 수 있다.
이때 마스터 블록(30)은 제1 지지 유닛(13)에 의하여 이동이 억제되기 때문에, 마스터 블록(30)과 허브 블록(40) 사이가 상술한 기설정된 거리(a)만큼 이격되면서 스프링(50)의 제1 부분(501)이 인장되고, 이에 따라 제1 부분(501)에는 탄성력이 발생하게 된다. 이 때 제2 부분(502)은 압축된 상태가 되어 탄성력을 갖게 된다.
상기 S1 내지 S3 단계의 어느 한 단계에서 사용자는 절단 생검기구의 겉침(21)과 속침(20)을 동시에 환자의 조직에 삽입하고 발사를 준비할 수 있다.
이후 발사 유닛(180)에 누름 힘(P)이 가해지면, 제1 발사 스테이지(S4)가 진행된다. 즉 발사 유닛(180)에 누름 힘(P)이 가해지면 제2 발사 유닛(182)이 제1 고정 유닛(31)을 누르게 되고, 이에 따라 제1 고정 유닛(31)의 제1 지지 유닛(13)에 대한 고정이 해제될 수 있다. 이에 따라서 스프링(50)의 제1 부분(501) 복원력에 의하여 마스터 블록(30)이 기설정된 거리(b)만큼 제2 방향(D2)으로 이동되며, 동시에 마스터 블록(30)에 고정되어 있는 겉침(21)도 거리 b만큼 제2 방향(D2)으로 이동해 조직 채취 홈(202)을 노출시킨다. 이 때, 조직 채취 홈(202)으로 채취할 조직이 밀려 안착될 수 있다.
S4 단계가 완료되면 제2 발사 스테이지(S5)가 진행된다. 즉, 마스터 블록(30)이 제2 방향(D2)으로 이동됨에 따라서, 마스터 블록(30)의 해제 유닛(32)이 제2 고정 유닛(42)에 결합되는 데, 이에 따라 해제 유닛(32)이 제2 지지 유닛(14)의 타단(142)을 누르게 되고, 결국 상기 타단(142)의 제2 고정 유닛(42)에 대한 지지는 해제된다. 이 경우 스프링(50)의 제2 부분(502)에 의해 마스터 블록(30)과 허브 블록(40)이 제1 방향(D1)으로 진행하게 되고, 동시에 마스터 블록(30)에 고정되어 있는 겉침(21)도 제1 방향(D1)으로 진행하면서 조직 채취 홈(202)을 덮게 되어 조직 채취 홈(202)에 안착되어 있는 조직의 상부를 절단해 절단된 조직이 조직 채취 홈(202)에 밀봉 수용되도록 한다(S5).
상술한 각 기설정된 거리 a, b, c는 본 발명에서 동일함이 바람직하나, 발명의 기능을 수행함에 있어서 다소의 오차가 발생하여 a, b, c가 서로 다르게 설정될 수 있을 것으로 이해될 수 있다.
이후 상술한 조직 회수 스테이지(S6)가 진행될 수 있다. 즉 사용자는 연결 바(33)의 제2 핸들(331)을 눌러 제3 지지 유닛(303)에 의한 고정을 해제하고, 제2 핸들(331)을 제2 방향(D2)으로 이동시킴으로써 연결 바(33)에 고정되어 있는 겉침(21)을 제2 방향(D2)으로 이동시킬 수 있다. 이에 따라 속침(20)의 조직 채취홈(202)이 노출되도록 하여 채취된 조직을 회수할 수 있다.
도 28은 본 발명의 일 변형예에 따른 허브 블록을 개략적으로 설명하기 위한 사시도이다. 도 28을 참조하면 본 변형예의 허브 블록(40)은 연장 유닛(45)을 포함하고, 상기 연장 유닛(45)은 허브 블록(40)의 몸체의 하단에 대응될 수 있다. 도 28을 참조하여 전술한 도 24와 비교하면 허브 블록(40)은 연장 유닛(45)의 일 영역 또는 측부에도 연장된 영역이 형성되어 커넥터(52)의 일 영역을 수용할 수 있다.
본 발명은 간단한 동작에 의해 채취된 조직을 회수할 수 있도록 하기 때문에 사용자가 절단 생검기구를 파지한 손만으로 조직을 회수할 수 있고, 이에 따라 다른 한 손의 자유도를 여전히 유지할 수 있다. 따라서 사용자는 바로 다음 조직 채취 동작으로 진행할 수 있고, 이에 따라 복수의 연속적인 조직 채취가 용이해질 수 있다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.
본 실시예의 구동력 전달 구조체를 이용하여 다양한 방향, 즉 D1 또는 D2 방향으로의 다양한 구동력을 제공할 수 있고, 이를 통한 다양한 기계적 운동 부재, 특히 구동이 필요한 구동 부재를 제조할 수 있다. 예를 들면 후방 반동을 통한 1차 발사, 전방 반동을 통한 2차 발사 등의 운동을 용이하게 구현할 수 있다.
본 발명은 한 손으로는 초음파 기구를 타겟 위치에 여전히 위치한 상태에서 전술한 장전, 발사, 회수의 동작을 절단 생검기구를 파지한 손만으로 행할 수 있으므로, 전체 시술 동작을 매우 간편하게 할 수 있다.

Claims (5)

  1. 축 방향으로 연장되고, 내부에 상기 축방향으로 연장된 중공부 및 상기 중공부와 연통된 적어도 하나의 개구를 갖는 하우징;
    일단에 조직 채취 홈을 갖는 속침과 상기 속침이 수용되도록 파이프 상으로 구비된 겉침을 포함하고, 일부가 상기 중공부에 위치하는 니들 셋;
    상기 겉침의 일단에 연결되고, 상기 속침이 관통하도록 구비되며, 상기 축방향으로 운동 가능하도록 상기 중공부 내에 위치하는 마스터 블록;
    상기 속침이 관통하도록 구비되고, 상기 축방향으로 운동 가능하도록 상기 중공부 내에 위치하는 허브 블록;
    상기 허브 블록을 관통하도록 허브 블록에 결합되고, 상기 허브 블록 일측으로 돌출된 제1부분이 상기 마스터 블록과 결합되고, 상기 허브 블록 타측으로 돌출된 제2부분이 상기 하우징과 결합된 스프링;
    적어도 장전 위치에서 상기 마스터 블록에 선택적으로 결합되는 제1 지지 유닛;
    적어도 장전 위치에서 상기 허브 블록에 선택적으로 결합되는 제2 지지 유닛;
    상기 허브 블록을 상기 장전 위치로 이동시키는 장전 유닛; 및
    적어도 상기 제1 지지 유닛과 상기 마스터 블록의 결합을 선택적으로 해제하도록 구비된 발사 유닛;을 포함하는 절단 생검기구.
  2. 제1항에 있어서,
    상기 제1 부분과 상기 제2 부분은 서로 다른 스프링 피치를 갖는 절단 생검기구.
  3. 제1항에 있어서,
    상기 장전 위치에서,
    상기 제1 부분은 상기 마스터 블록에 대하여 제1 탄성력을 가하도록 구비되고, 상기 제2 부분은 상기 허브 블록에 대하여 상기 제1 탄성력과 다른 방향의 제2 탄성력을 가하도록 구비된 절단 생검기구.
  4. 제1항에 있어서,
    상기 제1 부분과 상기 제2 부분은 서로 다른 직경을 갖도록 구비된 절단 생검기구.
  5. 제4항에 있어서,
    상기 허브 블록은
    상기 제1 부분이 관통하는 제1 관통공과, 상기 제2 부분이 관통하는 제2 관통공을 포함하고,
    상기 제1 관통공과 상기 제2 관통공의 사이에 위치하는 고정단을 더 포함하는 절단 생검기구.
PCT/KR2019/003915 2018-04-03 2019-04-03 구동력 전달 구조체 및 이를 이용한 절단 생검기구 WO2019194559A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180038742A KR102134468B1 (ko) 2018-04-03 2018-04-03 구동력 전달 구조체
KR10-2018-0038896 2018-04-03
KR1020180038896A KR102134469B1 (ko) 2018-04-03 2018-04-03 절단 생검기구
KR10-2018-0038742 2018-04-03

Publications (1)

Publication Number Publication Date
WO2019194559A1 true WO2019194559A1 (ko) 2019-10-10

Family

ID=68100993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003915 WO2019194559A1 (ko) 2018-04-03 2019-04-03 구동력 전달 구조체 및 이를 이용한 절단 생검기구

Country Status (1)

Country Link
WO (1) WO2019194559A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924878A (en) * 1988-11-07 1990-05-15 Nottke James E Actuating mechanism for biopsy needle
US5476101A (en) * 1991-08-30 1995-12-19 M3 Systems Inc. Automatic tissue sampling apparatus
KR19980041460A (ko) * 1996-11-30 1998-08-17 배순훈 인장스프링
JP2006506200A (ja) * 2002-11-20 2006-02-23 ボストン サイエンティフィック リミテッド 医療用生体組織検査器具
JP2016133512A (ja) * 2015-01-20 2016-07-25 晉禾企業股▲ふん▼有限公司 自己前置引張したフルスプリングを被覆する光ファイバ感知スプリング構成

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924878A (en) * 1988-11-07 1990-05-15 Nottke James E Actuating mechanism for biopsy needle
US5476101A (en) * 1991-08-30 1995-12-19 M3 Systems Inc. Automatic tissue sampling apparatus
KR19980041460A (ko) * 1996-11-30 1998-08-17 배순훈 인장스프링
JP2006506200A (ja) * 2002-11-20 2006-02-23 ボストン サイエンティフィック リミテッド 医療用生体組織検査器具
JP2016133512A (ja) * 2015-01-20 2016-07-25 晉禾企業股▲ふん▼有限公司 自己前置引張したフルスプリングを被覆する光ファイバ感知スプリング構成

Similar Documents

Publication Publication Date Title
WO2011108840A2 (ko) 수술용 인스트루먼트, 수술용 인스트루먼트의 커플링 구조 및 원점 조정 방법
WO2011052939A2 (ko) 수술용 인스트루먼트 및 싱글 포트 수술용 어댑터
WO2017191959A1 (ko) 충전장치
WO2018128388A1 (ko) 일회용 바늘 생검기구 및 절단 생검장치의 바늘구조
WO2020159123A1 (ko) 엔드이펙터
WO2020256504A2 (ko) 수술 시스템
WO2011102643A2 (ko) 혈당 측정 시스템, 스트립 수납 장치, 스트립 보관 장치, 및 자동 채혈 장치
WO2019194559A1 (ko) 구동력 전달 구조체 및 이를 이용한 절단 생검기구
WO2017069456A1 (ko) 물체 형상 적응형 로봇 손가락 의지
WO2017000306A1 (zh) 夹持结构及具有所述夹持结构的可移动平台
WO2021117913A1 (ko) 수술용 인스트루먼트
WO2021215702A1 (ko) 상기도 검체 채취를 위한 다자유도 원격 검진 장치
JP5243044B2 (ja) 光ファイバーのクリービング・デバイス
WO2016076650A1 (ko) 펠티어소자에 의해 치과용 매트리얼을 가열하는 치과용 매트리얼 가열주입기
WO2017000314A1 (zh) 夹持结构及具有所述夹持结构的可移动平台
US5195157A (en) Optical fibre splicing
WO2012026720A2 (ko) 외과 수술용 인스트루먼트
WO2018126360A1 (zh) 一种错位锁紧和释放的棘轮机构和一种棘轮夹
EP1491337A1 (en) Method and apparatus for plate changing printing press
WO2019245174A1 (ko) 홀딩 가능 유압 압축기 및 이를 이용한 슬리브 압축 시공 방법
WO2017000311A1 (zh) 夹持结构及具有所述夹持结构的可移动平台
WO2023191123A1 (ko) 의료영상장비를 이용한 실시간 생검용 생검침조작로봇장치
WO2020256502A2 (ko) 그리퍼 및 이를 포함하는 수술용 마스터 장치
WO2018139895A1 (ko) 절단 생검기구
EP2375269B1 (en) Fiber devices with displaceable fiber guide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781228

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19781228

Country of ref document: EP

Kind code of ref document: A1