JP7431417B2 - Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder - Google Patents

Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder Download PDF

Info

Publication number
JP7431417B2
JP7431417B2 JP2021504045A JP2021504045A JP7431417B2 JP 7431417 B2 JP7431417 B2 JP 7431417B2 JP 2021504045 A JP2021504045 A JP 2021504045A JP 2021504045 A JP2021504045 A JP 2021504045A JP 7431417 B2 JP7431417 B2 JP 7431417B2
Authority
JP
Japan
Prior art keywords
powder
boron nitride
hexagonal boron
resin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021504045A
Other languages
Japanese (ja)
Other versions
JPWO2020179662A1 (en
Inventor
祐一 池田
祥太 台木
恭一 藤波
輝彦 縄田
勝弥 手嶋
哲也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Tokuyama Corp
Original Assignee
Shinshu University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Tokuyama Corp filed Critical Shinshu University NUC
Publication of JPWO2020179662A1 publication Critical patent/JPWO2020179662A1/ja
Application granted granted Critical
Publication of JP7431417B2 publication Critical patent/JP7431417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0646Preparation by pyrolysis of boron and nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/02Single-crystal growth from melt solutions using molten solvents by evaporation of the molten solvent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は六方晶窒化ホウ素粉末、樹脂組成物、樹脂シートおよび六方晶窒化ホウ素粉末の製造方法に関する。 The present invention relates to hexagonal boron nitride powder, a resin composition, a resin sheet, and a method for producing hexagonal boron nitride powder.

電子部品において、絶縁耐力および熱伝導性を備えた素材として、六方晶窒化ホウ素が用いられる。六方晶窒化ホウ素の単結晶の製造方法として、例えば、特許文献1に開示されているフラックス法が知られている。また、六方晶窒化ホウ素粉末の製造方法として、例えば、特許文献2および3に開示されているメラミン法、特許文献4に開示されている気相法等が従来技術として知られている。 In electronic components, hexagonal boron nitride is used as a material with dielectric strength and thermal conductivity. As a method for producing a single crystal of hexagonal boron nitride, for example, the flux method disclosed in Patent Document 1 is known. Further, as methods for producing hexagonal boron nitride powder, for example, the melamine method disclosed in Patent Documents 2 and 3, the gas phase method disclosed in Patent Document 4, etc. are known as conventional techniques.

特開2016-141600号公報Japanese Patent Application Publication No. 2016-141600 特開平10-059702号公報Japanese Patent Application Publication No. 10-059702 特開2006-188411号公報JP2006-188411A 国際公開第2015/122378号公報International Publication No. 2015/122378

しかしながら、上述のような従来技術では、高熱伝導性および高絶縁耐力を示す樹脂シートを実現する観点から改善の余地があった。本発明の一態様は、高熱伝導性および高絶縁耐力を備えた樹脂シートを実現し得る六方晶窒化ホウ素粉末を提供することを目的とする。 However, in the conventional techniques as described above, there is room for improvement from the viewpoint of realizing a resin sheet exhibiting high thermal conductivity and high dielectric strength. One aspect of the present invention is to provide hexagonal boron nitride powder that can realize a resin sheet with high thermal conductivity and high dielectric strength.

上記の課題を解決するために、本発明者が鋭意研究を行った結果、特定の形状の六方晶窒化ホウ素一次粒子が凝集した凝集粒子を含む粉末を用いることにより、高熱伝導性および高絶縁耐力を備えた樹脂シートを作製できることを見出した。即ち、本発明は以下の構成を含む。 In order to solve the above problems, the present inventor conducted intensive research and found that by using a powder containing agglomerated particles in which hexagonal boron nitride primary particles of a specific shape were aggregated, high thermal conductivity and high dielectric strength were achieved. We have discovered that it is possible to produce a resin sheet with That is, the present invention includes the following configuration.

六方晶窒化ホウ素一次粒子が凝集した六方晶窒化ホウ素凝集粒子を含み、比表面積が0.5m/g以上、5.0m/g以下であり、前記六方晶窒化ホウ素一次粒子の長径が0.6μm以上、4.0μm以下、かつ、アスペクト比が1.5以上、5.0以下である、六方晶窒化ホウ素粉末。 The hexagonal boron nitride primary particles contain aggregated hexagonal boron nitride particles, have a specific surface area of 0.5 m 2 /g or more and 5.0 m 2 /g or less, and have a major axis of 0. A hexagonal boron nitride powder having a size of .6 μm or more and 4.0 μm or less, and an aspect ratio of 1.5 or more and 5.0 or less.

ホウ素酸化物と、窒素を含む有機化合物と、炭酸リチウムとを含む混合粉末を加熱する加熱工程を含み、前記混合粉末における窒素原子に対するホウ素原子の重量比は、0.2以上、0.4以下であり、前記混合粉末における炭酸リチウムに対するホウ素原子の重量比は、0.22以上、0.98以下であり、前記加熱工程において、前記混合粉末を、最高温度1200℃以上、1500℃以下で加熱する、六方晶窒化ホウ素粉末の製造方法。 It includes a heating step of heating a mixed powder containing boron oxide, an organic compound containing nitrogen, and lithium carbonate, and the weight ratio of boron atoms to nitrogen atoms in the mixed powder is 0.2 or more and 0.4 or less. The weight ratio of boron atoms to lithium carbonate in the mixed powder is 0.22 or more and 0.98 or less, and in the heating step, the mixed powder is heated at a maximum temperature of 1200°C or more and 1500°C or less. A method for producing hexagonal boron nitride powder.

本発明の一態様によれば、高熱伝導性および高絶縁耐力を備えた樹脂シートを実現し得る六方晶窒化ホウ素粉末を提供できる。 According to one aspect of the present invention, it is possible to provide hexagonal boron nitride powder that can realize a resin sheet with high thermal conductivity and high dielectric strength.

実施例1に係る六方晶窒化ホウ素粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。It is a figure which shows the scanning electron microscope image of the hexagonal boron nitride powder based on Example 1, (a) is a figure enlarged 2000 times, (b) 5000 times, and (c) is a figure enlarged 10000 times. . 実施例2に係る六方晶窒化ホウ素粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。It is a figure which shows the scanning electron microscope image of the hexagonal boron nitride powder based on Example 2, (a) is a figure enlarged 2000 times, (b) 5000 times, and (c) is a figure enlarged 10000 times. . 比較例7に係る六方晶窒化ホウ素粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。It is a figure which shows the scanning electron microscope image of the hexagonal boron nitride powder based on the comparative example 7, (a) is a figure enlarged 2000 times, (b) 5000 times, and (c) is a figure enlarged 10000 times. . 比較例8に係る六方晶窒化ホウ素粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。It is a figure which shows the scanning electron microscope image of the hexagonal boron nitride powder based on the comparative example 8, (a) is a figure enlarged 2000 times, (b) 5000 times, and (c) is a figure enlarged 10000 times. . 実施例1および2、並びに比較例7および8に係る六方晶窒化ホウ素粉末の粒度分布のグラフである。1 is a graph of particle size distribution of hexagonal boron nitride powders according to Examples 1 and 2 and Comparative Examples 7 and 8.

本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。 An embodiment of the present invention will be described below, but the present invention is not limited thereto.

<1.六方晶窒化ホウ素粉末>
本発明の一実施形態に係る六方晶窒化ホウ素粉末は、六方晶窒化ホウ素一次粒子が凝集した六方晶窒化ホウ素凝集粒子を含み、比表面積が0.5m/g以上、5.0m/g以下であり、六方晶窒化ホウ素一次粒子の長径が0.6μm以上、4.0μm以下、かつ、アスペクト比が1.5以上、5.0以下である。
<1. Hexagonal boron nitride powder>
The hexagonal boron nitride powder according to an embodiment of the present invention includes hexagonal boron nitride aggregate particles in which hexagonal boron nitride primary particles aggregate, and has a specific surface area of 0.5 m 2 /g or more and 5.0 m 2 /g. and the major axis of the hexagonal boron nitride primary particles is 0.6 μm or more and 4.0 μm or less, and the aspect ratio is 1.5 or more and 5.0 or less.

前記六方晶窒化ホウ素粉末は、小粒径かつ肉厚の板状の六方晶窒化ホウ素一次粒子が高密度に凝集することにより構成された六方晶窒化ホウ素凝集粒子を含む。このため、六方晶窒化ホウ素粉末を用いて作製した樹脂シートでは、異方性が改善され、かつ、六方晶窒化ホウ素粉末が密に充填されることにより、高熱伝導性および高絶縁耐力を示す。 The hexagonal boron nitride powder includes hexagonal boron nitride agglomerated particles formed by agglomeration of plate-shaped hexagonal boron nitride primary particles having a small particle size and a thick wall at a high density. Therefore, a resin sheet made using hexagonal boron nitride powder has improved anisotropy and is densely packed with hexagonal boron nitride powder, thereby exhibiting high thermal conductivity and high dielectric strength.

また、前記六方晶窒化ホウ素粉末は、微粉の含有量が少ないため、樹脂へ混練する際、粘度の上昇を効果的に抑制することができる。これにより、該六方晶窒化ホウ素粉末は樹脂への充填性に優れるため、六方晶窒化ホウ素粉末を用いて作製した樹脂シートはさらに高熱伝導性および高絶縁耐力を示す。 Furthermore, since the hexagonal boron nitride powder has a small content of fine powder, it is possible to effectively suppress an increase in viscosity when kneading it into a resin. As a result, since the hexagonal boron nitride powder has excellent filling properties into resin, a resin sheet made using the hexagonal boron nitride powder further exhibits high thermal conductivity and high dielectric strength.

本明細書において、六方晶窒化ホウ素一次粒子は、六方晶窒化ホウ素の単粒子を意味する。以下では、六方晶窒化ホウ素一次粒子をh-BN一次粒子とも称する。h-BN一次粒子は、通常、板状粒子である。本明細書では、この板状粒子の板面において最大となる径を長径と称する。また、この板面に垂直な長さを厚さと称する。そして、この長径を厚さで除した値をアスペクト比と称する。 In this specification, hexagonal boron nitride primary particles mean a single particle of hexagonal boron nitride. Hereinafter, the hexagonal boron nitride primary particles will also be referred to as h-BN primary particles. The h-BN primary particles are usually plate-like particles. In this specification, the maximum diameter on the plate surface of this plate-like particle is referred to as the major axis. Further, the length perpendicular to the plate surface is called the thickness. The value obtained by dividing this major axis by the thickness is called the aspect ratio.

h-BN一次粒子の長径は、0.6μm以上、4.0μm以下であることが好ましく、1.0μm以上、3.5μm以下であることがより好ましく、1.5μm以上、3.5μm以下であることがさらに好ましい。h-BN一次粒子のアスペクト比は、1.5以上、5.0以下であることが好ましく、2.0以上、4.5以下であることがより好ましく、2.5以上、4.0以下であることがさらに好ましい。h-BN一次粒子の長径およびアスペクト比が上記の範囲であることは、h-BN一次粒子が小粒径、かつ、肉厚の板状粒子であることを表す。また、h-BN一次粒子の長径およびアスペクト比が上記の範囲であれば、得られる凝集粒子は略球形であるため、凝集粒子に間隙が生じにくく、樹脂組成物の粘度の上昇を抑制できる。なお、本明細書において、h-BN一次粒子の長径およびアスペクト比は、後述の実施例に記載の測定方法によって測定された平均値を表す。 The major axis of h-BN primary particles is preferably 0.6 μm or more and 4.0 μm or less, more preferably 1.0 μm or more and 3.5 μm or less, and 1.5 μm or more and 3.5 μm or less. It is even more preferable that there be. The aspect ratio of the h-BN primary particles is preferably 1.5 or more and 5.0 or less, more preferably 2.0 or more and 4.5 or less, and 2.5 or more and 4.0 or less. It is more preferable that The fact that the major axis and aspect ratio of the h-BN primary particles are within the above ranges indicates that the h-BN primary particles are small-diameter, thick-walled plate-like particles. Furthermore, when the major axis and aspect ratio of the h-BN primary particles are within the above ranges, the obtained aggregated particles are approximately spherical, so gaps are less likely to be formed in the aggregated particles, and an increase in the viscosity of the resin composition can be suppressed. Note that in this specification, the major axis and aspect ratio of h-BN primary particles represent average values measured by the measuring method described in Examples below.

本明細書において、六方晶窒化ホウ素凝集粒子は、h-BN一次粒子が凝集した粒子を意味する。六方晶窒化ホウ素凝集粒子の長径は、通常、5~40μmである。以下では、六方晶窒化ホウ素凝集粒子をh-BN凝集粒子とも称する。h-BN凝集粒子の形状は、図1および図2に示される形状を有し、例えば、少なくとも2個以上のh-BN一次粒子が厚さ方向に連なって成る略球形、該略球形の粒子が数珠状に繋がった形状、または、大小のh-BN一次粒子が多方向を向いて凝集した形状である。 In this specification, hexagonal boron nitride aggregated particles mean particles in which h-BN primary particles are aggregated. The long axis of the hexagonal boron nitride agglomerated particles is usually 5 to 40 μm. Hereinafter, hexagonal boron nitride aggregate particles are also referred to as h-BN aggregate particles. The shape of the h-BN agglomerated particles has the shape shown in FIGS. 1 and 2, for example, a substantially spherical shape formed by at least two or more h-BN primary particles connected in the thickness direction, and the substantially spherical particle. It has a shape in which h-BN primary particles are connected in a beaded shape, or a shape in which large and small h-BN primary particles are agglomerated facing in multiple directions.

六方晶窒化ホウ素粉末は、h-BN凝集粒子を含んでなる。以下では、六方晶窒化ホウ素粉末をh-BN粉末とも称する。h-BN粉末はさらに、h-BN一次粒子を含んでもよい。すなわち、h-BN粉末は、h-BN一次粒子とh-BN凝集粒子との混合物であり得る。 The hexagonal boron nitride powder comprises h-BN agglomerated particles. In the following, hexagonal boron nitride powder is also referred to as h-BN powder. The h-BN powder may further include h-BN primary particles. That is, the h-BN powder may be a mixture of h-BN primary particles and h-BN agglomerated particles.

h-BN粉末は、比表面積が0.5m/g以上、5.0m/g以下であることが好ましく、1.0m/g以上、4.5m/g以下であることがより好ましく、1.5m/g以上、4.0m/g以下であることがさらに好ましい。h-BN一次粒子が比較的肉厚である場合に、h-BN粉末の比表面積が上記範囲となる傾向がある。また、h-BN粉末の比表面積が0.5m/g以上であることは、h-BN粉末において比較的小さなh-BN一次粒子が適度に凝集していることを表す。その結果、本発明の一実施形態に係るh-BN粉末を用いて作製した樹脂シートでは、異方性が改善され、良好な熱伝導性が得られる。 The specific surface area of the h-BN powder is preferably 0.5 m 2 /g or more and 5.0 m 2 /g or less, more preferably 1.0 m 2 /g or more and 4.5 m 2 /g or less. It is preferably 1.5 m 2 /g or more and more preferably 4.0 m 2 /g or less. When the h-BN primary particles are relatively thick, the specific surface area of the h-BN powder tends to fall within the above range. Further, the fact that the specific surface area of the h-BN powder is 0.5 m 2 /g or more means that relatively small h-BN primary particles in the h-BN powder are appropriately agglomerated. As a result, the resin sheet produced using the h-BN powder according to an embodiment of the present invention has improved anisotropy and good thermal conductivity.

また、h-BN粉末の比表面積が、5.0m/g以下であることは、h-BN粉末に含まれる微粉の含有量が少なく、肉厚のh-BN一次粒子が多いことを表す。微粉の含有量が少なければh-BN粉末を樹脂に混練する際、樹脂組成物の粘度の上昇が抑制される。このため、h-BN粉末を樹脂へ充填しやすい。その結果、本発明の一実施形態に係るh-BN粉末を用いて作製した樹脂シートでは、良好な熱伝導性および良好な絶縁耐力を示す。 Furthermore, the fact that the specific surface area of the h-BN powder is 5.0 m 2 /g or less means that the content of fine powder contained in the h-BN powder is small and the content of thick h-BN primary particles is large. . If the fine powder content is small, an increase in the viscosity of the resin composition is suppressed when the h-BN powder is kneaded into the resin. Therefore, it is easy to fill the h-BN powder into the resin. As a result, the resin sheet produced using the h-BN powder according to one embodiment of the present invention exhibits good thermal conductivity and good dielectric strength.

本発明の一実施形態に係るh-BN粉末のタップ嵩密度は、0.40g/cm以上であることが好ましく、0.45g/cm以上であることがより好ましく、0.50g/cm以上であることがさらに好ましい。タップ嵩密度が0.40g/cm以上であることは、特定の形状を有するh-BN一次粒子が適度に凝集し、充填性の高い粒度分布を有するh-BN粉末が形成されていることを表す。すなわち、タップ嵩密度が0.40g/cm以上であれば、h-BN凝集粒子が粗でない、かつ/または、h-BN凝集粒子の樹脂組成物への充填性が良好である。その結果、本発明の一実施形態に係るh-BN粉末を用いて作製した樹脂シートでは、空隙が生じにくく、均一な熱伝導性を示す。なお、充填性の高い粒度分布とは、様々な粒子径を有するh-BN一次粒子およびh-BN凝集粒子が適度に含まれていることを表す。例えば、h-BN粉末が、単一の粒子径を有するh-BN一次粒子またはh-BN凝集粒子のみを含む場合、h-BN一次粒子またはh-BN凝集粒子の間に空隙が生じやすいため、密に充填することは難しい。 The tap bulk density of the h-BN powder according to an embodiment of the present invention is preferably 0.40 g/cm 3 or more, more preferably 0.45 g/cm 3 or more, and 0.50 g/cm 3 or more. More preferably, it is 3 or more. A tap bulk density of 0.40 g/ cm3 or more means that h-BN primary particles having a specific shape are moderately agglomerated to form h-BN powder with a highly filling particle size distribution. represents. That is, if the tap bulk density is 0.40 g/cm 3 or more, the h-BN aggregated particles are not coarse and/or the h-BN aggregate particles have good filling properties into the resin composition. As a result, the resin sheet produced using the h-BN powder according to one embodiment of the present invention is less likely to have voids and exhibits uniform thermal conductivity. Note that a particle size distribution with high packing property means that h-BN primary particles and h-BN aggregate particles having various particle diameters are appropriately contained. For example, when h-BN powder contains only h-BN primary particles or h-BN aggregated particles having a single particle size, voids are likely to occur between the h-BN primary particles or h-BN aggregated particles. , it is difficult to pack densely.

本発明の一実施形態に係るh-BN粉末の、D95は、5~15μmであることが好ましく、5~12μmであることがより好ましく、5~10μmであることがさらに好ましい。なお、D95は、粒度分布曲線における累積体積頻度が95%の粒子径を表す。D95が15μm以下であれば、本発明の一実施形態に係るh-BN粉末は、粒子径の大きな粒子を含まないため、当該h-BN粉末を用いて薄い樹脂シートを形成した場合であっても、樹脂シート表面の平滑性が得られる。換言すれば、本発明の一実施形態に係るh-BN粉末を用いることにより、薄い樹脂シートが作製しやすくなる。さらに、h-BN粉末のD95が5μm以上であれば、h-BN一次粒子の平均粒子径以上であるため、h-BN一次粒子が単分散しておらず、十分に凝集していることがわかる。 D95 of the h-BN powder according to one embodiment of the present invention is preferably 5 to 15 μm, more preferably 5 to 12 μm, and even more preferably 5 to 10 μm. Note that D95 represents a particle diameter at which the cumulative volume frequency in the particle size distribution curve is 95%. If D95 is 15 μm or less, the h-BN powder according to one embodiment of the present invention does not contain particles with a large particle size, and therefore, even when a thin resin sheet is formed using the h-BN powder, Also, smoothness of the resin sheet surface can be obtained. In other words, by using the h-BN powder according to an embodiment of the present invention, it becomes easier to produce a thin resin sheet. Furthermore, if the D95 of the h-BN powder is 5 μm or more, it is greater than the average particle diameter of the h-BN primary particles, which means that the h-BN primary particles are not monodispersed and are sufficiently aggregated. Recognize.

また、本発明の一実施形態に係るh-BN粉末の、D10は、1.5μm以上であることが好ましく、1.8μm以上であることがより好ましく、2.0μm以上であることがさらに好ましい。なお、D10は、粒度分布曲線における累積体積頻度が10%の粒子径を表す。D10が1.5μm以上であることにより、h-BN粉末に含まれる微粉が少ないことがわかる。 Further, D10 of the h-BN powder according to an embodiment of the present invention is preferably 1.5 μm or more, more preferably 1.8 μm or more, and even more preferably 2.0 μm or more. . Note that D10 represents a particle diameter at which the cumulative volume frequency in the particle size distribution curve is 10%. It can be seen that when D10 is 1.5 μm or more, the amount of fine powder contained in the h-BN powder is small.

h-BN粉末を樹脂に充填した際の樹脂の粘度(樹脂充填粘度)は、低い方が好ましく、例えば、シリコーン樹脂(ダウ・東レ株式会社製CY52-276A)にh-BN粉末を20体積%充填した場合における樹脂充填粘度が、130Pa・S以下であることが好ましく、125Pa・S以下であることがより好ましい。樹脂充填粘度が130Pa・S以下であることにより、h-BN粉末を高密度に樹脂へ充填することができる。さらに、樹脂の流動性がよいため、樹脂シートの作製が容易となる。 The viscosity of the resin when filled with h-BN powder (resin filling viscosity) is preferably lower. For example, 20% by volume of h-BN powder is added to silicone resin (CY52-276A manufactured by Dow Toray Industries, Inc.). The resin filling viscosity when filled is preferably 130 Pa·S or less, more preferably 125 Pa·S or less. By setting the resin filling viscosity to 130 Pa·S or less, the h-BN powder can be filled into the resin with high density. Furthermore, since the resin has good fluidity, the resin sheet can be easily produced.

h-BN粉末は、JIS-K-6217-4に準拠して測定した横軸:DBP滴下量(mL)、縦軸:トルク(Nm)、の曲線から算出されるDBP吸収量(mL/100g)において、70mL/100g以下であることが好ましく、65mL/100g以下であることがより好ましく、60mL/100g以下であることがさらに好ましい。DBP吸収量が70mL/100g以下であることにより、比表面積が同じであってDBP吸収量が70mL/100gを超えるh-BN粉末に比べて樹脂充填粘度の上昇を抑制できる。 The h-BN powder has a DBP absorption amount (mL/100g) calculated from the curve of the horizontal axis: DBP dripping amount (mL) and the vertical axis: torque (Nm), which was measured in accordance with JIS-K-6217-4. ), it is preferably 70 mL/100 g or less, more preferably 65 mL/100 g or less, and even more preferably 60 mL/100 g or less. By having a DBP absorption amount of 70 mL/100 g or less, an increase in resin filling viscosity can be suppressed compared to h-BN powder having the same specific surface area and a DBP absorption amount of more than 70 mL/100 g.

<2.樹脂組成物>
本発明の一実施形態に係る樹脂組成物は、上述のh-BN粉末および樹脂を含む。樹脂組成物の作製方法は特に限定されず、公知の作製方法により樹脂組成物を作製できる。
<2. Resin composition>
A resin composition according to one embodiment of the present invention includes the above-described h-BN powder and resin. The method for producing the resin composition is not particularly limited, and the resin composition can be produced by a known production method.

(2-1.樹脂)
樹脂は、特に制限されず、例えばシリコーン系樹脂またはエポキシ系樹脂であってよい。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールA型の水素添加エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ポリテトラメチレングリコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニルメタン型エポキシ樹脂、テトラキスフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリアジン核を骨格に有するエポキシ樹脂、およびビスフェノールAアルキレンオキサイド付加物型のエポキシ樹脂等が挙げられる。これらエポキシ樹脂の1種を単独で、あるいは、2種以上を混合して使用してもよい。また、硬化剤としてアミン系樹脂、酸無水物系樹脂、フェノール系樹脂、イミダゾール類等を用いてもよい。これら硬化剤も1種を単独で、あるいは、2種以上を混合して使用してもよい。これら、硬化剤のエポキシ樹脂に対する配合量は、エポキシ樹脂に対する当量比で、0.5~1.5当量比、好ましくは0.7~1.3当量比である。本明細書において、これらの硬化剤も樹脂に包含される。
(2-1. Resin)
The resin is not particularly limited, and may be, for example, a silicone resin or an epoxy resin. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, bisphenol A type hydrogenated epoxy resin, polypropylene glycol type epoxy resin, polytetramethylene glycol type epoxy resin, and naphthalene type epoxy resin. Examples include epoxy resin, phenylmethane type epoxy resin, tetrakisphenolmethane type epoxy resin, biphenyl type epoxy resin, epoxy resin having a triazine nucleus in its skeleton, and bisphenol A alkylene oxide adduct type epoxy resin. These epoxy resins may be used alone or in combination of two or more. Furthermore, amine resins, acid anhydride resins, phenol resins, imidazoles, etc. may be used as the curing agent. These curing agents may be used alone or in combination of two or more. The amount of these curing agents to be blended with the epoxy resin is 0.5 to 1.5 equivalent ratio, preferably 0.7 to 1.3 equivalent ratio with respect to the epoxy resin. In this specification, these curing agents are also included in the resin.

また、シリコーン系樹脂としては、付加反応型シリコーン樹脂とシリコーン系架橋剤との混合物である公知の硬化性シリコーン樹脂を制限なく使用することができる。付加反応型シリコーン樹脂としては、例えば、分子中にビニル基またはヘキセニル基等のアルケニル基を官能基としてもつポリジメチルシロキサン等のポリオルガノシロキサン等が挙げられる。シリコーン系架橋剤としては、例えば、ジメチルハイドロジェンシロキシ基末端封鎖ジメチルシロキサン-メチルハイドロジェンシロキサン共重合体、トリメチルシロキシ基末端封鎖ジメチルシロキサン-メチルハイドロジェンシロキサン共重合体、トリメチルシロキサン基末端封鎖ポリ(メチルハイドロジェンシロキサン)、ポリ(ハイドロジェンシルセスキオキサン)等のケイ素原子結合水素原子を有するポリオルガノシロキサン等が挙げられる。また、硬化触媒には、シリコーン樹脂の硬化に用いられる公知の白金系触媒等を制限なく使用することができる。例えば、微粒子状白金、炭素粉末に担持した微粒子状白金、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸のオレフィン錯体、パラジウム、ロジウム触媒等が挙げられる。 Furthermore, as the silicone resin, any known curable silicone resin which is a mixture of an addition reaction type silicone resin and a silicone crosslinking agent can be used without any limitation. Examples of the addition reaction type silicone resin include polyorganosiloxanes such as polydimethylsiloxane having an alkenyl group such as a vinyl group or hexenyl group as a functional group in the molecule. Examples of silicone-based crosslinking agents include dimethylsiloxane-methylhydrogensiloxane copolymer endblocked with dimethylhydrogensiloxy groups, dimethylsiloxane-methylhydrogensiloxane copolymer endblocked with trimethylsiloxy groups, and poly(trimethylsiloxane endblocked). Examples include polyorganosiloxanes having silicon-bonded hydrogen atoms such as methylhydrogensiloxane) and poly(hydrogensilsesquioxane). Further, as the curing catalyst, any known platinum-based catalyst used for curing silicone resins can be used without limitation. Examples include fine particulate platinum, fine particulate platinum supported on carbon powder, chloroplatinic acid, alcohol-modified chloroplatinic acid, olefin complexes of chloroplatinic acid, palladium, and rhodium catalysts.

本発明の一実施形態に係る樹脂組成物における樹脂とh-BN粉末との配合比は、用途に応じて適宜決定すればよく、例えば、全樹脂組成物中に上述のh-BN粉末を好ましくは30~90体積%、より好ましくは40~80体積%、さらに好ましくは50~70体積%配合することができる。 The blending ratio of the resin and h-BN powder in the resin composition according to an embodiment of the present invention may be determined as appropriate depending on the application. can be blended in an amount of 30 to 90% by volume, more preferably 40 to 80% by volume, even more preferably 50 to 70% by volume.

(2-2.その他の成分)
樹脂組成物は、六方晶窒化ホウ素および樹脂以外の成分を含んでいてもよい。このような成分を本明細書において「その他の成分」と称する。
(2-2. Other ingredients)
The resin composition may contain components other than hexagonal boron nitride and the resin. Such components are referred to herein as "other components."

例えば、樹脂組成物は前記h-BN粉末の一部を無機フィラーに置き換えてもよい。無機フィラーとしては、酸化アルミニウム、酸化ケイ素、酸化亜鉛、酸化マグネシウム、酸化チタン、窒化ケイ素、窒化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、炭化ケイ素、炭酸カルシウム、硫酸バリウム、タルク等が挙げられる。 For example, in the resin composition, part of the h-BN powder may be replaced with an inorganic filler. Examples of the inorganic filler include aluminum oxide, silicon oxide, zinc oxide, magnesium oxide, titanium oxide, silicon nitride, aluminum nitride, aluminum hydroxide, magnesium hydroxide, silicon carbide, calcium carbonate, barium sulfate, and talc.

さらに、樹脂組成物は、硬化促進剤、変色防止剤、界面活性剤、分散剤、カップリング剤、着色剤、可塑剤、粘度調整剤、抗菌剤などを本発明の効果に影響を与えない範囲で適宜含んでいてもよい。 Furthermore, the resin composition may contain curing accelerators, discoloration inhibitors, surfactants, dispersants, coupling agents, colorants, plasticizers, viscosity modifiers, antibacterial agents, etc. within a range that does not affect the effects of the present invention. may be included as appropriate.

本発明の一実施形態に係る樹脂組成物の用途は、例えば、接着フィルム、プリプレグ等のシート状積層材料(樹脂シート)、回路基板(積層板用途、多層プリント配線板用途)、ソルダーレジスト、アンダ-フィル材、熱接着剤、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂、熱インターフェース材(シート、ゲル、グリース等)、パワーモジュール用基板、電子部品用放熱部材等を挙げることができる。 Applications of the resin composition according to an embodiment of the present invention include, for example, adhesive films, sheet-like laminate materials (resin sheets) such as prepregs, circuit boards (laminated board applications, multilayer printed wiring board applications), solder resists, and underlayers. - Fill materials, thermal adhesives, die bonding materials, semiconductor sealing materials, hole-filling resins, component embedding resins, thermal interface materials (sheets, gels, grease, etc.), power module substrates, heat dissipation materials for electronic components, etc. Can be done.

<3.樹脂シート>
本発明の一実施形態に係る樹脂シートは、上述の樹脂組成物を含む。樹脂シートは、樹脂組成物から形成されたシートとも言える。樹脂シートの厚さは用途に応じて適宜設定でき、例えば、20~200μmであってもよく、20~100μmであってもよく、20~50μmであってもよい。通常、薄い樹脂シートは熱伝導性には優れるが、絶縁耐力に劣る傾向がある。本発明の一実施形態に係る樹脂シートは、上述のh-BN粉末を含んでいるため、比較的薄い場合にも優れた熱伝導性と絶縁耐力とを兼ね備えることができる。樹脂組成物をシート状に形成する方法は、特に限定されず、公知の方法を用いることができる。
<3. Resin sheet>
A resin sheet according to one embodiment of the present invention includes the above-mentioned resin composition. The resin sheet can also be said to be a sheet formed from a resin composition. The thickness of the resin sheet can be appropriately set depending on the application, and may be, for example, 20 to 200 μm, 20 to 100 μm, or 20 to 50 μm. Generally, thin resin sheets have excellent thermal conductivity, but tend to have poor dielectric strength. Since the resin sheet according to one embodiment of the present invention contains the above-mentioned h-BN powder, it can have both excellent thermal conductivity and dielectric strength even when it is relatively thin. The method of forming the resin composition into a sheet shape is not particularly limited, and any known method can be used.

樹脂シートは、面配向指数Bが0.95以下であることが好ましい。面配向指数Bは下記式より算出される。
面配向指数B=log(A/6.67)
式中、Aは、XRD測定による、h-BN一次粒子由来の(002)面と(100)面とのピーク比を表し、下記式より算出される。なお、下記式では、(002)面由来のピークの値を単に(002)と表し、(100)面由来のピークの値を単に(100)と表している。
ピーク比A=(002)/(100)
樹脂シートにおける、面配向指数Bが0.95以下であることにより、作製した樹脂シートでは、異方性が改善され、良好な熱伝導性を示す。面配向指数Bは0に近いほど、h-BN一次粒子の熱伝導性の高い面が樹脂シートの面方向に対して垂直に近い状態で配向していることを表す。本明細書において、「異方性」とは、例えば、樹脂シートの面方向の熱伝導性が良好である一方で、厚さ方向の熱伝導性が劣ることを意図する。そして、「異方性の改善」とは、樹脂シートにおける厚さ方向の熱伝導性が改善されたことを示す。
It is preferable that the resin sheet has a plane orientation index B of 0.95 or less. Planar orientation index B is calculated from the following formula.
Planar orientation index B=log(A/6.67)
In the formula, A represents the peak ratio between the (002) plane and the (100) plane derived from h-BN primary particles as determined by XRD measurement, and is calculated from the following formula. In addition, in the following formula, the value of the peak derived from the (002) plane is simply expressed as (002), and the value of the peak derived from the (100) plane is simply expressed as (100).
Peak ratio A=(002)/(100)
When the plane orientation index B of the resin sheet is 0.95 or less, the produced resin sheet has improved anisotropy and exhibits good thermal conductivity. The closer the plane orientation index B is to 0, the more the highly thermally conductive planes of the h-BN primary particles are oriented in a state close to perpendicular to the plane direction of the resin sheet. In this specification, "anisotropy" means, for example, that the resin sheet has good thermal conductivity in the plane direction, but poor thermal conductivity in the thickness direction. Furthermore, "improved anisotropy" indicates that the thermal conductivity in the thickness direction of the resin sheet has been improved.

樹脂シートは、温度波熱分析法(ISO22007-3)に準拠して測定した熱伝導率が、3.5W/m・K以上であることが好ましく、4.5W/m・K以上であることがより好ましい。熱伝導率が3.5W/m・K以上であれば、樹脂シートは良好な熱伝導性を有する。 The resin sheet preferably has a thermal conductivity of 3.5 W/m・K or more, and preferably 4.5 W/m・K or more, as measured in accordance with the temperature wave thermal analysis method (ISO22007-3). is more preferable. If the thermal conductivity is 3.5 W/m·K or more, the resin sheet has good thermal conductivity.

樹脂シートの絶縁耐力の指標として耐電圧を用いることができる。樹脂シートは、JIS K6911:2006の熱硬化性プラスチック一般試験方法の「5.8 耐電圧(成形材料)」に準拠して測定した耐電圧が、30kV/mm以上であることが好ましく、35kV/mm以上であることがより好ましい。耐電圧が30kV/mm以上であれば、樹脂シートは良好な絶縁性を有する。 Withstand voltage can be used as an index of dielectric strength of a resin sheet. The resin sheet preferably has a withstand voltage of 30 kV/mm or more, preferably 35 kV/mm or more, as measured in accordance with "5.8 Withstand voltage (molding materials)" of JIS K6911:2006 General Test Methods for Thermosetting Plastics. More preferably, it is equal to or larger than mm. If the withstand voltage is 30 kV/mm or more, the resin sheet has good insulation properties.

さらに、熱伝導率が3.5W/m・K以上、かつ、耐電圧が30kV/mm以上であれば、樹脂シートは、高熱伝導性と高絶縁耐力とを兼ね備える。 Further, if the thermal conductivity is 3.5 W/m·K or more and the withstand voltage is 30 kV/mm or more, the resin sheet has both high thermal conductivity and high dielectric strength.

<4.六方晶窒化ホウ素粉末の製造方法>
本発明の一実施形態に係るh-BN粉末の製造方法は、ホウ素酸化物と、窒素を含む有機化合物と、炭酸リチウムと、を含む混合粉末を加熱する加熱工程を含む。当該製造方法により、上述の高熱伝導性および高絶縁耐力を示す樹脂シートの作製に用いられるh-BN粉末を得ることができる。
<4. Manufacturing method of hexagonal boron nitride powder>
A method for producing h-BN powder according to an embodiment of the present invention includes a heating step of heating a mixed powder containing boron oxide, an organic compound containing nitrogen, and lithium carbonate. By this manufacturing method, it is possible to obtain h-BN powder used for manufacturing the resin sheet that exhibits the above-mentioned high thermal conductivity and high dielectric strength.

(4-1.混合粉末)
混合粉末に含まれるホウ素酸化物としては、三酸化二ホウ素(酸化ホウ素)、二酸化二ホウ素、三酸化四ホウ素、五酸化四ホウ素、硼砂、または無水硼砂等を例示でき、なかでも三酸化二ホウ素を用いることが好ましい。ホウ素酸化物として三酸化二ホウ素を用いることにより、安価な原料を使用するので工業的に有益である。なお、ホウ素酸化物として、二種以上を併用してもよい。
(4-1. Mixed powder)
Examples of the boron oxide contained in the mixed powder include diboron trioxide (boron oxide), diboron dioxide, tetraboron trioxide, tetraboron pentoxide, borax, and anhydrous borax, among which diboron trioxide It is preferable to use The use of diboron trioxide as the boron oxide is industrially advantageous because inexpensive raw materials are used. Note that two or more types of boron oxides may be used in combination.

混合粉末に含まれる窒素を含む有機化合物としては、メラミン、アンメリン、アンメリド、メラム、メロン、ジシアンジアミド、および尿素等を例示でき、なかでもメラミンを用いることが好ましい。窒素を含む有機化合物としてメラミンを用いることにより、安価な原料を使用するので工業的に有益である。なお、窒素を含む有機化合物として、二種以上を併用してもよい。 Examples of the nitrogen-containing organic compound contained in the mixed powder include melamine, ammeline, ammelide, melam, melon, dicyandiamide, and urea, among which it is preferable to use melamine. The use of melamine as the nitrogen-containing organic compound is industrially advantageous because inexpensive raw materials are used. Note that two or more types of nitrogen-containing organic compounds may be used in combination.

炭酸リチウムは、溶融することにより、h-BN一次粒子を成長させるための助剤として作用するフラックスとなる。また、炭酸リチウムを用いた場合、上述のような特定の形状を有するh-BN一次粒子を得やすい傾向がある。 When melted, lithium carbonate becomes a flux that acts as an auxiliary agent for growing h-BN primary particles. Furthermore, when lithium carbonate is used, there is a tendency to easily obtain h-BN primary particles having a specific shape as described above.

混合粉末は、ホウ素酸化物、窒素を含む有機化合物および炭酸リチウム以外に炭酸カルシウム、または炭酸ナトリウム等のアルカリ炭酸塩を含んでいてもよい。 The mixed powder may contain an alkali carbonate such as calcium carbonate or sodium carbonate in addition to boron oxide, a nitrogen-containing organic compound, and lithium carbonate.

混合粉末における窒素原子に対するホウ素原子の重量比(B/N)は、0.2以上、0.4以下であることが好ましく、0.25以上、0.35以下であることがより好ましい。B/Nが0.2以上であることにより、B源を確保し、十分な収率を確保することができる。また、B/Nが0.4以下であることにより、窒化に十分なN源を確保することができる。なお、加熱工程において加熱する混合粉末における窒素原子は、窒素を含む有機化合物由来であり、過熱工程において加熱する混合粉末におけるホウ素原子は、ホウ素酸化物由来である。 The weight ratio (B/N) of boron atoms to nitrogen atoms in the mixed powder is preferably 0.2 or more and 0.4 or less, more preferably 0.25 or more and 0.35 or less. When the B/N is 0.2 or more, a B source can be secured and a sufficient yield can be secured. Further, by setting the B/N to 0.4 or less, a sufficient N source for nitriding can be secured. Note that the nitrogen atoms in the mixed powder heated in the heating step are derived from an organic compound containing nitrogen, and the boron atoms in the mixed powder heated in the superheating step are derived from boron oxide.

混合粉末における炭酸リチウムに対するホウ素原子の重量比(B/LiCO)は、0.22以上、0.98以下であることが好ましく、0.30以上、0.80以下であることがより好ましい。B/LiCOが0.22以上であることにより、フラックスの量を適度に抑制できるため、h-BN一次粒子を適度に凝集させることができる。また、B/LiCOが0.98以下であることにより、十分な量のフラックスを形成することができるため、特定の形状を有するh-BN一次粒子を均一に得ることができる。 The weight ratio of boron atoms to lithium carbonate (B/Li 2 CO 3 ) in the mixed powder is preferably 0.22 or more and 0.98 or less, more preferably 0.30 or more and 0.80 or less. preferable. When B/Li 2 CO 3 is 0.22 or more, the amount of flux can be appropriately suppressed, so that h-BN primary particles can be appropriately aggregated. Further, since a sufficient amount of flux can be formed by setting B/Li 2 CO 3 to 0.98 or less, h-BN primary particles having a specific shape can be uniformly obtained.

(4-2.加熱工程)
加熱工程では、混合粉末を最高温度1200℃以上、1500℃以下で加熱することが好ましい。1200℃以上の温度で混合粉末を加熱することにより、h-BN一次粒子の粒子径が過度に小さくなることを防ぎ、かつ、アスペクト比が大きくなることを抑制できる。最高温度は、1250℃以上であることがより好ましく、1300℃以上であることがさらに好ましい。また、1500℃以下の温度で混合粉末を加熱することにより、炭酸リチウムの揮発を防ぐことができるとともに、h-BN一次粒子の粒子径およびアスペクト比が大きくなることを抑制できる。最高温度は1450℃以下であることがより好ましい。
(4-2. Heating process)
In the heating step, the mixed powder is preferably heated at a maximum temperature of 1200°C or more and 1500°C or less. By heating the mixed powder at a temperature of 1200° C. or higher, it is possible to prevent the particle diameter of the h-BN primary particles from becoming excessively small and to suppress the aspect ratio from becoming large. The maximum temperature is more preferably 1250°C or higher, and even more preferably 1300°C or higher. Furthermore, by heating the mixed powder at a temperature of 1500° C. or lower, it is possible to prevent the volatilization of lithium carbonate, and it is also possible to suppress an increase in the particle size and aspect ratio of the h-BN primary particles. More preferably, the maximum temperature is 1450°C or less.

加熱工程では、不活性ガス雰囲気下であって、常圧または減圧環境下において、混合粉末を加熱することが好ましい。上記環境において加熱することにより、加熱炉体の損傷を抑制できる。なお、本明細書において、不活性ガス雰囲気下とは、混合粉末を加熱する容器に不活性ガスを流入させ、当該容器内部の気体を不活性ガスで置換した状態である。不活性ガスの流入量は、特に限定されないが、不活性ガスの流入量が5L/min.以上であってよい。また、不活性ガスは、例えば窒素ガス、炭酸ガスまたはアルゴンガス等であってよい。 In the heating step, the mixed powder is preferably heated under an inert gas atmosphere under normal pressure or reduced pressure. By heating in the above environment, damage to the heating furnace body can be suppressed. In this specification, the term "under an inert gas atmosphere" refers to a state in which an inert gas is introduced into a container in which the mixed powder is heated, and the gas inside the container is replaced with the inert gas. The inert gas inflow rate is not particularly limited, but the inert gas inflow rate is 5 L/min. It may be more than that. Further, the inert gas may be, for example, nitrogen gas, carbon dioxide gas, or argon gas.

加熱工程では、当該加熱工程中にガス交換が起こらない反応容器の内部に混合粉末を配置して行うことも、好ましい手法として例示できる。加熱工程において、混合粉末に含まれるホウ素酸化物はh-BN粉末の生成反応に使用されるが、一部は加熱により揮発するためh-BN粉末の生成反応に使用されない。ここで、加熱工程中にガス交換が起こらない反応容器の内部に混合粉末を配置することにより、混合粉末からのホウ素酸化物の揮発を抑制できる。これにより、h-BN粉末の生成反応に使用されるホウ素酸化物の量を増加させることができ、h-BN粉末の収率を向上させることができる。 In the heating step, a preferable method is to place the mixed powder inside a reaction container in which gas exchange does not occur during the heating step. In the heating step, the boron oxide contained in the mixed powder is used in the h-BN powder production reaction, but some of it is volatilized by heating and is therefore not used in the h-BN powder production reaction. Here, by arranging the mixed powder inside a reaction container where gas exchange does not occur during the heating step, volatilization of boron oxide from the mixed powder can be suppressed. Thereby, the amount of boron oxide used in the h-BN powder production reaction can be increased, and the yield of h-BN powder can be improved.

なお、本明細書において「ガス交換が起こらない」とは、反応容器内部の気体と反応容器外部の気体とが交換されないことを意味する。なお、加熱工程では、h-BN粉末の生成反応の進行、および混合粉末の揮発または分解により反応容器内部で気体が発生する。そのため、意図的に反応容器内部に外部から気体を取り入れなければよく、反応容器内部の気体を完全に反応容器外部に放出されないようにする必要はない。 In this specification, "no gas exchange occurs" means that the gas inside the reaction container and the gas outside the reaction container are not exchanged. In the heating step, gas is generated inside the reaction vessel due to the progress of the h-BN powder production reaction and the volatilization or decomposition of the mixed powder. Therefore, it is not necessary to intentionally introduce gas from the outside into the reaction container, and there is no need to completely prevent the gas inside the reaction container from being released to the outside of the reaction container.

反応容器の構造、大きさ、形状、材質などは特に限定されず、加熱温度または原料などの製造条件を考慮して、十分な耐久性、耐熱性、耐圧性、耐腐食性などを有するように決定され得る。 The structure, size, shape, material, etc. of the reaction vessel are not particularly limited, and should have sufficient durability, heat resistance, pressure resistance, corrosion resistance, etc., taking into consideration manufacturing conditions such as heating temperature and raw materials. can be determined.

ガス交換が起こらないようにする機構としては、例えば反応容器として蓋付きの反応容器を使用することが挙げられる。蓋付きの反応容器であれば、蓋により外部と区切られているため、反応容器外部からの気体の流入を抑制することができ、ガス交換が起こらない。 As a mechanism for preventing gas exchange from occurring, for example, a reaction vessel with a lid may be used as the reaction vessel. If the reaction container has a lid, the lid separates it from the outside, so it is possible to suppress the inflow of gas from outside the reaction container, and gas exchange does not occur.

また、反応容器が完全に密閉されていると、h-BN粉末の生成反応の進行、および混合粉末の揮発または分解による気体の発生、または加熱による反応容器内の気体の膨張などにより、容器内部の圧力が高くなる。このような場合、反応容器が破損する虞があったり、反応容器を耐圧構造とするために反応容器の材質および形状に制限が発生したりする。そのため、h-BN粉末の収率に大きな影響を与えない範囲で、過剰な反応容器内部の気体を適宜放出させることが好ましい。 In addition, if the reaction container is completely sealed, the inside of the container may be affected by the progress of the h-BN powder production reaction, the generation of gas due to volatilization or decomposition of the mixed powder, or the expansion of gas inside the reaction container due to heating. pressure increases. In such a case, there is a risk that the reaction vessel may be damaged, or there may be restrictions on the material and shape of the reaction vessel in order to make the reaction vessel a pressure-resistant structure. Therefore, it is preferable to appropriately release the excess gas inside the reaction vessel within a range that does not significantly affect the yield of h-BN powder.

過剰な反応容器内部の気体を放出する方法としては、例えば、反応容器に圧力調節弁を取り付ける方法、または反応容器に小さな穴を空けておく方法などが挙げられる。また、反応容器が蓋付き容器である場合は、蓋を反応容器上部に配置し、特に固定をせずに乗せ置くことで、内部圧力が低い時は蓋の自重により反応容器は密閉されるが、内部圧力が高くなれば蓋が持ち上げられて、反応容器内部の気体が外部に排出される。そのため、蓋付き容器とすることで簡便にガス交換が起こらないようにしつつ、過剰な反応容器内部の気体を放出することが可能であり、好ましい形態として挙げられる。この場合、単位面積当たりの蓋の重量は、5kg/m~20kg/mの範囲であることが好ましい。なお、単位面積当たりの蓋の重量は、蓋の重量を反応容器の内部空間に面する蓋の面積で除した値である。 Examples of methods for releasing excess gas inside the reaction container include a method of attaching a pressure regulating valve to the reaction container, a method of making a small hole in the reaction container, and the like. In addition, if the reaction container is a container with a lid, by placing the lid on the top of the reaction container and placing it on top without fixing it, the reaction container will be sealed by its own weight when the internal pressure is low. When the internal pressure increases, the lid is lifted and the gas inside the reaction vessel is discharged to the outside. Therefore, by using a container with a lid, it is possible to easily prevent gas exchange while releasing excess gas inside the reaction container, which is cited as a preferred form. In this case, the weight of the lid per unit area is preferably in the range of 5 kg/m 2 to 20 kg/m 2 . Note that the weight of the lid per unit area is the value obtained by dividing the weight of the lid by the area of the lid facing the internal space of the reaction container.

反応容器の形状は特に制限されず、円筒状または方形状など任意の形状を使用可能である。反応容器の形状は、加熱および冷却の繰り返しによる反応容器の破損を防止する観点からは円筒状であることが好ましく、加熱炉内に設置する際にスペースを有効活用して生産効率を向上させる観点からは方形状が好ましい。 The shape of the reaction container is not particularly limited, and any shape such as cylindrical or rectangular can be used. The shape of the reaction vessel is preferably cylindrical from the perspective of preventing damage to the reaction vessel due to repeated heating and cooling, and from the perspective of effectively utilizing space and improving production efficiency when installed in a heating furnace. A rectangular shape is preferred.

反応容器の材質は、加熱工程における加熱温度である1200℃以上1500℃以下に耐えられるものであれば特に制限されず、アルミナ、チタニア、ジルコニア、シリカ、マグネシアおよびカルシア、並びにシリカおよびアルミナを主成分とするコージライト、ムライト等の各種セラミックス焼結体が挙げられる。また、反応生成物であるh-BN粉末の汚染防止の観点からは、反応容器の材質を窒化ホウ素とすることも好ましい態様であり、窒化ホウ素以外の材料で製造した反応容器の内面(混合粉末および生成したh-BN粉末が接触する面)を窒化ホウ素で被覆することも好ましい様態として挙げることができる。 The material of the reaction vessel is not particularly limited as long as it can withstand the heating temperature of 1200° C. or higher and 1500° C. or lower, which is the heating temperature in the heating step, and may be mainly composed of alumina, titania, zirconia, silica, magnesia and calcia, or silica and alumina. Examples include various ceramic sintered bodies such as cordierite and mullite. In addition, from the viewpoint of preventing contamination of h-BN powder, which is a reaction product, it is also a preferable embodiment to use boron nitride as the material of the reaction vessel. A preferable embodiment is to coat the surface (and the surface with which the produced h-BN powder comes into contact) with boron nitride.

反応容器の内部に配置する混合粉末の量は特に限定されないが、少なすぎると反応容器内の気相部が多いため、ホウ素酸化物の揮発が十分に抑制されず、収率の向上効果が限定的になってしまう。一方、混合粉末の量が多すぎると、気相部が少ないため反応容器内の圧力が上がりやすくなる。そのため、反応容器内で混合粉末が占める容積は、反応容器の容積の50%~90%の範囲内であることが好ましく、60%~80%であることがさらに好ましい。なお、本明細書において混合粉末が占める容積とは、反応容器に入れた際に混合粉末の粒子間の空隙も含んだ混合粉末が占める部分の容積である。 The amount of mixed powder placed inside the reaction vessel is not particularly limited, but if it is too small, the vapor phase inside the reaction vessel will be large, and the volatilization of boron oxide will not be sufficiently suppressed, limiting the yield improvement effect. It becomes a target. On the other hand, if the amount of the mixed powder is too large, the pressure inside the reaction vessel tends to increase because there is little gas phase. Therefore, the volume occupied by the mixed powder in the reaction vessel is preferably within the range of 50% to 90%, more preferably 60% to 80%, of the volume of the reaction vessel. Note that in this specification, the volume occupied by the mixed powder is the volume of the portion occupied by the mixed powder including voids between particles of the mixed powder when placed in a reaction container.

ガス交換が起こらない反応容器の内部に配置した混合粉末を加熱する方法は特に限定されないが、加熱炉中に当該反応容器を設置して所望の温度に加熱することが、簡便に実施できるため好ましい形態である。 The method of heating the mixed powder placed inside a reaction container where gas exchange does not occur is not particularly limited, but it is preferable to place the reaction container in a heating furnace and heat it to a desired temperature because it can be easily carried out. It is a form.

(4-3.その他の工程)
h-BN粉末の製造方法では、加熱工程以外の工程を含んでよい。このような工程を本明細書において「その他の工程」と称する。h-BN粉末の製造方法に含まれるその他の工程としては、例えば、混合工程、酸洗浄工程、水洗浄工程、乾燥工程、および分級工程が挙げられる。
(4-3. Other processes)
The method for producing h-BN powder may include steps other than the heating step. Such steps are referred to herein as "other steps." Other steps included in the method for producing h-BN powder include, for example, a mixing step, an acid washing step, a water washing step, a drying step, and a classification step.

混合工程は、ホウ素酸化物、窒素を含む有機化合物、および炭酸リチウム等を加熱工程前に混合する工程である。事前に混合粉末を混合することにより、反応が略均一に進むため、作製されたh-BN一次粒子の粒子径等の変動が抑制される。 The mixing step is a step of mixing boron oxide, an organic compound containing nitrogen, lithium carbonate, etc. before the heating step. By mixing the mixed powder in advance, the reaction proceeds substantially uniformly, so that fluctuations in the particle diameter, etc. of the produced h-BN primary particles are suppressed.

酸洗浄工程は、酸を用いてh-BN粉末を洗浄することにより、h-BN粉末に付着した炭酸リチウム、酸化ホウ素、または炭酸リチウムおよび酸化ホウ素の複合酸化物等を除去する工程である。酸洗浄工程では、塩酸等の希酸を用いることが好ましい。酸洗浄方法は特に限定されず、シャワリングによる酸洗浄であってもよく、漬け置きによる酸洗浄、または撹拌による酸洗浄であってもよい。 The acid washing step is a step in which lithium carbonate, boron oxide, or a composite oxide of lithium carbonate and boron oxide, etc. attached to the h-BN powder are removed by washing the h-BN powder with acid. In the acid washing step, it is preferable to use a dilute acid such as hydrochloric acid. The acid cleaning method is not particularly limited, and may be acid cleaning by showering, acid cleaning by soaking, or acid cleaning by stirring.

水洗浄工程は、酸洗浄工程でh-BN粉末に付着した酸を除去するために、h-BN粉末を水洗浄する工程である。水洗浄方法は特に限定されず、h-BN粉末を濾別後、シャワリングによる水洗浄であってもよく、漬け置きによる水洗浄であってもよい。 The water washing step is a step of washing the h-BN powder with water in order to remove the acid attached to the h-BN powder during the acid washing step. The water washing method is not particularly limited, and after filtering the h-BN powder, water washing may be performed by showering, or water washing may be performed by soaking.

乾燥工程は、作製したh-BN粉末を乾燥させる工程である。乾燥方法は、高温乾燥、または減圧乾燥など、特に限定されない。 The drying step is a step of drying the prepared h-BN powder. The drying method is not particularly limited, such as high temperature drying or reduced pressure drying.

分級工程は、h-BN粉末を粒子の大きさおよび/または粒子の形状等に応じて分ける工程である。分級操作は、篩分けであってもよく、湿式分級または気流分級であってよい。 The classification step is a step in which h-BN powder is divided according to particle size and/or particle shape. The classification operation may be sieving, wet classification or air classification.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.

〔まとめ〕
〔1〕六方晶窒化ホウ素一次粒子が凝集した六方晶窒化ホウ素凝集粒子を含み、比表面積が0.5m/g以上、5.0m/g以下であり、前記六方晶窒化ホウ素一次粒子の長径が0.6μm以上、4.0μm以下、かつ、アスペクト比が1.5以上、5.0以下である、六方晶窒化ホウ素粉末。
〔summary〕
[1] Contains hexagonal boron nitride agglomerated particles in which hexagonal boron nitride primary particles are aggregated, and has a specific surface area of 0.5 m 2 /g or more and 5.0 m 2 /g or less, and the hexagonal boron nitride primary particles A hexagonal boron nitride powder having a major axis of 0.6 μm or more and 4.0 μm or less and an aspect ratio of 1.5 or more and 5.0 or less.

〔2〕タップ嵩密度が0.40g/cm以上である、〔1〕に記載の六方晶窒化ホウ素粉末。 [2] The hexagonal boron nitride powder according to [1], which has a tapped bulk density of 0.40 g/cm 3 or more.

〔3〕粒度分布測定により測定されたD95が5~15μmである、〔1〕または〔2〕に記載の六方晶窒化ホウ素粉末。 [3] The hexagonal boron nitride powder according to [1] or [2], which has a D95 of 5 to 15 μm as measured by particle size distribution measurement.

〔4〕〔1〕~〔3〕のいずれか1項に記載の六方晶窒化ホウ素粉末および樹脂を含む、樹脂組成物。 [4] A resin composition comprising the hexagonal boron nitride powder according to any one of [1] to [3] and a resin.

〔5〕〔4〕に記載の樹脂組成物を含み、XRD測定による、前記六方晶窒化ホウ素一次粒子由来の(002)面と(100)面とのピーク比A=(002)/(100)から算出される面配向指数B=log(A/6.67)が0.95以下である、樹脂シート。 [5] A peak ratio of the (002) plane and the (100) plane derived from the hexagonal boron nitride primary particles, A=(002)/(100), which includes the resin composition according to [4], and is determined by XRD measurement. A resin sheet having a plane orientation index B=log(A/6.67) calculated from 0.95 or less.

〔6〕ホウ素酸化物と、窒素を含む有機化合物と、炭酸リチウムとを含む混合粉末を加熱する加熱工程を含み、前記混合粉末における窒素原子に対するホウ素原子の重量比は、0.2以上、0.4以下であり、前記混合粉末における炭酸リチウムに対するホウ素原子の重量比は、0.22以上、0.98以下であり、前記加熱工程において、前記混合粉末を、最高温度1200℃以上、1500℃以下で加熱する、六方晶窒化ホウ素粉末の製造方法。 [6] A heating step of heating a mixed powder containing a boron oxide, an organic compound containing nitrogen, and lithium carbonate, wherein the weight ratio of boron atoms to nitrogen atoms in the mixed powder is 0.2 or more, 0. The weight ratio of boron atoms to lithium carbonate in the mixed powder is 0.22 or more and 0.98 or less, and in the heating step, the mixed powder is heated at a maximum temperature of 1200°C or more and 1500°C. A method for producing hexagonal boron nitride powder, which is heated as follows.

〔7〕前記加熱工程は、加熱工程中にガス交換が起こらない反応容器の内部に前記混合粉末を配置して行われる、〔6〕に記載の六方晶窒化ホウ素粉末の製造方法。 [7] The method for producing hexagonal boron nitride powder according to [6], wherein the heating step is performed by placing the mixed powder inside a reaction container in which gas exchange does not occur during the heating step.

本発明の一実施例について以下に説明する。 An embodiment of the present invention will be described below.

〔h-BN一次粒子の評価方法〕
<長径・アスペクト比>
h-BN一次粒子の長径およびアスペクト比はFE-SEM(日立ハイテクノロジーズ株式会社製:S5500)を用いて測定した。倍率5000倍の走査電子顕微鏡観察像から異なるh-BN一次粒子100個を無作為に選び、h-BN一次粒子の長径の長さ、厚みを測定してそれぞれのアスペクト比(長径の長さ/厚みの長さ)を算出し、その平均値をアスペクト比とした。また、長径の長さは、測定された値の平均値を算出して求めた。
[Evaluation method of h-BN primary particles]
<Long diameter/aspect ratio>
The major axis and aspect ratio of h-BN primary particles were measured using FE-SEM (manufactured by Hitachi High-Technologies, Ltd.: S5500). 100 different h-BN primary particles were randomly selected from images observed with a scanning electron microscope at a magnification of 5,000 times, and the length and thickness of the major axis of the h-BN primary particles were measured, and the aspect ratio (length of major axis/ (thickness length) was calculated, and the average value was taken as the aspect ratio. Further, the length of the major axis was determined by calculating the average value of the measured values.

〔h-BN粉末の評価方法〕
<比表面積>
h-BN粉末の比表面積は、マウンテック社製:Macsorb HM model-1201を使用して測定した。
[Evaluation method of h-BN powder]
<Specific surface area>
The specific surface area of the h-BN powder was measured using Macsorb HM model-1201 manufactured by Mountech.

<熱伝導率>
樹脂シートの熱伝導率(W/m・K)は、熱拡散率(m/秒)×密度(kg/m)×比熱(J/kg・K)で求めた。
<Thermal conductivity>
The thermal conductivity (W/m·K) of the resin sheet was determined by thermal diffusivity (m 2 /sec)×density (kg/m 3 )×specific heat (J/kg·K).

熱拡散率は温度波熱分析法(アイフェイズ社製:ai-Phase Mobile u、ISO22007-3)、密度はアルキメデス法(メトラー・トレド社製:XS204V)、比熱は示差走査熱量計(DSC)法(リガク社製:Thermo Plus Evo DSC8230)を使用して測定した。 Thermal diffusivity was measured using the temperature wave thermal analysis method (ai-Phase Mobile u, ISO22007-3), the density was measured using the Archimedes method (XS204V manufactured by Mettler Toledo), and the specific heat was measured using the differential scanning calorimeter (DSC) method. (Rigaku Corporation: Thermo Plus Evo DSC8230).

<耐電圧>
樹脂シートの耐電圧(kV/mm)は、京南電機社製:耐電圧試験器YPAD-0225を使用し、JIS K6911:2006の熱硬化性プラスチック一般試験方法の「5.8 耐電圧(成形材料)」に準じて測定した。
<Withstand voltage>
The withstand voltage (kV/mm) of the resin sheet was determined using a withstand voltage tester YPAD-0225 manufactured by Keinan Electric Co., Ltd., and 5.8 Withstand voltage (molding Materials).

<面配向指数>
樹脂シートの面配向指数は、XRDを用いて測定した。測定装置としては、Rigaku社製全自動水平型多目的X線回折装置 SmartLabを用いた。測定条件はスキャンスピード20度/分、ステップ幅0.02度、スキャン範囲10~90度とした。
<Planar orientation index>
The plane orientation index of the resin sheet was measured using XRD. As a measuring device, a fully automatic horizontal multipurpose X-ray diffraction device SmartLab manufactured by Rigaku was used. The measurement conditions were a scan speed of 20 degrees/min, a step width of 0.02 degrees, and a scan range of 10 to 90 degrees.

<粒度分布>
h-BN粉末の粒度分布は、日機装株式会社製:粒子径分布測定装置MT3000を使用して測定した。なお、測定サンプルは、以下に示す方法により調製した。まず、50mLスクリュー管瓶にエタノール20gを分散媒として加え、エタノール中にh-BN粉末1gを分散させた。次いでBRANSON社製:超音波ホモジナイザー(SONIFIER SFX250)を用いて、チップ先端をスクリュー管底面から10mmに設置し、振幅40%、20分間の超音波処理を行った。そして、超音波処理を行った測定サンプルの粒度分布測定を行った。
<Particle size distribution>
The particle size distribution of the h-BN powder was measured using a particle size distribution measuring device MT3000 manufactured by Nikkiso Co., Ltd. Note that the measurement sample was prepared by the method shown below. First, 20 g of ethanol was added as a dispersion medium to a 50 mL screw tube bottle, and 1 g of h-BN powder was dispersed in the ethanol. Next, using an ultrasonic homogenizer (SONIFIER SFX250) manufactured by BRANSON, the tip was placed 10 mm from the bottom of the screw tube, and ultrasonication was performed at an amplitude of 40% for 20 minutes. Then, the particle size distribution of the measurement sample subjected to the ultrasonic treatment was measured.

<タップ嵩密度>
h-BN粉末のタップ嵩密度は、株式会社セイシン企業製:タップデンサーKYT-5000を使用して測定した。100mLの試料セルを用い、測定条件は、タップ速度120回/分、タップ高さ5cm、タップ回数500回とした。
<Tap bulk density>
The tap bulk density of the h-BN powder was measured using Tap Denser KYT-5000 manufactured by Seishin Enterprise Co., Ltd. A 100 mL sample cell was used, and the measurement conditions were a tap speed of 120 times/min, a tap height of 5 cm, and a tap count of 500 times.

<樹脂充填粘度>
シリコーン樹脂(ダウ・東レ株式会社製CY52-276A)にh-BN粉末を20体積%充填することにより作製した樹脂組成物について、レオメーター(TA Instruments社AR2000ex)で測定温度25℃、せん断速度1/S時の粘度を測定した。この粘度を、樹脂充填粘度とした。
<Resin filling viscosity>
A resin composition prepared by filling silicone resin (CY52-276A manufactured by Dow Toray Industries, Inc.) with 20% by volume of h-BN powder was measured using a rheometer (TA Instruments AR2000ex) at a temperature of 25°C and a shear rate of 1. /S viscosity was measured. This viscosity was defined as the resin filling viscosity.

<DBP吸収量>
h-BN粉末についてJIS-K-6217-4に準拠して測定した横軸:DBP滴下量(mL)、縦軸:トルク(Nm)、の曲線から算出されるDBP吸収量(mL/100g)を求めた。測定装置としては、株式会社あさひ総研製:S-500を用いた。測定条件は、DBP滴下速度4mL/min、撹拌翼回転数125rpm、試料投入量15~25g、最大トルクの70%の滴下量を用いてDBP吸収量とした。DBP(Dibutyl Phthalate)としては和光純薬工業株式会社製:特級試薬(販売元コード021-06936)を用いた。
<DBP absorption amount>
DBP absorption amount (mL/100g) calculated from the curve of h-BN powder measured in accordance with JIS-K-6217-4, horizontal axis: DBP dripping amount (mL), vertical axis: torque (Nm) I asked for As the measuring device, S-500 manufactured by Asahi Souken Co., Ltd. was used. The measurement conditions were a DBP dropping rate of 4 mL/min, a stirring blade rotation speed of 125 rpm, a sample input amount of 15 to 25 g, and a dropping amount of 70% of the maximum torque to determine the DBP absorption amount. As DBP (Dibutyl Phthalate), Wako Pure Chemical Industries, Ltd.: special grade reagent (seller code 021-06936) was used.

〔実施例1〕
まず、ホウ素酸化物として酸化ホウ素14.6g、窒素を含む有機化合物としてメラミン24g、炭酸リチウム10.4g、を混合することによって混合粉末を作製した。作製した混合粉末において、B/Nは、0.28であり、B/LiCOは0.44であった。
[Example 1]
First, a mixed powder was prepared by mixing 14.6 g of boron oxide as a boron oxide, 24 g of melamine as an organic compound containing nitrogen, and 10.4 g of lithium carbonate. In the produced mixed powder, B/N was 0.28, and B/Li 2 CO 3 was 0.44.

作製した混合粉末に対してバッチ式焼成炉を用い、加熱工程において、窒素雰囲気下で最高温度1400℃にて1時間加熱することによりh-BN粉末を作製した。作製したh-BN粉末を5%塩酸水溶液で酸洗浄した後、濾別、水洗浄、および乾燥させた。図1は、実施例1に係るh-BN粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。 In the heating step, the prepared mixed powder was heated in a nitrogen atmosphere at a maximum temperature of 1400° C. for 1 hour to produce h-BN powder. The prepared h-BN powder was acid-washed with a 5% aqueous hydrochloric acid solution, filtered, washed with water, and dried. FIG. 1 is a diagram showing scanning electron microscope images of the h-BN powder according to Example 1, in which (a) is 2,000 times magnified, (b) is 5,000 times, and (c) is photographed with 10,000 times magnification. It is a diagram.

基剤樹脂として、エポキシ樹脂(三菱化学株式会社製JER806)100重量部と硬化剤(脂環式ポリアミン系硬化剤、三菱化学株式会社製JERキュア113)28重量部との混合物を準備した。 As a base resin, a mixture of 100 parts by weight of an epoxy resin (JER806 manufactured by Mitsubishi Chemical Corporation) and 28 parts by weight of a curing agent (alicyclic polyamine curing agent, JER Cure 113 manufactured by Mitsubishi Chemical Corporation) was prepared.

次に、各基材樹脂40体積%と、作製したh-BN粉末60体積%とをメチルエチルケトンを溶媒として混合した後、溶媒を乾固させて樹脂組成物を得た。 Next, 40% by volume of each base resin and 60% by volume of the prepared h-BN powder were mixed using methyl ethyl ketone as a solvent, and then the solvent was dried to obtain a resin composition.

乾固させた樹脂組成物を金型体に注型し、熱プレスを使用し、温度:150℃、圧力:5MPa、保持時間:1時間の条件で硬化させ、直径10mm、厚さ0.15mmのシートを作製した。 The dried resin composition was cast into a mold body, and cured using a heat press at a temperature of 150°C, a pressure of 5 MPa, and a holding time of 1 hour, resulting in a diameter of 10 mm and a thickness of 0.15 mm. A sheet was prepared.

〔実施例2〕
加熱工程における最高温度が1500℃であること以外は実施例1と同様の方法で、h-BN粉末、樹脂組成物および樹脂シートを作製した。図2は、実施例2に係るh-BN粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。
[Example 2]
h-BN powder, a resin composition, and a resin sheet were produced in the same manner as in Example 1 except that the maximum temperature in the heating step was 1500°C. FIG. 2 is a diagram showing scanning electron microscope images of the h-BN powder according to Example 2, in which (a) is 2000 times magnified, (b) is 5000 times, and (c) is photographed at 10000 times magnification. It is a diagram.

〔実施例3〕
加熱工程において、作製した混合粉末を、上部に蓋のある、ガス交換が起こらない蓋付き反応容器に入れた。蓋付き反応容器は、内寸170mm×170mm×高さ30mm(容積867000mm)であり、蓋の重量が300g(単位面積当たりの蓋の重量:0.0104g/mm)である。そして、混合粉末を入れた蓋付き反応容器をバッチ式焼成炉内に配置して加熱した以外は、実施例1と同様の方法でh-BN粉末を作製した。なお、蓋付き反応容器内における混合粉末の容積は、578000mmであり、蓋付き反応容器内で混合粉末が占める容積は67%であった。
[Example 3]
In the heating step, the prepared mixed powder was placed in a reaction vessel with a lid on top to prevent gas exchange. The reaction container with a lid has an inner dimension of 170 mm x 170 mm x height of 30 mm (volume 867000 mm 3 ), and the weight of the lid is 300 g (weight of lid per unit area: 0.0104 g/mm 2 ). Then, h-BN powder was produced in the same manner as in Example 1, except that the reaction vessel with a lid containing the mixed powder was placed in a batch firing furnace and heated. The volume of the mixed powder in the reaction container with a lid was 578000 mm 3 , and the volume occupied by the mixed powder in the reaction container with a lid was 67%.

〔比較例1〕
比較例1として、ホウ素酸化物として酸化ホウ素14.6g、窒素を含む有機化合物としてメラミン40g、炭酸リチウム10.4g、を混合することによって混合粉末を作製した。作製した混合粉末は、B/Nが0.17であり、B/LiCOが0.44であった。メラミンの量が多いこと以外は実施例2と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
[Comparative example 1]
As Comparative Example 1, a mixed powder was prepared by mixing 14.6 g of boron oxide as a boron oxide, 40 g of melamine as an organic compound containing nitrogen, and 10.4 g of lithium carbonate. The produced mixed powder had a B/N of 0.17 and a B/Li 2 CO 3 of 0.44. h-BN powder, a resin composition, and a resin sheet were produced in the same manner as in Example 2 except that the amount of melamine was increased.

〔比較例2〕
比較例2として、ホウ素酸化物として酸化ホウ素14.6g、窒素を含む有機化合物としてメラミン12.3g、炭酸リチウム10.4g、を混合することによって混合粉末を作製した。作製した混合粉末は、B/Nが0.55であり、B/LiCOが0.44であった。メラミンの量が少ないこと以外は実施例2と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
[Comparative example 2]
As Comparative Example 2, a mixed powder was prepared by mixing 14.6 g of boron oxide as a boron oxide, 12.3 g of melamine as an organic compound containing nitrogen, and 10.4 g of lithium carbonate. The produced mixed powder had a B/N of 0.55 and a B/Li 2 CO 3 of 0.44. h-BN powder, a resin composition, and a resin sheet were produced in the same manner as in Example 2 except that the amount of melamine was small.

〔比較例3〕
比較例3として、ホウ素酸化物として酸化ホウ素14.6g、窒素を含む有機化合物としてメラミン24g、炭酸リチウム3.76g、を混合することによって混合粉末を作製した。作製した混合粉末は、B/Nが0.28であり、B/LiCOが1.22であった。炭酸リチウムの量が少ないこと以外は実施例2と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
[Comparative example 3]
As Comparative Example 3, a mixed powder was prepared by mixing 14.6 g of boron oxide as a boron oxide, 24 g of melamine as an organic compound containing nitrogen, and 3.76 g of lithium carbonate. The produced mixed powder had a B/N of 0.28 and a B/Li 2 CO 3 of 1.22. h-BN powder, a resin composition, and a resin sheet were produced in the same manner as in Example 2 except that the amount of lithium carbonate was small.

〔比較例4〕
比較例4として、ホウ素酸化物として酸化ホウ素14.6g、窒素を含む有機化合物としてメラミン24g、炭酸リチウム25g、を混合することによって混合粉末を作製した。作製した混合粉末は、B/Nが0.28であり、B/LiCOが0.18であった。炭酸リチウムの量が多いこと以外は実施例2と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
[Comparative example 4]
As Comparative Example 4, a mixed powder was prepared by mixing 14.6 g of boron oxide as a boron oxide, 24 g of melamine as an organic compound containing nitrogen, and 25 g of lithium carbonate. The produced mixed powder had a B/N of 0.28 and a B/Li 2 CO 3 of 0.18. h-BN powder, a resin composition, and a resin sheet were produced in the same manner as in Example 2 except that the amount of lithium carbonate was increased.

〔比較例5〕
比較例5として、加熱工程における最高温度を1100℃へ変更したこと以外は実施例1と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
[Comparative example 5]
As Comparative Example 5, h-BN powder, a resin composition, and a resin sheet were produced in the same manner as in Example 1 except that the maximum temperature in the heating step was changed to 1100°C.

〔比較例6〕
比較例6として、加熱工程における最高温度を1600℃へ変更したこと以外は実施例1と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
[Comparative example 6]
As Comparative Example 6, h-BN powder, a resin composition, and a resin sheet were produced in the same manner as in Example 1 except that the maximum temperature in the heating step was changed to 1600°C.

〔比較例7〕
h-BN粉末を株式会社MARUKA製AP-10Sへ変更したこと以外は、実施例1と同じ方法により樹脂組成物および樹脂シートを作製した。図3は、比較例7に係るh-BN粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。
[Comparative example 7]
A resin composition and a resin sheet were produced in the same manner as in Example 1, except that the h-BN powder was changed to AP-10S manufactured by MARUKA Corporation. FIG. 3 is a diagram showing scanning electron microscope images of h-BN powder according to Comparative Example 7, in which (a) is 2000 times magnified, (b) is 5000 times, and (c) is photographed at 10000 times magnification. It is a diagram.

〔比較例8〕
h-BN粉末を日新リフラテック株式会社製RBNへ変更したこと以外は、実施例1と同じ方法により樹脂組成物および樹脂シートを作製した。図4は、比較例8に係る六方晶窒化ホウ素粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。
[Comparative example 8]
A resin composition and a resin sheet were produced in the same manner as in Example 1, except that the h-BN powder was changed to RBN manufactured by Nissin Refratec Co., Ltd. FIG. 4 is a diagram showing scanning electron microscope images of hexagonal boron nitride powder according to Comparative Example 8, in which (a) is taken at a magnification of 2,000 times, (b) is a magnification of 5,000 times, and (c) is taken at a magnification of 10,000 times. This is a diagram.

〔結果〕
表1~3に、h-BN粉末および樹脂シートの作製条件および物性等を示す。また、表4にh-BN粉末の収率を示す。収率は、原料の混合粉末中のホウ素原子の量から計算されるh-BNの作製量に対する実際に得られたh-BN粉末の量として算出した。

Figure 0007431417000001
Figure 0007431417000002
Figure 0007431417000003
〔result〕
Tables 1 to 3 show the manufacturing conditions and physical properties of h-BN powder and resin sheets. Furthermore, Table 4 shows the yield of h-BN powder. The yield was calculated as the amount of h-BN powder actually obtained relative to the amount of h-BN produced calculated from the amount of boron atoms in the raw material mixed powder.
Figure 0007431417000001
Figure 0007431417000002
Figure 0007431417000003

Figure 0007431417000004
実施例1~3では、長径およびアスペクト比が特定の範囲であるh-BN一次粒子、並びに比表面積が特定の範囲であるh-BN粉末が得られた。また、実施例1および実施例2にて作製したh-BN粉末はいずれも樹脂充填粘度が低いため、樹脂に対してh-BN粉末を高密度に充填できると考えられる。さらに、樹脂シートの面配向指数も0.95以下を示し、異方性が改善されていた。そして、実施例1および実施例2にて作製した樹脂シートは、熱伝導性および絶縁耐力ともに良好であった。以上のことより、長径およびアスペクト比が特定の範囲であるh-BN一次粒子を凝集させたh-BN凝集粒子を含み、かつ比表面積が特定の範囲であるh-BN粉末を用いることにより、高熱伝導性および高絶縁耐力を示す樹脂シートが得られることがわかる。
Figure 0007431417000004
In Examples 1 to 3, h-BN primary particles having major diameters and aspect ratios within a specific range, and h-BN powders having a specific surface area within a specific range were obtained. Furthermore, since both the h-BN powders produced in Example 1 and Example 2 have low resin filling viscosity, it is thought that the resin can be filled with h-BN powder at high density. Furthermore, the plane orientation index of the resin sheet was 0.95 or less, indicating that the anisotropy was improved. The resin sheets produced in Example 1 and Example 2 had good thermal conductivity and dielectric strength. From the above, by using h-BN powder that contains h-BN aggregated particles that are agglomerated h-BN primary particles whose major axis and aspect ratio are in a specific range, and whose specific surface area is in a specific range, It can be seen that a resin sheet exhibiting high thermal conductivity and high dielectric strength can be obtained.

また、実施例1と実施例3とを比較すると、加熱工程において、ガス交換が起こらない反応容器の内部に前記混合粉末を配置した実施例3は、ガス交換が起こらない反応容器を使用していない実施例1と比較して高い収率でh-BNを製造することができた。 Moreover, when comparing Example 1 and Example 3, Example 3, in which the mixed powder was placed inside a reaction vessel in which gas exchange does not occur in the heating process, uses a reaction vessel in which gas exchange does not occur. It was possible to produce h-BN with a higher yield than in Example 1, which did not contain the same.

実施例2に比べてB/Nが低い比較例1の作製方法では、h-BN一次粒子の長径が長くなった。また、h-BN粉末は、タップ嵩密度が小さいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性に劣った。 In the production method of Comparative Example 1, which had a lower B/N than Example 2, the major axis of the h-BN primary particles became longer. Furthermore, h-BN powder is considered to have poor filling properties due to its low tap bulk density. The resin sheet obtained using this h-BN powder also had a plane orientation index of over 0.95 and was anisotropic. This resin sheet also had poor thermal conductivity.

実施例2に比べB/Nが高い比較例2の作製方法では、h-BN一次粒子のアスペクト比が大きくなった。また、h-BN粉末は、樹脂充填密度が大きいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、絶縁耐力に劣った。 In the production method of Comparative Example 2 in which the B/N was higher than in Example 2, the aspect ratio of the h-BN primary particles was increased. Furthermore, since the h-BN powder has a high resin packing density, it is considered that the filling property is poor. The resin sheet obtained using this h-BN powder also had a plane orientation index of over 0.95 and was anisotropic. This resin sheet also had poor dielectric strength.

実施例2に比べB/LiCOが高い比較例3の作製方法では、h-BN一次粒子のアスペクト比が大きくなった。また、h-BN粉末は、比表面積および樹脂充填密度が大きいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、絶縁耐力に劣った。 In the production method of Comparative Example 3 in which B/Li 2 CO 3 was higher than in Example 2, the aspect ratio of h-BN primary particles was increased. Furthermore, since the h-BN powder has a large specific surface area and resin packing density, it is considered to have poor filling properties. The resin sheet obtained using this h-BN powder also had a plane orientation index of over 0.95 and was anisotropic. This resin sheet also had poor dielectric strength.

実施例2に比べB/LiCOが低い比較例4の作製方法では、h-BN一次粒子の長径が長くなった。また、h-BN粉末は、タップ嵩密度が小さいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性に劣った。 In the production method of Comparative Example 4 in which B/Li 2 CO 3 was lower than in Example 2, the major axis of the h-BN primary particles became longer. Furthermore, h-BN powder is considered to have poor filling properties due to its low tap bulk density. The resin sheet obtained using this h-BN powder also had a plane orientation index of over 0.95 and was anisotropic. This resin sheet also had poor thermal conductivity.

実施例2に比べ加熱工程における最高温度が低い比較例5の作製方法では、h-BN一次粒子の長径が小さくなり、アスペクト比が大きくなった。また、h-BN粉末は、比表面積、D95および樹脂充填密度が大きいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性に劣った。 In the production method of Comparative Example 5 in which the maximum temperature in the heating step was lower than that in Example 2, the major axis of the h-BN primary particles became smaller and the aspect ratio became larger. Furthermore, h-BN powder is considered to have poor filling properties because it has a large specific surface area, D95, and resin packing density. The resin sheet obtained using this h-BN powder also had a plane orientation index of over 0.95 and was anisotropic. This resin sheet also had poor thermal conductivity.

実施例2に比べ加熱工程における最高温度が高い比較例6の作製方法では、h-BN一次粒子の長径およびアスペクト比が大きくなった。また、h-BN粉末は、タップ嵩密度が小さく、かつ、D95が大きいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性に劣った。 In the production method of Comparative Example 6, in which the maximum temperature in the heating step was higher than in Example 2, the major axis and aspect ratio of the h-BN primary particles were increased. Furthermore, h-BN powder has a small tap bulk density and a large D95, so it is considered to have poor filling properties. The resin sheet obtained using this h-BN powder also had a plane orientation index of over 0.95 and was anisotropic. This resin sheet also had poor thermal conductivity.

比較例7において、アスペクト比および比表面積が大きいMARUKA社製AP-10Sは、樹脂充填粘度が高いため、充填性に劣ると考えられる。このh-BN粉末を用いた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性および絶縁耐力に劣った。 In Comparative Example 7, AP-10S manufactured by MARUKA Corporation, which has a large aspect ratio and a large specific surface area, is considered to have poor filling properties because of its high resin filling viscosity. The resin sheet using this h-BN powder also had a plane orientation index exceeding 0.95 and was anisotropic. This resin sheet was inferior in thermal conductivity and dielectric strength.

比較例8において、比表面積が大きく、タップ嵩密度が小さい日新リフラ社製のRBNは、樹脂充填粘度が高いため、充填性に劣ると考えられる。このh-BN粉末を用いた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性に劣った。 In Comparative Example 8, RBN manufactured by Nissin Refura Co., Ltd., which has a large specific surface area and a small tap bulk density, has a high resin filling viscosity and is therefore considered to have poor filling properties. The resin sheet using this h-BN powder also had a plane orientation index exceeding 0.95 and was anisotropic. This resin sheet also had poor thermal conductivity.

本発明は、熱伝導性および絶縁耐力に優れた電子部品に利用することができる。

INDUSTRIAL APPLICATION This invention can be utilized for an electronic component excellent in thermal conductivity and dielectric strength.

Claims (7)

六方晶窒化ホウ素一次粒子が凝集した六方晶窒化ホウ素凝集粒子を含み、
比表面積が0.5m/g以上、5.0m/g以下であり、
前記六方晶窒化ホウ素一次粒子の長径が0.6μm以上、4.0μm以下、かつ、アスペクト比が1.5以上、4.0以下である、六方晶窒化ホウ素粉末。
Contains hexagonal boron nitride aggregate particles in which hexagonal boron nitride primary particles aggregate,
The specific surface area is 0.5 m 2 /g or more and 5.0 m 2 /g or less,
A hexagonal boron nitride powder, wherein the hexagonal boron nitride primary particles have a major axis of 0.6 μm or more and 4.0 μm or less, and an aspect ratio of 1.5 or more and 4.0 or less.
タップ嵩密度が0.40g/cm以上である、請求項1に記載の六方晶窒化ホウ素粉末。 The hexagonal boron nitride powder according to claim 1, having a tap bulk density of 0.40 g/cm 3 or more. 粒度分布測定により測定されたD95が5~15μmである、請求項1または2に記載の六方晶窒化ホウ素粉末。 The hexagonal boron nitride powder according to claim 1 or 2, which has a D95 of 5 to 15 μm as measured by particle size distribution measurement. 請求項1~3のいずれか1項に記載の六方晶窒化ホウ素粉末および樹脂を含む、樹脂組成物。 A resin composition comprising the hexagonal boron nitride powder according to any one of claims 1 to 3 and a resin. 請求項4に記載の樹脂組成物を含み、
XRD測定による、前記六方晶窒化ホウ素一次粒子由来の(002)面と(100)面とのピーク比A=(002)/(100)から算出される面配向指数B=log(A/6.67)が0.95以下である、樹脂シート。
comprising the resin composition according to claim 4,
Planar orientation index B = log (A/6. 67) is 0.95 or less.
ホウ素酸化物と、窒素を含む有機化合物と、炭酸リチウムとを含む混合粉末を加熱することにより六方晶窒化ホウ素粉末を得る加熱工程を含み、
前記混合粉末における窒素原子に対するホウ素原子の重量比は、0.2以上、0.4以下であり、
前記混合粉末における炭酸リチウムに対するホウ素原子の重量比は、0.22以上、0.98以下であり、
前記加熱工程において、前記混合粉末を、最高温度1200℃以上、1500℃以下で加熱する、六方晶窒化ホウ素粉末の製造方法。
A heating step of obtaining hexagonal boron nitride powder by heating a mixed powder containing boron oxide, an organic compound containing nitrogen, and lithium carbonate,
The weight ratio of boron atoms to nitrogen atoms in the mixed powder is 0.2 or more and 0.4 or less,
The weight ratio of boron atoms to lithium carbonate in the mixed powder is 0.22 or more and 0.98 or less,
In the heating step, the mixed powder is heated at a maximum temperature of 1200°C or more and 1500°C or less.
前記加熱工程は、加熱工程中にガス交換が起こらない反応容器の内部に前記混合粉末を配置して行われる、請求項6に記載の六方晶窒化ホウ素粉末の製造方法。 7. The method for producing hexagonal boron nitride powder according to claim 6, wherein the heating step is performed by placing the mixed powder inside a reaction container in which gas exchange does not occur during the heating step.
JP2021504045A 2019-03-01 2020-02-28 Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder Active JP7431417B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2019037541 2019-03-01
JP2019037541 2019-03-01
JP2019168462 2019-09-17
JP2019168462 2019-09-17
PCT/JP2020/008288 WO2020179662A1 (en) 2019-03-01 2020-02-28 Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder

Publications (2)

Publication Number Publication Date
JPWO2020179662A1 JPWO2020179662A1 (en) 2020-09-10
JP7431417B2 true JP7431417B2 (en) 2024-02-15

Family

ID=72338735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021504045A Active JP7431417B2 (en) 2019-03-01 2020-02-28 Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder

Country Status (7)

Country Link
US (1) US20220041445A1 (en)
EP (1) EP3932858A4 (en)
JP (1) JP7431417B2 (en)
KR (1) KR20210132639A (en)
CN (1) CN113165874B (en)
TW (1) TWI832979B (en)
WO (1) WO2020179662A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022111748A (en) * 2021-01-20 2022-08-01 国立大学法人信州大学 Method for producing boron nitride
CN117177938A (en) * 2021-06-02 2023-12-05 株式会社德山 Hexagonal boron nitride powder
JP7175412B1 (en) * 2021-06-02 2022-11-18 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
WO2022255294A1 (en) * 2021-06-02 2022-12-08 株式会社トクヤマ Hexagonal boron nitride powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041300A1 (en) 2007-09-26 2009-04-02 Mitsubishi Electric Corporation Heat conductive sheet and power module
WO2017145869A1 (en) 2016-02-22 2017-08-31 昭和電工株式会社 Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
WO2018123571A1 (en) 2016-12-26 2018-07-05 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same
JP2018165241A (en) 2017-03-28 2018-10-25 デンカ株式会社 Hexagonal boron nitride powder, method for producing the same, and cosmetics

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059702A (en) 1996-08-09 1998-03-03 Otsuka Chem Co Ltd Boron nitride and its production
US7341702B2 (en) 2004-12-28 2008-03-11 Momentive Performance Materials Inc. Process for producing boron nitride
JP2011021069A (en) * 2009-07-14 2011-02-03 Sakai Chem Ind Co Ltd Heat-radiating filler composition, resin composition, heat-radiating grease and heat-radiating coating composition
TWI505985B (en) * 2013-03-07 2015-11-01 Denki Kagaku Kogyo Kk Boron nitride powder and a resin composition containing the same
CN106029562B (en) 2014-02-12 2019-01-22 电化株式会社 Particulate boron nitride and its manufacturing method
JP6603965B2 (en) 2015-02-02 2019-11-13 三菱ケミカル株式会社 Hexagonal boron nitride single crystal and method for producing the same, composite composition containing the hexagonal boron nitride single crystal, and heat dissipation member formed by molding the composite composition
JP6678999B2 (en) * 2015-09-03 2020-04-15 昭和電工株式会社 Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
JP6822836B2 (en) * 2016-12-28 2021-01-27 昭和電工株式会社 Hexagonal boron nitride powder, its manufacturing method, resin composition and resin sheet
KR102265035B1 (en) * 2016-12-28 2021-06-15 쇼와 덴코 가부시키가이샤 Hexagonal boron nitride powder, its manufacturing method, resin composition, and resin sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041300A1 (en) 2007-09-26 2009-04-02 Mitsubishi Electric Corporation Heat conductive sheet and power module
WO2017145869A1 (en) 2016-02-22 2017-08-31 昭和電工株式会社 Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
WO2018123571A1 (en) 2016-12-26 2018-07-05 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same
JP2018165241A (en) 2017-03-28 2018-10-25 デンカ株式会社 Hexagonal boron nitride powder, method for producing the same, and cosmetics

Also Published As

Publication number Publication date
EP3932858A4 (en) 2022-12-21
WO2020179662A1 (en) 2020-09-10
JPWO2020179662A1 (en) 2020-09-10
KR20210132639A (en) 2021-11-04
TWI832979B (en) 2024-02-21
EP3932858A1 (en) 2022-01-05
CN113165874B (en) 2024-01-23
US20220041445A1 (en) 2022-02-10
TW202043141A (en) 2020-12-01
CN113165874A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
JP7431417B2 (en) Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
JP7207384B2 (en) Aggregated boron nitride particles, method for producing aggregated boron nitride particles, resin composition containing the aggregated boron nitride particles, molded article, and sheet
JP7069485B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
JP6348610B2 (en) Hexagonal boron nitride powder, production method thereof, resin composition and resin sheet
TWI598291B (en) Hexagonal boron nitride powder, a method for producing the same, a resin composition and a resin sheet
JP2018104260A (en) Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
WO2020175377A1 (en) Boron nitride aggregate powder, heat dissipation sheet and semiconductor device
JP7467980B2 (en) Boron nitride agglomerated powder, heat dissipation sheet, and method for manufacturing semiconductor device
WO2021193046A1 (en) Method for producing hexagonal boron nitride powder
JP2015189609A (en) Method of producing boron nitride sheet
JP7125568B1 (en) Hexagonal boron nitride powder and method for producing the same
WO2022181593A1 (en) Hexagonal boron nitride powder, and method for producing same
JP2022185586A (en) Hexagonal boron nitride powder and method for producing the same
JP2020029384A (en) Highly thermal conductive inorganic filler composite particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240125

R150 Certificate of patent or registration of utility model

Ref document number: 7431417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150