JP2020029384A - Highly thermal conductive inorganic filler composite particles and method for producing the same - Google Patents

Highly thermal conductive inorganic filler composite particles and method for producing the same Download PDF

Info

Publication number
JP2020029384A
JP2020029384A JP2018155452A JP2018155452A JP2020029384A JP 2020029384 A JP2020029384 A JP 2020029384A JP 2018155452 A JP2018155452 A JP 2018155452A JP 2018155452 A JP2018155452 A JP 2018155452A JP 2020029384 A JP2020029384 A JP 2020029384A
Authority
JP
Japan
Prior art keywords
composite particles
graphite
water
inorganic filler
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018155452A
Other languages
Japanese (ja)
Other versions
JP7152003B2 (en
Inventor
康博 太田
Yasuhiro Ota
康博 太田
颯汰 八木
Futa Yagi
颯汰 八木
宏和 木方
Hirokazu Kikata
宏和 木方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Lime Industry Co Ltd
Original Assignee
Kawai Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Lime Industry Co Ltd filed Critical Kawai Lime Industry Co Ltd
Priority to JP2018155452A priority Critical patent/JP7152003B2/en
Publication of JP2020029384A publication Critical patent/JP2020029384A/en
Application granted granted Critical
Publication of JP7152003B2 publication Critical patent/JP7152003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide highly thermal conductive inorganic filler composite particles excellent in thermal conductivity and insulation, and to provide a method for producing the same.SOLUTION: Highly thermal conductive inorganic filler composite particles have insulation properties obtained by a surface of graphite being covered with or bonded by an alumina hydrate gel and a surface of the alumina hydrate gel being covered with or bonded by a basic magnesium carbonate. The highly thermal conductive inorganic filler composite particles have insulation properties obtained by a surface of graphite being covered with or bonded by alumina and a surface of the alumina being covered with or bonded by a basic magnesium carbonate from which hydrated water is removed. A method for producing the highly thermal conductive inorganic filler composite particles comprises allowing a surface of graphite to be covered with or bonded by an alumina hydrate gel with the use of an aluminate or an aluminum alkoxide, and allowing a surface of the alumina hydrate gel to be covered with or bonded by a basic magnesium carbonate from a water-soluble magnesium salt and a water-soluble metal carbonate.SELECTED DRAWING: Figure 5

Description

本発明は、グラファイトの表面にアルミナ水和物ゲル又はアルミナが被覆又は結合し、当該アルミナ水和物ゲル又はアルミナの表面に塩基性炭酸マグネシウムが被覆又は結合する熱伝導性と絶縁性に優れる高熱伝導性無機フィラー複合粒子及びその製造方法に関する。   The present invention relates to a method of coating a surface of graphite with alumina hydrate gel or alumina or binding alumina, and coating or binding the surface of the alumina hydrate gel or alumina with basic magnesium carbonate. The present invention relates to a conductive inorganic filler composite particle and a method for producing the same.

近年、半導体デバイスやIC等の電気・電子機器の小型化や軽量化に伴い、電子部品の高密度実装化が進んでおり、電子部品からの発熱が増大する傾向にある。発生した熱が電子部品に蓄積されると耐久性に悪影響が及ぶため、発生した熱を電子部品から効率よく放出できる高熱伝導性フィラーのニーズが高まっている。
従来、高熱伝導性フィラーには、アルミナ、マグネシア、炭化ケイ素、窒化アルミニウム、窒化ホウ素、金属粉、グラファイト等が一般的に知られている。各種の高熱伝導性フィラーの特性については、図1に示すように一長一短がある。アルミナ、マグネシア、炭化ケイ素はいずれも硬度が高いため、電子部品との複合が難しいという問題がある。窒化アルミニウムや窒化ホウ素は高価という問題があり、加えて窒化アルミニウムは化学的に不安定という問題がある。金属粉は導電性で絶縁性が低く、電子部品の放熱材料に適用することが難しいという問題と化学的に不安定という問題がある。グラファイトは、特に安価で、また熱伝導率に優れるものの、導電性で絶縁性が低いためグラファイト単独では絶縁性が求められる電子部品の放熱材料に適用することが難しいという問題がある。
他方、熱伝導性フィラーの黒鉛(グラファイト)の表面にベーマイト又は酸化亜鉛を結合又は付着させ、黒鉛に絶縁性を付与した無機フィラー複合体の提案がある(特許文献1)。また、本願の出願人は、グラファイトの表面に塩基性炭酸マグネシウムが被覆又は結合し、絶縁性を有する高熱伝導性無機フィラー複合粒子を提案している(特許文献2)。
In recent years, with the miniaturization and weight reduction of electric and electronic devices such as semiconductor devices and ICs, high-density mounting of electronic components has been progressing, and heat generation from the electronic components tends to increase. When the generated heat is accumulated in the electronic component, the durability is adversely affected. Therefore, the need for a highly thermally conductive filler capable of efficiently releasing the generated heat from the electronic component is increasing.
Conventionally, alumina, magnesia, silicon carbide, aluminum nitride, boron nitride, metal powder, graphite, and the like are generally known as high thermal conductive fillers. Various high thermal conductive fillers have advantages and disadvantages as shown in FIG. Alumina, magnesia, and silicon carbide all have high hardness, and thus have a problem that it is difficult to combine them with electronic components. Aluminum nitride and boron nitride have a problem of being expensive, and in addition, aluminum nitride has a problem of being chemically unstable. Metal powder has a problem that it is difficult to apply to a heat radiation material of an electronic component and a problem that it is chemically unstable, because it is conductive and has low insulation. Although graphite is particularly inexpensive and has excellent thermal conductivity, it has a problem that it is difficult to apply graphite alone to a heat dissipation material for electronic components that require insulation because of its low conductivity and conductivity.
On the other hand, there has been proposed an inorganic filler composite in which boehmite or zinc oxide is bonded or attached to the surface of graphite (graphite) as a thermally conductive filler to impart insulation to graphite (Patent Document 1). In addition, the applicant of the present application has proposed high heat conductive inorganic filler composite particles having insulating properties in which basic magnesium carbonate is coated or bonded to the surface of graphite (Patent Document 2).

WO2013/039103号公報WO2013 / 039103 特許第6222840号公報Japanese Patent No. 6222840

しかし、特許文献1に記載の無機フィラー複合体は、黒鉛と複合するベーマイト又は酸化亜鉛の形状によっては被充填物への練り込み量が十分ではなく、高熱伝導性の無機フィラーとして機能し難い可能性がある。また、黒鉛にベーマイト又は酸化亜鉛を複合させるには、高温高圧の熱水の存在下で合成する必要があるため、製造コストが高くなるという問題がある。特許文献2に記載の高熱伝導性無機フィラー複合粒子は、熱伝導性に優れ絶縁性を有するが、電子部品に使用される高熱伝導性フィラーは絶縁性が高ければ高いほど良く、より高い絶縁性が望まれている。   However, the inorganic filler composite described in Patent Literature 1 may not be sufficiently kneaded into the filling material depending on the shape of boehmite or zinc oxide that is combined with graphite, and may not easily function as a high thermal conductive inorganic filler. There is. Further, in order to combine boehmite or zinc oxide with graphite, it is necessary to synthesize in the presence of hot water of high temperature and high pressure, which causes a problem that the production cost is increased. The highly thermally conductive inorganic filler composite particles described in Patent Document 2 have excellent thermal conductivity and have insulating properties. However, the higher the thermally conductive filler used for electronic components, the better the insulating properties, and the better the insulating properties. Is desired.

本発明は、上記の事情に鑑みなされたもので、熱伝導性と絶縁性に優れる高熱伝導性無機フィラー複合粒子及びその製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide highly thermally conductive inorganic filler composite particles having excellent thermal conductivity and insulating properties, and a method for producing the same.

上記の課題を解決するために、本発明者等は種々検討を重ね本発明に想到した。すなわち、第1の高熱伝導性無機フィラー複合粒子は、グラファイトの表面にアルミナ水和物ゲルが被覆又は結合し、当該アルミナ水和物ゲルの表面に塩基性炭酸マグネシウムが被覆又は結合して絶縁性を有することを特徴とする。また、第2の高熱伝導性無機フィラー複合粒子は、グラファイトの表面にアルミナが被覆又は結合し、当該アルミナの表面に水和水が除去された塩基性炭酸マグネシウムが被覆又は結合して絶縁性を有することを特徴とする。   In order to solve the above problems, the present inventors have conducted various studies and arrived at the present invention. That is, the first high thermal conductive inorganic filler composite particles have an insulating property in which the surface of graphite is coated or bonded with alumina hydrate gel, and the surface of the alumina hydrate gel is coated or bonded with basic magnesium carbonate. It is characterized by having. In addition, the second high thermal conductive inorganic filler composite particles are coated or bonded with alumina on the surface of graphite, and coated or bonded with basic magnesium carbonate from which water of hydration has been removed on the surface of the alumina to thereby provide insulation. It is characterized by having.

第3の高熱伝導性無機フィラー複合粒子は、第1又は第2の高熱伝導性無機フィラー複合粒子において、測定対象をエポキシ樹脂に配合して作製した樹脂試料の熱伝導計を使用して測定した熱伝導率が0.80W/m・K〜2.00W/m・Kであり、また、測定対象を加圧して作製した成型物のテスターを使用して測定した抵抗値に前記成型物の断面積を乗じ長さで除して導出した体積抵抗率(ρ)が1000Ω・cm〜100000Ω・cmであることを特徴とする。第4の高熱伝導性無機フィラー複合粒子は、第1又は第2の高熱伝導性無機フィラー複合粒子において、下記の式(1)により導出した熱伝導率が50W/m・K〜150W/m・Kであることを特徴とする。
λf=(λc−λm・Vm)/Vf*C (1)
(但し、λf:高熱伝導性無機フィラー複合粒子の熱伝導率、λc:樹脂100部に対して高熱伝導性無機フィラー複合粒子を25部混合した樹脂試料の熱伝導率、λm:樹脂の熱伝導率、Vf:高熱伝導性無機フィラー複合粒子の体積分率、Vm:樹脂の体積分率、C:補正係数(10))
第5の高熱伝導性無機フィラー複合粒子は、第1又は第2の高熱伝導性無機フィラー複合粒子において、下記の式(2)を満たすことを特徴とする。
GV/T値=グラファイト含有率/100×体積抵抗率(log ρv)/熱伝導率
2.00≦GV/T値≦4.00 (2)
(但し、熱伝導率は高熱伝導性無機フィラー複合粒子を配合した樹脂試料の熱伝導率)
第6の高熱伝導性無機フィラー複合粒子は、第1又は第2の高熱伝導性無機フィラー複合粒子において、グラファイトの含有率が45重量%〜90重量%であり、アルミナ水和物ゲル又はアルミナの含有率が0.3重量%〜10重量%であり、塩基性炭酸マグネシウムの含有率が5重量%〜54.7重量%であることを特徴とする。
The third high thermal conductive inorganic filler composite particles were measured using a thermal conductivity meter of a resin sample prepared by blending the measurement target with the epoxy resin in the first or second high thermal conductive inorganic filler composite particles. The thermal conductivity is 0.80 W / m · K to 2.00 W / m · K, and the resistance of the molded object is measured by using a tester of the molded object produced by pressing the object to be measured. volume resistivity derived by dividing multiplying the area length ([rho V) is characterized in that it is a 1000Ω · cm~100000Ω · cm. The fourth high thermal conductive inorganic filler composite particles have a thermal conductivity derived from the following formula (1) of 50 W / m · K to 150 W / m · in the first or second high thermal conductive inorganic filler composite particles. K.
λf = (λc−λm · Vm) / Vf * C (1)
(However, λf: thermal conductivity of high thermal conductive inorganic filler composite particles, λc: thermal conductivity of resin sample obtained by mixing 25 parts of high thermal conductive inorganic filler composite particles with 100 parts of resin, λm: thermal conductivity of resin Ratio, Vf: volume fraction of the high thermal conductive inorganic filler composite particles, Vm: volume fraction of the resin, C: correction coefficient (10))
The fifth highly thermally conductive inorganic filler composite particles are characterized by satisfying the following expression (2) in the first or second highly thermally conductive inorganic filler composite particles.
GV / T value = graphite content / 100 x volume resistivity (log ρv) / thermal conductivity
2.00 ≦ GV / T value ≦ 4.00 (2)
(However, the thermal conductivity is the thermal conductivity of a resin sample containing high thermal conductive inorganic filler composite particles.)
The sixth high heat conductive inorganic filler composite particles may have a graphite content of 45% by weight to 90% by weight in the first or second high heat conductive inorganic filler composite particles, and may be made of alumina hydrate gel or alumina. The content is 0.3% by weight to 10% by weight, and the content of basic magnesium carbonate is 5% by weight to 54.7% by weight.

高熱伝導性無機フィラー複合粒子の製造方法は、アルミン酸塩の水溶液にグラファイトを添加して懸濁液を調製し、当該懸濁液に炭酸ガスを吹き込みアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程と、前記アルミナ水和物ゲルが表面に被覆又は結合したグラファイトに水溶性無機マグネシウム塩の水溶液又は水溶性有機マグネシウム塩の水溶液を加えて得られる懸濁液に水溶性金属炭酸塩の水溶液を撹拌しながら加えて懸濁液を得る工程と、前記懸濁液を加熱・撹拌して熟成する工程と、熟成後に得られた生成物を固液分離、水洗、乾燥する工程と、を含むものであることを特徴とする。
また、高熱伝導性無機フィラー複合粒子の製造方法は、上記の高熱伝導性無機フィラー複合粒子の製造方法における「アルミン酸塩の水溶液にグラファイトを添加して懸濁液を調製し、当該懸濁液に炭酸ガスを吹き込みアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程」に代え、「アルミニウムアルコキシドを含むアルコール溶媒にグラファイトを添加して得られる懸濁液に水を添加しアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程」を含むものであることを特徴とする。
The production method of the high thermal conductive inorganic filler composite particles is as follows: a suspension is prepared by adding graphite to an aqueous solution of aluminate, and carbon dioxide gas is blown into the suspension to coat or bond the alumina hydrate gel on the surface. Water-soluble metal carbonate to a suspension obtained by adding an aqueous solution of a water-soluble inorganic magnesium salt or an aqueous solution of a water-soluble organic magnesium salt to the graphite having the surface coated or bonded with the alumina hydrate gel. A step of obtaining a suspension by adding an aqueous solution of salt while stirring, a step of heating and stirring the suspension for aging, and a step of solid-liquid separation, washing with water and drying of the product obtained after aging. , Is characterized by including.
Further, the method for producing the high thermal conductive inorganic filler composite particles is the same as the method for producing the high thermal conductive inorganic filler composite particles described above, except that the suspension is prepared by adding graphite to an aqueous solution of aluminate. A process in which carbon dioxide gas is blown into the surface to obtain graphite having an alumina hydrate gel coated or bonded to the surface ”, and water is added to a suspension obtained by adding graphite to an alcohol solvent containing aluminum alkoxide, and alumina water is added. Obtaining a graphite coated or bonded to the surface of the hydrate gel ”.

高熱伝導性無機フィラー複合粒子の製造方法は、アルミン酸塩の水溶液にグラファイトを添加して懸濁液を調製し、当該懸濁液に炭酸ガスを吹き込みアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程と、前記アルミナ水和物ゲルが表面に被覆又は結合したグラファイトに水溶性無機マグネシウム塩の水溶液又は水溶性有機マグネシウム塩の水溶液を加えて得られる懸濁液に水溶性金属炭酸塩の水溶液を撹拌しながら加えて懸濁液を得る工程と、前記懸濁液を加熱・撹拌して熟成する工程と、熟成後に得られた生成物を固液分離、水洗、乾燥する工程と、前記工程で得られた生成物を加熱処理することによりアルミナ水和物ゲルの表面に被覆又は結合した塩基性炭酸マグネシウムの水和水を除去する工程と、を含むものであることを特徴とする。
また、高熱伝導性無機フィラー複合粒子の製造方法は、上記の高熱伝導性無機フィラー複合粒子の製造方法における「アルミン酸塩の水溶液にグラファイトを添加して懸濁液を調製し、当該懸濁液に炭酸ガスを吹き込みアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程」に代え、「アルミニウムアルコキシドを含むアルコール溶媒にグラファイトを添加して得られる懸濁液に水を添加しアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程」を含むものであることを特徴とする。
The production method of the high thermal conductive inorganic filler composite particles is as follows: a suspension is prepared by adding graphite to an aqueous solution of aluminate, and carbon dioxide gas is blown into the suspension to coat or bond the alumina hydrate gel on the surface. Water-soluble metal carbonate to a suspension obtained by adding an aqueous solution of a water-soluble inorganic magnesium salt or an aqueous solution of a water-soluble organic magnesium salt to the graphite having the surface coated or bonded with the alumina hydrate gel. A step of obtaining a suspension by adding an aqueous solution of salt while stirring, a step of heating and stirring the suspension for aging, and a step of solid-liquid separation, washing with water and drying of the product obtained after aging. Removing the water of hydration of the basic magnesium carbonate coated or bound on the surface of the alumina hydrate gel by heat-treating the product obtained in the above step. And wherein the Rukoto.
Further, the method for producing the high thermal conductive inorganic filler composite particles is the same as the method for producing the high thermal conductive inorganic filler composite particles described above, except that the suspension is prepared by adding graphite to an aqueous solution of aluminate. A process in which carbon dioxide gas is blown into the surface to obtain graphite having an alumina hydrate gel coated or bonded to the surface ”, and water is added to a suspension obtained by adding graphite to an alcohol solvent containing aluminum alkoxide, and alumina water is added. Obtaining a graphite coated or bonded to the surface of the hydrate gel ”.

また、樹脂組成物は、上記の高熱伝導性無機フィラー複合粒子を充填させてなることを特徴とする。   In addition, the resin composition is characterized by being filled with the above-described high thermal conductive inorganic filler composite particles.

従来の絶縁性と熱伝導性を兼ね備えた材料は高価であり、硬い材料も多く加工が困難であるため、熱対策と低コスト化が求められる放熱材料に適用することが難しかった。
一方、本発明の高熱伝導性無機フィラー複合粒子は、グラファイト、アルミナ水和物ゲル及び塩基性炭酸マグネシウムがいずれも安価で柔らかい複合体を形成するので、熱対策と低コスト化が求められる放熱部材に好適であり、極めて有用である。また、本発明の高熱伝導性無機フィラー複合粒子は、比重の小さい材料のみから構成されるため、軽量化が必要な用途に好適であり、極めて有用である。具体的には、放熱シートの他、放熱両面テープ、放熱グリース、放熱接着剤、放熱樹脂基板、放熱フレキシブル銅張積層版、パワーデバイス用封止材、白色LED用封止材、LED用ダイボンド材、放熱アンダーフィル材・注型材、ヒートシンク、ヒートパイプ、放熱塗料、放熱エンプラ、放熱エラストマー等の放熱部材・放熱素材の無機充填剤として使用することができ、また、LED照明、LEDテレビ、ノートPC、自動車、太陽光発電装置、携帯電話・スマートフォン等の熱対策が必要な用途に展開できる。加えて、本発明の高熱伝導性無機フィラー複合粒子は、汎用の高熱伝導性フィラーのアルミナの熱伝導率を大きく上回っているということからも、上記の熱対策が必要な用途において極めて有用である。また、本発明の高熱伝導性無機フィラー複合粒子の製造方法によれば、上記の有用な高熱伝導性無機フィラー複合粒子を簡易かつ効率的に製造できる。
Conventional materials having both insulating properties and thermal conductivity are expensive, and many hard materials are difficult to process, so that it has been difficult to apply them to heat dissipation materials that require measures against heat and cost reduction.
On the other hand, the high thermal conductive inorganic filler composite particles of the present invention are a heat dissipating member for which heat measures and cost reduction are required because graphite, alumina hydrate gel and basic magnesium carbonate all form a cheap and soft composite. And very useful. In addition, since the highly heat-conductive inorganic filler composite particles of the present invention are composed of only a material having a small specific gravity, they are suitable for applications requiring weight reduction and are extremely useful. Specifically, in addition to the heat dissipation sheet, heat dissipation double-sided tape, heat dissipation grease, heat dissipation adhesive, heat dissipation resin substrate, heat dissipation flexible copper clad laminate, power device sealing material, white LED sealing material, LED die bonding material It can be used as an inorganic filler for heat dissipating members and heat dissipating materials such as heat dissipating underfill materials and casting materials, heat sinks, heat pipes, heat dissipating paints, heat dissipating engineering plastics, and heat dissipating elastomers, as well as LED lighting, LED TVs, and notebook PCs. It can be applied to applications requiring heat countermeasures, such as automobiles, solar power generation devices, mobile phones and smartphones. In addition, the high thermal conductive inorganic filler composite particles of the present invention are extremely useful in applications that require the above-described thermal measures, because they have greatly exceeded the thermal conductivity of alumina as a general-purpose high thermal conductive filler. . Further, according to the method for producing high thermal conductive inorganic filler composite particles of the present invention, the above-mentioned useful high thermal conductive inorganic filler composite particles can be produced simply and efficiently.

高熱伝導性フィラーの特性を評価した表である。評価の記号は、表中の高熱伝導性フィラーの特性を相対的に評価した結果を示す。It is the table | surface which evaluated the characteristic of the high thermal conductive filler. The evaluation symbol indicates the result of relatively evaluating the characteristics of the high thermal conductive filler in the table. 実施例1に係るグラファイトの表面にアルミナ水和物ゲルが被覆又は結合した状態を示すSEM像である。3 is an SEM image showing a state in which the surface of graphite according to Example 1 is covered or bonded with an alumina hydrate gel. 実施例1で得られた高熱伝導性無機フィラー複合粒子のSEM像である。3 is an SEM image of the high thermal conductive inorganic filler composite particles obtained in Example 1. 図3のSEM像を高倍率にしたSEM像である。4 is an SEM image obtained by increasing the SEM image of FIG. 3 at a high magnification. 高熱伝導性無機フィラー複合粒子を模式的に示す図である。It is a figure which shows the high heat conductive inorganic filler composite particle typically. 実施例7で得られた高熱伝導性無機フィラー複合粒子のSEM像である。9 is an SEM image of the high thermal conductive inorganic filler composite particles obtained in Example 7. 実施例13で得られた高熱伝導性無機フィラー複合粒子のSEM像である。14 is an SEM image of the high thermal conductive inorganic filler composite particles obtained in Example 13. 比較例1で得られた試料のSEM像である。6 is an SEM image of a sample obtained in Comparative Example 1. 比較例3で得られた試料のSEM像である。9 is an SEM image of a sample obtained in Comparative Example 3. 実施例9で得られた高熱伝導性無機フィラー複合粒子の熱重量・示差熱 (TG-DTA)のグラフである。11 is a graph of thermogravimetric / differential heat (TG-DTA) of the highly thermally conductive inorganic filler composite particles obtained in Example 9. 実施例の高熱伝導性無機フィラー複合粒子及び比較例の試料の成型物に係る体積抵抗率(ρ)の測定方法を模式的に示す図である。It is a figure which shows typically the measuring method of the volume resistivity ((rho) V ) which concerns on the molded product of the high thermal conductive inorganic filler composite particle of an Example, and the sample of a comparative example.

本発明の高熱伝導性無機フィラー複合粒子は、グラファイトの表面にアルミナ水和物ゲルが被覆又は結合し、当該アルミナ水和物ゲルの表面に塩基性炭酸マグネシウムが被覆又は結合したものである。以下、本発明の高熱伝導性無機フィラー複合粒子を単に「複合粒子」ということがある。   The high thermal conductive inorganic filler composite particles of the present invention are obtained by coating or bonding alumina hydrate gel on the surface of graphite, and coating or bonding basic magnesium carbonate on the surface of the alumina hydrate gel. Hereinafter, the high thermal conductive inorganic filler composite particles of the present invention may be simply referred to as “composite particles”.

上記の複合粒子は、以下の各工程を含む製造方法により製造できる。
(a)アルミン酸塩の水溶液にグラファイトを添加して懸濁液を調製し、当該懸濁液に炭酸ガスを吹き込みアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程と、前記アルミナ水和物ゲルが表面に被覆又は結合したグラファイトに水溶性無機マグネシウム塩の水溶液又は水溶性有機マグネシウム塩の水溶液を加えて得られる懸濁液に水溶性金属炭酸塩の水溶液を撹拌しながら加えて懸濁液を得る工程と、前記懸濁液を加熱・撹拌して熟成する工程と、熟成後に得られた生成物を固液分離、水洗、乾燥する工程と、を含むことにより製造できる。
上記のアルミナ水和物ゲルが表面に被覆又は結合したグラファイトは、当該グラファイトが懸濁液に含まれる状態、あるいは当該グラファイトを含む懸濁液を固液分離、水洗、乾燥させ単離した状態のいずれでもよい。このことは以下のすべての製造方法において同様である。また、固液分離は、固体分と液体分を分離できればどのような手段でもよく、濾過、加圧、遠心分離等を挙げられる。このことは以下のすべての製造方法において同様である。
(b)アルミニウムアルコキシドを含むアルコール溶媒にグラファイトを添加して得られる懸濁液に水を添加しアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程と、前記アルミナ水和物ゲルが表面に被覆又は結合したグラファイトに水溶性無機マグネシウム塩の水溶液又は水溶性有機マグネシウム塩の水溶液を加えて得られる懸濁液に水溶性金属炭酸塩の水溶液を撹拌しながら加えて懸濁液を得る工程と、前記懸濁液を加熱・撹拌して熟成する工程と、熟成後に得られた生成物を固液分離、水洗、乾燥する工程と、を含むことにより製造できる。
The above composite particles can be produced by a production method including the following steps.
(A) adding graphite to an aqueous solution of aluminate to prepare a suspension, blowing carbon dioxide gas into the suspension to obtain graphite having a surface coated or bonded with alumina hydrate gel; An aqueous solution of a water-soluble metal carbonate is added with stirring to a suspension obtained by adding an aqueous solution of a water-soluble inorganic magnesium salt or an aqueous solution of a water-soluble organic magnesium salt to graphite having a hydrate gel coated or bound on the surface. It can be produced by including a step of obtaining a suspension, a step of aging the suspension by heating and stirring, and a step of solid-liquid separation, washing with water and drying of the product obtained after the aging.
The above-mentioned graphite coated or bound with the alumina hydrate gel is in a state where the graphite is contained in a suspension, or a suspension containing the graphite is solid-liquid separated, washed with water, dried and isolated. Either may be used. This is the same in all the following manufacturing methods. The solid-liquid separation may be performed by any means as long as the solid and liquid components can be separated, and examples include filtration, pressurization, and centrifugation. This is the same in all the following manufacturing methods.
(B) a step of adding water to a suspension obtained by adding graphite to an alcohol solvent containing aluminum alkoxide to obtain graphite having alumina hydrate gel coated or bonded on the surface; An aqueous solution of a water-soluble inorganic magnesium salt or an aqueous solution of a water-soluble organic magnesium salt is added to graphite coated or bonded to the surface, and an aqueous solution of a water-soluble metal carbonate is added to the resulting suspension with stirring to obtain a suspension. It can be produced by including a step, a step of aging the suspension by heating and stirring, and a step of solid-liquid separation, washing and drying of the product obtained after the aging.

また、本発明の高熱伝導性無機フィラー複合粒子は、グラファイトの表面にアルミナが被覆又は結合し、当該アルミナの表面に水和水が除去された塩基性炭酸マグネシウムが被覆又は結合したものである。   In addition, the high thermal conductive inorganic filler composite particles of the present invention are obtained by coating or bonding alumina on the surface of graphite, and coating or bonding basic magnesium carbonate from which hydration water has been removed on the surface of the alumina.

上記の複合粒子は、以下の工程を含む製造方法により製造できる。
(c)アルミン酸塩の水溶液にグラファイトを添加して懸濁液を調製し、当該懸濁液に炭酸ガスを吹き込みアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程と、前記アルミナ水和物ゲルが表面に被覆又は結合したグラファイトに水溶性無機マグネシウム塩の水溶液又は水溶性有機マグネシウム塩の水溶液を加えて得られる懸濁液に水溶性金属炭酸塩の水溶液を撹拌しながら加えて懸濁液を得る工程と、前記懸濁液を加熱・撹拌して熟成する工程と、熟成後に得られた生成物を固液分離、水洗、乾燥する工程と、前記工程で得られた生成物を加熱処理することによりアルミナ水和物ゲルの表面に被覆又は結合した塩基性炭酸マグネシウムの水和水を除去する工程と、を含むことにより製造できる。
(d)アルミニウムアルコキシドを含むアルコール溶媒にグラファイトを添加して得られる懸濁液に水を添加しアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程と、前記アルミナ水和物ゲルが表面に被覆又は結合したグラファイトに水溶性無機マグネシウム塩の水溶液又は水溶性有機マグネシウム塩の水溶液を加えて得られる懸濁液に水溶性金属炭酸塩の水溶液を撹拌しながら加えて懸濁液を得る工程と、前記懸濁液を加熱・撹拌して熟成する工程と、熟成後に得られた生成物を固液分離、水洗、乾燥する工程と、前記工程で得られた生成物を加熱処理することによりアルミナ水和物ゲルの表面に被覆又は結合した塩基性炭酸マグネシウムの水和水を除去する工程と、を含むことにより製造できる。
The above composite particles can be produced by a production method including the following steps.
(C) adding graphite to an aqueous solution of aluminate to prepare a suspension, and blowing carbon dioxide gas into the suspension to obtain graphite having a surface coated or bonded with an alumina hydrate gel; An aqueous solution of a water-soluble metal carbonate is added with stirring to a suspension obtained by adding an aqueous solution of a water-soluble inorganic magnesium salt or an aqueous solution of a water-soluble organic magnesium salt to graphite having a hydrate gel coated or bound on the surface. A step of obtaining a suspension, a step of heating and stirring the suspension for aging, a step of solid-liquid separation, washing with water, and a drying of the product obtained after the aging, and a step of obtaining the product obtained in the step. To remove the water of hydration of the basic magnesium carbonate coated or bonded to the surface of the alumina hydrate gel by heat treatment.
(D) a step of adding water to a suspension obtained by adding graphite to an alcohol solvent containing an aluminum alkoxide to obtain graphite having alumina hydrate gel coated or bonded on the surface; An aqueous solution of a water-soluble inorganic magnesium salt or an aqueous solution of a water-soluble organic magnesium salt is added to graphite coated or bonded to the surface, and an aqueous solution of a water-soluble metal carbonate is added to the resulting suspension with stirring to obtain a suspension. A step of heating and stirring the suspension to ripen it, a step of solid-liquid separation of the product obtained after aging, washing with water, and drying; and a step of heat-treating the product obtained in the step. Removing the water of hydration of the basic magnesium carbonate coated or bound on the surface of the alumina hydrate gel.

アルミナ水和物ゲル又はアルミナに被覆又は結合する塩基性炭酸マグネシウムは、正炭酸マグネシウムの化学式がMgCO3で表されるのに対し、mMgCO3・Mg(OH)2・nH2Oで表される水和物で、その組成比は製法によって異なり、通常、mは3〜5、nは3〜8である。塩基性炭酸マグネシウムを加熱した際の熱分解挙動は、既報の技術文献等、例えば、(北海道大学工学部研究報告、69:213-220、窯業協会誌、84[6], 259-264, 1976)によれば、3段階の分解減量が起こる。150〜240℃付近の減量は結晶水の脱水に伴う減量、350〜420℃付近の減量は水和物(水酸基)の脱水及び炭酸塩の一部の脱炭酸に伴う減量、450〜550℃付近の減量は残りの炭酸塩の脱炭酸に伴う減量と報告されている。本発明の高熱伝導性無機フィラー複合粒子を加熱した際の熱分解挙動は、図10に示すように、上記の報告と同じように塩基性炭酸マグネシウムの減量が起こるものと推測され、本発明の高熱伝導性無機フィラー複合粒子を加熱処理することにより水和水が除去され、無水の塩基性炭酸マグネシウムがアルミナの表面に被覆又は結合した複合粒子を得ることができる。加熱処理の温度は250℃〜400℃が好ましい。250℃より低いと、水和水を除去できない可能性があり、400℃より高いと炭酸塩の一部の脱炭酸に伴う減量が起こる可能性があるからである。250〜400℃の温度で加熱処理することで水和水が脱水し除去され、おそらくmMgCO3・Mg(OH)2若しくはmMgCO3・xMg(OH)2・(1-x)MgOで示される化合物、すなわち無水の塩基性炭酸マグネシウムがアルミナの表面に被覆又は結合した複合粒子が得られていると考えられる。また、加熱時間は、塩基性炭酸マグネシウムの水和水が除去されればよく、0.5〜24時間が好ましい。0.5時間より短いと塩基性炭酸マグネシウムの水和水を十分に除去できないからである。また、24時間を超えての加熱は時間の無駄で不経済である。なお、上記の加熱処理によりアルミナ水和物ゲルは、脱水してアルミナになる。無水の塩基性炭酸マグネシウムがアルミナの表面に被覆又は結合した本発明の高熱伝導性無機フィラー複合粒子は、高い絶縁性と高い熱伝導性を有するばかりか、樹脂の成形温度である250℃付近で重量減少(脱水反応)を起こさないので、成形中に発泡現象が起こらず、特に熱可塑性樹脂の成形において有用である。 Basic magnesium carbonate to coat or bind the alumina hydrate gel or alumina, while the formula of the normal magnesium carbonate is represented by MgCO 3, represented by mMgCO 3 · Mg (OH) 2 · nH 2 O It is a hydrate, and its composition ratio varies depending on the production method. Usually, m is 3 to 5, and n is 3 to 8. The thermal decomposition behavior when basic magnesium carbonate is heated can be determined by the published technical literature, for example, (Hokkaido University Research Report, 69: 213-220, Journal of the Ceramic Society of Japan, 84 [6], 259-264, 1976) According to this, three stages of decomposition weight loss occur. Weight loss around 150 to 240 ° C is due to dehydration of crystallization water, weight loss around 350 to 420 ° C is due to dehydration of hydrate (hydroxyl group) and partial decarboxylation of carbonate, around 450 to 550 ° C Is reported to be the weight loss associated with decarboxylation of the remaining carbonates. The thermal decomposition behavior when heating the high thermal conductive inorganic filler composite particles of the present invention, as shown in FIG. 10, is presumed to cause a decrease in the amount of basic magnesium carbonate as in the above-mentioned report. By subjecting the high thermal conductive inorganic filler composite particles to heat treatment, water of hydration is removed, and composite particles in which anhydrous basic magnesium carbonate is coated or bonded to the surface of alumina can be obtained. The temperature of the heat treatment is preferably from 250C to 400C. If the temperature is lower than 250 ° C., water of hydration may not be removed. If the temperature is higher than 400 ° C., there is a possibility that weight loss due to partial decarboxylation of carbonate may occur. 250-400 hydrated water by heating at a temperature of ℃ is removed dehydration, possibly mMgCO 3 · Mg (OH) 2 or mMgCO 3 · xMg (OH) 2 · (1-x) a compound represented by MgO That is, it is considered that composite particles in which anhydrous basic magnesium carbonate was coated or bonded on the surface of alumina were obtained. The heating time is preferably 0.5 to 24 hours as long as the water of hydration of the basic magnesium carbonate is removed. If the time is shorter than 0.5 hour, the water of hydration of the basic magnesium carbonate cannot be sufficiently removed. Heating for more than 24 hours is wasteful and uneconomical. The alumina hydrate gel is dehydrated into alumina by the above heat treatment. The highly thermally conductive inorganic filler composite particles of the present invention in which anhydrous basic magnesium carbonate is coated or bonded to the surface of alumina not only has high insulation and high thermal conductivity, but also has a resin molding temperature of around 250 ° C. Since no weight loss (dehydration reaction) occurs, no foaming phenomenon occurs during molding, and it is particularly useful in molding a thermoplastic resin.

上記の製造方法におけるグラファイトの表面に被覆又は結合するアルミナ水和物ゲルの製造原料のアルミン酸塩は、アルミン酸ナトリウム、アルミン酸カリウム等を挙げることができるがこれらに限定されない。なお、アルミナ水和物ゲルは、Al2O3・nH2O(n:1〜4)で示すことができる化合物のゲルである。 Examples of the aluminate as a raw material for producing an alumina hydrate gel that is coated or bonded to the surface of graphite in the above-mentioned production method include, but are not limited to, sodium aluminate and potassium aluminate. The alumina hydrate gel is a gel of a compound that can be represented by Al 2 O 3 .nH 2 O (n: 1 to 4).

上記の製造方法におけるグラファイトの表面に被覆又は結合するアルミナ水和物ゲルの製造原料のアルミニウムアルコキシドは、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムn−ブトキシド、アルミニウムsec−ブトキシド、アルミニウムtert−ブトキシド等を挙げることができるがこれらに限定されない。   Aluminum alkoxide, which is a raw material for producing an alumina hydrate gel coated or bonded to the surface of graphite in the above production method, includes aluminum ethoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum sec-butoxide, aluminum tert-butoxide, and the like. But not limited thereto.

上記の製造方法における塩基性炭酸マグネシウムの製造原料であるマグネシウム源として、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、リン酸マグネシウム、ホウ酸マグネシウム等の水溶性無機マグネシウム塩及び酢酸マグネシウム、ギ酸マグネシウム等の水溶性有機マグネシウム塩を挙げることができるが、水溶性無機マグネシウム塩が好ましく、この中でも塩化マグネシウム又は硫酸マグネシウムがより好ましい。なお、マグネシウム源となる化合物は、無水物又は水和物のいずれでもよい。   As a magnesium source which is a raw material for producing basic magnesium carbonate in the above-mentioned production method, water-soluble inorganic magnesium salts such as magnesium chloride, magnesium sulfate, magnesium nitrate, magnesium phosphate and magnesium borate; and water-soluble inorganic salts such as magnesium acetate and magnesium formate. Examples of the organic magnesium salt include water-soluble inorganic magnesium salts, and among them, magnesium chloride or magnesium sulfate is more preferable. The compound serving as a magnesium source may be either an anhydride or a hydrate.

上記の製造方法における塩基性炭酸マグネシウムの製造原料である炭酸源として、水溶性金属炭酸塩が挙げられ、この中でも炭酸ナトリウム、炭酸カリウムが好ましい。なお、炭酸源となる化合物は、無水物又は水和物のいずれでもよい。   Examples of the carbonic acid source as a raw material for producing basic magnesium carbonate in the above-mentioned production method include water-soluble metal carbonates, and among them, sodium carbonate and potassium carbonate are preferable. The compound serving as a carbonic acid source may be either an anhydride or a hydrate.

上記の製造方法におけるグラファイト(以下、「黒鉛」ということもある。)は、公知のものを用いることができ、天然物、人造物のいずれも使用できる。また、形状も限定されることはなく、粒状、角状、平板状、鱗片状等いずれの形状のものも使用できるが、グラファイトは垂直方向に比べ平面方向に優れた熱伝導率を示すことから、鱗片状のグラファイトが特に好ましい。グラファイトの粒径は、粒状や角状の場合は0.1〜500μm、平板状や鱗片状の場合は平面方向の平均径が1〜4000μmが好ましく、また、平面方向と厚みを意味するアスペクト比は上記のグラファイトの熱伝導率の特性から2〜2000であるものが好ましい。   Known graphite can be used as the graphite (hereinafter, also referred to as "graphite") in the above-described production method, and any of natural products and artificial products can be used. In addition, the shape is not limited, and any shape such as a granular shape, a square shape, a flat plate shape, and a scaly shape can be used.However, graphite exhibits excellent thermal conductivity in the planar direction as compared to the vertical direction. In particular, scaly graphite is particularly preferred. The particle diameter of graphite is preferably 0.1 to 500 μm in the case of granules or squares, and the average diameter in the plane direction is preferably 1 to 4000 μm in the case of plates or scales, and the aspect ratio which means the thickness in the plane direction. Is preferably from 2 to 2,000 in view of the thermal conductivity characteristics of graphite.

上記の製造方法における熟成する工程で加熱する際の熟成温度は、50℃〜100℃が好ましく、60℃〜90℃がより好ましい。熟成温度が50℃より低いと塩基性炭酸マグネシウムの生成速度が遅いためアルミナ水和物ゲルとの複合に長時間を要するため好ましくない。熟成温度が100℃を超えると水が蒸発するので、水の蒸発が起こらないように圧力に対応した器具や設備を使用する必要が生じ、生産上設備面でコストが高くなる。熟成温度への昇温速度は極端に早すぎなければ特に限定されない。また、熟成時間は0時間より長く、1時間〜24時間が好ましい。24時間を超えての熟成は時間の無駄で不経済である。熟成する工程における懸濁液の撹拌は十分に行うことが好ましい。撹拌が十分でないと塩基性炭酸マグネシウムとアルミナ水和物ゲルが複合しないか複合が十分ではなく、複合粒子に絶縁性を付与できないことがある。   The aging temperature at the time of heating in the aging step in the above-mentioned production method is preferably from 50 ° C to 100 ° C, more preferably from 60 ° C to 90 ° C. If the aging temperature is lower than 50 ° C., the formation rate of the basic magnesium carbonate is low, so that it takes a long time to combine with the alumina hydrate gel, which is not preferable. If the aging temperature exceeds 100 ° C., water evaporates, so that it is necessary to use equipment and equipment corresponding to the pressure so that water does not evaporate, which increases production costs in terms of equipment. The rate of raising the temperature to the aging temperature is not particularly limited as long as it is not too fast. The aging time is longer than 0 hours, and preferably 1 hour to 24 hours. Aging beyond 24 hours is wasteful and uneconomical. It is preferable to sufficiently stir the suspension in the aging step. If the stirring is not sufficient, the basic magnesium carbonate and the alumina hydrate gel may not be combined or the combination may not be sufficient, and the insulating properties may not be imparted to the composite particles.

本発明の高熱伝導性無機フィラー複合粒子は、グラファイトの含有率が45重量%〜90重量%であることが好ましい。グラファイトの含有率が45重量%を下回ると熱伝導性が低下するからであり、90重量%を上回ると十分な絶縁性を付与できないからである。
本発明の高熱伝導性無機フィラー複合粒子は、アルミナ水和物ゲル又はアルミナの含有率が0.3重量%〜10重量%であることが好ましい。アルミナ水和物ゲル又はアルミナの含有率が0.3重量%を下回ると、アルミナ水和物ゲル又はアルミナの被覆量が少なくなり、塩基性炭酸マグネシウムの被覆が均一にできないからであり、また、10重量%を上回ると、吸湿性が高くなるため耐熱性の低下や絶縁性の低下が起こるからである。また、本発明の高熱伝導性無機フィラー複合粒子は、塩基性炭酸マグネシウムの含有率が5重量%〜54.7重量%であることが好ましい。塩基性炭酸マグネシウムの含有率が5重量%を下回ると、十分な絶縁性が発現しないからであり、また、54.7重量%を上回ると、絶縁性に優れても熱伝導率に優れる高熱伝導性無機フィラー複合粒子が得られないからである。
The high thermal conductive inorganic filler composite particles of the present invention preferably have a graphite content of 45% by weight to 90% by weight. If the graphite content is less than 45% by weight, the thermal conductivity is reduced, and if it is more than 90% by weight, sufficient insulation cannot be provided.
The high thermal conductive inorganic filler composite particles of the present invention preferably have an alumina hydrate gel or alumina content of 0.3% by weight to 10% by weight. When the content of the alumina hydrate gel or alumina is less than 0.3% by weight, the coating amount of the alumina hydrate gel or alumina decreases, and the coating of the basic magnesium carbonate cannot be uniformly performed. If the content is more than 10% by weight, the hygroscopicity is increased, so that the heat resistance and the insulation are reduced. Further, the high thermal conductive inorganic filler composite particles of the present invention preferably have a basic magnesium carbonate content of 5% by weight to 54.7% by weight. If the content of the basic magnesium carbonate is less than 5% by weight, sufficient insulating properties will not be exhibited, and if it exceeds 54.7% by weight, high thermal conductivity, which is excellent in insulating properties but excellent in thermal conductivity. This is because the conductive inorganic filler composite particles cannot be obtained.

本発明の高熱伝導性無機フィラー複合粒子は、グラファイトの表面にアルミナ水和物ゲル又はアルミナが被覆又は結合し、当該アルミナ水和物ゲル又はアルミナの表面に塩基性炭酸マグネシウムが被覆又は結合しているので、熱伝導性と絶縁性に優れている。測定対象をエポキシ樹脂に配合して作製した樹脂試料の熱伝導計を使用して測定した熱伝導率は0.80W/m・K〜2.00W/m・Kであることが好ましい。0.80W/m・Kを下回ると、高い熱伝導性が期待できないからであり、また、熱伝導率が2.00W/m・Kを上回らないのは、グラファイトにアルミナ水和物ゲル又はアルミナ及び塩基性炭酸マグネシウムが被覆又は結合するので、グラファイトの熱伝導率が制約されるからである。
また、下記の式(1)を用いて高熱伝導性無機フィラー複合粒子自体の熱伝導率を導出することができる。式(1)を用いて高熱伝導性無機フィラー複合粒子自体の熱伝導率の導出する方法は、特許文献2に記載の方法と同様である。
λf=(λc−λm・Vm)/Vf*C (1)
(但し、λf:高熱伝導性無機フィラー複合粒子の熱伝導率、λc:樹脂100部に対して高熱伝導性無機フィラー複合粒子を25部配合した樹脂試料の熱伝導率、λm:樹脂の熱伝導率、Vf:高熱伝導性無機フィラー複合粒子の体積分率、Vm:樹脂の体積分率、C:補正係数(10))
この方法で導出される高熱伝導性無機フィラー複合粒子の熱伝導率は、50W/m・K〜150W/m・Kであることが好ましい。熱伝導率が50W/m・Kを下回ると高い熱伝導性が期待できないからであり、また、150W/m・Kを上回らないのは、グラファイトにアルミナ水和物ゲル又はアルミナ及び塩基性炭酸マグネシウムが被覆又は結合するので、グラファイトの熱伝導率が制約されるからである。
High thermal conductive inorganic filler composite particles of the present invention, the surface of graphite is coated or bonded with alumina hydrate gel or alumina, and the surface of the alumina hydrate gel or alumina is coated or bonded with basic magnesium carbonate. It has excellent thermal conductivity and insulation properties. It is preferable that the thermal conductivity of a resin sample prepared by blending an object to be measured with an epoxy resin using a thermal conductivity meter is 0.80 W / m · K to 2.00 W / m · K. If it is less than 0.80 W / m · K, high thermal conductivity cannot be expected. The reason that the thermal conductivity does not exceed 2.00 W / m · K is that graphite is made of alumina hydrate gel or alumina. And the basic magnesium carbonate coats or binds, which limits the thermal conductivity of graphite.
In addition, the thermal conductivity of the highly thermally conductive inorganic filler composite particles themselves can be derived using the following equation (1). The method of deriving the thermal conductivity of the highly heat-conductive inorganic filler composite particles themselves using Equation (1) is the same as the method described in Patent Document 2.
λf = (λc−λm · Vm) / Vf * C (1)
(However, λf: thermal conductivity of the high thermal conductive inorganic filler composite particles, λc: thermal conductivity of a resin sample in which 25 parts of the high thermal conductive inorganic filler composite particles are blended with 100 parts of the resin, λm: thermal conductivity of the resin Ratio, Vf: volume fraction of the high thermal conductive inorganic filler composite particles, Vm: volume fraction of the resin, C: correction coefficient (10))
The thermal conductivity of the high thermal conductive inorganic filler composite particles derived by this method is preferably from 50 W / m · K to 150 W / m · K. If the thermal conductivity is less than 50 W / m · K, a high thermal conductivity cannot be expected. The reason that the thermal conductivity does not exceed 150 W / m · K is that graphite is made of alumina hydrate gel or alumina and basic magnesium carbonate. Is coated or bonded, which limits the thermal conductivity of graphite.

高熱伝導性無機フィラー複合粒子の測定対象を加圧して作製した成型物のテスターを使用して測定した抵抗値(R)に当該成型物の断面積を乗じ長さで除して導出した体積抵抗率(ρ)は1000Ω・cm〜100000Ω・cmであることが好ましい。体積抵抗率(ρ)が1000Ω・cmを下回ると、高い絶縁性が要求される電子部品への使用に好ましくないからであり、また、体積抵抗率(ρ)が100000Ω・cmを上回れば熱伝導率の低下が懸念されるからである。 Volume resistance derived by multiplying the resistance value (R) measured using a tester of a molded product made by pressing the measurement object of the high thermal conductive inorganic filler composite particles by the cross-sectional area of the molded product and dividing by the length The rate (ρ V ) is preferably from 1000 Ω · cm to 100000 Ω · cm. When the volume resistivity ([rho V) is below 1000 [Omega] · cm, is not preferable for use in electronic parts where high insulating properties are required, also if the volume resistivity ([rho V) is exceeds the 100000Ω · cm This is because there is a concern about a decrease in thermal conductivity.

高熱伝導性無機フィラー複合粒子の熱伝導率と体積抵抗率(ρ)は、グラファイトの含有率とトレードオフの関係にある。そこで、下記の式(2)からなるパラメーターを設定することにより高熱伝導性無機フィラー複合粒子の評価を行うことが可能である。
GV/T値=グラファイト含有率/100×体積抵抗率(logρ)/熱伝導率
2.00≦GV/T値≦4.00 (2)
(但し、熱伝導率は高熱伝導性無機フィラー複合粒子を配合した樹脂試料の熱伝導率) このように設定したパラメーターのGV/T値が2.00を下回れば熱伝導率に優れかつ絶縁性にも優れる高熱伝導性無機フィラー複合粒子を得ることができないからであり、また、GV/T値が4.00を上回れば絶縁性に優れても熱伝導率に優れる高熱伝導性無機フィラー複合粒子が得られないからである。
The thermal conductivity and the volume resistivity (ρ V ) of the high thermal conductive inorganic filler composite particles are in a trade-off relationship with the graphite content. Therefore, it is possible to evaluate the high thermal conductive inorganic filler composite particles by setting a parameter represented by the following equation (2).
GV / T value = graphite content / 100 × volume resistivity (log .rho V) / thermal conductivity
2.00 ≦ GV / T value ≦ 4.00 (2)
(However, the thermal conductivity is the thermal conductivity of the resin sample in which the high thermal conductive inorganic filler composite particles are blended.) If the GV / T value of the parameter set in this way is less than 2.00, the thermal conductivity is excellent and the insulating property is high. This is because it is not possible to obtain highly thermally conductive inorganic filler composite particles having excellent thermal conductivity, and if the GV / T value is more than 4.00, the highly thermally conductive inorganic filler composite particles having excellent insulation and excellent thermal conductivity. Is not obtained.

本発明の高熱伝導性無機フィラー複合粒子に係る構成材料のグラファイト、アルミナ水和物ゲル及び塩基性炭酸マグネシウムの各比重は、3を超えることがなく、比重が3を超え4に近い汎用の高熱伝導性フィラーであるアルミナと比べても軽量で、被充填物の放熱材料の軽量化に寄与できる。また、本発明の高熱伝導性無機フィラー複合粒子のグラファイトに被覆又は結合するアルミナ水和物ゲルの層は、図2及び図5に示すようにメッシュ状の構造をなしている。このため、被覆層の厚みが厚くなり、導電性のグラファイト粒子との間に距離を保たせることができる。このことも本発明の高熱伝導性無機フィラー複合粒子の絶縁性の向上に寄与するものと推測される。   The specific gravity of graphite, alumina hydrate gel and basic magnesium carbonate of the constituent materials related to the high thermal conductive inorganic filler composite particles of the present invention does not exceed 3, and the specific gravity exceeds 3 and is close to 4 for general-purpose high heat. It is lighter than alumina, which is a conductive filler, and can contribute to the weight reduction of the heat radiation material of the filling material. The layer of the alumina hydrate gel coated or bonded to the graphite of the highly thermally conductive inorganic filler composite particles of the present invention has a mesh structure as shown in FIGS. 2 and 5. For this reason, the thickness of the coating layer is increased, and the distance between the coating layer and the conductive graphite particles can be maintained. It is presumed that this also contributes to the improvement of the insulating property of the high thermal conductive inorganic filler composite particles of the present invention.

本発明の高熱伝導性無機フィラー複合粒子は、充填ができる限り被充填物には限定がないが、好適には樹脂組成物、特に絶縁性と放熱性が求められる基板、半導体パッケージ等に充填することができる。樹脂組成物に用いられる樹脂は特に限定されないが、エポキシ樹脂、シリコーン樹脂、メラミン樹脂、ユリア樹脂、フェノール樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ナイロン等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリベンゾイミダゾール、アラミド樹脂、ポリフェニレンスルフィド、全芳香族ポリエステル、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、アクリロニトリル−アクリルゴム・スチレン樹脂、アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン等の汎用樹脂等を例示できる。   The high thermal conductive inorganic filler composite particles of the present invention are not limited to the material to be filled as long as they can be filled, but are preferably filled into a resin composition, especially a substrate or semiconductor package that requires insulation and heat dissipation. be able to. Although the resin used for the resin composition is not particularly limited, epoxy resin, silicone resin, melamine resin, urea resin, phenol resin, unsaturated polyester, fluorine resin, polyimide, polyamide imide, polyether imide, polyamide such as nylon, poly Butylene terephthalate, polyester such as polyethylene terephthalate, polybenzimidazole, aramid resin, polyphenylene sulfide, wholly aromatic polyester, liquid crystal polymer, polysulfone, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, acrylonitrile-acrylic rubber / styrene resin, Acrylonitrile / ethylene / propylene / diene rubber-general-purpose resins such as styrene resin, polyethylene, polypropylene, polyvinyl chloride, and polystyrene The can be exemplified.

次いで、本発明について実施例を挙げて説明するが、本発明は以下の実施例に限定されるものではない。   Next, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.

〔実施例1〕
実施例1の複合粒子は、以下の手順で作製した。
(1)アルミン酸ナトリウム(関東化学(株)社製)0.37gをイオン交換水150mLに溶解させたアルミン酸ナトリウム水溶液を得た。
(2)この水溶液にグラファイト20g(中心粒子径65μm、アスペクト比30、以下のグラファイトも同様)を添加して懸濁液を得た。
(3)この懸濁液を撹拌しながら、1L/minの速度で pHが7になるまで二酸化炭素ガスを吹き込んで、表面にアルミナ水和物ゲルが被覆又は結合したグラファイトを含む懸濁液を得た。
(4)この懸濁液に塩化マグネシウム(無水物)(米山薬品工業(株)社製)13.2gをイオン交換水100mLに溶解させた塩化マグネシウム水溶液を送液ポンプを用いて17mL/minの速度で滴下して加え懸濁液を得た。
(5)この懸濁液を撹拌しながら、炭酸ナトリウム(トクヤマ(株)社製)6.67gをイオン交換水55mLに溶解させた炭酸ナトリウム水溶液を送液ポンプを用いて17mL/minの速度で滴下して加え懸濁液を得た。
(6)この懸濁液を撹拌下、60 ℃で1時間熟成した。
(7)熟成により得られた生成物を濾過、水洗、乾燥することによって、グラファイトの表面にアルミナ水和物ゲルが被覆又は結合し、当該アルミナ水和物ゲルの表面に塩基性炭酸マグネシウムが被覆又は結合した高熱伝導性無機フィラー複合粒子を得た。
[Example 1]
The composite particles of Example 1 were produced by the following procedure.
(1) An aqueous sodium aluminate solution was prepared by dissolving 0.37 g of sodium aluminate (manufactured by Kanto Chemical Co., Ltd.) in 150 mL of ion-exchanged water.
(2) A suspension was obtained by adding 20 g of graphite (center particle diameter 65 μm, aspect ratio 30, the same applies to graphite below) to this aqueous solution.
(3) While stirring this suspension, carbon dioxide gas was blown in at a rate of 1 L / min until the pH reached 7, to obtain a suspension containing graphite having alumina hydrate gel coated or bonded on the surface. Obtained.
(4) An aqueous solution of magnesium chloride obtained by dissolving 13.2 g of magnesium chloride (anhydride) (manufactured by Yoneyama Pharmaceutical Co., Ltd.) in 100 mL of ion-exchanged water was added to this suspension at a rate of 17 mL / min using a liquid sending pump. Was added dropwise to obtain a suspension.
(5) While stirring this suspension, an aqueous solution of sodium carbonate obtained by dissolving 6.67 g of sodium carbonate (manufactured by Tokuyama Corporation) in 55 mL of ion-exchanged water was dropped at a rate of 17 mL / min using a liquid sending pump. To give a suspension.
(6) This suspension was aged at 60 ° C. for 1 hour with stirring.
(7) The product obtained by aging is filtered, washed with water, and dried, whereby the surface of graphite is coated or bound with alumina hydrate gel, and the surface of the alumina hydrate gel is coated with basic magnesium carbonate. Alternatively, bonded high thermal conductive inorganic filler composite particles were obtained.

〔実施例2〕
実施例2の複合粒子は、塩化マグネシウム(無水物)13.2gを塩化マグネシウム(六水和物)(関東化学(株)社製)28gに変更した以外は実施例1と同じ手順で作製した。
[Example 2]
The composite particles of Example 2 were produced in the same manner as in Example 1 except that 13.2 g of magnesium chloride (anhydride) was changed to 28 g of magnesium chloride (hexahydrate) (manufactured by Kanto Chemical Co., Ltd.).

〔実施例3〕
実施例3の複合粒子は、熟成温度を80℃に変更した以外は実施例2と同じ手順で作製した。
[Example 3]
The composite particles of Example 3 were produced in the same procedure as in Example 2, except that the aging temperature was changed to 80 ° C.

〔実施例4〕
実施例4の複合粒子は、塩化マグネシウム水溶液及び炭酸ナトリウム水溶液を加える方法を送液ポンプによる滴下ではなく、送液ポンプを用いず一気に加えた以外は実施例2と同じ手順で作製した。
[Example 4]
The composite particles of Example 4 were produced in the same procedure as in Example 2, except that the magnesium chloride aqueous solution and the sodium carbonate aqueous solution were added all at once without using a liquid sending pump instead of using a liquid sending pump.

〔実施例5〕
実施例5の複合粒子は、実施例2のイオン交換水の量はそのままで、グラファイト、アルミン酸ナトリウム、塩化マグネシウム(六水和物)及び炭酸ナトリウムの量をそれぞれ2倍にし、また、塩化マグネシウム水溶液及び炭酸ナトリウム水溶液を加える方法を送液ポンプによる滴下ではなく、送液ポンプを用いず一気に加えた以外は実施例2と同じ手順で作製した。
[Example 5]
In the composite particles of Example 5, the amounts of graphite, sodium aluminate, magnesium chloride (hexahydrate) and sodium carbonate were each doubled, while the amount of ion-exchanged water of Example 2 was unchanged. The procedure was the same as that of Example 2 except that the aqueous solution and the aqueous solution of sodium carbonate were added at once without using a liquid sending pump instead of dropping by a liquid sending pump.

〔実施例6〕
実施例6の複合粒子は、熟成時間を5時間に変更し、また、塩化マグネシウム水溶液及び炭酸ナトリウム水溶液を加える方法を送液ポンプによる滴下ではなく、送液ポンプを用いず一気に加えた以外は実施例2と同じ手順で作製した。
[Example 6]
The composite particles of Example 6 were changed except that the aging time was changed to 5 hours, and the method of adding the aqueous solution of magnesium chloride and the aqueous solution of sodium carbonate was not dripping with a liquid feed pump, but was added all at once without using a liquid feed pump. It was produced in the same procedure as in Example 2.

〔実施例7〕
実施例7の複合粒子は、塩化マグネシウム(六水和物)28gを硫酸マグネシウム(無水物)(関東化学(株)社製)16.6gに変更し、また、硫酸マグネシウム水溶液及び炭酸ナトリウム水溶液を加える方法を送液ポンプによる滴下ではなく、送液ポンプを用いず一気に加えた以外は実施例2と同じ手順で作製した。
[Example 7]
In the composite particles of Example 7, 28 g of magnesium chloride (hexahydrate) was changed to 16.6 g of magnesium sulfate (anhydride) (manufactured by Kanto Chemical Co., Ltd.), and an aqueous solution of magnesium sulfate and an aqueous solution of sodium carbonate were added. The procedure was performed in the same manner as in Example 2 except that the method was not dripping with a liquid feed pump, but was performed at once without using a liquid feed pump.

〔実施例8〕
実施例8の複合粒子は、塩化マグネシウム(六水和物)28gを塩化マグネシウム(六水和物)42gに、炭酸ナトリウム6.67gを炭酸ナトリウム10gにそれぞれ変更し、また、塩化マグネシウム水溶液及び炭酸ナトリウム水溶液を加える方法を送液ポンプによる滴下ではなく、送液ポンプを用いず一気に加えた以外は実施例2と同じ手順で作製した。
Example 8
The composite particles of Example 8 were prepared by changing 28 g of magnesium chloride (hexahydrate) to 42 g of magnesium chloride (hexahydrate) and 6.67 g of sodium carbonate to 10 g of sodium carbonate. The solution was prepared in the same manner as in Example 2 except that the aqueous solution was not added dropwise by a liquid sending pump but was added at once without using a liquid sending pump.

〔実施例9〕
実施例9の複合粒子は、グラファイトを20 gから10 g、アルミン酸ナトリウムを0.37 gから0.18g、塩化マグネシウム(六水和物)を28gから56g、炭酸ナトリウムを6.67gから13.3gに変更し、また、塩化マグネシウム水溶液及び炭酸ナトリウム水溶液を加える方法を送液ポンプによる滴下ではなく、送液ポンプを用いず一気に加えた以外は実施例2と同じ手順で作製した。
[Example 9]
The composite particles of Example 9 were changed from 20 g to 10 g of graphite, 0.37 g to 0.18 g of sodium aluminate, 28 g to 56 g of magnesium chloride (hexahydrate), and 6.67 g to 13.3 g of sodium carbonate. Further, the same procedure as in Example 2 was carried out except that a magnesium chloride aqueous solution and a sodium carbonate aqueous solution were added at once without using a liquid sending pump instead of using a liquid sending pump.

〔実施例10〕
実施例10の複合粒子は、以下の手順で作製した。
(1)アルミン酸ナトリウム0.37gをイオン交換水150mLに溶解させたアルミン酸ナトリウム水溶液を得た。
(2) この水溶液にグラファイト20gを添加して懸濁液を得た。
(3)この懸濁液を撹拌しながら、1L/minの速度で pHが7になるまで二酸化炭素ガスを吹き込んで、アルミナ水和物ゲルが表面に被覆又は結合したグラファイトを含む懸濁液を得た。
(4)この懸濁液を濾過、水洗、乾燥することによってアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得た。
(5) 塩化マグネシウム(無水物)7.2gをイオン交換水100 mLに溶解させた塩化マグネシウム水溶液に、アルミナ水和物ゲルが表面に被覆又は結合したグラファイト11g を加えて懸濁液を得た。
(6)この懸濁液を撹拌しながら、炭酸ナトリウム3.7gをイオン交換水55mLに溶解させた炭酸ナトリウム水溶液を送液ポンプを用いて17mL/minの速度で滴下して加えた。
(7)この懸濁液を撹拌下、60 ℃で1時間熟成した。
(8)熟成により得られた生成物を濾過、水洗、乾燥することによって、グラファイトの表面にアルミナ水和物ゲルが被覆又は結合し、当該アルミナ水和物ゲルの表面に塩基性炭酸マグネシウムが被覆又は結合した高熱伝導性無機フィラー複合粒子を得た。
[Example 10]
The composite particles of Example 10 were produced by the following procedure.
(1) An aqueous solution of sodium aluminate was obtained by dissolving 0.37 g of sodium aluminate in 150 mL of ion-exchanged water.
(2) To this aqueous solution was added 20 g of graphite to obtain a suspension.
(3) While stirring this suspension, carbon dioxide gas was blown into the suspension at a rate of 1 L / min until the pH reached 7, to obtain a suspension containing graphite having a surface coated or bonded with alumina hydrate gel. Obtained.
(4) The suspension was filtered, washed with water and dried to obtain graphite having alumina hydrate gel coated or bonded on the surface.
(5) To a magnesium chloride aqueous solution in which 7.2 g of magnesium chloride (anhydride) was dissolved in 100 mL of ion-exchanged water, 11 g of graphite having a surface coated or bound with alumina hydrate gel was added to obtain a suspension.
(6) While stirring this suspension, an aqueous solution of sodium carbonate in which 3.7 g of sodium carbonate was dissolved in 55 mL of ion-exchanged water was added dropwise at a rate of 17 mL / min using a liquid sending pump.
(7) This suspension was aged at 60 ° C. for 1 hour with stirring.
(8) By filtering, washing and drying the product obtained by aging, the surface of graphite is coated or bound with an alumina hydrate gel, and the surface of the alumina hydrate gel is coated with basic magnesium carbonate. Alternatively, bonded high thermal conductive inorganic filler composite particles were obtained.

〔実施例11〕
実施例11の複合粒子は、アルミン酸ナトリウム0.37gをアルミン酸ナトリウム1.85gに変更した以外は実施例10と同じ手順で作製した。
[Example 11]
The composite particles of Example 11 were produced in the same manner as in Example 10, except that 0.37 g of sodium aluminate was changed to 1.85 g of sodium aluminate.

〔実施例12〕
実施例12の複合粒子は、アルミナ水和物ゲルが被覆又は結合したグラファイトの数量を20gに変更し、塩化マグネシウム (無水物) 7.2 gを塩化マグネシウム(六水和物)28gに変更し、また、炭酸ナトリウム3.7gを炭酸カリウム(関東化学(株)社製)8.7に変更した以外は、実施例10と同じ手順で作製した。
[Example 12]
In the composite particles of Example 12, the quantity of graphite coated or bonded with alumina hydrate gel was changed to 20 g, 7.2 g of magnesium chloride (anhydride) was changed to 28 g of magnesium chloride (hexahydrate), and The same procedure as in Example 10 was carried out, except that 3.7 g of sodium carbonate was changed to 8.7 of potassium carbonate (manufactured by Kanto Chemical Co., Ltd.).

〔実施例13〕
実施例13の複合粒子は、以下の手順で作製した。
(1)工業用アルコール (今津薬品工業(株)社製、クリンエース・ハイ) 2100gにアルミニウムイソプロポキシド (関東化学(株)社製)12.24gを添加し、撹拌することにより溶解させた。
(2)この溶液にグラファイト360gを添加して懸濁液を得た。
(3)この懸濁液を撹拌しながら、イオン交換水6.48gを滴下することで、アルミナ水和物ゲルが表面に被覆又は結合したグラファイトを含む懸濁液を得た。
(4)この懸濁液を濾過、水洗、乾燥することによってアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得た。
(5)塩化マグネシウム(六水和物)28gをイオン交換水100mLに溶解させた塩化マグネシウム水溶液に、前記のアルミナ水和物ゲルが表面に被覆又は結合したグラファイト20g を加えて懸濁液を得た。
(6)この懸濁液を撹拌しながら、炭酸ナトリウム6.67gをイオン交換水55mLに溶解させた炭酸ナトリウム水溶液を加えて懸濁液を得た。
(7)この懸濁液を撹拌下、60 ℃で1時間熟成した。
(8)熟成により得られた生成物を濾過、水洗、乾燥することによって、グラファイトの表面にアルミナ水和物ゲルが被覆又は結合し、当該アルミナ水和物ゲルの表面に塩基性炭酸マグネシウムが被覆又は結合した高熱伝導性無機フィラー複合粒子を得た。
[Example 13]
The composite particles of Example 13 were produced by the following procedure.
(1) To 2100 g of industrial alcohol (manufactured by Imazu Pharmaceutical Co., Ltd., Clean Ace High), 12.24 g of aluminum isopropoxide (manufactured by Kanto Chemical Co., Ltd.) was added and dissolved by stirring.
(2) A suspension was obtained by adding 360 g of graphite to this solution.
(3) While stirring this suspension, 6.48 g of ion-exchanged water was added dropwise to obtain a suspension containing graphite having a surface coated or bonded with alumina hydrate gel.
(4) The suspension was filtered, washed with water and dried to obtain graphite having alumina hydrate gel coated or bonded on the surface.
(5) To a magnesium chloride aqueous solution in which 28 g of magnesium chloride (hexahydrate) is dissolved in 100 mL of ion-exchanged water, 20 g of graphite having the above-mentioned alumina hydrate gel coated or bonded on the surface is added to obtain a suspension. Was.
(6) While stirring this suspension, an aqueous sodium carbonate solution in which 6.67 g of sodium carbonate was dissolved in 55 mL of ion-exchanged water was added to obtain a suspension.
(7) This suspension was aged at 60 ° C. for 1 hour with stirring.
(8) By filtering, washing and drying the product obtained by aging, the surface of graphite is coated or bound with an alumina hydrate gel, and the surface of the alumina hydrate gel is coated with basic magnesium carbonate. Alternatively, bonded high thermal conductive inorganic filler composite particles were obtained.

〔実施例14〕
実施例14の複合粒子は、実施例5で得られた複合粒子を電気炉((株)共栄電気炉製作所社製、HRK-354035)を用いて300℃で8時間加熱処理し、グラファイトの表面にアルミナが被覆又は結合し、当該アルミナの表面に水和水が除去された塩基性炭酸マグネシウムが被覆又は結合した高熱伝導性無機フィラー複合粒子を得た。
[Example 14]
The composite particles of Example 14 were obtained by subjecting the composite particles obtained in Example 5 to heat treatment at 300 ° C. for 8 hours using an electric furnace (HRK-354035, manufactured by Kyoei Electric Furnace Mfg. Co., Ltd.) to obtain a graphite surface. High thermal conductive inorganic filler composite particles were obtained in which alumina was coated or bonded to the surface, and the surface of the alumina was coated or bonded to basic magnesium carbonate from which water of hydration was removed.

〔比較例1〕
比較例1の試料は、以下の手順で作製した。なお、比較例1の試料は、特許文献2の発明に係るグラファイトの表面に塩基性炭酸マグネシウムが被覆又は結合する高熱伝導性無機フィラー複合粒子である。
(1)塩化マグネシウム(無水物)13.2gをイオン交換水100mLに溶解させ、塩化マグネシウム水溶液を調製した。
(2)炭酸ナトリウム6.67gをイオン交換水55mLに溶解させ、炭酸ナトリウム水溶液を調製した。
(3)この炭酸ナトリウム水溶液を送液ポンプを用いて(1)の塩化マグネシウム水溶液に17mL/minの速度で滴下して加え、塩基性炭酸マグネシウムゲルを生成させた
(4)このゲル溶液にグラファイトを20g添加して、グラファイトとの懸濁液を調製した。
(5)この懸濁液を撹拌下、60℃で1時間熟成した。
(6)熟成により得られた生成物を濾過、水洗、乾燥することによりグラファイトの表面に塩基性炭酸マグネシウムが被覆又は結合した試料を得た。
[Comparative Example 1]
The sample of Comparative Example 1 was produced according to the following procedure. Note that the sample of Comparative Example 1 is a highly heat-conductive inorganic filler composite particle in which the surface of graphite according to the invention of Patent Document 2 is coated or bound with basic magnesium carbonate.
(1) Magnesium chloride (anhydride) (13.2 g) was dissolved in ion-exchanged water (100 mL) to prepare a magnesium chloride aqueous solution.
(2) 6.67 g of sodium carbonate was dissolved in 55 mL of ion-exchanged water to prepare an aqueous sodium carbonate solution.
(3) The sodium carbonate aqueous solution was added dropwise to the magnesium chloride aqueous solution of (1) at a rate of 17 mL / min using a liquid sending pump to form a basic magnesium carbonate gel. (4) Graphite was added to the gel solution. Was added to prepare a suspension with graphite.
(5) This suspension was aged at 60 ° C. for 1 hour with stirring.
(6) The product obtained by aging was filtered, washed with water, and dried to obtain a sample in which the surface of graphite was coated or bound with basic magnesium carbonate.

〔比較例2〕
比較例2の試料は、グラファイトと塩基性炭酸マグネシウムを重量比で4:1の割合で乾式混合して得られた塩基性炭酸マグネシウムとグラファイトの混合粒子である。
なお、ここで用いた塩基性炭酸マグネシウムは、比較例1のようにグラファイトを添加することなく、塩化マグネシウム水溶液と炭酸ナトリウム水溶液を反応させ合成したものである。
[Comparative Example 2]
The sample of Comparative Example 2 is a mixed particle of basic magnesium carbonate and graphite obtained by dry-mixing graphite and basic magnesium carbonate at a weight ratio of 4: 1.
The basic magnesium carbonate used here was prepared by reacting an aqueous solution of magnesium chloride and an aqueous solution of sodium carbonate without adding graphite as in Comparative Example 1.

〔比較例3〕
比較例3の試料は、熟成温度を40℃に変更した以外は実施例2と同じ手順で作製した。
[Comparative Example 3]
The sample of Comparative Example 3 was produced in the same procedure as in Example 2 except that the aging temperature was changed to 40 ° C.

〔比較例4〕
比較例4の試料は、炭酸ナトリウム6.67gを炭酸水素ナトリウム(米山薬品工業(株)社製)10.6gに変更し、炭酸水素ナトリウムをイオン交換水110mlに溶解し、また、塩化マグネシウム水溶液及び炭酸水素ナトリウム水溶液を加える方法を送液ポンプによる滴下ではなく、送液ポンプを用いず一気に加えた以外は実施例2と同じ手順で作製した。
[Comparative Example 4]
In the sample of Comparative Example 4, 6.67 g of sodium carbonate was changed to 10.6 g of sodium hydrogen carbonate (manufactured by Yoneyama Pharmaceutical Co., Ltd.), and sodium hydrogen carbonate was dissolved in 110 ml of ion-exchanged water. The procedure was performed in the same manner as in Example 2 except that the aqueous solution of sodium hydrogen was added at a stroke without using a liquid sending pump instead of dropping by a liquid sending pump.

〔比較例5〕
比較例5の試料は、塩化マグネシウム水溶液と炭酸ナトリウム水溶液を加える順番を逆にし、炭酸ナトリウム水溶液を加えてから塩化マグネシウム水溶液を加えた以外は実施例4と同じ手順で作製した。
[Comparative Example 5]
The sample of Comparative Example 5 was prepared in the same procedure as in Example 4 except that the order of adding the aqueous solution of magnesium chloride and the aqueous solution of sodium carbonate was reversed, and the aqueous solution of magnesium carbonate was added after the aqueous solution of sodium carbonate was added.

〔比較例6〕
比較例6の試料は、原料のグラファイトである。
[Comparative Example 6]
The sample of Comparative Example 6 is a raw material graphite.

実施例の複合粒子又は比較例の試料について、それぞれ諸物性を調べた。すなわち、複合粒子又は試料のグラファイトの含有率、アルミナ水和物ゲルの含有率、塩基性炭酸マグネシウムの含有率、SEM像、体積抵抗率(ρ)、複合粒子又は試料をエポキシ樹脂に配合した樹脂試料の熱伝導率を測定した。諸物性の分析方法は下記の通りである。 Various physical properties were examined for the composite particles of the examples and the samples of the comparative examples. That is, the graphite content of the composite particles or the sample, the content of the alumina hydrate gel, the content of the basic magnesium carbonate, the SEM image, the volume resistivity (ρ V ), and the composite particles or the sample were mixed with the epoxy resin. The thermal conductivity of the resin sample was measured. The methods for analyzing various physical properties are as follows.

〔グラファイトの含有率、アルミナ水和物ゲルの含有率及び塩基性炭酸マグネシウムの含有率〕
熱分析装置(ブルカー・エイエックスエス(株)社製 TG-DTA2000SA)を用いて、600℃における重量減少率に基づき下記の式(3)により、〔グラファイトの含有率〕、〔アルミナ水和物ゲルの含有率〕及び〔塩基性炭酸マグネシウムの含有率〕を導出した。
Z = (X×W+Y×W-34.6×Y )/( 58.5-W)
T = X+Y+Z
G = X / T×100
M = Y / T×100
N = Z / T×100 (3)
X:グラファイトの使用量〔g〕
Y:複合粒子及び試料中のアルミナ水和物ゲルの重量〔g〕
Z:複合粒子及び試料中の塩基性炭酸マグネシウムの重量〔g〕
W:複合粒子及び試料の600℃における重量減少率〔wt%〕
T:複合粒子及び試料の重量〔g〕
G:複合粒子及び試料中のグラファイトの含有率〔wt%〕
M:複合粒子及び試料中のアルミナ水和物ゲルの含有率〔wt%〕
N:複合粒子及び試料中の塩基性炭酸マグネシウムの含有率〔wt%〕
78:アルミナ水和物ゲルの示性式をAl(OH)3と仮定したときの分子量
102:アルミナの分子量
34.6:熱処理により、アルミナ水和物ゲルがアルミナへ転移したときの重量減少率の 理論値であり、「1- (アルミナの分子量/2/アルミナ水和物ゲルの示性式を
Al(OH)3と仮定したときの分子量)」によって導出された値
58.5:塩基性炭酸マグネシウムの示性式を4MgCO3・Mg(OH)2・5H2Oと仮定したと
きに、熱処理によって塩基性炭酸マグネシウムが酸化マグネシウムへ転移した
ときの重量減少率の理論値
[Graphite content, alumina hydrate gel content and basic magnesium carbonate content]
Using a thermal analyzer (TG-DTA2000SA, manufactured by Bruker AXS Co., Ltd.), [Graphite content] and [Alumina hydrate] were obtained from the following formula (3) based on the weight loss rate at 600 ° C. Gel content] and [basic magnesium carbonate content] were derived.
Z = (X × W + Y × W-34.6 × Y) / (58.5-W)
T = X + Y + Z
G = X / T × 100
M = Y / T × 100
N = Z / T × 100 (3)
X: Amount of graphite used [g]
Y: Weight of composite particles and alumina hydrate gel in sample [g]
Z: Weight of basic magnesium carbonate in composite particles and sample [g]
W: Weight loss rate of composite particles and sample at 600 ° C. [wt%]
T: Weight of composite particles and sample [g]
G: Content of graphite in composite particles and sample [wt%]
M: Content of alumina hydrate gel in composite particles and sample [wt%]
N: Content of basic magnesium carbonate in composite particles and sample [wt%]
78: Molecular weight of alumina hydrate gel assuming Al (OH) 3
102: Molecular weight of alumina
34.6: This is the theoretical value of the weight loss rate when the alumina hydrate gel is converted to alumina by heat treatment, and is expressed as “1- (molecular weight of alumina / 2 / alumina hydrate gel.
(Molecular weight assuming Al (OH) 3 )
58.5: Assuming that the basic formula of basic magnesium carbonate is 4MgCO 3 · Mg (OH) 2 · 5H 2 O
The basic magnesium carbonate was transferred to magnesium oxide by heat treatment
Theoretical weight loss rate

上記のYの「複合粒子及び試料中のアルミナ水和物ゲルの重量〔g〕」又はY’の「複合粒子中の300℃で加熱された時のアルミナ水和物ゲルの重量〔g〕」を以下の式で求めた。
(a)グラファイトにアルミナ水和物ゲルを被覆又は結合させるためにアルミン酸ナトリウムを使用した場合
Y = A×(B /100)×78/102/2
A:アルミン酸ナトリウムの使用量〔g〕
B:アルミン酸ナトリウムのAl2O3の含有率〔wt%〕(規格値に基づいて、本発明で 使用したアルミン酸ナトリウムのAl2O3含有率を36.5wt%と仮定した)
(b)グラファイトにアルミナ水和物ゲルを被覆又は結合させるためにアルミニウムイソプロポキシドを使用した場合
Y =C×78/204.25
C:アルミニウムイソプロポキシドの使用量〔 g 〕
78:アルミナ水和物ゲルの示性式をAl(OH)3と仮定したときの分子量
204.25:アルミニウムイソプロポキシドの分子量
(c)実施例14の加熱処理の場合
Y’= Y× 102/2/78
Z’= Z×(W’/ (W-Y×34.6 /100))
T’= X + Y’+ Z’
G = X / T’×100
M = Y’/ T’×100
N = Z’/ T’×100 (4)
X:グラファイトの使用量〔g〕
Y:加熱処理前の複合粒子のアルミナ水和物ゲルの重量〔g〕
Y’:複合粒子中の300℃で加熱された時のアルミナ水和物ゲルの重量〔g〕
Z:複合粒子中の塩基性炭酸マグネシウムの重量[g]
Z’:複合粒子中の300℃で加熱された時の塩基性炭酸マグネシウムの重量〔g〕
T’:加熱処理後の複合粒子の重量〔g〕
W :複合粒子の600℃における重量減少率〔wt%〕
W’:300℃で加熱処理後の複合粒子の600℃における重量減少率〔wt%〕
78:アルミナ水和物ゲルの示性式をAl(OH)3と仮定したときの分子量
102:アルミナの分子量
34.6:熱処理により、アルミナ水和物ゲルがアルミナへ転移したときの重量減少率の
理論値であり、「1- (アルミナの分子量/2/アルミナ水和物ゲルの示性式を
Al(OH)3と仮定したときの分子量)」によって導出された値
"The weight (g) of the alumina hydrate gel in the composite particles and the sample" of Y above or the "weight (g) of the alumina hydrate gel in the composite particles when heated at 300 ° C." Was determined by the following equation.
(A) When sodium aluminate is used to coat or bind alumina hydrate gel to graphite
Y = A × (B / 100) × 78/102/2
A: Amount of sodium aluminate used [g]
B: Al 2 O 3 content of sodium aluminate [wt%] (Based on the standard value, it was assumed that the Al 2 O 3 content of sodium aluminate used in the present invention was 36.5 wt%)
(B) When aluminum isopropoxide is used to coat or bind alumina hydrate gel to graphite
Y = C x 78 / 204.25
C: Amount of aluminum isopropoxide used [g]
78: Molecular weight of alumina hydrate gel assuming Al (OH) 3
204.25: Molecular weight of aluminum isopropoxide (c) In the case of heat treatment of Example 14
Y '= Y × 102/2/78
Z '= Z × (W' / (WY × 34.6 / 100))
T '= X + Y' + Z '
G = X / T '× 100
M = Y '/ T' × 100
N = Z '/ T' x 100 (4)
X: Amount of graphite used [g]
Y: Weight of alumina hydrate gel of composite particles before heat treatment [g]
Y ′: weight of alumina hydrate gel when heated at 300 ° C. in the composite particles [g]
Z: Weight of basic magnesium carbonate in composite particles [g]
Z ′: weight of basic magnesium carbonate in composite particles when heated at 300 ° C. [g]
T ′: Weight of composite particles after heat treatment [g]
W: Weight loss rate of the composite particles at 600 ° C [wt%]
W ': Weight loss rate at 600 ° C of the composite particles after heat treatment at 300 ° C [wt%]
78: Molecular weight of alumina hydrate gel assuming Al (OH) 3
102: Molecular weight of alumina
34.6: Rate of weight loss when alumina hydrate gel is transformed to alumina by heat treatment
The theoretical value is as follows: `` 1- (molecular weight of alumina / 2 / alumina hydrate gel)
(Molecular weight assuming Al (OH) 3 )

X、実測したW及び上記で得られたYを上記の式(3)に代入し、Zの「複合粒子及び試料中の塩基性炭酸マグネシウムの重量〔g〕」を求めた。そして、X、Y及びZから上記の式(3)に基づき、Tの「複合粒子及び試料の重量〔g〕」を求め、さらにGの「複合粒子及び試料中のグラファイトの含有率〔wt%〕」、Mの「複合粒子及び試料中のアルミナ水和物ゲルの含有率〔wt%〕」及びNの「複合粒子及び試料中の塩基性炭酸マグネシウムの含有率〔wt%〕」を導出した。実施例14の加熱処理の場合は、上記の式(4)に基づき、YからY’を求めた。そして、実測したW’、W、Y及びZから式(4)に基づき、 Z’の「複合粒子中の300℃で加熱された時の塩基性炭酸マグネシウムの重量〔g〕」を求めた。さらに、X、Y’及び Z’からT’の「加熱処理後の複合粒子の重量〔g〕」を求め、Gの「複合粒子中のグラファイトの含有率〔wt%〕」、Mの「複合粒子中のアルミナ水和物ゲルの含有率〔wt%〕」及びNの「複合粒子中の塩基性炭酸マグネシウムの含有率〔wt%〕」を導出した。結果は表1に示した。なお、表1の含有率は、計算において小数点第2位を四捨五入したため、含有率が100wt%を超えることがある。また、表1には、複合粒子及び試料の製造条件も示した。   X, the actually measured W, and the Y obtained above were substituted into the above equation (3) to determine the “weight of basic magnesium carbonate in the composite particles and the sample [g]” of Z. Then, the “weight of composite particles and sample [g]” of T was determined from X, Y and Z based on the above equation (3), and the G content of graphite in composite particles and sample [wt% ], M “content of alumina hydrate gel in composite particles and sample [wt%]” and N “content of basic magnesium carbonate in composite particles and sample [wt%]” . In the case of the heat treatment of Example 14, Y ′ was determined from Y based on the above equation (4). Then, based on the measured W ', W, Y and Z, the "weight [g] of the basic magnesium carbonate in the composite particles when heated at 300 [deg.] C." of Z' was determined based on the formula (4). Further, the “weight of composite particles after heat treatment [g]” of T ′ was determined from X, Y ′ and Z ′, and the “content of graphite in composite particles [wt%]” of G and “composite of M” The content of alumina hydrate gel in particles [wt%] and the content of basic magnesium carbonate in composite particles [wt%] of N were derived. The results are shown in Table 1. In addition, the content rate of Table 1 may be more than 100 wt% because the second decimal place is rounded off in the calculation. Table 1 also shows the manufacturing conditions for the composite particles and the samples.

〔SEM像の観察〕
複合粒子又は試料をカーボンテープの上に張り付け、走査型電子顕微鏡を用いて複合粒子又は試料の形態を観察した。
複合粒子又は試料において、注意深く観察してもグラファイトの表面が殆ど観察されない場合を○、注意深く観察しなくても容易にグラファイトの表面の一部が観察される場合を△、注意深く観察してもグラファイトの表面しか殆ど観察されない場合を×として、被覆状態を評価した。結果は表2に示した。
なお、実施例1、7、13の複合粒子、比較例1、3の試料の各SEM像及びアルミナ水和物ゲルが被覆又は結合した状態のグラファイトのSEM像をそれぞれ図2〜図4、図6〜図9に示した。図4から、複合粒子には塩基性炭酸マグネシウムの粒子が板状に覆われることが分かる。
[SEM image observation]
The composite particles or the sample were stuck on a carbon tape, and the morphology of the composite particles or the sample was observed using a scanning electron microscope.
In the composite particles or the sample, the case where the graphite surface is hardly observed even when carefully observed is indicated by ○, the case where a part of the graphite surface is easily observed without careful observation is indicated by Δ, and the graphite is observed even when carefully observed. The case where only the surface was almost observed was evaluated as x, and the coating state was evaluated. The results are shown in Table 2.
The SEM images of the composite particles of Examples 1, 7, and 13, the samples of Comparative Examples 1 and 3, and the SEM images of graphite coated or bonded with alumina hydrate gel are shown in FIGS. 6 to 9. FIG. 4 shows that the particles of the basic magnesium carbonate are covered with the composite particles in a plate shape.

〔体積抵抗率〕
ハンドプレス機を用いて、複合粒子又は試料の1.0gを一軸加圧し、直径1.1cm×長さ0.75cmの円柱の成型物を得た。この成型物をアルミニウム金属の板に挟み込み、1.5kgの荷重をかけながら、テスター((株)カスタム社製、CDM-03)を用いて抵抗値(R)を測定し、下記の式を用いて体積抵抗率(ρ)を導出した(図11参照)。
体積抵抗率(ρ)〔Ω・cm〕=抵抗値(R)〔Ω〕×断面積(S)〔cm2〕/長さ(L)
〔cm〕
=抵抗値(R)〔Ω〕×π(0.55)2〔cm2〕/0.75〔cm〕
結果は表2に示した。
[Volume resistivity]
Using a hand press, 1.0 g of the composite particles or the sample was uniaxially pressed to obtain a cylindrical molded product having a diameter of 1.1 cm and a length of 0.75 cm. This molded product is sandwiched between aluminum metal plates, and while applying a load of 1.5 kg, the resistance (R) is measured using a tester (CDM-03, manufactured by Custom Co., Ltd.), and the resistance is calculated using the following equation. The volume resistivity (ρ V ) was derived (see FIG. 11).
The volume resistivity ([rho V) [Omega · cm] = resistance (R) [Omega] × cross-sectional area (S) [cm 2] / Length (L)
〔cm〕
= Resistance value (R) [Ω] x π (0.55) 2 [cm 2 ] /0.75 [cm]
The results are shown in Table 2.

〔熱伝導率〕
エポキシ樹脂(三井化学(株)社製、エポミックR140P)40gに複合粒子又は試料を10g配合し十分に混合させた後、2-エチル-4-メチルイミダゾール(和光純薬(株)社製)を0.8g加えて十分に混合し、120℃で2時間加熱硬化して熱伝導率測定用試験試料を作製した。得られた熱伝導率測定用試験試料を4cm×4cm×2cmの試験片として切り出し、25 ℃の恒温槽で2時間以上保持した。その後、迅速熱伝導計(京都電子工業(株)社製、QTM-500)を使用して複合粒子又は試料が配合された樹脂試料の熱伝導率を測定した。結果は表2に示した。
〔Thermal conductivity〕
After mixing 10 g of composite particles or a sample with 40 g of an epoxy resin (manufactured by Mitsui Chemicals, Inc., Epomic R140P) and mixing them sufficiently, 2-ethyl-4-methylimidazole (manufactured by Wako Pure Chemical Industries, Ltd.) was added. 0.8 g was added, mixed well, and heated and cured at 120 ° C. for 2 hours to prepare a test sample for measuring thermal conductivity. The obtained test sample for thermal conductivity measurement was cut out as a test piece of 4 cm × 4 cm × 2 cm and kept in a thermostat at 25 ° C. for 2 hours or more. Thereafter, the thermal conductivity of the resin sample containing the composite particles or the sample was measured using a rapid thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.). The results are shown in Table 2.

下記の式(1)を用いて複合粒子自体の熱伝導率及び試料自体の熱伝導率を導出した。
λf=(λc−λm・Vm)/Vf*C (1)
(但し、λf:複合粒子又は試料の熱伝導率、λc:樹脂100部に対して複合粒子又は試料を25部配合した樹脂試料の熱伝導率、λm:樹脂の熱伝導率、Vf:複合粒子又は試料の体積分率、Vm:樹脂の体積分率、C:補正係数(10))
λfを導出するための各パラメーターは下記の通りである。
λc:上記の段落〔0057〕で得られた熱伝導率、λm:0.24W/m・K(測定値)、Vf:A÷(A+B)(A;樹脂試料中の複合粒子又は試料の重量をその比重(密度)で除した値、B;樹脂試料中のエポキシ樹脂の重量をその比重(密度)で除した値(複合粒子の比重及び比較例3〜5の試料の比重;2.2(黒鉛の比重は2.2(既知)、塩基性炭酸マグネシウムの比重は2.2(既知)、アルミナ水和物ゲルの比重は2.5(既知)で互いに大きな差がなく、また、アルミナ水和物ゲルの含有率は0.3wt〜10wt%で僅かであることから比重を2.2と設定した。比較例1、2の試料の比重;2.2 (黒鉛の比重は2.2(既知)、塩基性炭酸マグネシウムの比重は2.2(既知))、比較例6の試料の比重;2.2(黒鉛の比重は2.2(既知))、エポキシ樹脂の比重;1.16(既知))、Vm:B÷(A+B)
結果は表2に示した。表2中の「熱伝導率(測定値)」欄は、上記で測定した複合粒子又は試料が配合された樹脂試料の熱伝導率であり、「熱伝導率(導出値)」欄は、式(1)を用いて導出した複合粒子自体の熱伝導率又は試料自体の熱伝導率である。また、汎用の高熱伝導性フィラーであるアルミナについて、エポキシ樹脂にアルミナが配合された樹脂試料を作製し、式(1)の各パラメーターを測定・算出し、アルミナ自体の熱伝導率を式(1)により導出した。
The thermal conductivity of the composite particle itself and the thermal conductivity of the sample itself were derived using the following equation (1).
λf = (λc−λm · Vm) / Vf * C (1)
(However, λf: thermal conductivity of the composite particles or the sample, λc: thermal conductivity of a resin sample in which 25 parts of the composite particles or the sample are blended with 100 parts of the resin, λm: thermal conductivity of the resin, Vf: the composite particles Or volume fraction of sample, Vm: volume fraction of resin, C: correction coefficient (10))
The parameters for deriving λf are as follows.
λc: thermal conductivity obtained in the above paragraph [0057], λm: 0.24 W / m · K (measured value), Vf: A ÷ (A + B) (A; weight of composite particles or sample in resin sample) Divided by its specific gravity (density), B; a value obtained by dividing the weight of the epoxy resin in the resin sample by its specific gravity (density) (specific gravity of composite particles and specific gravity of samples of Comparative Examples 3 to 5; 2.2). (The specific gravity of graphite is 2.2 (known), the specific gravity of basic magnesium carbonate is 2.2 (known), and the specific gravity of alumina hydrate gel is 2.5 (known). The specific gravity of the hydrate gel was set to 2.2 because the content of the hydrate gel was 0.3 wt% to 10 wt%, and the specific gravity of the sample of Comparative Examples 1 and 2 was 2.2 (the specific gravity of graphite was 2.2 ( The specific gravity of basic magnesium carbonate is 2.2 (known)), the specific gravity of the sample of Comparative Example 6; 2.2 (the specific gravity of graphite is 2.2 (known)) , The specific gravity of the epoxy resin; 1.16 (known)), Vm: B ÷ (A + B)
The results are shown in Table 2. The “thermal conductivity (measured value)” column in Table 2 is the thermal conductivity of the resin sample in which the composite particles or the sample were blended, and the “thermal conductivity (derived value)” column was defined by the formula This is the thermal conductivity of the composite particle itself or the thermal conductivity of the sample itself derived using (1). Further, for alumina, which is a general-purpose high thermal conductive filler, a resin sample in which alumina is blended with an epoxy resin is prepared, and each parameter of the formula (1) is measured and calculated, and the thermal conductivity of the alumina itself is calculated by the formula (1). ).

Figure 2020029384
Figure 2020029384

Figure 2020029384
Figure 2020029384

表1及び表2から分かるように、実施例1は特許文献2の発明に係る高熱伝導性無機フィラー複合粒子である比較例1とグラファイト含有率がほぼ同じであるにも拘わらず、体積抵抗率値(ρ)は約25倍の値を有している。これは、グラファイト表面にメッシュ構造を有したアルミナ水和物ゲルの仲介層を設けたことによって、アルミナ水和物ゲル及び塩基性炭酸マグネシウムが被覆又は結合した層の厚みが増え、導電性のグラファイト粒子間の距離が保たれるようになったため、絶縁性が保たれるようになったと推測される。
また、実施例の中で熱伝導率が最も低い実施例9は、特許文献2の高熱伝導性無機フィラー複合粒子である比較例1と比べ71%(測定値)又は65%(導出値)の熱伝導率を有している一方、実施例9の体積抵抗率(ρ)は比較例1の約215倍と比較例1を遙かに凌駕する絶縁性を有している。また、式(1)で導出したアルミナの熱伝導率は、30W/m・Kで既知のアルミナの熱伝導率とほぼ一致する数値であった。実施例9の熱伝導率の導出値(58W/m・K)は、アルミナの熱伝導率の約1.9倍であり、汎用される既存の高熱伝導性フィラーに比べ十分に高い熱伝導率を有する。実施例2、5、7、12は、比較例1より高い熱伝導率を有する上、比較例1より極めて高い絶縁性を有している。また、GV/T値が2.00以上であれば、高い熱伝導性と高い絶縁性を兼備した複合粒子を得られることが分かる。
As can be seen from Tables 1 and 2, the volume resistivity of Example 1 was substantially the same as that of Comparative Example 1 which is the high thermal conductive inorganic filler composite particles according to the invention of Patent Document 2, although the graphite content was almost the same. The value (ρ V ) has a value of about 25 times. This is because, by providing an intermediate layer of alumina hydrate gel having a mesh structure on the graphite surface, the thickness of the layer coated or bonded with alumina hydrate gel and basic magnesium carbonate increases, and the conductive graphite It is presumed that the insulation between the particles was maintained because the distance between the particles was maintained.
In addition, Example 9 having the lowest thermal conductivity among the examples is 71% (measured value) or 65% (derived value) as compared with Comparative Example 1 which is a highly thermally conductive inorganic filler composite particle of Patent Document 2. While having thermal conductivity, the volume resistivity (ρ V ) of the ninth embodiment is about 215 times that of the first comparative example, which is far superior to that of the first comparative example. Further, the thermal conductivity of alumina derived from the equation (1) was 30 W / m · K, which was a numerical value substantially matching the known thermal conductivity of alumina. The derived value (58 W / m · K) of the thermal conductivity of the ninth embodiment is about 1.9 times the thermal conductivity of alumina, which is sufficiently higher than that of an existing high thermal conductive filler that is widely used. Having. Examples 2, 5, 7, and 12 have a higher thermal conductivity than Comparative Example 1, and also have an extremely higher insulating property than Comparative Example 1. In addition, it can be seen that when the GV / T value is 2.00 or more, composite particles having both high thermal conductivity and high insulation can be obtained.

本発明の高熱伝導性無機フィラー複合粒子は、安価で絶縁性と熱伝導性に優れ、基板、半導体パッケージ等の電子部品の分野において特に有用である。   The highly heat-conductive inorganic filler composite particles of the present invention are inexpensive, have excellent insulating properties and heat conductivity, and are particularly useful in the field of electronic components such as substrates and semiconductor packages.

Claims (13)

グラファイトの表面にアルミナ水和物ゲルが被覆又は結合し、当該アルミナ水和物ゲルの表面に塩基性炭酸マグネシウムが被覆又は結合してなる絶縁性を有することを特徴とする高熱伝導性無機フィラー複合粒子。   High thermal conductive inorganic filler composite, characterized in that the surface of graphite is coated or bonded with an alumina hydrate gel, and the surface of the alumina hydrate gel is coated or bonded with basic magnesium carbonate. particle. グラファイトの表面にアルミナが被覆又は結合し、当該アルミナの表面に水和水が除去された塩基性炭酸マグネシウムが被覆又は結合してなる絶縁性を有することを特徴とする高熱伝導性無機フィラー複合粒子。   High thermal conductive inorganic filler composite particles characterized in that the surface of graphite is coated or bonded with alumina, and the surface of the alumina is coated or bonded with basic magnesium carbonate from which water of hydration is removed. . 測定対象をエポキシ樹脂に配合して作製した樹脂試料の熱伝導計を使用して測定した熱伝導率が0.80W/m・K〜2.00W/m・Kであり、また、測定対象を加圧して作製した成型物のテスターを使用して測定した抵抗値に前記成型物の断面積を乗じ長さで除して導出した体積抵抗率(ρ)が1000Ω・cm〜100000Ω・cmであることを特徴とする請求項1又は請求項2に記載の高熱伝導性無機フィラー複合粒子。 The thermal conductivity measured using a thermal conductivity meter of a resin sample prepared by blending the measurement target with the epoxy resin is 0.80 W / m · K to 2.00 W / m · K. The volume resistivity (ρ V ) derived by multiplying the resistance value measured using a tester of a molded product produced by pressurization by the cross-sectional area of the molded product and dividing by the length is 1000Ω · cm to 100000Ω · cm. The highly thermally conductive inorganic filler composite particles according to claim 1 or 2, wherein 下記の式(1)により導出した熱伝導率が50W/m・K〜150W/m・Kであることを特徴とする請求項1又は請求項2に記載の高熱伝導性無機フィラー複合粒子。
λf=(λc−λm・Vm)/Vf*C (1)
(但し、λf:高熱伝導性無機フィラー複合粒子の熱伝導率、λc:樹脂100部に対して高熱伝導性無機フィラー複合粒子を25部混合した樹脂試料の熱伝導率、λm:樹脂の熱伝導率、Vf:高熱伝導性無機フィラー複合粒子の体積分率、Vm:樹脂の体積分率、C:補正係数(10))
The high thermal conductive inorganic filler composite particles according to claim 1 or 2, wherein the thermal conductivity derived from the following formula (1) is 50 W / m · K to 150 W / m · K.
λf = (λc−λm · Vm) / Vf * C (1)
(However, λf: thermal conductivity of high thermal conductive inorganic filler composite particles, λc: thermal conductivity of resin sample obtained by mixing 25 parts of high thermal conductive inorganic filler composite particles with 100 parts of resin, λm: thermal conductivity of resin Ratio, Vf: volume fraction of the high thermal conductive inorganic filler composite particles, Vm: volume fraction of the resin, C: correction coefficient (10))
下記の式(2)を満たすことを特徴とする請求項1又は請求項2に記載の高熱伝導性無機フィラー複合粒子。
GV/T値=グラファイト含有率/100×体積抵抗率(logρ)/熱伝導率
2.00≦GV/T値≦4.00 (2)
(但し、熱伝導率は高熱伝導性無機フィラー複合粒子を配合した樹脂試料の熱伝導率)
The high thermal conductive inorganic filler composite particles according to claim 1 or 2, wherein the following formula (2) is satisfied.
GV / T value = graphite content / 100 × volume resistivity (log .rho V) / thermal conductivity
2.00 ≦ GV / T value ≦ 4.00 (2)
(However, the thermal conductivity is the thermal conductivity of a resin sample containing high thermal conductive inorganic filler composite particles.)
グラファイトの含有率が45重量%〜90重量%であり、アルミナ水和物ゲル又はア
ルミナの含有率が0.3重量%〜10重量%であり、塩基性炭酸マグネシウムの含有率
が5重量%〜54.7重量%であること特徴とする請求項1又は請求項2に記載の高熱
伝導性無機フィラー複合粒子。
The graphite content is 45 wt% to 90 wt%, the alumina hydrate gel or alumina content is 0.3 wt% to 10 wt%, and the basic magnesium carbonate content is 5 wt% to The high thermal conductive inorganic filler composite particles according to claim 1 or 2, wherein the content is 54.7% by weight.
アルミン酸塩の水溶液にグラファイトを添加して懸濁液を調製し、当該懸濁液に炭酸ガスを吹き込みアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程と、前記アルミナ水和物ゲルが表面に被覆又は結合したグラファイトに水溶性無機マグネシウム塩の水溶液又は水溶性有機マグネシウム塩の水溶液を加えて得られる懸濁液に水溶性金属炭酸塩の水溶液を撹拌しながら加えて懸濁液を得る工程と、前記懸濁液を加熱・撹拌して熟成する工程と、熟成後に得られた生成物を固液分離、水洗、乾燥する工程と、を含むことを特徴とする請求項1に記載の高熱伝導性無機フィラー複合粒子の製造方法。   Adding graphite to an aqueous solution of an aluminate to prepare a suspension, blowing carbon dioxide gas through the suspension to obtain graphite having alumina hydrate gel coated or bonded to the surface; A suspension obtained by adding an aqueous solution of a water-soluble inorganic magnesium salt or an aqueous solution of a water-soluble organic magnesium salt to graphite having a gel coated or bonded to the surface, and adding an aqueous solution of a water-soluble metal carbonate with stirring to the suspension. The method according to claim 1, further comprising: a step of heating and stirring the suspension to ripen the suspension; and a step of solid-liquid separating, washing and drying the product obtained after the aging. A method for producing the high thermal conductive inorganic filler composite particles according to the above. アルミニウムアルコキシドを含むアルコール溶媒にグラファイトを添加して得られる懸濁液に水を添加しアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程と、前記アルミナ水和物ゲルが表面に被覆又は結合したグラファイトに水溶性無機マグネシウム塩の水溶液又は水溶性有機マグネシウム塩の水溶液を加えて得られる懸濁液に水溶性金属炭酸塩の水溶液を撹拌しながら加えて懸濁液を得る工程と、前記懸濁液を加熱・撹拌して熟成する工程と、熟成後に得られた生成物を固液分離、水洗、乾燥する工程と、を含むことを特徴とする請求項1に記載の高熱伝導性無機フィラー複合粒子の製造方法。   A step of adding water to a suspension obtained by adding graphite to an alcohol solvent containing aluminum alkoxide to obtain graphite having alumina hydrate gel coated or bonded on the surface, and the alumina hydrate gel coated on the surface Or obtaining a suspension by adding an aqueous solution of a water-soluble metal carbonate with stirring to a suspension obtained by adding an aqueous solution of a water-soluble inorganic magnesium salt or an aqueous solution of a water-soluble organic magnesium salt to the bound graphite, The high thermal conductivity according to claim 1, comprising: a step of heating and stirring the suspension to ripen it; and a step of solid-liquid separating, washing with water, and drying the product obtained after ripening. A method for producing inorganic filler composite particles. アルミン酸塩の水溶液にグラファイトを添加して懸濁液を調製し、当該懸濁液に炭酸ガスを吹き込みアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程と、前記アルミナ水和物ゲルが表面に被覆又は結合したグラファイトに水溶性無機マグネシウム塩の水溶液又は水溶性有機マグネシウム塩の水溶液を加えて得られる懸濁液に水溶性金属炭酸塩の水溶液を撹拌しながら加えて懸濁液を得る工程と、前記懸濁液を加熱・撹拌して熟成する工程と、熟成後に得られた生成物を固液分離、水洗、乾燥する工程と、前記工程で得られた生成物を加熱処理することによりアルミナ水和物ゲルの表面に被覆又は結合した塩基性炭酸マグネシウムの水和水を除去する工程と、を含むことを特徴とする請求項2に記載の高熱伝導性無機フィラー複合粒子の製造方法。   Adding graphite to an aqueous solution of an aluminate to prepare a suspension, blowing carbon dioxide gas through the suspension to obtain graphite having alumina hydrate gel coated or bonded to the surface; A suspension obtained by adding an aqueous solution of a water-soluble inorganic magnesium salt or an aqueous solution of a water-soluble organic magnesium salt to graphite having a gel coated or bonded to the surface, and adding an aqueous solution of a water-soluble metal carbonate with stirring to the suspension. , A step of heating and stirring the suspension to ripen it, a step of solid-liquid separation, washing with water, and a drying of the product obtained after the aging, and a heat treatment of the product obtained in the step. Removing the hydrated water of the basic magnesium carbonate coated or bound on the surface of the alumina hydrate gel by performing Method of manufacturing over the composite particles. アルミニウムアルコキシドを含むアルコール溶媒にグラファイトを添加して得られる懸濁液に水を添加しアルミナ水和物ゲルが表面に被覆又は結合したグラファイトを得る工程と、前記アルミナ水和物ゲルが表面に被覆又は結合したグラファイトに水溶性無機マグネシウム塩の水溶液又は水溶性有機マグネシウム塩の水溶液を加えて得られる懸濁液に水溶性金属炭酸塩の水溶液を撹拌しながら加えて懸濁液を得る工程と、前記懸濁液を加熱・撹拌して熟成する工程と、熟成後に得られた生成物を固液分離、水洗、乾燥する工程と、前記工程で得られた生成物を加熱処理することによりアルミナ水和物ゲルの表面に被覆又は結合した塩基性炭酸マグネシウムの水和水を除去する工程と、を含むことを特徴とする請求項2に記載の高熱伝導性無機フィラー複合粒子の製造方法。   A step of adding water to a suspension obtained by adding graphite to an alcohol solvent containing aluminum alkoxide to obtain graphite having alumina hydrate gel coated or bonded on the surface, and the alumina hydrate gel coated on the surface Or obtaining a suspension by adding an aqueous solution of a water-soluble metal carbonate with stirring to a suspension obtained by adding an aqueous solution of a water-soluble inorganic magnesium salt or an aqueous solution of a water-soluble organic magnesium salt to the bound graphite, Heating and stirring the suspension to ripen it, solid-liquid separation of the product obtained after aging, washing with water, and drying; and heating the product obtained in the above step to obtain alumina water. Removing the water of hydration of the basic magnesium carbonate coated or bound on the surface of the hydrate gel. Method for producing a filler composite particles. 熟成する工程の熟成温度が50℃〜100℃であることを特徴とする請求項7〜請求項10のいずれか1項に記載の高熱伝導性無機フィラー複合粒子の製造方法。   The method for producing highly thermally conductive inorganic filler composite particles according to any one of claims 7 to 10, wherein the aging temperature in the aging step is 50 ° C to 100 ° C. 加熱処理は250℃〜400℃で0.5〜24時間の加熱であることを特徴とする請求項9又は請求項10に記載の高熱伝導性無機フィラー複合粒子の製造方法。   The method for producing highly thermally conductive inorganic filler composite particles according to claim 9, wherein the heat treatment is heating at 250 ° C. to 400 ° C. for 0.5 to 24 hours. 請求項1〜請求項6のいずれか1項に記載の高熱伝導性無機フィラー複合粒子が充填されてなることを特徴とする樹脂組成物。   A resin composition, which is filled with the high thermal conductive inorganic filler composite particles according to any one of claims 1 to 6.
JP2018155452A 2018-08-22 2018-08-22 Highly thermally conductive inorganic filler composite particles and method for producing the same Active JP7152003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018155452A JP7152003B2 (en) 2018-08-22 2018-08-22 Highly thermally conductive inorganic filler composite particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018155452A JP7152003B2 (en) 2018-08-22 2018-08-22 Highly thermally conductive inorganic filler composite particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2020029384A true JP2020029384A (en) 2020-02-27
JP7152003B2 JP7152003B2 (en) 2022-10-12

Family

ID=69623769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018155452A Active JP7152003B2 (en) 2018-08-22 2018-08-22 Highly thermally conductive inorganic filler composite particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP7152003B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161694A (en) * 1990-04-24 1992-11-10 Virginia Tech Intellectual Properties, Inc. Method for separating fine particles by selective hydrophobic coagulation
JP2005047774A (en) * 2003-07-31 2005-02-24 Nittetsu Mining Co Ltd Method of manufacturing compound oxide particle and compound oxide particle
JP2011051867A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Ceramic carbon composite, method of manufacturing the same, ceramic applied ceramic carbon composite and method of manufacturing the same
JP2012519073A (en) * 2009-03-04 2012-08-23 ビーエーエスエフ ソシエタス・ヨーロピア Magnetic hydrophobic agglomerates
JP2014159494A (en) * 2011-06-23 2014-09-04 Panasonic Corp Thermal conductor
JP2015178543A (en) * 2014-03-18 2015-10-08 河合石灰工業株式会社 High-thermal-conductivity inorganic filler composite particle and production method thereof
JP2016135719A (en) * 2015-01-23 2016-07-28 国立大学法人高知大学 Magnesium carbonate fine particle and method for producing the same, resin composition, high heat-conductive material, molding, and high heat-conductive material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161694A (en) * 1990-04-24 1992-11-10 Virginia Tech Intellectual Properties, Inc. Method for separating fine particles by selective hydrophobic coagulation
JP2005047774A (en) * 2003-07-31 2005-02-24 Nittetsu Mining Co Ltd Method of manufacturing compound oxide particle and compound oxide particle
JP2012519073A (en) * 2009-03-04 2012-08-23 ビーエーエスエフ ソシエタス・ヨーロピア Magnetic hydrophobic agglomerates
JP2011051867A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Ceramic carbon composite, method of manufacturing the same, ceramic applied ceramic carbon composite and method of manufacturing the same
JP2014159494A (en) * 2011-06-23 2014-09-04 Panasonic Corp Thermal conductor
JP2015178543A (en) * 2014-03-18 2015-10-08 河合石灰工業株式会社 High-thermal-conductivity inorganic filler composite particle and production method thereof
JP2016135719A (en) * 2015-01-23 2016-07-28 国立大学法人高知大学 Magnesium carbonate fine particle and method for producing the same, resin composition, high heat-conductive material, molding, and high heat-conductive material

Also Published As

Publication number Publication date
JP7152003B2 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
JP7455047B2 (en) Boron nitride aggregated particles, method for producing boron nitride aggregated particles, resin composition containing boron nitride aggregated particles, and molded article
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
TWI598291B (en) Hexagonal boron nitride powder, a method for producing the same, a resin composition and a resin sheet
TWI644855B (en) Hexagonal crystal boron nitride powder, its manufacturing method, resin composition and resin flake
JP6822836B2 (en) Hexagonal boron nitride powder, its manufacturing method, resin composition and resin sheet
TWI715729B (en) Hexagonal boron nitride powder, its manufacturing method, resin composition and resin sheet
KR102318631B1 (en) Resin composition, heat-dissipating material, and heat-dissipating member
JP5330910B2 (en) Resin composition and use thereof
KR101784196B1 (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
CN113165874B (en) Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
JP6950148B2 (en) Aluminum Nitride-Boron Nitride Composite Agglomerated Particles and Their Manufacturing Methods
JP6815042B2 (en) A resin composition, an article produced from the resin composition, and a method for producing the same.
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
TW201834963A (en) Hexagonal boron nitride powder and method for producing same
JP6222840B2 (en) High thermal conductive inorganic filler composite particles and method for producing the same
JP6256158B2 (en) Heat dissipation sheet and heat dissipation sheet manufacturing method, slurry for heat dissipation sheet, and power device device
WO2020175377A1 (en) Boron nitride aggregate powder, heat dissipation sheet and semiconductor device
JP6786047B2 (en) Method of manufacturing heat conductive sheet
JP7152003B2 (en) Highly thermally conductive inorganic filler composite particles and method for producing the same
JP6473597B2 (en) Method for producing high thermal conductivity organic / inorganic composite material
JP2015167181A (en) Method of manufacturing heat dissipation sheet
JP2015189609A (en) Method of producing boron nitride sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220921

R150 Certificate of patent or registration of utility model

Ref document number: 7152003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150