WO2009142192A1 - Laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting - Google Patents

Laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting Download PDF

Info

Publication number
WO2009142192A1
WO2009142192A1 PCT/JP2009/059169 JP2009059169W WO2009142192A1 WO 2009142192 A1 WO2009142192 A1 WO 2009142192A1 JP 2009059169 W JP2009059169 W JP 2009059169W WO 2009142192 A1 WO2009142192 A1 WO 2009142192A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
average particle
inorganic
aluminum hydroxide
laminate
Prior art date
Application number
PCT/JP2009/059169
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 鈴江
明義 野末
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008287046A external-priority patent/JP4645726B2/en
Priority claimed from JP2009106492A external-priority patent/JP4788799B2/en
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to CN2009801188833A priority Critical patent/CN102036815B/en
Priority to KR1020107027404A priority patent/KR101319689B1/en
Publication of WO2009142192A1 publication Critical patent/WO2009142192A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0293Non-woven fibrous reinforcement

Definitions

  • the present invention relates to a laminated board used in the field of circuit boards for various electronic devices, and particularly excellent in heat dissipation, and a metal foil-clad laminated board manufactured using the laminated board, a circuit board, and an LED
  • the present invention relates to a circuit board for mounting.
  • FR-4 As a typical laminate used for a printed circuit board for electronic equipment, a laminate called FR-4 obtained by laminating a prepreg in which a glass cloth is impregnated with a resin component such as an epoxy resin is used. Widely used.
  • the name FR-4 is a classification according to a standard by NEMA (National Electrical Manufactures Association) in the United States.
  • NEMA National Electrical Manufactures Association
  • This FR-4 type laminate has the disadvantage of poor punchability and drillability.
  • a printed wiring board capable of solving such drawbacks a layer in which a nonwoven fabric is impregnated with a resin component is used as a core material layer, and both surfaces of the core material layer are impregnated with a glass cloth as a surface layer, respectively.
  • a composite laminate called a CEM-3 type constituted by laminating layers.
  • Patent Document 1 listed below discloses a resin-impregnated core obtained by impregnating a nonwoven fabric and / or paper with a resin varnish as a composite laminate having high interlaminar adhesive strength and excellent alkali resistance, heat resistance, and punchability.
  • a composite laminate is proposed in which a resin-impregnated surface layer material obtained by impregnating a glass cloth with a resin varnish is adhered to both surfaces of a material, and a metal foil is further adhered.
  • the resin varnish used for the core contains a filler that combines talc and aluminum hydroxide, and the blending ratio of talc and aluminum hydroxide is 0.15 to 0.65: It is described that aluminum hydroxide is boehmite type.
  • Patent Document 2 as a composite laminate having excellent thermal stability and thermal stability, it is composed of a surface layer composed of a resin-impregnated glass woven fabric and an intermediate layer composed of a curable resin-impregnated glass nonwoven fabric. Laminated materials for printed circuit boards have been proposed.
  • the intermediate layer has a molecular formula of Al 2 O 3 .nH 2 O (wherein n is greater than 2.6 and in an amount of 200% to 275% by weight based on the resin in the intermediate layer) It contains aluminum hydroxide (having a value less than 2.9).
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a laminate having excellent thermal conductivity, heat resistance, drilling workability, and flame retardancy.
  • thermosetting resin composition contains 80 to 150 parts by volume of an inorganic filler with respect to 100 parts by volume of the thermosetting resin
  • the inorganic filler contains (A) 2 gibbsite type aluminum hydroxide particles having an average particle size of ⁇ 15 [mu] m to (D 50), (B) boehmite particles having an average particle size of 2 ⁇ 15 ⁇ m (D 50), and 2 to an average particle size of 15 [mu] m (D 50)
  • the present invention relates to a laminate having a ratio (volume ratio) of 1: 0.1 to 1: 0.1 to 1.
  • Another aspect of the present invention relates to a metal foil-clad laminate in which a metal foil is stretched on at least one surface of the laminate, and a circuit board obtained by forming a circuit in the metal foil-clad laminate, Further, the present invention relates to an LED mounting circuit board comprising the circuit board.
  • FIG. 1 is a schematic cross-sectional view of a composite laminate according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of the LED backlight unit.
  • the laminate according to the present invention comprises a core material layer obtained by impregnating a non-woven fiber base material with a thermosetting resin composition, and a surface material layer laminated on both surfaces of the core material layer. It is obtained by integrating.
  • thermosetting resin composition A preferred embodiment according to the present invention will be described first for a thermosetting resin composition.
  • thermosetting resin composition contains 80 to 150 parts by volume of an inorganic filler with respect to 100 parts by volume of the thermosetting resin, and the inorganic filler contains (A) 2-15 ⁇ m average particles.
  • Gibbsite-type aluminum hydroxide particles having a diameter (D 50 )
  • B boehmite particles having an average particle diameter (D 50 ) of 2 to 15 ⁇ m
  • an average particle diameter (D 50 ) of 2 to 15 ⁇ m At least one inorganic component selected from the group consisting of inorganic particles containing crystal water having a temperature of 400 ° C. or higher or not containing crystal water, and (C) an average particle diameter (D 50 ) of 1.5 ⁇ m or less.
  • thermosetting resins include liquid thermosetting resins such as epoxy resins; radical polymerization thermosetting resins such as unsaturated polyester resins and vinyl ester resins; Moreover, a hardening
  • the inorganic filler according to the present embodiment includes a group consisting of gibbsite-type aluminum hydroxide particles (A), boehmite particles, and inorganic particles that contain crystal water having a liberation start temperature of 400 ° C. or higher or no crystal water. At least one inorganic component (B) selected from the following and aluminum oxide particles (C).
  • the gibbsite-type aluminum hydroxide particles (A) are aluminum compounds represented by Al (OH) 3 or Al 2 O 3 .3H 2 O, and the laminate is thermally conductive, flame retardant, and drillable. Is a component that imparts a good balance.
  • the average particle diameter (D 50 ) of the gibbsite type aluminum hydroxide particles (A) is 2 to 15 ⁇ m, preferably 3 to 10 ⁇ m.
  • the gibbsite-type aluminum hydroxide particles (A) include a first gibbsite-type aluminum hydroxide having an average particle diameter (D 50 ) of 2 to 10 ⁇ m and a second gibbsite-type aluminum hydroxide particle (D 50 ) of 10 to 15 ⁇ m. It is preferable to use a blend with Gibbsite type aluminum hydroxide from the viewpoint that heat dissipation is further improved by more densely filling the filler.
  • the average particle diameter (D 50 ) in this embodiment is obtained by calculating the cumulative curve with the total volume of the powder group obtained by measurement with a laser diffraction particle size distribution measuring device as 100%, and the cumulative curve is 50%. Means the particle diameter of the point.
  • the inorganic component (B) is at least one selected from the group consisting of boehmite particles and inorganic particles that contain crystallization water having a freezing start temperature of 400 ° C. or higher or that do not have crystallization water.
  • the boehmite particle is an aluminum compound represented by (AlOOH) or (Al 2 O 3 .H 2 O), and imparts thermal conductivity and flame retardancy without reducing the heat resistance of the laminate. It is.
  • the average particle size (D 50 ) of the boehmite particles is 2 to 15 ⁇ m, preferably 3 to 10 ⁇ m.
  • the average particle diameter (D 50 ) of the boehmite particles exceeds 15 ⁇ m, drill workability decreases, and when it is less than 2 ⁇ m, thermal conductivity decreases and productivity decreases.
  • inorganic particles containing crystallization water having a liberation start temperature of 400 ° C. or higher or having no crystallization water are components that impart thermal conductivity and flame retardancy without lowering the heat resistance of the circuit board. .
  • the inorganic particles include inorganic oxides such as aluminum oxide (no crystal water), magnesium oxide (no crystal water), crystalline silica (no crystal water); boron nitride (no crystal water), aluminum nitride (crystals) Inorganic nitride such as silicon nitride (no crystal water); inorganic carbide such as silicon carbide (no crystal water); and talc (freezing start temperature 950 ° C.), calcined kaolin (no crystal water), clay (free Natural minerals such as a starting temperature of 500 to 1000 ° C.). These may be used alone or in combination of two or more. Among these, crystalline silica, talc, clay and the like are particularly preferable from the viewpoint of excellent thermal conductivity.
  • the freezing start temperature of crystal water can be measured using heating weight loss analysis (TGA) or suggestion scanning calorimetry (DSC).
  • TGA heating weight loss analysis
  • DSC suggestion scanning calorimetry
  • the average particle diameter (D 50 ) of the inorganic particles is 2 to 15 ⁇ m, preferably 3 to 10 ⁇ m. When the average particle diameter (D 50 ) of the inorganic particles exceeds 15 ⁇ m, drill workability may be reduced.
  • Aluminum oxide particles (C) are components that impart high thermal conductivity to the resulting laminate.
  • the average particle diameter (D 50 ) of the aluminum oxide particles (C) is 1.5 ⁇ m or less, preferably 0.4 to 0.8 ⁇ m.
  • the average particle diameter of the aluminum oxide particles exceeds 1.5 ⁇ m, it becomes difficult to fill the laminated plate with a sufficient blending amount, and drill workability is also lowered.
  • the average particle diameter of aluminum oxide is too small, there exists a possibility that the heat conductivity of a laminated board may become inadequate.
  • the mixing ratio (volume ratio) of the gibbsite type aluminum hydroxide particles (A), the inorganic component (B), and the aluminum oxide particles (C) is 1: 0.1 to 1: 0.1 to 1. Yes, preferably 1: 0.1 to 0.5: 0.1 to 0.5.
  • the blending amount of the inorganic component (B) exceeds 1 with respect to the blending amount 1 of the gibbsite type aluminum hydroxide particles (A)
  • the drilling workability and heat dissipation of the resulting laminated plate are reduced.
  • it is less than 1 the heat resistance is lowered.
  • the blending amount of the aluminum oxide particles (C) exceeds 1 with respect to the blending amount 1 of the gibbsite-type aluminum hydroxide particles (A)
  • the drill workability is deteriorated. Reduces the thermal conductivity.
  • the blending ratio of the inorganic filler to 100 parts by volume of the thermosetting resin is 80 to 150 parts by volume, preferably 90 to 140 parts by volume, and more preferably 100 to 130 parts by volume.
  • the thermal conductivity of the resulting laminate is low, and when it exceeds 150 parts by volume, the drillability is lowered and the productivity of the laminate is increased. (Resin impregnation property, moldability) also decreases.
  • the blending ratio of the gibbsite type aluminum hydroxide particles (A) is too large, specifically when it exceeds 100 parts by volume, the heat resistance tends to decrease due to the generation of a large amount of crystal water. There is.
  • the inorganic component (B) is a mixture of boehmite particles and inorganic particles containing crystal water having a liberation start temperature of 400 ° C. or higher or having no crystal water, compounding of inorganic particles
  • the ratio is preferably 50% by volume or less, more preferably 30% by volume or less, and particularly preferably 20% by volume or less in the total amount of the inorganic filler.
  • the thermosetting resin composition includes an inorganic filler containing the above-described gibbsite type aluminum hydroxide particles (A), an inorganic component (B), and aluminum oxide particles (C) in a liquid thermosetting resin. It mix
  • thermosetting resin composition a prepreg for forming a core material layer (hereinafter, also referred to as a core material layer prepreg) using the thermosetting resin composition.
  • the core material layer prepreg is made of a non-woven fiber base material such as glass nonwoven fabric, glass paper, synthetic resin nonwoven fabric, paper, and the like, and the above-described gibbsite type aluminum hydroxide particles (A), inorganic component (B), and aluminum oxide particles. It is obtained by impregnating a varnish containing a thermosetting resin composition in which an inorganic filler containing (C) is dispersed.
  • the type of the nonwoven fiber base material is not particularly limited, and examples thereof include glass nonwoven fabric, glass paper, synthetic resin nonwoven fabric using synthetic resin fibers such as aramid fiber, polyester fiber, nylon fiber, and paper. Since such a nonwoven fiber base material is coarser than a woven fiber base material, the drillability of the composite laminate is improved.
  • the thickness of the nonwoven fiber base material is not particularly limited, and is, for example, about 10 to 300 ⁇ m.
  • thermosetting resin varnish for forming the core layer prepreg include, for example, epoxy resins; radical polymerization type thermosetting resins such as unsaturated polyester resins and vinyl ester resins; A resin varnish containing When an epoxy resin is used as the thermosetting resin, a curing agent or a curing catalyst is blended as necessary. Moreover, when using radical polymerization type thermosetting resin, you may mix
  • the core material layer prepreg is obtained by impregnating and semi-curing the above-mentioned thermosetting resin composition on the non-woven fiber base as described above. Specifically, the non-woven fiber base material is impregnated with the thermosetting resin composition, and the thermosetting resin composition impregnated into the fiber base material is dried by heating, whereby the thermosetting resin is brought into a semi-cured state. A core layer prepreg is obtained.
  • a prepreg for forming a surface material layer (hereinafter also referred to as a surface material layer prepreg) will be described.
  • the surface layer prepreg is impregnated with a resin varnish in a woven fiber base material such as glass cloth (woven cloth) or synthetic fiber cloth (woven cloth) using synthetic fibers such as aramid fiber, polyester fiber, nylon fiber, etc. Can be obtained.
  • a woven fiber base material such as glass cloth (woven cloth) or synthetic fiber cloth (woven cloth) using synthetic fibers such as aramid fiber, polyester fiber, nylon fiber, etc.
  • synthetic fibers such as aramid fiber, polyester fiber, nylon fiber, etc.
  • the same radical polymerization type thermosetting resin as epoxy resin, unsaturated polyester resin, vinyl ester resin, etc., used for the production of the core material layer prepreg is used.
  • a resin varnish serving as a resin component may be used.
  • various reaction initiators, curing agents, and fillers are appropriately blended as necessary. May be.
  • blend a filler suitably as needed in the range which does not impair the effect of this invention.
  • thermosetting resin composition contained in the resin varnish to be impregnated into the woven fiber base material it is preferable to use the same thermosetting resin composition as that used for forming the core material layer prepreg. That is, the inorganic filler contains 80 to 150 parts by volume with respect to 100 parts by volume of the thermosetting resin, and the inorganic filler contains gibbsite type aluminum hydroxide particles (A 50 ) having an average particle diameter (D 50 ) of 2 to 15 ⁇ m. ), Boehmite particles having an average particle diameter (D 50 ) of 2 to 15 ⁇ m, and water of crystallization having an average particle diameter (D 50 ) of 2 to 15 ⁇ m and a freezing start temperature of 400 ° C.
  • gibbsite type aluminum hydroxide particles A 50
  • Boehmite particles having an average particle diameter (D 50 ) of 2 to 15 ⁇ m
  • water of crystallization having an average particle diameter (D 50 ) of 2 to 15 ⁇ m and a freezing start temperature of 400 ° C.
  • inorganic component (B) selected from the group consisting of inorganic particles not containing crystal water, and aluminum oxide particles (C) having an average particle size (D 50 ) of 1.5 ⁇ m or less
  • the composite laminate 10 has a layer configuration in which a core material layer 1 and a surface material layer 2 laminated on both surfaces of the core material layer 1 are laminated and integrated. And the metal foil 3 is further laminated
  • the core material layer 1 is composed of a nonwoven fiber base material 1a and a thermosetting resin composition 1b containing an inorganic filler
  • the surface material layer 2 is composed of a woven fiber base material 2a and a resin composition 2b. It is composed of
  • the core material layer 1 is formed by impregnating a non-woven fiber base material 1a such as a glass nonwoven fabric or glass paper with a thermosetting resin composition 1b.
  • the thermosetting resin composition 1b includes a gibbsite-type aluminum hydroxide particle (A) having an average particle diameter (D 50 ) of 2 to 15 ⁇ m and an average particle diameter (D 50 ) of 2 to 15 ⁇ m. At least 1 selected from the group consisting of boehmite particles having an average particle diameter (D 50 ) of 2 to 15 ⁇ m, inorganic water particles containing crystal water having a release initiation temperature of 400 ° C. or higher, or having no crystal water.
  • An inorganic filler containing a seed inorganic component (B) and aluminum oxide particles (C) having an average particle diameter (D 50 ) of 1.5 ⁇ m or less is blended.
  • the surface material layer 2 is formed by impregnating a woven fiber base material 2a such as a glass cloth with a resin composition 2b.
  • Each of the core material layer prepreg and the surface material layer prepreg may be a single layer or a plurality of layers, specifically 1 to 3 layers, and may be appropriately adjusted according to the purpose.
  • metal foil Copper foil, aluminum foil, nickel foil, etc. can be used.
  • the metal foil may be disposed on both surfaces or only on one surface. In addition, it may replace with metal foil and may arrange
  • a printed wiring board can be obtained by subjecting the composite laminate 10 thus formed to known wiring processing or through-hole processing using an additive method, a subtractive method, or the like.
  • the gibbsite type aluminum hydroxide particles (A) are blended in the resin composition constituting the core material layer 1, and the aluminum oxide particles having a small average particle size. Since a predetermined amount of (C) is blended, wear of the drill blade during drilling of the laminated plate can be suppressed. Therefore, the life of the drill can be extended. Moreover, even if a drilling process is applied to form a through hole, it is difficult to form irregularities on the inner surface of the hole to be formed, and the inner surface of the hole can be formed smoothly. For this reason, when through-holes are formed by plating the inner surface of the holes, high conduction reliability can be imparted to the through-holes.
  • the heat conductivity of a laminated board can be improved remarkably by mix
  • blend the aluminum oxide particle (C) of a small particle diameter the drill workability of a laminated board is not reduced remarkably.
  • heat conductivity can be provided by mix
  • the composite laminated board excellent in thermal conductivity and drilling workability of this embodiment has high heat dissipation such as a printed wiring board of an LED backlight unit mounted on a liquid crystal display or a printed wiring board of LED lighting. It is preferably used for applications where properties are required.
  • an LED backlight unit 20 mounted on a liquid crystal display as shown in the schematic top view of FIG. 2 is configured by arranging a large number of LED modules 23 each having a plurality of (three in FIG. 2) LEDs 22 mounted on a printed wiring board 21, and is disposed on the back of the liquid crystal panel. Therefore, it is used as a backlight for a liquid crystal display or the like.
  • a cold cathode tube (CCFL) type backlight has been widely used as a backlight of the liquid crystal display, but in recent years, compared with a cold cathode tube type backlight. Since the color gamut can be widened, the image quality can be improved, the environmental load is small because mercury is not used, and the LED backlight unit as described above can be reduced in thickness. Is being actively developed.
  • LED modules generally consume more power than cold cathode tubes, and therefore generate a large amount of heat.
  • the composite laminate of the present invention as the printed wiring board 21 that requires such high heat dissipation, the problem of heat dissipation is greatly improved. Therefore, the luminous efficiency of the LED can be improved.
  • Example 1 Bisphenol A type epoxy to the resin and dicyandiamide (Dicy) thermosetting resin per 100 parts by volume of a thermosetting resin varnish containing a curing agent, gibbsite type aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd., D 50 : 5.4 ⁇ m) 35 parts by volume, Gibbsite type aluminum hydroxide (Sumitomo Chemical Co., Ltd., D 50 : 12.6 ⁇ m) 35 parts by volume, boehmite (D 50 : 5.5 ⁇ m) 15 parts by volume, and aluminum oxide ( 15 parts by volume of Sumitomo Chemical Co., Ltd., D 50 : 0.76 ⁇ m) was blended and dispersed uniformly.
  • gibbsite type aluminum hydroxide manufactured by Sumitomo Chemical Co., Ltd., D 50 : 5.4 ⁇ m
  • Gibbsite type aluminum hydroxide Suditomo Chemical Co., Ltd., D 50 : 12.6 ⁇ m
  • the resin varnish blended with the filler was impregnated into a glass nonwoven fabric (glass nonwoven fabric manufactured by Vilene Co., Ltd.) having a basis weight of 60 g / m 2 and a thickness of 400 ⁇ m to obtain a core layer prepreg.
  • a glass nonwoven fabric glass nonwoven fabric manufactured by Vilene Co., Ltd.
  • a glass cloth (woven fabric) having a basis weight of 200 g / m 2 and a thickness of 180 ⁇ m (7628 manufactured by Nittobo Co., Ltd.) was impregnated with a curing agent-containing epoxy resin varnish without adding a filler.
  • a material layer prepreg was obtained.
  • the obtained copper foil-clad composite laminate was evaluated for thermal conductivity, 220 ° C oven heat resistance test, 260 ° C solder heat resistance test, pressure cooker test (PCT), drill wear rate, and flame resistance according to the following evaluation methods. did.
  • the results are shown in Table 1 below.
  • Tables 1 and 2 below the values shown in parentheses in each Example and each Comparative Example are the ratios of boehmite particles, inorganic particles or aluminum oxide particles to 1 part by volume of gibbsite type aluminum hydroxide particles. To express.
  • the density of the obtained copper foil-clad composite laminate was measured by an underwater substitution method, the specific heat was measured by DSC (differential scanning calorimetry), and the thermal diffusivity was measured by a laser flash method.
  • Thermal conductivity (W / m ⁇ K) Density (kg / m 3 ) x Specific heat (kJ / kg ⁇ K) x Thermal diffusivity (m 2 / S) x 1000
  • PCT Pressure cooker test
  • Example 2 to 7 and Comparative Examples 1 to 14 In the production of the core material layer prepreg, a laminate was obtained and evaluated in the same manner as in Example 1 except that the composition of the resin composition was changed as shown in Table 1 or Table 2. The results of Example 1 and Examples 2 to 7 are shown in Table 1, and the results of Comparative Examples 1 to 14 are shown in Table 2.
  • Example 4 talc (produced by Fuji Talc Kogyo Co., Ltd.) having an average particle size (D 50 ) of 6.5 ⁇ m, and in Comparative Example 8, oxidation having an average particle size (D 50 ) of 0.76 ⁇ m.
  • Aluminum (Sumitomo Chemical Co., Ltd.) was used.
  • the copper foil-clad composite laminates of Examples 1 to 7 according to the present invention all have a high thermal conductivity of 0.97 W / m ⁇ K or more, and are heat resistant. Both drill wear resistance and flame retardancy were high.
  • the copper foil-clad composite laminate of Comparative Example 8 using aluminum oxide having a general particle size is compared with the copper foil-clad composite laminate of Example 1 using aluminum oxide having a fine particle size, Drill wear resistance was very poor.
  • Example 2 and Comparative Example 4 are compared, it can be seen that sufficient thermal conductivity cannot be obtained unless aluminum oxide is blended.
  • Comparative Example 10 and Comparative Example 11 in which no gibbsite type aluminum hydroxide was blended the flame retardancy was at the V-1 level. Moreover, in the comparative example 12 whose total amount of an inorganic filler is 70 mass parts with respect to 100 mass parts of epoxy resins, thermal conductivity was remarkably low. Further, Comparative Examples 2, 3, 6, 7, and 14 containing no boehmite had low oven heat resistance and solder heat resistance.
  • Example 8 to 16 and Comparative Examples 15 to 27 In the production of the core material layer prepreg, a laminate was obtained and evaluated in the same manner as in Example 1 except that the composition of the resin composition was changed as shown in Table 3 or Table 4. The results of Examples 8 to 16 are shown in Table 3, and the results of Comparative Examples 15 to 27 are shown in Table 4.
  • Example 14 the average particle diameter (D 50) 6.5 [mu] m of crystalline silica, in Example 15, (manufactured by Nippon Light Metal Co.) average particle size (D 50) of magnesium oxide 6.5 [mu] m, implementation In Example 16, aluminum nitride (manufactured by Furukawa Electronics Co., Ltd.) having an average particle diameter (D 50 ) of 6.6 ⁇ m, and in Comparative Examples 20 and 22, aluminum oxide having an average particle diameter (D 50 ) of 4 ⁇ m (Sumitomo Chemical Co., Ltd.) Made).
  • the laminated plates of Examples 8 to 16 according to the present invention all had high thermal conductivity and excellent oven heat resistance and PCT heat resistance. Also, the drill wear rate was low, and the flame retardancy was V-0 level. On the other hand, from the results shown in Table 4, the heat resistance decreased when a large amount of gibbsite-type aluminum hydroxide was contained as in the laminates of Comparative Examples 16 and 17. Further, in the laminates of Comparative Examples 18 to 20 containing only talc and aluminum oxide, the flame retardancy was at the V-1 level. Moreover, it replaced with the aluminum oxide with an average particle diameter of 0.76 micrometer of Example 8, and the drill abrasion property was remarkably high in the comparative example 22 using the aluminum oxide with an average particle diameter of 4 micrometers.
  • the wear of the drill was also extremely high in the laminate of Comparative Example 23 having a high talc compounding ratio of 1.4 to 1 part by volume of gibbsite type aluminum hydroxide. Further, the laminate of Comparative Example 24 containing no gibbsite-type aluminum hydroxide also had a high drill wear rate, and the flame retardancy was at the V-1 level. Further, in the laminate of Comparative Example 25 having a high compounding ratio of 0.76 ⁇ m of aluminum oxide with an average particle diameter of 0.76 ⁇ m per 1 part by volume of gibbsite-type aluminum hydroxide, the drill wear is remarkably high and flame retardancy is also achieved. Was also at the V-1 level.
  • the core layer obtained by impregnating the non-woven fiber base material with the thermosetting resin composition and the both surfaces of the core layer are laminated.
  • the material comprises (A) gibbsite type aluminum hydroxide particles having an average particle size (D 50 ) of 2 to 15 ⁇ m, (B) boehmite particles having an average particle size (D 50 ) of 2 to 15 ⁇ m, and 2 to 15 ⁇ m.
  • At least one inorganic component selected from the group consisting of inorganic particles having an average particle size (D 50 ), containing crystallization water having a liberation start temperature of 400 ° C. or higher, or containing no crystallization water, and (C) Average particle diameter of 1.5 ⁇ m or less (D 50 ), At least one inorganic component (B) selected from the group consisting of the gibbsite type aluminum hydroxide particles (A), the boehmite particles, and the inorganic particles, and the aluminum oxide particles (C). ) With a mixing ratio (volume ratio) of 1: 0.1 to 1: 0.1 to 1.
  • a laminate having excellent thermal conductivity, heat resistance, drill workability, and flame retardancy can be obtained.
  • thermal conductivity drilling workability will fall remarkably when a general aluminum oxide is mix
  • the heat resistance is remarkably improved without reducing drill workability.
  • Gibbsite-type aluminum hydroxide (Al (OH) 3 or Al 2 O 3 .3H 2 O), which is an aluminum compound, is a component that imparts heat conductivity, drill workability, and flame retardancy in a well-balanced manner.
  • Gibbsite type aluminum hydroxide has a characteristic of releasing crystal water at about 200 to 230 ° C., and therefore has a particularly high effect of imparting flame retardancy.
  • it becomes a cause of generating a blister etc. at the time of solder reflow.
  • boehmite which is an aluminum-based compound, contributes to imparting thermal conductivity and heat resistance to the laminate.
  • Boehmite is potentially superior in heat resistance to gibbsite type aluminum hydroxide because it has the potential to release crystal water at about 450-500 ° C. In addition, it exhibits flame retardancy at high temperatures.
  • inorganic particles containing crystallization water having a release start temperature of 400 ° C. or higher or not containing crystallization water similarly contribute to imparting thermal conductivity and heat resistance to the laminate.
  • By blending such inorganic particles it is possible to suppress the occurrence of blisters during reflow soldering of the circuit board.
  • the flame retardance at the time of high temperature can also be exhibited.
  • thermosetting resin composition A laminate obtained using such a thermosetting resin composition is preferably used for various substrates that require high heat dissipation, particularly for LED mounting substrates on which a plurality of LEDs that generate a large amount of heat are mounted. Can be.
  • a printed wiring board made of such a laminated board is surface-mounted with various electronic components, blisters are hardly generated on the metal foil even at a temperature of about 260 ° C., which is a lead-free reflow soldering temperature.
  • the gibbsite type aluminum hydroxide particles (A) has a first gibbsite type aluminum hydroxide having an average particle size of 2 ⁇ 10 ⁇ m (D 50), the average particle size of 10 ⁇ 15 [mu] m to (D 50) A blend with the second gibbsite type aluminum hydroxide is preferred.
  • the laminated board especially excellent in heat conductivity is obtained by being more closely filled with an inorganic filler.
  • Examples of the inorganic particles that are one of the inorganic components (B) include aluminum oxide, magnesium oxide, crystalline silica, aluminum hydroxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, talc, calcined kaolin, and clay. At least one kind of particles selected from the group consisting of
  • a surface layer obtained by impregnating a woven fiber base material with a thermosetting resin composition in which the same components as the thermosetting resin composition described above are blended in the same composition ratio is the core material layer.
  • a laminate obtained by laminating and integrating the both surfaces is preferable. According to the said structure, the laminated board which has the outstanding heat conductivity, the outstanding heat resistance, the outstanding drill workability, and a flame retardance is obtained.
  • a circuit board obtained from such a laminate is excellent in heat dissipation, flame retardancy, and particularly drillability. Therefore, it can be preferably used as a circuit board on which electronic components such as LEDs that require heat dissipation are mounted.
  • a laminated board and a circuit board excellent in all of thermal conductivity, heat resistance, drill workability, and flame retardancy can be obtained.

Abstract

A laminate which comprises: a core material layer obtained by impregnating a nonwoven fibrous base with a thermosetting resin composition; and surface material layers respectively laminated to both surfaces of the core material layer.  The thermosetting resin composition comprises 100 parts by volume of a thermosetting resin and 80-150 parts by volume of an inorganic filler.  The inorganic filler comprises (A) gibbsite-form aluminum hydroxide particles having an average particle diameter (D50) of 2-15 µm, (B) at least one inorganic ingredient selected from a group consisting of boehmite particles having an average particle diameter (D50) of 2-15 µm and inorganic particles which have an average particle diameter (D50) of 2-15 µm and which contain crystal water having a release initiation temperature of 400°C or higher or contain no crystal water, and (C) aluminum oxide particles having an average particle diameter (D50) of 1.5 µm or smaller, the proportion of (A) the gibbsite-form aluminum hydroxide particles to (B) the at least one inorganic ingredient selected from a group consisting of the boehmite particles and the inorganic particles to (C) the aluminum oxide particles (ratio by volume) being 1:(0.1-1):(0.1-1).

Description

積層板、金属箔張積層板、回路基板及びLED搭載用回路基板Laminated board, metal foil-clad laminated board, circuit board and circuit board for LED mounting
 本発明は、各種電子機器用の回路基板の分野において用いられる積層板であって特に放熱性に優れた積層板、及び該積層板を用いて製造される金属箔張積層板、回路基板及びLED搭載用回路基板に関する。 The present invention relates to a laminated board used in the field of circuit boards for various electronic devices, and particularly excellent in heat dissipation, and a metal foil-clad laminated board manufactured using the laminated board, a circuit board, and an LED The present invention relates to a circuit board for mounting.
 電子機器用のプリント配線基板に用いられる代表的な積層板として、ガラスクロスにエポキシ樹脂等の樹脂成分を含浸させたプリプレグを積層成形して得られるFR-4と称されるタイプの積層板が広く用いられている。なお、FR-4の称呼は、アメリカのNEMA(National Electrical Manufactures Association)による規格による分類である。このFR-4タイプの積層板は、打抜加工性やドリル加工性が悪いという欠点があった。このような欠点を解決しうるプリント配線板として、不織布に樹脂成分を含浸させた層を芯材層とし、該芯材層の両表面にそれぞれ、表面層としてガラスクロスに樹脂成分を含浸させた層が積層されて構成される、CEM-3タイプと称されるコンポジット積層板が知られている。 As a typical laminate used for a printed circuit board for electronic equipment, a laminate called FR-4 obtained by laminating a prepreg in which a glass cloth is impregnated with a resin component such as an epoxy resin is used. Widely used. The name FR-4 is a classification according to a standard by NEMA (National Electrical Manufactures Association) in the United States. This FR-4 type laminate has the disadvantage of poor punchability and drillability. As a printed wiring board capable of solving such drawbacks, a layer in which a nonwoven fabric is impregnated with a resin component is used as a core material layer, and both surfaces of the core material layer are impregnated with a glass cloth as a surface layer, respectively. There is known a composite laminate called a CEM-3 type constituted by laminating layers.
 例えば、下記特許文献1には、層間接着強度が高く、耐アルカリ性、耐熱性、打抜加工性に優れたコンポジット積層板として、不織布および/または紙に樹脂ワニスが含浸されてなる樹脂含浸材芯材の両面に、ガラス布に樹脂ワニスが含浸されてなる樹脂含浸表層材が貼着され、さらに金属箔が貼設されてなるコンポジット積層板が提案されている。このコンポジット積層板においては、芯材に用いられる樹脂ワニスは、タルクと水酸化アルミニウムを併せた充填剤を含有しており、タルクと水酸化アルミニウムとの配合比は0.15~0.65:1であり、水酸化アルミニウムはベーマイト型であることが記載されている。 For example, Patent Document 1 listed below discloses a resin-impregnated core obtained by impregnating a nonwoven fabric and / or paper with a resin varnish as a composite laminate having high interlaminar adhesive strength and excellent alkali resistance, heat resistance, and punchability. A composite laminate is proposed in which a resin-impregnated surface layer material obtained by impregnating a glass cloth with a resin varnish is adhered to both surfaces of a material, and a metal foil is further adhered. In this composite laminate, the resin varnish used for the core contains a filler that combines talc and aluminum hydroxide, and the blending ratio of talc and aluminum hydroxide is 0.15 to 0.65: It is described that aluminum hydroxide is boehmite type.
 また、例えば、下記特許文献2には、熱的に安定で難燃性に優れたコンポジット積層板として、樹脂含浸ガラス織布からなる表面層および硬化性樹脂含浸ガラス不織布からなる中間層で構成されるプリント回路基板用積層材が提案されている。この積層材においては、中間層は、中間層中の樹脂基準で200重量%~275重量%の量の、分子式Al23・nH2O(式中、nは2.6より大きく、かつ2.9より小さい値を有する)水酸化アルミニウムを含有することが記載されている。 Further, for example, in Patent Document 2 below, as a composite laminate having excellent thermal stability and thermal stability, it is composed of a surface layer composed of a resin-impregnated glass woven fabric and an intermediate layer composed of a curable resin-impregnated glass nonwoven fabric. Laminated materials for printed circuit boards have been proposed. In this laminate, the intermediate layer has a molecular formula of Al 2 O 3 .nH 2 O (wherein n is greater than 2.6 and in an amount of 200% to 275% by weight based on the resin in the intermediate layer) It contains aluminum hydroxide (having a value less than 2.9).
 さらに、近年、電子機器の軽薄短小化の進展に伴い、プリント配線板に実装される電子部品の高密度実装化が進んでおり、また、実装される電子部品としては、放熱性が要求されるLED(Light Emitting Diode)等が複数実装されることもある。このような用途において用いられる基板としては、従来の積層板では、放熱性が不充分であるという問題があった。また、実装方法としては、リフローハンダが主流となっており、特に、環境負荷を軽減する目的から、高温のリフロー処理が必要とされる鉛フリーハンダを用いたリフローハンダが主流となっている。このような、鉛フリーハンダを用いたリフローハンダ工程においては、ブリスタの発生等を抑制するために高い耐熱性が求められる。さらに、ドリル加工性を維持することも求められる。また、安全面からは、UL-94でV-0レベルを満たすような難燃性も求められる。 Furthermore, in recent years, with the progress of miniaturization of electronic devices, electronic components mounted on printed wiring boards have been mounted with high density, and the mounted electronic components are required to have heat dissipation. Multiple LEDs (Light Emitting Diodes) may be mounted. As a substrate used in such an application, a conventional laminated plate has a problem that heat dissipation is insufficient. In addition, as a mounting method, reflow solder is mainstream, and in particular, reflow solder using lead-free solder that requires high-temperature reflow processing is mainstream for the purpose of reducing the environmental load. In such a reflow soldering process using lead-free solder, high heat resistance is required to suppress the generation of blisters and the like. Furthermore, maintaining drill workability is also required. From the viewpoint of safety, flame retardancy that satisfies the V-0 level in UL-94 is also required.
特開昭62-173245号公報Japanese Patent Laid-Open No. 62-173245 特表2001-508002号公報JP 2001-508002 A
 本発明は、上述した課題を鑑みてなされたものであり、熱伝導性、耐熱性、ドリル加工性、及び難燃性に優れた積層板を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a laminate having excellent thermal conductivity, heat resistance, drilling workability, and flame retardancy.
 本発明の一局面は、不織繊維基材に熱硬化性樹脂組成物を含浸させて得られた芯材層と、前記芯材層の両表面にそれぞれ積層された表材層とが積層一体化された積層板であって、前記熱硬化性樹脂組成物は、熱硬化性樹脂100体積部に対して無機充填材80~150体積部を含有し、前記無機充填材は、(A)2~15μmの平均粒子径(D50)を有するギブサイト型水酸化アルミニウム粒子、(B)2~15μmの平均粒子径(D50)を有するベーマイト粒子、及び2~15μmの平均粒子径(D50)を有する、遊離開始温度が400℃以上である結晶水を含有する、又は結晶水を含有しない無機粒子からなる群から選ばれる少なくとも1種の無機成分、及び(C)1.5μm以下の平均粒子径(D50)を有する酸化アルミニウム粒子を含有し、前記ギブサイト型水酸化アルミニウム粒子(A)と前記ベーマイト粒子及び前記無機粒子からなる群から選ばれる少なくとも1種の無機成分(B)と前記酸化アルミニウム粒子(C)との配合比(体積比)が、1:0.1~1:0.1~1である積層板に関する。 One aspect of the present invention is that a core layer obtained by impregnating a non-woven fiber base material with a thermosetting resin composition and a surface layer laminated on both surfaces of the core layer are laminated and integrated. The thermosetting resin composition contains 80 to 150 parts by volume of an inorganic filler with respect to 100 parts by volume of the thermosetting resin, and the inorganic filler contains (A) 2 gibbsite type aluminum hydroxide particles having an average particle size of ~ 15 [mu] m to (D 50), (B) boehmite particles having an average particle size of 2 ~ 15μm (D 50), and 2 to an average particle size of 15 [mu] m (D 50) At least one inorganic component selected from the group consisting of inorganic particles that contain crystallization water having a freezing start temperature of 400 ° C. or higher and that do not contain crystallization water, and (C) an average particle of 1.5 μm or less Aluminum oxide having a diameter (D 50 ) A combination of at least one inorganic component (B) selected from the group consisting of the gibbsite-type aluminum hydroxide particles (A), the boehmite particles, and the inorganic particles, and the aluminum oxide particles (C). The present invention relates to a laminate having a ratio (volume ratio) of 1: 0.1 to 1: 0.1 to 1.
 また、本発明の他の局面は、前記積層板の少なくとも一表面に金属箔が張られてなる金属箔張積層板に関し、さらに、この金属箔張積層板に回路形成して得られる回路基板、並びに前記回路基板からなるLED搭載用回路基板に関する。 Another aspect of the present invention relates to a metal foil-clad laminate in which a metal foil is stretched on at least one surface of the laminate, and a circuit board obtained by forming a circuit in the metal foil-clad laminate, Further, the present invention relates to an LED mounting circuit board comprising the circuit board.
 本発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図1は、本発明の一実施形態に係るコンポジット積層板の模式断面図である。FIG. 1 is a schematic cross-sectional view of a composite laminate according to an embodiment of the present invention. 図2は、LEDバックライトユニットの模式構成図である。FIG. 2 is a schematic configuration diagram of the LED backlight unit.
 本発明に係る積層板は、不織繊維基材に熱硬化性樹脂組成物を含浸させて得られた芯材層と、前記芯材層の両表面にそれぞれ積層された表材層とを積層一体化することにより得られる。 The laminate according to the present invention comprises a core material layer obtained by impregnating a non-woven fiber base material with a thermosetting resin composition, and a surface material layer laminated on both surfaces of the core material layer. It is obtained by integrating.
[熱硬化性樹脂組成物]
 本発明に係る好ましい実施形態を、先ず、熱硬化性樹脂組成物について説明する。
[Thermosetting resin composition]
A preferred embodiment according to the present invention will be described first for a thermosetting resin composition.
 本発明者等の検討によれば、積層板に放熱性を付与するために、熱伝導性に優れた水酸化アルミニウムを配合した場合、積層板の放熱性は向上する。また、難燃性も向上する。しかしながら、水酸化アルミニウムを配合しすぎた場合、積層板の耐熱性が大幅に低下して、ハンダリフロー時にブリスタ等が発生しやすくなるという問題が生じた。また、水酸化アルミニウムに代えて、放熱性に優れた酸化アルミニウムを配合した場合、ドリル加工時のドリル刃の摩耗が著しく、頻繁にドリル刃を交換しなければならないという問題や、難燃性が低下するという問題が生じた。また、ドリル刃の摩耗を抑制するために酸化アルミニウムの配合量を減量した場合には、熱伝導性が充分に得られないという問題が生じた。このように、高い熱伝導性、高い耐熱性、ドリル加工性及び高い難燃性の全てを満足させる積層板を得ることは困難であった。 According to the study by the present inventors, when aluminum hydroxide having excellent thermal conductivity is added in order to impart heat dissipation to the laminate, the heat dissipation of the laminate is improved. In addition, flame retardancy is also improved. However, when aluminum hydroxide is added too much, the heat resistance of the laminate is greatly lowered, and a problem that blisters and the like are likely to occur during solder reflow occurs. In addition, when aluminum oxide with excellent heat dissipation is blended in place of aluminum hydroxide, the wear of the drill blade during drilling is significant, and there is a problem that the drill blade must be replaced frequently, and flame retardancy There was a problem of declining. Further, when the amount of aluminum oxide is reduced in order to suppress wear of the drill blade, there is a problem that sufficient thermal conductivity cannot be obtained. Thus, it has been difficult to obtain a laminate that satisfies all of high thermal conductivity, high heat resistance, drilling workability, and high flame retardancy.
 本実施形態に係る熱硬化性樹脂組成物は、熱硬化性樹脂100体積部に対して無機充填材80~150体積部を含有し、前記無機充填材は、(A)2~15μmの平均粒子径(D50)を有するギブサイト型水酸化アルミニウム粒子、(B)2~15μmの平均粒子径(D50)を有するベーマイト粒子、及び2~15μmの平均粒子径(D50)を有する、遊離開始温度が400℃以上である結晶水を含有する、又は結晶水を含有しない無機粒子からなる群から選ばれる少なくとも1種の無機成分、及び(C)1.5μm以下の平均粒子径(D50)を有する酸化アルミニウム粒子を含有し、前記ギブサイト型水酸化アルミニウム粒子(A)と前記ベーマイト粒子及び前記無機粒子からなる群から選ばれる少なくとも1種の無機成分(B)と前記酸化アルミニウム粒子(C)との配合比(体積比)が、1:0.1~1:0.1~1であるものである。 The thermosetting resin composition according to this embodiment contains 80 to 150 parts by volume of an inorganic filler with respect to 100 parts by volume of the thermosetting resin, and the inorganic filler contains (A) 2-15 μm average particles. Gibbsite-type aluminum hydroxide particles having a diameter (D 50 ), (B) boehmite particles having an average particle diameter (D 50 ) of 2 to 15 μm, and an average particle diameter (D 50 ) of 2 to 15 μm At least one inorganic component selected from the group consisting of inorganic particles containing crystal water having a temperature of 400 ° C. or higher or not containing crystal water, and (C) an average particle diameter (D 50 ) of 1.5 μm or less. At least one inorganic component (B) selected from the group consisting of the gibbsite-type aluminum hydroxide particles (A), the boehmite particles, and the inorganic particles. ) And the aluminum oxide particles (C) in a mixing ratio (volume ratio) of 1: 0.1 to 1: 0.1 to 1.
 熱硬化性樹脂の具体例としては、例えば、エポキシ樹脂;不飽和ポリエステル樹脂,ビニルエステル樹脂等のラジカル重合型熱硬化性樹脂;等の液状の熱硬化性樹脂が用いられる。また、熱硬化性樹脂には、必要に応じて、硬化剤や硬化触媒が配合される。また、ラジカル重合型熱硬化性樹脂を用いる場合には、必要に応じて、スチレン、ジアリルフタレート等のラジカル重合性モノマー等を適宜配合しても良い。また、いずれにおいても、粘度調整や生産性を改良するために、必要に応じて溶剤を配合してもよい。 Specific examples of thermosetting resins include liquid thermosetting resins such as epoxy resins; radical polymerization thermosetting resins such as unsaturated polyester resins and vinyl ester resins; Moreover, a hardening | curing agent and a curing catalyst are mix | blended with a thermosetting resin as needed. Moreover, when using radical polymerization type thermosetting resin, you may mix | blend radical polymerizable monomers, such as styrene and a diallyl phthalate, etc. suitably as needed. In any case, in order to improve viscosity adjustment and productivity, a solvent may be blended as necessary.
 本実施形態に係る無機充填材は、ギブサイト型水酸化アルミニウム粒子(A)と、ベーマイト粒子、及び遊離開始温度が400℃以上である結晶水を含む、又は結晶水を有しない無機粒子からなる群から選ばれる少なくとも1種の無機成分(B)と、酸化アルミニウム粒子(C)とを含有する。 The inorganic filler according to the present embodiment includes a group consisting of gibbsite-type aluminum hydroxide particles (A), boehmite particles, and inorganic particles that contain crystal water having a liberation start temperature of 400 ° C. or higher or no crystal water. At least one inorganic component (B) selected from the following and aluminum oxide particles (C).
 前記ギブサイト型水酸化アルミニウム粒子(A)は、Al(OH)またはAl23・3H2Oで表されるアルミニウム化合物であり、積層体に、熱伝導性、難燃性、ドリル加工性をバランスよく付与する成分である。 The gibbsite-type aluminum hydroxide particles (A) are aluminum compounds represented by Al (OH) 3 or Al 2 O 3 .3H 2 O, and the laminate is thermally conductive, flame retardant, and drillable. Is a component that imparts a good balance.
 ギブサイト型水酸化アルミニウム粒子(A)の平均粒子径(D50)は、2~15μmであり、好ましくは3~10μmである。ギブサイト型水酸化アルミニウム粒子(A)の平均粒子径(D50)が15μmを超える場合にはドリル加工性が低下し、2μm未満の場合には、熱伝導性が低下するとともに、生産性が低下する。また、ギブサイト型水酸化アルミニウム粒子(A)としては、平均粒子径(D50)が2~10μmの第1のギブサイト型水酸化アルミニウムと、平均粒子径(D50)が10~15μmの第2のギブサイト型水酸化アルミニウムとの配合物を用いることが、充填材がより密に充填されることにより、放熱性がさらに向上する点から好ましい。 The average particle diameter (D 50 ) of the gibbsite type aluminum hydroxide particles (A) is 2 to 15 μm, preferably 3 to 10 μm. When the average particle diameter (D 50 ) of the gibbsite type aluminum hydroxide particles (A) exceeds 15 μm, the drilling processability decreases, and when it is less than 2 μm, the thermal conductivity decreases and the productivity decreases. To do. The gibbsite-type aluminum hydroxide particles (A) include a first gibbsite-type aluminum hydroxide having an average particle diameter (D 50 ) of 2 to 10 μm and a second gibbsite-type aluminum hydroxide particle (D 50 ) of 10 to 15 μm. It is preferable to use a blend with Gibbsite type aluminum hydroxide from the viewpoint that heat dissipation is further improved by more densely filling the filler.
 なお、本実施形態における平均粒子径(D50)はレーザ回折式粒度分布測定装置にて測定して得られる粉体の集団の全体積を100%として累積カーブを求め、その累積カーブが50%となる点の粒子径を意味する。 The average particle diameter (D 50 ) in this embodiment is obtained by calculating the cumulative curve with the total volume of the powder group obtained by measurement with a laser diffraction particle size distribution measuring device as 100%, and the cumulative curve is 50%. Means the particle diameter of the point.
 前記無機成分(B)は、ベーマイト粒子、及び遊離開始温度が400℃以上である結晶水を含む、又は結晶水を有しない無機粒子からなる群から選ばれる少なくとも1種である。 The inorganic component (B) is at least one selected from the group consisting of boehmite particles and inorganic particles that contain crystallization water having a freezing start temperature of 400 ° C. or higher or that do not have crystallization water.
 前記ベーマイト粒子は、(AlOOH)または(Al23・H2O)で表されるアルミニウム化合物であり、積層体の耐熱性を低下させずに熱伝導性と難燃性とを付与する成分である。 The boehmite particle is an aluminum compound represented by (AlOOH) or (Al 2 O 3 .H 2 O), and imparts thermal conductivity and flame retardancy without reducing the heat resistance of the laminate. It is.
 ベーマイト粒子の平均粒子径(D50)は、2~15μmであり、好ましくは3~10μmである。ベーマイト粒子の平均粒子径(D50)が15μmを超える場合にはドリル加工性が低下し、2μm未満の場合には、熱伝導性が低下するとともに、生産性が低下する。 The average particle size (D 50 ) of the boehmite particles is 2 to 15 μm, preferably 3 to 10 μm. When the average particle diameter (D 50 ) of the boehmite particles exceeds 15 μm, drill workability decreases, and when it is less than 2 μm, thermal conductivity decreases and productivity decreases.
 また、遊離開始温度が400℃以上である結晶水を含む、又は結晶水を有しない無機粒子は、回路基板の耐熱性を低下させずに熱伝導性と難燃性とを付与する成分である。 Further, inorganic particles containing crystallization water having a liberation start temperature of 400 ° C. or higher or having no crystallization water are components that impart thermal conductivity and flame retardancy without lowering the heat resistance of the circuit board. .
 無機粒子の具体例としては、酸化アルミニウム(結晶水無し)、酸化マグネシウム(結晶水無し)、結晶性シリカ(結晶水無し)等の無機酸化物;窒化ホウ素(結晶水無し)、窒化アルミニウム(結晶水無し)、窒化ケイ素(結晶水無し)等の無機窒化物;炭化ケイ素(結晶水無し)等の無機炭化物;及びタルク(遊離開始温度950℃)、焼成カオリン(結晶水無し)、クレー(遊離開始温度500~1000℃)等の天然鉱物等が挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中では、結晶性シリカ、タルク、クレー等が熱伝導性に優れている点から特に好ましい。 Specific examples of the inorganic particles include inorganic oxides such as aluminum oxide (no crystal water), magnesium oxide (no crystal water), crystalline silica (no crystal water); boron nitride (no crystal water), aluminum nitride (crystals) Inorganic nitride such as silicon nitride (no crystal water); inorganic carbide such as silicon carbide (no crystal water); and talc (freezing start temperature 950 ° C.), calcined kaolin (no crystal water), clay (free Natural minerals such as a starting temperature of 500 to 1000 ° C.). These may be used alone or in combination of two or more. Among these, crystalline silica, talc, clay and the like are particularly preferable from the viewpoint of excellent thermal conductivity.
 なお、結晶水の遊離開始温度は、加熱重量減分析(TGA)または示唆走査熱量分析(DSC)を用いて、測定できる。 In addition, the freezing start temperature of crystal water can be measured using heating weight loss analysis (TGA) or suggestion scanning calorimetry (DSC).
 無機粒子の平均粒子径(D50)は、2~15μmであり、好ましくは3~10μmである。無機粒子の平均粒子径(D50)が15μmを超える場合にはドリル加工性が低下するおそれがある。 The average particle diameter (D 50 ) of the inorganic particles is 2 to 15 μm, preferably 3 to 10 μm. When the average particle diameter (D 50 ) of the inorganic particles exceeds 15 μm, drill workability may be reduced.
 酸化アルミニウム粒子(C)は、得られる積層板に高い熱伝導性を付与する成分である。酸化アルミニウム粒子(C)の平均粒子径(D50)は1.5μm以下であり、好ましくは0.4~0.8μmである。酸化アルミニウム粒子の平均粒子径が1.5μmを超える場合には、積層板に充分な配合量で充填しにくくなり、また、ドリル加工性も低下する。また、酸化アルミニウムの平均粒子径が小さすぎる場合には、積層板の熱伝導率が不充分になるおそれがある。 Aluminum oxide particles (C) are components that impart high thermal conductivity to the resulting laminate. The average particle diameter (D 50 ) of the aluminum oxide particles (C) is 1.5 μm or less, preferably 0.4 to 0.8 μm. When the average particle diameter of the aluminum oxide particles exceeds 1.5 μm, it becomes difficult to fill the laminated plate with a sufficient blending amount, and drill workability is also lowered. Moreover, when the average particle diameter of aluminum oxide is too small, there exists a possibility that the heat conductivity of a laminated board may become inadequate.
 前記ギブサイト型水酸化アルミニウム粒子(A)、前記無機成分(B)、及び、前記酸化アルミニウム粒子(C)の配合比(体積比)は、1:0.1~1:0.1~1であり、好ましくは、1:0.1~0.5:0.1~0.5である。ギブサイト型水酸化アルミニウム粒子(A)の配合量1に対して、無機成分(B)の配合量が1を超える場合には、得られる積層板のドリル加工性や放熱性が低下し、0.1未満の場合には、耐熱性が低下する。また、ギブサイト型水酸化アルミニウム粒子(A)の配合量1に対して、酸化アルミニウム粒子(C)の配合量が1を超える場合には、ドリル加工性が低下し、0.1未満の場合には、熱伝導率が低下する。 The mixing ratio (volume ratio) of the gibbsite type aluminum hydroxide particles (A), the inorganic component (B), and the aluminum oxide particles (C) is 1: 0.1 to 1: 0.1 to 1. Yes, preferably 1: 0.1 to 0.5: 0.1 to 0.5. When the blending amount of the inorganic component (B) exceeds 1 with respect to the blending amount 1 of the gibbsite type aluminum hydroxide particles (A), the drilling workability and heat dissipation of the resulting laminated plate are reduced. When it is less than 1, the heat resistance is lowered. Further, when the blending amount of the aluminum oxide particles (C) exceeds 1 with respect to the blending amount 1 of the gibbsite-type aluminum hydroxide particles (A), the drill workability is deteriorated. Reduces the thermal conductivity.
 熱硬化性樹脂100体積部に対する無機充填材の配合割合は、80~150体積部であり、好ましくは、90~140体積部、さらに好ましくは、100~130体積部である。無機充填材の配合割合が80体積部未満の場合には、得られる積層板の熱伝導率が低くなり、150体積部を超える場合には、ドリル加工性が低下するとともに、積層板の製造性(樹脂含浸性、成形性)も低下する。また、特に、ギブサイト型水酸化アルミニウム粒子(A)の配合割合が多すぎる場合、具体的には100体積部を超えるような場合には、結晶水が多く発生することにより耐熱性が低下する傾向がある。 The blending ratio of the inorganic filler to 100 parts by volume of the thermosetting resin is 80 to 150 parts by volume, preferably 90 to 140 parts by volume, and more preferably 100 to 130 parts by volume. When the blending ratio of the inorganic filler is less than 80 parts by volume, the thermal conductivity of the resulting laminate is low, and when it exceeds 150 parts by volume, the drillability is lowered and the productivity of the laminate is increased. (Resin impregnation property, moldability) also decreases. In particular, when the blending ratio of the gibbsite type aluminum hydroxide particles (A) is too large, specifically when it exceeds 100 parts by volume, the heat resistance tends to decrease due to the generation of a large amount of crystal water. There is.
 なお、無機成分(B)が、ベーマイト粒子と、遊離開始温度が400℃以上である結晶水を含む、又は結晶水を有しない無機粒子とが配合されたものである場合は、無機粒子の配合割合は、無機充填材全量中50体積%以下、さらには30体積%以下、特に20体積%以下であることが好ましい。 In addition, when the inorganic component (B) is a mixture of boehmite particles and inorganic particles containing crystal water having a liberation start temperature of 400 ° C. or higher or having no crystal water, compounding of inorganic particles The ratio is preferably 50% by volume or less, more preferably 30% by volume or less, and particularly preferably 20% by volume or less in the total amount of the inorganic filler.
 熱硬化性樹脂組成物は、液状の熱硬化性樹脂に、上述したギブサイト型水酸化アルミニウム粒子(A)と、無機成分(B)と、酸化アルミニウム粒子(C)とを含有する無機充填材を配合し、ディスパー、ボールミル、ロール等を用いて、各無機粒子を分散させる公知の調製方法により調製される。なお、必要に応じて、粘度を調整するための有機溶剤や、各種添加剤を配合してもよい。 The thermosetting resin composition includes an inorganic filler containing the above-described gibbsite type aluminum hydroxide particles (A), an inorganic component (B), and aluminum oxide particles (C) in a liquid thermosetting resin. It mix | blends and it prepares by the well-known preparation method of disperse | distributing each inorganic particle using a disper, a ball mill, a roll, etc. In addition, you may mix | blend the organic solvent for adjusting a viscosity, and various additives as needed.
[芯材層]
 次に、上記熱硬化性樹脂組成物を用いた、芯材層を形成するためのプリプレグ(以下、芯材層プリプレグとも呼ぶ)について説明する。
[Core material layer]
Next, a prepreg for forming a core material layer (hereinafter, also referred to as a core material layer prepreg) using the thermosetting resin composition will be described.
 芯材層プリプレグは、ガラス不織布、ガラス紙、合成樹脂不織布、紙、等の不織繊維基材に、上述したギブサイト型水酸化アルミニウム粒子(A)と、無機成分(B)と、酸化アルミニウム粒子(C)とを含有する無機充填材を分散させた熱硬化性樹脂組成物を含むワニスを含浸させることにより得られる。 The core material layer prepreg is made of a non-woven fiber base material such as glass nonwoven fabric, glass paper, synthetic resin nonwoven fabric, paper, and the like, and the above-described gibbsite type aluminum hydroxide particles (A), inorganic component (B), and aluminum oxide particles. It is obtained by impregnating a varnish containing a thermosetting resin composition in which an inorganic filler containing (C) is dispersed.
 不織繊維基材の種類は特に限定されないが、ガラス不織布やガラス紙、アラミド繊維,ポリエステル繊維,ナイロン繊維等の合成樹脂繊維を用いた合成樹脂不織布、紙等が挙げられる。このような不織繊維基材は織繊維基材に比べて粗であるために、コンポジット積層体のドリル加工性を向上させる。 The type of the nonwoven fiber base material is not particularly limited, and examples thereof include glass nonwoven fabric, glass paper, synthetic resin nonwoven fabric using synthetic resin fibers such as aramid fiber, polyester fiber, nylon fiber, and paper. Since such a nonwoven fiber base material is coarser than a woven fiber base material, the drillability of the composite laminate is improved.
 不織繊維基材の厚さは、特に限定されず、一例としては、例えば10~300μm程度である。 The thickness of the nonwoven fiber base material is not particularly limited, and is, for example, about 10 to 300 μm.
 芯材層プリプレグを形成するための熱硬化性の樹脂ワニスの具体例としては、例えば、エポキシ樹脂;不飽和ポリエステル樹脂,ビニルエステル樹脂等のラジカル重合型熱硬化性樹脂;等の熱硬化性樹脂を含む樹脂ワニスが挙げられる。熱硬化性樹脂として、エポキシ樹脂を用いる場合には、必要に応じて、硬化剤や硬化触媒を配合する。また、ラジカル重合型熱硬化性樹脂を用いる場合には、必要に応じて、スチレン、ジアリルフタレート等のラジカル重合性モノマー等を適宜配合しても良い。また、いずれにおいても、粘度調整のために、必要に応じて溶剤を配合してもよい。 Specific examples of the thermosetting resin varnish for forming the core layer prepreg include, for example, epoxy resins; radical polymerization type thermosetting resins such as unsaturated polyester resins and vinyl ester resins; A resin varnish containing When an epoxy resin is used as the thermosetting resin, a curing agent or a curing catalyst is blended as necessary. Moreover, when using radical polymerization type thermosetting resin, you may mix | blend radical polymerizable monomers, such as styrene and a diallyl phthalate, etc. suitably as needed. In any case, a solvent may be blended as necessary to adjust the viscosity.
 芯材層プリプレグは、上記のような不織繊維基材に、上記熱硬化性樹脂組成物を含浸及び半硬化させることにより得られる。具体的には、熱硬化性樹脂組成物を不織繊維基材に含浸し、繊維基材に含浸した熱硬化性樹脂組成物を加熱乾燥することにより、熱硬化性樹脂が半硬化状態とされた芯材層プリプレグが得られる。 The core material layer prepreg is obtained by impregnating and semi-curing the above-mentioned thermosetting resin composition on the non-woven fiber base as described above. Specifically, the non-woven fiber base material is impregnated with the thermosetting resin composition, and the thermosetting resin composition impregnated into the fiber base material is dried by heating, whereby the thermosetting resin is brought into a semi-cured state. A core layer prepreg is obtained.
[表材層]
 次に、表材層を形成するためのプリプレグ(以下、表材層プリプレグとも呼ぶ)について説明する。
[Surface layer]
Next, a prepreg for forming a surface material layer (hereinafter also referred to as a surface material layer prepreg) will be described.
 表材層プリプレグは、ガラスクロス(織布)や、アラミド繊維,ポリエステル繊維,ナイロン繊維等の合成繊維を用いた合成繊維クロス(織布)のような織繊維基材に、樹脂ワニスを含浸させることにより得られる。このように、表材層に織繊維基材を用いることにより、得られるコンポジット積層板の寸法安定性や耐熱性を向上させることができる。 The surface layer prepreg is impregnated with a resin varnish in a woven fiber base material such as glass cloth (woven cloth) or synthetic fiber cloth (woven cloth) using synthetic fibers such as aramid fiber, polyester fiber, nylon fiber, etc. Can be obtained. Thus, the dimensional stability and heat resistance of the resulting composite laminate can be improved by using a woven fiber substrate for the surface layer.
 表材層プリプレグを形成するための樹脂ワニスとしては、芯材層プリプレグの製造に用いるのと同様の、エポキシ樹脂や、不飽和ポリエステル樹脂,ビニルエステル樹脂等のラジカル重合型の熱硬化性樹脂を樹脂成分とする樹脂ワニスが用いられ得る。なお、表材層プリプレグを形成するための樹脂ワニスにも、芯材層プリプレグを形成するための樹脂ワニスと同様に、必要に応じて、各種反応開始剤や硬化剤、充填材を適宜配合してもよい。また、必要に応じて、本発明の効果を損なわない範囲で充填材を適宜配合してもよい。 As the resin varnish for forming the surface material layer prepreg, the same radical polymerization type thermosetting resin as epoxy resin, unsaturated polyester resin, vinyl ester resin, etc., used for the production of the core material layer prepreg is used. A resin varnish serving as a resin component may be used. In addition, in the resin varnish for forming the surface material layer prepreg, similarly to the resin varnish for forming the core material layer prepreg, various reaction initiators, curing agents, and fillers are appropriately blended as necessary. May be. Moreover, you may mix | blend a filler suitably as needed in the range which does not impair the effect of this invention.
 織繊維基材に含浸させる樹脂ワニスに含まれる熱硬化性樹脂組成物としては、芯材層プリプレグの形成に用いたのと同様の熱硬化性樹脂組成物を用いることが好ましい。すなわち、熱硬化性樹脂100体積部に対して無機充填材80~150体積部を含有し、無機充填材は、2~15μmの平均粒子径(D50)を有するギブサイト型水酸化アルミニウム粒子(A)と、2~15μmの平均粒子径(D50)を有するベーマイト粒子、及び2~15μmの平均粒子径(D50)を有する、遊離開始温度が400℃以上である結晶水を含有する、又は結晶水を含有しない無機粒子からなる群から選ばれる少なくとも1種の無機成分(B)と、1.5μm以下の平均粒子径(D50)を有する酸化アルミニウム粒子(C)とを含有し、ギブサイト型水酸化アルミニウム粒子(A)と無機成分(B)と酸化アルミニウム粒子(C)との配合比(体積比)が、1:0.1~1:0.1~1である熱硬化性樹脂組成物を用いることが好ましい。 As the thermosetting resin composition contained in the resin varnish to be impregnated into the woven fiber base material, it is preferable to use the same thermosetting resin composition as that used for forming the core material layer prepreg. That is, the inorganic filler contains 80 to 150 parts by volume with respect to 100 parts by volume of the thermosetting resin, and the inorganic filler contains gibbsite type aluminum hydroxide particles (A 50 ) having an average particle diameter (D 50 ) of 2 to 15 μm. ), Boehmite particles having an average particle diameter (D 50 ) of 2 to 15 μm, and water of crystallization having an average particle diameter (D 50 ) of 2 to 15 μm and a freezing start temperature of 400 ° C. or higher, or Containing at least one inorganic component (B) selected from the group consisting of inorganic particles not containing crystal water, and aluminum oxide particles (C) having an average particle size (D 50 ) of 1.5 μm or less, Thermosetting resin in which the compounding ratio (volume ratio) of type aluminum hydroxide particles (A), inorganic component (B), and aluminum oxide particles (C) is 1: 0.1 to 1: 0.1 to 1 Composition It is preferable to use it.
[積層板]
 本発明の一実施形態に係るコンポジット積層板10について、図1を参照しながら説明する。
[Laminated board]
A composite laminate 10 according to an embodiment of the present invention will be described with reference to FIG.
 コンポジット積層板10は、芯材層1と、芯材層1の両表面に積層された表材層2とが積層一体化された層構成を有する。そして、その表層には、さらに金属箔3が積層されて金属箔張積層板を構成している。 The composite laminate 10 has a layer configuration in which a core material layer 1 and a surface material layer 2 laminated on both surfaces of the core material layer 1 are laminated and integrated. And the metal foil 3 is further laminated | stacked on the surface layer, and the metal foil tension laminated board is comprised.
 芯材層1は、不織繊維基材1aと無機充填材を含有する熱硬化性樹脂組成物1bとから構成されており、表材層2は、織繊維基材2aと樹脂組成物2bとから構成されている。 The core material layer 1 is composed of a nonwoven fiber base material 1a and a thermosetting resin composition 1b containing an inorganic filler, and the surface material layer 2 is composed of a woven fiber base material 2a and a resin composition 2b. It is composed of
 芯材層1はガラス不織布やガラス紙のような不織繊維基材1aに熱硬化性樹脂組成物1bを含浸させてなる。熱硬化性樹脂組成物1bは、熱硬化性樹脂に、2~15μmの平均粒子径(D50)を有するギブサイト型水酸化アルミニウム粒子(A)と、2~15μmの平均粒子径(D50)を有するベーマイト粒子、及び2~15μmの平均粒子径(D50)を有する、遊離開始温度が400℃以上である結晶水を含む、又は結晶水を有しない無機粒子からなる群から選ばれる少なくとも1種の無機成分(B)と、1.5μm以下の平均粒子径(D50)を有する酸化アルミニウム粒子(C)とを含む無機充填材が、配合されてなる。 The core material layer 1 is formed by impregnating a non-woven fiber base material 1a such as a glass nonwoven fabric or glass paper with a thermosetting resin composition 1b. The thermosetting resin composition 1b includes a gibbsite-type aluminum hydroxide particle (A) having an average particle diameter (D 50 ) of 2 to 15 μm and an average particle diameter (D 50 ) of 2 to 15 μm. At least 1 selected from the group consisting of boehmite particles having an average particle diameter (D 50 ) of 2 to 15 μm, inorganic water particles containing crystal water having a release initiation temperature of 400 ° C. or higher, or having no crystal water. An inorganic filler containing a seed inorganic component (B) and aluminum oxide particles (C) having an average particle diameter (D 50 ) of 1.5 μm or less is blended.
 一方、表材層2は、ガラスクロスのような織繊維基材2aに樹脂組成物2bを含浸させてなる。 On the other hand, the surface material layer 2 is formed by impregnating a woven fiber base material 2a such as a glass cloth with a resin composition 2b.
 そして、芯材層1の両表面それぞれに表材層2を積層し、さらに、表材層2の表面に金属箔3を積層し、この積層体を積層成形することにより、金属箔が張られたコンポジット積層板10が得られる。なお、芯材層プリプレグ及び表材層プリプレグはそれぞれ1層のみであっても、複数層、具体的には1~3層重ねたようなものであってもよく、目的に応じて適宜調整される。 And the surface material layer 2 is laminated | stacked on both surfaces of the core material layer 1, respectively, Furthermore, the metal foil 3 is laminated | stacked on the surface of the surface material layer 2, and metal foil is stretched by carrying out lamination molding of this laminated body. A composite laminate 10 is obtained. Each of the core material layer prepreg and the surface material layer prepreg may be a single layer or a plurality of layers, specifically 1 to 3 layers, and may be appropriately adjusted according to the purpose. The
 金属箔としては、特には限定されないが、銅箔、アルミ箔、ニッケル箔等が用いられうる。また、金属箔は両表面に配しても、片面のみに配してもよい。なお、金属箔を配さない面には、金属箔に代えて離形フィルムを配置して積層体を加熱加圧成形してもよい。 Although it does not specifically limit as metal foil, Copper foil, aluminum foil, nickel foil, etc. can be used. The metal foil may be disposed on both surfaces or only on one surface. In addition, it may replace with metal foil and may arrange | position a release film on the surface which does not distribute metal foil, and heat-press-mold a laminated body.
 そして、このようにして形成されたコンポジット積層板10に対して、アディティブ法やサブトラクティブ法等による公知の配線加工処理やスルーホール加工を施すことによりプリント配線板が得られる。 A printed wiring board can be obtained by subjecting the composite laminate 10 thus formed to known wiring processing or through-hole processing using an additive method, a subtractive method, or the like.
 このとき、本実施形態のコンポジット積層板10においては、芯材層1を構成する樹脂組成物中に、ギブサイト型水酸化アルミニウム粒子(A)を配合し、また、平均粒子径が小さな酸化アルミニウム粒子(C)を所定量配合しているために、積層板のドリル加工時のドリル刃の摩耗を抑制することができる。そのために、ドリルを長寿命化させることができる。また、スルーホール形成のためにドリル加工を適用しても、形成される孔の内面には凹凸が形成されにくく、この孔の内面を平滑に形成することもできる。このために孔の内面にホールメッキを施してスルーホールを形成した場合にこのスルーホールに高い導通信頼性を付与することもできる。また、熱伝導性に優れた酸化アルミニウム粒子(C)を配合することにより、積層板の熱伝導性を著しく向上させることができる。なお、小さい粒子径の酸化アルミニウム粒子(C)を配合するために、積層板のドリル加工性を著しく低下させることがない。また、前記無機成分(B)を配合することにより、耐熱性及びドリル加工性を著しく低下させることなく、熱伝導性を付与することができる。 At this time, in the composite laminate 10 of the present embodiment, the gibbsite type aluminum hydroxide particles (A) are blended in the resin composition constituting the core material layer 1, and the aluminum oxide particles having a small average particle size. Since a predetermined amount of (C) is blended, wear of the drill blade during drilling of the laminated plate can be suppressed. Therefore, the life of the drill can be extended. Moreover, even if a drilling process is applied to form a through hole, it is difficult to form irregularities on the inner surface of the hole to be formed, and the inner surface of the hole can be formed smoothly. For this reason, when through-holes are formed by plating the inner surface of the holes, high conduction reliability can be imparted to the through-holes. Moreover, the heat conductivity of a laminated board can be improved remarkably by mix | blending the aluminum oxide particle (C) excellent in heat conductivity. In addition, in order to mix | blend the aluminum oxide particle (C) of a small particle diameter, the drill workability of a laminated board is not reduced remarkably. Moreover, heat conductivity can be provided by mix | blending the said inorganic component (B), without reducing heat resistance and drill workability remarkably.
 本実施形態の熱伝導性及びドリル加工性に優れたコンポジット積層板は、液晶ディスプレイに搭載されるようなLEDバックライトユニットのプリント配線基板や、LED照明のプリント配線基板等のような、高い放熱性が要求される用途に好ましく用いられる。 The composite laminated board excellent in thermal conductivity and drilling workability of this embodiment has high heat dissipation such as a printed wiring board of an LED backlight unit mounted on a liquid crystal display or a printed wiring board of LED lighting. It is preferably used for applications where properties are required.
 具体的には、LEDの用途の一つとして、図2の模式上面図として示したような、液晶ディスプレイに搭載されるようなLEDバックライトユニット20が挙げられる。図2におけるLEDバックライトユニット20は、プリント配線基板21に複数(図2では3個)のLED22が実装されたLEDモジュール23を多数配列して構成されており、液晶パネルの背面に配設することにより、液晶ディスプレイ等のバックライトとして用いられる。従来から広く普及しているタイプの液晶ディスプレイには、液晶ディスプレイのバックライトとして冷陰極管(CCFL)方式のバックライトが広く用いられてきたが、近年、冷陰極管方式のバックライトに比べて色域を広げることができるために画質を向上させることができ、また、水銀を用いていない点から環境負荷が小さく、さらに薄型化も可能であるという利点から、上記のようなLEDバックライトユニットが活発に開発されている。 Specifically, an LED backlight unit 20 mounted on a liquid crystal display as shown in the schematic top view of FIG. The LED backlight unit 20 in FIG. 2 is configured by arranging a large number of LED modules 23 each having a plurality of (three in FIG. 2) LEDs 22 mounted on a printed wiring board 21, and is disposed on the back of the liquid crystal panel. Therefore, it is used as a backlight for a liquid crystal display or the like. In the liquid crystal display of the type that has been widely used in the past, a cold cathode tube (CCFL) type backlight has been widely used as a backlight of the liquid crystal display, but in recent years, compared with a cold cathode tube type backlight. Since the color gamut can be widened, the image quality can be improved, the environmental load is small because mercury is not used, and the LED backlight unit as described above can be reduced in thickness. Is being actively developed.
 LEDモジュールは、一般的に、冷陰極管に比べて消費電力が大きく、そのために発熱量が多い。このような高い放熱性が要求されるようなプリント配線基板21として、本発明のコンポジット積層板を用いることにより、放熱の問題が大幅に改善される。したがって、LEDの発光効率を向上させることができる。 LED modules generally consume more power than cold cathode tubes, and therefore generate a large amount of heat. By using the composite laminate of the present invention as the printed wiring board 21 that requires such high heat dissipation, the problem of heat dissipation is greatly improved. Therefore, the luminous efficiency of the LED can be improved.
 本発明を実施例によりさらに具体的に説明する。なお、本発明は実施例により何ら限定されるものではない。 The present invention will be described more specifically with reference to examples. In addition, this invention is not limited at all by the Example.
(実施例1)
 〈積層板の製造〉
 ビスフェノールA型エポキシ樹脂とジシアンジアミド(Dicy)系硬化剤とを含有する熱硬化性樹脂ワニスの熱硬化性樹脂分100体積部に対して、ギブサイト型水酸化アルミニウム(住友化学(株)製、D50:5.4μm)35体積部、ギブサイト型水酸化アルミニウム(住友化学(株)製、D50:12.6μm)35体積部、ベーマイト(D50:5.5μm)15体積部、及び酸化アルミニウム(住友化学(株)製、D50:0.76μm)15体積部を配合し、均一に分散させた。充填材が配合された樹脂ワニスを、目付け60g/m、厚み400μmのガラス不織布(バイリーン(株)製のガラス不織布)に含浸させ芯材層プリプレグを得た。
Example 1
<Manufacture of laminates>
Bisphenol A type epoxy to the resin and dicyandiamide (Dicy) thermosetting resin per 100 parts by volume of a thermosetting resin varnish containing a curing agent, gibbsite type aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd., D 50 : 5.4 μm) 35 parts by volume, Gibbsite type aluminum hydroxide (Sumitomo Chemical Co., Ltd., D 50 : 12.6 μm) 35 parts by volume, boehmite (D 50 : 5.5 μm) 15 parts by volume, and aluminum oxide ( 15 parts by volume of Sumitomo Chemical Co., Ltd., D 50 : 0.76 μm) was blended and dispersed uniformly. The resin varnish blended with the filler was impregnated into a glass nonwoven fabric (glass nonwoven fabric manufactured by Vilene Co., Ltd.) having a basis weight of 60 g / m 2 and a thickness of 400 μm to obtain a core layer prepreg.
 一方、目付け200g/m、厚み180μmのガラスクロス(織布)(日東紡(株)製の7628)に、硬化剤含有エポキシ樹脂ワニスを、充填材を配合せずに含浸させることにより、表材層プリプレグを得た。 On the other hand, a glass cloth (woven fabric) having a basis weight of 200 g / m 2 and a thickness of 180 μm (7628 manufactured by Nittobo Co., Ltd.) was impregnated with a curing agent-containing epoxy resin varnish without adding a filler. A material layer prepreg was obtained.
 そして、芯材層プリプレグを2枚重ね、その両外表面それぞれに、表材層プリプレグ1枚と厚み0.018mmの銅箔を順に載せて積層体を得た。この積層体を2枚の金属プレート間に挟み、温度180℃、圧力30kg/mの条件で加熱成型することにより、厚み1.0mmの銅箔張コンポジット積層板を得た。 And two core material layer prepregs were stacked, and a laminate was obtained by sequentially placing one surface material layer prepreg and a copper foil having a thickness of 0.018 mm on both outer surfaces thereof. The laminate was sandwiched between two metal plates and heat molded under the conditions of a temperature of 180 ° C. and a pressure of 30 kg / m 2 to obtain a 1.0 mm thick copper foil-clad composite laminate.
 得られた銅箔張コンポジット積層板を以下の評価方法に従い、熱伝導率、220℃オーブン耐熱性試験、260℃ハンダ耐熱試験、プレッシャークッカー試験(PCT)、ドリル磨耗率、及び難燃性を評価した。その結果を下記表1に示す。なお、下記表1及び表2において、各実施例及び各比較例における括弧中に示した値は、ギブサイト型水酸化アルミニウム粒子1体積部に対するベーマイト粒子、各無機粒子又は酸化アルミニウム粒子の配合比を表す。 The obtained copper foil-clad composite laminate was evaluated for thermal conductivity, 220 ° C oven heat resistance test, 260 ° C solder heat resistance test, pressure cooker test (PCT), drill wear rate, and flame resistance according to the following evaluation methods. did. The results are shown in Table 1 below. In Tables 1 and 2 below, the values shown in parentheses in each Example and each Comparative Example are the ratios of boehmite particles, inorganic particles or aluminum oxide particles to 1 part by volume of gibbsite type aluminum hydroxide particles. To express.
 〈熱伝導率〉
 得られた銅箔張コンポジット積層板の密度を水中置換法により測定し、また、比熱をDSC(示差走査熱量測定)により測定し、さらに、レーザーフラッシュ法により熱拡散率を測定した。
<Thermal conductivity>
The density of the obtained copper foil-clad composite laminate was measured by an underwater substitution method, the specific heat was measured by DSC (differential scanning calorimetry), and the thermal diffusivity was measured by a laser flash method.
 そして、熱伝導率を以下の式から算出した。
熱伝導率(W/m・K)=密度(kg/m3)×比熱(kJ/kg・K)×熱拡散率(m2/S)×1000 
And thermal conductivity was computed from the following formula | equation.
Thermal conductivity (W / m · K) = Density (kg / m 3 ) x Specific heat (kJ / kg · K) x Thermal diffusivity (m 2 / S) x 1000
 〈220℃オーブン耐熱試験〉
 得られた銅箔張コンポジット積層板を用いて、JIS C 6481に準じて作製した試験片を220℃に設定した空気循環装置付き恒温槽中で一時間処理したときに、銅箔および積層板にふくれ及びはがれが生じなかったときを「優」、ふくれまたははがれが生じたときを「劣」と判定した。
<220 ° C oven heat resistance test>
Using the obtained copper foil-clad composite laminate, when a test piece produced according to JIS C 6481 was treated for 1 hour in a thermostat with an air circulation device set at 220 ° C., the copper foil and the laminate were The case where no blistering or peeling occurred was judged as “excellent”, and the case where blistering or peeling occurred was judged as “poor”.
 〈260℃ハンダ耐熱試験〉
 得られた銅箔張コンポジット積層板を用いて、JIS C 6481に準じて作製した試験片を260℃のハンダ浴に浸漬したときに、銅箔および積層板にふくれまたははがれが生じなかったときの最大時間を特定した。
<260 ° C solder heat resistance test>
When the test piece produced according to JIS C 6481 was immersed in a 260 ° C. solder bath using the obtained copper foil-clad composite laminate, the copper foil and laminate were not blistered or peeled off. The maximum time was identified.
 〈プレッシャークッカー試験(PCT)〉
 得られた銅箔張コンポジット積層板を用いて、JIS C 6481に準じて作製した試験片を、121℃、2気圧のオートクレーブ中で60分間処理した。そして、処理された積層板を、260℃のはんだ槽にディッピングしたときに、銅箔および積層板にふくれまたははがれが生じなかったときの最大時間を特定した。
<Pressure cooker test (PCT)>
Using the obtained copper foil-clad composite laminate, a test piece prepared according to JIS C 6481 was treated in an autoclave at 121 ° C. and 2 atmospheres for 60 minutes. And when the processed laminated board was dipped in a solder bath at 260 ° C., the maximum time when no blistering or peeling occurred on the copper foil and the laminated board was specified.
 〈ドリル磨耗率〉
 得られた積層体を3枚重ね、ドリル(ドリル径0.5mm、振れ角35°)にて60000回転/minで孔を3000個穿設した後のドリルの刃の摩耗率を、ドリル加工前のドリル刃の大きさ(面積)に対するドリル加工により摩耗したドリル刃の(面積)の割合(百分率)により評価した。
<Drill wear rate>
Three layers of the obtained laminates were stacked, and the wear rate of the drill blade after drilling 3000 holes at 60000 rpm with a drill (drill diameter 0.5 mm, deflection angle 35 °) before drilling It was evaluated by the ratio (percentage) of (area) of the drill blade worn by drilling to the size (area) of the drill blade.
 〈難燃性〉
 得られた銅箔張コンポジット積層板を所定の大きさに切り出し、UL
94の燃焼試験法に準じて燃焼試験を行い、判定した。
<Flame retardance>
The obtained copper foil-clad composite laminate is cut into a predetermined size, and UL
A combustion test was conducted according to the 94 combustion test method, and the determination was made.
(実施例2~7、及び比較例1~14)
 芯材層プリプレグの製造において、樹脂組成物の組成を表1または表2のように変更した以外は実施例1と同様にして積層体を得、評価した。実施例1および実施例2~7の結果を表1に、及び比較例1~14の結果を表2に示す。
(Examples 2 to 7 and Comparative Examples 1 to 14)
In the production of the core material layer prepreg, a laminate was obtained and evaluated in the same manner as in Example 1 except that the composition of the resin composition was changed as shown in Table 1 or Table 2. The results of Example 1 and Examples 2 to 7 are shown in Table 1, and the results of Comparative Examples 1 to 14 are shown in Table 2.
 なお、実施例4及び実施例6では、平均粒子径(D50)6.5μmのタルク(富士タルク工業(株)製)、比較例8では、平均粒子径(D50)0.76μmの酸化アルミニウム(住友化学(株)製)を用いた。 In Examples 4 and 6, talc (produced by Fuji Talc Kogyo Co., Ltd.) having an average particle size (D 50 ) of 6.5 μm, and in Comparative Example 8, oxidation having an average particle size (D 50 ) of 0.76 μm. Aluminum (Sumitomo Chemical Co., Ltd.) was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示された結果から、本発明に係る実施例1~7の銅箔張コンポジット積層板は何れも0.97W/m・K以上の高い熱伝導性を有し、耐熱性、ドリル耐摩耗性、難燃性の何れもが高いものであった。一方、一般的な粒子径の酸化アルミニウムを用いた比較例8の銅箔張コンポジット積層板は、微細な粒子径の酸化アルミニウムを用いた実施例1の銅箔張コンポジット積層板と比較して、ドリル耐摩耗性が非常に悪かった。また、実施例2と比較例4とを比較すると、酸化アルミニウムを配合しなければ充分な熱伝導率が得られないことが分かる。また、ギブサイト型水酸化アルミニウムを配合しなかった比較例10及び比較例11では難燃性がV-1レベルであった。また、無機充填材の合計量がエポキシ樹脂100質量部に対して70質量部である比較例12においては、熱伝導率が著しく低かった。また、ベーマイトを含有しない比較例2、3、6、7及び14は、オーブン耐熱性及びハンダ耐熱性が低かった。 From the results shown in Tables 1 and 2, the copper foil-clad composite laminates of Examples 1 to 7 according to the present invention all have a high thermal conductivity of 0.97 W / m · K or more, and are heat resistant. Both drill wear resistance and flame retardancy were high. On the other hand, the copper foil-clad composite laminate of Comparative Example 8 using aluminum oxide having a general particle size is compared with the copper foil-clad composite laminate of Example 1 using aluminum oxide having a fine particle size, Drill wear resistance was very poor. Moreover, when Example 2 and Comparative Example 4 are compared, it can be seen that sufficient thermal conductivity cannot be obtained unless aluminum oxide is blended. In Comparative Example 10 and Comparative Example 11 in which no gibbsite type aluminum hydroxide was blended, the flame retardancy was at the V-1 level. Moreover, in the comparative example 12 whose total amount of an inorganic filler is 70 mass parts with respect to 100 mass parts of epoxy resins, thermal conductivity was remarkably low. Further, Comparative Examples 2, 3, 6, 7, and 14 containing no boehmite had low oven heat resistance and solder heat resistance.
(実施例8~16、及び比較例15~27)
 芯材層プリプレグの製造において、樹脂組成物の組成を表3または表4のように変更した以外は実施例1と同様にして積層体を得、評価した。実施例8~16の結果を表3に、及び比較例15~27の結果を表4に示す。
(Examples 8 to 16 and Comparative Examples 15 to 27)
In the production of the core material layer prepreg, a laminate was obtained and evaluated in the same manner as in Example 1 except that the composition of the resin composition was changed as shown in Table 3 or Table 4. The results of Examples 8 to 16 are shown in Table 3, and the results of Comparative Examples 15 to 27 are shown in Table 4.
 なお、実施例14では、平均粒子径(D50)6.5μmの結晶性シリカ、実施例15では、平均粒子径(D50)6.5μmの酸化マグネシウム(日本軽金属(株)製)、実施例16では、平均粒子径(D50)6.6μmの窒化アルミニウム(古河電子(株)製)、比較例20及び22では、平均粒子径(D50)4μmの酸化アルミニウム(住友化学(株)製)を用いた。 In Example 14, the average particle diameter (D 50) 6.5 [mu] m of crystalline silica, in Example 15, (manufactured by Nippon Light Metal Co.) average particle size (D 50) of magnesium oxide 6.5 [mu] m, implementation In Example 16, aluminum nitride (manufactured by Furukawa Electronics Co., Ltd.) having an average particle diameter (D 50 ) of 6.6 μm, and in Comparative Examples 20 and 22, aluminum oxide having an average particle diameter (D 50 ) of 4 μm (Sumitomo Chemical Co., Ltd.) Made).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3の結果から、本発明に係る実施例8~16の積層板においては、何れも熱伝導率が高く、オーブン耐熱性及びPCT耐熱性にも優れていた。また、ドリル摩耗率も低く、難燃性もV-0レベルであった。一方、表4の結果から、比較例16及び比較例17の積層板のように、ギブサイト型水酸化アルミニウムを多く含有する場合には、耐熱性が低下した。また、タルクや酸化アルミニウムのみを含有する比較例18~20の積層板においては、難燃性がV-1レベルであった。また、実施例8の平均粒径0.76μmの酸化アルミニウムに代えて、平均粒径4μmの酸化アルミニウムを用いた比較例22では、ドリル磨耗性が著しく高かった。また、ギブサイト型水酸化アルミニウム1体積部に対するタルクの配合比が1.4と高い比較例23の積層板においても、ドリル磨耗性が著しく高かった。また、ギブサイト型水酸化アルミニウムを含有しない比較例24の積層板もドリル摩耗率が高く、また、難燃性もV-1レベルであった。また、ギブサイト型水酸化アルミニウム1体積部に対する平均粒径0.76μmの酸化アルミニウムの配合比が1.1と高い比較例25の積層板においても、ドリル磨耗性が著しく高く、また、難燃性もV-1レベルであった。 From the results shown in Table 3, the laminated plates of Examples 8 to 16 according to the present invention all had high thermal conductivity and excellent oven heat resistance and PCT heat resistance. Also, the drill wear rate was low, and the flame retardancy was V-0 level. On the other hand, from the results shown in Table 4, the heat resistance decreased when a large amount of gibbsite-type aluminum hydroxide was contained as in the laminates of Comparative Examples 16 and 17. Further, in the laminates of Comparative Examples 18 to 20 containing only talc and aluminum oxide, the flame retardancy was at the V-1 level. Moreover, it replaced with the aluminum oxide with an average particle diameter of 0.76 micrometer of Example 8, and the drill abrasion property was remarkably high in the comparative example 22 using the aluminum oxide with an average particle diameter of 4 micrometers. In addition, the wear of the drill was also extremely high in the laminate of Comparative Example 23 having a high talc compounding ratio of 1.4 to 1 part by volume of gibbsite type aluminum hydroxide. Further, the laminate of Comparative Example 24 containing no gibbsite-type aluminum hydroxide also had a high drill wear rate, and the flame retardancy was at the V-1 level. Further, in the laminate of Comparative Example 25 having a high compounding ratio of 0.76 μm of aluminum oxide with an average particle diameter of 0.76 μm per 1 part by volume of gibbsite-type aluminum hydroxide, the drill wear is remarkably high and flame retardancy is also achieved. Was also at the V-1 level.
 以上説明されたように、本発明の一局面は、不織繊維基材に熱硬化性樹脂組成物を含浸させて得られた芯材層と、前記芯材層の両表面にそれぞれ積層された表材層とが積層一体化された積層板であって、前記熱硬化性樹脂組成物は、熱硬化性樹脂100体積部に対して無機充填材80~150体積部を含有し、前記無機充填材は、(A)2~15μmの平均粒子径(D50)を有するギブサイト型水酸化アルミニウム粒子、(B)2~15μmの平均粒子径(D50)を有するベーマイト粒子、及び2~15μmの平均粒子径(D50)を有する、遊離開始温度が400℃以上である結晶水を含有する、又は結晶水を含有しない無機粒子からなる群から選ばれる少なくとも1種の無機成分、及び(C)1.5μm以下の平均粒子径(D50)を有する酸化アルミニウム粒子を含有し、前記ギブサイト型水酸化アルミニウム粒子(A)と前記ベーマイト粒子及び前記無機粒子からなる群から選ばれる少なくとも1種の無機成分(B)と前記酸化アルミニウム粒子(C)との配合比(体積比)が、1:0.1~1:0.1~1である積層板である。 As described above, according to one aspect of the present invention, the core layer obtained by impregnating the non-woven fiber base material with the thermosetting resin composition and the both surfaces of the core layer are laminated. A laminate in which a surface layer is laminated and integrated, wherein the thermosetting resin composition contains 80 to 150 parts by volume of an inorganic filler with respect to 100 parts by volume of the thermosetting resin, and the inorganic filling The material comprises (A) gibbsite type aluminum hydroxide particles having an average particle size (D 50 ) of 2 to 15 μm, (B) boehmite particles having an average particle size (D 50 ) of 2 to 15 μm, and 2 to 15 μm. At least one inorganic component selected from the group consisting of inorganic particles having an average particle size (D 50 ), containing crystallization water having a liberation start temperature of 400 ° C. or higher, or containing no crystallization water, and (C) Average particle diameter of 1.5 μm or less (D 50 ), At least one inorganic component (B) selected from the group consisting of the gibbsite type aluminum hydroxide particles (A), the boehmite particles, and the inorganic particles, and the aluminum oxide particles (C). ) With a mixing ratio (volume ratio) of 1: 0.1 to 1: 0.1 to 1.
 上記構成によれば、熱伝導性、耐熱性、ドリル加工性、及び難燃性に優れた積層板が得られる。熱伝導性を高めるために、熱硬化性樹脂組成物に一般的な酸化アルミニウムを配合した場合にはドリル加工性が著しく低下する。酸化アルミニウムは高い硬度を有するためである。本発明においては、粒子径の極めて小さい酸化アルミニウムを所定割合で配合することにより、ドリル加工性を低下させずに、耐熱性を著しく向上させたものである。 According to the above configuration, a laminate having excellent thermal conductivity, heat resistance, drill workability, and flame retardancy can be obtained. In order to improve thermal conductivity, drilling workability will fall remarkably when a general aluminum oxide is mix | blended with a thermosetting resin composition. This is because aluminum oxide has a high hardness. In the present invention, by adding aluminum oxide having a very small particle diameter at a predetermined ratio, the heat resistance is remarkably improved without reducing drill workability.
 また、アルミニウム化合物であるギブサイト型水酸化アルミニウム(Al(OH)またはAl・3HO)は、熱伝導性、ドリル加工性、及び難燃性をバランスよく付与する成分である。ギブサイト型水酸化アルミニウムは、約200~230℃程度で結晶水を放出する特性を潜在的に有するために、特に難燃性を付与する効果が高い。しかしながら、配合割合が多すぎる場合には、ハンダリフロー時にブリスタ等を発生させる原因になる。 Gibbsite-type aluminum hydroxide (Al (OH) 3 or Al 2 O 3 .3H 2 O), which is an aluminum compound, is a component that imparts heat conductivity, drill workability, and flame retardancy in a well-balanced manner. Gibbsite type aluminum hydroxide has a characteristic of releasing crystal water at about 200 to 230 ° C., and therefore has a particularly high effect of imparting flame retardancy. However, when there are too many compounding ratios, it becomes a cause of generating a blister etc. at the time of solder reflow.
 さらに、アルミニウム系化合物であるベーマイト(AlOOH)は、積層体に熱伝導性と耐熱性とを付与することに寄与する。ベーマイトは、約450~500℃程度で結晶水を放出する特性を潜在的に有するために、ギブサイト型水酸化アルミニウムよりも耐熱性に優れている。また、高温時における難燃性を発揮する。 Furthermore, boehmite (AlOOH), which is an aluminum-based compound, contributes to imparting thermal conductivity and heat resistance to the laminate. Boehmite is potentially superior in heat resistance to gibbsite type aluminum hydroxide because it has the potential to release crystal water at about 450-500 ° C. In addition, it exhibits flame retardancy at high temperatures.
 また、遊離開始温度が400℃以上である結晶水を含有する、又は結晶水を含有しない無機粒子は、同様に、積層体に熱伝導性と耐熱性とを付与することに寄与する。このような無機粒子を配合することにより、回路基板のリフローハンダの際にブリスタが発生することを抑制することができる。また、高温時における難燃性も発揮させることができる。 In addition, inorganic particles containing crystallization water having a release start temperature of 400 ° C. or higher or not containing crystallization water similarly contribute to imparting thermal conductivity and heat resistance to the laminate. By blending such inorganic particles, it is possible to suppress the occurrence of blisters during reflow soldering of the circuit board. Moreover, the flame retardance at the time of high temperature can also be exhibited.
 本発明においては、所定の平均粒子径(D50)を有するギブサイト型水酸化アルミニウム(A)と、所定の平均粒子径(D50)を有する、ベーマイト粒子、及び遊離開始温度が400℃以上である結晶水を含有する、又は結晶水を含有しない無機粒子からなる群から選ばれる少なくとも1種の無機成分(B)と、粒子径の小さい酸化アルミニウム(C)とを上記所定割合で配合した無機充填材を用いることにより、優れた熱伝導率、優れた耐熱性、優れたドリル加工性、及び難燃性を兼ね備えた積層板を得るための熱硬化性樹脂組成物が得られる。 In the present invention, a predetermined average particle diameter (D 50) of gibbsite type aluminum hydroxide having (A), having a predetermined average particle diameter (D 50), boehmite particles, and free starting temperature of 400 ° C. or higher An inorganic material containing at least one inorganic component (B) selected from the group consisting of inorganic particles containing or not containing water of crystallization and aluminum oxide (C) having a small particle size in the above-mentioned ratio. By using a filler, the thermosetting resin composition for obtaining the laminated board which has the outstanding heat conductivity, the outstanding heat resistance, the outstanding drill workability, and a flame retardance is obtained.
 このような熱硬化性樹脂組成物を用いて得られる積層板は、高い放熱性が要求される各種基板、特に、発熱量が多い複数のLEDが搭載されるようなLED搭載用基板に好ましく用いられ得る。このような積層板からなるプリント配線板は、各種電子部品を表面実装した場合には、鉛フリーのリフローハンダ温度である260℃程度の温度においても、金属箔にブリスタが発生しにくい。 A laminate obtained using such a thermosetting resin composition is preferably used for various substrates that require high heat dissipation, particularly for LED mounting substrates on which a plurality of LEDs that generate a large amount of heat are mounted. Can be. When a printed wiring board made of such a laminated board is surface-mounted with various electronic components, blisters are hardly generated on the metal foil even at a temperature of about 260 ° C., which is a lead-free reflow soldering temperature.
 また、前記ギブサイト型水酸化アルミニウム粒子(A)は、2~10μmの平均粒子径(D50)を有する第1のギブサイト型水酸化アルミニウムと、10~15μmの平均粒子径(D50)を有する第2のギブサイト型水酸化アルミニウムとの配合物であることが好ましい。上記構成によれば、無機充填材がより密に充填されることにより、熱伝導性が特に優れる積層板が得られる。 Further, the gibbsite type aluminum hydroxide particles (A) has a first gibbsite type aluminum hydroxide having an average particle size of 2 ~ 10μm (D 50), the average particle size of 10 ~ 15 [mu] m to (D 50) A blend with the second gibbsite type aluminum hydroxide is preferred. According to the said structure, the laminated board especially excellent in heat conductivity is obtained by being more closely filled with an inorganic filler.
 前記無機成分(B)の1種である無機粒子としては、酸化アルミニウム、酸化マグネシウム、結晶性シリカ、水酸化アルミニウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、タルク、焼成カオリン、及びクレーからなる群から選ばれる少なくとも1種の粒子が好ましく用いられる。 Examples of the inorganic particles that are one of the inorganic components (B) include aluminum oxide, magnesium oxide, crystalline silica, aluminum hydroxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, talc, calcined kaolin, and clay. At least one kind of particles selected from the group consisting of
 また、上記記載の熱硬化性樹脂組成物と同様の成分を同様の組成比率で配合した熱硬化性樹脂組成物を織繊維基材に含浸させて得られる表材層が、上記芯材層の両表面にそれぞれ積層されて、積層一体化されて得られる積層板が好ましい。上記構成によれば、優れた熱伝導率、優れた耐熱性、優れたドリル加工性、及び難燃性を兼ね備えた積層板が得られる。 Further, a surface layer obtained by impregnating a woven fiber base material with a thermosetting resin composition in which the same components as the thermosetting resin composition described above are blended in the same composition ratio is the core material layer. A laminate obtained by laminating and integrating the both surfaces is preferable. According to the said structure, the laminated board which has the outstanding heat conductivity, the outstanding heat resistance, the outstanding drill workability, and a flame retardance is obtained.
 このような積層板から得られる回路基板は、放熱性、難燃性及び、特にドリル加工性に優れる。従って、LEDのような放熱性が要求される電子部品を搭載する回路基板として好ましく用いられ得る。 A circuit board obtained from such a laminate is excellent in heat dissipation, flame retardancy, and particularly drillability. Therefore, it can be preferably used as a circuit board on which electronic components such as LEDs that require heat dissipation are mounted.
 本発明によれば、熱伝導性、耐熱性、ドリル加工性、及び難燃性の全てに優れた積層板や回路基板が得られる。 According to the present invention, a laminated board and a circuit board excellent in all of thermal conductivity, heat resistance, drill workability, and flame retardancy can be obtained.

Claims (7)

  1.  不織繊維基材に熱硬化性樹脂組成物を含浸させて得られた芯材層と、前記芯材層の両表面にそれぞれ積層された表材層と、が積層一体化された積層板であって、
     前記熱硬化性樹脂組成物は、熱硬化性樹脂100体積部に対して無機充填材80~150体積部を含有し、
     前記無機充填材は、(A)2~15μmの平均粒子径(D50)を有するギブサイト型水酸化アルミニウム粒子、(B)2~15μmの平均粒子径(D50)を有するベーマイト粒子、及び2~15μmの平均粒子径(D50)を有する、遊離開始温度が400℃以上である結晶水を含有する、又は結晶水を含有しない無機粒子からなる群から選ばれる少なくとも1種の無機成分、及び(C)1.5μm以下の平均粒子径(D50)を有する酸化アルミニウム粒子を含有し、
     前記ギブサイト型水酸化アルミニウム粒子(A)と前記ベーマイト粒子及び前記無機粒子からなる群から選ばれる少なくとも1種の無機成分(B)と前記酸化アルミニウム粒子(C)との配合比(体積比)が、1:0.1~1:0.1~1である積層板。
    A laminate in which a core layer obtained by impregnating a non-woven fiber base material with a thermosetting resin composition and a surface layer laminated on both surfaces of the core layer are laminated and integrated. There,
    The thermosetting resin composition contains 80 to 150 parts by volume of an inorganic filler with respect to 100 parts by volume of the thermosetting resin,
    The inorganic filler comprises (A) gibbsite type aluminum hydroxide particles having an average particle size (D 50 ) of 2 to 15 μm, (B) boehmite particles having an average particle size (D 50 ) of 2 to 15 μm, and 2 At least one inorganic component selected from the group consisting of inorganic particles having an average particle diameter (D 50 ) of ˜15 μm, containing crystal water having a freezing start temperature of 400 ° C. or higher, or containing no crystal water, and (C) containing aluminum oxide particles having an average particle diameter (D 50 ) of 1.5 μm or less,
    A blending ratio (volume ratio) of at least one inorganic component (B) selected from the group consisting of the gibbsite-type aluminum hydroxide particles (A), the boehmite particles, and the inorganic particles and the aluminum oxide particles (C). 1. Laminate which is 1: 0.1-1: 0.1-1.
  2.  前記ギブサイト型水酸化アルミニウム粒子(A)が、2~10μmの平均粒子径(D50)を有する第1のギブサイト型水酸化アルミニウムと、10~15μmの平均粒子径(D50)を有する第2のギブサイト型水酸化アルミニウムとの配合物である請求項1に記載の積層板。 The gibbsite type aluminum hydroxide particles (A) has a first gibbsite type aluminum hydroxide having an average particle size of 2 ~ 10μm (D 50), second with an average particle diameter of 10 ~ 15μm (D 50) The laminate according to claim 1, which is a blend with a gibbsite type aluminum hydroxide.
  3.  前記無機成分(B)の1種である無機粒子が、酸化アルミニウム、酸化マグネシウム、結晶性シリカ、水酸化アルミニウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、タルク、焼成カオリン、及びクレーからなる群から選ばれる少なくとも1種の粒子である請求項1または2に記載の積層板。 Inorganic particles as one of the inorganic components (B) are made of aluminum oxide, magnesium oxide, crystalline silica, aluminum hydroxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, talc, calcined kaolin, and clay. The laminate according to claim 1 or 2, which is at least one kind of particles selected from the group.
  4.  前記表材層が、織繊維基材に熱硬化性樹脂組成物を含浸させてなり、
     前記熱硬化性樹脂組成物は、熱硬化性樹脂100体積部に対して無機充填材80~150体積部を含有し、
     前記無機充填材は、(A)2~15μmの平均粒子径(D50)を有するギブサイト型水酸化アルミニウム粒子、(B)2~15μmの平均粒子径(D50)を有するベーマイト粒子、及び2~15μmの平均粒子径(D50)を有する、遊離開始温度が400℃以上である結晶水を含有する、又は結晶水を含有しない無機粒子からなる群から選ばれる少なくとも1種の無機成分、及び(C)1.5μm以下の平均粒子径(D50)を有する酸化アルミニウム粒子を含有し、
     前記ギブサイト型水酸化アルミニウム粒子(A)と前記ベーマイト粒子及び前記無機粒子からなる群から選ばれる少なくとも1種の無機成分(B)と前記酸化アルミニウム粒子(C)との配合比(体積比)が、1:0.1~1:0.1~1である請求項1~3の何れか1項に記載の積層板。
    The surface layer is formed by impregnating a woven fiber base material with a thermosetting resin composition,
    The thermosetting resin composition contains 80 to 150 parts by volume of an inorganic filler with respect to 100 parts by volume of the thermosetting resin,
    The inorganic filler comprises (A) gibbsite type aluminum hydroxide particles having an average particle size (D 50 ) of 2 to 15 μm, (B) boehmite particles having an average particle size (D 50 ) of 2 to 15 μm, and 2 At least one inorganic component selected from the group consisting of inorganic particles having an average particle diameter (D 50 ) of ˜15 μm, containing crystal water having a freezing start temperature of 400 ° C. or higher, or containing no crystal water, and (C) containing aluminum oxide particles having an average particle diameter (D 50 ) of 1.5 μm or less,
    A blending ratio (volume ratio) of at least one inorganic component (B) selected from the group consisting of the gibbsite-type aluminum hydroxide particles (A), the boehmite particles, and the inorganic particles and the aluminum oxide particles (C). The laminate according to any one of claims 1 to 3, wherein the ratio is 1: 0.1 to 1: 0.1 to 1.
  5.  請求項1~4の何れか1項に記載の積層板の少なくとも一表面に、金属箔が張られてなる金属箔張積層板。 A metal foil-clad laminate in which a metal foil is stretched on at least one surface of the laminate according to any one of claims 1 to 4.
  6.  請求項5に記載の金属箔張積層板に回路形成して得られる回路基板。 A circuit board obtained by forming a circuit on the metal foil-clad laminate according to claim 5.
  7.  請求項6に記載の回路基板からなるLED搭載用回路基板。 An LED-mounted circuit board comprising the circuit board according to claim 6.
PCT/JP2009/059169 2008-05-19 2009-05-19 Laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting WO2009142192A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801188833A CN102036815B (en) 2008-05-19 2009-05-19 Laminate, metal-foil-clad laminate, circuit board, and circuit board for LED mounting
KR1020107027404A KR101319689B1 (en) 2008-05-19 2009-05-19 Laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008130691 2008-05-19
JP2008-130691 2008-05-19
JP2008-287046 2008-11-07
JP2008287046A JP4645726B2 (en) 2008-05-19 2008-11-07 Laminated board, prepreg, metal foil clad laminated board, circuit board, and circuit board for LED mounting
JP2009-106492 2009-04-24
JP2009106492A JP4788799B2 (en) 2009-04-24 2009-04-24 Thermosetting resin composition, prepreg, composite laminate, metal foil-clad laminate, circuit board, and circuit board for LED mounting

Publications (1)

Publication Number Publication Date
WO2009142192A1 true WO2009142192A1 (en) 2009-11-26

Family

ID=41340125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059169 WO2009142192A1 (en) 2008-05-19 2009-05-19 Laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting

Country Status (1)

Country Link
WO (1) WO2009142192A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061894A1 (en) * 2009-11-20 2011-05-26 パナソニック電工株式会社 Prepreg, laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
WO2011065372A1 (en) * 2009-11-25 2011-06-03 パナソニック電工株式会社 Laminate plate, use therefor, and production method thereof
WO2012164997A1 (en) * 2011-05-30 2012-12-06 パナソニック株式会社 Laminate sheet, application therefor, and method for producing same
CN103180371A (en) * 2010-10-29 2013-06-26 松下电器产业株式会社 Prepreg, laminate, metal foil-clad laminate, circuit board and LED module
CN103507330A (en) * 2012-06-18 2014-01-15 上海杰事杰新材料(集团)股份有限公司 Composite core aluminum plastic board and making method thereof
US20140087614A1 (en) * 2011-05-02 2014-03-27 Panasonic Corporation Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
WO2014162633A1 (en) 2013-04-03 2014-10-09 日本化薬株式会社 Achromatic polarization element, and polarization plate
US10209417B2 (en) 2013-04-03 2019-02-19 Nippon Kayaku Kabushiki Kaisha Achromatic dye-based highly-transmissive polarization element, and polarization plate
US10215902B2 (en) 2013-04-03 2019-02-26 Nippon Kayaku Kabushiki Kaisha Achromatic dye-based polarization element, and polarization plate
US10568233B2 (en) 2012-06-28 2020-02-18 3M Innovative Properties Company Thermally conductive substrate article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197633A (en) * 1987-10-09 1989-04-17 Sumitomo Bakelite Co Ltd Manufacture of laminated plate for printed circuit
JPH04243186A (en) * 1991-01-17 1992-08-31 Kanegafuchi Chem Ind Co Ltd Laminated board for printed circuit
JPH06172581A (en) * 1992-12-10 1994-06-21 Sumitomo Chem Co Ltd Gibbsitic aluminum hydroxide as filler for resin
JP2005162878A (en) * 2003-12-02 2005-06-23 Toyobo Co Ltd Polyimide film, method for producing the same, and base board using the same
JP2006049374A (en) * 2004-07-30 2006-02-16 Matsushita Electric Works Ltd Composite white laminate for electricity
JP2007012876A (en) * 2005-06-30 2007-01-18 Asahi Glass Co Ltd Laminated material for circuit board and manufacturing method thereof
JP2007528919A (en) * 2004-03-05 2007-10-18 サン−ゴバン パフォーマンス プラスティックス コーポレイション Flame resistant thermal interface material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197633A (en) * 1987-10-09 1989-04-17 Sumitomo Bakelite Co Ltd Manufacture of laminated plate for printed circuit
JPH04243186A (en) * 1991-01-17 1992-08-31 Kanegafuchi Chem Ind Co Ltd Laminated board for printed circuit
JPH06172581A (en) * 1992-12-10 1994-06-21 Sumitomo Chem Co Ltd Gibbsitic aluminum hydroxide as filler for resin
JP2005162878A (en) * 2003-12-02 2005-06-23 Toyobo Co Ltd Polyimide film, method for producing the same, and base board using the same
JP2007528919A (en) * 2004-03-05 2007-10-18 サン−ゴバン パフォーマンス プラスティックス コーポレイション Flame resistant thermal interface material
JP2006049374A (en) * 2004-07-30 2006-02-16 Matsushita Electric Works Ltd Composite white laminate for electricity
JP2007012876A (en) * 2005-06-30 2007-01-18 Asahi Glass Co Ltd Laminated material for circuit board and manufacturing method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061894A1 (en) * 2009-11-20 2011-05-26 パナソニック電工株式会社 Prepreg, laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
US8603624B2 (en) 2009-11-20 2013-12-10 Panasonic Corporation Prepreg, laminate, metal clad laminate, circuit board, and circuit board for LED mounting
WO2011065372A1 (en) * 2009-11-25 2011-06-03 パナソニック電工株式会社 Laminate plate, use therefor, and production method thereof
JP2011132540A (en) * 2009-11-25 2011-07-07 Panasonic Electric Works Co Ltd Laminate plate, metal foil-clad laminate plate, printed-wiring board, circuit board, led backlight unit, led illumination device, and method for producing laminate plate
JP4893873B1 (en) * 2009-11-25 2012-03-07 パナソニック電工株式会社 Laminate, metal foil-clad laminate, printed wiring board, circuit board, LED backlight unit, LED lighting device, and method for producing laminate
TWI482319B (en) * 2010-10-29 2015-04-21 Panasonic Corp Prepreg, laminated board, metal foil laminated board, circuit board and LED module
US9730320B2 (en) 2010-10-29 2017-08-08 Panasonic Intellectual Property Management Co., Ltd. Prepreg, laminate, metal foil-clad laminate, circuit board and LED module
CN103180371A (en) * 2010-10-29 2013-06-26 松下电器产业株式会社 Prepreg, laminate, metal foil-clad laminate, circuit board and LED module
US9718941B2 (en) 2011-05-02 2017-08-01 Panasonic Intellectual Property Management Co., Ltd. Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
US20140087614A1 (en) * 2011-05-02 2014-03-27 Panasonic Corporation Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
WO2012164997A1 (en) * 2011-05-30 2012-12-06 パナソニック株式会社 Laminate sheet, application therefor, and method for producing same
JP2013010344A (en) * 2011-05-30 2013-01-17 Panasonic Corp Laminated board, metal-foiled laminated board, printed wiring board and circuit base board, led backlight unit, led lighting device and manufacturing method of laminated board
CN103507330A (en) * 2012-06-18 2014-01-15 上海杰事杰新材料(集团)股份有限公司 Composite core aluminum plastic board and making method thereof
US10568233B2 (en) 2012-06-28 2020-02-18 3M Innovative Properties Company Thermally conductive substrate article
WO2014162633A1 (en) 2013-04-03 2014-10-09 日本化薬株式会社 Achromatic polarization element, and polarization plate
US10209417B2 (en) 2013-04-03 2019-02-19 Nippon Kayaku Kabushiki Kaisha Achromatic dye-based highly-transmissive polarization element, and polarization plate
US10209418B2 (en) 2013-04-03 2019-02-19 Nippon Kayaku Kabushiki Kaisha Achromatic polarization element, and polarization plate
US10215902B2 (en) 2013-04-03 2019-02-26 Nippon Kayaku Kabushiki Kaisha Achromatic dye-based polarization element, and polarization plate

Similar Documents

Publication Publication Date Title
JP4645726B2 (en) Laminated board, prepreg, metal foil clad laminated board, circuit board, and circuit board for LED mounting
KR101319689B1 (en) Laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
WO2009142192A1 (en) Laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
JP5830718B2 (en) Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
KR101205503B1 (en) Resin composition for heat-radiating sheet, Heat-radiating sheet and Copper clad laminate employing the same
JP5776019B2 (en) Prepreg, laminate, metal foil clad laminate, circuit board, and circuit board for LED mounting
JP4853599B2 (en) Laminated board, metal foil-clad laminated board, printed wiring board, circuit board, LED backlight unit, LED lighting device
JP4788799B2 (en) Thermosetting resin composition, prepreg, composite laminate, metal foil-clad laminate, circuit board, and circuit board for LED mounting
JP5598190B2 (en) Thermosetting resin composition for circuit board
KR101715717B1 (en) Laminate sheet, application therefor, and method for producing same
JP6074883B2 (en) Prepreg, laminate, metal foil clad laminate, circuit board and LED module
JP6836313B2 (en) Laminated board for insulation
JP2011102394A (en) Thermosetting resin composition, prepreg, composite laminate, metal foil-clad laminate, circuit board, and circuit board for mounting led
JP2013220605A (en) Composite laminated plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118883.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107027404

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09750554

Country of ref document: EP

Kind code of ref document: A1