KR20110119256A - Resin composition for heat-radiating sheet, heat-radiating sheet and copper clad laminate employing the same - Google Patents

Resin composition for heat-radiating sheet, heat-radiating sheet and copper clad laminate employing the same Download PDF

Info

Publication number
KR20110119256A
KR20110119256A KR1020100038865A KR20100038865A KR20110119256A KR 20110119256 A KR20110119256 A KR 20110119256A KR 1020100038865 A KR1020100038865 A KR 1020100038865A KR 20100038865 A KR20100038865 A KR 20100038865A KR 20110119256 A KR20110119256 A KR 20110119256A
Authority
KR
South Korea
Prior art keywords
inorganic filler
resin composition
thermally conductive
weight
heat
Prior art date
Application number
KR1020100038865A
Other languages
Korean (ko)
Other versions
KR101205503B1 (en
Inventor
백운필
장관식
박종혁
Original Assignee
나노캠텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노캠텍주식회사 filed Critical 나노캠텍주식회사
Priority to KR1020100038865A priority Critical patent/KR101205503B1/en
Publication of KR20110119256A publication Critical patent/KR20110119256A/en
Application granted granted Critical
Publication of KR101205503B1 publication Critical patent/KR101205503B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73113Thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/421Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: A resin composition for a thermoconductive heat-radiating sheet is provided to prevent the degradation of high thermal resistance, to improve processability and to prevent a stripping phenomenon caused by thermal and mechanical impacts. CONSTITUTION: A resin composition for a thermoconductive heat-radiating sheet comprises: an inorganic filler mixture including at least one of spherical inorganic filler and plate-like inorganic filler; at least one mixture selected from aluminum nitride and boron nitride; and a flame retardant. The inorganic filler mixture further includes the inorganic filler having a particle size of 5 nm - 500 microns. The inorganic filler mixture is a mixture in which the spherical inorganic filler and the plate-like inorganic filler are mixed in a weight ratio of 9:1 - 1:9.

Description

열전도성 방열시트용 수지 조성물, 이를 이용한 방열시트 및 동박적층판{Resin composition for heat-radiating sheet, Heat-radiating sheet and Copper clad laminate employing the same}Resin composition for heat conductive heat dissipating sheet, heat dissipating sheet and copper clad laminate using same {Resin composition for heat-radiating sheet, Heat-radiating sheet and Copper clad laminate employing the same}

본 발명은 금속인쇄회로기판(Metal PCB: Metal Printed circuit board)의 접착기재로 사용되어지는 열전도성 방열시트용 수지 조성물, 방열시트 및 동박 적층판의 제조에 관한 것으로, 보다 상세하게는, 에폭시계 수지, 특정의 무기충진재, 및 난연재를 포함하고 고내열성의 특성을 저하시키지 않으면서 경화시 강인한 매트릭스를 형성하여 인쇄회로기판 공정에서의 가공성 향상 및 열적 기계적 충격에 의한 박리현상을 방지할 수 있는 열전도성 방열시트용 수지 조성물, 방열시트 및 이를 이용한 동박적층판에 관한 것이다.
The present invention relates to the production of a resin composition for a heat conductive heat dissipation sheet, a heat dissipation sheet and a copper foil laminate used as an adhesive substrate of a metal printed circuit board (Metal PCB), more specifically, an epoxy resin , Including certain inorganic fillers, and flame retardants, which form a strong matrix during curing without compromising high heat resistance characteristics, which improves processability in printed circuit board processes and prevents delamination due to thermal mechanical impact It relates to a resin composition for a heat dissipation sheet, a heat dissipation sheet and a copper foil laminated plate using the same.

최근 전자기기의 고성능화, 소형화, 경량화 등에 수반하여 반도체 패키지의 고밀도화, 고집적화 등이 이뤄지고 있다. 디지털 및 미디어 기기의 디스플레이 중에는 CRT, PDP, LCD, OLED등 여러 가지가 있지만 디스플레이 시장에서 TFT-LCD는 가장 핵심적인 디스플레이 종류의 하나로 급부상되고 있다. 그러나 디스플레이 제품시장에서의 경량화, 슬림화 등의 추세에 발 맞춰 색재현성, 광효율, 고수명, 저전력소모 등의 장점을 갖는 LED램프가 백라이트 유닛의 광원으로 채용되고 있는 실정이다. 이러한 LED램프는 LCD-BLU외에 조명기기, Inverter등 많은 분야에 적용되어지고 있다. LED램프는 형광램프보다 높은 온도가 발생한다는 큰 단점이 있다.In recent years, along with high performance, miniaturization, and light weight of electronic devices, high density and high integration of semiconductor packages have been achieved. There are many kinds of displays of digital and media devices such as CRT, PDP, LCD, OLED, but TFT-LCD is emerging as one of the most important display types in the display market. However, LED lamps, which have advantages such as color reproducibility, light efficiency, long life, and low power consumption, are being adopted as a light source of a backlight unit in accordance with the trend of light weight and slimness in the display product market. These LED lamps are applied to many fields such as lighting devices, inverters, etc. in addition to LCD-BLU. LED lamps have a big disadvantage that they generate higher temperatures than fluorescent lamps.

따라서 광원으로 LED램프가 채택된 백라이트 유닛에 있어, 백라이트 유닛의 내부에서 발생된 열을 효과적으로 처리하여 내부의 온도를 낮추고 내부 온도 편차를 줄일 수 있는 방안이 필요하다.Therefore, in the backlight unit adopting the LED lamp as a light source, there is a need for a method that can effectively process the heat generated inside the backlight unit to lower the internal temperature and reduce the internal temperature deviation.

이러한 발열 대응방안으로 금속, 세라믹스, 고분자, 첨가제 등의 방열 재료들로 구성된 열전도성 성형체를 이용한 부품들을 적용하고 있다. As a countermeasure for the heat generation, parts using heat-conductive molded bodies composed of heat-dissipating materials such as metals, ceramics, polymers, and additives are applied.

그러나 아직까지 충분한 열전도율, 난연성 및 내열성이 우수한 방열시트는 알려져 있지 않아, 전자 부품 등에서 발생하는 열을 효과적으로 전도 시킬 수 있어 종래 동박적층판에서의 발열에 의한 부품 손상등의 문제를 해결하는 데 문제가 있었다.
However, there is no known heat dissipation sheet having sufficient thermal conductivity, flame retardancy, and heat resistance, and thus, it is possible to effectively conduct heat generated from electronic components, and thus, there is a problem in solving a problem such as component damage due to heat generation in a conventional copper clad laminate. .

본 발명의 목적은 전자부품에서 발생되는 열을 신속히 전달하여 열에 의한 부품손상을 방지하고 새로운 형태의 열전도성 충진재를 사용함으로써 방열효과를 극대화한 이러한 방열시트를 제공하는 것을 목적으로 한다. An object of the present invention is to provide a heat dissipation sheet that maximizes the heat dissipation effect by using a new type of thermally conductive filler to prevent heat damage by transferring heat generated in the electronic components quickly.

또한 구조가 간단한 조명용 엘이디 기판 조명 유닛에 사용되는 동박적층판을 제공하는 것을 목적으로 한다.
It is also an object of the present invention to provide a copper clad laminate used for an LED substrate lighting unit having a simple structure.

청구항 1에 기재된 발명은, 열전도성 방열시트용 수지 조성물이고 구형 무기 충진재 및 판상형 무기 충진재 중 적어도 1종 이상을 포함하는 무기 충진재 혼합물; 질화알루미늄 및 질화붕소 중 적어도 1종 이상의 혼합물; 및 난연제를 포함한다.The invention according to claim 1 is an inorganic filler mixture comprising a resin composition for a thermally conductive heat dissipating sheet and comprising at least one or more of a spherical inorganic filler and a plate-shaped inorganic filler; Mixtures of at least one of aluminum nitride and boron nitride; And flame retardants.

청구항 1에 기재된 열전도성 방열시트용 수지 조성물에 의하면, 열전도율이 기존 열전도성 방열시트보다 4~5배 증가된 열전도성 방열시트를 제공하여, 열 발생에 의한 전자부품의 손상을 방지할 수 있게 된다. 구형의 무기 충진재의 경우 비표면적이 작아 슬러리 혼합물의 점도를 낮춰 가공 및 성형성을 향상시키고 무기물의 고충진을 가능하게 하고, 판상형 무기 충진재의 경우 판면과 평행 방향의 열전도도가 판면과 수직방향에 비해 10배 이상 크기 때문에 열전도도를 높일 수 있다. 따라서, 열전도율, 난연성 및 내열성이 모두 우수한 방열시트를 제공할 수 있다.
According to the resin composition for a thermally conductive heat dissipating sheet according to claim 1, by providing a thermally conductive heat dissipating sheet of which the thermal conductivity is increased 4 to 5 times higher than that of the existing thermal conductive heat dissipating sheet, it is possible to prevent damage to electronic components due to heat generation. . In the case of the spherical inorganic filler, the specific surface area is small to decrease the viscosity of the slurry mixture to improve processing and formability, and to allow the high filling of the inorganic material.In the case of the plate-shaped inorganic filler, the thermal conductivity in the direction parallel to the plate surface is perpendicular to the plate surface. Compared to 10 times larger than that, the thermal conductivity can be increased. Therefore, it is possible to provide a heat dissipation sheet having excellent thermal conductivity, flame retardancy, and heat resistance.

청구항 2에 기재된 발명은, 청구항 1에 기재된 열전도성 방열시트용 수지 조성물이고, 무기 충진재 혼합물이 입자 크기가 5nm~500㎛인 무기 충진재를 더 포함한다.The invention according to claim 2 is the resin composition for thermally conductive heat dissipating sheet according to claim 1, and the inorganic filler mixture further includes an inorganic filler having a particle size of 5 nm to 500 µm.

청구항 2에 기재된 열전도성 방열시트용 수지 조성물에 의하면, 분산 상태가 변화하고 무기 충진재가 분체로 되어 열전도도를 더 증가시키게 된다.
According to the resin composition for thermally conductive heat dissipating sheets according to claim 2, the dispersion state is changed and the inorganic filler is powdered to further increase the thermal conductivity.

청구항 3에 기재된 발명은, 청구항 1에 기재된 열전도성 방열시트용 조성물이고, 상기 무기 충진재 혼합물이 구형 무기 충진재와 판상형 무기 충진재를 9:1 ~ 1:9의 중량비로 혼합한 혼합물이다.Invention of Claim 3 is a composition for thermally conductive heat dissipation sheet of Claim 1, Comprising: The said inorganic filler mixture is a mixture which mixed the spherical inorganic filler and plate-shaped inorganic filler in the weight ratio of 9: 1-1: 9.

청구항 3에 기재된 열전도성 방열시트용 수지 조성물에 의하면, 구형 무기 충진재에 의하여 무기물의 고충진이 가능해지는 한편, 판상형 무기 충진재에 의하여 열전도도를 높이는 상승 효과를 얻을 수 있다. 구형 무기 충진재에 대하여 판상형 무기 충진재가 너무 많이 혼합되면 무기물의 충진율이 상대적으로 낮아지게 되고 너무 적게 혼합되면 열전도율이 상대적으로 낮아지게 된다.
According to the resin composition for thermally conductive heat-dissipating sheet of Claim 3, while high filling of an inorganic material is possible with a spherical inorganic filler, the synergistic effect which raises heat conductivity with a plate-shaped inorganic filler can be acquired. When the plate-type inorganic filler is mixed too much with respect to the spherical inorganic filler, the filling rate of the inorganic material is relatively low, and when the mixing is too small, the thermal conductivity is relatively low.

청구항 4에 기재된 발명은, 청구항 1에 기재된 열전도성 방열시트용 조성물이고, 상기 무기 충진재 혼합물에 대하여, 질화알루미늄 및 질화붕소 중 적어도 1종 이상의 혼합물이 5:5~9:1의 중량비로 혼합된다.The invention according to claim 4 is the composition for thermally conductive heat dissipation sheet according to claim 1, wherein at least one mixture of aluminum nitride and boron nitride is mixed in a weight ratio of 5: 5 to 9: 1 with respect to the inorganic filler mixture. .

청구항 4에 기재된 열전도성 방열시트용 조성물에 의하면, 높은 열전도율을 나타내게 된다.
According to the composition for thermally conductive heat dissipation sheets of Claim 4, high thermal conductivity is shown.

청구항 5에 기재된 발명은, 청구항 1에 기재된 열전도성 방열시트용 조성물이고, 열전도성 방열시트용 수지 조성물이 평균 에폭시당량이 400~1000인 실리콘 변성 에폭시 수지 100중량부에 대하여, 2관능 이상의 다관능 에폭시 수지는 30~100중량부, 페녹시 수지는 30~100중량부, 부타디엔 아크릴로 니트릴 공중합 고무는 20~50중량부 및 폴리비닐부티랄 수지는 20~50중량부로 이루어진 수지 조성물을 포함한다.Invention of Claim 5 is a composition for thermally conductive heat dissipation sheet of Claim 1, and the resin composition for thermally conductive heat dissipation sheet has a bifunctional or more than bifunctional polyfunctional with respect to 100 weight part of silicone modified epoxy resins whose average epoxy equivalent is 400-1000. 30-100 weight part of epoxy resins, 30-100 weight part of phenoxy resins, the resin composition which consists of 20-50 weight part of butadiene acrylonitrile copolymer rubbers, and 20-50 weight part of polyvinyl butyral resins.

청구항 5에 기재된 열전도성 방열시트용 조성물에 의하면, 경화수지의 가교 밀도가 높아져서 내열성이 향상된다.
According to the composition for thermally conductive heat radiation sheets of Claim 5, the crosslinking density of hardening resin becomes high and heat resistance improves.

청구항 6에 기재된 발명은, 청구항 5에 기재된 열전도성 방열시트용 조성물이고, 무기 충진재는 수지 조성물 100중량부에 대하여 400~800중량부로 포함된다.Invention of Claim 6 is a composition for thermally conductive heat dissipation sheets of Claim 5, and an inorganic filler is contained in 400-800 weight part with respect to 100 weight part of resin compositions.

청구항 6에 기재된 열전도성 방열시트용 수지 조성물에 의하면, 수지 조성물에 대한 무기 충진재의 함량이 특정되어 일정 수준의 열전도도를 가진 열전도성 방열시트를 제조할 수 있다.
According to the resin composition for thermally conductive heat dissipating sheets according to claim 6, the content of the inorganic filler in the resin composition can be specified to produce a thermally conductive heat dissipating sheet having a predetermined level of thermal conductivity.

청구항 7에 기재된 발명은, 청구항 5에 기재된 열전도성 방열시트용 조성물이고, 수지 조성물 100중량부에 대하여, 난연제 50~100중량부를 포함한다.Invention of Claim 7 is a composition for thermally conductive heat-dissipation sheet of Claim 5, and contains 50-100 weight part of flame retardants with respect to 100 weight part of resin compositions.

청구항 7에 기재된 열전도성 방열시트용 수지 조성물에 의하면, 난연성이 높은 열전도성 방열시트를 제조할 수 있다.
According to the resin composition for heat conductive heat dissipation sheets of Claim 7, the heat conductive heat dissipation sheet with high flame retardancy can be manufactured.

청구항 8에 기재된 발명은, 청구항 5에 기재된 열전도성 방열시트용 조성물이고, 상기 2관능 이상의 다관능 에폭시 수지/실리콘 변성 에폭시 수지의 비율이 0.1~0.8 범위이다.Invention of Claim 8 is a composition for thermally conductive heat dissipation sheets of Claim 5, and the ratio of the said bifunctional or more polyfunctional epoxy resin / silicone modified epoxy resin is 0.1-0.8.

청구항 8에 기재된 열전도성 방열시트용 조성물에 의하면, 내열성이 향상되면서도 부착성이 떨어지지 않는 열전도성 접착시트를 제공할 수 있다.
According to the composition for heat conductive heat dissipation sheets of Claim 8, the heat conductive adhesive sheet which does not fall in adhesiveness, even if heat resistance is improved can be provided.

청구항 9에 기재된 발명은, 열전도성 방열시트이고, 청구항 1 내지 8항 중 어느 한 항에 기재된 열전도성 방열시트용 조성물을 이용하여 제조된다.The invention according to claim 9 is a heat conductive heat dissipation sheet, and is produced using the composition for heat conductive heat dissipation sheet according to any one of claims 1 to 8.

청구항 9에 기재된 방열시트에 의하면, 열전도도가 우수하여, 열 발생에 의한 전자부품의 손상을 방지할 수 있다. 특히 동박적층판의 제조에 이용되는 경우 높은 열전도도로 인하여 전자 부품 등에서 발생하는 열을 효과적으로 전도시킬 수 있어 종래 동박적층판에서의 발열에 의한 부품 손상등의 문제를 해결할 수 있다.
According to the heat radiating sheet of Claim 9, it is excellent in thermal conductivity and the damage of an electronic component by heat generation can be prevented. In particular, when used in the manufacture of copper-clad laminate, it is possible to effectively conduct heat generated from electronic components due to the high thermal conductivity can solve the problem of component damage due to heat generation in the conventional copper-clad laminate.

청구항 10에 기재된 발명은 청구항 9에 기재된 방열시트를 이용하여 제조된 동박적층판이다.The invention described in claim 10 is a copper clad laminate manufactured using the heat dissipation sheet according to claim 9.

청구항 10에 기재된 동박적층판에 의하면, 전자 부품 등에서 발생하는 열을 효과적으로 전도시킬 수 있어 종래 동박적층판에서의 발열에 의한 부품 손상등의 문제를 해결할 수 있다.
According to the copper-clad laminate of claim 10, heat generated in an electronic component or the like can be effectively conducted, and problems such as component damage due to heat generation in the conventional copper-clad laminate can be solved.

본 발명에 따른 열전도성 방열시트용 수지 조성물은 열전도도를 기존 동박적층용 절연시트의 열전도율보다 4~5배 증가됨에 따라 열 발생에 의한 전자부품의 손상을 방지 할 수 있게 된다.The resin composition for a thermally conductive heat dissipating sheet according to the present invention can prevent damage to the electronic component due to heat generation as the thermal conductivity is increased 4 to 5 times higher than the thermal conductivity of the existing copper foil laminated insulation sheet.

또한 이러한 방열시트로 제조된 동박적층판을 이용하여 LED램프를 다양한 분야에서 적용하게 됨으로 현재 경량화, 슬림화 추세에 있는 디스플레이 산업 외에 광효율, 고수명, 저전력소모 등의 장점을 지닌 LED램프의 적용분야를 확대시킬 수 있게 된다.
In addition, LED lamps are applied in various fields by using copper foil laminated sheets made of heat-dissipating sheets, and thus, LED lamps having advantages such as light efficiency, long life, and low power consumption are expanded in addition to the display industry which is currently becoming lighter and slimmer. You can do it.

도 1은 본 발명의 일 실시예에 따라 제조된 동막적층막의 단면도이다.1 is a cross-sectional view of a copper film laminated film prepared according to an embodiment of the present invention.

본 발명의 일 실시예에 따른 열전도성 방열시트용 수지 조성물은 열전도성 방열시트용 수지 조성물이고 구형 무기 충진재 및 판상형 무기 충진재 중 적어도 1종 이상을 포함하는 무기 충진재 혼합물; 질화알루미늄 및 질화붕소 중 적어도 1종 이상의 혼합물을 포함한다.The resin composition for a thermally conductive heat dissipating sheet according to an embodiment of the present invention is a resin composition for a thermally conductive heat dissipating sheet and an inorganic filler mixture including at least one or more of a spherical inorganic filler and a plate-shaped inorganic filler; At least one mixture of aluminum nitride and boron nitride.

상기 열전도성 무기충진재의 예로서는 산화알루미늄, 산화마그네슘, 산화아연, 석영 등의 금속산화물, 질화붕소, 질화알루미늄 등의 금속질화물, 탄화규소등의 금속탄화물, 수산화알루미늄 등의 금속수산화물, 탄소섬유, 흑연등이 사용된다. 특히, 알루미나가 가장 많이 사용되며 이들의 형태가 구형이거나 판상형의 구조를 가진 충진재를 사용함으로써 열전도성을 높일 수 있다. 이들은 단독 또는 2종 이상 병용하여 사용하는 것이 가능하다. 예를 들어, 구형 무기 충진재와 판상형 무기 충진재를 9 : 1 ~ 1 : 9의 중량비로 혼합하는 것이 바람직하다. Examples of the thermally conductive inorganic fillers include metal oxides such as aluminum oxide, magnesium oxide, zinc oxide and quartz, metal nitrides such as boron nitride and aluminum nitride, metal carbides such as silicon carbide, metal hydroxides such as aluminum hydroxide, carbon fiber and graphite Etc. are used. In particular, alumina is most used, and their thermal conductivity may be improved by using a filler having a spherical or plate-like structure. These can be used individually or in combination of 2 or more types. For example, it is preferable to mix the spherical inorganic filler and the plate-shaped inorganic filler in a weight ratio of 9: 1 to 1: 9.

이러한 무기충진재는 입자사이즈나 형상에 의해 열전도도가 상이하게 달라지는데 입자경이 수㎛인 분체로 되면 열전도도는 입자경이 작아짐에 따라 증가한다. 이 효과는 분산상태의 차이로서 열전도율에 영향을 준다. 입자형상도 열전도율에 크게 영향을 주는데 완전구형의 입자의 경우 비표면적이 작아 슬러리 혼합물의 점도를 낮춰 가공 및 성형성을 향상시키고 무기물의 고충진이 가능하게 된다. 또한 판상의 경우 판면과 평행 방향의 열전도도는 면과 수직방향에 비해 10배 이상 크다. 이를 이용하여 완전 구형의 입자, 수㎛이하의 입자 및 판상형의 입자를 투입함으로써 열전도도를 향상시킬 수 있다. 따라서, 무기충진재 입자 사이즈가 5 nm ~ 500㎛ 이내의 입자크기를 지니고 있는 무기 충진재를 더 포함하는 것이 바람직하다. These inorganic fillers have different thermal conductivity depending on the particle size or shape, but when the powder has a particle diameter of several μm, the thermal conductivity increases as the particle diameter decreases. This effect affects thermal conductivity as a difference in dispersion. Particle shape also greatly affects the thermal conductivity. In the case of fully spherical particles, the specific surface area is small, which lowers the viscosity of the slurry mixture, thereby improving processing and formability and enabling high filling of inorganic materials. In the case of the plate shape, the thermal conductivity in the direction parallel to the plate surface is more than 10 times larger than the plane and the vertical direction. By using this, the thermal conductivity can be improved by introducing fully spherical particles, particles of several micrometers or less, and plate-shaped particles. Therefore, it is preferable that the inorganic filler further comprises an inorganic filler having a particle size of 5 nm ~ 500㎛.

상기 열전도성 무기 충진재의 예로서는 산화알루미늄, 산화마그네슘, 산화아연, 석영 등의 금속산화물, 탄화규소등의 금속탄화물, 수산화알루미늄 등의 금속수산화물, 탄소섬유, 흑연등이 사용된다. 특히, 알루미나가 가장 많이 사용되며 이들의 형태가 완전구형이거나 무기충진재 입자 사이즈가 5 nm ~ 500㎛ 이내의 입자크기를 지니고 있거나 판상형의 구조를 가진 충진재를 사용함으로써 열전도성을 높일 수 있다. 이들은 단독 또는 2종 이상 병용하여 사용하는 것이 가능하다. 또한, 질화 알루미늄이나 질화붕소를 혼합하여 사용함으로써 열전도율을 향상시킬 수 있다. Examples of the thermally conductive inorganic fillers include metal oxides such as aluminum oxide, magnesium oxide, zinc oxide, quartz, metal carbides such as silicon carbide, metal hydroxides such as aluminum hydroxide, carbon fibers and graphite. In particular, alumina is most used and its shape is completely spherical or the inorganic filler particle size has a particle size within 5 nm ~ 500㎛ or by using a filler having a plate-like structure can be improved thermal conductivity. These can be used individually or in combination of 2 or more types. In addition, thermal conductivity can be improved by mixing aluminum nitride and boron nitride.

또한, 본 발명의 일 실시예에 따르면, 구형 무기 충진재 및 판상형 무기 중진재 중 적어도 1종 이상의 혼합물에 대하여, 질화알루미늄 및 질화붕소 중 적어도 1종 이상의 혼합물이 5:5~9:1의 중량비로 혼합된다. 질화알루미늄이나 질화붕소가 너무 많이 첨가되면 가격 경쟁력이 떨어지고, 적게 첨가되면 열전도율이 감소하는 단점이 있다.Further, according to one embodiment of the present invention, with respect to the mixture of at least one or more of the spherical inorganic filler and the plate-shaped inorganic neutral material, at least one or more mixtures of aluminum nitride and boron nitride may be present in a weight ratio of 5: 5 to 9: 1. Are mixed. If too much aluminum nitride or boron nitride is added, the price is less competitive, and if less, the thermal conductivity is reduced.

또한, 본 발명에 따른 열전도성 방열시트용 수지 조성물은 평균 에폭시당량이 400~1000인 실리콘 변성 에폭시 수지 100중량부에 대하여, 2관능 이상의 다관능 에폭시 수지는 30~100중량부, 페녹시 수지는 30~100중량부, 부타디엔 아크릴로 니트릴 공중합 고무는 20~50중량부 및 폴리비닐부티랄 수지는 20~50중량부로 이루어진 수지 조성물을 포함한다.In addition, the resin composition for thermally conductive heat dissipating sheet according to the present invention is 30 to 100 parts by weight of the polyfunctional epoxy resin of bifunctional or more than 30 parts by weight, and phenoxy resin to 100 parts by weight of the silicone-modified epoxy resin having an average epoxy equivalent of 400 to 1000. 30-100 weight part, butadiene acrylonitrile copolymer rubber contains 20-50 weight part and polyvinyl butyral resin contains the resin composition which consists of 20-50 weight part.

에폭시 수지는 우수한 내열성, 접착력, 내수성, 기계적 강도 및 전기성을 가지고 있기 때문에 다양한 분야에서 사용된다. 사용되는 에폭시 수지는 일반적으로 비스페놀 A의 디글리시딜 에테르나 페놀 또는 크레졸 노볼락형 에폭시 수지등이다. Epoxy resins are used in various fields because of their excellent heat resistance, adhesion, water resistance, mechanical strength and electrical properties. Epoxy resins used are generally diglycidyl ethers of bisphenol A, phenols or cresol novolac type epoxy resins and the like.

열전도성 접착제 중 에폭시와 같은 고분자는 피착제 사이에 접착성을 제공하며 열전도성 무기물 입자들은 전기전자 부품소자에서 발생된 열을 후면의 금속PCB로 전달하여 방출하는 역할을 한다.
Among the thermally conductive adhesives, a polymer such as epoxy provides adhesiveness between the adherends, and the thermally conductive inorganic particles transmit and release heat generated from the electrical and electronic component elements to the metal PCB on the rear surface.

또한, 수지 조성물 총 100중량부에 대하여, 무기 충진재는 400~800중량부 및 난연제는 50~100중량부를 혼합하여 밀링 분산을 통해 조성물로 제조된다. In addition, with respect to a total of 100 parts by weight of the resin composition, 400 to 800 parts by weight of the inorganic filler and 50 to 100 parts by weight of the flame retardant is mixed to prepare a composition through milling dispersion.

본 발명에 따른 열전도성 방열시트용 수지 조성물을 제조한 후 콤마코팅에 의해 이형지에 코팅하여 열전도성 접착시트를 제조한다. After preparing a resin composition for a thermally conductive heat dissipating sheet according to the present invention by coating on a release paper by a comma coating to prepare a thermally conductive adhesive sheet.

본 발명의 일 실시예에 따르면, 상기 에폭시 수지는 중량 평균 분자량이 1000~4000인 범위인 실리콘 변성 에폭시 수지가 바람직하다. 상기 2관능 이상의 다관능 에폭시 수지는 에폭시 당량이 150~300 범위이고, 중량 평균 분자량이 1000~5000 범위 내에 있는 것이 적당하다. 특히, 내열성을 향상시키기 위해서는 경화수지의 가교밀도를 높일 필요가 있지만 이를 위해서 에폭시 수지의 관능기 당량을 낮게 할 경우 반경화 상태에서의 수지의 평균 분자량이 작아져서 가열 가압시 수지의 흐름이 많아질 우려가 있다. According to one embodiment of the present invention, the epoxy resin is preferably a silicone-modified epoxy resin having a weight average molecular weight of 1000 ~ 4000 range. The bifunctional or higher polyfunctional epoxy resin preferably has an epoxy equivalent in the range of 150 to 300 and a weight average molecular weight in the range of 1000 to 5000. In particular, in order to improve the heat resistance, it is necessary to increase the crosslinking density of the cured resin, but for this purpose, when the functional group equivalent of the epoxy resin is lowered, the average molecular weight of the resin in the semi-cured state becomes smaller, which may increase the flow of the resin during heating and pressurization. There is.

상기 2관능 이상의 다관능 에폭시 수지/상기 실리콘 변성 에폭시 수지비율은 0.1~0.8 범위가 바람직하며 특히, 0.3~0.5범위가 바람직하다. 비율이 0.3이하일 경우 부착성이 향상되지만 내열성이 떨어질 우려가 있으며, 0.8이상일 경우 내열성이 향상되지만 부착성이 떨어질 우려가 있다. 상기 부타디엔 아크릴로 니트릴 공중합 고무는 평균분자량 범위가 100,000~300,000인 부타디엔 아크릴로 니트릴 공중합 고무이고, 상기 폴리비닐부티랄 수지는 중량 평균 분자량이 70,000~150,000인 반응형 폴리비닐부티랄 수지이다. The bifunctional or higher polyfunctional epoxy resin / silicone modified epoxy resin ratio is preferably in the range of 0.1 to 0.8, particularly preferably in the range of 0.3 to 0.5. If the ratio is 0.3 or less, the adhesion may be improved, but the heat resistance may drop. If the ratio is 0.8 or more, the heat resistance may be improved, but the adhesion may fall. The butadiene acrylonitrile copolymer rubber is a butadiene acrylonitrile copolymer rubber having an average molecular weight range of 100,000 to 300,000, and the polyvinyl butyral resin is a reactive polyvinyl butyral resin having a weight average molecular weight of 70,000 to 150,000.

본 발명의 일 실시예에 따르면, 상기 수지 조성물에 아민계 경화제, 이미다졸계 경화 촉진제를 더 추가하여 열전도성 조성물을 경화 반응시킨 반경화상태(B-stage)의 열전도성 프리프레그를 제공한다.
According to one embodiment of the present invention, an amine-based curing agent and an imidazole-based curing accelerator are further added to the resin composition to provide a semi-cured thermally conductive prepreg in which the thermal conductive composition is cured.

상기 실리콘 변성 에폭시 수지 및 2관능 이상의 다관능 에폭시 수지는 메틸에틸케톤(MEK), 메틸 이소부틸케톤(MIBK), 디메틸포름아마이드(DMF), 크실렌(Xylene), 메틸셀로솔브(MCS, Methyl Cellosove)등의 혼합용매에 용해시켜 사용할 수 있다.
The silicone-modified epoxy resin and the bifunctional or higher polyfunctional epoxy resin are methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), dimethyl formamide (DMF), xylene (Xylene), methyl cellosolve (MCS, Methyl Cellosove). It can be dissolved in a mixed solvent such as).

상기 아민계 경화제는 지방족 아민계 경화제, 지환족 아민계경화제, 방향종 아민계 경화제 등이 사용될 수 있다. 특히, 경화온도가 비교적 높은 잠재성 경화제인 DDS(디아미노디페닐술폰), DICY(디시안 디아미드) 등이 바람직하다. 상기 아민계 경화제는 에폭시 당량대비 0.3~0.5범위가 바람직하며 0.3이하일 경우 충분한 경화가 이루어지지 않으며 0.5이상일 경우 속경화가 일어나고 접착성 및 코팅가공성이 저하된다. The amine curing agent may be an aliphatic amine curing agent, an alicyclic amine curing agent, an aromatic species amine curing agent and the like. In particular, DDS (diaminodiphenyl sulfone), DICY (dician diamide), etc. which are latent hardening | curing agents with a comparatively high hardening temperature are preferable. The amine-based curing agent is preferably in the range 0.3 ~ 0.5 compared to the epoxy equivalent, if less than 0.3 does not sufficiently cure, if more than 0.5 is a fast curing occurs and the adhesion and coating processability is lowered.

상기 이미다졸계 경화촉진제는 2-메틸 이미다졸, 2-에틸-4-메틸 이미다졸, 2-페닐 이미다졸 등이 사용될 수 있다. 이들은 단독 또는 2종 이상 병용하여 사용하는 것이 가능하고 경화제 대비 0.005 ~ 0.05범위가 바람직하며 특히 0.01~0.03 범위가 바람직하다. 경화촉진제가 0.01 미만 경우 경화속도가 현저히 떨어지며, 미경화의 발생으로 극성을 가진 에폭시기가 존재하여 전기절연성이 저하된다. 또한 0.03 보다 큰 경우 속경화가 일어나고 접착성 및 코팅가공성이 떨어진다.The imidazole series curing accelerator may be 2-methyl imidazole, 2-ethyl-4-methyl imidazole, 2-phenyl imidazole, or the like. These can be used individually or in combination of 2 or more types, and 0.005-0.05 range is preferable with respect to a hardening | curing agent, and 0.01-0.03 range is especially preferable. If the curing accelerator is less than 0.01, the curing rate is significantly decreased, and the electrical insulation is deteriorated due to the presence of a polarized epoxy group due to the uncuring. In addition, when greater than 0.03, the fastening occurs and the adhesion and coating workability is poor.

본 발명에서 사용가능한 난연제는 인계난연제 및 질소계 난연제이다. 상기 난연제는 기존의 난연제의 문제점을 보완하면서 난연성을 부여하고, 에폭시 경화산물의 내열성을 감소시키지 않고 우수한 난연성을 가지는 경화산물을 제공할 수 있다.Flame retardants usable in the present invention are phosphorus flame retardants and nitrogen flame retardants. The flame retardant may impart flame retardancy while supplementing the problems of the existing flame retardant, and may provide a cured product having excellent flame retardance without reducing heat resistance of the epoxy cured product.

본 발명에서 사용 가능한 열전도성 무기 충진재의 분산은 비드밀, 스피드밀, 바스켓 밀, 롤 밀 중 하나를 선택하여 분산을 시킬 수 있다.
The dispersion of the thermally conductive inorganic fillers usable in the present invention can be dispersed by selecting one of the bead mill, speed mill, basket mill, and roll mill.

본 발명에 따라 제조된 열전도성 방열시트용 수지 조성물을 이용하여 열전도성 방열시트를 제조하는 방법은 종래 알려진 방법의 어느 것이라도 가능하다. 일 실시예에 의하면 방열시트를 제조하는 방법은 다음과 같다.The method for producing a thermally conductive heat dissipating sheet using the resin composition for thermally conductive heat dissipating sheet manufactured according to the present invention may be any of conventionally known methods. According to an embodiment, a method of manufacturing a heat dissipation sheet is as follows.

다양한 코팅 방식 중 방열시트 수지 조성물의 점도를 고려하여 콤마 코팅방식으로 방열시트 제조를 하였으며, 코팅시 기포와 미코팅 방지를 위하여 2~5m/min의 속도로 진행하였다. 방열시트 제조 과정에서 반 경화 상태를 유지하여야 하므로 경화제의 경화온도 조건 185℃ 이하인 160℃에서 용제만을 제거하였으며, 코팅 후 방열시트만을 선택하여 방박적층을 하여야 하므로 이형필름(Nanochem tech;Cean-rel 100B)에 코팅을 실시하여 80~100㎛의 두께로 방열시트를 제작하였다.
In consideration of the viscosity of the heat-dissipating sheet resin composition of the various coating method was prepared a heat-dissipating sheet by a comma coating method, it proceeded at a rate of 2 ~ 5m / min to prevent bubbles and uncoated during coating. Since the semi-cured state must be maintained during the manufacturing process of the heat dissipation sheet, only the solvent was removed at 160 ° C. under the curing temperature condition of the curing agent, and after the coating, only the heat dissipation sheet was selected to form the anti-deposition film. ) Was coated to produce a heat radiation sheet to a thickness of 80 ~ 100㎛.

본 발명에 따라 제조된 방열시트를 이용하여 동박적층판을 제조하는 방법은 종래 알려진 방법의 어느 것이라도 가능하다. 일 실시예에 의하면 동박적층판을 제조하는 방법은 다음과 같다.The method for producing a copper clad laminate using the heat dissipation sheet produced according to the present invention may be any of conventionally known methods. According to one embodiment, a method of manufacturing a copper clad laminate is as follows.

동박적층판은 유압프레스 방식으로 알루미늄 플레이트(Al Plate)는 1~2mm , 열전도성 방열시트는 80~100㎛, 구리 포일(Copper foil) 20~50 ㎛를 적층하였다. 적층 온도는 50~70℃에서 10~40분 동안 예열한 후, 열전도성 방열시트의 완전 경화 온도 190℃에서 10~40분 동안 진행하여 동박적층판을 제작하였다. 적층에 가해지는 압력은 면적대비 1m2당 10~50kg의 압력으로 진행하였다.
Copper foil laminated plate is a hydraulic press method, aluminum plate (Al Plate) 1 ~ 2mm, heat conductive heat dissipation sheet 80 ~ 100㎛, copper foil (Copper foil) 20 ~ 50 ㎛ laminated. The lamination temperature was preheated at 50 to 70 ° C. for 10 to 40 minutes, and then proceeded for 10 to 40 minutes at 190 ° C. in the complete curing temperature of the thermally conductive heat dissipating sheet to prepare a copper clad laminate. The pressure applied to the lamination was carried out at a pressure of 10 ~ 50kg per 1m 2 relative to the area.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시에는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and the scope of the present invention is not to be construed as being limited by these examples.

실시예Example 1:  One:

평균 에폭시당량이 400~1000인 실리콘 변성 에폭시 수지 100g, 2관능 이상의 다관능 에폭시 수지 40g, 페녹시 수지 30g, 부타디엔 아크릴 니트릴 고무 30g, 폴리비닐부티랄 수지 30g, 아민계 경화제 디시안 디아미 8g, 이미다졸계 경화촉진제 0.2g, 열전도성 무기 충진재 900g(완전구형 알루미나 DENKA DAW-05), 250g(완전 구형 질화알루미늄(5) + 완전 구형 질화붕소(5)), 인계난연제(MPP:Melamine polyphosphate)160g을 MEK용매에 고형분이 90%가 되게 접착조성물을 혼합하고 이를 롤밀을 이용하여 분산 후 열전도성 접착시트를 제조하였다.
Average epoxy equivalent weight 400 to 1000 of a silicon-modified epoxy resin 100g, 2 multi-functional or more functional epoxy resin 40g, DC not phenoxy resin 30g, butadiene acrylonitrile rubber 30g, 30g of polyvinyl butyral resin, an amine-based curing agent dia mi de 8g, 0.2 g imidazole curing accelerator, 900 g of thermally conductive inorganic filler (fully spherical alumina DENKA DAW-05), 250 g (fully spherical aluminum nitride (5) + fully spherical boron nitride (5)), phosphorus flame retardant (MPP: Melamine polyphosphate) 160g of the MEK solvent was mixed with the adhesive composition so that the solid content is 90% and dispersed using a roll mill to prepare a thermally conductive adhesive sheet.

실시예Example 2:  2:

평균 에폭시당량이 400~1000인 실리콘 변성 에폭시 수지 100g, 2관능 이상의 다관능 에폭시 수지 40g, 페녹시 수지 30g, 부타디엔 아크릴 니트릴 고무 20g, 폴리비닐부티랄 수지 35g, 아민계 경화제 디시안 디아미드 8g, 이미다졸계 경화촉진제 0.2g, 열전도성 무기 충진재 900g(150~160㎛사이즈 알루미나 Showa Denko AL-160SG), 질화알루미늄 250g(50㎛ 사이즈 질화알루미늄), 인계난연제(MPP:Melamine polyphosphate) 160g을 MEK용매에 고형분이 90%가 되게 접착조성물을 혼합하고 이를 롤밀을 이용하여 분산 후 열전도성 접착시트를 제조하였다.
100 g of silicone-modified epoxy resins having an average epoxy equivalent of 400 to 1000, 40 g of bifunctional or higher polyfunctional epoxy resins, 30 g of phenoxy resins, 20 g of butadiene acrylonitrile rubber, 35 g of polyvinyl butyral resins, 8 g of amine curing agent dicyandiamide, 0.2 g of imidazole-based curing accelerator, 900 g of thermally conductive inorganic filler (150-160 μm size alumina Showa Denko AL-160SG), 250 g of aluminum nitride (50 μm size aluminum nitride), 160 g of phosphorus flame retardant (MPP: Melamine polyphosphate) The adhesive composition was mixed so that the solid content was 90%, and it was dispersed using a roll mill to prepare a thermally conductive adhesive sheet.

실시예Example 3:  3:

평균 에폭시당량이 400~1000인 실리콘 변성 에폭시 수지 100g, 2관능 이상의 다관능 에폭시 수지 40g, 페녹시 수지 30g, 부타디엔 아크릴 니트릴 고무 30g, 폴리비닐부티랄 수지 40g, 아민계 경화제 디시안 디아미드 8g, 이미다졸계 경화촉진제 0.2g, 열전도성 무기 충진재 900g(판상형 알루미나 KD-150), 질화붕소 250g(판상형 질화붕소), 인계난연제(MPP:Melamine polyphosphate) 160g을 MEK용매에 고형분이 90%가 되게 접착조성물을 혼합하고 이를 롤밀을 이용하여 분산 후 열전도성 접착시트를 제조하였다.
100 g of silicone modified epoxy resin having an average epoxy equivalent of 400 to 1000, 40 g of bifunctional or higher polyfunctional epoxy resin, 30 g of phenoxy resin, 30 g of butadiene acrylonitrile rubber, 40 g of polyvinyl butyral resin, 8 g of amine curing agent dicyandiamide, 0.2g of imidazole-based curing accelerator, 900g of thermally conductive inorganic filler (plate-shaped alumina KD-150), 250g of boron nitride (plate-shaped boron nitride), 160g of phosphorus-based flame retardant (MPP: Melamine polyphosphate) to make 90% solids in MEK solvent The composition was mixed and dispersed using a roll mill to prepare a thermally conductive adhesive sheet.

실시예Example 4:  4:

평균 에폭시당량이 400~1000인 실리콘 변성 에폭시 수지 100g, 2관능 이상의 다관능 에폭시 수지 40g, 페녹시 수지 30g, 부타디엔 아크릴 니트릴 고무 20g, 폴리비닐부티랄 수지 50g, 아민계 경화제 디시안 디아미드 8g, 이미다졸계 경화촉진제 0.2g, 열전도성 무기 충진재 900g(완전구형 알루미나 DENKA DAW-05(7) + 판상형 알루미나 KD-150(3)), 250g(완전구형 질화알루미늄(5) + 완전구형 질화붕소(5)), 인계난연제(MPP:Melamine polyphosphate) 160g을 MEK용매에 고형분이 90%가 되게 접착조성물을 혼합하고 이를 롤밀을 이용하여 분산 후 열전도성 접착시트를 제조하였다.
100 g of silicone-modified epoxy resins having an average epoxy equivalent of 400 to 1000, 40 g of bifunctional or higher polyfunctional epoxy resins, 30 g of phenoxy resins, 20 g of butadiene acrylonitrile rubber, 50 g of polyvinyl butyral resins, 8 g of amine curing agent dicyandiamide, 0.2 g of imidazole-based curing accelerator, 900 g of thermally conductive inorganic filler (complete bulb type alumina DENKA DAW-05 (7) + plate-shaped alumina KD-150 (3)), 250 g (complete bulb type aluminum nitride (5) + fully spherical boron nitride ( 5)), 160g of phosphorus-based flame retardant (MPP: Melamine polyphosphate) was mixed with MEK solvent so that the solid content was 90% and dispersed using a roll mill to prepare a thermally conductive adhesive sheet.

비교예Comparative example 1:  One:

평균 에폭시당량이 400~1000인 비스페놀 A 에폭시 수지 150g, 2관능 이상의 페놀수지 50g, 아민계 경화제 디시안 디아미드 8g, 이미다졸계 경화촉진제 0.2g, 열전도성 무기 충진재 900 g(미립 알루미나 Showa Denko A-12), 수산화알루니늄(Showa Denko H-32) 5g을 MEK용매에 고형분이 90%가 되게 접착조성물을 제조하였다.
150 g of bisphenol A epoxy resin having an average epoxy equivalent of 400 to 1000, 50 g of bifunctional or higher phenolic resin, 8 g of amine-based curing agent dicyandiamide, 0.2 g of imidazole-based curing accelerator, 900 g of thermally conductive inorganic filler (fine alumina Showa Denko A) -12), 5 g of aluminum hydroxide (Showa Denko H-32) was prepared in an MEK solvent so that the solid content was 90%.

비교예Comparative example 2:  2:

열전도성 무기 충진재 1150g(완전구형 알루미나 DENKA DAW-05)을 단독으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 접착조성물을 제조하였다.
An adhesive composition was prepared in the same manner as in Example 1, except that 1150 g of thermally conductive inorganic filler (complete bulb type alumina DENKA DAW-05) was used alone.

실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 비교예 1Comparative Example 1 비교예 2Comparative Example 2 동박 접착강도Copper foil adhesive strength 2.1kgf/cm2.1kgf / cm 1.9kgf/cm1.9kgf / cm 1.8kgf/cm1.8kgf / cm 1.6kgf/cm1.6kgf / cm 1.0kgf/cm1.0kgf / cm 1.1kgf/cm1.1kgf / cm 가공성Processability OO OO OO OO OO OO Sloder float (288℃) Sloder float (288 ℃) >20 min> 20 min >15min> 15min >9min> 9min >7min> 7min >5min> 5min >5min> 5min 열전도도Thermal conductivity 5.5W/mK5.5W / mK 4.5W/mK4.5 W / mK 5.0W/mK5.0 W / mK 6.0W/mK6.0W / mK 1.0W/mK1.0W / mK 1.5W/mK1.5W / mK 난연성Flammability V0V0 V0V0 V0V0 V0V0 V1V1 V1V1

1. 동박접착강도 1. Copper Bonding Strength

제조된 시트를 이용하여 동박적층판을 제조(Al 1.5mm, 동박 35㎛(1oz))한 후 JIS C 6741규격에 따라 시편을 준비하여 Peel Strength 측정하였다.
Copper foil laminated plate was prepared using the prepared sheet (Al 1.5mm, copper foil 35㎛ (1oz)) and then prepared a specimen in accordance with JIS C 6741 standards and measured the Peel Strength.

2. 열전도율 시험 2. Thermal conductivity test

제조된 시트를 약 10mm * 10mm의 크기로 절단하고, 이 샘플의 열전도율을 독일 네취사의 열전도 측정장지(레이저 나노플래쉬 열확산 측정장치) LFA447을 사용하여 측정하였다.
The prepared sheet was cut into a size of about 10 mm * 10 mm, and the thermal conductivity of this sample was measured using a thermal conductivity measuring instrument (Laser Nanoflash Thermal Diffusion Measuring Device) LFA447 manufactured by Nesch, Germany.

3. 가공성 시험3. Machinability Test

제조된 조성물을 콤마코팅을 위해 PET이형필름에 떨어뜨릴때 슬러리 혼합물의 점도가 높아 흐르지 않거나 코팅 후 Wetting 상태가 양호한가를 판정하였다.
When the prepared composition was dropped on a PET release film for comma coating, it was determined whether the viscosity of the slurry mixture was not high and the wetting state after coating was good.

4. 난연성 시험4. Flame retardancy test

제조된 시트에 대해 UL94 규격에 근거한 연소시험을 행하고 난연성을 판정하였다. 난연등급을 판정하기 위한 항목으로는 각 시편의 1,2차 연소시간과 불똥 소화시간의 합, 5개 시편의 1,2차 연소시간의 총합, 불꽃의 낙하로 인한 솜의 인화여부를 측정하였다. 시험시편의 규격은 폭 0.5인치, 길이 5인치이다. 시험방법으로는 메탄가스 파란색 높이 3/4인치 단일 불꼿을 이용하여 시편에 10초간 불꼿을 접촉한 후 불꽃을 제거하고 시편의 불이 꺼지면 다시 10초간 접촉시킨 후 불꽃을 다시 제거하는 방법을 이용하였다. 그 결과를 표 2에 나타내었다.
The produced sheet was subjected to a combustion test based on the UL94 standard to determine flame retardancy. The items used to determine the flame retardancy rating were the sum of the first and second combustion times of each specimen and the fire extinguishing time, the sum of the first and second combustion times of the five specimens, and the flammability of the cotton due to the drop of the flame. . Test specimens shall be 0.5 inch wide and 5 inch long. As a test method, a methane gas blue height 3/4 inch single bulb was used to contact the specimen for 10 seconds, and then the flame was removed. When the specimen was extinguished, the flame was removed for 10 seconds and the flame was removed again. . The results are shown in Table 2.

각 시편의 1,2차 연소시간과 불똥소화시간의 합Sum of 1st and 2nd burning time of each specimen and fire extinguishing time 5개 시편의 1,2차 연소시간의 총합Sum of first and second burn times of five specimens 불꽃의 낙하로 인한
솜 인화 여부
Due to the falling of the flame
Cotton prints
V0V0 10초이내Within 10 seconds 50초이내Within 50 seconds 없어야 함Should not be V1V1 30초이내Within 30 seconds 250초이내Within 250 seconds 없어야 함Should not be

상기 표 1에 나타난바와 같이 고형분 함량을 90%로 하여 각각의 실리콘 변성 에폭시 수지, 다관능 에폭시 수지, 페녹시 수지 등을 공통으로 사용하여 열전도성 방열시트를 제조하였다. 실시예 1의 경우 접착성향상을 위해 NBR과 PVB의 함량을 동일하게 투입하였고 완전구형의 알루미나와 질화붕소를 함께 사용하였다. 실시예 2에서는 NBR(Nitrile Butadiene Rubber)과 PVB(Polyvinyl butyral)의 함량에 변화를 주고 알루미나의 사이즈를 nm사이즈로 변화를 주었으나 실시예 1에 비해 접착성 및 열전도도가 조금 감소하였다. PVB의 함량을 NBR보다 과량 사용한 실시예 4에서는 실시예 1, 2, 3에 비해 접착강도는 떨어졌고, 완전구형을 사용한 실시예 1에서보다 판상형의 알루미나를 혼합사용한 실시예 4의 열전도율이 가장 우수하였다. 실시예를 살펴보면 공통적으로 NBR과 PVB 수지를 혼합하여 수지 조성물을 제조한 실시예1~4에서 접착강도가 우수한 것을 확인 할 수 있으며, 무기충진재 중 실시예 2 알루미나와 질화알루미늄 단독 혼합, 실시예 3 알루미나와 질화붕소 단독 혼합보다는 실시예 1과 4에서 나타내는 것처럼 열전도도가 우수한 질화붕소 및 질화알루미늄을 혼용함으로써 열전도도의 향상이 뚜렷하였다. 난연제로 수산화 알루미늄을 사용한 비교예1에 비해 인계난연제를 사용한 실시예1 내지 실시예4에서 알 수 있는 바와 같이 난연효과가 수산화 알루미늄에 비해 탁월한 것이 확인되었다. 또한, 무기 충진재로 미립 알루미나를 사용한 비교예1의 경우 열전도율이 매우 낮은 것을 알 수 있으며, 완전 구형 알루미나를 사용하였지만 질화알루미늄이나 질화 붕소를 혼합하지 않은 비교예 2의 경우, 열전도율이 상대적으로 낮은 것을 확인할 수 있었다.
As shown in Table 1, the thermal content of the thermally conductive sheet was prepared by using each of the silicone-modified epoxy resin, the polyfunctional epoxy resin, the phenoxy resin, and the like with a solid content of 90%. In the case of Example 1, NBR and PVB were added in the same amount to improve adhesion, and full spherical alumina and boron nitride were used together. In Example 2, the content of NBR (Nitrile Butadiene Rubber) and PVB (Polyvinyl butyral) was changed and the size of the alumina was changed to nm size, but the adhesiveness and thermal conductivity were slightly reduced compared to Example 1. In Example 4, which used excessive amount of PVB than NBR, the adhesive strength was lower than that of Examples 1, 2, and 3, and the thermal conductivity of Example 4, which was mixed with plate-shaped alumina, was better than that of Example 1, which used a full sphere. It was. Looking at the embodiment, it can be seen that the bonding strength is excellent in Examples 1 to 4 in which the resin composition was prepared by mixing NBR and PVB resin in common, and Example 2 of the inorganic filler mixed with alumina and aluminum nitride alone, Example 3 As shown in Examples 1 and 4, rather than mixing alumina and boron nitride alone, the thermal conductivity was clearly improved by mixing boron nitride and aluminum nitride having excellent thermal conductivity. As can be seen from Examples 1 to 4 using the phosphorus-based flame retardant compared to Comparative Example 1 using aluminum hydroxide as the flame retardant, it was confirmed that the flame retardant effect is superior to aluminum hydroxide. In addition, in the case of Comparative Example 1 using fine alumina as the inorganic filler, the thermal conductivity was very low.In the case of Comparative Example 2 using the fully spherical alumina but not mixing aluminum nitride or boron nitride, the thermal conductivity was relatively low. I could confirm it.

1: 구리 포일 2: 열전도성 방열시트
3: 알루미늄 플레이트
1: copper foil 2: thermally conductive heat-resistant sheet
3: aluminum plate

Claims (10)

구형 무기 충진재 및 판상형 무기 충진재 중 적어도 1종 이상을 포함하는 무기 충진재 혼합물; 질화알루미늄 및 질화붕소 중 적어도 1종 이상의 혼합물; 및 난연제를 포함하는 것을 특징으로 하는 열전도성 발열시트용 수지 조성물.An inorganic filler mixture comprising at least one of a spherical inorganic filler and a plate-shaped inorganic filler; Mixtures of at least one of aluminum nitride and boron nitride; And a resin composition for thermally conductive heating sheet comprising a flame retardant. 제1항에 있어서,
상기 무기 충진재 혼합물이 입자 크기가 5nm~500㎛인 무기 충진재를 더 포함하는 것을 특징으로 하는 열전도성 방열시트용 수지 조성물.
The method of claim 1,
The inorganic filler mixture is a resin composition for a thermally conductive heat-resistant sheet, characterized in that it further comprises an inorganic filler having a particle size of 5nm ~ 500㎛.
제1항에 있어서,
상기 무기 충진재 혼합물이 상기 구형 무기 충진재와 판상형 무기 충진재를 9:1 ~ 1:9의 중량비로 혼합한 혼합물인 것을 특징으로 하는 열전도성 방열시트용 수지 조성물.
The method of claim 1,
Wherein the inorganic filler mixture is a mixture of the spherical inorganic filler and the plate-shaped inorganic filler in a weight ratio of 9: 1 to 1: 9.
제1항에 있어서,
상기 무기 충진재 혼합물에 대하여, 상기 질화알루미늄 및 질화붕소 중 적어도 1종 이상의 혼합물이 5:5~9:1의 중량비로 혼합된 것을 특징으로 하는 열전도성 방열시트용 수지 조성물.
The method of claim 1,
Regarding the inorganic filler mixture, at least one or more mixtures of the aluminum nitride and boron nitride are mixed in a weight ratio of 5: 5 to 9: 1.
제1항에 있어서,
상기 열전도성 방열시트용 수지 조성물이 평균 에폭시당량이 400~1000인 실리콘 변성 에폭시 수지 100중량부에 대하여, 2관능 이상의 다관능 에폭시 수지는 30~100중량부, 페녹시 수지는 30~100중량부, 부타디엔 아크릴로 니트릴 공중합 고무는 20~50중량부 및 폴리비닐부티랄 수지는 20~50중량부로 이루어진 수지 조성물을 포함하는 것을 특징으로 하는 열전도성 방열시트용 수지 조성물.
The method of claim 1,
The resin composition for the thermally conductive heat dissipating sheet is 30-100 parts by weight of the bifunctional or higher polyfunctional epoxy resin and 30-100 parts by weight of the phenoxy resin, based on 100 parts by weight of the silicone-modified epoxy resin having an average epoxy equivalent of 400 to 1000. , Butadiene acrylonitrile copolymer rubber is 20 to 50 parts by weight and polyvinyl butyral resin is 20 to 50 parts by weight of the resin composition comprising a resin composition consisting of 20 to 50 parts by weight.
제5항에 있어서,
상기 무기 충진재는 상기 수지 조성물 100중량부에 대하여 400~800중량부로 포함되는 것을 특징으로 하는 열전도성 방열시트용 수지 조성물.
The method of claim 5,
The inorganic filler is a resin composition for a thermally conductive heat-dissipating sheet, characterized in that it comprises 400 to 800 parts by weight based on 100 parts by weight of the resin composition.
제5항에 있어서,
상기 수지 조성물 100중량부에 대하여, 난연제 50~100중량부를 포함하는 것을 특징으로 하는 열전도성 방열시트용 수지 조성물.
The method of claim 5,
A resin composition for thermally conductive heat dissipating sheets, comprising 50 to 100 parts by weight of a flame retardant based on 100 parts by weight of the resin composition.
제5항에 있어서,
상기 2관능 이상의 다관능 에폭시 수지/실리콘 변성 에폭시 수지의 비율이 0.1~0.8 범위인 것을 특징으로 하는 열전도성 방열시트용 수지 조성물.
The method of claim 5,
The ratio of the bifunctional or higher polyfunctional epoxy resin / silicon-modified epoxy resin is in the range of 0.1 to 0.8 resin composition for thermal conductive heat-resistant sheet.
제1항 내지 제8항 중 어느 항의 열전도성 방열시트용 수지 조성물을 이용하여 제조된 것을 특징으로 하는 열전도성 방열시트.A thermally conductive heat dissipating sheet prepared using the resin composition for thermally conductive heat dissipating sheet according to any one of claims 1 to 8. 제9항의 열전도성 방열시트를 이용하여 제조된 것을 특징으로 하는 동박적층판.
A copper clad laminate according to claim 9, which is manufactured using the thermally conductive heat dissipating sheet.
KR1020100038865A 2010-04-27 2010-04-27 Resin composition for heat-radiating sheet, Heat-radiating sheet and Copper clad laminate employing the same KR101205503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100038865A KR101205503B1 (en) 2010-04-27 2010-04-27 Resin composition for heat-radiating sheet, Heat-radiating sheet and Copper clad laminate employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100038865A KR101205503B1 (en) 2010-04-27 2010-04-27 Resin composition for heat-radiating sheet, Heat-radiating sheet and Copper clad laminate employing the same

Publications (2)

Publication Number Publication Date
KR20110119256A true KR20110119256A (en) 2011-11-02
KR101205503B1 KR101205503B1 (en) 2012-11-27

Family

ID=45390880

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100038865A KR101205503B1 (en) 2010-04-27 2010-04-27 Resin composition for heat-radiating sheet, Heat-radiating sheet and Copper clad laminate employing the same

Country Status (1)

Country Link
KR (1) KR101205503B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101238238B1 (en) * 2011-05-26 2013-03-04 주식회사 케이에이치바텍 Thin ceramic pcb module and thermally conductive adhesive composition
WO2014204204A1 (en) * 2013-06-19 2014-12-24 일진머티리얼즈 주식회사 Conductive heat-dissipating sheet, and electrical parts and electronic devices comprising same
KR20150044000A (en) * 2013-10-14 2015-04-23 전자부품연구원 High Thermal Conductive Film and Manufacturing the Same
KR20150095478A (en) 2014-02-13 2015-08-21 도레이첨단소재 주식회사 Adhesive composition for thermally conductive sheet and thermally conductive sheet therefrom
KR20150137588A (en) * 2014-05-30 2015-12-09 엘지이노텍 주식회사 Epoxy resin composite and printed circuit board comprising the same
CN105325067A (en) * 2013-06-19 2016-02-10 日进材料股份有限公司 Conductive heat-dissipating sheet, and electrical parts and electronic devices comprising same
KR20160061803A (en) 2014-11-24 2016-06-01 도레이첨단소재 주식회사 Thermally conductive adhesive composition and thermally conductive adhesive thin sheet therefrom
WO2017188752A1 (en) * 2016-04-28 2017-11-02 주식회사 네패스신소재 Coating composition having improved heat dissipation characteristics, and method for forming coating film by using same
WO2019194131A1 (en) * 2018-04-06 2019-10-10 Jnc株式会社 Thermally conductive composite filler, heat-dissipating resin composition containing same, and heat-dissipating grease and heat-dissipating member comprising said heat-dissipating resin composition
KR102255507B1 (en) * 2020-06-08 2021-05-27 주식회사 누리온 Heat radiant coating agent for heat sink body of light apparatus and manufacturing method thereof
KR20220068036A (en) * 2020-11-18 2022-05-25 주식회사 메디칼현대기획 Binding apparatus for medicine pavement
CN115216094A (en) * 2021-09-10 2022-10-21 金安国纪科技(杭州)有限公司 Resin composition for high-frequency low-dielectric-loss copper-clad plate and preparation method thereof
KR20230059997A (en) * 2021-10-27 2023-05-04 임홍재 Copper clad laminate using ceramized aluminum oxide powder and carbon nanotube and its manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101562647B1 (en) * 2013-12-31 2015-10-23 최영효 Epoxy adhesive composion for copper clad laminate
KR101735822B1 (en) 2015-06-17 2017-05-15 한국기계연구원 Nitride powder used for preparing thick film, method for preparing nitride thick film using the powder and thick film prepared thereby
KR102360596B1 (en) * 2021-05-11 2022-02-16 주식회사 누리온 Factory light apparatus with cover for protecting dust

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957596B2 (en) 2002-09-04 2007-08-15 電気化学工業株式会社 Thermally conductive grease
JP3891969B2 (en) 2003-08-06 2007-03-14 電気化学工業株式会社 Thermally conductive grease
JP2005281467A (en) 2004-03-29 2005-10-13 Toshiba Corp Resin and member having high thermal conductivity, and electrical equipment and semiconductor device produced by using the same
JP5407120B2 (en) * 2007-04-11 2014-02-05 日立化成株式会社 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISSIPATION DEVICE USING THE SAME

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101238238B1 (en) * 2011-05-26 2013-03-04 주식회사 케이에이치바텍 Thin ceramic pcb module and thermally conductive adhesive composition
WO2014204204A1 (en) * 2013-06-19 2014-12-24 일진머티리얼즈 주식회사 Conductive heat-dissipating sheet, and electrical parts and electronic devices comprising same
CN105325067A (en) * 2013-06-19 2016-02-10 日进材料股份有限公司 Conductive heat-dissipating sheet, and electrical parts and electronic devices comprising same
KR20150044000A (en) * 2013-10-14 2015-04-23 전자부품연구원 High Thermal Conductive Film and Manufacturing the Same
KR20150095478A (en) 2014-02-13 2015-08-21 도레이첨단소재 주식회사 Adhesive composition for thermally conductive sheet and thermally conductive sheet therefrom
KR20150137588A (en) * 2014-05-30 2015-12-09 엘지이노텍 주식회사 Epoxy resin composite and printed circuit board comprising the same
KR20160061803A (en) 2014-11-24 2016-06-01 도레이첨단소재 주식회사 Thermally conductive adhesive composition and thermally conductive adhesive thin sheet therefrom
WO2017188752A1 (en) * 2016-04-28 2017-11-02 주식회사 네패스신소재 Coating composition having improved heat dissipation characteristics, and method for forming coating film by using same
WO2019194131A1 (en) * 2018-04-06 2019-10-10 Jnc株式会社 Thermally conductive composite filler, heat-dissipating resin composition containing same, and heat-dissipating grease and heat-dissipating member comprising said heat-dissipating resin composition
KR102255507B1 (en) * 2020-06-08 2021-05-27 주식회사 누리온 Heat radiant coating agent for heat sink body of light apparatus and manufacturing method thereof
KR20220068036A (en) * 2020-11-18 2022-05-25 주식회사 메디칼현대기획 Binding apparatus for medicine pavement
CN115216094A (en) * 2021-09-10 2022-10-21 金安国纪科技(杭州)有限公司 Resin composition for high-frequency low-dielectric-loss copper-clad plate and preparation method thereof
CN115216094B (en) * 2021-09-10 2024-02-20 金安国纪科技(杭州)有限公司 Resin composition for high-frequency low-dielectric-loss copper-clad plate and preparation method thereof
KR20230059997A (en) * 2021-10-27 2023-05-04 임홍재 Copper clad laminate using ceramized aluminum oxide powder and carbon nanotube and its manufacturing method

Also Published As

Publication number Publication date
KR101205503B1 (en) 2012-11-27

Similar Documents

Publication Publication Date Title
KR101205503B1 (en) Resin composition for heat-radiating sheet, Heat-radiating sheet and Copper clad laminate employing the same
JP5830718B2 (en) Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
KR101760324B1 (en) Excellent interlayer adhesive graphite sheet for composite sheet with EMI shield and heat radiation, Composite sheet with EMI shield and heat radiation containing the same and Manufacturing method thereof
KR101867118B1 (en) Resin composition, and prepreg and laminated sheet containing same
TWI228388B (en) Prepreg and laminate
JP4645726B2 (en) Laminated board, prepreg, metal foil clad laminated board, circuit board, and circuit board for LED mounting
WO2009142192A1 (en) Laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
KR101319689B1 (en) Laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
JP5776019B2 (en) Prepreg, laminate, metal foil clad laminate, circuit board, and circuit board for LED mounting
KR20170020700A (en) Composite multi-layer sheet with EMI shield and heat radiation and Manufacturing method thereof
JP2008037957A (en) Thermosetting resin composition, b-stage resin film and multilayer build-up substrate
JP5598190B2 (en) Thermosetting resin composition for circuit board
KR20100114655A (en) Flame retardant resin composition for highly peel-strenghthened printed circuit board, printed circuit board using the same and manufacturing method thereof
JP2007224242A (en) Thermosetting resin composition, resin film in b stage and multilayer build-up base plate
US9730320B2 (en) Prepreg, laminate, metal foil-clad laminate, circuit board and LED module
KR101715717B1 (en) Laminate sheet, application therefor, and method for producing same
JP4788799B2 (en) Thermosetting resin composition, prepreg, composite laminate, metal foil-clad laminate, circuit board, and circuit board for LED mounting
JP2008214427A (en) Flame-retardant epoxy resin composition, and prepreg, laminated plate and printed wiring board
JP2011102394A (en) Thermosetting resin composition, prepreg, composite laminate, metal foil-clad laminate, circuit board, and circuit board for mounting led
KR100861645B1 (en) Flame retardant resin composition, prepreg using the same, and copper clad laminate using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee