WO2019194131A1 - Thermally conductive composite filler, heat-dissipating resin composition containing same, and heat-dissipating grease and heat-dissipating member comprising said heat-dissipating resin composition - Google Patents

Thermally conductive composite filler, heat-dissipating resin composition containing same, and heat-dissipating grease and heat-dissipating member comprising said heat-dissipating resin composition Download PDF

Info

Publication number
WO2019194131A1
WO2019194131A1 PCT/JP2019/014481 JP2019014481W WO2019194131A1 WO 2019194131 A1 WO2019194131 A1 WO 2019194131A1 JP 2019014481 W JP2019014481 W JP 2019014481W WO 2019194131 A1 WO2019194131 A1 WO 2019194131A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
thermally conductive
filler
resin composition
conductive filler
Prior art date
Application number
PCT/JP2019/014481
Other languages
French (fr)
Japanese (ja)
Inventor
武 藤原
真 古賀
研人 氏家
上利 泰幸
寛 平野
門多 丈治
哲周 岡田
Original Assignee
Jnc株式会社
地方独立行政法人大阪産業技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, 地方独立行政法人大阪産業技術研究所 filed Critical Jnc株式会社
Priority to JP2020512236A priority Critical patent/JPWO2019194131A1/en
Publication of WO2019194131A1 publication Critical patent/WO2019194131A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a thermally conductive composite filler and its use product.
  • heat radiating member made of a highly heat conductive material is brought into contact with the heat generating portion to radiate and remove heat.
  • Patent Document 1 describes a heat conductive sheet containing acrylic rubber and a heat conductive filler.
  • Patent Document 2 describes an adhesive for a heat radiating member including a radical polymerizable monomer and a heat conductive filler.
  • Patent Document 3 describes a polyamide resin composition containing polyamide, glass fiber, and a heat conductive filler, and a molded product made of the polyamide resin composition.
  • Document 4 describes a heat conductive adhesive material comprising an epoxy resin composition containing an epoxy resin, a curing agent, and a heat conductive filler.
  • Patent Document 5 describes a heat conductive grease containing a silicon polymer and a heat conductive filler.
  • Patent Document 6 describes a heat conductive sheet in which a heat conductive sheet is provided on the surface of a foamable sheet.
  • Patent Document 7 describes a heat dissipation substrate including a metal base and a heat conductive layer.
  • Patent Document 8 describes an inorganic filler composite composed of a thermally conductive filler and boehmite or zinc oxide.
  • Patent Document 9 describes a thermally conductive filler in which secondary aggregated particles of scaly boron nitride and inorganic fine particles of a thermally conductive filler are combined.
  • Patent Document 10 describes thermally conductive composite particles made of a thermally conductive filler and inorganic particles by mechanochemical treatment.
  • Patent Document 11 describes a thermally conductive composite filler in which silicon carbide particles and magnesium oxide particles are fixed.
  • the present inventors have found that a specific resin binder is effective in the production of a thermally conductive composite filler, and have succeeded in producing a novel thermally conductive composite filler. That is, the present invention is as follows.
  • Thermal conductivity comprising a first thermal conductive filler, a second thermal conductive filler, and a polyvinyl acetal resin as a binder of the first thermal conductive filler and the second thermal conductive filler Composite filler.
  • the first thermally conductive filler and the second thermally conductive filler are independently at least one selected from the group consisting of oxides, nitrides, carbides, metals, and magnesium carbonate.
  • thermoly conductive filler (Invention 3) The heat of (Invention 1), wherein the first thermally conductive filler and the second thermally conductive filler are independently at least one selected from the group consisting of boron nitride, silicon nitride, and aluminum nitride. Conductive composite filler.
  • thermoly conductive composite filler of (Invention 1) wherein the polyvinyl acetal resin contains the following structural units A, B, and C.
  • R is independently hydrogen or alkyl.
  • R 1 is independently hydrogen or alkyl having 1 to 5 carbon atoms.
  • thermoly conductive resin composition comprising the thermally conductive composite filler of any one of (Invention 1) to (Invention 6) and a resin.
  • thermoly conductive grease comprising the thermally conductive resin composition of (Invention 7).
  • the heat conductive composite filler of the present invention exhibits high heat conductivity. Moreover, the heat conductive composite filler of this invention is obtained by a simple manufacturing method.
  • the resin composition containing the heat conductive composite filler of the present invention exhibits high heat conductivity.
  • the heat dissipation member of the present invention exhibits high thermal conductivity.
  • the heat conductive grease of the present invention exhibits high heat conductivity.
  • the thermally conductive composite filler of the present invention contains at least two kinds of thermally conductive fillers.
  • the thermally conductive composite filler of the present invention is formed by closely bonding the first thermally conductive filler particles and the second thermally conductive filler particles with a binder described later.
  • any of the particles conventionally used as the thermally conductive filler can be used as the first thermally conductive filler and the second thermally conductive filler.
  • a heat conductive filler examples include aluminum oxide, magnesium oxide, zinc oxide, silicon dioxide, titanium dioxide, mica, potassium titanate, iron oxide, talc and other oxide particles, boron nitride, silicon nitride, aluminum nitride, etc.
  • the shape of these heat conductive fillers may be any of a granular shape, a fiber shape, a flat plate shape, a scale shape, and the like.
  • a heat conductive filler preferable as the first heat conductive filler and the second heat conductive filler of the present invention is nitride particles such as boron nitride, silicon nitride, and aluminum nitride.
  • a preferred combination of the first thermally conductive filler and the second thermally conductive filler of the present invention is a combination of aluminum nitride and boron nitride. Hereinafter, this case will be described.
  • a commercially available powder product can be used without limitation as aluminum nitride.
  • Examples of such commercially available products are “FAN-f” (trade name) manufactured by Furukawa Electronics Co., Ltd., “TOYAL TecFiller TM TFH” (trade name) manufactured by Toyo Aluminum Co., Ltd., and “ANF-A” (trade name) manufactured by MARUWA Co., Ltd. ), “AlN powder” (trade name) manufactured by Combustion Co., Ltd., and the like are available.
  • hexagonal boron nitride products can be used without limitation as boron nitride.
  • commercially available products for example, “Cooling filler P type” (trade name) manufactured by 3M Japan Co., Ltd., “Denka Boron Nitride” (trade name) manufactured by Denka Co., Ltd., boron nitride powder “MOMENTIVE TM PTX” manufactured by MOMENTIVE USA (Product name) is available.
  • Hexagonal boron nitride has a crystal structure similar to graphite and is known as a material that is difficult to adhere. That is, if the resin has high adhesiveness with hexagonal boron nitride, it can be expected that hexagonal boron nitride can be firmly adhered.
  • the aluminum nitride particles in order to form a composite of the first thermally conductive filler and the second thermally conductive filler without gaps, it is more preferable that the aluminum nitride particles have a relatively large particle size as the first thermally conductive filler.
  • boron nitride having a relatively small particle size is used as the second thermally conductive filler.
  • the heat conductive composite filler of the present invention includes a polyvinyl acetal resin as a binder of these two fillers in addition to the first heat conductive filler and the second heat conductive filler.
  • the polyvinyl acetal resin is not particularly limited, but it has excellent toughness, heat resistance, and impact resistance, and has an adhesive layer excellent in adhesion to adherends, particularly metal materials such as metal sheets and carbon materials such as graphite sheets. From the viewpoint of being obtained, a resin containing the following structural units A, B, and C is preferable.
  • the structural unit A is a structural unit having an acetal moiety, and can be formed, for example, by a reaction between a vinyl alcohol unit and an aldehyde (R-CHO).
  • R in the structural unit A is independently hydrogen or alkyl. If the R is a bulky group (for example, a hydrocarbon group having a large number of carbon atoms), the softening point of the polyvinyl acetal resin may be lowered. Further, the polyvinyl acetal resin in which R is a bulky group has high solubility in a solvent, but may be inferior in chemical resistance. Therefore, R is preferably hydrogen or alkyl having 1 to 5 carbon atoms, more preferably hydrogen or alkyl having 1 to 3 carbon atoms from the viewpoint of the toughness of the resulting adhesive layer, and is preferably hydrogen or propyl. More preferably, hydrogen is particularly preferable from the viewpoint of heat resistance.
  • the polyvinyl acetal resin contains the following constitutional unit D in addition to the constitutional units A to C, and has excellent heat resistance and adhesion at high temperatures to a metal material such as a metal sheet and a carbon material such as a graphite sheet. It is preferable from the viewpoint that a layer can be obtained.
  • R 1 is independently hydrogen or alkyl having 1 to 5 carbon atoms, preferably hydrogen or alkyl having 1 to 3 carbon atoms, more preferably hydrogen.
  • the total content of the structural units A, B, C, and D in the polyvinyl acetal resin is preferably 80 to 100 mol% with respect to all the structural units of the resin.
  • Other structural units that can be included in the polyvinyl acetal resin include vinyl acetal chain units other than the structural unit A (structural units in which R in the structural unit A is other than hydrogen or alkyl), the following intermolecular acetal units, and the following hemi Examples include acetal units.
  • the content of vinyl acetal chain units other than the structural unit A is preferably less than 5 mol% with respect to all the structural units of the polyvinyl acetal resin.
  • R in the hemiacetal unit has the same meaning as R in the structural unit A.
  • the structural units A to D may be regularly arranged (block copolymer, alternating copolymer, etc.) or randomly arranged (random copolymer). It is preferable that they are arranged.
  • Each constituent unit in the polyvinyl acetal resin has a constituent unit A content of 49.9 to 80 mol% and a constituent unit B content of 0.1 to 49.9 mol% with respect to all constituent units of the resin.
  • the content of the structural unit C is 0.1 to 49.9 mol%
  • the content of the structural unit D is 0 to 49.9 mol%.
  • the content of the structural unit A is 49.9 to 80 mol% and the content of the structural unit B is 1 to 30 mol% with respect to all the structural units of the polyvinyl acetal resin.
  • the content is 1 to 30 mol%
  • the content of the structural unit D is 1 to 30 mol%.
  • the content of the structural unit A is preferably 49.9 mol% or more.
  • the content of the structural unit B is 0.1 mol% or more because the solubility of the polyvinyl acetal resin in the solvent is improved. Moreover, it is preferable that the content of the structural unit B is 49.9 mol% or less because the chemical resistance, flexibility, wear resistance, and mechanical strength of the polyvinyl acetal resin are unlikely to decrease.
  • the structural unit C has a content of 49.9 mol in terms of solubility of the polyvinyl acetal resin in a solvent and adhesion of the obtained adhesive layer to a metal material such as a metal sheet or a carbon material such as a graphite sheet. % Or less is preferable. Further, in the production of the polyvinyl acetal resin, when the polyvinyl alcohol chain is acetalized, the structural unit B and the structural unit C are in an equilibrium relationship, and therefore the content of the structural unit C may be 0.1 mol% or more. preferable.
  • the content of the structural unit D is preferably in the above range from the viewpoint that an adhesive layer excellent in adhesion to a metal material such as a metal sheet or a carbon material such as a graphite sheet can be obtained.
  • the content of each of the structural units A to C in the polyvinyl acetal resin can be measured according to JIS K 6728 or JIS K6729.
  • the content of the structural unit D in the polyvinyl acetal resin can be measured by the method described below.
  • the polyvinyl acetal resin is heated at 80 ° C. for 2 hours in a 1 mol / l sodium hydroxide aqueous solution. By this operation, sodium is added to the carboxyl group, and a polymer having —COONa is obtained. Excess sodium hydroxide is extracted from the polymer and then dehydrated and dried. Thereafter, carbonization is performed and atomic absorption analysis is performed, and the amount of sodium added is determined and quantified.
  • the structural unit D (vinyl acetate chain) since the structural unit D is quantified as a vinyl acetate chain, the content of the structural unit B measured according to the above JIS K6728 or JIS K6729 The content rate of the structural unit D determined is subtracted from the rate to correct the content rate of the structural unit B.
  • the weight average molecular weight of the polyvinyl acetal resin is preferably 5000 to 300,000, and more preferably 10,000 to 150,000. Use of a polyvinyl acetal resin having a weight average molecular weight within the above range is preferable because the adhesive layer, composite material, sheet and heat dissipation member of the present invention can be easily produced.
  • the weight average molecular weight of the polyvinyl acetal resin can be measured by gel permeation chromatography (GPC). Specific measurement conditions are as follows. ⁇ Detector: 830-RI (manufactured by JASCO Corporation) ⁇ Oven: NFL-700M (manufactured by Nishio Kogyo Co., Ltd.) -Separation column: Shodex KF-805L x 2-Pump: PU-980 (manufactured by JASCO Corporation) ⁇ Temperature: 30 °C ⁇ Carrier: Tetrahydrofuran ⁇ Standard sample: Polystyrene
  • the Ostwald viscosity of the polyvinyl acetal resin is preferably 1 to 100 mPa ⁇ s.
  • a polyvinyl acetal resin having an Ostwald viscosity in the above range is used, the adhesive layer, composite material, sheet and heat dissipation member of the present invention can be easily produced, and the composite material, sheet and heat dissipation member of the present invention having excellent toughness can be obtained.
  • the Ostwald viscosity can be measured using an Ostwald-Cannon Fenske Viscometer at 20 ° C. using a solution of 5 g of polyvinyl acetal resin in 100 ml of dichloroethane.
  • polyvinyl acetal resin examples include polyvinyl butyral, polyvinyl formal, polyvinyl acetoacetal, and derivatives thereof, and adherends, particularly metal materials such as metal sheets and carbon materials such as graphite sheets.
  • Polyvinyl formal is preferable from the viewpoint of obtaining an adhesive layer excellent in adhesiveness and heat resistance.
  • the polyvinyl acetal resin may be obtained by synthesis or may be a commercially available product.
  • the method for synthesizing the resin containing the structural units A, B and C is not particularly limited, and examples thereof include the method described in JP-A-2009-298833.
  • the method for synthesizing the resin containing the structural units A, B, C and D is not particularly limited, and examples thereof include a method described in JP 2010-202862 A.
  • polyvinyl acetal resins examples include vinyl formal C, vinylec K and vinylec K (trade name, manufactured by JNC Corporation), and polyvinyl butyral, denkabutyral 3000-K (trade name, electrochemical industry ( Etc.).
  • the resin may be used alone, or two or more resins having different types of structural units, the order of bonding, the number of bonds, and the like may be used.
  • the heat conductive composite filler of this invention can be manufactured through the following processes.
  • Step 1 A first heat conductive filler, a second heat conductive filler, and a binder (polyvinyl acetal resin) solution, which are raw materials, are prepared.
  • Step 2 A homogeneous mixture made of the above raw materials is produced.
  • Step 3 Dry the mixture to remove the solvent.
  • the amount ratio of the first thermally conductive filler and the second thermally conductive filler used in Step 1 There is no limitation on the amount ratio of the first thermally conductive filler and the second thermally conductive filler used in Step 1.
  • aluminum nitride having a relatively large particle size is used as the first heat conductive filler and boron nitride having a relatively small particle size is used as the second heat conductive filler
  • aluminum nitride and boron nitride are used in step 1.
  • Mixing is performed so that the weight ratio (aluminum nitride weight: boronitride weight) is 10: 1 to 90: 1, preferably 40: 1 to 80: 1.
  • the concentration and amount of the binder solution used in step 1 are appropriately adjusted according to the type and amount of the thermally conductive filler.
  • the thermal conductivity per unit volume of the thermally conductive composite filler decreases (the concentration of the thermally conductive composite filler decreases). It is not preferable. For this reason, usually, 0.01 wt% or more and 0.5 wt% or less, preferably 0.02 wt% or more and 0.3 wt% or less based on the total weight of the first heat conductive filler and the second heat conductive filler.
  • the binder solution is prepared and mixed under the condition that the binder resin is present in an amount of not more than% by weight.
  • a solvent capable of dissolving the polyvinyl acetal resin can be used without limitation.
  • solvents include alcohols such as methanol, ethanol, n-propanol, iso-propanol, 1-methoxy-2-propanol, n-butanol, sec-butanol, n-octanol, diacetone alcohol, and benzyl alcohol.
  • Solvent solvent; cellosolv solvents such as methyl cellosolve, ethyl cellosolve, and butyl cellosolve; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, and isophorone; N, N-dimethylacetamide, N, N-dimethylformamide, and 1 Amide solvents such as methyl-2-pyrrolidone; Ester solvents such as methyl acetate and ethyl acetate; Ether solvents such as dioxane and tetrahydrofuran; Chlorinated hydrocarbon solvents such as chloroform; can be an organic solvent or water, such as butyl carbitol acetate; toluene, and aromatic solvents such as pyridine; dimethylsulfoxide; acetic acid; terpineol; butyl carbitol. These solvents may be used alone or in combination of two or more.
  • additives such as stabilizers, modifiers, metal deactivators, colorants, coupling agents, and inorganic fillers are used as raw materials as long as they do not hinder the function and combination of the heat conductive filler. Can be added.
  • the first thermal conductive filler, the second thermal conductive filler, and the binder solution may be brought into direct contact, and the first thermal conductive filler and / or the second thermal conductivity are previously provided. You may use what mixed the filler with the binder solution. Regardless of the raw material supply order, a mixture in which the entire amount of the first heat conductive filler and the second heat conductive filler are uniformly dispersed while being wetted with the binder solution is produced in Step 2.
  • step 2 there is no limitation on the stirring means used in step 2 in order to produce a homogeneous mixture containing the first heat conductive filler, the second heat conductive filler, and the binder solution.
  • an appropriate device is selected from various stirring / mixing apparatuses so that a homogeneous mixture of the raw materials to be used is obtained, and the raw materials are stirred and mixed with an appropriate strength.
  • the surface of the first thermally conductive filler and the surface of the second thermally conductive filler are in close contact with each other through the binder, and the first thermally conductive filler and the second thermally conductive filler are adhered. And are integrated into a single particle. In this way, the powder of the heat conductive composite filler of the present invention formed into composite particles is obtained.
  • the thermally conductive composite filler of the present invention can be used for all conventional thermal conductive filler applications as an improved replacement for conventional thermal conductive fillers. That is, the thermally conductive resin composition containing the thermally conductive composite filler of the present invention and a resin is used as a heat radiating member in the form of a film or a sheet, a paint, an adhesive, a sealing material, or a thermal conductive material that requires thermal conduction / radiation function. It can be used as a raw material for grease and the like.
  • “resin” includes rubber and elastomer.
  • the heat conductive resin composition of this invention can be processed and shape
  • a thermally conductive resin composition comprising the thermally conductive composite filler of the present invention and a resin having a relatively high heat resistance such as a polycarbonate resin, a polyester resin, a polyacetal resin, a polyphenylene ether resin, or a polyamide resin is lightweight. It has high heat resistance and is useful as a heat radiating member of various shapes.
  • the heat conductive resin composition containing the heat conductive composite filler and the silicone resin of the present invention is useful as an adhesive between the heat generating member and the heat radiating member or a gap sealant between these members.
  • Example 1 It is a manufacture example of the heat conductive composite filler of this invention, and its comparison goods. The following materials were used.
  • First heat conductive filler “FAN-f50” manufactured by Furukawa Electronics Co., Ltd. (a high heat conductive aluminum nitride filler having an average particle size of 35 to 60 ⁇ m)
  • Second heat conductive filler “MOMENTIVE TM PTX25” (boron nitride powder having an average particle diameter of about 25 ⁇ m) manufactured by MOMENTIVE, USA.
  • Solvent “1-Methyl-2-pyrrolidone (NMP)” manufactured by Wako Pure Chemical Industries, Ltd.
  • Solvent for control: “Isopropyl alcohol (IPA)” manufactured by Wako Pure Chemical Industries, Ltd.
  • Polyvinyl acetal resin “Vinylec (registered trademark) K” manufactured by JNC Corporation (polyvinyl formal resin having a weight average molecular weight of 45000. It has structural units A, B, and C.)
  • Binder solution A polyvinyl formal resin solution in which 26 g of “Vinyleck® K” was dissolved in 200 g of NMP.
  • the first thermally conductive filler and the second thermally conductive filler, and the binder solution or solvent were mixed in the amounts shown in Table 1.
  • the obtained mixture was sufficiently stirred with a powder laboratory model PWB manufactured by Nippon Coke Industries, Ltd.
  • the obtained mixture was dried at room temperature to recover a thermally conductive filler powder.
  • FIG. 1 A SEM (scanning electron microscope) photograph of FAN-f50 alone is shown in FIG.
  • SEM photographs of the powders obtained in Example 1, Example 2, and Comparative Example 1 are shown in FIGS. 3, 4, and 5, respectively.
  • the powder produced in Example 1 is a composite particle in which scaly or amorphous boron nitride particles are adhered to the surface of spherical aluminum nitride particles. I can confirm that.
  • the powder produced in Example 2 is a composite particle in which scaly or amorphous boron nitride particles are in close contact with the surface of spherical aluminum nitride particles. it can.
  • Example 1 and Example 2 the aluminum nitride particles and the boron nitride particles were in close contact with each other through the binder, and the thermally conductive composite filler of the present invention was formed.
  • Example 3 Example 4, Comparative Example 2
  • Thermally conductive filler The thermally conductive filler powder produced in Example 1, Example 2, and Comparative Example 1.
  • Epoxy resin Mitsubishi Chemical Corporation liquid epoxy resin “jER TM 828”
  • Curing agent 4,4′-diamino-1,2-diphenylmethane (DDM)
  • the heat conductive filler, epoxy resin, and curing agent were mixed in the amounts shown in Table 2.
  • the obtained mixture was heated and compressed in a mold to cure the epoxy resin, and a plate-shaped epoxy resin molded body was obtained.
  • the thermal diffusivity in the vertical direction of the compact was measured with a thermal diffusivity measuring device LFA467 HyperFlash manufactured by Netzsch. The results are shown in Table 2.
  • Example 3 and Example 4 exhibit high thermal diffusivity and are useful as heat dissipation members.
  • Comparative Example 2 contained almost the same amount of thermally conductive filler as Example 3 and Example 4, its heat dissipation function was extremely inferior.
  • the resin composition containing the thermally conductive composite filler of the present invention is excellent as a raw material for the heat dissipation member.
  • the heat conductive composite filler of the present invention is a novel and high performance heat conductive filler.
  • a heat conductive material / member such as a heat radiating member or a heat conductive grease required for a smaller and higher performance electronic device can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To improve a thermally conductive filler. [Solution] A thermally conductive composite filler containing a first thermally conductive filler, a second thermally conductive filler, and a polyvinylacetal resin that serves as a binder. Typically, the first thermally conductive filler is aluminum nitride and the second thermally conductive filler is boron nitride. A resin composition in which the above thermally conductive composite filler is used. A heat-dissipating member in which the above resin composition is used.

Description

熱伝導性複合フィラーとこれを含む放熱性樹脂組成物、該放熱性樹脂組成物からなる放熱性グリース及び放熱部材Thermally conductive composite filler, heat dissipating resin composition containing the same, heat dissipating grease and heat dissipating member comprising the heat dissipating resin composition
 本発明は熱伝導性複合フィラーとその利用品に関する。 The present invention relates to a thermally conductive composite filler and its use product.
 近年の電気・電子機器の課題の一つは、小型化と高性能化に伴って局所的に発生する熱から機器を保護すること、すなわち、放熱手段にある。通常これら機器では、高熱伝導性材料からなる部材(放熱部材)を発熱部に接触させて、放熱・除熱する。 One of the problems of electrical / electronic devices in recent years is to protect the devices from the heat generated locally with miniaturization and high performance, that is, heat dissipation means. Usually, in these devices, a member (heat radiating member) made of a highly heat conductive material is brought into contact with the heat generating portion to radiate and remove heat.
 これまでに機器とその発熱部に応じて様々な放熱部材の材質や形状が採用されている。例えば特許文献1ではアクリルゴムと熱伝導性フィラーを含む熱伝導性シートが記載されている。特許文献2には、ラジカル重合性モノマーと熱伝導性フィラーを含む放熱部材用接着剤が記載されている。特許文献3には、ポリアミド、ガラス繊維、熱伝導性フィラーを含むポリアミド樹脂組成物とそれからなる成形品が記載されている。文献4には、エポキシ樹脂、硬化剤、熱伝導性フィラーを含むエポキシ樹脂組成物からなる熱伝導性接着材料が記載されている。特許文献5には、シリコンポリマーと熱伝導性フィラーを含む熱伝導性グリースが記載されている。特許文献6には、発泡性シートの表面に熱伝導シートを設けた熱伝導性シートが記載されている。特許文献7には、金属基材と熱伝導層を備える放熱基板が記載されている。 [To date, various materials and shapes of heat dissipating members have been adopted depending on the device and its heat generating part. For example, Patent Document 1 describes a heat conductive sheet containing acrylic rubber and a heat conductive filler. Patent Document 2 describes an adhesive for a heat radiating member including a radical polymerizable monomer and a heat conductive filler. Patent Document 3 describes a polyamide resin composition containing polyamide, glass fiber, and a heat conductive filler, and a molded product made of the polyamide resin composition. Document 4 describes a heat conductive adhesive material comprising an epoxy resin composition containing an epoxy resin, a curing agent, and a heat conductive filler. Patent Document 5 describes a heat conductive grease containing a silicon polymer and a heat conductive filler. Patent Document 6 describes a heat conductive sheet in which a heat conductive sheet is provided on the surface of a foamable sheet. Patent Document 7 describes a heat dissipation substrate including a metal base and a heat conductive layer.
 このような様々な放熱部材の共通の課題は放熱効率の向上、すなわち、単位体積あたりの放熱量を増加させ、しかも偏りなく全方位に熱を拡散することにある。このような課題を達成するために、放熱部材に必須の材料である熱伝導性フィラー自体の改良も試みられてきた。例えば特許文献8には、熱伝導性フィラーとベーマイトまたは酸化亜鉛とからなる無機フィラー複合体が記載されている。特許文献9には、鱗片状窒化ホウ素の二次凝集粒子と熱伝導性フィラーの無機微細粒子とを組み合わせた熱伝導性フィラーが記載されている。特許文献10には、メカノケミカル処理によって熱伝導性フィラーと無機粒子とからなる熱伝導性複合粒子が記載されている。特許文献11には、炭化ケイ素粒子と酸化マグネシウム粒子とが固着した熱伝導性複合フィラーが記載されている。 The common problem of such various heat radiating members is to improve the heat radiating efficiency, that is, to increase the amount of heat radiated per unit volume, and to diffuse heat in all directions without unevenness. In order to achieve such problems, attempts have been made to improve the heat conductive filler itself, which is an essential material for the heat dissipation member. For example, Patent Document 8 describes an inorganic filler composite composed of a thermally conductive filler and boehmite or zinc oxide. Patent Document 9 describes a thermally conductive filler in which secondary aggregated particles of scaly boron nitride and inorganic fine particles of a thermally conductive filler are combined. Patent Document 10 describes thermally conductive composite particles made of a thermally conductive filler and inorganic particles by mechanochemical treatment. Patent Document 11 describes a thermally conductive composite filler in which silicon carbide particles and magnesium oxide particles are fixed.
特開2012-224765号公報JP 2012-224765 A 特開2013- 30637号公報JP2013-30637A 国際公開第2016/002682号International Publication No. 2016/002682 国際公開第2016/104136号International Publication No. 2016/104136 特開2016-216523号公報JP 2016-216523 A 特開2017- 69341号公報Japanese Unexamined Patent Publication No. 2017-69341 特開2017-139405号公報JP 2017-139405 A 国際公開第2013/039103号International Publication No. 2013/039103 特開2014-152299号公報JP 2014-152299 A 特開2015-214639号公報Japanese Patent Laying-Open No. 2015-214639 特開2017-154937号公報JP 2017-154937 A
 しかしながら、これら従来の熱伝導性複合フィラーの中で、製造工程の簡素さとより高い熱伝導性の両方からみて圧倒的に優位なものは未だ見出されていない。そこで本発明者らは、従来とは異なるアプローチによって熱伝導性フィラーの改良を目指した。 However, among these conventional thermal conductive composite fillers, no overwhelmingly superior one has been found yet in view of both the simplicity of the manufacturing process and higher thermal conductivity. Therefore, the present inventors aimed to improve the thermally conductive filler by an approach different from the conventional one.
 その結果、本発明者らは、熱伝導性複合フィラーの製造に特定の樹脂製バインダーが有効であることを見出し、新規な熱伝導性複合フィラーの製造に成功した。すなわち本発明は以下のものである。 As a result, the present inventors have found that a specific resin binder is effective in the production of a thermally conductive composite filler, and have succeeded in producing a novel thermally conductive composite filler. That is, the present invention is as follows.
 (発明1) 第一の熱伝導性フィラー、第二の熱伝導性フィラー、及び上記第一の熱伝導性フィラー及び上記第二の熱伝導性フィラーのバインダーとしてのポリビニルアセタール樹脂を含む、熱伝導性複合フィラー。 (Invention 1) Thermal conductivity comprising a first thermal conductive filler, a second thermal conductive filler, and a polyvinyl acetal resin as a binder of the first thermal conductive filler and the second thermal conductive filler Composite filler.
 (発明2) 第一の熱伝導性フィラー及び第二の熱伝導性フィラーが独立に、酸化物、窒化物、炭化物、金属、及び炭酸マグネシウムからなる群から選ばれる少なくとも1種である、(発明1)の熱伝導性複合フィラー。 (Invention 2) The first thermally conductive filler and the second thermally conductive filler are independently at least one selected from the group consisting of oxides, nitrides, carbides, metals, and magnesium carbonate. The heat conductive composite filler of 1).
 (発明3) 第一の熱伝導性フィラー及び第二の熱伝導性フィラーが独立に、窒化ホウ素、窒化珪素、及び窒化アルミニウムからなる群から選ばれる少なくとも1種である、(発明1)の熱伝導性複合フィラー。 (Invention 3) The heat of (Invention 1), wherein the first thermally conductive filler and the second thermally conductive filler are independently at least one selected from the group consisting of boron nitride, silicon nitride, and aluminum nitride. Conductive composite filler.
 (発明4) ポリビニルアセタール樹脂が以下の構成単位A、B、及びCを含む、(発明1)の熱伝導性複合フィラー。 (Invention 4) The thermally conductive composite filler of (Invention 1), wherein the polyvinyl acetal resin contains the following structural units A, B, and C.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (構成単位A中、Rは独立に水素またはアルキルである。) (In the structural unit A, R is independently hydrogen or alkyl.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (発明5) ポリビニルアセタール樹脂がさらに以下の構成単位Dを含む、(発明4)の熱伝導性複合フィラー。 (Invention 5) The thermally conductive composite filler of (Invention 4), wherein the polyvinyl acetal resin further contains the following structural unit D.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(構成単位D中、Rは独立に水素または炭素数1~5のアルキルである。) (In the structural unit D, R 1 is independently hydrogen or alkyl having 1 to 5 carbon atoms.)
 (発明6) (発明4)に記載の構成単位AにおけるRが独立に、水素または炭素数1~3のアルキルである、(発明4)または(発明5)の熱伝導性複合フィラー。 (Invention 6) The thermally conductive composite filler of (Invention 4) or (Invention 5), wherein R in the structural unit A described in (Invention 4) is independently hydrogen or alkyl having 1 to 3 carbon atoms.
 (発明7) (発明1)~(発明6)のいずれかの熱伝導性複合フィラーと樹脂とを含む熱伝導性樹脂組成物。 (Invention 7) A thermally conductive resin composition comprising the thermally conductive composite filler of any one of (Invention 1) to (Invention 6) and a resin.
 (発明8) (発明7)の熱伝導性樹脂組成物からなる放熱部材。 (Invention 8) A heat dissipating member comprising the heat conductive resin composition of (Invention 7).
 (発明9) (発明7)の熱伝導性樹脂組成物からなる熱伝導性グリース。 (Invention 9) A thermally conductive grease comprising the thermally conductive resin composition of (Invention 7).
 本発明の熱伝導性複合フィラーは高い熱伝導性を示す。また本発明の熱伝導性複合フィラーは簡易な製造方法によって得られる。本発明の熱伝導性複合フィラーを含む樹脂組成物は高い熱伝導性を示す。本発明の放熱部材は、高い熱伝導性を示す。本発明の熱伝導性グリースは、高い熱伝導性を示す。 The heat conductive composite filler of the present invention exhibits high heat conductivity. Moreover, the heat conductive composite filler of this invention is obtained by a simple manufacturing method. The resin composition containing the heat conductive composite filler of the present invention exhibits high heat conductivity. The heat dissipation member of the present invention exhibits high thermal conductivity. The heat conductive grease of the present invention exhibits high heat conductivity.
窒化アルミニウムのSEM写真である。It is a SEM photograph of aluminum nitride. 窒化ホウ素のSEM写真である。It is a SEM photograph of boron nitride. 実施例1で製造した熱伝導性複合フィラーのSEM写真である。2 is a SEM photograph of the thermally conductive composite filler produced in Example 1. 実施例2で製造した熱伝導性複合フィラーのSEM写真である。4 is a SEM photograph of the thermally conductive composite filler produced in Example 2. 比較例1で製造した熱伝導性複合フィラーのSEM写真である。3 is a SEM photograph of the thermally conductive composite filler produced in Comparative Example 1.
 [第一の熱伝導性フィラー、第二の熱伝導性フィラー]
本発明の熱伝導性複合フィラーは少なくとも二種の熱伝導性フィラーを含有する。典型的には、本発明の熱伝導性複合フィラーは第一の熱伝導性フィラーの粒子と第二の熱伝導性フィラーの粒子とが後述のバインダーによって密着してなる。
[First thermal conductive filler, second thermal conductive filler]
The thermally conductive composite filler of the present invention contains at least two kinds of thermally conductive fillers. Typically, the thermally conductive composite filler of the present invention is formed by closely bonding the first thermally conductive filler particles and the second thermally conductive filler particles with a binder described later.
 上記第一の熱伝導性フィラー、上記第二の熱伝導性フィラーとして、従来熱伝導性フィラーとして用いられている粒子のいずれもが使用することができる。このような熱伝導性フィラーは例えば、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、二酸化珪素、二酸化チタン、マイカ、チタン酸カリウム、酸化鉄、タルク等の酸化物粒子、窒化ホウ素、窒化珪素、窒化アルミニウム等の窒化物粒子、炭化珪素等の炭化物粒子、銅、アルミニウム等の金属粒子、炭酸マグネシウムである。これら熱伝導性フィラーの形状は粒状、繊維状、平板状、鱗片状などのいずれであってもよい。またこれら熱伝導性フィラーの粒径、アスペクト比などにも制限はない。本発明の第一の熱伝導性フィラー及び第二の熱伝導性フィラーとして好ましい熱伝導性フィラーは、窒化ホウ素、窒化珪素、窒化アルミニウム等の窒化物粒子である。 Any of the particles conventionally used as the thermally conductive filler can be used as the first thermally conductive filler and the second thermally conductive filler. Examples of such a heat conductive filler include aluminum oxide, magnesium oxide, zinc oxide, silicon dioxide, titanium dioxide, mica, potassium titanate, iron oxide, talc and other oxide particles, boron nitride, silicon nitride, aluminum nitride, etc. Nitride particles, carbide particles such as silicon carbide, metal particles such as copper and aluminum, and magnesium carbonate. The shape of these heat conductive fillers may be any of a granular shape, a fiber shape, a flat plate shape, a scale shape, and the like. Moreover, there is no restriction | limiting in the particle size, aspect-ratio, etc. of these heat conductive fillers. A heat conductive filler preferable as the first heat conductive filler and the second heat conductive filler of the present invention is nitride particles such as boron nitride, silicon nitride, and aluminum nitride.
 本発明の第一の熱伝導性フィラー及び第二の熱伝導性フィラーの好ましい組み合わせは、窒化アルミニウムと窒化ホウ素との併用である。以下、この場合について説明する。 A preferred combination of the first thermally conductive filler and the second thermally conductive filler of the present invention is a combination of aluminum nitride and boron nitride. Hereinafter, this case will be described.
 本発明では窒化アルミニウムとして市販の粉体製品を制限なく使用することができる。このような市販品として例えば古川電子株式会社製「FAN-f」(商品名)、東洋アルミニウム株式会社製「TOYAL TecFillerTM TFH」(商品名)、株式会社MARUWA製「ANF-A」(商品名)、株式会社燃焼合成製「AlN粉体」(商品名)などが入手可能である。 In the present invention, a commercially available powder product can be used without limitation as aluminum nitride. Examples of such commercially available products are “FAN-f” (trade name) manufactured by Furukawa Electronics Co., Ltd., “TOYAL TecFiller TFH” (trade name) manufactured by Toyo Aluminum Co., Ltd., and “ANF-A” (trade name) manufactured by MARUWA Co., Ltd. ), “AlN powder” (trade name) manufactured by Combustion Co., Ltd., and the like are available.
 本発明では窒化ホウ素として市販の六方晶の窒化ホウ素製品を制限なく使用することができる。このような市販品として例えばスリーエムジャパン株式会社製「クーリングフィラーPタイプ」(商品名)、株式会社デンカ製「デンカボロンナイトライド」(商品名)、米国MOMENTIVE社製窒化ホウ素パウダー「MOMENTIVETM PTX」(商品名)などが入手可能である。六方晶の窒化ホウ素はグラファイト類似の結晶構造をとり、接着しにくい材料として知られている。すなわち、六方晶の窒化ホウ素との接着性が高い樹脂であれば、六方晶の窒化ホウ素を強固に接着できることが期待できる。 In the present invention, commercially available hexagonal boron nitride products can be used without limitation as boron nitride. As such commercially available products, for example, “Cooling filler P type” (trade name) manufactured by 3M Japan Co., Ltd., “Denka Boron Nitride” (trade name) manufactured by Denka Co., Ltd., boron nitride powder “MOMENTIVE PTX” manufactured by MOMENTIVE USA (Product name) is available. Hexagonal boron nitride has a crystal structure similar to graphite and is known as a material that is difficult to adhere. That is, if the resin has high adhesiveness with hexagonal boron nitride, it can be expected that hexagonal boron nitride can be firmly adhered.
 本発明では、第一の熱伝導性フィラーと第二の熱伝導性フィラーとを隙間なく複合化するために、より好ましくは、第一の熱伝導性フィラーとして比較的粒径が大きい窒化アルミニウム粒子や、第二の熱伝導性フィラーとして比較的粒径が小さい窒化ホウ素を使用する。このような選択により、窒化アルミニウムの粒子の表面のほぼ全体が後述のバインダーを介して多数の鱗片状窒化ホウ素で覆われた複合体が得られる。 In the present invention, in order to form a composite of the first thermally conductive filler and the second thermally conductive filler without gaps, it is more preferable that the aluminum nitride particles have a relatively large particle size as the first thermally conductive filler. Alternatively, boron nitride having a relatively small particle size is used as the second thermally conductive filler. By such selection, a composite in which almost the entire surface of the aluminum nitride particles is covered with a large number of scaly boron nitrides through a binder described later is obtained.
 [バインダー(ポリビニルアセタール樹脂)]
本発明の熱伝導性複合フィラーは、第一の熱伝導性フィラーと第二の熱伝導性フィラーに加え、これら二種のフィラーのバインダーとしてのポリビニルアセタール樹脂を含む。ポリビニルアセタール樹脂としては、特に制限されないが、靱性、耐熱性、及び耐衝撃性に優れ、被着体、特に金属シートなどの金属材料やグラファイトシートなどの炭素材料との接着性に優れる接着層が得られる等の点から、下記構成単位A、B、及びCを含む樹脂であることが好ましい。
[Binder (polyvinyl acetal resin)]
The heat conductive composite filler of the present invention includes a polyvinyl acetal resin as a binder of these two fillers in addition to the first heat conductive filler and the second heat conductive filler. The polyvinyl acetal resin is not particularly limited, but it has excellent toughness, heat resistance, and impact resistance, and has an adhesive layer excellent in adhesion to adherends, particularly metal materials such as metal sheets and carbon materials such as graphite sheets. From the viewpoint of being obtained, a resin containing the following structural units A, B, and C is preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 構成単位Aは、アセタール部位を有する構成単位であって、例えば、ビニルアルコ-ル単位とアルデヒド(R-CHO)との反応により形成され得る。 The structural unit A is a structural unit having an acetal moiety, and can be formed, for example, by a reaction between a vinyl alcohol unit and an aldehyde (R-CHO).
 構成単位AにおけるRは独立に、水素またはアルキルである。前記Rが嵩高い基(例えば炭素数が多い炭化水素基)であると、ポリビニルアセタール樹脂の軟化点が低下する可能性がある。また、前記Rが嵩高い基であるポリビニルアセタール樹脂は、溶剤への溶解性は高くなるが、一方で耐薬品性に劣ることがある。そのため前記Rは、水素または炭素数1~5のアルキルであることが好ましく、得られる接着層の靭性などの点から水素または炭素数1~3のアルキルであることがより好ましく、水素またはプロピルであることがさらに好ましく、耐熱性などの点から水素であることが特に好ましい。 R in the structural unit A is independently hydrogen or alkyl. If the R is a bulky group (for example, a hydrocarbon group having a large number of carbon atoms), the softening point of the polyvinyl acetal resin may be lowered. Further, the polyvinyl acetal resin in which R is a bulky group has high solubility in a solvent, but may be inferior in chemical resistance. Therefore, R is preferably hydrogen or alkyl having 1 to 5 carbon atoms, more preferably hydrogen or alkyl having 1 to 3 carbon atoms from the viewpoint of the toughness of the resulting adhesive layer, and is preferably hydrogen or propyl. More preferably, hydrogen is particularly preferable from the viewpoint of heat resistance.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 ポリビニルアセタール樹脂は、構成単位A~Cに加えて、下記構成単位Dを含むことが、耐熱性および金属シートなどの金属材料やグラファイトシートなどの炭素材料との高温下での接着性に優れる接着層を得ることができる等の点から好ましい。 The polyvinyl acetal resin contains the following constitutional unit D in addition to the constitutional units A to C, and has excellent heat resistance and adhesion at high temperatures to a metal material such as a metal sheet and a carbon material such as a graphite sheet. It is preferable from the viewpoint that a layer can be obtained.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 構成単位D中、Rは独立に水素または炭素数1~5のアルキルであり、好ましくは水素または炭素数1~3のアルキルであり、より好ましくは水素である。 In the structural unit D, R 1 is independently hydrogen or alkyl having 1 to 5 carbon atoms, preferably hydrogen or alkyl having 1 to 3 carbon atoms, more preferably hydrogen.
 ポリビニルアセタール樹脂における構成単位A、B、C、及びDの総含有率は、該樹脂の全構成単位に対して80~100mol%であることが好ましい。ポリビニルアセタール樹脂に含まれ得るその他の構成単位としては、構成単位A以外のビニルアセタール鎖単位(前記構成単位AにおけるRが水素またはアルキル以外である構成単位)、下記分子間アセタール単位、及び下記ヘミアセタール単位などが挙げられる。構成単位A以外のビニルアセタール鎖単位の含有率は、ポリビニルアセタール樹脂の全構成単位に対して5mol%未満であることが好ましい。 The total content of the structural units A, B, C, and D in the polyvinyl acetal resin is preferably 80 to 100 mol% with respect to all the structural units of the resin. Other structural units that can be included in the polyvinyl acetal resin include vinyl acetal chain units other than the structural unit A (structural units in which R in the structural unit A is other than hydrogen or alkyl), the following intermolecular acetal units, and the following hemi Examples include acetal units. The content of vinyl acetal chain units other than the structural unit A is preferably less than 5 mol% with respect to all the structural units of the polyvinyl acetal resin.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (分子間アセタール単位中のRは、前記構成単位A中のRと同義である。) (R in the intermolecular acetal unit has the same meaning as R in the structural unit A)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ヘミアセタール単位中のRは、前記構成単位A中のRと同義である。 R in the hemiacetal unit has the same meaning as R in the structural unit A.
 ポリビニルアセタール樹脂において、構成単位A~Dは、規則性をもって配列(ブロック共重合体、交互共重合体など)していても、ランダムに配列(ランダム共重合体)していてもよいが、ランダムに配列していることが好ましい。 In the polyvinyl acetal resin, the structural units A to D may be regularly arranged (block copolymer, alternating copolymer, etc.) or randomly arranged (random copolymer). It is preferable that they are arranged.
 ポリビニルアセタール樹脂における各構成単位は、該樹脂の全構成単位に対して、構成単位Aの含有率が49.9~80mol%であり、構成単位Bの含有率が0.1~49.9mol%であり、構成単位Cの含有率が0.1~49.9mol%であり、構成単位Dの含有率が0~49.9mol%であることが好ましい。より好ましくは、前記ポリビニルアセタール樹脂の全構成単位に対して、構成単位Aの含有率が49.9~80mol%であり、構成単位Bの含有率が1~30mol%であり、構成単位Cの含有率が1~30mol%であり、構成単位Dの含有率が1~30mol%である。 Each constituent unit in the polyvinyl acetal resin has a constituent unit A content of 49.9 to 80 mol% and a constituent unit B content of 0.1 to 49.9 mol% with respect to all constituent units of the resin. Preferably, the content of the structural unit C is 0.1 to 49.9 mol%, and the content of the structural unit D is 0 to 49.9 mol%. More preferably, the content of the structural unit A is 49.9 to 80 mol% and the content of the structural unit B is 1 to 30 mol% with respect to all the structural units of the polyvinyl acetal resin. The content is 1 to 30 mol%, and the content of the structural unit D is 1 to 30 mol%.
 耐薬品性、可撓性、耐摩耗性、及び機械的強度に優れるポリビニルアセタール樹脂を得るなどの点から、構成単位Aの含有率は49.9mol%以上であることが好ましい。 In view of obtaining a polyvinyl acetal resin having excellent chemical resistance, flexibility, wear resistance, and mechanical strength, the content of the structural unit A is preferably 49.9 mol% or more.
 構成単位Bの含有率が0.1mol%以上であると、ポリビニルアセタール樹脂の溶剤への溶解性が良くなるため好ましい。また、構成単位Bの含有率が49.9mol%以下であると、ポリビニルアセタール樹脂の耐薬品性、可撓性、耐摩耗性および機械的強度が低下しにくいため好ましい。 It is preferable that the content of the structural unit B is 0.1 mol% or more because the solubility of the polyvinyl acetal resin in the solvent is improved. Moreover, it is preferable that the content of the structural unit B is 49.9 mol% or less because the chemical resistance, flexibility, wear resistance, and mechanical strength of the polyvinyl acetal resin are unlikely to decrease.
 構成単位Cは、ポリビニルアセタール樹脂の溶剤への溶解性や、得られる接着層の、金属シートなどの金属材料やグラファイトシートなどの炭素材料との接着性等の点から、含有率が49.9mol%以下であることが好ましい。また、ポリビニルアセタール樹脂の製造において、ポリビニルアルコ-ル鎖をアセタール化する際、構成単位Bと構成単位Cが平衡関係となるため、構成単位Cの含有率は0.1mol%以上であることが好ましい。 The structural unit C has a content of 49.9 mol in terms of solubility of the polyvinyl acetal resin in a solvent and adhesion of the obtained adhesive layer to a metal material such as a metal sheet or a carbon material such as a graphite sheet. % Or less is preferable. Further, in the production of the polyvinyl acetal resin, when the polyvinyl alcohol chain is acetalized, the structural unit B and the structural unit C are in an equilibrium relationship, and therefore the content of the structural unit C may be 0.1 mol% or more. preferable.
 金属シートなどの金属材料やグラファイトシートなどの炭素材料との接着性に優れる接着層を得ることができる等の点から、構成単位Dの含有率は前記範囲にあることが好ましい。 The content of the structural unit D is preferably in the above range from the viewpoint that an adhesive layer excellent in adhesion to a metal material such as a metal sheet or a carbon material such as a graphite sheet can be obtained.
 ポリビニルアセタール樹脂における構成単位A~Cのそれぞれの含有率は、JIS K 6728またはJIS K6729に準じて測定することができる。 The content of each of the structural units A to C in the polyvinyl acetal resin can be measured according to JIS K 6728 or JIS K6729.
 ポリビニルアセタール樹脂における構成単位Dの含有率は、以下に述べる方法で測定することができる。1mol/l水酸化ナトリウム水溶液中で、ポリビニルアセタール樹脂を、2時間、80℃で加温する。この操作により、カルボキシル基にナトリウムが付加し、-COONaを有するポリマーが得られる。該ポリマーから過剰な水酸化ナトリウムを抽出した後、脱水乾燥を行う。その後、炭化させて原子吸光分析を行い、ナトリウムの付加量を求めて定量する。なお、構成単位B(ビニルアセテート鎖)の含有率を分析する際に、構成単位Dは、ビニルアセテート鎖として定量されるため、前記JIS K6728またはJIS K6729に準じて測定された構成単位Bの含有率より、定量した構成単位Dの含有率を差し引き、構成単位Bの含有率を補正する。 The content of the structural unit D in the polyvinyl acetal resin can be measured by the method described below. The polyvinyl acetal resin is heated at 80 ° C. for 2 hours in a 1 mol / l sodium hydroxide aqueous solution. By this operation, sodium is added to the carboxyl group, and a polymer having —COONa is obtained. Excess sodium hydroxide is extracted from the polymer and then dehydrated and dried. Thereafter, carbonization is performed and atomic absorption analysis is performed, and the amount of sodium added is determined and quantified. In addition, when analyzing the content rate of the structural unit B (vinyl acetate chain), since the structural unit D is quantified as a vinyl acetate chain, the content of the structural unit B measured according to the above JIS K6728 or JIS K6729 The content rate of the structural unit D determined is subtracted from the rate to correct the content rate of the structural unit B.
 ポリビニルアセタール樹脂の重量平均分子量は、5000~300000であることが好ましく、10000~150000であることがより好ましい。重量平均分子量が前記範囲にあるポリビニルアセタール樹脂を用いると、本発明の接着層、複合材、シートや放熱部材を容易に製造できるため好ましい。 The weight average molecular weight of the polyvinyl acetal resin is preferably 5000 to 300,000, and more preferably 10,000 to 150,000. Use of a polyvinyl acetal resin having a weight average molecular weight within the above range is preferable because the adhesive layer, composite material, sheet and heat dissipation member of the present invention can be easily produced.
 本発明において、ポリビニルアセタール樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。具体的な測定条件は以下の通りである。
・検出器:830-RI(日本分光(株)製)
・オ-ブン:NFL-700M(西尾工業(株)製)
・分離カラム:Shodex  KF-805L×2本
・ポンプ:PU-980(日本分光(株)製)
・温度:30℃
・キャリア:テトラヒドロフラン
・標準試料:ポリスチレン
In the present invention, the weight average molecular weight of the polyvinyl acetal resin can be measured by gel permeation chromatography (GPC). Specific measurement conditions are as follows.
・ Detector: 830-RI (manufactured by JASCO Corporation)
・ Oven: NFL-700M (manufactured by Nishio Kogyo Co., Ltd.)
-Separation column: Shodex KF-805L x 2-Pump: PU-980 (manufactured by JASCO Corporation)
・ Temperature: 30 ℃
・ Carrier: Tetrahydrofuran ・ Standard sample: Polystyrene
 ポリビニルアセタール樹脂のオストワルド粘度は、1~100mPa・sであることが好ましい。オストワルド粘度が前記範囲にあるポリビニルアセタール樹脂を用いると、本発明の接着層、複合材、シートや放熱部材を容易に製造でき、靭性に優れる本発明の複合材、シートや放熱部材が得られるため好ましい。オストワルド粘度は、ポリビニルアセタール樹脂5gをジクロロエタン100mlに溶解した溶液を用い、20℃で、Ostwald-Cannon  Fenske  Viscometerを用いて測定することができる。 The Ostwald viscosity of the polyvinyl acetal resin is preferably 1 to 100 mPa · s. When a polyvinyl acetal resin having an Ostwald viscosity in the above range is used, the adhesive layer, composite material, sheet and heat dissipation member of the present invention can be easily produced, and the composite material, sheet and heat dissipation member of the present invention having excellent toughness can be obtained. preferable. The Ostwald viscosity can be measured using an Ostwald-Cannon Fenske Viscometer at 20 ° C. using a solution of 5 g of polyvinyl acetal resin in 100 ml of dichloroethane.
 ポリビニルアセタール樹脂としては、具体的には、ポリビニルブチラール、ポリビニルホルマール、ポリビニルアセトアセタール、及びこれらの誘導体等が挙げられ、被着体、特に金属シートなどの金属材料やグラファイトシートなどの炭素材料との接着性および耐熱性に優れる接着層が得られる等の点から、ポリビニルホルマールが好ましい。 Specific examples of the polyvinyl acetal resin include polyvinyl butyral, polyvinyl formal, polyvinyl acetoacetal, and derivatives thereof, and adherends, particularly metal materials such as metal sheets and carbon materials such as graphite sheets. Polyvinyl formal is preferable from the viewpoint of obtaining an adhesive layer excellent in adhesiveness and heat resistance.
 ポリビニルアセタール樹脂は、合成して得てもよく、市販品でもよい。前記構成単位A、BおよびCを含む樹脂の合成方法は、特に制限されないが、例えば、特開2009-298833号公報に記載の方法を挙げることができる。また、前記構成単位A、B、CおよびDを含む樹脂の合成方法は、特に制限されないが、例えば、特開2010-202862号公報に記載の方法を挙げることができる。 The polyvinyl acetal resin may be obtained by synthesis or may be a commercially available product. The method for synthesizing the resin containing the structural units A, B and C is not particularly limited, and examples thereof include the method described in JP-A-2009-298833. The method for synthesizing the resin containing the structural units A, B, C and D is not particularly limited, and examples thereof include a method described in JP 2010-202862 A.
 ポリビニルアセタール樹脂の市販品としては、ポリビニルホルマールとして、ビニレック C、ビニレック K(商品名、JNC(株)製)などが挙げられ、ポリビニルブチラールとして、デンカブチラール 3000-K(商品名、電気化学工業(株)製)などが挙げられる。 Examples of commercially available polyvinyl acetal resins include vinyl formal C, vinylec K and vinylec K (trade name, manufactured by JNC Corporation), and polyvinyl butyral, denkabutyral 3000-K (trade name, electrochemical industry ( Etc.).
 ポリビニルアセタール樹脂としては、前記樹脂を単独で用いてもよく、構成単位の種類、結合の順番や結合の数等が異なる樹脂を2種以上用いてもよい。 As the polyvinyl acetal resin, the resin may be used alone, or two or more resins having different types of structural units, the order of bonding, the number of bonds, and the like may be used.
 [熱伝導性複合フィラーの製造方法]
以下の工程を経て本発明の熱伝導性複合フィラーを製造することができる。
・工程1:原料である、第一の熱伝導性フィラー、第二の熱伝導性フィラー、バインダー(ポリビニルアセタール樹脂)溶液を用意する。
・工程2:上記原料からなる均質な混合物を製造する。
・工程3:上記混合物を乾燥して溶媒を除去する。
[Method for producing thermally conductive composite filler]
The heat conductive composite filler of this invention can be manufactured through the following processes.
Step 1: A first heat conductive filler, a second heat conductive filler, and a binder (polyvinyl acetal resin) solution, which are raw materials, are prepared.
Step 2: A homogeneous mixture made of the above raw materials is produced.
Step 3: Dry the mixture to remove the solvent.
 工程1で用いる第一の熱伝導性フィラーと第二の熱伝導性フィラーの量比に制限はない。第一の熱伝導性フィラーとして比較的大粒径の窒化アルミニウムを用い、第二の熱伝導性フィラーとして比較的小粒径の窒化ホウ素を用いる場合には、工程1で窒化アルミニウムと窒化ホウ素を重量比(窒化アルミニウム重量:窒化ホウ素重量)が10:1乃至90:1、好ましくは40:1乃至80:1となるように混合する。 There is no limitation on the amount ratio of the first thermally conductive filler and the second thermally conductive filler used in Step 1. When aluminum nitride having a relatively large particle size is used as the first heat conductive filler and boron nitride having a relatively small particle size is used as the second heat conductive filler, aluminum nitride and boron nitride are used in step 1. Mixing is performed so that the weight ratio (aluminum nitride weight: boron nitride weight) is 10: 1 to 90: 1, preferably 40: 1 to 80: 1.
 工程1で用いるバインダー溶液の濃度と使用量は熱伝導性フィラーの種類と量に応じて適宜調節される。最終的に得られる熱伝導性複合フィラーに存在するバインダーの量が必要以上に多くなると熱伝導性複合フィラーの単位体積当たりの熱伝導性が低下して(熱伝導性複合フィラーの濃度が低下して)好ましくない。このため通常は、第一の熱伝導性フィラーと第二の熱伝導性フィラーの合計重量に対して0.01重量%以上0.5重量%以下、好ましくは0.02重量%以上0.3重量%以下のバインダー樹脂が存在する条件で、バインダー溶液を調整して混合する。 The concentration and amount of the binder solution used in step 1 are appropriately adjusted according to the type and amount of the thermally conductive filler. When the amount of binder present in the finally obtained thermally conductive composite filler is increased more than necessary, the thermal conductivity per unit volume of the thermally conductive composite filler decreases (the concentration of the thermally conductive composite filler decreases). It is not preferable. For this reason, usually, 0.01 wt% or more and 0.5 wt% or less, preferably 0.02 wt% or more and 0.3 wt% or less based on the total weight of the first heat conductive filler and the second heat conductive filler. The binder solution is prepared and mixed under the condition that the binder resin is present in an amount of not more than% by weight.
 バインダー溶液に用いられる溶剤としては、前記ポリビニルアセタール樹脂を溶解できるものを制限なく用いることができる。このような溶剤としては例えばメタノール、エタノール、n-プロパノール、iso-プロパノール、1-メトキシ-2-プロパノール、n-ブタノール、sec-ブタノール、n-オクタノール、ジアセトンアルコール、及びベンジルアルコールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、及びブチルセロソルブなどのセロソルブ系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、及びイソホロンなどのケトン系溶媒;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、及び1-メチル-2-ピロリドンなどのアミド系溶媒;酢酸メチル、及び酢酸エチルなどのエステル系溶媒;ジオキサン、及びテトラヒドロフランなどのエーテル系溶媒;メチレンクロライド、及びクロロホルムなどの塩素化炭化水素系溶媒;トルエン、及びピリジンなどの芳香族系溶媒;ジメチルスルホキシド;酢酸;テルピネオール;ブチルカルビトール;ブチルカルビトールアセテート等の有機溶剤や水を使用することができる。これらの溶剤は、単独で用いてもよく、2種以上を用いてもよい。 As the solvent used in the binder solution, a solvent capable of dissolving the polyvinyl acetal resin can be used without limitation. Examples of such solvents include alcohols such as methanol, ethanol, n-propanol, iso-propanol, 1-methoxy-2-propanol, n-butanol, sec-butanol, n-octanol, diacetone alcohol, and benzyl alcohol. Solvent; cellosolv solvents such as methyl cellosolve, ethyl cellosolve, and butyl cellosolve; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, and isophorone; N, N-dimethylacetamide, N, N-dimethylformamide, and 1 Amide solvents such as methyl-2-pyrrolidone; Ester solvents such as methyl acetate and ethyl acetate; Ether solvents such as dioxane and tetrahydrofuran; Chlorinated hydrocarbon solvents such as chloroform; can be an organic solvent or water, such as butyl carbitol acetate; toluene, and aromatic solvents such as pyridine; dimethylsulfoxide; acetic acid; terpineol; butyl carbitol. These solvents may be used alone or in combination of two or more.
 また上記工程1では熱伝導性フィラーの機能と複合化を妨げない範囲で、原料として安定剤、改質剤、金属不活性化剤、着色剤、カップリング剤、及び無機フィラーなどの添加剤を追加することができる。 Further, in the above-mentioned step 1, additives such as stabilizers, modifiers, metal deactivators, colorants, coupling agents, and inorganic fillers are used as raw materials as long as they do not hinder the function and combination of the heat conductive filler. Can be added.
 上記工程2における原料の供給順序に制限はない。上記工程2では、第一の熱伝導性フィラー、第二の熱伝導性フィラー、バインダー溶液を直接接触させてもよく、また、あらかじめ第一の熱伝導性フィラー及び/又は第二の熱伝導性フィラーをバインダー溶液と混合したものを用いてもよい。原料の供給順序にかかわらず、第一の熱伝導性フィラーと第二の熱伝導性フィラーの全量がバインダー溶液で濡れた状態で均一に分散した混合物を、工程2で製造する。 There is no limitation on the raw material supply order in step 2 above. In the step 2, the first thermal conductive filler, the second thermal conductive filler, and the binder solution may be brought into direct contact, and the first thermal conductive filler and / or the second thermal conductivity are previously provided. You may use what mixed the filler with the binder solution. Regardless of the raw material supply order, a mixture in which the entire amount of the first heat conductive filler and the second heat conductive filler are uniformly dispersed while being wetted with the binder solution is produced in Step 2.
 このような第一の熱伝導性フィラー、第二の熱伝導性フィラー、バインダー溶液を含む、均質な混合物を製造するために工程2で用いる攪拌手段に制限はない。工程2では、使用する原料からなる均質な混合物が得られるように、各種攪拌・混合装置から適当な機器を選択し、適当な強度で原料を攪拌・混合する。 There is no limitation on the stirring means used in step 2 in order to produce a homogeneous mixture containing the first heat conductive filler, the second heat conductive filler, and the binder solution. In step 2, an appropriate device is selected from various stirring / mixing apparatuses so that a homogeneous mixture of the raw materials to be used is obtained, and the raw materials are stirred and mixed with an appropriate strength.
 工程3で混合物を乾燥すると、第一の熱伝導性フィラーの表面と第二の熱伝導性フィラーの表面がバインダーを介して密着し、第一の熱伝導性フィラーと第二の熱伝導性フィラーとが複合一体化して粒子を形成する。こうして、複合粒子化した本発明の熱伝導性複合フィラーの粉体が得られる。 When the mixture is dried in step 3, the surface of the first thermally conductive filler and the surface of the second thermally conductive filler are in close contact with each other through the binder, and the first thermally conductive filler and the second thermally conductive filler are adhered. And are integrated into a single particle. In this way, the powder of the heat conductive composite filler of the present invention formed into composite particles is obtained.
 [熱伝導性複合フィラーの用途]
本発明の熱伝導性複合フィラーは従来の熱伝導性フィラーの改良された代替品として、従来の熱伝導性フィラーの用途のすべてに利用することができる。すなわち本発明の熱伝導性複合フィラーと樹脂を含む熱伝導性樹脂組成物を、フィルムやシート形状の放熱部材や、熱伝導・放熱機能が求められる塗料、接着剤、封止材、熱伝導性グリースなどの原料として用いることができる。なお、本発明において、「樹脂」はゴムやエラストマーも含む。本発明の熱伝導性樹脂組成物は従来品と同様の方法で加工・成形することができる。
[Use of heat conductive composite filler]
The thermally conductive composite filler of the present invention can be used for all conventional thermal conductive filler applications as an improved replacement for conventional thermal conductive fillers. That is, the thermally conductive resin composition containing the thermally conductive composite filler of the present invention and a resin is used as a heat radiating member in the form of a film or a sheet, a paint, an adhesive, a sealing material, or a thermal conductive material that requires thermal conduction / radiation function. It can be used as a raw material for grease and the like. In the present invention, “resin” includes rubber and elastomer. The heat conductive resin composition of this invention can be processed and shape | molded by the method similar to a conventional product.
 特に、本発明の熱伝導性複合フィラーと、ポリカーボネート樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリフェニレンエーテル樹脂、またはポリアミド樹脂などの比較的耐熱性の高い樹脂とを含む熱伝導性樹脂組成物は、軽量で耐熱性が高く様々な形状の放熱部材として有用である。 In particular, a thermally conductive resin composition comprising the thermally conductive composite filler of the present invention and a resin having a relatively high heat resistance such as a polycarbonate resin, a polyester resin, a polyacetal resin, a polyphenylene ether resin, or a polyamide resin is lightweight. It has high heat resistance and is useful as a heat radiating member of various shapes.
 本発明の熱伝導性複合フィラーとシリコーン樹脂とを含む熱伝導性樹脂組成物は、発熱部材と放熱部材との接着剤あるいはこれら部材間の隙間封止剤として有用である。 The heat conductive resin composition containing the heat conductive composite filler and the silicone resin of the present invention is useful as an adhesive between the heat generating member and the heat radiating member or a gap sealant between these members.
 [実施例1、実施例2、比較例1]
本発明の熱伝導性複合フィラーとその比較品の製造例である。以下の材料を用いた。
・第一の熱伝導性フィラー:古河電子(株)製「FAN-f50」(平均粒子径35~60μmの高熱伝導窒化アルミニウムフィラー)。
・第二の熱伝導性フィラー:米国MOMENTIVE社製「MOMENTIVETM PTX25」(平均粒子径約25μmの窒化ホウ素粉体)。
・溶剤:和光純薬工業社製「1-メチル-2-ピロリドン(NMP)」
・溶剤(対照用):和光純薬工業社製「イソプロピルアルコール(IPA)」
・ポリビニルアセタール樹脂:JNC株式会社製「ビニレック(登録商標)K」(重量平均分子量45000のポリビニルホルマール樹脂。構成単位A、B、及びCを有する。)
・バインダー溶液:26gの「ビニレック(登録商標)K」が200gのNMPに溶解したポリビニルホルマール樹脂溶液。
[Example 1, Example 2, Comparative Example 1]
It is a manufacture example of the heat conductive composite filler of this invention, and its comparison goods. The following materials were used.
First heat conductive filler: “FAN-f50” manufactured by Furukawa Electronics Co., Ltd. (a high heat conductive aluminum nitride filler having an average particle size of 35 to 60 μm)
Second heat conductive filler: “MOMENTIVE PTX25” (boron nitride powder having an average particle diameter of about 25 μm) manufactured by MOMENTIVE, USA.
・ Solvent: “1-Methyl-2-pyrrolidone (NMP)” manufactured by Wako Pure Chemical Industries, Ltd.
・ Solvent (for control): “Isopropyl alcohol (IPA)” manufactured by Wako Pure Chemical Industries, Ltd.
Polyvinyl acetal resin: “Vinylec (registered trademark) K” manufactured by JNC Corporation (polyvinyl formal resin having a weight average molecular weight of 45000. It has structural units A, B, and C.)
Binder solution: A polyvinyl formal resin solution in which 26 g of “Vinyleck® K” was dissolved in 200 g of NMP.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1に示す量で第一の熱伝導性フィラー及び第二の熱伝導性フィラーと、バインダー溶液または溶剤を混合した。得られた混合物を日本コークス工業株式会社製パウダーラボ型式PWBにて十分に攪拌した。得られた混合物を室温で乾燥して熱伝導性フィラーの粉体を回収した。 The first thermally conductive filler and the second thermally conductive filler, and the binder solution or solvent were mixed in the amounts shown in Table 1. The obtained mixture was sufficiently stirred with a powder laboratory model PWB manufactured by Nippon Coke Industries, Ltd. The obtained mixture was dried at room temperature to recover a thermally conductive filler powder.
 FAN-f50単独のSEM(走査型電子顕微鏡)写真を図1に示す。PTX25単独のSEM(走査型電子顕微鏡)写真を図2に示す。実施例1、実施例2、比較例1で得られた粉体のSEM写真をそれぞれ図3、図4、図5に示す。 A SEM (scanning electron microscope) photograph of FAN-f50 alone is shown in FIG. An SEM (scanning electron microscope) photograph of PTX25 alone is shown in FIG. SEM photographs of the powders obtained in Example 1, Example 2, and Comparative Example 1 are shown in FIGS. 3, 4, and 5, respectively.
 図1、図2、図5からわかるように、比較例1で製造された粉体には、窒化アルミニウム粒子と窒化ホウ素粒子との密着が観察されない。 As can be seen from FIG. 1, FIG. 2, and FIG. 5, adhesion between aluminum nitride particles and boron nitride particles is not observed in the powder produced in Comparative Example 1.
 これに対して、図1、図2、図3から、実施例1で製造された粉体は、球状の窒化アルミニウム粒子の表面に鱗片状あるいは不定形の窒化ホウ素粒子が密着した複合粒子であることが確認できる。同様に図1、図2、図4から、実施例2で製造された粉体は、球状の窒化アルミニウム粒子の表面に鱗片状あるいは不定形の窒化ホウ素粒子が密着した複合粒子であることが確認できる。 On the other hand, from FIGS. 1, 2 and 3, the powder produced in Example 1 is a composite particle in which scaly or amorphous boron nitride particles are adhered to the surface of spherical aluminum nitride particles. I can confirm that. Similarly, from FIG. 1, FIG. 2, and FIG. 4, it is confirmed that the powder produced in Example 2 is a composite particle in which scaly or amorphous boron nitride particles are in close contact with the surface of spherical aluminum nitride particles. it can.
 このように、実施例1、実施例2では、窒化アルミニウム粒子と窒化ホウ素粒子とがバインダーを介して密着し、本発明の熱伝導性複合フィラーが形成された。 Thus, in Example 1 and Example 2, the aluminum nitride particles and the boron nitride particles were in close contact with each other through the binder, and the thermally conductive composite filler of the present invention was formed.
 [実施例3、実施例4、比較例2] 
本発明の熱伝導性樹脂組成物とその対照品からなる放熱部材の製造例である。以下の材料を用いた。
・熱伝導性フィラー:実施例1、実施例2、比較例1で製造した熱伝導性フィラー粉体。
・エポキシ樹脂:三菱ケミカル株式会社製液状エポキシ樹脂「jERTM828」
・硬化剤:4,4’-ジアミノ-1,2-ジフェニルメタン(DDM)
[Example 3, Example 4, Comparative Example 2]
It is a manufacture example of the heat radiating member which consists of the heat conductive resin composition of this invention, and its contrast goods. The following materials were used.
Thermally conductive filler: The thermally conductive filler powder produced in Example 1, Example 2, and Comparative Example 1.
・ Epoxy resin: Mitsubishi Chemical Corporation liquid epoxy resin “jER TM 828”
Curing agent: 4,4′-diamino-1,2-diphenylmethane (DDM)
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表2に示す量で熱伝導性フィラー、エポキシ樹脂、及び硬化剤を混合した。得られた混合物を型枠内で加熱圧縮してエポキシ樹脂を硬化し、板状のエポキシ樹脂成形体を得た。この成形体の垂直方向の熱拡散率をNetzsch社製熱拡散率測定装置LFA467 HyperFlashで測定した。結果を表2に示す。 The heat conductive filler, epoxy resin, and curing agent were mixed in the amounts shown in Table 2. The obtained mixture was heated and compressed in a mold to cure the epoxy resin, and a plate-shaped epoxy resin molded body was obtained. The thermal diffusivity in the vertical direction of the compact was measured with a thermal diffusivity measuring device LFA467 HyperFlash manufactured by Netzsch. The results are shown in Table 2.
 表2に示すように、実施例3、実施例4で製造したエポキシ樹脂成形体は高い熱拡散率を示し、放熱部材として有用である。これに対して比較例2で製造したエポキシ樹脂成形体は実施例3、実施例4とほぼ同量の熱伝導性フィラーを含むにも関わらず、その放熱機能はひどく劣っていた。 As shown in Table 2, the epoxy resin molded bodies produced in Example 3 and Example 4 exhibit high thermal diffusivity and are useful as heat dissipation members. On the other hand, although the epoxy resin molded body produced in Comparative Example 2 contained almost the same amount of thermally conductive filler as Example 3 and Example 4, its heat dissipation function was extremely inferior.
 このように、本発明の熱伝導性複合フィラーを含む樹脂組成物は放熱部材の原料として優れている。 Thus, the resin composition containing the thermally conductive composite filler of the present invention is excellent as a raw material for the heat dissipation member.
 本発明の熱伝導性複合フィラーは新規かつ高性能の熱伝導性フィラーである。本発明の熱伝導性複合フィラーを含む樹脂組成物によって、より小型で高性能の電子機器に要求される放熱部材や熱伝導性グリースなどの熱伝導性材料・部材を製造することができる。 The heat conductive composite filler of the present invention is a novel and high performance heat conductive filler. With the resin composition containing the heat conductive composite filler of the present invention, a heat conductive material / member such as a heat radiating member or a heat conductive grease required for a smaller and higher performance electronic device can be manufactured.

Claims (9)

  1. 第一の熱伝導性フィラー、第二の熱伝導性フィラー、及び前記第一の熱伝導性フィラー及び前記第二の熱伝導性フィラーのバインダーとしてのポリビニルアセタール樹脂を含む、熱伝導性複合フィラー。 A thermally conductive composite filler comprising a first thermally conductive filler, a second thermally conductive filler, and a polyvinyl acetal resin as a binder of the first thermally conductive filler and the second thermally conductive filler.
  2. 第一の熱伝導性フィラー及び第二の熱伝導性フィラーが独立に、酸化物、窒化物、炭化物、金属、及び炭酸マグネシウムからなる群から選ばれる少なくとも1種である、請求項1に記載の熱伝導性複合フィラー。 The first heat conductive filler and the second heat conductive filler are independently at least one selected from the group consisting of an oxide, a nitride, a carbide, a metal, and magnesium carbonate. Thermally conductive composite filler.
  3. 第一の熱伝導性フィラー及び第二の熱伝導性フィラーが独立に、窒化ホウ素、窒化珪素、及び窒化アルミニウムからなる群から選ばれる少なくとも1種である、請求項1に記載の熱伝導性複合フィラー。 2. The thermally conductive composite according to claim 1, wherein the first thermally conductive filler and the second thermally conductive filler are independently at least one selected from the group consisting of boron nitride, silicon nitride, and aluminum nitride. Filler.
  4. ポリビニルアセタール樹脂が以下の構成単位A、B、及びCを含む、請求項1に記載の熱伝導性複合フィラー。
    Figure JPOXMLDOC01-appb-C000001
    (構成単位A中、Rは独立に水素またはアルキルである。)
    Figure JPOXMLDOC01-appb-C000002
    The heat conductive composite filler of Claim 1 in which a polyvinyl acetal resin contains the following structural units A, B, and C.
    Figure JPOXMLDOC01-appb-C000001
    (In the structural unit A, R is independently hydrogen or alkyl.)
    Figure JPOXMLDOC01-appb-C000002
  5. ポリビニルアセタール樹脂がさらに以下の構成単位Dを含む、請求項4に記載の熱伝導性複合フィラー。
    Figure JPOXMLDOC01-appb-C000003
    (構成単位D中、Rは独立に水素または炭素数1~5のアルキルである。)
    The thermally conductive composite filler according to claim 4, wherein the polyvinyl acetal resin further contains the following structural unit D.
    Figure JPOXMLDOC01-appb-C000003
    (In the structural unit D, R 1 is independently hydrogen or alkyl having 1 to 5 carbon atoms.)
  6. 請求項4に記載の構成単位AにおけるRが独立に、水素または炭素数1~3のアルキルである、請求項4または5に記載の熱伝導性複合フィラー。 The thermally conductive composite filler according to claim 4 or 5, wherein R in the structural unit A according to claim 4 is independently hydrogen or alkyl having 1 to 3 carbon atoms.
  7. 請求項1~6のいずれか1項に記載の熱伝導性複合フィラーと樹脂とを含む熱伝導性樹脂組成物。 A heat conductive resin composition comprising the heat conductive composite filler according to any one of claims 1 to 6 and a resin.
  8. 請求項7に記載の熱伝導性樹脂組成物からなる放熱部材。 A heat radiating member comprising the thermally conductive resin composition according to claim 7.
  9. 請求項7に記載の熱伝導性樹脂組成物からなる熱伝導性グリース。 A thermally conductive grease comprising the thermally conductive resin composition according to claim 7.
PCT/JP2019/014481 2018-04-06 2019-04-01 Thermally conductive composite filler, heat-dissipating resin composition containing same, and heat-dissipating grease and heat-dissipating member comprising said heat-dissipating resin composition WO2019194131A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020512236A JPWO2019194131A1 (en) 2018-04-06 2019-04-01 A heat-conductive composite filler, a heat-dissipating resin composition containing the same, a heat-dissipating grease and a heat-dissipating member made of the heat-dissipating resin composition.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018073922 2018-04-06
JP2018-073922 2018-04-06

Publications (1)

Publication Number Publication Date
WO2019194131A1 true WO2019194131A1 (en) 2019-10-10

Family

ID=68100578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014481 WO2019194131A1 (en) 2018-04-06 2019-04-01 Thermally conductive composite filler, heat-dissipating resin composition containing same, and heat-dissipating grease and heat-dissipating member comprising said heat-dissipating resin composition

Country Status (2)

Country Link
JP (1) JPWO2019194131A1 (en)
WO (1) WO2019194131A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181482A (en) * 2021-11-29 2022-03-15 山东东岳高分子材料有限公司 Filled polytetrafluoroethylene dispersion resin and preparation method thereof
WO2024095510A1 (en) * 2021-11-04 2024-05-10 株式会社豊田中央研究所 Thermally conductive material and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110119256A (en) * 2010-04-27 2011-11-02 나노캠텍주식회사 Resin composition for heat-radiating sheet, heat-radiating sheet and copper clad laminate employing the same
JP2013155366A (en) * 2012-01-04 2013-08-15 Jnc Corp Heat-dissipating resin composition and varnish containing the same
WO2013145961A1 (en) * 2012-03-30 2013-10-03 昭和電工株式会社 Curable heat radiation composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110119256A (en) * 2010-04-27 2011-11-02 나노캠텍주식회사 Resin composition for heat-radiating sheet, heat-radiating sheet and copper clad laminate employing the same
JP2013155366A (en) * 2012-01-04 2013-08-15 Jnc Corp Heat-dissipating resin composition and varnish containing the same
WO2013145961A1 (en) * 2012-03-30 2013-10-03 昭和電工株式会社 Curable heat radiation composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095510A1 (en) * 2021-11-04 2024-05-10 株式会社豊田中央研究所 Thermally conductive material and manufacturing method therefor
CN114181482A (en) * 2021-11-29 2022-03-15 山东东岳高分子材料有限公司 Filled polytetrafluoroethylene dispersion resin and preparation method thereof

Also Published As

Publication number Publication date
JPWO2019194131A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
KR101773589B1 (en) Heat Radiant Paint Composition and Heat Radiant Structure
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
TWI598291B (en) Hexagonal boron nitride powder, a method for producing the same, a resin composition and a resin sheet
TWI718560B (en) Hexagonal boron nitride powder and its manufacturing method, its composition and heat dissipation material
TWI566947B (en) Heat release element, electronic device and battery
US20120298345A1 (en) Heat sink sheet including an adhesive having good heat conductivity
JP5103364B2 (en) Manufacturing method of heat conductive sheet
JP7431417B2 (en) Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
WO2019194131A1 (en) Thermally conductive composite filler, heat-dissipating resin composition containing same, and heat-dissipating grease and heat-dissipating member comprising said heat-dissipating resin composition
JP6527904B2 (en) Resin composition, article produced therefrom, and method of producing the same
US20210363399A1 (en) Agglomerated boron nitride powder, heat dissipation sheet, and semiconductor device
JP7467980B2 (en) Boron nitride agglomerated powder, heat dissipation sheet, and method for manufacturing semiconductor device
CN104449337A (en) Preparation method of high-thermal-conductivity photocuring functional coating
KR101666053B1 (en) Heat Radiant Paint and nanotubes and Method for forming Heat Radiant coating layer of using the same
WO2019189182A1 (en) Thermally conductive composite filler, heat-dissipating resin composition containing same, and heat-dissipating grease and heat-dissipating member comprising heat-dissipating resin composition
KR101912878B1 (en) Manufacturing method of Heat conduction sheet for graphite using heat-emiting
JPH08183875A (en) Highly heat-conductive composite filler and highly heat-conductive resin composition
KR101648484B1 (en) Ceramic Hybrid Heat radiant Coating Materials Using Carbon allotrope composites
CN113261398A (en) Method for preparing radiating fin
JP2021084814A (en) Surface-treated boron nitride production method, surface-treated boron nitride, resin composition, and cured product
JP6795409B2 (en) Curable material, manufacturing method of curable material and laminate
CN109705725A (en) A kind of heat radiating type polyamide powder coating
JP2020073621A (en) Method for producing silica-coated aluminum nitride particle dispersion resin composition, and method for producing sheet having cured product thereof, and method for producing power device having sheet
JP2020073625A (en) Method for producing silica-coated aluminum nitride particle dispersion resin composition, and method for producing sheet having cured product thereof, and method for producing power device having sheet
WO2019244531A1 (en) Method for producing surface-treated aluminum nitride, surface-treated aluminum nitride, resin composition and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781976

Country of ref document: EP

Kind code of ref document: A1