WO2019193881A1 - Friction transmission belt - Google Patents

Friction transmission belt Download PDF

Info

Publication number
WO2019193881A1
WO2019193881A1 PCT/JP2019/007594 JP2019007594W WO2019193881A1 WO 2019193881 A1 WO2019193881 A1 WO 2019193881A1 JP 2019007594 W JP2019007594 W JP 2019007594W WO 2019193881 A1 WO2019193881 A1 WO 2019193881A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission belt
friction transmission
pulley
fiber
belt
Prior art date
Application number
PCT/JP2019/007594
Other languages
French (fr)
Japanese (ja)
Inventor
友哉 真銅
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2019512017A priority Critical patent/JP6530877B1/en
Publication of WO2019193881A1 publication Critical patent/WO2019193881A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a friction transmission belt.
  • Patent Document 1 discloses a V-ribbed belt having a V-rib surface formed by covering with a surface covering fabric of a warp knitted fabric formed of water-absorbing yarn and non-water-absorbing yarn.
  • Patent Document 2 discloses a V-ribbed belt having a belt back surface configured by being covered with a surface covering cloth of a woven cloth formed by blended yarns of cotton fibers and synthetic fibers.
  • JP2015-127590A Japanese Patent Laid-Open No. 10-9344
  • the present invention is a rubber friction transmission belt having a pulley contact surface formed by being coated with a surface-coated cloth, wherein the surface-coated cloth includes low water-absorbing filament fibers and high water-absorbing staple fibers. It is made of composite spun yarn.
  • the V-ribbed belt B according to the embodiment is, for example, a rubber friction transmission belt used for an auxiliary machine drive belt transmission device provided in an engine room of an automobile.
  • the V-ribbed belt B according to the embodiment has, for example, a belt circumferential length of 700 mm to 3000 mm, a belt width of 10 mm to 36 mm, and a belt thickness of 4.0 mm to 5.0 mm.
  • the V-ribbed belt B according to the embodiment is a belt constituted by three layers of an inner peripheral compression rubber layer 11, an intermediate adhesive rubber layer 12, and an outer peripheral stretch rubber layer 13 each formed of a rubber composition.
  • a main body 10 is provided.
  • the compression rubber layer 11 is formed so that a plurality of V rib forming rubber portions 11a hang down on the inner peripheral side.
  • the plurality of V-rib forming rubber portions 11a are each composed of a protrusion having a substantially inverted triangular cross section extending in the belt length direction, and arranged in parallel in the belt width direction.
  • the thickness of the compression rubber layer 11 is, for example, not less than 2.2 mm and not more than 3.2 mm.
  • the adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section.
  • the thickness of the adhesive rubber layer 12 is, for example, not less than 1.0 mm and not more than 2.5 mm.
  • the stretched rubber layer 13 is also formed in a strip shape having a horizontally long cross section, and the thickness thereof is, for example, not less than 0.4 mm and not more than 0.8 mm. It is preferable that a woven fabric pattern is provided on the surface of the stretched rubber layer 13 from the viewpoint of suppressing the generation of sound when driving the back surface. Instead of the stretch rubber layer 13, a back reinforcing cloth may be provided.
  • the rubber composition for forming the compression rubber layer 11, the adhesive rubber layer 12, and the stretch rubber layer 13 is obtained by heating and kneading an uncrosslinked rubber composition in which various rubber compounding agents including a crosslinking agent are blended with a rubber component.
  • the rubber component is crosslinked by a crosslinking agent by being pressurized.
  • the rubber component examples include ethylene-propylene-diene terpolymer (hereinafter referred to as “EPDM”), ethylene-propylene copolymer (EPM), ethylene-butene copolymer (EDM), ethylene-octene copolymer (EOM), and other ethylene- Examples include ⁇ -olefin elastomers; chloroprene rubber (CR); chlorosulfonated polyethylene rubber (CSM); hydrogenated acrylonitrile rubber (H-NBR). As the rubber component, one or more of these are preferably used, more preferably an ethylene- ⁇ -olefin elastomer, and still more preferably EPDM.
  • EPDM ethylene-propylene-diene terpolymer
  • EPM ethylene-propylene copolymer
  • EOM ethylene-butene copolymer
  • EOM ethylene-octene copolymer
  • H-NBR hydrogenated acrylonitrile rubber
  • crosslinking agent examples include sulfur and organic peroxides.
  • rubber compounding agents other than the crosslinking agent include reinforcing materials such as carbon black, fillers, anti-aging agents, softeners, vulcanization accelerators, and vulcanization acceleration aids.
  • the compression rubber layer 11, the adhesive rubber layer 12, and the stretch rubber layer 13 may be formed of the same rubber composition or different rubber compositions.
  • the surface of the plurality of V-rib forming rubber portions 11 a of the compressed rubber layer 11 is covered with a surface covering cloth 14.
  • the thickness of the surface covering cloth 14 is, for example, not less than 0.3 mm and not more than 1.5 mm.
  • the V rib 15 is comprised by the V rib formation rubber part 11a coat
  • FIG. The surface of the V rib 15 covered with the surface covering cloth 14 becomes a pulley contact surface.
  • Each V-rib 15 has, for example, a rib height of 2.0 mm to 3.0 mm and a width between the proximal ends of 1.0 mm to 3.6 mm.
  • the number of V ribs 15 is, for example, 3 or more and 6 or less (6 in FIG. 1).
  • the surface covering cloth 14 may be either a woven cloth or a knitted cloth.
  • the fabric structure of the woven fabric include plain weave, oblique weave, satin weave, and changed structures thereof.
  • Examples of the knitted fabric structure of the knitted fabric include flat knitting, rubber knitting, pearl knitting, and other changing structures in the weft knitting, and single denby knitting, single bandai knitting, and other changing structures in the warp knitting.
  • the surface covering cloth 14 is preferably composed of a highly elastic knitted cloth. More preferably, it is comprised.
  • the surface covering cloth 14 is not subjected to an adhesion treatment soaking in an adhesive, and the adhesive is not attached to the exposed surface.
  • the surface covering cloth 14 may be subjected to an adhesion treatment soaking in an adhesive.
  • the “adhesion treatment immersed in an adhesive” in the present application is a treatment of immersing in an epoxy resin solution or an isocyanate resin solution, heating, immersing in an RFL aqueous solution and heating, and immersing in a rubber paste and drying. is there. The process of coating the surface of the belt body 10 with rubber paste and drying it is excluded.
  • the surface covering cloth 14 is formed of a composite spun yarn 20 as shown in FIG. That is, the surface coated fabric 14 uses the composite spun yarn 20 as warp and weft of a woven fabric or as a knitting yarn of a knitted fabric.
  • the “composite spun yarn 20” in the present application includes a low water absorption filament fiber 21 having a relatively low water absorption and a high water absorption staple fiber 22 having a relatively high water absorption, and the low water absorption filament.
  • the superabsorbent staple fiber 22 is dispersed between the fibers 21 and twisted.
  • the “filament fiber” in the present application refers to a long continuous fiber.
  • the “staple fiber” in the present application refers to a short fiber having a fiber length of 50 mm or less.
  • the low water absorption filament fiber 21 contained in the composite spun yarn 20 preferably contains a synthetic fiber.
  • the low water absorption filament fibers 21 include aliphatic polyamide fibers such as nylon 66 fibers and nylon 6 fibers; polyester fibers and the like.
  • the low water absorption filament fiber 21 preferably includes one or more of these, more preferably includes an aliphatic polyamide fiber, and includes nylon 66 fiber from the viewpoint of obtaining high wear resistance. Is more preferable.
  • the superabsorbent staple fiber 22 contained in the composite spun yarn 20 preferably contains a cellulosic fiber.
  • the superabsorbent staple fiber 22 include cellulose-based natural fibers such as cotton and hemp; regenerated fibers such as rayon, polynosic, cupra, and lyocell.
  • the superabsorbent staple fiber 22 preferably includes one or more of these, and includes a cellulose-based natural fiber from the viewpoint of obtaining excellent belt running performance in a wet environment as described later. It is more preferable, and it is still more preferable that cotton is included.
  • the content of the low water absorption filament fiber 21 in the composite spun yarn 20 is preferably less than the content of the high water absorption staple fiber 22, but may be more or the same.
  • the mass ratio of the content of the high water absorption staple fiber 22 to the content of the low water absorption filament fiber 21 in the composite spun yarn 20 is preferably 30/70 or more and 90/10 or less, more preferably 50/50 or more and 80/20. It is as follows.
  • the low water-absorbing filament fiber 21 and the high water-absorbing staple fiber 22 are randomly arranged in the yarn cross section, for example, the low water-absorbing filament fiber 21 and the outer peripheral portion are high.
  • the water-absorbing staple fibers 22 may be arranged unevenly or either. However, as described later, from the viewpoint of obtaining excellent belt running performance in a wet environment, it is preferable that the low water-absorbing filament fibers 21 and the high water-absorbing staple fibers 22 are randomly arranged.
  • a core wire 16 is embedded in an intermediate portion of the adhesive rubber layer 12 in the belt thickness direction so as to form a spiral having a pitch in the belt width direction.
  • the core wire 16 is composed of a twisted yarn such as a polyamide fiber, a polyester fiber, an aramid fiber, or a polyamide fiber.
  • the diameter of the core wire 16 is, for example, not less than 0.5 mm and not more than 2.5 mm, and the dimension between the centers of the adjacent core wires 16 in the cross section is, for example, not less than 0.05 mm and not more than 0.20 mm.
  • the core wire 16 may be one of a bonding process that is immersed in an epoxy resin solution or an isocyanate resin solution and heated, a bonding process that is heated after being immersed in an RFL aqueous solution, and a bonding process that is dried after being immersed in rubber paste or Two or more types of adhesion treatment are preferably performed.
  • the composite spinning in which the surface covering cloth 14 on the surface of the V-rib 15 that is the pulley contact surface includes the low water-absorbing filament fiber 21 and the high water-absorbing staple fiber 22.
  • the yarn 20 By being formed of the yarn 20, it is possible to obtain excellent belt running performance in a wet environment.
  • FIG. 3 shows a pulley layout of an auxiliary drive belt transmission device 30 for an automobile using the V-ribbed belt B according to the embodiment.
  • This accessory drive belt transmission device 30 is of a serpentine drive type in which a V-ribbed belt B is wound around six pulleys, four rib pulleys and two flat pulleys, to transmit power.
  • a power steering pulley 31 of a rib pulley is provided at the uppermost position, and an AC generator pulley 32 of a rib pulley is provided below the power steering pulley 31.
  • a flat pulley tensioner pulley 33 is provided at the lower left of the power steering pulley 31, and a flat pulley water pump pulley 34 is provided below the tensioner pulley 33.
  • a ribshaft crankshaft pulley 35 is provided on the lower left side of the tensioner pulley 33, and a rib pulley air conditioner pulley 36 is provided on the lower right side of the crankshaft pulley 35.
  • These pulleys are made of, for example, a metal stamped product, a casting, or a resin molded product such as nylon resin or phenol resin, and the pulley diameter is, for example, 50 mm or more and 150 mm or less.
  • the V-ribbed belt B is wound around the power steering pulley 31 so that the V-rib 15 on the compressed rubber layer 11 side contacts, and then the back of the belt on the stretched rubber layer 13 side contacts.
  • the tensioner pulley 33 After being wound around the tensioner pulley 33, it is wound around the crankshaft pulley 35 and the air conditioner pulley 36 in order so that the V-rib 15 comes into contact, and further wound around the water pump pulley 34 so that the back of the belt comes into contact. It is hung and wound around the AC generator pulley 32 so that the V-rib 15 comes into contact with it, and finally is returned to the power steering pulley 31.
  • the belt span length which is the length of the V-ribbed belt B spanned between the pulleys, is, for example, not less than 50 mm and not more than 300 mm. Misalignment that may occur between the pulleys is 0 ° or more and 2 ° or less.
  • FIGS. 4A and 4B show a crosslinking device 40 used in the method for manufacturing the V-ribbed belt B according to the embodiment.
  • the bridging device 40 includes a base 41, a columnar expansion drum 42 standing on the base 41, and a cylindrical cylindrical mold 43 provided on the outside thereof.
  • the expansion drum 42 includes a drum main body 42a formed in a hollow columnar shape, and a cylindrical rubber expansion sleeve 42b fitted on the outer periphery thereof.
  • a large number of vent holes 42c are formed in the outer peripheral portion of the drum main body 42a, each communicating with the inside thereof.
  • Both end portions of the expansion sleeve 42b are sealed with fixing rings 44 and 45, respectively, with the drum body 42a.
  • the bridging device 40 is provided with pressurizing means (not shown) for introducing and pressurizing high-pressure air into the drum main body 42a, and high-pressure air is introduced into the drum main body 42a by the pressurizing means.
  • the high-pressure air passes through the vent hole 42c and enters between the drum main body 42a and the expansion sleeve 42b to expand the expansion sleeve 42b radially outward.
  • the cylindrical mold 43 is configured to be detachable from the base 41.
  • the cylindrical mold 43 attached to the base 41 is provided concentrically with a space between the expansion drum 42.
  • a plurality of V rib forming grooves 43a extending in the circumferential direction are connected to the inner peripheral surface in the axial direction (groove width direction).
  • Each V-rib forming groove 43a is formed to have a narrower width toward the groove bottom side.
  • the cross-sectional shape is the same as the V-rib 15 of the V-ribbed belt B to be manufactured.
  • the bridging apparatus 40 is provided with heating means and cooling means (both not shown) of the cylindrical mold 43, and the temperature of the cylindrical mold 43 can be controlled by these heating means and cooling means. Has been.
  • each rubber compounding agent including a crosslinking agent is blended with the rubber component, and the resulting uncrosslinked rubber composition is kneaded with a kneader such as a kneader or a Banbury mixer. Is formed into a sheet shape by calendar molding or the like to produce an uncrosslinked rubber sheet for the compressed rubber layer 11. Similarly, uncrosslinked rubber sheets for the adhesive rubber layer 12 and the stretch rubber layer 13 are also produced.
  • the surface covering cloth 14 is prepared and an adhesion process is performed as needed.
  • the surface covering cloth 14 is preferably formed in a cylindrical shape.
  • the core wire 16 is prepared and an adhesion process is performed as needed.
  • a rubber sleeve 47 is placed on a cylindrical drum 46 having a smooth surface, and an uncrosslinked rubber sheet 13 ′ for the stretch rubber layer 13 and an uncrosslinked rubber for the adhesive rubber layer 12 are formed thereon.
  • the rubber sheet 12 ′ is wound in order and laminated, and the core wire 16 is spirally wound from above, and the uncrosslinked rubber sheet 12 ′ for the adhesive rubber layer 12 and the uncrosslinked rubber for the compressed rubber layer 11 are further formed thereon.
  • Sheet 11 ' is wound in order, and finally, it is covered with surface covering cloth 14 to form uncrosslinked slab S'.
  • the rubber sleeve 47 provided with the uncrosslinked slab S ′ is removed from the cylindrical drum 46 and, as shown in FIG. 5B, the rubber sleeve 47 is fitted into the inner peripheral surface side of the cylindrical mold 43, and then the uncrosslinked slab S ′ is provided.
  • the cylindrical mold 43 is attached to the base 41 so as to cover the expansion drum 42.
  • the molding temperature of the belt slab S is, for example, 100 ° C. or more and 180 ° C. or less
  • the molding pressure is, for example, 0.5 MPa or more and 2.0 MPa or less
  • the molding time is, for example, 10 minutes or more and 60 minutes or less.
  • the belt slab S molded on the inner peripheral surface of the cylindrical mold 43 is taken out, and the belt slab S is removed to a predetermined V
  • the V-ribbed belt B is obtained by cutting the number of ribs 15 and turning the front and back.
  • the V-ribbed belt B is shown.
  • the present invention is not particularly limited to this, and a wrapped V-belt or flat belt may be used as long as it is a friction transmission belt having a pulley contact surface covered with a surface-coated cloth. Etc.
  • V-ribbed belt V-ribbed belts of the following examples and comparative examples 1 and 2 were produced.
  • Example> A knitting of a warp knitting having the same configuration as that of the above-described embodiment, wherein a composite spun yarn of nylon 66 fiber of low water absorption filament fiber and cotton of high water absorption staple fiber is used as a surface covering fabric.
  • a V-ribbed belt using a cloth that was not subjected to an adhesion treatment immersed in an adhesive was prepared and used as an example.
  • the V-ribbed belts of the examples were prepared with 6 and 3 V-ribs.
  • nylon 66 fibers and cotton randomly arranged in the yarn cross section were used as the composite spun yarn.
  • the mass ratio of the cotton content to the nylon 66 fiber content in the composite spun yarn is 62/38.
  • the belt body was made of an EPDM composition, and the core wire was made of polyester fiber twisted yarn.
  • FIG. 6A shows a pulley layout of the belt running test machine 50 in the water injection transmission capability test.
  • This belt running test machine 50 is provided with a first drive pulley 51 of a rib pulley having a pulley diameter of 121.6 mm on the lower left side and a second drive pulley 52 of a rib pulley having a pulley diameter of 141.5 mm on the right side thereof. It has been.
  • a first driven pulley 53 of a rib pulley having a pulley diameter of 77.0 mm is provided diagonally to the upper right of the second drive pulley 52, and a second driven pulley of a rib pulley having a pulley diameter of 61.0 mm is provided above the second drive pulley 52.
  • a pulley 54 is provided.
  • first idler pulley 55 of a flat pulley having a pulley diameter of 76.2 mm, and between the first driven pulley 53 and the second driven pulley 54.
  • second idler pulley 56 which is a flat pulley having a pulley diameter of 76.2 mm.
  • the second driven pulley 54 is provided so as to be movable up and down, and is configured to be able to apply an axial load.
  • the first and second driven pulleys 51 and 52 and the first and second driven pulleys are arranged so that the V-rib side contacts the V-ribbed belt B having six V-ribs in each of the example and the comparative examples 1 and 2. 53 and 54, and around the first and second idler pulleys 55 and 56 so that the stretched rubber layer side comes into contact with the second driven pulley 54, an axial load of 706 N is applied upward to give belt tension. It was.
  • the winding angle of the V-ribbed belt B around the second drive pulley 52 was 39 °.
  • the first driving pulley 51 and the second driving pulley 52 are rotated in the same direction at respective rotation speeds of 800 rpm and 931 rpm, thereby forcing the V-ribbed belt B on the second driving pulley 52. Slipped.
  • water droplets were dropped at a rate of 300 ml per minute on the surface of the V rib at the beginning of winding of the V ribbed belt B on the right side of the first drive pulley 51. Then, the maximum value of the generated torque was measured with a torque meter provided on the second drive pulley 52.
  • FIG. 6B shows a pulley layout of the belt running test machine 60 in the abrasion resistance test.
  • This belt running test machine 60 is provided with a driving pulley 61 of a rib pulley having a pulley diameter of 60 mm on the right side and a driven pulley 62 of a rib pulley having a pulley diameter of 60 mm on the left side.
  • the drive pulley 61 is movably provided to the left and right and is configured to be able to apply an axial load.
  • a rotational load of 3.8 kW (5.2 PS) is applied to the driven pulley 62.
  • the V-ribbed belt B having three V-ribs in the example and the comparative examples 1 and 2 is wound around the drive pulley 61 and the driven pulley 62 so that the V-rib side is in contact with the drive pulley 61 and the right side of the drive pulley 61.
  • a belt load was applied by applying an axial load of 1176 N to the belt, and the driving pulley 61 was rotated at a rotational speed of 3500 rpm at room temperature for 170 hours. Then, the change in mass before and after running the belt was determined, and the wear rate was calculated using this as the weight loss.
  • FIG. 7A shows the maximum value of the generated torque of the example and comparative examples 1 and 2.
  • FIG. 7B shows the wear rates of the examples and comparative examples 1 and 2.
  • the maximum value of the generated torque is high, and therefore, the transmission capability in a wet environment. Is high and the wear rate is low.
  • Comparative Example 1 using a surface-coated cloth formed of nylon 66 fiber twist, although the wear rate is low, the maximum value of the generated torque is low, and therefore the transmission capability in a wet environment is low. I understand. Moreover, in the comparative example 2 using the surface covering cloth formed with the cotton spun yarn, the maximum value of the generated torque is high. Therefore, it can be seen that the wear rate is high although the transmission capability in a wet environment is high. .
  • the present invention is useful in the technical field of friction transmission belts.
  • V-ribbed belt (friction drive belt) 14 Surface coated fabric 20 Composite spun yarn 21 Low water absorption filament fiber 22 High water absorption staple fiber

Abstract

A rubber friction transmission belt (B) having a pulley contact surface formed covered by a surface cover fabric (14). The surface cover fabric (14) is formed of a composite spun yarn containing low water-absorbent filament fibers and high water-absorbent staple fibers.

Description

摩擦伝動ベルトFriction transmission belt
 本発明は、摩擦伝動ベルトに関する。 The present invention relates to a friction transmission belt.
 表面被覆布で被覆されて構成されたベルト表面を有するゴム製の摩擦伝動ベルトが知られている。特許文献1には、吸水性糸及び非吸水性糸で形成された経編布の表面被覆布で被覆されて構成されたVリブ表面を有するVリブドベルトが開示されている。特許文献2には、綿繊維と合成繊維との混紡糸で形成された織布の表面被覆布で被覆されて構成されたベルト背面を有するVリブドベルトが開示されている。 A rubber friction transmission belt having a belt surface covered with a surface covering cloth is known. Patent Document 1 discloses a V-ribbed belt having a V-rib surface formed by covering with a surface covering fabric of a warp knitted fabric formed of water-absorbing yarn and non-water-absorbing yarn. Patent Document 2 discloses a V-ribbed belt having a belt back surface configured by being covered with a surface covering cloth of a woven cloth formed by blended yarns of cotton fibers and synthetic fibers.
特開2015-127590公報JP2015-127590A 特開平10-9344号公報Japanese Patent Laid-Open No. 10-9344
 本発明は、表面被覆布で被覆されて構成されたプーリ接触面を有するゴム製の摩擦伝動ベルトであって、前記表面被覆布が、低吸水性フィラメント繊維と、高吸水性ステープル繊維とを含む複合紡績糸で形成されている。 The present invention is a rubber friction transmission belt having a pulley contact surface formed by being coated with a surface-coated cloth, wherein the surface-coated cloth includes low water-absorbing filament fibers and high water-absorbing staple fibers. It is made of composite spun yarn.
実施形態に係るVリブドベルトのベルト片の斜視図である。It is a perspective view of the belt piece of the V-ribbed belt which concerns on embodiment. 実施形態に係るVリブドベルトのVリブ1個分の断面図である。It is sectional drawing for one V rib of the V ribbed belt which concerns on embodiment. 表面被覆布を形成する複合紡績糸の斜視図である。It is a perspective view of the composite spun yarn which forms a surface covering cloth. 補機駆動ベルト伝動装置のプーリレイアウトを示す図である。It is a figure which shows the pulley layout of an auxiliary machine drive belt transmission. 架橋装置の断面図である。It is sectional drawing of a bridge | crosslinking apparatus. 架橋装置の一部分の断面拡大図である。It is a cross-sectional enlarged view of a part of a crosslinking apparatus. 実施形態に係るVリブドベルトの製造方法を示す第1の説明図である。It is the 1st explanatory view showing the manufacturing method of the V ribbed belt concerning an embodiment. 実施形態に係るVリブドベルトの製造方法を示す第2の説明図である。It is the 2nd explanatory view showing the manufacturing method of the V ribbed belt concerning an embodiment. 実施形態に係るVリブドベルトの製造方法を示す第3の説明図である。It is the 3rd explanatory view showing the manufacturing method of the V ribbed belt concerning an embodiment. 注水伝動能力試験のベルト走行試験機のプーリレイアウトを示す図である。It is a figure which shows the pulley layout of the belt running test machine of a water injection transmission capability test. 耐摩耗性試験のベルト走行試験機のプーリレイアウトを示す図である。It is a figure which shows the pulley layout of the belt running test machine of an abrasion resistance test. 実施例及び比較例1及び2の発生トルクの最大値を示すグラフである。It is a graph which shows the maximum value of the generated torque of an Example and Comparative Examples 1 and 2. 実施例及び比較例1及び2の摩耗率を示すグラフである。It is a graph which shows the abrasion rate of an Example and Comparative Examples 1 and 2.
 以下、実施形態について詳細に説明する。 Hereinafter, embodiments will be described in detail.
 図1A及びBは、実施形態に係るVリブドベルトBを示す。実施形態に係るVリブドベルトBは、例えば、自動車のエンジンルーム内に設けられる補機駆動ベルト伝動装置等に用いられるゴム製の摩擦伝動ベルトである。実施形態に係るVリブドベルトBは、例えば、ベルト周長が700mm以上3000mm以下、ベルト幅が10mm以上36mm以下、及びベルト厚さが4.0mm以上5.0mm以下である。 1A and 1B show a V-ribbed belt B according to the embodiment. The V-ribbed belt B according to the embodiment is, for example, a rubber friction transmission belt used for an auxiliary machine drive belt transmission device provided in an engine room of an automobile. The V-ribbed belt B according to the embodiment has, for example, a belt circumferential length of 700 mm to 3000 mm, a belt width of 10 mm to 36 mm, and a belt thickness of 4.0 mm to 5.0 mm.
 実施形態に係るVリブドベルトBは、各々、ゴム組成物で形成された内周側の圧縮ゴム層11、中間の接着ゴム層12、及び外周側の伸張ゴム層13の三層で構成されたベルト本体10を備えている。 The V-ribbed belt B according to the embodiment is a belt constituted by three layers of an inner peripheral compression rubber layer 11, an intermediate adhesive rubber layer 12, and an outer peripheral stretch rubber layer 13 each formed of a rubber composition. A main body 10 is provided.
 圧縮ゴム層11には、内周側に複数のVリブ形成ゴム部11aが垂下するように形成されている。複数のVリブ形成ゴム部11aは、各々がベルト長さ方向に延びる断面略逆三角形状の突条で構成されているとともに、ベルト幅方向に並設されている。圧縮ゴム層11の厚さは、例えば2.2mm以上3.2mm以下である。 The compression rubber layer 11 is formed so that a plurality of V rib forming rubber portions 11a hang down on the inner peripheral side. The plurality of V-rib forming rubber portions 11a are each composed of a protrusion having a substantially inverted triangular cross section extending in the belt length direction, and arranged in parallel in the belt width direction. The thickness of the compression rubber layer 11 is, for example, not less than 2.2 mm and not more than 3.2 mm.
 接着ゴム層12は、断面横長矩形の帯状に形成されている。接着ゴム層12の厚さは、例えば1.0mm以上2.5mm以下である。 The adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section. The thickness of the adhesive rubber layer 12 is, for example, not less than 1.0 mm and not more than 2.5 mm.
 伸張ゴム層13も、断面横長矩形の帯状に構成されており、その厚さが例えば0.4mm以上0.8mm以下である。伸張ゴム層13の表面には、背面駆動時の音発生を抑制する観点から、織布パターンが設けられていることが好ましい。なお、伸張ゴム層13に代えて、背面補強布が設けられていてもよい。 The stretched rubber layer 13 is also formed in a strip shape having a horizontally long cross section, and the thickness thereof is, for example, not less than 0.4 mm and not more than 0.8 mm. It is preferable that a woven fabric pattern is provided on the surface of the stretched rubber layer 13 from the viewpoint of suppressing the generation of sound when driving the back surface. Instead of the stretch rubber layer 13, a back reinforcing cloth may be provided.
 圧縮ゴム層11、接着ゴム層12、及び伸張ゴム層13を形成するゴム組成物は、ゴム成分に架橋剤を含む種々のゴム配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されることによりゴム成分が架橋剤により架橋したものである。 The rubber composition for forming the compression rubber layer 11, the adhesive rubber layer 12, and the stretch rubber layer 13 is obtained by heating and kneading an uncrosslinked rubber composition in which various rubber compounding agents including a crosslinking agent are blended with a rubber component. The rubber component is crosslinked by a crosslinking agent by being pressurized.
 ゴム成分としては、例えば、エチレン・プロピレン・ジエンターポリマー(以下「EPDM」という。)、エチレン-プロピレンコポリマー(EPM)、エチレン-ブテンコポリマー(EDM)、エチレン-オクテンコポリマー(EOM)などのエチレン-α-オレフィンエラストマー;クロロプレンゴム(CR);クロロスルホン化ポリエチレンゴム(CSM);水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。ゴム成分は、これらのうちの1種又は2種以上を用いることが好ましく、エチレン-α-オレフィンエラストマーを用いることがより好ましく、EPDMを用いることが更に好ましい。 Examples of the rubber component include ethylene-propylene-diene terpolymer (hereinafter referred to as “EPDM”), ethylene-propylene copolymer (EPM), ethylene-butene copolymer (EDM), ethylene-octene copolymer (EOM), and other ethylene- Examples include α-olefin elastomers; chloroprene rubber (CR); chlorosulfonated polyethylene rubber (CSM); hydrogenated acrylonitrile rubber (H-NBR). As the rubber component, one or more of these are preferably used, more preferably an ethylene-α-olefin elastomer, and still more preferably EPDM.
 架橋剤としては、硫黄及び有機過酸化物が挙げられる。架橋剤以外のゴム配合剤としては、例えば、カーボンブラックなどの補強材、充填剤、老化防止剤、軟化剤、加硫促進剤、加硫促進助剤等が挙げられる。 Examples of the crosslinking agent include sulfur and organic peroxides. Examples of rubber compounding agents other than the crosslinking agent include reinforcing materials such as carbon black, fillers, anti-aging agents, softeners, vulcanization accelerators, and vulcanization acceleration aids.
 圧縮ゴム層11、接着ゴム層12、及び伸張ゴム層13は、同一のゴム組成物で形成されていても、また、異なるゴム組成物で形成されていても、どちらでもよい。 The compression rubber layer 11, the adhesive rubber layer 12, and the stretch rubber layer 13 may be formed of the same rubber composition or different rubber compositions.
 圧縮ゴム層11の複数のVリブ形成ゴム部11aの表面は、表面被覆布14で被覆されている。表面被覆布14の厚さは、例えば0.3mm以上1.5mm以下である。そして、表面被覆布14で被覆されたVリブ形成ゴム部11aによってVリブ15が構成されている。この表面被覆布14で被覆されたVリブ15の表面がプーリ接触面となる。各Vリブ15は、例えば、リブ高さが2.0mm以上3.0mm以下、及び基端間の幅が1.0mm以上3.6mm以下である。Vリブ15の個数は、例えば3個以上6個以下である(図1では6個)。 The surface of the plurality of V-rib forming rubber portions 11 a of the compressed rubber layer 11 is covered with a surface covering cloth 14. The thickness of the surface covering cloth 14 is, for example, not less than 0.3 mm and not more than 1.5 mm. And the V rib 15 is comprised by the V rib formation rubber part 11a coat | covered with the surface covering cloth 14. FIG. The surface of the V rib 15 covered with the surface covering cloth 14 becomes a pulley contact surface. Each V-rib 15 has, for example, a rib height of 2.0 mm to 3.0 mm and a width between the proximal ends of 1.0 mm to 3.6 mm. The number of V ribs 15 is, for example, 3 or more and 6 or less (6 in FIG. 1).
 表面被覆布14は、織布で構成されていても、また、編布で構成されていても、どちらでもよい。織布の織物組織としては、例えば、平織、斜文織、朱子織、及びこれらの変化組織等が挙げられる。編布の編物組織としては、例えば、よこ編みでは、平編、ゴム編、パール編、その他の変化組織など、たて編みでは、シングルデンビー編、シングルバンダイク編、その他の変化組織等が挙げられる。圧縮ゴム層11の複数のVリブ形成ゴム部11aの凹凸表面を被覆する観点からは、表面被覆布14は、伸縮性の高い編布で構成されていることが好ましく、たて編みの編布で構成されていることがより好ましい。 The surface covering cloth 14 may be either a woven cloth or a knitted cloth. Examples of the fabric structure of the woven fabric include plain weave, oblique weave, satin weave, and changed structures thereof. Examples of the knitted fabric structure of the knitted fabric include flat knitting, rubber knitting, pearl knitting, and other changing structures in the weft knitting, and single denby knitting, single bandai knitting, and other changing structures in the warp knitting. . From the viewpoint of covering the uneven surface of the plurality of V-rib forming rubber portions 11a of the compressed rubber layer 11, the surface covering cloth 14 is preferably composed of a highly elastic knitted cloth. More preferably, it is comprised.
 表面被覆布14は、接着剤に浸漬する接着処理が施されておらず、露出表面に接着剤が付着していないことが好ましい。その一方、表面被覆布14は、接着剤に浸漬する接着処理が施されていてもよい。本出願における「接着剤に浸漬する接着処理」は、エポキシ樹脂溶液又はイソシアネート樹脂溶液に浸漬して加熱する処理、RFL水溶液に浸漬して加熱する処理、及びゴム糊に浸漬して乾燥させる処理である。ベルト本体10側となる面にゴム糊をコーティングして乾燥させる処理は除かれる。 It is preferable that the surface covering cloth 14 is not subjected to an adhesion treatment soaking in an adhesive, and the adhesive is not attached to the exposed surface. On the other hand, the surface covering cloth 14 may be subjected to an adhesion treatment soaking in an adhesive. The “adhesion treatment immersed in an adhesive” in the present application is a treatment of immersing in an epoxy resin solution or an isocyanate resin solution, heating, immersing in an RFL aqueous solution and heating, and immersing in a rubber paste and drying. is there. The process of coating the surface of the belt body 10 with rubber paste and drying it is excluded.
 表面被覆布14は、図2に示すような複合紡績糸20で形成されている。つまり、表面被覆布14は、織布の経糸及び緯糸として、或いは、編布の編糸として、この複合紡績糸20が用いられている。ここで、本出願における「複合紡績糸20」は、相対的に吸水性の低い低吸水性フィラメント繊維21と、相対的に吸水性の高い高吸水性ステープル繊維22とを含み、低吸水性フィラメント繊維21間に高吸水性ステープル繊維22が分散して撚糸された糸である。また、本出願における「フィラメント繊維」とは、長尺の連続繊維をいう。本出願における「ステープル繊維」とは、繊維長が50mm以下の短尺の繊維をいう。 The surface covering cloth 14 is formed of a composite spun yarn 20 as shown in FIG. That is, the surface coated fabric 14 uses the composite spun yarn 20 as warp and weft of a woven fabric or as a knitting yarn of a knitted fabric. Here, the “composite spun yarn 20” in the present application includes a low water absorption filament fiber 21 having a relatively low water absorption and a high water absorption staple fiber 22 having a relatively high water absorption, and the low water absorption filament. The superabsorbent staple fiber 22 is dispersed between the fibers 21 and twisted. In addition, the “filament fiber” in the present application refers to a long continuous fiber. The “staple fiber” in the present application refers to a short fiber having a fiber length of 50 mm or less.
 複合紡績糸20に含まれる低吸水性フィラメント繊維21は、合成繊維を含むことが好ましい。低吸水性フィラメント繊維21としては、例えば、ナイロン66繊維、ナイロン6繊維などの脂肪族ポリアミド繊維;ポリエステル繊維等が挙げられる。低吸水性フィラメント繊維21は、これらのうちの1種又は2種以上を含むことが好ましく、高い耐摩耗性を得る観点から、脂肪族ポリアミド繊維を含むことがより好ましく、ナイロン66繊維を含むことが更に好ましい。 The low water absorption filament fiber 21 contained in the composite spun yarn 20 preferably contains a synthetic fiber. Examples of the low water absorption filament fibers 21 include aliphatic polyamide fibers such as nylon 66 fibers and nylon 6 fibers; polyester fibers and the like. The low water absorption filament fiber 21 preferably includes one or more of these, more preferably includes an aliphatic polyamide fiber, and includes nylon 66 fiber from the viewpoint of obtaining high wear resistance. Is more preferable.
 複合紡績糸20に含まれる高吸水性ステープル繊維22は、セルロース系繊維を含むことが好ましい。高吸水性ステープル繊維22としては、例えば、綿、麻などのセルロース系天然繊維;レーヨン、ポリノジック、キュプラ、リヨセルなどの再生繊維等が挙げられる。高吸水性ステープル繊維22は、これらのうちの1種又は2種以上を含むことが好ましく、後述するように被水環境下での優れたベルト走行性を得る観点から、セルロース系天然繊維を含むことがより好ましく、綿を含むことが更に好ましい。 The superabsorbent staple fiber 22 contained in the composite spun yarn 20 preferably contains a cellulosic fiber. Examples of the superabsorbent staple fiber 22 include cellulose-based natural fibers such as cotton and hemp; regenerated fibers such as rayon, polynosic, cupra, and lyocell. The superabsorbent staple fiber 22 preferably includes one or more of these, and includes a cellulose-based natural fiber from the viewpoint of obtaining excellent belt running performance in a wet environment as described later. It is more preferable, and it is still more preferable that cotton is included.
 複合紡績糸20における低吸水性フィラメント繊維21の含有量は、高吸水性ステープル繊維22の含有量よりも少ないことが好ましいが、多くてもよく、また、同一であってもよい。複合紡績糸20における低吸水性フィラメント繊維21の含有量に対する高吸水性ステープル繊維22の含有量の質量比は、好ましくは30/70以上90/10以下、より好ましくは50/50以上80/20以下である。 The content of the low water absorption filament fiber 21 in the composite spun yarn 20 is preferably less than the content of the high water absorption staple fiber 22, but may be more or the same. The mass ratio of the content of the high water absorption staple fiber 22 to the content of the low water absorption filament fiber 21 in the composite spun yarn 20 is preferably 30/70 or more and 90/10 or less, more preferably 50/50 or more and 80/20. It is as follows.
 複合紡績糸20では、糸断面において、低吸水性フィラメント繊維21及び高吸水性ステープル繊維22がランダムに配設されていても、また、例えば中央部に低吸水性フィラメント繊維21及び外周部に高吸水性ステープル繊維22のように、それらが偏在して配設されていても、どちらでもよい。但し、後述するように被水環境下での優れたベルト走行性を得る観点からは、低吸水性フィラメント繊維21及び高吸水性ステープル繊維22がランダムに配設されていることが好ましい。 In the composite spun yarn 20, even if the low water-absorbing filament fiber 21 and the high water-absorbing staple fiber 22 are randomly arranged in the yarn cross section, for example, the low water-absorbing filament fiber 21 and the outer peripheral portion are high. As in the case of the water-absorbing staple fibers 22, they may be arranged unevenly or either. However, as described later, from the viewpoint of obtaining excellent belt running performance in a wet environment, it is preferable that the low water-absorbing filament fibers 21 and the high water-absorbing staple fibers 22 are randomly arranged.
 接着ゴム層12のベルト厚さ方向の中間部には、ベルト幅方向にピッチを有する螺旋を形成するように配された心線16が埋設されている。心線16は、ポリアミド繊維、ポリエステル繊維、アラミド繊維、ポリアミド繊維等の撚り糸で構成されている。心線16の直径は例えば0.5mm以上2.5mm以下であり、断面における相互に隣接する心線16中心間の寸法は例えば0.05mm以上0.20mm以下である。心線16には、エポキシ樹脂溶液又はイソシアネート樹脂溶液に浸漬して加熱する接着処理、RFL水溶液に浸漬した後に加熱する接着処理、及びゴム糊に浸漬した後に乾燥させる接着処理のうちの1種又は2種以上の接着処理が施されていることが好ましい。 A core wire 16 is embedded in an intermediate portion of the adhesive rubber layer 12 in the belt thickness direction so as to form a spiral having a pitch in the belt width direction. The core wire 16 is composed of a twisted yarn such as a polyamide fiber, a polyester fiber, an aramid fiber, or a polyamide fiber. The diameter of the core wire 16 is, for example, not less than 0.5 mm and not more than 2.5 mm, and the dimension between the centers of the adjacent core wires 16 in the cross section is, for example, not less than 0.05 mm and not more than 0.20 mm. The core wire 16 may be one of a bonding process that is immersed in an epoxy resin solution or an isocyanate resin solution and heated, a bonding process that is heated after being immersed in an RFL aqueous solution, and a bonding process that is dried after being immersed in rubber paste or Two or more types of adhesion treatment are preferably performed.
 以上の構成の実施形態に係るVリブドベルトBによれば、プーリ接触面であるVリブ15の表面の表面被覆布14が、低吸水性フィラメント繊維21と高吸水性ステープル繊維22とを含む複合紡績糸20で形成されていることにより、被水環境下での優れたベルト走行性を得ることができる。 According to the V-ribbed belt B according to the embodiment having the above-mentioned configuration, the composite spinning in which the surface covering cloth 14 on the surface of the V-rib 15 that is the pulley contact surface includes the low water-absorbing filament fiber 21 and the high water-absorbing staple fiber 22. By being formed of the yarn 20, it is possible to obtain excellent belt running performance in a wet environment.
 図3は、実施形態に係るVリブドベルトBを用いた自動車の補機駆動ベルト伝動装置30のプーリレイアウトを示す。この補機駆動ベルト伝動装置30は、VリブドベルトBが4つのリブプーリ及び2つの平プーリの6つのプーリに巻き掛けられて動力を伝達するサーペンタインドライブ方式のものである。 FIG. 3 shows a pulley layout of an auxiliary drive belt transmission device 30 for an automobile using the V-ribbed belt B according to the embodiment. This accessory drive belt transmission device 30 is of a serpentine drive type in which a V-ribbed belt B is wound around six pulleys, four rib pulleys and two flat pulleys, to transmit power.
 この補機駆動ベルト伝動装置30では、最上位置にリブプーリのパワーステアリングプーリ31が設けられ、そのパワーステアリングプーリ31の下方にリブプーリのACジェネレータプーリ32が設けられている。また、パワーステアリングプーリ31の左下方には平プーリのテンショナプーリ33が設けられており、そのテンショナプーリ33の下方には平プーリのウォーターポンププーリ34が設けられている。さらに、テンショナプーリ33の左下方にはリブプーリのクランクシャフトプーリ35が設けられており、そのクランクシャフトプーリ35の右下方にリブプーリのエアコンプーリ36が設けられている。これらのプーリは、例えば、金属のプレス加工品や鋳物、或いは、ナイロン樹脂、フェノール樹脂等の樹脂成形品で構成されており、プーリ径が例えば50mm以上150mm以下である。 In this accessory drive belt transmission device 30, a power steering pulley 31 of a rib pulley is provided at the uppermost position, and an AC generator pulley 32 of a rib pulley is provided below the power steering pulley 31. A flat pulley tensioner pulley 33 is provided at the lower left of the power steering pulley 31, and a flat pulley water pump pulley 34 is provided below the tensioner pulley 33. Further, a ribshaft crankshaft pulley 35 is provided on the lower left side of the tensioner pulley 33, and a rib pulley air conditioner pulley 36 is provided on the lower right side of the crankshaft pulley 35. These pulleys are made of, for example, a metal stamped product, a casting, or a resin molded product such as nylon resin or phenol resin, and the pulley diameter is, for example, 50 mm or more and 150 mm or less.
 この補機駆動ベルト伝動装置30において、VリブドベルトBは、圧縮ゴム層11側のVリブ15が接触するようにパワーステアリングプーリ31に巻き掛けられ、次いで、伸張ゴム層13側のベルト背面が接触するようにテンショナプーリ33に巻き掛けられた後、Vリブ15が接触するようにクランクシャフトプーリ35及びエアコンプーリ36に順に巻き掛けられ、さらに、ベルト背面が接触するようにウォーターポンププーリ34に巻き掛けられ、そして、Vリブ15が接触するようにACジェネレータプーリ32に巻き掛けられ、最後にパワーステアリングプーリ31に戻るように設けられている。プーリ間で掛け渡されるVリブドベルトBの長さであるベルトスパン長は例えば50mm以上300mm以下である。プーリ間で生じ得るミスアライメントは0°以上2°以下である。 In this accessory drive belt transmission device 30, the V-ribbed belt B is wound around the power steering pulley 31 so that the V-rib 15 on the compressed rubber layer 11 side contacts, and then the back of the belt on the stretched rubber layer 13 side contacts. After being wound around the tensioner pulley 33, it is wound around the crankshaft pulley 35 and the air conditioner pulley 36 in order so that the V-rib 15 comes into contact, and further wound around the water pump pulley 34 so that the back of the belt comes into contact. It is hung and wound around the AC generator pulley 32 so that the V-rib 15 comes into contact with it, and finally is returned to the power steering pulley 31. The belt span length, which is the length of the V-ribbed belt B spanned between the pulleys, is, for example, not less than 50 mm and not more than 300 mm. Misalignment that may occur between the pulleys is 0 ° or more and 2 ° or less.
 次に、実施形態に係るVリブドベルトBの製造方法について説明する。 Next, a method for manufacturing the V-ribbed belt B according to the embodiment will be described.
 図4A及びBは、実施形態に係るVリブドベルトBの製造方法で用いる架橋装置40を示す。 4A and 4B show a crosslinking device 40 used in the method for manufacturing the V-ribbed belt B according to the embodiment.
 この架橋装置40は、基台41と、その上に立設された円柱状の膨張ドラム42と、その外側に設けられた円筒状の円筒金型43とを備えている。 The bridging device 40 includes a base 41, a columnar expansion drum 42 standing on the base 41, and a cylindrical cylindrical mold 43 provided on the outside thereof.
 膨張ドラム42は、中空円柱状に形成されたドラム本体42aと、その外周に外嵌めされた円筒状のゴム製の膨張スリーブ42bとを有する。ドラム本体42aの外周部には、各々、内部に連通した多数の通気孔42cが形成されている。膨張スリーブ42bの両端部は、それぞれドラム本体42aとの間で固定リング44,45によって封止されている。架橋装置40には、ドラム本体42aの内部に高圧空気を導入して加圧する加圧手段(不図示)が設けられており、この加圧手段によりドラム本体42aの内部に高圧空気が導入されると、高圧空気が通気孔42cを通ってドラム本体42aと膨張スリーブ42bとの間に入って膨張スリーブ42bを径方向外向きに膨張させるように構成されている。 The expansion drum 42 includes a drum main body 42a formed in a hollow columnar shape, and a cylindrical rubber expansion sleeve 42b fitted on the outer periphery thereof. A large number of vent holes 42c are formed in the outer peripheral portion of the drum main body 42a, each communicating with the inside thereof. Both end portions of the expansion sleeve 42b are sealed with fixing rings 44 and 45, respectively, with the drum body 42a. The bridging device 40 is provided with pressurizing means (not shown) for introducing and pressurizing high-pressure air into the drum main body 42a, and high-pressure air is introduced into the drum main body 42a by the pressurizing means. The high-pressure air passes through the vent hole 42c and enters between the drum main body 42a and the expansion sleeve 42b to expand the expansion sleeve 42b radially outward.
 円筒金型43は、基台41に脱着可能に構成されている。基台41に取り付けられた円筒金型43は、膨張ドラム42との間に間隔をおいて同心状に設けられる。円筒金型43は、内周面に、各々、周方向に延びる複数のVリブ形成溝43aが軸方向(溝幅方向)に連設されている。各Vリブ形成溝43aは、溝底側に向かうに従って幅狭に形成されており、具体的には、断面形状が、製造するVリブドベルトBのVリブ15と同一形状に形成されている。架橋装置40には、円筒金型43の加熱手段及び冷却手段(いずれも不図示)が設けられており、これらの加熱手段及び冷却手段により円筒金型43の温度制御が可能となるように構成されている。 The cylindrical mold 43 is configured to be detachable from the base 41. The cylindrical mold 43 attached to the base 41 is provided concentrically with a space between the expansion drum 42. In the cylindrical mold 43, a plurality of V rib forming grooves 43a extending in the circumferential direction are connected to the inner peripheral surface in the axial direction (groove width direction). Each V-rib forming groove 43a is formed to have a narrower width toward the groove bottom side. Specifically, the cross-sectional shape is the same as the V-rib 15 of the V-ribbed belt B to be manufactured. The bridging apparatus 40 is provided with heating means and cooling means (both not shown) of the cylindrical mold 43, and the temperature of the cylindrical mold 43 can be controlled by these heating means and cooling means. Has been.
 実施形態に係るVリブドベルトBの製造方法では、まず、ゴム成分に、架橋剤を含む各ゴム配合剤を配合し、ニーダー、バンバリーミキサー等の混練機で混練し、得られた未架橋ゴム組成物をカレンダー成形等によってシート状に成形して圧縮ゴム層11用の未架橋ゴムシートを作製する。同様に、接着ゴム層12用及び伸張ゴム層13用の未架橋ゴムシートも作製する。また、表面被覆布14を準備し、必要に応じて接着処理を施す。表面被覆布14は、筒状に形成することが好ましい。さらに、心線16を準備し、必要に応じて接着処理を施す。 In the manufacturing method of the V-ribbed belt B according to the embodiment, first, each rubber compounding agent including a crosslinking agent is blended with the rubber component, and the resulting uncrosslinked rubber composition is kneaded with a kneader such as a kneader or a Banbury mixer. Is formed into a sheet shape by calendar molding or the like to produce an uncrosslinked rubber sheet for the compressed rubber layer 11. Similarly, uncrosslinked rubber sheets for the adhesive rubber layer 12 and the stretch rubber layer 13 are also produced. Moreover, the surface covering cloth 14 is prepared and an adhesion process is performed as needed. The surface covering cloth 14 is preferably formed in a cylindrical shape. Furthermore, the core wire 16 is prepared and an adhesion process is performed as needed.
 次いで、図5Aに示すように、表面が平滑な円筒ドラム46上にゴムスリーブ47を被せ、その上に、伸張ゴム層13用の未架橋ゴムシート13’、及び接着ゴム層12用の未架橋ゴムシート12’を順に巻き付けて積層し、その上から心線16を螺旋状に巻き付け、更にその上から接着ゴム層12用の未架橋ゴムシート12’、及び圧縮ゴム層11用の未架橋ゴムシート11’を順に巻き付け、最後に、その上を表面被覆布14で被覆して未架橋スラブS’を成形する。 Next, as shown in FIG. 5A, a rubber sleeve 47 is placed on a cylindrical drum 46 having a smooth surface, and an uncrosslinked rubber sheet 13 ′ for the stretch rubber layer 13 and an uncrosslinked rubber for the adhesive rubber layer 12 are formed thereon. The rubber sheet 12 ′ is wound in order and laminated, and the core wire 16 is spirally wound from above, and the uncrosslinked rubber sheet 12 ′ for the adhesive rubber layer 12 and the uncrosslinked rubber for the compressed rubber layer 11 are further formed thereon. Sheet 11 'is wound in order, and finally, it is covered with surface covering cloth 14 to form uncrosslinked slab S'.
 次いで、円筒ドラム46から未架橋スラブS’を設けたゴムスリーブ47を外し、図5Bに示すように、円筒金型43の内周面側に内嵌めした後、その未架橋スラブS’を設けた円筒金型43を、膨張ドラム42を覆うように設けて基台41に取り付ける。 Next, the rubber sleeve 47 provided with the uncrosslinked slab S ′ is removed from the cylindrical drum 46 and, as shown in FIG. 5B, the rubber sleeve 47 is fitted into the inner peripheral surface side of the cylindrical mold 43, and then the uncrosslinked slab S ′ is provided. The cylindrical mold 43 is attached to the base 41 so as to cover the expansion drum 42.
 続いて、円筒金型43を加熱すると共に、図5Cに示すように、膨張ドラム42のドラム本体42aと膨張スリーブ42bとの間に通気孔42cを介して高圧空気を注入して膨張スリーブ42bを膨張させる。このとき、未架橋スラブS’が円筒金型43に対して押し付けられ、未架橋ゴムシート11’,12’,13’が表面被覆布14を押圧して伸張させながらVリブ形成溝43aに流入するとともに、それらのゴム成分の架橋が進行して一体化し、且つ表面被覆布14及び心線16が複合し、最終的に、円筒状のベルトスラブSが成型される。このベルトスラブSの成型温度は例えば100℃以上180℃以下、成型圧力は例えば0.5MPa以上2.0MPa以下、成型時間は例えば10分以上60分以下である。 Subsequently, while the cylindrical mold 43 is heated, as shown in FIG. 5C, high-pressure air is injected between the drum main body 42a of the expansion drum 42 and the expansion sleeve 42b through the vent hole 42c, thereby expanding the expansion sleeve 42b. Inflate. At this time, the uncrosslinked slab S ′ is pressed against the cylindrical mold 43, and the uncrosslinked rubber sheets 11 ′, 12 ′, and 13 ′ flow into the V rib forming groove 43a while pressing and extending the surface covering cloth 14. At the same time, the cross-linking of these rubber components proceeds and integrates, and the surface covering cloth 14 and the core wire 16 are combined, and finally the cylindrical belt slab S is formed. The molding temperature of the belt slab S is, for example, 100 ° C. or more and 180 ° C. or less, the molding pressure is, for example, 0.5 MPa or more and 2.0 MPa or less, and the molding time is, for example, 10 minutes or more and 60 minutes or less.
 そして、膨張ドラム42のドラム本体42aと膨張スリーブ42bとの間から高圧空気を抜いた後、円筒金型43の内周面上に成型されたベルトスラブSを取り出し、ベルトスラブSを所定のVリブ15の個数に輪切りして表裏を裏返すことによりVリブドベルトBが得られる。 And after extracting high pressure air from between the drum main body 42a of the expansion drum 42 and the expansion sleeve 42b, the belt slab S molded on the inner peripheral surface of the cylindrical mold 43 is taken out, and the belt slab S is removed to a predetermined V The V-ribbed belt B is obtained by cutting the number of ribs 15 and turning the front and back.
 なお、上記実施形態では、VリブドベルトBを示したが、特にこれに限定されるものではなく、表面被覆布で被覆されたプーリ接触面を有する摩擦伝動ベルトであれば、ラップドVベルトや平ベルト等であってもよい。 In the above-described embodiment, the V-ribbed belt B is shown. However, the present invention is not particularly limited to this, and a wrapped V-belt or flat belt may be used as long as it is a friction transmission belt having a pulley contact surface covered with a surface-coated cloth. Etc.
 (Vリブドベルト)
 以下の実施例並びに比較例1及び2のVリブドベルトを作製した。
(V-ribbed belt)
V-ribbed belts of the following examples and comparative examples 1 and 2 were produced.
 <実施例>
 上記実施形態と同様の構成であって、表面被覆布として、低吸水性フィラメント繊維のナイロン66繊維と高吸水性ステープル繊維の綿との複合紡績糸を編糸として形成されたたて編の編布で且つ接着剤に浸漬する接着処理を施していないものを用いたVリブドベルトを作製し、それを実施例とした。実施例のVリブドベルトは、Vリブの個数が6個のものと3個のものとを作製した。
<Example>
A knitting of a warp knitting having the same configuration as that of the above-described embodiment, wherein a composite spun yarn of nylon 66 fiber of low water absorption filament fiber and cotton of high water absorption staple fiber is used as a surface covering fabric. A V-ribbed belt using a cloth that was not subjected to an adhesion treatment immersed in an adhesive was prepared and used as an example. The V-ribbed belts of the examples were prepared with 6 and 3 V-ribs.
 ここで、複合紡績糸には、糸断面において、ナイロン66繊維及び綿がランダムに配設されたものを用いた。複合紡績糸におけるナイロン66繊維の含有量に対する綿の含有量の質量比は62/38である。 Here, as the composite spun yarn, nylon 66 fibers and cotton randomly arranged in the yarn cross section were used. The mass ratio of the cotton content to the nylon 66 fiber content in the composite spun yarn is 62/38.
 なお、ベルト本体は、EPDM組成物で形成し、心線は、ポリエステル繊維の撚り糸で構成した。 The belt body was made of an EPDM composition, and the core wire was made of polyester fiber twisted yarn.
 <比較例1>
 表面被覆布の編糸として、ナイロン66繊維のウーリー加工糸を用いたことを除いて実施例と同一構成のVリブドベルトを作製し、それを比較例1とした。
<Comparative Example 1>
A V-ribbed belt having the same configuration as that of the example except that a woolen yarn of nylon 66 fiber was used as the knitting yarn of the surface covering fabric was used as Comparative Example 1.
 <比較例2>
 表面被覆布の編糸として、綿の紡績糸を用いたことを除いて実施例と同一構成のVリブドベルトを作製し、それを比較例2とした。
<Comparative example 2>
A V-ribbed belt having the same configuration as that of the example except that cotton spun yarn was used as the knitting yarn of the surface covering fabric was made as Comparative Example 2.
 (試験方法)
 <注水伝動能力試験>
 図6Aは、注水伝動能力試験のベルト走行試験機50のプーリレイアウトを示す。
(Test method)
<Water injection transmission capacity test>
FIG. 6A shows a pulley layout of the belt running test machine 50 in the water injection transmission capability test.
 このベルト走行試験機50は、向かって左下にプーリ径が121.6mmのリブプーリの第1駆動プーリ51が設けられ、その右方にプーリ径が141.5mmのリブプーリの第2駆動プーリ52が設けられている。第2駆動プーリ52の右斜め上方にはプーリ径が77.0mmのリブプーリの第1従動プーリ53が設けられ、第2駆動プーリ52の上方にはプーリ径が61.0mmのリブプーリの第2従動プーリ54が設けられている。第1駆動プーリ51と第2従動プーリ54との間にはプーリ径が76.2mmの平プーリの第1アイドラプーリ55が設けられ、第1従動プーリ53と第2従動プーリ54との間にはプーリ径が76.2mmの平プーリの第2アイドラプーリ56が設けられている。第2従動プーリ54は、上下に可動に設けられており、軸荷重を負荷できるように構成されている。 This belt running test machine 50 is provided with a first drive pulley 51 of a rib pulley having a pulley diameter of 121.6 mm on the lower left side and a second drive pulley 52 of a rib pulley having a pulley diameter of 141.5 mm on the right side thereof. It has been. A first driven pulley 53 of a rib pulley having a pulley diameter of 77.0 mm is provided diagonally to the upper right of the second drive pulley 52, and a second driven pulley of a rib pulley having a pulley diameter of 61.0 mm is provided above the second drive pulley 52. A pulley 54 is provided. Between the first driven pulley 51 and the second driven pulley 54, there is provided a first idler pulley 55 of a flat pulley having a pulley diameter of 76.2 mm, and between the first driven pulley 53 and the second driven pulley 54. Is provided with a second idler pulley 56 which is a flat pulley having a pulley diameter of 76.2 mm. The second driven pulley 54 is provided so as to be movable up and down, and is configured to be able to apply an axial load.
 実施例並びに比較例1及び2のそれぞれのVリブの個数が6個のVリブドベルトBについて、Vリブ側が接触するように、第1及び第2駆動プーリ51,52並びに第1及び第2従動プーリ53,54に巻き掛けるとともに、伸張ゴム層側が接触するように、第1及び第2アイドラプーリ55,56に巻き掛け、第2従動プーリ54に上方に706Nの軸荷重をかけてベルト張力を与えた。VリブドベルトBの第2駆動プーリ52への巻き掛かり角度は39°であった。次いで、21℃の温度雰囲気下、第1駆動プーリ51を800rpm及び第2駆動プーリ52を931rpmのそれぞれの回転数で同一方向に回転させ、それにより第2駆動プーリ52上においてVリブドベルトBを強制的にスリップさせた。また、第1駆動プーリ51の右側のVリブドベルトBの巻き掛かり始めの部分のVリブ表面には1分間に300mlの割合で水滴を滴下した。そして、第2駆動プーリ52に設けたトルクメータにより、発生トルクの最大値を計測した。 The first and second driven pulleys 51 and 52 and the first and second driven pulleys are arranged so that the V-rib side contacts the V-ribbed belt B having six V-ribs in each of the example and the comparative examples 1 and 2. 53 and 54, and around the first and second idler pulleys 55 and 56 so that the stretched rubber layer side comes into contact with the second driven pulley 54, an axial load of 706 N is applied upward to give belt tension. It was. The winding angle of the V-ribbed belt B around the second drive pulley 52 was 39 °. Next, in a temperature atmosphere of 21 ° C., the first driving pulley 51 and the second driving pulley 52 are rotated in the same direction at respective rotation speeds of 800 rpm and 931 rpm, thereby forcing the V-ribbed belt B on the second driving pulley 52. Slipped. In addition, water droplets were dropped at a rate of 300 ml per minute on the surface of the V rib at the beginning of winding of the V ribbed belt B on the right side of the first drive pulley 51. Then, the maximum value of the generated torque was measured with a torque meter provided on the second drive pulley 52.
 <耐摩耗性試験>
 図6Bは、耐摩耗性試験のベルト走行試験機60のプーリレイアウトを示す。
<Abrasion resistance test>
FIG. 6B shows a pulley layout of the belt running test machine 60 in the abrasion resistance test.
 このベルト走行試験機60は、向かって右側にプーリ径が60mmのリブプーリの駆動プーリ61が設けられ、向かって左側にプーリ径が60mmのリブプーリの従動プーリ62が設けられている。駆動プーリ61は、左右に可動に設けられており、軸荷重を負荷できるように構成されている。従動プーリ62には3.8kW(5.2PS)の回転負荷が与えられている。 This belt running test machine 60 is provided with a driving pulley 61 of a rib pulley having a pulley diameter of 60 mm on the right side and a driven pulley 62 of a rib pulley having a pulley diameter of 60 mm on the left side. The drive pulley 61 is movably provided to the left and right and is configured to be able to apply an axial load. A rotational load of 3.8 kW (5.2 PS) is applied to the driven pulley 62.
 実施例並びに比較例1及び2のそれぞれのVリブの個数が3個のVリブドベルトBについて、Vリブ側が接触するように、駆動プーリ61及び従動プーリ62に巻き掛けるとともに、駆動プーリ61に右方に1176Nの軸荷重をかけてベルト張力を与え、室温下、駆動プーリ61を3500rpmの回転数で回転させて170時間ベルト走行させた。そして、ベルト走行前後の質量変化を求め、それを摩耗減量として摩耗率を算出した。 The V-ribbed belt B having three V-ribs in the example and the comparative examples 1 and 2 is wound around the drive pulley 61 and the driven pulley 62 so that the V-rib side is in contact with the drive pulley 61 and the right side of the drive pulley 61. A belt load was applied by applying an axial load of 1176 N to the belt, and the driving pulley 61 was rotated at a rotational speed of 3500 rpm at room temperature for 170 hours. Then, the change in mass before and after running the belt was determined, and the wear rate was calculated using this as the weight loss.
 (試験結果)
 図7Aは、実施例並びに比較例1及び2の発生トルクの最大値を示す。図7Bは、実施例並びに比較例1及び2の摩耗率を示す。
(Test results)
FIG. 7A shows the maximum value of the generated torque of the example and comparative examples 1 and 2. FIG. 7B shows the wear rates of the examples and comparative examples 1 and 2.
 図7A及びBによれば、ナイロン66繊維と綿との複合紡績糸で形成された表面被覆布を用いた実施例では、発生トルクの最大値が高く、したがって、被水環境下での伝動能力が高く且つ摩耗率が低いことが分かる。 According to FIGS. 7A and B, in the example using the surface coated fabric formed of the composite spun yarn of nylon 66 fiber and cotton, the maximum value of the generated torque is high, and therefore, the transmission capability in a wet environment. Is high and the wear rate is low.
 一方、ナイロン66繊維の撚り糸で形成された表面被覆布を用いた比較例1では、摩耗率は低いものの、発生トルクの最大値が低く、したがって、被水環境下での伝動能力が低いことが分かる。また、綿の紡績糸で形成された表面被覆布を用いた比較例2では、発生トルクの最大値が高く、したがって、被水環境下での伝動能力は高いものの、摩耗率が高いことが分かる。 On the other hand, in Comparative Example 1 using a surface-coated cloth formed of nylon 66 fiber twist, although the wear rate is low, the maximum value of the generated torque is low, and therefore the transmission capability in a wet environment is low. I understand. Moreover, in the comparative example 2 using the surface covering cloth formed with the cotton spun yarn, the maximum value of the generated torque is high. Therefore, it can be seen that the wear rate is high although the transmission capability in a wet environment is high. .
 本発明は、摩擦伝動ベルトの技術分野について有用である。 The present invention is useful in the technical field of friction transmission belts.
B Vリブドベルト(摩擦伝動ベルト)
14 表面被覆布
20 複合紡績糸
21 低吸水性フィラメント繊維
22 高吸水性ステープル繊維
B V-ribbed belt (friction drive belt)
14 Surface coated fabric 20 Composite spun yarn 21 Low water absorption filament fiber 22 High water absorption staple fiber

Claims (10)

  1.  表面被覆布で被覆されて構成されたプーリ接触面を有するゴム製の摩擦伝動ベルトであって、
     前記表面被覆布が、低吸水性フィラメント繊維と、高吸水性ステープル繊維と、を含む複合紡績糸で形成されている摩擦伝動ベルト。
    A rubber friction transmission belt having a pulley contact surface configured to be covered with a surface covering cloth,
    A friction transmission belt in which the surface covering fabric is formed of a composite spun yarn including low water absorption filament fibers and high water absorption staple fibers.
  2.  請求項1に記載された摩擦伝動ベルトにおいて、
     前記低吸水性フィラメント繊維が合成繊維を含む摩擦伝動ベルト。
    In the friction transmission belt according to claim 1,
    A friction transmission belt in which the low water absorption filament fiber includes a synthetic fiber.
  3.  請求項2に記載された摩擦伝動ベルトにおいて、
     前記低吸水性フィラメント繊維が脂肪族ポリアミド繊維を含む摩擦伝動ベルト。
    In the friction transmission belt according to claim 2,
    A friction transmission belt in which the low water absorption filament fiber includes an aliphatic polyamide fiber.
  4.  請求項1乃至3のいずれかに記載された摩擦伝動ベルトにおいて、
     前記高吸水性ステープル繊維がセルロース系繊維を含む摩擦伝動ベルト。
    In the friction transmission belt according to any one of claims 1 to 3,
    A friction transmission belt, wherein the superabsorbent staple fibers include cellulosic fibers.
  5.  請求項4に記載された摩擦伝動ベルトにおいて、
     前記高吸水性ステープル繊維がセルロース系天然繊維を含む摩擦伝動ベルト。
    In the friction transmission belt according to claim 4,
    A friction transmission belt, wherein the superabsorbent staple fibers include cellulosic natural fibers.
  6.  請求項1乃至5のいずれかに記載された摩擦伝動ベルトにおいて、
     前記複合紡績糸における前記低吸水性フィラメント繊維の含有量に対する前記高吸水性ステープル繊維の含有量の質量比が30/70以上90/10以下である摩擦伝動ベルト。
    In the friction transmission belt according to any one of claims 1 to 5,
    A friction transmission belt, wherein a mass ratio of the content of the superabsorbent staple fiber to the content of the low water absorbable filament fiber in the composite spun yarn is 30/70 or more and 90/10 or less.
  7.  請求項1乃至6のいずれかに記載された摩擦伝動ベルトにおいて、
     前記複合紡績糸における前記低吸水性フィラメント繊維の含有量が、前記高吸水性ステープル繊維の含有量よりも少ない摩擦伝動ベルト。
    The friction transmission belt according to any one of claims 1 to 6,
    A friction transmission belt in which the content of the low water absorption filament fiber in the composite spun yarn is less than the content of the high water absorption staple fiber.
  8.  請求項1乃至7のいずれかに記載された摩擦伝動ベルトにおいて、
     前記複合紡績糸は、糸断面において、前記低吸水性フィラメント繊維及び前記高吸水性ステープル繊維がランダムに配設されている摩擦伝動ベルト。
    In the friction transmission belt according to any one of claims 1 to 7,
    The composite spun yarn is a friction transmission belt in which the low water-absorbing filament fiber and the high water-absorbing staple fiber are randomly arranged in a cross section of the yarn.
  9.  請求項1乃至8のいずれかに記載された摩擦伝動ベルトにおいて、
     前記表面被覆布がたて編みの編布で構成されている摩擦伝動ベルト。
    The friction transmission belt according to any one of claims 1 to 8,
    A friction transmission belt in which the surface covering fabric is a warp knitted fabric.
  10.  請求項1乃至9のいずれかに記載された摩擦伝動ベルトにおいて、
     前記表面被覆布は、接着剤に浸漬する接着処理が施されていない摩擦伝動ベルト。
    The friction transmission belt according to any one of claims 1 to 9,
    The surface covering cloth is a friction transmission belt that is not subjected to an adhesion treatment soaking in an adhesive.
PCT/JP2019/007594 2018-04-04 2019-02-27 Friction transmission belt WO2019193881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019512017A JP6530877B1 (en) 2018-04-04 2019-02-27 Friction transmission belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018072244 2018-04-04
JP2018-072244 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019193881A1 true WO2019193881A1 (en) 2019-10-10

Family

ID=68100673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007594 WO2019193881A1 (en) 2018-04-04 2019-02-27 Friction transmission belt

Country Status (1)

Country Link
WO (1) WO2019193881A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220316554A1 (en) * 2021-03-31 2022-10-06 Bando Chemical Industries, Ltd. V-ribbed belt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194239A (en) * 2013-06-27 2015-11-05 三ツ星ベルト株式会社 Drive belt, fiber member of the same, and method of fabricating fiber member
JP2016070494A (en) * 2014-09-26 2016-05-09 三ツ星ベルト株式会社 Friction transmission belt and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194239A (en) * 2013-06-27 2015-11-05 三ツ星ベルト株式会社 Drive belt, fiber member of the same, and method of fabricating fiber member
JP2016070494A (en) * 2014-09-26 2016-05-09 三ツ星ベルト株式会社 Friction transmission belt and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220316554A1 (en) * 2021-03-31 2022-10-06 Bando Chemical Industries, Ltd. V-ribbed belt

Similar Documents

Publication Publication Date Title
KR101735084B1 (en) Power transmission belt and belt transmission system including the power transmission belt
JP5341870B2 (en) Friction transmission belt and manufacturing method thereof
JP6505335B1 (en) Transmission belt
WO2014069588A1 (en) Friction transmission belt and process for producing same
JP6652678B1 (en) Friction transmission belt and method of manufacturing the same
CN110785582B (en) V-shaped V-ribbed belt and manufacturing method thereof
JP2023160903A (en) V-ribbed belt
JP2023160912A (en) V-ribbed belt
WO2019193881A1 (en) Friction transmission belt
JP5750561B1 (en) Transmission belt and belt transmission device having the same
JP6530877B1 (en) Friction transmission belt
WO2018216738A1 (en) V-ribbed belt and manufacturing method for same
JP6755430B1 (en) V-ribbed belt and its manufacturing method
JP7430849B1 (en) toothed belt
WO2024009663A1 (en) V-ribbed belt and method for manufacturing same
JP2017166633A (en) Transmission belt
JP5863712B2 (en) Auxiliary drive belt transmission for automobile and V-ribbed belt used therefor
JP2001140988A (en) Power transmission belt
CN113840952A (en) Twisted cord for core wire of transmission belt, method for producing same, use thereof, and transmission belt
WO2010023824A1 (en) V belt for transmitting heavy load
JP2005240925A (en) Power transmission belt

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512017

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780876

Country of ref document: EP

Kind code of ref document: A1