WO2018216738A1 - V-ribbed belt and manufacturing method for same - Google Patents

V-ribbed belt and manufacturing method for same Download PDF

Info

Publication number
WO2018216738A1
WO2018216738A1 PCT/JP2018/019874 JP2018019874W WO2018216738A1 WO 2018216738 A1 WO2018216738 A1 WO 2018216738A1 JP 2018019874 W JP2018019874 W JP 2018019874W WO 2018216738 A1 WO2018216738 A1 WO 2018216738A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
knitted fabric
ribbed belt
polyamide
weft
Prior art date
Application number
PCT/JP2018/019874
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 ▲濱▼本
西山 健
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018097341A external-priority patent/JP6717877B2/en
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to KR1020197034408A priority Critical patent/KR102239997B1/en
Priority to US16/615,963 priority patent/US11913522B2/en
Priority to CN201880033319.0A priority patent/CN110651137B/en
Priority to EP18806498.4A priority patent/EP3633232B1/en
Priority to CA3064366A priority patent/CA3064366C/en
Publication of WO2018216738A1 publication Critical patent/WO2018216738A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/12Layered products comprising a layer of natural or synthetic rubber comprising natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/18Layered products comprising a layer of natural or synthetic rubber comprising butyl or halobutyl rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/10Patterned fabrics or articles
    • D04B1/102Patterned fabrics or articles with stitch pattern
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/10Patterned fabrics or articles
    • D04B1/12Patterned fabrics or articles characterised by thread material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/22V-belts, i.e. belts of tapered cross-section built-up from superimposed layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/12Conjugate fibres, e.g. core/sheath or side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/77Uncured, e.g. green
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/744Non-slip, anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2317/00Animal or vegetable based
    • B32B2317/10Natural fibres, e.g. wool, cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2413/00Belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2433/00Closed loop articles
    • B32B2433/04Driving belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Definitions

  • the present invention relates to a V-ribbed belt having a friction transmission surface covered with a knitted fabric and a method for manufacturing the same.
  • the belt for transmitting power is widely used for power transmission of auxiliary equipment such as an air compressor and an alternator of an automobile.
  • auxiliary equipment such as an air compressor and an alternator of an automobile.
  • sounds other than engine sounds are abnormal noises, there is a demand for measures for sound generation of belts.
  • the cause of this belt's sound is a slip noise when the belt slips between the belt and the pulley under large fluctuations in belt speed and high load conditions.
  • the friction coefficient of the belt may be reduced and slip noise may occur frequently.
  • a knitted fabric is knitted with a bulky polyester composite yarn and a cellulose natural spun yarn to absorb water.
  • Cellulose-based natural spun yarn that excels in water absorbs water quickly, thereby suppressing a decrease in the coefficient of friction in a wet state and improving water-pouring sound resistance.
  • the cellulose-based natural spun yarn has low abrasion resistance, the cellulose-based natural spun yarn wears with use, the water absorption decreases, and the coefficient of friction in the wet state decreases. There is a possibility that the pronunciation cannot be maintained for a sufficiently long period.
  • an object of the present invention is to provide a V-ribbed belt in which a friction transmission surface is covered with a knitted fabric having excellent wear resistance and a method for producing the same for the purpose of maintaining the water-sounding sound resistance over a long period of time.
  • the present invention for solving the above problems is a V-ribbed belt in which the friction transmission surface is composed of a weft knitted multilayer knitted fabric,
  • the weft knitted multilayer knitted fabric includes a cellulose-based natural spun yarn, a polyester-based composite yarn, and a polyamide-based yarn, and at least the cellulose-based natural spun yarn and the polyamide-based yarn are on the friction transmission surface side. It is characterized by being arranged in layers.
  • the weft knitted multi-layer knitted fabric covering the friction transmission surface contains the cellulose-based natural spun yarn
  • the water absorption of the V-ribbed belt can be increased and the water injection resistance can be improved.
  • the weft knitted multilayer knitted fabric includes a polyester-based composite yarn
  • the stretchability of the weft knitted multilayer knitted fabric is improved, and the weft knitted multilayer knitted fabric when forming the V-shaped rib portion on the belt with a die is used.
  • the adaptability to the V-shaped rib portion can be enhanced.
  • the weft knitted multilayer knitted fabric includes polyamide-based yarns, so that the abrasion resistance can be improved and the cellulose-based natural spun yarns can be prevented from being worn.
  • the knitted fabric since weft knitting is used as the knitted fabric that covers the friction transmission surface, the shape of the rib portion is poor in the manufacturing process of the V-ribbed belt in which the V-shaped rib portion is formed on the belt with a mold. Can be made difficult to occur. Further, by making the knitted fabric a multilayer structure, the rubber constellation, which is a constituent element of the V-ribbed belt, is prevented from seeping out to the friction transmission surface side, and the friction coefficient in the dry state of the friction transmission surface and the wet Since the difference in the coefficient of friction in the state can be reduced, the water injection resistance can be improved.
  • the content of the polyamide-based yarn may be 5 to 60% by mass.
  • the wear resistance can be improved without impairing the water injection resistance of the V-ribbed belt. If the content of the polyamide yarn is less than 5% by mass, the wear resistance may be lowered. If the content of the polyamide-based yarn is more than 60% by mass, the water absorption may be lowered and the water injection resistance may be lowered.
  • the polyamide yarn content is preferably 15 to 60% by mass, more preferably 20 to 55% by mass, and further preferably 20 to 40% by mass.
  • the weft-knitted multilayer knitted fabric of the V-ribbed belt may have a content of the cellulose-based natural spun yarn of 5 to 60% by mass.
  • the wear resistance can be improved without impairing the water injection resistance of the V-ribbed belt. If the content of the cellulose-based natural spun yarn is less than 5% by mass, the water absorption may be lowered and the water injection resistance may be lowered. When the content of the cellulose-based natural spun yarn is more than 60% by mass, the wear resistance may be lowered. In the weft knitted multilayer knitted fabric, the content of the cellulose-based natural spun yarn is preferably 5 to 55% by mass, more preferably 5 to 40% by mass, and further preferably 20 to 40% by mass.
  • the wear resistance can be improved without impairing the water injection resistance of the V-ribbed belt. If the content of the polyamide yarn is small, the wear resistance is lowered, and if the content of the polyamide yarn is high, the water absorption is lowered, so that the water injection resistance is lowered.
  • the mass ratio of the polyamide-based yarn and the cellulose-based natural spun yarn is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, and 30:70 to 70:30 is more preferable.
  • the polyester composite yarn included in the weft knitted multilayer knitted fabric may be a bulky processed yarn made of two or more kinds of polymers having different heat shrinkage rates.
  • the weft knitted multilayer knitted fabric can be provided with stretchability and bulkiness.
  • the adaptability of the weft knitted multilayer knitted fabric to the V-shaped rib portion can be enhanced.
  • the seepage of the friction transmission surface through the rubber knitted fabric, which is a constituent element of the V-ribbed belt, is suppressed, and the difference between the friction coefficient in the dry state and the friction coefficient in the wet state is reduced. Therefore, it is possible to improve the water injection resistance.
  • the polyester composite yarn contained in the weft knitted multilayer knitted fabric may be a conjugate yarn containing polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the stretchability, bulkiness and wear resistance of the weft knitted multilayer knitted fabric can be improved.
  • the conjugate yarn containing polyethylene terephthalate is excellent in availability, the cost can be reduced.
  • the polyamide yarn included in the weft knitted multilayer knitted fabric may include nylon or aramid fiber.
  • Weft knitted multi-layer knitted fabrics containing nylon or aramid fibers have high wear resistance, so they are highly effective in suppressing the abrasion of cellulosic natural spun yarns and maintain water injection sound resistance over a long period of time. Can do.
  • the yarns constituting the weft knitted multilayer knitted fabric may each twist a filament or a fiber.
  • Wear resistance is improved by converging filaments and fibers on the yarns constituting the weft knitted multilayer fabric.
  • the knitted fabric can be easily knitted and the filaments and fibers can be prevented from fluffing, thereby improving the appearance quality of the V-ribbed belt. be able to.
  • the weft knitted multilayer knitted fabric may not contain polyurethane.
  • the weft knitted multilayer knitted fabric does not contain polyurethane having low water absorption and abrasion resistance as compared with the fiber material, it is possible to prevent the water absorbency and abrasion resistance of the weft knitted multilayer knitted fabric from being deteriorated.
  • the polyester type composite yarn excellent in elasticity is included, elasticity is ensured.
  • a thickness of the weft knitted multilayer knitted fabric covering the friction transmission surface may be 0.6 mm or more.
  • the thickness of the weft knitted multilayer knitted fabric By setting the thickness of the weft knitted multilayer knitted fabric to 0.6 mm or more, the seepage to the friction transmission surface via the rubber knitted fabric which is a constituent element of the V-ribbed belt is suppressed, and the friction transmission surface is in a dry state. Since the difference between the coefficient of friction and the coefficient of friction in the wet state can be reduced, the water injection resistance can be improved. In addition, if the thickness of the weft knitted multilayer knitted fabric is 0.7 mm or more, it is possible to more reliably suppress the seepage to the friction transmission surface side through the rubber knitted fabric which is a constituent element of the V-ribbed belt. 0.8 mm or more is preferable.
  • the upper limit value of the thickness of the weft knitted multilayer knitted fabric is not particularly limited, but may be, for example, 1.5 mm or less.
  • the cellulose-based natural spun yarn and the polyamide-based yarn may be uniformly dispersed in the layer on the friction transmission surface side of the weft knitted multilayer knitted fabric of the V-ribbed belt. .
  • the polyamide-based yarn is closer to the cellulosic natural spun yarn than when several yarns are arranged together. Therefore, the wear of the cellulosic natural spun yarn can be more reliably suppressed. In addition, since there is no unevenness in water absorption, water-sounding sound resistance can be improved.
  • the V-ribbed belt includes rubber as a component,
  • the weft knitted multilayer knitted fabric is coated on the friction transmission surface side of the rubber, The rubber may not ooze from the weft knitted multilayer knitted fabric to the friction transmission surface.
  • no rubber exudation means that the area ratio of the rubber exposed to the friction transmission surface is less than 5%.
  • the present invention is a method for producing the V-ribbed belt, Cover the weft knitted multilayer knitted fabric with both ends of the weft knitted multilayer knitted fabric on the unvulcanized compressed layer sheet, or on the unvulcanized compressed layer sheet, the weft knitted multilayer knitted fabric It may be characterized in that both ends of the cloth are jointed.
  • FIG. 1 is a schematic perspective view illustrating an example of a belt transmission device using a V-ribbed belt according to the present invention.
  • FIG. 2 is a cross-sectional view of the V-ribbed belt along the A-A ′ section of FIG. 1.
  • FIG. 3 is an explanatory view showing an example (A) in which cellulosic natural spun yarn and polyamide yarn are uniformly dispersed in the knitted fabric, and an example (B) in which the yarn is not uniformly dispersed.
  • FIG. 4 is a conceptual diagram illustrating a method for manufacturing a V-ribbed belt.
  • FIG. 5 is a conceptual diagram illustrating a friction coefficient measurement test in a dry state (a) and a wet state (b).
  • FIG. 6 is a conceptual diagram illustrating a misalignment pronunciation evaluation test.
  • FIG. 1 shows an example of a belt drive device for driving an auxiliary machine using a V-ribbed belt 1 according to the present invention.
  • This belt transmission is the simplest example in which the drive pulley 21 and the driven pulley 22 are provided one by one, and the V-ribbed belt 1 is wound between the drive pulley 21 and the driven pulley 22.
  • the endless V-ribbed belt 1 is formed with a plurality of V-shaped rib portions 2 extending in the belt circumferential length direction on the inner peripheral side, and the V-ribbed belt 1 is provided on the outer peripheral surfaces of the drive pulley 21 and the driven pulley 22.
  • a plurality of V-shaped grooves 23 into which the respective rib portions 2 are fitted are provided.
  • the V-ribbed belt 1 includes an extension layer 3 that forms the belt back surface on the outer periphery side, a compression layer 4 provided on the inner periphery side of the extension layer 3, and the extension layer 3 and the compression layer 4. And a core wire 5 embedded in the circumferential direction of the belt embedded therebetween, and a plurality of V-shaped rib portions 2 extending in the circumferential direction of the belt are formed in the compression layer 4, and the surface of the rib portion 2 serving as a friction transmission surface Is covered with a knitted fabric 6.
  • the stretch layer 3 and the compression layer 4 are both formed of a rubber composition as will be described later.
  • An adhesive layer may be provided between the stretch layer 3 and the compression layer 4 as necessary.
  • This adhesive layer is provided for the purpose of improving the adhesion between the core wire 5 and the stretched layer 3 and the compressed layer 4, but is not essential.
  • the entire core wire 5 may be embedded in the adhesive layer, or the core wire 5 may be embedded between the adhesive layer and the stretch layer 3 or between the adhesive layer and the compression layer 4. Good.
  • Examples of rubber components of the rubber composition forming the compression layer 4 include vulcanizable or crosslinkable rubbers such as diene rubbers (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, hydrogen Nitrile rubber, mixed polymer of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt), ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, Silicone rubber, urethane rubber, fluororubber, etc. are mentioned.
  • diene rubbers natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, hydrogen Nitrile rubber, mixed polymer of hydrogenated nitrile rubber and unsatur
  • ethylene- ⁇ -olefin elastomer ethylene- ⁇ -olefin rubber
  • ethylene- ⁇ -olefin rubber is preferred because it has ozone resistance, heat resistance, cold resistance, and is excellent in economy.
  • the ethylene- ⁇ -olefin elastomer include ethylene- ⁇ -olefin rubber (such as ethylene-propylene rubber) and ethylene- ⁇ -olefin-diene rubber (such as ethylene-propylene-diene copolymer).
  • Examples of the ⁇ -olefin include propylene, butene, pentene, methylpentene, hexene, octene and the like. These ⁇ -olefins can be used alone or in combination of two or more.
  • Examples of the diene monomer used as a raw material include non-conjugated diene monomers such as dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene, and cyclooctadiene. These diene monomers can be used alone or in combination of two or more.
  • the ratio of ethylene to ⁇ -olefin (the mass ratio of the former / the latter) is 40/60 to 90/10, preferably 45/55 to 85/15, more preferably 55/45.
  • a range of ⁇ 80/20 is preferred.
  • the proportion of diene can be selected from the range of 4 to 15% by mass, for example, 4.2 to 13% by mass, preferably 4.4 to 11.5% by mass.
  • the iodine value of the ethylene- ⁇ -olefin elastomer containing the diene component is, for example, in the range of 3 to 40, preferably 5 to 30, and more preferably 10 to 20.
  • iodine value is measured by adding excess iodine to the sample to be reacted completely (reaction between iodine and unsaturated bonds), and quantifying the amount of remaining iodine by redox titration. It is done.
  • organic peroxide that crosslinks the unvulcanized rubber layer examples include diacyl peroxide, peroxy ester, dialkyl peroxide (dicumyl peroxide, t-butylcumyl peroxide, 1,1-di-butylperoxy-3). , 3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexane, 1,3-bis (t-butylperoxy-isopropyl) benzene, di-t-butyl Peroxide) and the like. These organic peroxides can be used alone or in combination of two or more. Further, the organic peroxide has a temperature range in which the half-life by thermal decomposition is 1 minute is 150 ° C. to 250 ° C., preferably about 175 ° C. to 225 ° C.
  • the proportion of the vulcanizing agent or crosslinking agent (especially organic peroxide) in the unvulcanized rubber layer is 1 to 10 parts by mass in terms of solid content with respect to 100 parts by mass of the rubber component (ethylene- ⁇ -olefin elastomer etc.).
  • the amount is preferably 1.2 to 8 parts by mass, more preferably 1.5 to 6 parts by mass.
  • the rubber composition may contain a vulcanization accelerator.
  • the vulcanization accelerator include thiuram accelerators, thiazole accelerators, sulfenamide accelerators, bismaleimide accelerators, urea accelerators, and the like. These vulcanization accelerators can be used alone or in combination of two or more.
  • the proportion of the vulcanization accelerator (meaning the total amount when a plurality of types are combined and the same applies when a plurality of types are combined thereafter) is 0.5 to 15 in terms of solid content with respect to 100 parts by mass of the rubber component.
  • the amount is preferably 1 to 10 parts by mass, more preferably 2 to 5 parts by mass.
  • the rubber composition may further contain a co-crosslinking agent (crosslinking aid or co-vulcanizing agent) in order to increase the degree of cross-linking and prevent adhesive wear and the like.
  • a co-crosslinking agent crosslinking aid or co-vulcanizing agent
  • co-crosslinking agent include conventional crosslinking aids such as polyfunctional (iso) cyanurates (triallyl isocyanurate, triallyl cyanurate, etc.), polydienes (1,2-polybutadiene, etc.), and metal salts of unsaturated carboxylic acids.
  • crosslinking aids can be used alone or in combination of two or more.
  • the ratio of the crosslinking aid is 0.01 to 10 parts by weight, preferably 0.05 to 8 parts by weight, based on 100 parts by weight of the rubber component, in terms of solid content.
  • the rubber composition may contain short fibers as necessary.
  • Short fibers include cellulosic fibers (cotton, rayon, etc.), polyester fibers (PET, PEN fibers, etc.), aliphatic polyamide fibers (6 nylon fibers, 66 nylon fibers, 46 nylon fibers, etc.), aromatic polyamide fibers ( p-aramid fiber, m-aramid fiber, etc.), vinylon fiber, polyparaphenylene benzobisoxazole (PBO) fiber and the like.
  • These short fibers may be subjected to conventional adhesion treatment or surface treatment such as treatment with an RFL solution in order to improve dispersibility and adhesion in the rubber composition.
  • the proportion of the short fibers may be 1 to 50 parts by mass, preferably 5 to 40 parts by mass, and more preferably 10 to 35 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition may be prepared by adding conventional additives such as vulcanization aids, vulcanization retarders, reinforcing agents (carbon black, silicon oxide such as hydrous silica), fillers (clay, carbonic acid) as necessary.
  • vulcanization aids carbon black, silicon oxide such as hydrous silica
  • fillers clay, carbonic acid
  • Calcium, talc, mica, etc. metal oxides (zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), plasticizers (paraffinic oil, naphthenic oil, process) Oils, etc.), processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, fatty acid amide, etc.), anti-aging agents (antioxidants, thermal anti-aging agents, anti-bending cracks, Ozone degradation inhibitors, etc.), coloring agents, tackifiers, coupling agents (silane coupling agents, etc.), stabilizers (ultraviolet absorbers,
  • the metal oxide may act as a crosslinking agent.
  • These additives can be used alone or in combination of two or more.
  • the ratio of these additives can be selected from a conventional range depending on the type.
  • the ratio of the reinforcing agent carbon black, silica, etc.
  • the ratio of metal oxide such as zinc oxide
  • the ratio of plasticizer such as oils such as paraffin oil
  • the proportion of -30 parts by mass (preferably 5-25 parts by mass) and the processing agent (eg stearic acid) may be 0.1-5 parts by mass (preferably 0.5-3 parts by mass).
  • the stretch layer 3 may be formed of the same rubber composition as the compression layer 4 (rubber composition containing a rubber component such as ethylene- ⁇ -olefin elastomer), or may be formed of a fabric (reinforcing fabric) such as canvas. Also good.
  • the reinforcing cloth include cloth materials such as woven cloth, wide-angle sail cloth, knitted cloth, and non-woven cloth. Among these, preferred are woven fabrics woven in the form of plain weave, twill weave, satin weave, etc., and wide-angle canvas and knitted fabric in which the crossing angle between warp and weft is about 90 ° to 130 °.
  • the fibers constituting the reinforcing cloth the same fibers as the short fibers can be used.
  • the reinforcing cloth may be treated with an RFL solution (such as a dipping process), and then subjected to a coating process or the like to form a canvas with rubber.
  • the stretch layer 3 is preferably formed of the same rubber composition as the compression layer 4.
  • the same type or type of rubber as the rubber component of the compression layer 4 is often used.
  • the ratio of additives such as a vulcanizing agent or a crosslinking agent, a co-crosslinking agent, and a vulcanization accelerator can be selected from the same range as that of the rubber composition of the compression layer 4.
  • the rubber composition of the stretch layer 3 may contain short fibers similar to those of the compression layer 4 in order to suppress the generation of abnormal noise due to adhesion of the back rubber when the back surface is driven.
  • the form of the short fiber may be linear or may be a partially bent shape (for example, a milled fiber described in Japanese Patent Application Laid-Open No. 2007-120507).
  • an uneven pattern may be provided on the surface of the stretch layer 3 (belt backside).
  • the concavo-convex pattern include a knitted fabric pattern, a woven fabric pattern, a suede woven fabric pattern, an embossed pattern (for example, a dimple shape), and the size and depth are not particularly limited.
  • the core 5 is not particularly limited, and polyester fiber (polybutylene terephthalate fiber, polyethylene terephthalate fiber, polytrimethylene terephthalate fiber, polyethylene naphthalate fiber, etc.), aliphatic polyamide (nylon) fiber (6 nylon fiber, 66 nylon fiber) , 46 nylon fiber, etc.), aromatic polyamide (aramid) fiber (copolyparaphenylene, 3,4'oxydiphenylene, terephthalamide fiber, poly-p-phenylene terephthalamide fiber, etc.), polyarylate fiber, glass fiber, carbon A cord formed of fiber, PBO fiber, or the like can be used. These fibers can be used alone or in combination of two or more.
  • polyester fibers having a low elastic modulus particularly low elastic polybutylene terephthalate fibers
  • nylon fibers particularly 66 nylon fibers, 46 nylon fibers
  • the fiber cannot sufficiently expand even when the flexible jacket 51 expands, and the pitch of the core 5 embedded in the V-ribbed belt 1 This is because the line is not stable, or the proper shape of the rib portion 2 is not formed.
  • the expansion coefficient of the flexible jacket 51 low (for example, about 1%).
  • the knitted fabric 6 uses a weft knitting excellent in stretchability, it can be easily attached by the friction transmission surface in which irregularities are formed in the rib portion 2 (shape defect of the rib portion 2 is unlikely to occur). . Further, the knitted fabric 6 has a large thickness, excellent water absorption, can more reliably prevent the rubber component of the compression layer 4 from seeping out, and can change the yarn exposure ratio between the friction transmission surface side and the compression layer 4 side. Multilayer knitting is applied because desired characteristics can be obtained.
  • Weft and multi-layered knitted fabrics 6 include: smooth, interlock, double rib, single picket, punch Rome, Milan rib, double jersey, kanoko (front sword, back sword, both sides Kanoko).
  • the knitted fabric 6 is knitted so as to include polyester composite yarn, cellulose natural spun yarn (for example, cotton yarn), and polyamide yarn.
  • polyester composite yarn for example, cotton yarn
  • polyamide yarn at least a cellulose-based natural spun yarn and a polyamide-based yarn are arranged on the layer on the frictional transmission surface side of the knitted fabric 6 knitted in multiple layers (the surface side in contact with the driving pulley 21 and the driven pulley 22). It is organized to be. That is, the polyester composite yarn is not an essential component for the layer on the frictional transmission surface side of the knitted fabric 6.
  • the knitted fabric 6 may contain fibers other than polyester-based composite yarn, cellulose-based natural spun yarn, and polyamide-based yarn.
  • the total content of the polyester composite yarn, the cellulose natural spun yarn, and the polyamide yarn in the knitted fabric 6 is preferably 80% by mass or more.
  • the total content of the cellulose-based natural spun yarn and the polyamide-based yarn in the layer on the frictional transmission surface side of the knitted fabric 6 is preferably 70% by mass or more.
  • the polyester composite yarn is a bulky processed yarn.
  • the bulky processed yarn is a processed yarn having a larger cross section by causing the fibers to bend (crimpability) or by covering the core yarn with another yarn.
  • Bulky processed yarns include conjugate yarns, covering yarns, crimped yarns, woolly processed yarns, taslan processed yarns, interlaced yarns, etc.
  • Polyester composite yarns that are bulky processed yarns include conjugate yarns. And covering yarns are preferred.
  • the conjugate yarn preferably has a cross-sectional structure in which two or more types of polymers having different heat shrinkage rates are bonded together in the fiber axis direction.
  • the conjugate yarn having such a structure is crimped due to a difference in shrinkage rate (heat shrinkage rate) of each polymer and becomes a bulky yarn.
  • PET polyethylene terephthalate
  • PBT composite yarn conjugated with polybutylene terephthalate (PBT) and polyethylene terephthalate (PET).
  • PET conjugate yarn a composite yarn (PTT / PET conjugate yarn) conjugated with polytrimethylene terephthalate (PTT) and polyethylene terephthalate (PET)
  • PET polybutylene terephthalate
  • PET conjugate yarn polyethylene terephthalate
  • the stretchability, bulkiness, and abrasion resistance of the knitted fabric 6 can be enhanced. Moreover, since the conjugate yarn containing polyethylene terephthalate is excellent in availability, the cost can be reduced. Further, the covering yarn is a yarn in which the bulk of the entire yarn is increased by covering (covering) the periphery of the core yarn with another yarn.
  • PET polyethylene terephthalate
  • a composite yarn (PET / PU covering yarn) with a polyurethane (PU) yarn excellent in stretchability covered with polyethylene terephthalate (PET) on its surface, and a composite with a polyamide (PA) covered with PU as a core There is a thread (PA / PU covering thread).
  • PTT / PET conjugate yarns excellent in stretchability and abrasion resistance are preferred.
  • the crimpability is expressed due to the difference in the heat shrinkage ratios of the two or more types of polymers,
  • the knitted fabric 6 can be provided with stretchability and bulkiness. Thereby, in the manufacturing process in which the V-shaped rib portion 2 is formed on the V-ribbed belt 1 with the dies (inner mold 52 and outer mold 53) described later, the adaptability of the knitted fabric 6 to the V-shaped rib portion 2 is enhanced.
  • Cellulose-based natural yarn includes bamboo fiber, sugarcane fiber, seed hair fiber (cotton fiber (cotton linter), kapok, etc.), gin leather fiber (eg, hemp, kouzo, mitsumata, etc.), leaf fiber (eg, Manila hemp, New Zealand)
  • Examples thereof include yarn obtained by spinning cellulose fibers (pulp fibers) derived from natural plants such as hemp), cellulose fibers derived from animals such as wool, silk, and squirt cellulose, bacterial cellulose fibers, and algal cellulose.
  • cotton fiber is preferable in terms of excellent water absorption.
  • the content of the cellulose-based natural spun yarn in the knitted fabric 6 is set to 5 to 60% by mass.
  • the content of the cellulose-based natural spun yarn is preferably 5 to 55% by mass, more preferably 5 to 40% by mass, and further preferably 20 to 40% by mass.
  • polyamide yarn materials include aliphatic polyamide (nylon) and aromatic polyamide (aramid). Higher wear resistance can be obtained by using aromatic polyamide (aramid), but wear resistance is improved even with relatively inexpensive nylon.
  • the polyamide yarn may be a filament yarn in which long fibers are bundled, or may be a spun yarn (spun yarn) obtained by spinning short fibers (staples). In the case of filament yarn, it may be a non-twisted bundle with the filaments aligned, or a twisted yarn with the aligned filaments twisted, but from the point of increasing wear resistance and knitting workability A twisted yarn is preferred.
  • the wear resistance may be lowered.
  • the content of the polyamide yarn is more than 60% by mass, the water absorption may be lowered and the water injection resistance may be lowered. Therefore, in this embodiment, the content of the polyamide-based yarn is 5 to 60% by mass.
  • the content of the polyamide-based yarn is preferably 15 to 60% by mass, more preferably 20 to 55% by mass, and still more preferably 20 to 40% by mass.
  • the mass ratio of the polyamide-based yarn and the cellulose-based natural spun yarn is in the range of 5:95 to 95: 5.
  • the mass ratio of the polyamide-based yarn and the cellulose-based natural spun yarn is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, and 30:70 to 70: A range of 30 is more preferred.
  • the cellulose-based natural spun yarn and the polyamide-based yarn are arranged so as to be uniformly dispersed.
  • at least both the cellulose-based natural spun yarn and the polyamide-based yarn are provided on the layer on the friction transmission surface side of the knitted fabric 6 knitted in multiple layers (the surface side in contact with the driving pulley 21 and the driven pulley 22). Since the wear of the cellulosic natural spun yarn is suppressed by containing the water, the water injection resistance can be maintained over a long period of time. The effect of the one located in the vicinity of the yarn (A) (uniformly arranged) is remarkably obtained.
  • the number of polyamide-based yarns the number of cellulose-based natural spun yarns
  • 1 1
  • 10 polyamide yarns and 10 cellulose natural spun yarns are knitted together, the cellulose natural spun yarns located far away from the polyamide yarns are easily worn.
  • the sound resistance to water injection tends to decrease.
  • the cellulose One polyamide yarn is knitted for every two natural spun yarns.
  • the cellulose-based natural spun yarns are arranged rather than arranging 16 cellulose-based natural spun yarns and 8 polyamide-based yarns together (see FIG. 3B). If two yarns and one polyamide yarn are arranged so as to be repeated eight times (see FIG. 3A), the polyamide yarn is positioned in the vicinity of the cellulose natural spun yarn. The wear of the natural spun yarn can be more reliably suppressed.
  • cellulosic natural spun yarn and polyamide yarn are uniformly dispersed means that at least one polyamide yarn is included in 12 adjacent yarns. Means.
  • the polyester composite yarn, the cellulose natural spun yarn, and the polyamide yarn constituting the knitted fabric 6 are preferably twisted yarns in which filaments and fibers are twisted together. Abrasion resistance is improved by converging filaments and fibers on the yarn constituting the knitted fabric 6. Further, by twisting the filaments and fibers together with the yarns constituting the knitted fabric 6 and converging, the knitted fabric can be easily knitted and the filaments and fibers can be prevented from fluffing, so that the appearance quality of the V-ribbed belt 1 is improved. Can do.
  • the knitted fabric 6 preferably does not contain polyurethane. By preventing the knitted fabric 6 from containing polyurethane having lower water absorption and wear resistance than the fiber material, the water absorption and wear resistance of the knitted fabric 6 can be prevented from being lowered. In addition, although it seems that it is inferior in elasticity because it does not contain polyurethane yarn etc. that are often used in the knitted fabric 6, the knitted fabric 6 contains polyester-based composite yarn that is excellent in elasticity, so that the elasticity is ensured. Can do. Further, the knitted fabric 6 may include polyester composite yarn, cellulose natural spun yarn, polyamide yarn, and BR> O fibers.
  • the total content of the polyester composite yarn, the cellulose natural spun yarn, and the polyamide yarn in the knitted fabric 6 is preferably 80% by mass or more.
  • the total content of the cellulose-based natural spun yarn and the polyamide-based yarn in the layer on the frictional transmission surface side of the knitted fabric 6 is preferably 70% by mass or more.
  • the thickness of the knitted fabric 6 knitted in a multilayer including the bulky processed yarn is preferably 0.6 mm or more.
  • the rubber component of the compression layer 4 is prevented from seeping out to the friction transmission surface via the knitted fabric 6, and the friction coefficient in the dry state of the friction transmission surface is suppressed.
  • the difference in coefficient of friction between the wet state and the wet state can be reduced, so that the water injection resistance can be improved.
  • the thickness of the knitted fabric 6 is 0.7 mm or more, the bleeding of the rubber component of the compression layer 4 to the friction transmission surface side through the knitted fabric 6 can be more reliably suppressed, particularly 0.8 mm. The above is preferable.
  • the knitted fabric 6 can contain or adhere a surfactant or a hydrophilic softening agent as a hydrophilic treatment agent.
  • a hydrophilization treatment agent is contained in or adhered to the knitted fabric 6, when water droplets adhere to the friction transmission surface (knitted fabric 6), the water droplets are promptly applied to the surface of the knitted fabric 6 subjected to the hydrophilization treatment.
  • the wet film spreads to form a water film, and is further absorbed by the cellulose-based natural spun yarn of the knitted fabric 6 so that the water film disappears on the friction transmission surface. Therefore, a decrease in the friction coefficient of the friction transmission surface in the wet state is further suppressed.
  • hydrophilic treatment agent a surfactant or a hydrophilic softener can be used.
  • a method for containing or attaching these hydrophilic treatment agents to the knitted fabric 6 a method of spraying the hydrophilic treatment agent onto the knitted fabric 6, a method of coating the knitted fabric 6 with the hydrophilic treatment agent, or the knitted fabric 6. It is possible to employ a method of immersing in a hydrophilizing agent.
  • the hydrophilic treatment agent is used as a surfactant, when the V-ribbed belt 1 is manufactured, the surfactant is applied to the surface of a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface.
  • a method of incorporating a surfactant into the knitted fabric 6 by sulfur molding can also be employed.
  • the method of immersing the knitted fabric 6 in the hydrophilization treatment agent is preferable because the hydrophilization treatment agent can be contained and adhered more easily and more uniformly.
  • Surfactant is a generic term for substances that have a hydrophilic group that is easily compatible with water and a hydrophobic group (lipophilic group) that is easily compatible with oil, and works to uniformly mix polar and nonpolar substances.
  • hydrophilic group that is easily compatible with water
  • hydrophobic group lipophilic group
  • the type of surfactant is not particularly limited, and ionic surfactants, nonionic surfactants, and the like can be used.
  • the nonionic surfactant may be a polyethylene glycol type nonionic surfactant or a polyhydric alcohol type nonionic surfactant.
  • Polyethylene glycol type nonionic surfactants have a hydrophilic group formed by adding ethylene oxide to a hydrophobic base component having a hydrophobic group, such as higher alcohol, alkylphenol, higher fatty acid, higher polyhydric alcohol higher fatty acid ester, higher fatty acid amide, and polypropylene glycol. It is a given nonionic surfactant.
  • the knitted fabric 6 can be subjected to an adhesion treatment for the purpose of improving the adhesion with the rubber composition constituting the compression layer 4 (the rubber composition forming the surface of the rib portion 2).
  • the adhesive treatment of the knitted fabric 6 include immersion treatment in a resin-based treatment solution in which an epoxy compound or an isocyanate compound is dissolved in an organic solvent (toluene, xylene, methyl ethyl ketone, etc.), resorcin-formalin-latex solution (RFL solution). ), An immersion treatment in a rubber paste obtained by dissolving a rubber composition in an organic solvent, and the like.
  • a friction treatment in which the knitted fabric 6 and the rubber composition are passed through a calender roll and the rubber composition is slid into the knitted fabric 6, and a spreading treatment in which rubber paste is applied to the knitted fabric 6.
  • a coating treatment or the like in which a rubber composition is laminated on the knitted fabric 6 can be employed.
  • the rubber is applied to the frictional transmission surface of the knitted fabric 6 (the surface contacting the drive pulley 21 and the driven pulley 22). It is preferable to prevent the composition from exuding. If the rubber composition oozes out from the knitted fabric 6 to the friction transmission surface side, the water absorption decreases, so the decrease in the coefficient of friction when wet is increased, and the water injection resistance is reduced. Accordingly, by eliminating the bleeding of the rubber composition on the frictional transmission surface of the knitted fabric 6, sufficient water absorption can be ensured, so that the water injection resistance can be improved.
  • FIG. 4A an unvulcanized stretch layer sheet 3S is wound around a cylindrical inner mold 52 having a flexible jacket 51 mounted on the outer peripheral surface, and a core wire is wound thereon. 5 is spun into a spiral shape, and an unvulcanized compressed layer sheet 4S and a knitted fabric 6 are sequentially wound (covered) thereon to form a molded body 10. Thereafter, the inner mold 52 around which the molded body 10 is wound is set concentrically on the inner circumferential side of the outer mold 53 in which a plurality of rib molds 53a are formed on the inner circumferential surface. At this time, a predetermined gap is provided between the inner peripheral surface of the outer mold 53 and the outer peripheral surface of the molded body 10.
  • the knitted fabric 6 when the V-ribbed belt 1 is formed, the knitted fabric 6 needs to be formed into a cylindrical shape so as to follow the outer periphery of the compressed layer sheet 4S. Therefore, there is a method of preparing a seamless knitted fabric without a joint using a circular knitting machine or the like. In that case, it is necessary to prepare a seamless knitted fabric corresponding to the length (circumferential length) of the V-ribbed belt 1. . At this time, if a knitted fabric that is too long (too large in circumference) is used with respect to the length of the V-ribbed belt 1, the knitted fabric may be overlapped and may overlap, resulting in a quality abnormality.
  • both ends of the rectangular knitted fabric 6 are jointed according to the length of the V-ribbed belt 1 to form a cylindrical shape. It is preferable to employ a method for producing the knitted fabric 6.
  • the knitted fabric 6 having the optimum circumferential length can be prepared (adjusted) regardless of the length of the V-ribbed belt 1, so that the quality is stabilized.
  • a flat knitting machine can be used in addition to the circular knitting machine, the degree of freedom is high, and there is no waste because only one type of work in progress is required.
  • a method of jointing both ends of the knitted fabric 6 a method of simultaneously welding the cut surfaces while cutting with a blade heated to a temperature near the melting point of the yarn constituting the knitted fabric 6 (hot melt, thermal welding), ultrasonic Examples thereof include a method of performing cutting and welding simultaneously (ultrasonic welding) by pressing with a vibrating blade, a sewing machine joint, overlock stitching, butting, and the like.
  • the timing of jointing the both ends of the knitted fabric 6 may be performed in advance before forming the V-ribbed belt 1 or may be performed during the forming of the V-ribbed belt 1 (for example, for the compressed layer wound around the inner mold 52).
  • the both ends of the knitted fabric 6 are jointed on the sheet 4S).
  • Hot melt, ultrasonic welding, sewing joint, and overlock stitching can be conveniently applied when performed before forming the V-ribbed belt 1, and butting can be conveniently applied when performed during the molding of the V-ribbed belt 1.
  • the joint location of the knitted fabric 6 may be one location or a plurality of locations. From the viewpoint of reducing the number of man-hours and improving the appearance, the joint location of the knitted fabric 6 is preferably one or two locations.
  • the flexible jacket 51 is expanded toward the inner peripheral surface of the outer mold 53 at a predetermined expansion rate (for example, 1 to 6%), so that the molded body 10
  • a predetermined expansion rate for example, 1 to 6%
  • the compression layer sheet 4S and the knitted fabric 6 are press-fitted into the rib mold 53a of the outer mold 53, and vulcanization (for example, 160 ° C., 30 minutes) is performed in that state.
  • the inner mold 52 is extracted from the outer mold 53, and the vulcanized rubber sleeve 10A having the plurality of rib portions 2 is removed from the outer mold 53, and then a cutter is used.
  • the vulcanized rubber sleeve 10A is cut into a predetermined width along the circumferential direction to finish the V-ribbed belt 1.
  • the manufacturing method of the V-ribbed belt 1 is not limited to the above method, and other known methods disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-82702 can also be employed.
  • the knitted fabric 6 that covers the friction transmission surface side includes the cellulose-based natural spun yarn, so that the water absorption of the V-ribbed belt 1 can be increased and the water injection resistance can be improved.
  • the knitted fabric 6 includes a polyester-based composite yarn, so that the stretchability of the knitted fabric 6 is improved, and the V-shaped rib portion 2 is formed on the V-ribbed belt 1 with a mold (inner mold 52, outer mold 53). The adaptability of the knitted fabric 6 to the V-shaped rib portion 2 can be enhanced.
  • the knitted fabric 6 includes a polyamide-based yarn, it is possible to improve the wear resistance, to suppress the abrasion of the cellulose-based natural spun yarn, and to maintain the water-pouring sound-proof property over a long period of time. be able to.
  • the V-ribbed belt 1 is shaped like a V in the mold (inner mold 52, outer mold 53). In the manufacturing process of forming the rib portion 2, it is possible to make it difficult for the rib portion 2 to have a shape defect. Further, by making the knitted fabric 6 into a multilayer structure, the rubber component of the compression layer 4 is prevented from seeping out to the friction transmission surface via the knitted fabric 6, and the friction coefficient in the dry state of the friction transmission surface and the wet Since the difference from the friction coefficient in the state can be reduced, the water injection resistance can be improved.
  • V-ribbed belts according to Examples 1 to 5 and Comparative Examples 1 to 4 were produced, and rubber bleeding was observed for the presence or absence of rubber bleeding on the friction transmission surface.
  • a take-out observation test, a friction coefficient measurement test, a misalignment pronunciation evaluation test (measurement limit angle measurement), and an abrasion resistance test were performed.
  • Examples 1 to 5 are all weft multi-layer knitted fabrics of double Kanoko knitting, cotton yarn (50th spun yarn) as cellulosic natural spun yarn (A), and PTT / PET conjugate as polyester composite yarn (B).
  • Yarn manufactured by Toray Industries, Inc., 84 dtex
  • nylon filament yarn manufactured by Toray Industries, nylon 66, 110 dtex
  • C polyamide-based yarn
  • aramid filament yarn manufactured by Teijin Ltd., Technora, 110 dtex
  • Example 1 to 5 the PTT / PET conjugate yarn was knitted so as to be on the compression layer side, and the cotton yarn and polyamide yarn to be on the friction transmission surface side (side in contact with the pulley).
  • the ratio (mass ratio) of cotton yarn to polyamide-based yarn was changed to evaluate the influence on the water injection resistance and abrasion resistance.
  • Comparative Example 1 is a weft knitted multi-layer knitted fabric in which cotton yarn is used as cellulose-based natural spun yarn (A), PTT / PET conjugate yarn is used as polyester-based composite yarn (B), and polyamide yarn (C) is not included. is there.
  • Comparative Example 2 is a single layer weft knitted fabric made of cotton and polyurethane covering yarn.
  • Comparative Example 3 is a single layer weft knitted fabric made of nylon and polyurethane Taslan processed yarn.
  • Comparative Example 4 is a knitted fabric having the same configuration as that of Example 1, but by using the reverse side of Example 1, the PTT / PET conjugate yarn is used on the friction transmission surface side, and the cotton yarn is used on the compression layer side. And nylon filament yarn.
  • Rubber bleeding observation test In the rubber oozing observation test, a microscope was used to magnify the friction transmission surface of the V-ribbed belt 1 by 20 times, and the ratio of the area where the rubber was exposed to the friction transmission surface was calculated using image analysis software. From the average value measured at any five locations, rubber exudation is “none” when the area ratio of the rubber exposed to the friction transmission surface is less than 5%, and rubber exudation when the area ratio is 5% or more. Judged “Yes”.
  • the friction coefficient measurement test includes a drive pulley (Dr.) having a diameter of 121.6 mm, an idler pulley (IDL.1) having a diameter of 76.2 mm, and an idler pulley (IDL.2) having a diameter of 61.0 mm. , An idler pulley (IDL.3) having a diameter of 76.2 mm, an idler pulley (IDL.4) having a diameter of 77.0 mm, and a driven pulley (Dn.) Having a diameter of 121.6 mm were used.
  • the V-ribbed belt 1 was hung on.
  • the rotational speed of the drive pulley (Dr.) is 400 rpm and the driven pulley (Dn.) Under room temperature conditions (23 ° C.).
  • the belt winding angle ⁇ is set to ⁇ / 9 radians (20 °), a constant load (180 N / 6 rib) is applied and the V-ribbed belt 1 is run to increase the torque of the driven pulley (Dn.). From the torque value of the driven pulley (Dn.) When the sliding speed of the V-ribbed belt 1 with respect to the pulley (Dn.) Reaches the maximum (100% slip), the friction coefficient ⁇ was obtained using the equation (1).
  • T 1 is tight side tension
  • T 2 is slack side tension
  • a driven pulley (Dn.) Slack side tension T 2 of the inlet side is equal to the constant load (180N / 6rib), tight side tension T 1 of the delivery side, the tension due to the torque of the driven pulley (Dn.) This constant load Will be added.
  • the misalignment sound generation evaluation test includes a drive pulley (Dr.) having a diameter of 90 mm, an idler pulley (IDL.1) having a diameter of 70 mm, a misalignment pulley (W / P) having a diameter of 120 mm, and a diameter of 80 mm.
  • the V-ribbed belt 1 is hung on each pulley of the test machine, and under the room temperature condition (23 ° C.), the rotational speed of the drive pulley (Dr.) is 1000 rpm, the belt tension is 300 N / 6 rib, and the drive pulley (Dr .)) 5cc of water is periodically poured into the friction transmission surface of the V-ribbed belt 1 (approximately every 30 seconds), and the misalignment pulley (W / P) is moved to the near side with respect to the other pulleys.
  • the misalignment angle (sound generation limit angle) when the V-ribbed belt 1 is driven by misalignment and sound is generated near the entrance of the misalignment pulley (W / P) is shifted (gradually increasing the misalignment angle). Asked.
  • the sounding limit angle was similarly obtained in a dry state where water was not injected. It should be noted that the larger the sound generation limit angle, the better the sound resistance.
  • a driving pulley (Dr.) having a diameter of 120 mm, an idler pulley (IDL.1) having a diameter of 75 mm, a tension pulley (Ten.) Having a diameter of 60 mm, and a driven pulley having a diameter of 120 mm (Dn) .) was used in order.
  • the V-ribbed belt 1 is hung on each of these pulleys, and the rotational speed of the drive pulley (Dr.) is 4900 rpm under an atmosphere of 120 ° C., and an axial load of 890 N is applied to the tension pulley (Ten.) As an initial load.
  • the knitted fabric 6 includes a cellulose-based natural spun yarn (A), a polyester-based composite yarn (B), and a polyamide-based yarn (C), and the cellulose-based natural spun yarn (A) and the polyamide-based yarn (C).
  • A cellulose-based natural spun yarn
  • B polyester-based composite yarn
  • C polyamide-based yarn
  • the difference ⁇ between the friction coefficient in the dry state and the friction coefficient in the wet state is small, The water injection ability was high. Furthermore, the wear rate after 200 hours durability was low and the wear resistance was also excellent.
  • Example 1 Focusing on the influence of the weight ratio of cotton and nylon in the knitted fabric 6 on the water-sounding sounding resistance and wear resistance, the dry state was found in Examples 1, 2 and 4 where the weight ratio of nylon was between 20 and 55%.
  • Example 3 where the mass ratio of nylon was relatively low at 5%, the difference ⁇ between the friction coefficient in the dry state and the friction coefficient in the wet state was the smallest, but the wear resistance was relatively low.
  • Example 5 in which aramid was used as the polyamide-based yarn (C), the wear resistance was improved while maintaining the same water-sounding sounding resistance as in Example 1 in which nylon was used.
  • Comparative Example 1 not including the polyamide-based yarn (C)
  • the wear resistance was greatly reduced.
  • Comparative Example 2 using a cotton / polyurethane covering thread the water-bleeding sound resistance was low or the wear resistance was also low due to the rubber seeping out to the friction transmission surface.
  • Comparative Example 3 using the nylon / polyurethane taslan processed yarn has the same level of water-squeezing resistance as compared with Comparative Example 1 and Comparative Example 2, and the wear resistance was slightly improved. Also, the rubber oozes onto the friction transmission surface, which is insufficient for practical use.
  • the configuration of the knitted fabric itself is the same as in Example 1.

Abstract

The present invention relates to a V-ribbed belt in which a friction transmission surface is formed from a weft knitted multilayer knitted fabric, characterized in that the weft knitted multilayer knitted fabric contains cellulose based natural spun yarn, polyester based composite yarn, and polyamide based yarn, and in that at least the cellulose based natural spun yarn and the polyamide based yarn are disposed in a layer on the friction transmission surface side.

Description

Vリブドベルト及びその製造方法V-ribbed belt and manufacturing method thereof
 本発明は、摩擦伝動面を編布で被覆したVリブドベルト及びその製造方法に関する。 The present invention relates to a V-ribbed belt having a friction transmission surface covered with a knitted fabric and a method for manufacturing the same.
 動力を伝達するベルトは、例えば、自動車のエアーコンプレッサーやオルタネータ等の補機駆動の動力伝達に広く用いられている。そして、近年、静粛化の厳しい要求があり、特に自動車の駆動装置においてはエンジン音以外の音は異音とされるため、ベルトの発音対策が要請されている。 The belt for transmitting power is widely used for power transmission of auxiliary equipment such as an air compressor and an alternator of an automobile. In recent years, there has been a strict demand for quietness. In particular, in a drive device for automobiles, since sounds other than engine sounds are abnormal noises, there is a demand for measures for sound generation of belts.
 このベルトの発音の原因としては、ベルト速度の大きな変動や高負荷条件で、ベルトがプーリとの間でスリップする際のスリップ音がある。特に、雨天走行時等には、エンジンルーム内に水が入り、ベルトとプーリとの間に水が付着するとベルトの摩擦係数が低下し、スリップ音が多発することもある。 The cause of this belt's sound is a slip noise when the belt slips between the belt and the pulley under large fluctuations in belt speed and high load conditions. In particular, when the vehicle travels in the rain or the like, if water enters the engine room and water adheres between the belt and the pulley, the friction coefficient of the belt may be reduced and slip noise may occur frequently.
 このような問題に対して、ベルトの摩擦伝動面を繊維で形成した編布で被覆する対策が知られている。例えば、特許文献1では、ベルトのドライ状態とウェット状態との摩擦係数の差を小さくすることを目的として、編布を嵩高加工のポリエステル系複合糸とセルロース系天然紡績糸とで編成し、吸水性に優れるセルロース系天然紡績糸が水を素早く吸収することで、ウェット状態での摩擦係数の低下を抑制し、耐注水発音性を高めている。 Measures for covering the friction transmission surface of the belt with a knitted fabric formed of fibers are known for such problems. For example, in Patent Document 1, for the purpose of reducing the difference in friction coefficient between a dry state and a wet state of a belt, a knitted fabric is knitted with a bulky polyester composite yarn and a cellulose natural spun yarn to absorb water. Cellulose-based natural spun yarn that excels in water absorbs water quickly, thereby suppressing a decrease in the coefficient of friction in a wet state and improving water-pouring sound resistance.
日本国特開2014-209028号公報Japanese Unexamined Patent Publication No. 2014-209028
 しかしながら、セルロース系天然紡績糸は耐摩耗性が低いために、使用するにつれてセルロース系天然紡績糸が摩耗し、吸水性が低下し、ウェット状態での摩擦係数が低下してしまうことにより、耐注水発音性を十分長期間に亘って保持することができない可能性がある。 However, since the cellulose-based natural spun yarn has low abrasion resistance, the cellulose-based natural spun yarn wears with use, the water absorption decreases, and the coefficient of friction in the wet state decreases. There is a possibility that the pronunciation cannot be maintained for a sufficiently long period.
 そこで、本発明の課題は、耐注水発音性を長期間に亘って保持させることを目的として、耐摩耗性に優れる編布で摩擦伝動面を被覆したVリブドベルト及びその製造方法を提供する。 Therefore, an object of the present invention is to provide a V-ribbed belt in which a friction transmission surface is covered with a knitted fabric having excellent wear resistance and a method for producing the same for the purpose of maintaining the water-sounding sound resistance over a long period of time.
 上記課題を解決するための本発明は、摩擦伝動面が緯編多層編布で構成されたVリブドベルトであって、
 前記緯編多層編布は、セルロース系天然紡績糸、ポリエステル系複合糸、及び、ポリアミド系の糸を含み、少なくとも前記セルロース系天然紡績糸と前記ポリアミド系の糸とが、前記摩擦伝動面側の層に配されていることを特徴としている。
The present invention for solving the above problems is a V-ribbed belt in which the friction transmission surface is composed of a weft knitted multilayer knitted fabric,
The weft knitted multilayer knitted fabric includes a cellulose-based natural spun yarn, a polyester-based composite yarn, and a polyamide-based yarn, and at least the cellulose-based natural spun yarn and the polyamide-based yarn are on the friction transmission surface side. It is characterized by being arranged in layers.
 上記摩擦伝動面を被覆する緯編多層編布が、セルロース系天然紡績糸を含むことにより、Vリブドベルトの吸水性を高め、耐注水発音性を高めることができる。また、緯編多層編布が、ポリエステル系複合糸を含むことにより、緯編多層編布の伸縮性を高め、金型でベルトにV形状のリブ部を形成する際の緯編多層編布のV形状のリブ部への適応性を高めることができる。また、緯編多層編布が、ポリアミド系の糸を含むことにより、耐摩耗性を高め、セルロース系天然紡績糸が摩耗するのを抑制することができ、耐注水発音性を長期間に亘って保持することができる。
 また、摩擦伝動面を被覆する編布を緯編にすることにより伸縮性を高めているので、金型でベルトにV形状のリブ部を形成するVリブドベルトの製造過程において、リブ部の形状不良を発生しにくくすることができる。また、編布を多層構造にすることで、Vリブドベルトの構成要素であるゴムの編布を介した摩擦伝動面側への滲み出しが抑制され、摩擦伝動面のドライ状態での摩擦係数とウェット状態での摩擦係数の差を小さくすることができるので、耐注水発音性を高めることができる。
 また、吸水性の高いセルロース系天然紡績糸をVリブドベルトの摩擦伝動面側の層に配することで、プーリとVリブドベルトとの間に浸入した水を素早く吸収して摩擦係数を安定化(ウェット状態での摩擦係数の低下を抑制)することができるので、耐注水発音性を高めることができる。さらに、耐摩耗性の高いポリアミド系の糸を摩擦伝動面側の層に配することで、セルロース系天然紡績糸が摩耗するのを抑制することができ、耐注水発音性を長期間に亘って保持することができる。
When the weft knitted multi-layer knitted fabric covering the friction transmission surface contains the cellulose-based natural spun yarn, the water absorption of the V-ribbed belt can be increased and the water injection resistance can be improved. Further, since the weft knitted multilayer knitted fabric includes a polyester-based composite yarn, the stretchability of the weft knitted multilayer knitted fabric is improved, and the weft knitted multilayer knitted fabric when forming the V-shaped rib portion on the belt with a die is used. The adaptability to the V-shaped rib portion can be enhanced. Moreover, the weft knitted multilayer knitted fabric includes polyamide-based yarns, so that the abrasion resistance can be improved and the cellulose-based natural spun yarns can be prevented from being worn. Can be held.
In addition, since weft knitting is used as the knitted fabric that covers the friction transmission surface, the shape of the rib portion is poor in the manufacturing process of the V-ribbed belt in which the V-shaped rib portion is formed on the belt with a mold. Can be made difficult to occur. Further, by making the knitted fabric a multilayer structure, the rubber constellation, which is a constituent element of the V-ribbed belt, is prevented from seeping out to the friction transmission surface side, and the friction coefficient in the dry state of the friction transmission surface and the wet Since the difference in the coefficient of friction in the state can be reduced, the water injection resistance can be improved.
In addition, by placing cellulose-based natural spun yarn with high water absorption in the layer on the friction transmission surface side of the V-ribbed belt, water that has entered between the pulley and the V-ribbed belt is quickly absorbed to stabilize the friction coefficient (wet Therefore, it is possible to suppress the water injection sound resistance. Furthermore, by placing a polyamide-based yarn with high wear resistance in the layer on the friction transmission surface side, it is possible to suppress the abrasion of the cellulosic natural spun yarn, and the water-proof sounding resistance can be maintained over a long period of time. Can be held.
 また、本発明は、上記Vリブドベルトの前記緯編多層編布において、前記ポリアミド系の糸の含有量が5~60質量%であってよい。 Further, according to the present invention, in the weft knitted multilayer knitted fabric of the V-ribbed belt, the content of the polyamide-based yarn may be 5 to 60% by mass.
 上記構成にすることにより、Vリブドベルトの耐注水発音性を損なうことなく、耐摩耗性を向上させることができる。ポリアミド系の糸の含有量が5質量%よりも少ないと耐摩耗性が低下することがある。ポリアミド系の糸の含有量が60質量%よりも多いと吸水性が低下し耐注水発音性が低下することがある。なお、緯編多層編布において、ポリアミド系の糸の含有量は15~60質量%が好ましく、20~55質量%がより好ましく、20~40質量%がさらに好ましい。 By adopting the above configuration, the wear resistance can be improved without impairing the water injection resistance of the V-ribbed belt. If the content of the polyamide yarn is less than 5% by mass, the wear resistance may be lowered. If the content of the polyamide-based yarn is more than 60% by mass, the water absorption may be lowered and the water injection resistance may be lowered. In the weft knitted multilayer knitted fabric, the polyamide yarn content is preferably 15 to 60% by mass, more preferably 20 to 55% by mass, and further preferably 20 to 40% by mass.
 また、本発明は、上記Vリブドベルトの前記緯編多層編布において、前記セルロース系天然紡績糸の含有量が5~60質量%であってよい。 In the present invention, the weft-knitted multilayer knitted fabric of the V-ribbed belt may have a content of the cellulose-based natural spun yarn of 5 to 60% by mass.
 上記構成にすることにより、Vリブドベルトの耐注水発音性を損なうことなく、耐摩耗性を向上させることができる。セルロース系天然紡績糸の含有量が5質量%よりも少ないと吸水性が低下し耐注水発音性が低下することがある。セルロース系天然紡績糸の含有量が60質量%よりも多いと耐摩耗性が低下することがある。なお、緯編多層編布において、セルロース系天然紡績糸の含有量は5~55質量%が好ましく、5~40質量%がより好ましく、20~40質量%がさらに好ましい。 By adopting the above configuration, the wear resistance can be improved without impairing the water injection resistance of the V-ribbed belt. If the content of the cellulose-based natural spun yarn is less than 5% by mass, the water absorption may be lowered and the water injection resistance may be lowered. When the content of the cellulose-based natural spun yarn is more than 60% by mass, the wear resistance may be lowered. In the weft knitted multilayer knitted fabric, the content of the cellulose-based natural spun yarn is preferably 5 to 55% by mass, more preferably 5 to 40% by mass, and further preferably 20 to 40% by mass.
 また、本発明は、上記Vリブドベルトの前記緯編多層編布において、前記ポリアミド系の糸とセルロース系天然紡績糸との質量比が、(ポリアミド系の糸:セルロース系天然紡績糸)=5:95~95:5であってよい。 Further, according to the present invention, in the weft knitted multilayer knitted fabric of the V-ribbed belt, a mass ratio of the polyamide-based yarn to the cellulose-based natural spun yarn is (polyamide-based yarn: cellulose-based natural spun yarn) = 5: It may be 95 to 95: 5.
 上記構成にすることにより、Vリブドベルトの耐注水発音性を損なうことなく、耐摩耗性を向上させることができる。ポリアミド系の糸の含有割合が少ないと耐摩耗性が低下し、ポリアミド系の糸の含有割合が多いと吸水性が低下するので耐注水発音性が低下する。なお、緯編多層編布において、ポリアミド系の糸とセルロース系天然紡績糸との質量比は、10:90~90:10が好ましく、20:80~80:20がより好ましく、30:70~70:30がさらに好ましい。 By adopting the above configuration, the wear resistance can be improved without impairing the water injection resistance of the V-ribbed belt. If the content of the polyamide yarn is small, the wear resistance is lowered, and if the content of the polyamide yarn is high, the water absorption is lowered, so that the water injection resistance is lowered. In the weft knitted multilayer knitted fabric, the mass ratio of the polyamide-based yarn and the cellulose-based natural spun yarn is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, and 30:70 to 70:30 is more preferable.
 また、本発明は、上記Vリブドベルトにおいて、前記緯編多層編布に含まれる前記ポリエステル系複合糸が、熱収縮率の異なる2種類以上のポリマーからなる嵩高加工糸であってよい。 Further, in the V-ribbed belt according to the present invention, the polyester composite yarn included in the weft knitted multilayer knitted fabric may be a bulky processed yarn made of two or more kinds of polymers having different heat shrinkage rates.
 上記構成によれば、2種類以上のポリマーの熱収縮率の違いにより捲縮性が発現し、緯編多層編布に伸縮性や嵩高性を持たせることができる。これにより、金型でベルトにV形状のリブ部を形成するVリブドベルトの製造過程において、V形状のリブ部への緯編多層編布の適応性を高めることができる。さらにVリブドベルトの構成要素であるゴムの編布を介した摩擦伝動面側への滲み出しが抑制され、摩擦伝動面のドライ状態での摩擦係数とウェット状態での摩擦係数の差を小さくすることができるので、耐注水発音性を高めることができる。 According to the above configuration, crimpability is manifested by the difference in heat shrinkage between two or more kinds of polymers, and the weft knitted multilayer knitted fabric can be provided with stretchability and bulkiness. Thereby, in the manufacturing process of the V-ribbed belt in which the V-shaped rib portion is formed on the belt with a mold, the adaptability of the weft knitted multilayer knitted fabric to the V-shaped rib portion can be enhanced. Furthermore, the seepage of the friction transmission surface through the rubber knitted fabric, which is a constituent element of the V-ribbed belt, is suppressed, and the difference between the friction coefficient in the dry state and the friction coefficient in the wet state is reduced. Therefore, it is possible to improve the water injection resistance.
 また、本発明は、上記Vリブドベルトにおいて、前記緯編多層編布に含まれる前記ポリエステル系複合糸が、ポリエチレンテレフタレート(PET)を含むコンジュゲート糸であってもよい。 In the V-ribbed belt according to the present invention, the polyester composite yarn contained in the weft knitted multilayer knitted fabric may be a conjugate yarn containing polyethylene terephthalate (PET).
 緯編多層編布に含まれるポリエステル系複合糸に、ポリエチレンテレフタレート(PET)を含むコンジュゲート糸を使用することにより、緯編多層編布の伸縮性、嵩高性、耐摩耗性を高めることができる。また、ポリエチレンテレフタレートを含むコンジュゲート糸は入手性に優れていることからコストを低減することができる。 By using a conjugate yarn containing polyethylene terephthalate (PET) for the polyester composite yarn contained in the weft knitted multilayer knitted fabric, the stretchability, bulkiness and wear resistance of the weft knitted multilayer knitted fabric can be improved. . Moreover, since the conjugate yarn containing polyethylene terephthalate is excellent in availability, the cost can be reduced.
 また、本発明は、上記Vリブドベルトにおいて、前記緯編多層編布に含まれる前記ポリアミド系の糸が、ナイロン、又は、アラミド繊維を含んでもよい。 In the V-ribbed belt according to the present invention, the polyamide yarn included in the weft knitted multilayer knitted fabric may include nylon or aramid fiber.
 ナイロン、又は、アラミド繊維を含む緯編多層編布は耐摩耗性が高いので、セルロース系天然紡績糸が摩耗するのを抑制する効果が高く、耐注水発音性を長期間に亘って保持することができる。 Weft knitted multi-layer knitted fabrics containing nylon or aramid fibers have high wear resistance, so they are highly effective in suppressing the abrasion of cellulosic natural spun yarns and maintain water injection sound resistance over a long period of time. Can do.
 また、本発明は、上記Vリブドベルトにおいて、前記緯編多層編布を構成する糸が、各々フィラメントやファイバを撚り合わせていてもよい。 Further, according to the present invention, in the V-ribbed belt, the yarns constituting the weft knitted multilayer knitted fabric may each twist a filament or a fiber.
 緯編多層編布を構成する糸にフィラメントやファイバが収束されることで耐摩耗性が向上する。また、緯編多層編布を構成する糸にフィラメントやファイバを撚り合わせて収束することにより、編布を編成しやすく、フィラメントやファイバが毛羽立つのも抑えられるので、Vリブドベルトの外観品質を向上させることができる。 Wear resistance is improved by converging filaments and fibers on the yarns constituting the weft knitted multilayer fabric. In addition, by twisting filaments and fibers together with the yarns constituting the weft knitted multilayer knitted fabric and converging, the knitted fabric can be easily knitted and the filaments and fibers can be prevented from fluffing, thereby improving the appearance quality of the V-ribbed belt. be able to.
 また、本発明は、上記Vリブドベルトにおいて、前記緯編多層編布が、ポリウレタンを含まなくてもよい。 Further, according to the present invention, in the V-ribbed belt, the weft knitted multilayer knitted fabric may not contain polyurethane.
 緯編多層編布に、繊維材料と比べて吸水性や耐摩耗性の低いポリウレタンを含まないので、緯編多層編布の吸水性や耐摩耗性が低下しないようにすることができる。なお、上記構成によれば、編布によく採用されるポリウレタンを含まないことから伸縮性に劣るとも思われるが、上記構成では伸縮性に優れるポリエステル系複合糸を含むので、伸縮性は担保される。 Since the weft knitted multilayer knitted fabric does not contain polyurethane having low water absorption and abrasion resistance as compared with the fiber material, it is possible to prevent the water absorbency and abrasion resistance of the weft knitted multilayer knitted fabric from being deteriorated. In addition, according to the said structure, since it is thought that it is inferior in elasticity because it does not contain the polyurethane often employ | adopted for a knitted fabric, in the said structure, since the polyester type composite yarn excellent in elasticity is included, elasticity is ensured. The
 また、本発明は、上記Vリブドベルトにおいて、前記摩擦伝動面を被覆する前記緯編多層編布の厚みが、0.6mm以上であってもよい。 In the present invention, in the V-ribbed belt, a thickness of the weft knitted multilayer knitted fabric covering the friction transmission surface may be 0.6 mm or more.
 緯編多層編布の厚みを0.6mm以上にすることにより、Vリブドベルトの構成要素であるゴムの編布を介した摩擦伝動面側への滲み出しが抑制され、摩擦伝動面のドライ状態での摩擦係数とウェット状態での摩擦係数の差を小さくすることができるので、耐注水発音性を高めることができる。なお、緯編多層編布の厚みが0.7mm以上であればVリブドベルトの構成要素であるゴムの編布を介した摩擦伝動面側への滲み出しをより確実に抑制することができ、特に0.8mm以上が好ましい。緯編多層編布の厚みの上限値は特に限定されないが、例えば1.5mm以下であってもよい。 By setting the thickness of the weft knitted multilayer knitted fabric to 0.6 mm or more, the seepage to the friction transmission surface via the rubber knitted fabric which is a constituent element of the V-ribbed belt is suppressed, and the friction transmission surface is in a dry state. Since the difference between the coefficient of friction and the coefficient of friction in the wet state can be reduced, the water injection resistance can be improved. In addition, if the thickness of the weft knitted multilayer knitted fabric is 0.7 mm or more, it is possible to more reliably suppress the seepage to the friction transmission surface side through the rubber knitted fabric which is a constituent element of the V-ribbed belt. 0.8 mm or more is preferable. The upper limit value of the thickness of the weft knitted multilayer knitted fabric is not particularly limited, but may be, for example, 1.5 mm or less.
 また、本発明は、上記Vリブドベルトの前記緯編多層編布の摩擦伝動面側の層において、前記セルロース系天然紡績糸とポリアミド系の糸とが一様に分散するように配置されてもよい。 In the present invention, the cellulose-based natural spun yarn and the polyamide-based yarn may be uniformly dispersed in the layer on the friction transmission surface side of the weft knitted multilayer knitted fabric of the V-ribbed belt. .
 セルロース系天然紡績糸とポリアミド系の糸とが一様に分散するように配置することから、数本の糸をまとめて配置する場合に比べて、セルロース系天然紡績糸の近傍にポリアミド系の糸が存在するので、セルロース系天然紡績糸の摩耗をより確実に抑えることができる。また、吸水性にムラがないので、耐注水発音性も高めることができる。 Since the cellulose-based natural spun yarn and the polyamide-based yarn are arranged so as to be evenly dispersed, the polyamide-based yarn is closer to the cellulosic natural spun yarn than when several yarns are arranged together. Therefore, the wear of the cellulosic natural spun yarn can be more reliably suppressed. In addition, since there is no unevenness in water absorption, water-sounding sound resistance can be improved.
 また、本発明は、上記Vリブドベルトが、ゴムを構成要素として含み、
 当該ゴムの摩擦伝動面側に前記緯編多層編布が被覆されており、
 前記緯編多層編布から摩擦伝動面への前記ゴムの滲み出しが無いことを特徴としてもよい。
In the present invention, the V-ribbed belt includes rubber as a component,
The weft knitted multilayer knitted fabric is coated on the friction transmission surface side of the rubber,
The rubber may not ooze from the weft knitted multilayer knitted fabric to the friction transmission surface.
 緯編多層編布から摩擦伝動面へのゴムの滲み出しが有ると、吸水性が低下するので、ウェット時の摩擦係数の低下が大きくなり、耐注水発音性が低下してしまう。そこで、緯編多層編布から摩擦伝動面へのゴムの滲み出しを無くすことにより、十分な吸水性が確保できるため、耐注水発音性を向上させることができる。なお、ここで「ゴムの滲み出しが無い」とは、ゴムが摩擦伝動面に露出している面積割合が5%未満である場合を意味する。 When rubber oozes out from the weft knitted multilayer fabric to the friction transmission surface, the water absorption decreases, so the decrease in the coefficient of friction when wet occurs and the water injection resistance is reduced. Therefore, by eliminating the bleeding of the rubber from the weft knitted multilayer knitted fabric to the friction transmission surface, sufficient water absorption can be ensured, so that the water injection resistance can be improved. Here, “no rubber exudation” means that the area ratio of the rubber exposed to the friction transmission surface is less than 5%.
 また、本発明は、上記Vリブドベルトの製造方法であって、
 前記緯編多層編布の両端をジョイントした筒状の当該緯編多層編布を未加硫の圧縮層用シートに被せる、又は、未加硫の圧縮層用シートの上で前記緯編多層編布の両端をジョイントする、ことを特徴としてもよい。
Further, the present invention is a method for producing the V-ribbed belt,
Cover the weft knitted multilayer knitted fabric with both ends of the weft knitted multilayer knitted fabric on the unvulcanized compressed layer sheet, or on the unvulcanized compressed layer sheet, the weft knitted multilayer knitted fabric It may be characterized in that both ends of the cloth are jointed.
 筒状のシームレス(ジョイント部がない)緯編多層編布を圧縮層用シートに被せる場合には、ベルト長さに応じた周長を有する緯編多層編布を準備する必要があるので、様々なベルト長さに対応するために仕掛品を多く持つ必要がある。一方、上記方法のように緯編多層編布の両端をジョイントする方法では、ベルト長さに応じてその場で緯編多層編布の周長を調節することができるので仕掛品を多く持つ必要がない。 When covering a tubular seamless (no joint part) weft knitted multilayer knitted fabric on the sheet for the compression layer, it is necessary to prepare a weft knitted multilayer knitted fabric having a circumference corresponding to the belt length. It is necessary to have a lot of work-in-process to cope with a long belt length. On the other hand, in the method of joining the both ends of the weft knitted multilayer knitted fabric as in the above method, the circumference of the weft knitted multilayer knitted fabric can be adjusted on the spot according to the belt length, so it is necessary to have a lot of work in progress. There is no.
 耐摩耗性に優れる編布で摩擦伝動面を被覆することにより、耐注水発音性を長期間に亘って保持させることができるVリブドベルト及びその製造方法を提供することができる。 By covering the friction transmission surface with a knitted fabric having excellent wear resistance, it is possible to provide a V-ribbed belt capable of maintaining the water-injection sound generation property over a long period of time and a method for manufacturing the same.
図1は本発明に係るVリブドベルトを用いたベルト伝動装置の例を説明する概略斜視図である。FIG. 1 is a schematic perspective view illustrating an example of a belt transmission device using a V-ribbed belt according to the present invention. 図2は図1のA-A’断面に沿ったVリブドベルトの横断面図である。FIG. 2 is a cross-sectional view of the V-ribbed belt along the A-A ′ section of FIG. 1. 図3は編布において、セルロース系天然紡績糸とポリアミド系の糸とが一様に分散している例(A)、及び一様に分散していない例(B)を示した説明図である。FIG. 3 is an explanatory view showing an example (A) in which cellulosic natural spun yarn and polyamide yarn are uniformly dispersed in the knitted fabric, and an example (B) in which the yarn is not uniformly dispersed. . 図4はVリブドベルトの製造方法を説明する概念図である。FIG. 4 is a conceptual diagram illustrating a method for manufacturing a V-ribbed belt. 図5はドライ状態(a)とウェット状態(b)の摩擦係数測定試験を説明する概念図である。FIG. 5 is a conceptual diagram illustrating a friction coefficient measurement test in a dry state (a) and a wet state (b). 図6はミスアライメント発音評価試験を説明する概念図である。FIG. 6 is a conceptual diagram illustrating a misalignment pronunciation evaluation test.
 以下、図面に基づき、本発明の実施形態の一例を説明する。図1は、本発明に係るVリブドベルト1を用いた補機駆動用のベルト伝動装置の例を示す。このベルト伝動装置は、1つずつの駆動プーリ21と従動プーリ22とを備え、これらの駆動プーリ21と従動プーリ22との間にVリブドベルト1を巻き掛けた最も簡単な例である。無端状のVリブドベルト1は、内周側にベルト周長方向に延びる複数のV字状リブ部2が形成されており、駆動プーリ21、及び、従動プーリ22の外周面には、Vリブドベルト1の各リブ部2が嵌り込む複数のV字状溝23が設けられている。 Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a belt drive device for driving an auxiliary machine using a V-ribbed belt 1 according to the present invention. This belt transmission is the simplest example in which the drive pulley 21 and the driven pulley 22 are provided one by one, and the V-ribbed belt 1 is wound between the drive pulley 21 and the driven pulley 22. The endless V-ribbed belt 1 is formed with a plurality of V-shaped rib portions 2 extending in the belt circumferential length direction on the inner peripheral side, and the V-ribbed belt 1 is provided on the outer peripheral surfaces of the drive pulley 21 and the driven pulley 22. A plurality of V-shaped grooves 23 into which the respective rib portions 2 are fitted are provided.
 (Vリブドベルト1の構成)
 図2に示すように、Vリブドベルト1は、外周側のベルト背面を形成する伸張層3と、伸張層3の内周側に設けられた圧縮層4と、伸張層3と圧縮層4との間に埋設されたベルト周長方向に延びる心線5とを備え、圧縮層4にベルト周長方向に延びる複数のV字状リブ部2が形成され、摩擦伝動面となるリブ部2の表面が編布6で被覆されている。伸張層3と圧縮層4とは、後述するように、いずれもゴム組成物で形成されている。なお、必要に応じて、伸張層3と圧縮層4との間に接着層を設けてもよい。この接着層は、心線5の伸張層3及び圧縮層4との接着性を向上させる目的で設けられるが、必須のものではない。接着層の形態としては、接着層に心線5全体を埋設する形態でもよく、接着層と伸張層3との間又は、接着層と圧縮層4との間に心線5を埋設する形態でもよい。
(Configuration of V-ribbed belt 1)
As shown in FIG. 2, the V-ribbed belt 1 includes an extension layer 3 that forms the belt back surface on the outer periphery side, a compression layer 4 provided on the inner periphery side of the extension layer 3, and the extension layer 3 and the compression layer 4. And a core wire 5 embedded in the circumferential direction of the belt embedded therebetween, and a plurality of V-shaped rib portions 2 extending in the circumferential direction of the belt are formed in the compression layer 4, and the surface of the rib portion 2 serving as a friction transmission surface Is covered with a knitted fabric 6. The stretch layer 3 and the compression layer 4 are both formed of a rubber composition as will be described later. An adhesive layer may be provided between the stretch layer 3 and the compression layer 4 as necessary. This adhesive layer is provided for the purpose of improving the adhesion between the core wire 5 and the stretched layer 3 and the compressed layer 4, but is not essential. As the form of the adhesive layer, the entire core wire 5 may be embedded in the adhesive layer, or the core wire 5 may be embedded between the adhesive layer and the stretch layer 3 or between the adhesive layer and the compression layer 4. Good.
 圧縮層4を形成するゴム組成物のゴム成分としては、加硫又は架橋可能なゴム、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、水素化ニトリルゴム、水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマーなど)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが挙げられる。 Examples of rubber components of the rubber composition forming the compression layer 4 include vulcanizable or crosslinkable rubbers such as diene rubbers (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, hydrogen Nitrile rubber, mixed polymer of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt), ethylene-α-olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, Silicone rubber, urethane rubber, fluororubber, etc. are mentioned.
 これらのうち、硫黄や有機過酸化物を含むゴム組成物で未加硫ゴム層を形成し、未加硫ゴム層を加硫又は架橋したものが好ましく、特に、有害なハロゲンを含まず、耐オゾン性、耐熱性、耐寒性を有し、経済性にも優れる点から、エチレン-α-オレフィンエラストマー(エチレン-α-オレフィン系ゴム)が好ましい。エチレン-α-オレフィンエラストマーとしては、例えば、エチレン-α-オレフィンゴム(エチレン-プロピレンゴムなど)、エチレン-α-オレフィン-ジエンゴム(エチレン-プロピレン-ジエン共重合体など)などが挙げられる。α-オレフィンとしては、プロピレン、ブテン、ペンテン、メチルペンテン、ヘキセン、オクテンなどが挙げられる。これらのα-オレフィンは、単独又は2種以上を組み合わせて使用することができる。また、これらの原料となるジエンモノマーとしては、非共役ジエン系単量体、例えば、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、1,4-ヘキサジエン、シクロオクタジエンなどが挙げられる。これらのジエンモノマーは、単独で又は2種以上を組み合わせて使用することができる。 Of these, those obtained by forming an unvulcanized rubber layer with a rubber composition containing sulfur or an organic peroxide, and vulcanizing or crosslinking the unvulcanized rubber layer are preferable. An ethylene-α-olefin elastomer (ethylene-α-olefin rubber) is preferred because it has ozone resistance, heat resistance, cold resistance, and is excellent in economy. Examples of the ethylene-α-olefin elastomer include ethylene-α-olefin rubber (such as ethylene-propylene rubber) and ethylene-α-olefin-diene rubber (such as ethylene-propylene-diene copolymer). Examples of the α-olefin include propylene, butene, pentene, methylpentene, hexene, octene and the like. These α-olefins can be used alone or in combination of two or more. Examples of the diene monomer used as a raw material include non-conjugated diene monomers such as dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene, and cyclooctadiene. These diene monomers can be used alone or in combination of two or more.
 エチレン-α-オレフィンエラストマーにおいて、エチレンとα-オレフィンとの割合(前者/後者の質量比)は、40/60~90/10、好ましくは45/55~85/15、さらに好ましくは55/45~80/20の範囲がよい。また、ジエンの割合は、4~15質量%の範囲から選択でき、例えば、4.2~13質量%、好ましくは4.4~11.5質量%の範囲とするとよい。なお、ジエン成分を含むエチレン-α-オレフィンエラストマーのヨウ素価は、例えば、3~40、好ましくは5~30、さらに好ましくは10~20の範囲とするとよい。ヨウ素価が小さ過ぎると、ゴム組成物の加硫が不十分となって摩耗や粘着が生じやすくなり、ヨウ素価が大き過ぎると、ゴム組成物のスコーチが短くなって扱い難くなるとともに耐熱性が低下する傾向がある。ヨウ素価の測定方法としては、測定試料に対して過剰のヨウ素を加えて完全に反応(ヨウ素と不飽和結合との反応)させ、残ったヨウ素の量を酸化還元適定により定量することで求められる。 In the ethylene-α-olefin elastomer, the ratio of ethylene to α-olefin (the mass ratio of the former / the latter) is 40/60 to 90/10, preferably 45/55 to 85/15, more preferably 55/45. A range of ~ 80/20 is preferred. The proportion of diene can be selected from the range of 4 to 15% by mass, for example, 4.2 to 13% by mass, preferably 4.4 to 11.5% by mass. The iodine value of the ethylene-α-olefin elastomer containing the diene component is, for example, in the range of 3 to 40, preferably 5 to 30, and more preferably 10 to 20. If the iodine value is too small, vulcanization of the rubber composition will be insufficient, and wear and sticking will easily occur.If the iodine value is too large, the scorch of the rubber composition will become short and difficult to handle, and heat resistance will be increased. There is a tendency to decrease. The iodine value is measured by adding excess iodine to the sample to be reacted completely (reaction between iodine and unsaturated bonds), and quantifying the amount of remaining iodine by redox titration. It is done.
 未加硫ゴム層を架橋する有機過酸化物としては、ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイド(ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、1,1-ジ-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキサン、1,3-ビス(t-ブチルパーオキシ-イソプロピル)ベンゼン、ジ-t-ブチルパーオキサイドなど)などが挙げられる。これらの有機過酸化物は、単独で又は2種以上を組み合わせて使用することができる。さらに、有機過酸化物は、熱分解による半減期が1分間である温度範囲が150℃~250℃、好ましくは175℃~225℃程度のものがよい。 Examples of the organic peroxide that crosslinks the unvulcanized rubber layer include diacyl peroxide, peroxy ester, dialkyl peroxide (dicumyl peroxide, t-butylcumyl peroxide, 1,1-di-butylperoxy-3). , 3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexane, 1,3-bis (t-butylperoxy-isopropyl) benzene, di-t-butyl Peroxide) and the like. These organic peroxides can be used alone or in combination of two or more. Further, the organic peroxide has a temperature range in which the half-life by thermal decomposition is 1 minute is 150 ° C. to 250 ° C., preferably about 175 ° C. to 225 ° C.
 未加硫ゴム層の加硫剤又は架橋剤(特に有機過酸化物)の割合は、ゴム成分(エチレン-α-オレフィンエラストマーなど)100質量部に対して、固形分換算で1~10質量部、好ましくは1.2~8質量部、さらに好ましくは1.5~6質量部とするとよい。 The proportion of the vulcanizing agent or crosslinking agent (especially organic peroxide) in the unvulcanized rubber layer is 1 to 10 parts by mass in terms of solid content with respect to 100 parts by mass of the rubber component (ethylene-α-olefin elastomer etc.). The amount is preferably 1.2 to 8 parts by mass, more preferably 1.5 to 6 parts by mass.
 ゴム組成物は加硫促進剤を含んでいてもよい。加硫促進剤としては、チウラム系促進剤、チアゾール系促進剤、スルフェンアミド系促進剤、ビスマレイミド系促進剤、ウレア系促進剤などが挙げられる。これらの加硫促進剤は、単独で又は2種以上を組み合わせて使用することができる。加硫促進剤(複数種を組み合わせる場合は合計量を意味し、以降も複数種を組み合わせる場合は同様)の割合は、固形分換算で、ゴム成分100質量部に対して、0.5~15質量部、好ましくは1~10質量部、さらに好ましくは2~5質量部とするとよい。 The rubber composition may contain a vulcanization accelerator. Examples of the vulcanization accelerator include thiuram accelerators, thiazole accelerators, sulfenamide accelerators, bismaleimide accelerators, urea accelerators, and the like. These vulcanization accelerators can be used alone or in combination of two or more. The proportion of the vulcanization accelerator (meaning the total amount when a plurality of types are combined and the same applies when a plurality of types are combined thereafter) is 0.5 to 15 in terms of solid content with respect to 100 parts by mass of the rubber component. The amount is preferably 1 to 10 parts by mass, more preferably 2 to 5 parts by mass.
 また、ゴム組成物は、架橋度を高め、粘着摩耗等を防止するために、さらに共架橋剤(架橋助剤又は共加硫剤)を含んでいてもよい。共架橋剤としては、慣用の架橋助剤、例えば、多官能(イソ)シアヌレート(トリアリルイソシアヌレート、トリアリルシアヌレートなど)、ポリジエン(1,2-ポリブタジエンなど)、不飽和カルボン酸の金属塩((メタ)アクリル酸亜鉛、(メタ)アクリル酸マグネシウムなど)、オキシム類(キノンジオキシムなど)、グアニジン類(ジフェニルグアニジンなど)、多官能(メタ)アクリレート(エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなど)、ビスマレイミド類(N,N'-m-フェニレンビスマレイミドなど)などが挙げられる。これらの架橋助剤は、単独で又は2種以上を組み合わせて使用することができる。架橋助剤の割合は、固形分換算で、ゴム成分100質量部に対して、0.01~10質量部、好ましくは0.05~8質量部とするとよい。 The rubber composition may further contain a co-crosslinking agent (crosslinking aid or co-vulcanizing agent) in order to increase the degree of cross-linking and prevent adhesive wear and the like. Examples of the co-crosslinking agent include conventional crosslinking aids such as polyfunctional (iso) cyanurates (triallyl isocyanurate, triallyl cyanurate, etc.), polydienes (1,2-polybutadiene, etc.), and metal salts of unsaturated carboxylic acids. (Zinc (meth) acrylate, magnesium (meth) acrylate, etc.), oximes (quinone dioxime, etc.), guanidines (diphenylguanidine, etc.), polyfunctional (meth) acrylates (ethylene glycol di (meth) acrylate, butane Diol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, etc.), bismaleimides (N, N′-m-phenylene bismaleimide, etc.) and the like. These crosslinking aids can be used alone or in combination of two or more. The ratio of the crosslinking aid is 0.01 to 10 parts by weight, preferably 0.05 to 8 parts by weight, based on 100 parts by weight of the rubber component, in terms of solid content.
 また、ゴム組成物は、必要に応じて、短繊維を含んでいてもよい。短繊維としては、セルロース系繊維(綿、レーヨンなど)、ポリエステル系繊維(PET、PEN繊維など)、脂肪族ポリアミド繊維(6ナイロン繊維、66ナイロン繊維、46ナイロン繊維など)、芳香族ポリアミド繊維(p-アラミド繊維、m-アラミド繊維など)、ビニロン繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維などが挙げられる。これらの短繊維は、ゴム組成物中での分散性や接着性を高めるため、慣用の接着処理又は表面処理、例えばRFL液などによる処理を施してもよい。短繊維の割合は、ゴム成分100質量部に対して、1~50質量部、好ましくは5~40質量部、さらに好ましくは10~35質量部とするとよい。 Further, the rubber composition may contain short fibers as necessary. Short fibers include cellulosic fibers (cotton, rayon, etc.), polyester fibers (PET, PEN fibers, etc.), aliphatic polyamide fibers (6 nylon fibers, 66 nylon fibers, 46 nylon fibers, etc.), aromatic polyamide fibers ( p-aramid fiber, m-aramid fiber, etc.), vinylon fiber, polyparaphenylene benzobisoxazole (PBO) fiber and the like. These short fibers may be subjected to conventional adhesion treatment or surface treatment such as treatment with an RFL solution in order to improve dispersibility and adhesion in the rubber composition. The proportion of the short fibers may be 1 to 50 parts by mass, preferably 5 to 40 parts by mass, and more preferably 10 to 35 parts by mass with respect to 100 parts by mass of the rubber component.
 さらに、ゴム組成物は、必要に応じて、慣用の添加剤、例えば、加硫助剤、加硫遅延剤、補強剤(カーボンブラック、含水シリカ等の酸化ケイ素など)、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、金属酸化物(酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、可塑剤(パラフィン系オイル、ナフテン系オイル、プロセスオイル等のオイル類など)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイドなど)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲亀裂防止剤、オゾン劣化防止剤など)、着色剤、粘着付与剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、酸化防止剤、オゾン劣化防止剤、熱安定剤など)、潤滑剤(グラファイト、二硫化モリブデン、超高分子量ポリエチレンなど)、難燃剤、帯電防止剤などを含んでいてもよい。金属酸化物は架橋剤として作用させてもよい。これらの添加剤は、単独で又は2種以上を組み合わせて使用することができる。また、これらの添加剤の割合は、種類に応じて慣用の範囲から選択でき、例えば、ゴム成分100質量部に対して、補強剤(カーボンブラック、シリカなど)の割合は10~200質量部(好ましくは20~150質量部)、金属酸化物(酸化亜鉛など)の割合は1~15質量部(好ましくは2~10質量部)、可塑剤(パラフィンオイル等のオイル類など)の割合は1~30質量部(好ましくは5~25質量部)、加工剤(ステアリン酸など)の割合は0.1~5質量部(好ましくは0.5~3質量部)とするとよい。 Further, the rubber composition may be prepared by adding conventional additives such as vulcanization aids, vulcanization retarders, reinforcing agents (carbon black, silicon oxide such as hydrous silica), fillers (clay, carbonic acid) as necessary. Calcium, talc, mica, etc.), metal oxides (zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), plasticizers (paraffinic oil, naphthenic oil, process) Oils, etc.), processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, fatty acid amide, etc.), anti-aging agents (antioxidants, thermal anti-aging agents, anti-bending cracks, Ozone degradation inhibitors, etc.), coloring agents, tackifiers, coupling agents (silane coupling agents, etc.), stabilizers (ultraviolet absorbers, antioxidants) , Antiozonants, thermal stabilizers, etc.), lubricants (graphite, molybdenum disulfide, ultrahigh molecular weight polyethylene, etc.), a flame retardant, an antistatic agent and the like. The metal oxide may act as a crosslinking agent. These additives can be used alone or in combination of two or more. The ratio of these additives can be selected from a conventional range depending on the type. For example, the ratio of the reinforcing agent (carbon black, silica, etc.) is 10 to 200 parts by mass (100 parts by mass of the rubber component). 20 to 150 parts by mass), the ratio of metal oxide (such as zinc oxide) is 1 to 15 parts by mass (preferably 2 to 10 parts by mass), and the ratio of plasticizer (such as oils such as paraffin oil) is 1 The proportion of -30 parts by mass (preferably 5-25 parts by mass) and the processing agent (eg stearic acid) may be 0.1-5 parts by mass (preferably 0.5-3 parts by mass).
 伸張層3は、圧縮層4と同様のゴム組成物(エチレン-α-オレフィンエラストマー等のゴム成分を含むゴム組成物)で形成してもよく、帆布等の布帛(補強布)で形成してもよい。補強布としては、織布、広角度帆布、編布、不織布などの布材が挙げられる。これらのうち、平織、綾織、朱子織などの形態で製織した織布や、経糸と緯糸との交差角が90°~130°程度の広角度帆布や編布が好ましい。補強布を構成する繊維としては、前記短繊維と同様の繊維を利用できる。補強布は、RFL液で処理(浸漬処理など)した後、コーティング処理などを施してゴム付帆布としてもよい。 The stretch layer 3 may be formed of the same rubber composition as the compression layer 4 (rubber composition containing a rubber component such as ethylene-α-olefin elastomer), or may be formed of a fabric (reinforcing fabric) such as canvas. Also good. Examples of the reinforcing cloth include cloth materials such as woven cloth, wide-angle sail cloth, knitted cloth, and non-woven cloth. Among these, preferred are woven fabrics woven in the form of plain weave, twill weave, satin weave, etc., and wide-angle canvas and knitted fabric in which the crossing angle between warp and weft is about 90 ° to 130 °. As the fibers constituting the reinforcing cloth, the same fibers as the short fibers can be used. The reinforcing cloth may be treated with an RFL solution (such as a dipping process), and then subjected to a coating process or the like to form a canvas with rubber.
 伸張層3は、圧縮層4と同様のゴム組成物で形成するのが好ましい。このゴム組成物のゴム成分としては、圧縮層4のゴム成分と同系統又は同種のゴムを使用することが多い。また、加硫剤又は架橋剤、共架橋剤、加硫促進剤などの添加剤の割合も、それぞれ圧縮層4のゴム組成物と同様の範囲から選択できる。 The stretch layer 3 is preferably formed of the same rubber composition as the compression layer 4. As the rubber component of this rubber composition, the same type or type of rubber as the rubber component of the compression layer 4 is often used. Further, the ratio of additives such as a vulcanizing agent or a crosslinking agent, a co-crosslinking agent, and a vulcanization accelerator can be selected from the same range as that of the rubber composition of the compression layer 4.
 伸張層3のゴム組成物には、背面駆動時に背面ゴムの粘着による異音の発生を抑制するために、圧縮層4と同様の短繊維が含まれていてもよい。短繊維の形態は直線状でもよく、一部屈曲させた形状(例えば、日本国特開2007-120507号公報に記載のミルドファイバー)のものでもよい。Vリブドベルト1の走行時には、伸張層3においてベルト周方向に亀裂が生じ、Vリブドベルト1が輪断する恐れがあるが、短繊維をベルト幅方向又はランダムな方向に配向させることでこれを防止することができる。また、背面駆動時の異音の発生を抑制するためには、伸張層3の表面(ベルト背面)に凹凸パターンを設けてもよい。凹凸パターンとしては、編布パターン、織布パターン、スダレ織布パターン、エンボスパターン(例えばディンプル形状)などが挙げられ、大きさや深さは特に限定されない。 The rubber composition of the stretch layer 3 may contain short fibers similar to those of the compression layer 4 in order to suppress the generation of abnormal noise due to adhesion of the back rubber when the back surface is driven. The form of the short fiber may be linear or may be a partially bent shape (for example, a milled fiber described in Japanese Patent Application Laid-Open No. 2007-120507). When the V-ribbed belt 1 is running, cracks may occur in the circumferential direction of the belt in the stretch layer 3 and the V-ribbed belt 1 may be broken, but this is prevented by orienting the short fibers in the belt width direction or in a random direction. be able to. Further, in order to suppress the generation of abnormal noise during backside driving, an uneven pattern may be provided on the surface of the stretch layer 3 (belt backside). Examples of the concavo-convex pattern include a knitted fabric pattern, a woven fabric pattern, a suede woven fabric pattern, an embossed pattern (for example, a dimple shape), and the size and depth are not particularly limited.
 心線5としては特に限定されず、ポリエステル繊維(ポリブチレンテレフタレート繊維、ポリエチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリエチレンナフタレート繊維など)、脂肪族ポリアミド(ナイロン)繊維(6ナイロン繊維、66ナイロン繊維、46ナイロン繊維など)、芳香族ポリアミド(アラミド)繊維(コポリパラフェニレン・3,4'オキシジフェニレン・テレフタルアミド繊維、ポリ-p-フェニレンテレフタルアミド繊維など)、ポリアリレート繊維、ガラス繊維、カーボン繊維、PBO繊維などで形成されたコードを用いることができる。これらの繊維は、単独で又は2種以上を組み合わせて使用することができる。また、これらの繊維は、後述する可撓性ジャケット51の膨張率に応じて適宜選択される。例えば、膨張率が2%を超えるような高伸張の場合は、弾性率の低いポリエステル繊維(特に低弾性ポリブチレンテレフタレート繊維)、ナイロン繊維(特に66ナイロン繊維、46ナイロン繊維)が好ましい。これは、アラミド繊維、PBO繊維などの弾性率が高い繊維では、可撓性ジャケット51が膨張しても繊維は十分に伸張することができず、Vリブドベルト1に埋設される心線5のピッチラインが安定しなかったり、適正なリブ部2の形状が形成されなかったりするためである。このため、弾性率の高い繊維を使用するには、可撓性ジャケット51の膨張率を低く設定(例えば1%程度)するのが好ましい。 The core 5 is not particularly limited, and polyester fiber (polybutylene terephthalate fiber, polyethylene terephthalate fiber, polytrimethylene terephthalate fiber, polyethylene naphthalate fiber, etc.), aliphatic polyamide (nylon) fiber (6 nylon fiber, 66 nylon fiber) , 46 nylon fiber, etc.), aromatic polyamide (aramid) fiber (copolyparaphenylene, 3,4'oxydiphenylene, terephthalamide fiber, poly-p-phenylene terephthalamide fiber, etc.), polyarylate fiber, glass fiber, carbon A cord formed of fiber, PBO fiber, or the like can be used. These fibers can be used alone or in combination of two or more. These fibers are appropriately selected according to the expansion coefficient of the flexible jacket 51 described later. For example, in the case of high elongation such that the expansion coefficient exceeds 2%, polyester fibers having a low elastic modulus (particularly low elastic polybutylene terephthalate fibers) and nylon fibers (particularly 66 nylon fibers, 46 nylon fibers) are preferable. This is because, in the case of a fiber having a high elastic modulus such as an aramid fiber or a PBO fiber, the fiber cannot sufficiently expand even when the flexible jacket 51 expands, and the pitch of the core 5 embedded in the V-ribbed belt 1 This is because the line is not stable, or the proper shape of the rib portion 2 is not formed. For this reason, in order to use a fiber with a high elastic modulus, it is preferable to set the expansion coefficient of the flexible jacket 51 low (for example, about 1%).
 編布6は、伸縮性に優れる緯編を使用しているので、リブ部2で凹凸が形成された摩擦伝動面により容易に添わせることができる(リブ部2の形状不良が発生しにくい)。また、編布6は、厚みが厚く、吸水性に優れ、圧縮層4のゴム成分の滲み出しをより確実に防止でき、摩擦伝動面側と圧縮層4側とで糸の露出割合を変えることで所望の特性を得られることから多層編を適用している。緯編で、多層に編成された編布6としては、スムース編、インターロック編、ダブルリブ編、シングルピケ編、ポンチローマ編、ミラノリブ編、ダブルジャージ編、鹿の子編(表鹿の子、裏鹿の子、両面鹿の子)などが挙げられる。 Since the knitted fabric 6 uses a weft knitting excellent in stretchability, it can be easily attached by the friction transmission surface in which irregularities are formed in the rib portion 2 (shape defect of the rib portion 2 is unlikely to occur). . Further, the knitted fabric 6 has a large thickness, excellent water absorption, can more reliably prevent the rubber component of the compression layer 4 from seeping out, and can change the yarn exposure ratio between the friction transmission surface side and the compression layer 4 side. Multilayer knitting is applied because desired characteristics can be obtained. Weft and multi-layered knitted fabrics 6 include: smooth, interlock, double rib, single picket, punch Rome, Milan rib, double jersey, kanoko (front sword, back sword, both sides Kanoko).
 また、編布6は、ポリエステル系複合糸とセルロース系天然紡績糸(例えば綿糸)とポリアミド系の糸とを含むように編成されている。また、多層に編成された編布6の摩擦伝動面側の層(駆動プーリ21や従動プーリ22と当接する面側)には、少なくともセルロース系天然紡績糸とポリアミド系の糸とが配されているように編成している。即ち、編布6の摩擦伝動面側の層については、ポリエステル系複合糸は必須の構成ではない。さらに編布6は、ポリエステル系複合糸、セルロース系天然紡績糸、ポリアミド系の糸以外の繊維を含んでいてもよい。編布6における、ポリエステル系複合糸とセルロース系天然紡績糸とポリアミド系の糸の合計含有量は80質量%以上であることが好ましい。また、編布6の摩擦伝動面側の層におけるセルロース系天然紡績糸とポリアミド系の糸の合計含有量は70質量%以上であることが好ましい。 Further, the knitted fabric 6 is knitted so as to include polyester composite yarn, cellulose natural spun yarn (for example, cotton yarn), and polyamide yarn. In addition, at least a cellulose-based natural spun yarn and a polyamide-based yarn are arranged on the layer on the frictional transmission surface side of the knitted fabric 6 knitted in multiple layers (the surface side in contact with the driving pulley 21 and the driven pulley 22). It is organized to be. That is, the polyester composite yarn is not an essential component for the layer on the frictional transmission surface side of the knitted fabric 6. Furthermore, the knitted fabric 6 may contain fibers other than polyester-based composite yarn, cellulose-based natural spun yarn, and polyamide-based yarn. The total content of the polyester composite yarn, the cellulose natural spun yarn, and the polyamide yarn in the knitted fabric 6 is preferably 80% by mass or more. The total content of the cellulose-based natural spun yarn and the polyamide-based yarn in the layer on the frictional transmission surface side of the knitted fabric 6 is preferably 70% by mass or more.
 本実施態様において、ポリエステル系複合糸は嵩高加工糸である。嵩高加工糸は、繊維にちぢれ(捲縮性)を生じさせたり、芯糸を別の糸でカバリングしたりして、断面の嵩を大きくした加工糸である。嵩高加工糸には、コンジュゲート糸、カバリング糸、捲縮加工糸、ウーリー加工糸、タスラン加工糸、インタレース加工糸などがあるが、嵩高加工糸であるポリエステル系複合糸としては、コンジュゲート糸やカバリング糸が好ましい。 In this embodiment, the polyester composite yarn is a bulky processed yarn. The bulky processed yarn is a processed yarn having a larger cross section by causing the fibers to bend (crimpability) or by covering the core yarn with another yarn. Bulky processed yarns include conjugate yarns, covering yarns, crimped yarns, woolly processed yarns, taslan processed yarns, interlaced yarns, etc. Polyester composite yarns that are bulky processed yarns include conjugate yarns. And covering yarns are preferred.
 コンジュゲート糸は、熱収縮率の異なる2種類以上のポリマーを繊維軸方向に貼り合わせた断面構造を持つことが好ましい。このような構造を有するコンジュゲート糸は、製造時や加工時に熱が加わると、各ポリマーの収縮率(熱収縮率)の違いにより捲縮が生じて嵩高い糸となる。例えばポリトリメチレンテレフタレート(PTT)とポリエチレンテレフタレート(PET)をコンジュゲートした複合糸(PTT/PETコンジュゲート糸)や、ポリブチレンテレフタレート(PBT)とポリエチレンテレフタレート(PET)をコンジュゲートした複合糸(PBT/PETコンジュゲート糸)がある。上記のようにポリエステル系複合糸として、ポリエチレンテレフタレート(PET)を含むコンジュゲート糸を使用することにより、編布6の伸縮性、嵩高性、耐摩耗性を高めることができる。また、ポリエチレンテレフタレートを含むコンジュゲート糸は入手性に優れていることからコストを低減することができる。また、カバリング糸は、芯糸の周囲を別の糸で覆う(カバリング)することにより、糸全体の断面の嵩を大きくした糸である。例えば、伸縮性に優れたポリウレタン(PU)糸を芯として、その表面にポリエチレンテレフタレート(PET)をカバリングした複合糸(PET/PUカバリング糸)や、PUを芯としてポリアミド(PA)をカバリングした複合糸(PA/PUカバリング糸)がある。これらの複合糸のうち、伸縮性や耐摩耗性に優れる、PTT/PETコンジュゲート糸が好ましい。 The conjugate yarn preferably has a cross-sectional structure in which two or more types of polymers having different heat shrinkage rates are bonded together in the fiber axis direction. When heat is applied at the time of production or processing, the conjugate yarn having such a structure is crimped due to a difference in shrinkage rate (heat shrinkage rate) of each polymer and becomes a bulky yarn. For example, a composite yarn (PTT / PET conjugate yarn) conjugated with polytrimethylene terephthalate (PTT) and polyethylene terephthalate (PET), or a composite yarn (PBT) conjugated with polybutylene terephthalate (PBT) and polyethylene terephthalate (PET). / PET conjugate yarn). By using a conjugate yarn containing polyethylene terephthalate (PET) as the polyester composite yarn as described above, the stretchability, bulkiness, and abrasion resistance of the knitted fabric 6 can be enhanced. Moreover, since the conjugate yarn containing polyethylene terephthalate is excellent in availability, the cost can be reduced. Further, the covering yarn is a yarn in which the bulk of the entire yarn is increased by covering (covering) the periphery of the core yarn with another yarn. For example, a composite yarn (PET / PU covering yarn) with a polyurethane (PU) yarn excellent in stretchability covered with polyethylene terephthalate (PET) on its surface, and a composite with a polyamide (PA) covered with PU as a core There is a thread (PA / PU covering thread). Of these composite yarns, PTT / PET conjugate yarns excellent in stretchability and abrasion resistance are preferred.
 上記のようにポリエステル系複合糸を、熱収縮率の異なる2種類以上のポリマーからなる嵩高加工糸で構成することにより、2種類以上のポリマーの熱収縮率の違いにより捲縮性が発現し、編布6に伸縮性や嵩高性を持たせることができる。これにより、後述する金型(内型52、外型53)でVリブドベルト1にV形状のリブ部2を形成する製造過程において、V形状のリブ部2への編布6の適応性を高めることができるとともに、圧縮層4のゴム成分の編布6を介した摩擦伝動面側への滲み出しが抑制され、摩擦伝動面のドライ状態での摩擦係数とウェット状態での摩擦係数の差を小さくすることができるので、耐注水発音性を高めることができる。 By constructing the polyester composite yarn with a bulky processed yarn composed of two or more types of polymers having different heat shrinkage ratios as described above, the crimpability is expressed due to the difference in the heat shrinkage ratios of the two or more types of polymers, The knitted fabric 6 can be provided with stretchability and bulkiness. Thereby, in the manufacturing process in which the V-shaped rib portion 2 is formed on the V-ribbed belt 1 with the dies (inner mold 52 and outer mold 53) described later, the adaptability of the knitted fabric 6 to the V-shaped rib portion 2 is enhanced. And the oozing of the rubber component of the compression layer 4 to the friction transmission surface side through the knitted fabric 6 is suppressed, and the difference between the friction coefficient in the dry state and the friction coefficient in the wet state of the friction transmission surface is reduced. Since it can be made smaller, the water injection resistance can be improved.
 セルロース系天然紡績糸は、竹繊維、サトウキビ繊維、種子毛繊維(綿繊維(コットンリンター)、カポックなど)、ジン皮繊維(例えば、麻、コウゾ、ミツマタなど)、葉繊維(例えば、マニラ麻、ニュージーランド麻など)などの天然植物由来のセルロース繊維(パルプ繊維)、羊毛、絹、ホヤセルロースなどの動物由来のセルロース繊維、バクテリアセルロース繊維、藻類のセルロースなどを紡績した糸が例示できる。このうち、特に吸水性に優れる点で、綿繊維が好ましい。 Cellulose-based natural yarn includes bamboo fiber, sugarcane fiber, seed hair fiber (cotton fiber (cotton linter), kapok, etc.), gin leather fiber (eg, hemp, kouzo, mitsumata, etc.), leaf fiber (eg, Manila hemp, New Zealand) Examples thereof include yarn obtained by spinning cellulose fibers (pulp fibers) derived from natural plants such as hemp), cellulose fibers derived from animals such as wool, silk, and squirt cellulose, bacterial cellulose fibers, and algal cellulose. Among these, cotton fiber is preferable in terms of excellent water absorption.
 編布6において、セルロース系天然紡績糸の含有量が5質量%よりも少ないと吸水性が低下し耐注水発音性が低下することがある。また、セルロース系天然紡績糸の含有量が60質量%よりも多いと耐摩耗性が低下することがある。よって本実施形態では、セルロース系天然紡績糸の含有量は5~60質量%にしている。なお、編布6において、セルロース系天然紡績糸の含有量は5~55質量%が好ましく、5~40質量%がより好ましく、20~40質量%の範囲がさらに好ましい。上記範囲にすることにより、Vリブドベルト1の耐注水発音性を損なうことなく、耐摩耗性を向上させることができる。 If the content of the cellulose-based natural spun yarn in the knitted fabric 6 is less than 5% by mass, the water absorption may be lowered and the water injection resistance may be lowered. On the other hand, if the content of the cellulose-based natural spun yarn is more than 60% by mass, the wear resistance may be lowered. Therefore, in this embodiment, the content of the cellulose-based natural spun yarn is set to 5 to 60% by mass. In the knitted fabric 6, the content of the cellulose-based natural spun yarn is preferably 5 to 55% by mass, more preferably 5 to 40% by mass, and further preferably 20 to 40% by mass. By setting it within the above range, it is possible to improve the wear resistance without impairing the water injection resistance of the V-ribbed belt 1.
 ポリアミド系の糸の材質は、脂肪族ポリアミド(ナイロン)や芳香族ポリアミド(アラミド)などが例示できる。芳香族ポリアミド(アラミド)を用いることでより高度な耐摩耗性が得られるが、比較的安価なナイロンであっても耐摩耗性は向上する。また、ポリアミド系の糸は長繊維を束ねたフィラメント糸であってもよく、短繊維(ステープル)を紡績した紡績糸(スパン糸)であってもよい。フィラメント糸の場合、フィラメントを引き揃えた無撚りの束であってもよく、引き揃えたフィラメントを撚った撚り糸であってもよいが、耐摩耗性を高める点や編成の作業性の点から撚り糸であるのが好ましい。 Examples of polyamide yarn materials include aliphatic polyamide (nylon) and aromatic polyamide (aramid). Higher wear resistance can be obtained by using aromatic polyamide (aramid), but wear resistance is improved even with relatively inexpensive nylon. The polyamide yarn may be a filament yarn in which long fibers are bundled, or may be a spun yarn (spun yarn) obtained by spinning short fibers (staples). In the case of filament yarn, it may be a non-twisted bundle with the filaments aligned, or a twisted yarn with the aligned filaments twisted, but from the point of increasing wear resistance and knitting workability A twisted yarn is preferred.
 編布6において、ポリアミド系の糸の含有量が5質量%よりも少ないと耐摩耗性が低下することがある。また、ポリアミド系の糸の含有量が60質量%よりも多いと吸水性が低下し耐注水発音性が低下することがある。よって本実施形態では、ポリアミド系の糸の含有量は5~60質量%にしている。なお、編布6において、ポリアミド系の糸の含有量は15~60質量%が好ましく、20~55質量%がより好ましく、20~40質量%の範囲がさらに好ましい。上記範囲にすることにより、Vリブドベルト1の耐注水発音性を損なうことなく、耐摩耗性を向上させることができる。 In the knitted fabric 6, if the polyamide yarn content is less than 5% by mass, the wear resistance may be lowered. On the other hand, when the content of the polyamide yarn is more than 60% by mass, the water absorption may be lowered and the water injection resistance may be lowered. Therefore, in this embodiment, the content of the polyamide-based yarn is 5 to 60% by mass. In the knitted fabric 6, the content of the polyamide-based yarn is preferably 15 to 60% by mass, more preferably 20 to 55% by mass, and still more preferably 20 to 40% by mass. By setting it within the above range, it is possible to improve the wear resistance without impairing the water injection resistance of the V-ribbed belt 1.
 更に、本実施形態の編布6において、ポリアミド系の糸とセルロース系天然紡績糸との質量比は、5:95~95:5の範囲にしている。その理由としては、ポリアミド系の糸の含有割合が左記範囲よりも少ないと耐摩耗性が低下することがあり、左記範囲よりも多いと吸水性が低下し耐注水発音性が低下してしまうことがあるからである。なお、編布6において、ポリアミド系の糸とセルロース系天然紡績糸との質量比は、10:90~90:10が好ましく、20:80~80:20がより好ましく、30:70~70:30の範囲がさらに好ましい。上記範囲にすることにより、Vリブドベルト1の耐注水発音性を損なうことなく、耐摩耗性を向上させることができる。 Furthermore, in the knitted fabric 6 of the present embodiment, the mass ratio of the polyamide-based yarn and the cellulose-based natural spun yarn is in the range of 5:95 to 95: 5. The reason for this is that if the content of the polyamide-based yarn is less than the range shown on the left, the abrasion resistance may be reduced, and if it is higher than the range shown on the left, the water absorption will be reduced and the water injection resistance will be reduced. Because there is. In the knitted fabric 6, the mass ratio of the polyamide-based yarn and the cellulose-based natural spun yarn is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, and 30:70 to 70: A range of 30 is more preferred. By setting it within the above range, it is possible to improve the wear resistance without impairing the water injection resistance of the V-ribbed belt 1.
 また、編布6において、セルロース系天然紡績糸とポリアミド系の糸とが一様に分散するように配置されていることが好ましい。本実施形態では、多層に編成された編布6の摩擦伝動面側の層(駆動プーリ21や従動プーリ22と当接する面側)には、少なくともセルロース系天然紡績糸とポリアミド系の糸の両方を含むことにより、セルロース系天然紡績糸の摩耗が抑制されるために、耐注水発音性を長期間に亘って保持することができるという効果を発現するが、ポリアミド系の糸はセルロース系天然紡績糸(A)の近傍に位置した方(一様に分散して配置)が、その効果が顕著に得られる。例えば、(ポリアミド系の糸の本数:セルロース系天然紡績糸の本数)が1:1である場合には、それぞれの糸を1本ずつ交互に編成するのが望ましい。しかし、ポリアミド系の糸10本とセルロース系天然紡績糸10本とがまとまって並ぶように編成した場合には、ポリアミド系の糸から遠く離れた場所にあるセルロース系天然紡績糸は摩耗しやすいため、耐注水発音性が低下しやすくなる。 In the knitted fabric 6, it is preferable that the cellulose-based natural spun yarn and the polyamide-based yarn are arranged so as to be uniformly dispersed. In the present embodiment, at least both the cellulose-based natural spun yarn and the polyamide-based yarn are provided on the layer on the friction transmission surface side of the knitted fabric 6 knitted in multiple layers (the surface side in contact with the driving pulley 21 and the driven pulley 22). Since the wear of the cellulosic natural spun yarn is suppressed by containing the water, the water injection resistance can be maintained over a long period of time. The effect of the one located in the vicinity of the yarn (A) (uniformly arranged) is remarkably obtained. For example, when (the number of polyamide-based yarns: the number of cellulose-based natural spun yarns) is 1: 1, it is desirable to knit each yarn alternately one by one. However, when 10 polyamide yarns and 10 cellulose natural spun yarns are knitted together, the cellulose natural spun yarns located far away from the polyamide yarns are easily worn. In addition, the sound resistance to water injection tends to decrease.
 具体的には、編布全体の質量に対してセルロース系天然紡績糸の質量比が40%、ポリアミド系の糸の質量比が20%とし、糸の単位重量が同じである場合には、セルロース系天然紡績糸2本あたりに対してポリアミド系の糸1本が編成されることになる。この場合、例えば口数24の編み機を使用したとすると、セルロース系天然紡績糸16口とポリアミド系の糸8口とをまとめて並べるよりも(図3の(B)参照)、セルロース系天然紡績糸2口とポリアミド系の糸1口を8回繰り返すように並べた方(図3の(A)参照)が、セルロース系天然紡績糸の近傍にポリアミド系の糸が位置することになるので、セルロース系天然紡績糸の摩耗をより確実に抑制することができる。また、吸水性にムラがないので、耐注水発音性も高めることができる。本明細書及び特許請求の範囲において、「セルロース系天然紡績糸とポリアミド系の糸とが一様に分散」とは、隣接する12本の糸に少なくとも1本のポリアミド系の糸が含まれることを意味する。 Specifically, when the mass ratio of the cellulose-based natural spun yarn is 40%, the mass ratio of the polyamide-based yarn is 20%, and the unit weight of the yarn is the same, the cellulose One polyamide yarn is knitted for every two natural spun yarns. In this case, for example, if a knitting machine having 24 numerators is used, the cellulose-based natural spun yarns are arranged rather than arranging 16 cellulose-based natural spun yarns and 8 polyamide-based yarns together (see FIG. 3B). If two yarns and one polyamide yarn are arranged so as to be repeated eight times (see FIG. 3A), the polyamide yarn is positioned in the vicinity of the cellulose natural spun yarn. The wear of the natural spun yarn can be more reliably suppressed. In addition, since there is no unevenness in water absorption, water-sounding sound resistance can be improved. In the present specification and claims, “cellulosic natural spun yarn and polyamide yarn are uniformly dispersed” means that at least one polyamide yarn is included in 12 adjacent yarns. Means.
 また、編布6を構成するポリエステル系複合糸、セルロース系天然紡績糸、ポリアミド系の糸は、各々フィラメントやファイバを撚り合わせた撚り糸であることが好ましい。編布6を構成する糸にフィラメントやファイバが収束されることで耐摩耗性が向上する。また、編布6を構成する糸にフィラメントやファイバを撚り合わせて収束することにより、編布を編成しやすく、フィラメントやファイバが毛羽立つのも抑えられるので、Vリブドベルト1の外観品質を向上させることができる。 Further, the polyester composite yarn, the cellulose natural spun yarn, and the polyamide yarn constituting the knitted fabric 6 are preferably twisted yarns in which filaments and fibers are twisted together. Abrasion resistance is improved by converging filaments and fibers on the yarn constituting the knitted fabric 6. Further, by twisting the filaments and fibers together with the yarns constituting the knitted fabric 6 and converging, the knitted fabric can be easily knitted and the filaments and fibers can be prevented from fluffing, so that the appearance quality of the V-ribbed belt 1 is improved. Can do.
 また、編布6は、ポリウレタンを含まないことが好ましい。編布6に、繊維材料に比べて吸水性や耐摩耗性の低いポリウレタンを含ませないことで、編布6の吸水性や耐摩耗性が低下しないようにすることができる。なお、編布6によく採用されるポリウレタン糸などを含ませないことから伸縮性に劣るとも思われるが、編布6は伸縮性に優れるポリエステル系複合糸を含むので、伸縮性は担保することができる。さらに編布6は、ポリエステル系複合糸、セルロース系天然紡績糸、ポリアミド系の糸以・BR>Oの繊維を含んでいてもよい。編布6における、ポリエステル系複合糸とセルロース系天然紡績糸とポリアミド系の糸の合計含有量は80質量%以上であることが好ましい。また、編布6の摩擦伝動面側の層におけるセルロース系天然紡績糸とポリアミド系の糸の合計含有量は70質量%以上であることが好ましい。 The knitted fabric 6 preferably does not contain polyurethane. By preventing the knitted fabric 6 from containing polyurethane having lower water absorption and wear resistance than the fiber material, the water absorption and wear resistance of the knitted fabric 6 can be prevented from being lowered. In addition, although it seems that it is inferior in elasticity because it does not contain polyurethane yarn etc. that are often used in the knitted fabric 6, the knitted fabric 6 contains polyester-based composite yarn that is excellent in elasticity, so that the elasticity is ensured. Can do. Further, the knitted fabric 6 may include polyester composite yarn, cellulose natural spun yarn, polyamide yarn, and BR> O fibers. The total content of the polyester composite yarn, the cellulose natural spun yarn, and the polyamide yarn in the knitted fabric 6 is preferably 80% by mass or more. The total content of the cellulose-based natural spun yarn and the polyamide-based yarn in the layer on the frictional transmission surface side of the knitted fabric 6 is preferably 70% by mass or more.
 また、嵩高加工糸を含んで多層に編成された編布6の厚みは、0.6mm以上であることが好ましい。編布6の厚みを0.6mm以上にすることにより、圧縮層4のゴム成分の編布6を介した摩擦伝動面側への滲み出しが抑制され、摩擦伝動面のドライ状態での摩擦係数とウェット状態での摩擦係数の差を小さくすることができるので、耐注水発音性を高めることができる。なお、編布6の厚みが0.7mm以上であれば圧縮層4のゴム成分の編布6を介した摩擦伝動面側への滲み出しをより確実に抑制することができ、特に0.8mm以上であることが好ましい。 Further, the thickness of the knitted fabric 6 knitted in a multilayer including the bulky processed yarn is preferably 0.6 mm or more. By setting the thickness of the knitted fabric 6 to 0.6 mm or more, the rubber component of the compression layer 4 is prevented from seeping out to the friction transmission surface via the knitted fabric 6, and the friction coefficient in the dry state of the friction transmission surface is suppressed. The difference in coefficient of friction between the wet state and the wet state can be reduced, so that the water injection resistance can be improved. In addition, if the thickness of the knitted fabric 6 is 0.7 mm or more, the bleeding of the rubber component of the compression layer 4 to the friction transmission surface side through the knitted fabric 6 can be more reliably suppressed, particularly 0.8 mm. The above is preferable.
 また、編布6には、親水化処理剤として界面活性剤や親水性柔軟剤を含有又は付着させることができる。このように親水化処理剤を編布6に含有又は付着させた場合、摩擦伝動面(編布6)に水滴が付着すると、該水滴は、親水化処理された編布6の表面に速やかに濡れ拡がって水膜となり、さらに、編布6のセルロース系天然紡績糸に吸水されて、摩擦伝動面上に水膜がなくなる。したがって、ウェット状態での摩擦伝動面の摩擦係数の低下がより抑制される。 Further, the knitted fabric 6 can contain or adhere a surfactant or a hydrophilic softening agent as a hydrophilic treatment agent. Thus, when a hydrophilization treatment agent is contained in or adhered to the knitted fabric 6, when water droplets adhere to the friction transmission surface (knitted fabric 6), the water droplets are promptly applied to the surface of the knitted fabric 6 subjected to the hydrophilization treatment. The wet film spreads to form a water film, and is further absorbed by the cellulose-based natural spun yarn of the knitted fabric 6 so that the water film disappears on the friction transmission surface. Therefore, a decrease in the friction coefficient of the friction transmission surface in the wet state is further suppressed.
 親水化処理剤としては界面活性剤や親水性柔軟剤を用いることができる。これらの親水化処理剤を編布6に含有又は付着させる方法としては、編布6に親水化処理剤をスプレーする方法、編布6に親水化処理剤をコーティングする方法、又は、編布6を親水化処理剤に浸漬する方法を採用することができる。また、親水化処理剤を界面活性剤とする場合は、Vリブドベルト1の作製時に、内周面に複数のリブ型が刻設された筒状外型の表面に界面活性剤を塗布して加硫成形することで、界面活性剤を編布6に含有させる方法も採用することができる。これらの方法のうち、簡便かつより均一に親水化処理剤を含有、付着させることができることから、編布6を親水化処理剤に浸漬する方法が好ましい。 As the hydrophilic treatment agent, a surfactant or a hydrophilic softener can be used. As a method for containing or attaching these hydrophilic treatment agents to the knitted fabric 6, a method of spraying the hydrophilic treatment agent onto the knitted fabric 6, a method of coating the knitted fabric 6 with the hydrophilic treatment agent, or the knitted fabric 6. It is possible to employ a method of immersing in a hydrophilizing agent. Further, when the hydrophilic treatment agent is used as a surfactant, when the V-ribbed belt 1 is manufactured, the surfactant is applied to the surface of a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface. A method of incorporating a surfactant into the knitted fabric 6 by sulfur molding can also be employed. Among these methods, the method of immersing the knitted fabric 6 in the hydrophilization treatment agent is preferable because the hydrophilization treatment agent can be contained and adhered more easily and more uniformly.
 界面活性剤とは、水となじみ易い親水基と、油となじみ易い疎水基(親油基)とを分子内に持つ物質の総称であり、極性物質と非極性物質とを均一に混合する働きを有する以外に、表面張力を小さくして濡れ性を高めたり、物質と物質との間に界面活性剤が介在して、界面の摩擦を小さくしたりする作用がある。 Surfactant is a generic term for substances that have a hydrophilic group that is easily compatible with water and a hydrophobic group (lipophilic group) that is easily compatible with oil, and works to uniformly mix polar and nonpolar substances. In addition to the above, there is an effect that the surface tension is reduced to increase the wettability, and the surfactant is interposed between the substances to reduce the friction at the interface.
 界面活性剤の種類は特に限定されず、イオン界面活性剤、非イオン界面活性剤などが使用できる。非イオン界面活性剤は、ポリエチレングリコール型非イオン界面活性剤又は多価アルコール型非イオン界面活性剤であってもよい。 The type of surfactant is not particularly limited, and ionic surfactants, nonionic surfactants, and the like can be used. The nonionic surfactant may be a polyethylene glycol type nonionic surfactant or a polyhydric alcohol type nonionic surfactant.
 ポリエチレングリコール型非イオン界面活性剤は、高級アルコール、アルキルフェノール、高級脂肪酸、多価アルコール高級脂肪酸エステル、高級脂肪酸アミド、ポリプロピレングリコールなどの疎水基を有する疎水性ベース成分にエチレンオキシドが付加して親水基が付与された非イオン界面活性剤である。 Polyethylene glycol type nonionic surfactants have a hydrophilic group formed by adding ethylene oxide to a hydrophobic base component having a hydrophobic group, such as higher alcohol, alkylphenol, higher fatty acid, higher polyhydric alcohol higher fatty acid ester, higher fatty acid amide, and polypropylene glycol. It is a given nonionic surfactant.
 また、編布6には、圧縮層4を構成するゴム組成物(リブ部2の表面を形成するゴム組成物)との接着性を向上させる目的で、接着処理を施すことができる。このような編布6の接着処理としては、エポキシ化合物又はイソシアネート化合物を有機溶媒(トルエン、キシレン、メチルエチルケトン等)に溶解させた樹脂系処理液への浸漬処理、レゾルシン-ホルマリン-ラテックス液(RFL液)への浸漬処理、ゴム組成物を有機溶媒に溶かしたゴム糊への浸漬処理などが挙げられる。この他の接着処理の方法として、例えば、編布6とゴム組成物とをカレンダーロールに通して編布6にゴム組成物を摺り込むフリクション処理、編布6にゴム糊を塗布するスプレディング処理、編布6にゴム組成物を積層するコーティング処理等も採用することができる。このように編布6を接着処理することにより、圧縮層4との接着性を向上させて、Vリブドベルト1の走行時の編布6の剥離を防止することができる。また、接着処理をすることで、リブ部2の耐摩耗性を向上させることもできる。 Further, the knitted fabric 6 can be subjected to an adhesion treatment for the purpose of improving the adhesion with the rubber composition constituting the compression layer 4 (the rubber composition forming the surface of the rib portion 2). Examples of the adhesive treatment of the knitted fabric 6 include immersion treatment in a resin-based treatment solution in which an epoxy compound or an isocyanate compound is dissolved in an organic solvent (toluene, xylene, methyl ethyl ketone, etc.), resorcin-formalin-latex solution (RFL solution). ), An immersion treatment in a rubber paste obtained by dissolving a rubber composition in an organic solvent, and the like. As other bonding treatment methods, for example, a friction treatment in which the knitted fabric 6 and the rubber composition are passed through a calender roll and the rubber composition is slid into the knitted fabric 6, and a spreading treatment in which rubber paste is applied to the knitted fabric 6. Also, a coating treatment or the like in which a rubber composition is laminated on the knitted fabric 6 can be employed. By bonding the knitted fabric 6 in this way, the adhesion to the compression layer 4 can be improved, and the knitted fabric 6 can be prevented from being peeled off when the V-ribbed belt 1 is running. Moreover, the abrasion resistance of the rib part 2 can also be improved by performing an adhesion process.
 ここで、上記接着処理により、編布6に圧縮層4を構成するゴム組成物を接着させた結果、編布6の摩擦伝動面(駆動プーリ21や従動プーリ22と当接する面側)にゴム組成物の滲み出しが無いようにすることが好ましい。編布6から摩擦伝動面側へのゴム組成物の滲み出しが有ると、吸水性が低下するので、ウェット時の摩擦係数の低下が大きくなり、耐注水発音性が低下してしまう。そこで、編布6の摩擦伝動面へのゴム組成物の滲み出しを無くすことにより、十分な吸水性が確保できるため、耐注水発音性を向上させることができる。 Here, as a result of adhering the rubber composition constituting the compression layer 4 to the knitted fabric 6 by the above-described adhesion treatment, the rubber is applied to the frictional transmission surface of the knitted fabric 6 (the surface contacting the drive pulley 21 and the driven pulley 22). It is preferable to prevent the composition from exuding. If the rubber composition oozes out from the knitted fabric 6 to the friction transmission surface side, the water absorption decreases, so the decrease in the coefficient of friction when wet is increased, and the water injection resistance is reduced. Accordingly, by eliminating the bleeding of the rubber composition on the frictional transmission surface of the knitted fabric 6, sufficient water absorption can be ensured, so that the water injection resistance can be improved.
 (Vリブドベルト1の製造方法)
 以下に、図4に基づいてVリブドベルト1の製造方法を説明する。まず、図4の(a)に示すように、外周面に可撓性ジャケット51を装着した筒状の内型52に、未加硫の伸張層用シート3Sを巻き付けて、この上に心線5を螺旋状にスピニングし、さらにその上に未加硫の圧縮層用シート4Sと編布6とを順次巻き付けて(被せて)、成形体10を作成する。この後、内周面に複数のリブ型53aを刻設した外型53の内周側に、成形体10を巻き付けた内型52を同心状にセットする。このとき、外型53の内周面と成形体10の外周面との間には所定の間隙が設けられる。
(Manufacturing method of V-ribbed belt 1)
Below, the manufacturing method of the V-ribbed belt 1 is demonstrated based on FIG. First, as shown in FIG. 4A, an unvulcanized stretch layer sheet 3S is wound around a cylindrical inner mold 52 having a flexible jacket 51 mounted on the outer peripheral surface, and a core wire is wound thereon. 5 is spun into a spiral shape, and an unvulcanized compressed layer sheet 4S and a knitted fabric 6 are sequentially wound (covered) thereon to form a molded body 10. Thereafter, the inner mold 52 around which the molded body 10 is wound is set concentrically on the inner circumferential side of the outer mold 53 in which a plurality of rib molds 53a are formed on the inner circumferential surface. At this time, a predetermined gap is provided between the inner peripheral surface of the outer mold 53 and the outer peripheral surface of the molded body 10.
 ここで、上記のように、Vリブドベルト1を成形する際に、編布6は圧縮層用シート4Sの外周に添うように円筒状に成形する必要がある。そのために、丸編機などを用いてジョイントのないシームレス編布を用意する方法があるが、その場合にはVリブドベルト1の長さ(周長)に対応したシームレス編布を準備する必要がある。このとき、Vリブドベルト1の長さに対して長すぎる(周長の大きすぎる)編布を用いた場合には、編布がダブつくのでオーバーラップして、品質異常を起こす虞があり、逆に、短すぎる(周長の小さすぎる)編布を用いた場合には、成形されるリブ部2の形状が不良となったり、圧縮層用シート4Sのゴム組成物が摩擦伝動面に滲み出して耐注水発音性が低下したりといった不具合が予想される。そのため、様々な長さのVリブドベルト1を製造しようとすると、それと同じ数だけの仕掛品を持つ必要があり、無駄が生じやすい。 Here, as described above, when the V-ribbed belt 1 is formed, the knitted fabric 6 needs to be formed into a cylindrical shape so as to follow the outer periphery of the compressed layer sheet 4S. Therefore, there is a method of preparing a seamless knitted fabric without a joint using a circular knitting machine or the like. In that case, it is necessary to prepare a seamless knitted fabric corresponding to the length (circumferential length) of the V-ribbed belt 1. . At this time, if a knitted fabric that is too long (too large in circumference) is used with respect to the length of the V-ribbed belt 1, the knitted fabric may be overlapped and may overlap, resulting in a quality abnormality. In addition, when a knitted fabric that is too short (too small in circumference) is used, the shape of the rib portion 2 to be molded becomes poor, or the rubber composition of the compressed layer sheet 4S oozes out to the friction transmission surface. Therefore, it is expected that the water injection resistance will decrease. Therefore, if it is going to manufacture V-ribbed belt 1 of various lengths, it is necessary to have the same number of work in process, and it is easy to waste.
 そこで、編布6を圧縮層用シート4Sの外周に添うように円筒状に成形するために、Vリブドベルト1の長さに応じて、四角形状の編布6の両端をジョイントして筒状の編布6を作製する方法を採用するのが好ましい。この場合、どのようなVリブドベルト1の長さであっても最適な周長の編布6を準備(調節)することができるので、品質が安定する。さらに、丸編機の他横編機も使用できるので自由度が高く、仕掛品も1種類でよいため無駄がなくなる。 Therefore, in order to form the knitted fabric 6 into a cylindrical shape so as to follow the outer periphery of the compression layer sheet 4S, both ends of the rectangular knitted fabric 6 are jointed according to the length of the V-ribbed belt 1 to form a cylindrical shape. It is preferable to employ a method for producing the knitted fabric 6. In this case, the knitted fabric 6 having the optimum circumferential length can be prepared (adjusted) regardless of the length of the V-ribbed belt 1, so that the quality is stabilized. Furthermore, since a flat knitting machine can be used in addition to the circular knitting machine, the degree of freedom is high, and there is no waste because only one type of work in progress is required.
 編布6の両端をジョイントする方法としては、編布6を構成する糸の融点付近の温度に加熱した刃で切断しながら同時にその切断面を溶着する方法(ホットメルト、熱溶着)、超音波振動させた刃で押圧することにより切断と溶着を同時に行う方法(超音波溶着)、ミシンジョイント、かがり縫い、突き合わせなどが例示できる。編布6の両端をジョイントするタイミングとしては、Vリブドベルト1の成形前にあらかじめ行っておいてもよく、Vリブドベルト1の成形中に行ってもよい(例えば、内型52に巻き付けた圧縮層用シート4Sの上で編布6の両端をジョイントする)。Vリブドベルト1の成形前に行う場合にはホットメルト、超音波溶着、ミシンジョイント、かがり縫いが都合よく適用でき、Vリブドベルト1の成形中に行う場合には突き合わせが都合よく適用できる。なかでも、編布6の継ぎ目の外観がよいことから、超音波溶着や突き合わせが好ましい。また、編布6のジョイント箇所は1箇所であってもよく、複数箇所であってもよい。工数低減や外観向上の点から、編布6のジョイント箇所は1箇所又は2箇所であることが好ましい。 As a method of jointing both ends of the knitted fabric 6, a method of simultaneously welding the cut surfaces while cutting with a blade heated to a temperature near the melting point of the yarn constituting the knitted fabric 6 (hot melt, thermal welding), ultrasonic Examples thereof include a method of performing cutting and welding simultaneously (ultrasonic welding) by pressing with a vibrating blade, a sewing machine joint, overlock stitching, butting, and the like. The timing of jointing the both ends of the knitted fabric 6 may be performed in advance before forming the V-ribbed belt 1 or may be performed during the forming of the V-ribbed belt 1 (for example, for the compressed layer wound around the inner mold 52). The both ends of the knitted fabric 6 are jointed on the sheet 4S). Hot melt, ultrasonic welding, sewing joint, and overlock stitching can be conveniently applied when performed before forming the V-ribbed belt 1, and butting can be conveniently applied when performed during the molding of the V-ribbed belt 1. Especially, since the external appearance of the joint of the knitted fabric 6 is good, ultrasonic welding and butting are preferable. Moreover, the joint location of the knitted fabric 6 may be one location or a plurality of locations. From the viewpoint of reducing the number of man-hours and improving the appearance, the joint location of the knitted fabric 6 is preferably one or two locations.
 続いて、図4の(b)に示すように、前記可撓性ジャケット51を外型53の内周面に向かって所定の膨張率(例えば1~6%)で膨張させ、成形体10の圧縮層用シート4Sと編布6を外型53のリブ型53aに圧入して、その状態で加硫処理(例えば160℃、30分)を行う。 Subsequently, as shown in FIG. 4B, the flexible jacket 51 is expanded toward the inner peripheral surface of the outer mold 53 at a predetermined expansion rate (for example, 1 to 6%), so that the molded body 10 The compression layer sheet 4S and the knitted fabric 6 are press-fitted into the rib mold 53a of the outer mold 53, and vulcanization (for example, 160 ° C., 30 minutes) is performed in that state.
 最後に、図4の(c)に示すように、内型52を外型53から抜き取り、複数のリブ部2を有する加硫ゴムスリーブ10Aを外型53から脱型した後、カッターを用いて加硫ゴムスリーブ10Aを周長方向に沿って所定の幅にカットして、Vリブドベルト1に仕上げる。なお、Vリブドベルト1の製造方法は上記方法に限らず、例えば、日本国特開2004-82702号公報等に開示された他の公知の方法を採用することもできる。 Finally, as shown in FIG. 4C, the inner mold 52 is extracted from the outer mold 53, and the vulcanized rubber sleeve 10A having the plurality of rib portions 2 is removed from the outer mold 53, and then a cutter is used. The vulcanized rubber sleeve 10A is cut into a predetermined width along the circumferential direction to finish the V-ribbed belt 1. Note that the manufacturing method of the V-ribbed belt 1 is not limited to the above method, and other known methods disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-82702 can also be employed.
 上記のVリブドベルト1によれば、摩擦伝動面側を被覆する編布6が、セルロース系天然紡績糸を含むことにより、Vリブドベルト1の吸水性を高め、耐注水発音性を高めることができる。また、編布6が、ポリエステル系複合糸を含むことにより、編布6の伸縮性を高め、金型(内型52、外型53)でVリブドベルト1にV形状のリブ部2を形成する際の編布6のV形状のリブ部2への適応性を高めることができる。また、編布6が、ポリアミド系の糸を含むことにより、耐摩耗性を高め、セルロース系天然紡績糸が摩耗するのを抑制することができ、耐注水発音性を長期間に亘って保持することができる。 According to the V-ribbed belt 1 described above, the knitted fabric 6 that covers the friction transmission surface side includes the cellulose-based natural spun yarn, so that the water absorption of the V-ribbed belt 1 can be increased and the water injection resistance can be improved. In addition, the knitted fabric 6 includes a polyester-based composite yarn, so that the stretchability of the knitted fabric 6 is improved, and the V-shaped rib portion 2 is formed on the V-ribbed belt 1 with a mold (inner mold 52, outer mold 53). The adaptability of the knitted fabric 6 to the V-shaped rib portion 2 can be enhanced. Further, since the knitted fabric 6 includes a polyamide-based yarn, it is possible to improve the wear resistance, to suppress the abrasion of the cellulose-based natural spun yarn, and to maintain the water-pouring sound-proof property over a long period of time. be able to.
 また、Vリブドベルト1の摩擦伝動面側を被覆する編布6を緯編にすることにより伸縮性を高めているので、金型(内型52、外型53)でVリブドベルト1にV形状のリブ部2を形成する製造過程において、リブ部2の形状不良を発生しにくくすることができる。また、編布6を多層構造にすることで、圧縮層4のゴム成分の編布6を介した摩擦伝動面側への滲み出しが抑制され、摩擦伝動面のドライ状態での摩擦係数とウェット状態での摩擦係数との差を小さくすることができるので、耐注水発音性を高めることができる。 In addition, since the stretchability is enhanced by making the knitted fabric 6 covering the friction transmission surface side of the V-ribbed belt 1 into a weft knitting, the V-ribbed belt 1 is shaped like a V in the mold (inner mold 52, outer mold 53). In the manufacturing process of forming the rib portion 2, it is possible to make it difficult for the rib portion 2 to have a shape defect. Further, by making the knitted fabric 6 into a multilayer structure, the rubber component of the compression layer 4 is prevented from seeping out to the friction transmission surface via the knitted fabric 6, and the friction coefficient in the dry state of the friction transmission surface and the wet Since the difference from the friction coefficient in the state can be reduced, the water injection resistance can be improved.
 また、吸水性の高いセルロース系天然紡績糸をVリブドベルト1の摩擦伝動面側の層に配することで、駆動プーリ21及び従動プーリ22とVリブドベルト1との間に浸入した水を素早く吸収して摩擦係数を安定化(ウェット状態での摩擦係数の低下を抑制)することができるので、耐注水発音性を高めることができる。さらに耐摩耗性の高いポリアミド系の糸を摩擦伝動面側の層に配することで、セルロース系天然紡績糸が摩耗するのを抑制することができ、耐注水発音性を長期間に亘って保持することができる。 In addition, by disposing a cellulose-based natural spun yarn having high water absorption in the layer on the friction transmission surface side of the V-ribbed belt 1, water that has entered between the driving pulley 21 and the driven pulley 22 and the V-ribbed belt 1 is quickly absorbed. Thus, the coefficient of friction can be stabilized (suppression of a decrease in the coefficient of friction in a wet state), so that the water injection resistance can be improved. In addition, by placing a polyamide-based yarn with high wear resistance in the layer on the friction transmission surface side, it is possible to suppress the abrasion of the cellulose-based natural spun yarn, and to maintain the water-sounding sound resistance over a long period of time. can do.
 次に、表1および表2に示すように、実施例1~5、及び、比較例1~4に係るVリブドベルトを作製し、摩擦伝動面へのゴムの滲み出しの有無を観察するゴム滲み出し観察試験、摩擦係数測定試験、ミスアライメント発音評価試験(発音限界角度測定)及び耐摩耗性試験を行った。 Next, as shown in Tables 1 and 2, V-ribbed belts according to Examples 1 to 5 and Comparative Examples 1 to 4 were produced, and rubber bleeding was observed for the presence or absence of rubber bleeding on the friction transmission surface. A take-out observation test, a friction coefficient measurement test, a misalignment pronunciation evaluation test (measurement limit angle measurement), and an abrasion resistance test were performed.
 実施例1~5は全てダブル鹿の子編の緯編多層編布であり、セルロース系天然紡績糸(A)として綿糸(50番手のスパン糸)、ポリエステル系複合糸(B)としてPTT/PETコンジュゲート糸(東レ(株)製、84dtex)を用いた。ポリアミド系の糸(C)として実施例1~4はナイロンフィラメント糸(東レ(株)製、ナイロン66、110dtex)を用い、実施例5ではアラミドフィラメント糸(帝人(株)製、テクノーラ、110dtex)を用いた。また、実施例1~5ではPTT/PETコンジュゲート糸を圧縮層側に、綿糸とポリアミド系の糸が摩擦伝動面側(プーリと接触する側)となるように編成した。実施例1~4では、綿糸とポリアミド系の糸との比率(質量比)を変化させ、耐注水発音性や耐摩耗性への影響を評価した。 Examples 1 to 5 are all weft multi-layer knitted fabrics of double Kanoko knitting, cotton yarn (50th spun yarn) as cellulosic natural spun yarn (A), and PTT / PET conjugate as polyester composite yarn (B). Yarn (manufactured by Toray Industries, Inc., 84 dtex) was used. In Examples 1 to 4, nylon filament yarn (manufactured by Toray Industries, nylon 66, 110 dtex) is used as the polyamide-based yarn (C). In Example 5, aramid filament yarn (manufactured by Teijin Ltd., Technora, 110 dtex) is used. Was used. In Examples 1 to 5, the PTT / PET conjugate yarn was knitted so as to be on the compression layer side, and the cotton yarn and polyamide yarn to be on the friction transmission surface side (side in contact with the pulley). In Examples 1 to 4, the ratio (mass ratio) of cotton yarn to polyamide-based yarn was changed to evaluate the influence on the water injection resistance and abrasion resistance.
 比較例1はセルロース系天然紡績糸(A)として綿糸、ポリエステル系複合糸(B)としてPTT/PETコンジュゲート糸を用い、ポリアミド系の糸(C)は含まない構成の緯編多層編布である。比較例2は綿とポリウレタンのカバリング加工糸からなる単層の緯編布である。比較例3はナイロンとポリウレタンのタスラン加工糸からなる単層の緯編布である。比較例4は実施例1と同じ構成の編布であるが、実施例1とは表裏を逆にして使用することで、摩擦伝動面側にPTT/PETコンジュゲート糸を、圧縮層側に綿糸とナイロンフィラメント糸を配した。 Comparative Example 1 is a weft knitted multi-layer knitted fabric in which cotton yarn is used as cellulose-based natural spun yarn (A), PTT / PET conjugate yarn is used as polyester-based composite yarn (B), and polyamide yarn (C) is not included. is there. Comparative Example 2 is a single layer weft knitted fabric made of cotton and polyurethane covering yarn. Comparative Example 3 is a single layer weft knitted fabric made of nylon and polyurethane Taslan processed yarn. Comparative Example 4 is a knitted fabric having the same configuration as that of Example 1, but by using the reverse side of Example 1, the PTT / PET conjugate yarn is used on the friction transmission surface side, and the cotton yarn is used on the compression layer side. And nylon filament yarn.
 (ゴム滲み出し観察試験)
 ゴム滲み出し観察試験では、マイクロスコープにてVリブドベルト1の摩擦伝動面を20倍に拡大して撮影し、画像解析ソフトを用いてゴムが摩擦伝動面に露出している面積割合を計算した。任意の5箇所を測定した平均値より、ゴムが摩擦伝動面に露出している面積割合が5%未満である場合はゴム滲み出しが「無し」、5%以上である場合はゴム滲み出しが「有り」と判断した。
(Rubber bleeding observation test)
In the rubber oozing observation test, a microscope was used to magnify the friction transmission surface of the V-ribbed belt 1 by 20 times, and the ratio of the area where the rubber was exposed to the friction transmission surface was calculated using image analysis software. From the average value measured at any five locations, rubber exudation is “none” when the area ratio of the rubber exposed to the friction transmission surface is less than 5%, and rubber exudation when the area ratio is 5% or more. Judged “Yes”.
 (摩擦係数測定試験)
 摩擦係数測定試験は、図5に示すように、直径121.6mmの駆動プーリ(Dr.)、直径76.2mmのアイドラープーリ(IDL.1)、直径61.0mmのアイドラープーリ(IDL.2)、直径76.2mmのアイドラープーリ(IDL.3)、直径77.0mmのアイドラープーリ(IDL.4)、直径121.6mmの従動プーリ(Dn.)を配置した試験機を用い、これらの各プーリにVリブドベルト1を掛架して行った。
(Friction coefficient measurement test)
As shown in FIG. 5, the friction coefficient measurement test includes a drive pulley (Dr.) having a diameter of 121.6 mm, an idler pulley (IDL.1) having a diameter of 76.2 mm, and an idler pulley (IDL.2) having a diameter of 61.0 mm. , An idler pulley (IDL.3) having a diameter of 76.2 mm, an idler pulley (IDL.4) having a diameter of 77.0 mm, and a driven pulley (Dn.) Having a diameter of 121.6 mm were used. The V-ribbed belt 1 was hung on.
 図5の(a)に示すように、通常走行時を想定したドライ状態の試験では、室温条件下(23℃)で、駆動プーリ(Dr.)の回転数を400rpm、従動プーリ(Dn.)へのベルト巻き付け角度αをπ/9ラジアン(20°)とし、一定荷重(180N/6rib)を付与してVリブドベルト1を走行させて、従動プーリ(Dn.)のトルクを上げていき、従動プーリ(Dn.)に対するVリブドベルト1の滑り速度が最大(100%スリップ)となったときの従動プーリ(Dn.)のトルク値から、(1)式を用いて摩擦係数μを求めた。
 μ=ln(T/T)/α            (1)
 ここに、Tは張り側張力、Tは緩み側張力である。
 従動プーリ(Dn.)入側の緩み側張力Tは一定荷重(180N/6rib)と等しくなり、出側の張り側張力Tは、この一定荷重に従動プーリ(Dn.)のトルクによる張力を加えたものとなる。
As shown in FIG. 5 (a), in the dry state test assuming normal driving, the rotational speed of the drive pulley (Dr.) is 400 rpm and the driven pulley (Dn.) Under room temperature conditions (23 ° C.). The belt winding angle α is set to π / 9 radians (20 °), a constant load (180 N / 6 rib) is applied and the V-ribbed belt 1 is run to increase the torque of the driven pulley (Dn.). From the torque value of the driven pulley (Dn.) When the sliding speed of the V-ribbed belt 1 with respect to the pulley (Dn.) Reaches the maximum (100% slip), the friction coefficient μ was obtained using the equation (1).
μ = ln (T 1 / T 2 ) / α (1)
Here, T 1 is tight side tension, T 2 is slack side tension.
A driven pulley (Dn.) Slack side tension T 2 of the inlet side is equal to the constant load (180N / 6rib), tight side tension T 1 of the delivery side, the tension due to the torque of the driven pulley (Dn.) This constant load Will be added.
 図5の(b)に示すように、雨天走行時を想定したウェット状態の試験では、駆動プーリ(Dr.)の回転数を800rpm、従動プーリ(Dn.)へのベルト巻き付け角度αをπ/4ラジアン(45°)とし、従動プーリ(Dn.)の入口付近に1分間に300mlの水を連続的に注水した。その他の条件はドライ状態の試験と同じであり、(1)式を用いて摩擦係数μを求めた。 As shown in FIG. 5 (b), in a wet state test assuming rainy weather driving, the rotational speed of the drive pulley (Dr.) is 800 rpm, and the belt winding angle α to the driven pulley (Dn.) Is π / It was set to 4 radians (45 °), and 300 ml of water was continuously poured near the inlet of the driven pulley (Dn.) Per minute. Other conditions were the same as in the dry state test, and the coefficient of friction μ was determined using equation (1).
 (ミスアライメント発音評価試験)
 ミスアライメント発音評価試験は、図6に示すように、直径90mmの駆動プーリ(Dr.)、直径70mmのアイドラープーリ(IDL.1)、直径120mmのミスアライメントプーリ(W/P)、直径80mmのテンションプーリ(Ten.)、直径70mmのアイドラープーリ(IDL.2)、直径80mmのアイドラープーリ(IDL.3)を配置した試験機を用い、アイドラープーリ(IDL.1)とミスアライメントプーリ(W/P)の軸間スパンを135mmに設定し、全てのプーリが同一平面上(ミスアライメントの角度0°)に位置するように調整した。
(Misalignment pronunciation test)
As shown in FIG. 6, the misalignment sound generation evaluation test includes a drive pulley (Dr.) having a diameter of 90 mm, an idler pulley (IDL.1) having a diameter of 70 mm, a misalignment pulley (W / P) having a diameter of 120 mm, and a diameter of 80 mm. Using a testing machine in which a tension pulley (Ten.), An idler pulley (IDL.2) with a diameter of 70 mm, and an idler pulley (IDL.3) with a diameter of 80 mm are arranged, an idler pulley (IDL.1) and a misalignment pulley (W / The span between axes of P) was set to 135 mm, and all the pulleys were adjusted so as to be positioned on the same plane (misalignment angle 0 °).
 そして、試験機の各プーリにVリブドベルト1を掛架して、室温条件下(23℃)で、駆動プーリ(Dr.)の回転数を1000rpm、ベルト張力を300N/6ribとし、駆動プーリ(Dr.)の出口付近でVリブドベルト1の摩擦伝動面に定期的(約30秒間隔)に5ccの水を注水して、ミスアライメントプーリ(W/P)を他の各プーリに対して手前側へずらす(ミスアライメントの角度を徐々に大きくする)ミスアライメントでVリブドベルト1を走行させ、ミスアライメントプーリ(W/P)の入口付近で発音が発生するときのミスアライメントの角度(発音限界角度)を求めた。また、通常走行時を想定して、注水を行わないドライ状態についても、同様に発音限界角度を求めた。なお、この発音限界角度は大きいほど、耐発音性が優れていることを示す。 Then, the V-ribbed belt 1 is hung on each pulley of the test machine, and under the room temperature condition (23 ° C.), the rotational speed of the drive pulley (Dr.) is 1000 rpm, the belt tension is 300 N / 6 rib, and the drive pulley (Dr .)) 5cc of water is periodically poured into the friction transmission surface of the V-ribbed belt 1 (approximately every 30 seconds), and the misalignment pulley (W / P) is moved to the near side with respect to the other pulleys. The misalignment angle (sound generation limit angle) when the V-ribbed belt 1 is driven by misalignment and sound is generated near the entrance of the misalignment pulley (W / P) is shifted (gradually increasing the misalignment angle). Asked. In addition, assuming a normal running time, the sounding limit angle was similarly obtained in a dry state where water was not injected. It should be noted that the larger the sound generation limit angle, the better the sound resistance.
 (耐摩耗性試験)
 耐摩耗性試験では、図示は省略するが、直径120mmの駆動プーリ(Dr.)、直径75mmのアイドラープーリ(IDL.1)、直径60mmのテンションプーリ(Ten.)、直径120mmの従動プーリ(Dn.)を順に配置した試験機を用いた。これらの各プーリにVリブドベルト1を掛架し、120℃の雰囲気下で、駆動プーリ(Dr.)の回転数を4900rpmとし、初荷重としてテンションプーリ(Ten.)に890Nの軸荷重を負荷して、200時間走行させた試験前後のベルト質量を測定し、(2)式を用いて摩耗率を求めた。
 摩耗率=(試験前質量-試験後質量)/試験前質量×100(%)(2)
 なお、摩耗率は低い値ほど、耐摩耗性が優れていることを示す。
(Abrasion resistance test)
Although not shown in the abrasion resistance test, a driving pulley (Dr.) having a diameter of 120 mm, an idler pulley (IDL.1) having a diameter of 75 mm, a tension pulley (Ten.) Having a diameter of 60 mm, and a driven pulley having a diameter of 120 mm (Dn) .) Was used in order. The V-ribbed belt 1 is hung on each of these pulleys, and the rotational speed of the drive pulley (Dr.) is 4900 rpm under an atmosphere of 120 ° C., and an axial load of 890 N is applied to the tension pulley (Ten.) As an initial load. The belt mass before and after the test run for 200 hours was measured, and the wear rate was determined using equation (2).
Abrasion rate = (mass before test−mass after test) / mass before test × 100 (%) (2)
The lower the wear rate, the better the wear resistance.
 (編布の厚みについて)
 作製した実施例1~5、及び、比較例1~4に係るVリブドベルトをベルト幅方向に切断し、その断面をマイクロスコープによって撮影して摩擦伝動面を被覆する編布6の平均厚みを測定した。
(About the thickness of the knitted fabric)
The manufactured V-ribbed belts according to Examples 1 to 5 and Comparative Examples 1 to 4 were cut in the belt width direction, the cross-section was photographed with a microscope, and the average thickness of the knitted fabric 6 covering the friction transmission surface was measured. did.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
・綿:50番手のスパン糸
・PTT/PETコンジュゲート糸:東レ(株)製、84dtex
・ナイロンフィラメント糸:東レ(株)製、ナイロン66、110dtex
・アラミドフィラメント糸:帝人(株)製、テクノーラ、110dtex
Cotton: 50th spun yarn PTT / PET conjugate yarn: 84 dtex manufactured by Toray Industries, Inc.
・ Nylon filament yarn: nylon 66, 110 dtex, manufactured by Toray Industries, Inc.
-Aramid filament yarn: Teijin Limited, Technora, 110 dtex
 (各試験結果の考察)
 編布6にセルロース系天然紡績糸(A)、ポリエステル系複合糸(B)、及びポリアミド系の糸(C)を含み、セルロース系天然紡績糸(A)とポリアミド系の糸(C)とが摩擦伝動面側の層に配された実施例1~5では、ゴムの摩擦伝動面への滲み出しがなく、ドライ状態での摩擦係数とウェット状態での摩擦係数との差Δμが小さく、耐注水発音性が高かった。さらに、200h耐久後摩耗率が低く、耐摩耗性にも優れていた。
(Consideration of test results)
The knitted fabric 6 includes a cellulose-based natural spun yarn (A), a polyester-based composite yarn (B), and a polyamide-based yarn (C), and the cellulose-based natural spun yarn (A) and the polyamide-based yarn (C). In Examples 1 to 5 arranged in the layer on the friction transmission surface side, there is no oozing of rubber to the friction transmission surface, the difference Δμ between the friction coefficient in the dry state and the friction coefficient in the wet state is small, The water injection ability was high. Furthermore, the wear rate after 200 hours durability was low and the wear resistance was also excellent.
 編布6中の綿とナイロンの質量比が耐注水発音性と耐摩耗性に及ぼす影響について着目すると、ナイロンの質量比が20~55%の間である実施例1、2及び4でドライ状態での摩擦係数とウェット状態での摩擦係数の差Δμが小さく(耐注水発音性が高く)、耐摩耗性も優れていた。ナイロンの質量比が5%と比較的低い実施例3では、ドライ状態での摩擦係数とウェット状態での摩擦係数の差Δμがもっとも小さい一方で、耐摩耗性は比較的低めであった。 Focusing on the influence of the weight ratio of cotton and nylon in the knitted fabric 6 on the water-sounding sounding resistance and wear resistance, the dry state was found in Examples 1, 2 and 4 where the weight ratio of nylon was between 20 and 55%. The difference [Delta] [mu] between the coefficient of friction and the coefficient of friction in the wet state was small (high water-proof sound resistance) and excellent wear resistance. In Example 3 where the mass ratio of nylon was relatively low at 5%, the difference Δμ between the friction coefficient in the dry state and the friction coefficient in the wet state was the smallest, but the wear resistance was relatively low.
 ポリアミド系の糸(C)としてアラミドを用いた実施例5では、ナイロンを用いた実施例1と同じ耐注水発音性を有したまま、耐摩耗性の向上が見られた。 In Example 5 in which aramid was used as the polyamide-based yarn (C), the wear resistance was improved while maintaining the same water-sounding sounding resistance as in Example 1 in which nylon was used.
 一方、ポリアミド系の糸(C)を含まない比較例1では、耐摩耗性が大きく低下した。また、綿/ポリウレタンのカバリング加工糸を用いた比較例2ではゴムの摩擦伝動面への滲み出しが有るためか耐注水発音性が低く、さらに耐摩耗性も低かった。また、ナイロン/ポリウレタンのタスラン加工糸を用いた比較例3は、比較例1や比較例2と比較して耐注水発音性は同程度であり、耐摩耗性は若干の向上が見られたものの、ゴムの摩擦伝動面への滲み出しもあり、実用には不十分なレベルであった。編布の構成自体は実施例1と同じであるが、編布を裏返して使用することにより綿とナイロンを圧縮層側に配した比較例4では、綿とナイロンの吸水性や耐摩耗性が十分に発揮されないためか、耐注水発音性及び耐摩耗性は低い結果となった。 On the other hand, in Comparative Example 1 not including the polyamide-based yarn (C), the wear resistance was greatly reduced. Further, in Comparative Example 2 using a cotton / polyurethane covering thread, the water-bleeding sound resistance was low or the wear resistance was also low due to the rubber seeping out to the friction transmission surface. Further, Comparative Example 3 using the nylon / polyurethane taslan processed yarn has the same level of water-squeezing resistance as compared with Comparative Example 1 and Comparative Example 2, and the wear resistance was slightly improved. Also, the rubber oozes onto the friction transmission surface, which is insufficient for practical use. The configuration of the knitted fabric itself is the same as in Example 1. However, in Comparative Example 4 in which cotton and nylon are arranged on the compression layer side by using the knitted fabric upside down, the water absorption and wear resistance of cotton and nylon are low. Probably because of insufficient performance, the water injection resistance and abrasion resistance were low.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2017年5月24日出願の日本国特許出願2017-102797号および2018年5月21日出願の日本国特許出願2018-097341号に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2017-102797 filed on May 24, 2017 and Japanese Patent Application No. 2018-097341 filed on May 21, 2018, the contents of which are hereby incorporated by reference. It is captured.
 1 Vリブドベルト
 2 リブ部
 3 伸張層
 4 圧縮層
 5 心線
 6 編布
10 成形体
21 駆動プーリ
22 従動プーリ
23 V字状溝
51 可撓性ジャケット
52 内型
53 外型
53a リブ型 
DESCRIPTION OF SYMBOLS 1 V ribbed belt 2 Rib part 3 Stretch layer 4 Compression layer 5 Core wire 6 Knitted fabric 10 Molding body 21 Drive pulley 22 Driven pulley 23 V-shaped groove 51 Flexible jacket 52 Inner type 53 Outer type 53a Rib type

Claims (13)

  1.  摩擦伝動面が緯編多層編布で構成されたVリブドベルトであって、
     前記緯編多層編布は、セルロース系天然紡績糸、ポリエステル系複合糸、及び、ポリアミド系の糸を含み、少なくとも前記セルロース系天然紡績糸と前記ポリアミド系の糸とが、前記摩擦伝動面側の層に配されていることを特徴とするVリブドベルト。
    A friction transmission surface is a V-ribbed belt composed of a weft knitted multilayer knitted fabric,
    The weft knitted multilayer knitted fabric includes a cellulose-based natural spun yarn, a polyester-based composite yarn, and a polyamide-based yarn, and at least the cellulose-based natural spun yarn and the polyamide-based yarn are on the friction transmission surface side. A V-ribbed belt characterized by being arranged in layers.
  2.  前記緯編多層編布において、前記ポリアミド系の糸の含有量が5~60質量%であることを特徴とする請求項1に記載のVリブドベルト。 The V-ribbed belt according to claim 1, wherein the content of the polyamide-based yarn in the weft knitted multilayer knitted fabric is 5 to 60% by mass.
  3.  前記緯編多層編布において、前記セルロース系天然紡績糸の含有量が5~60質量%であることを特徴とする請求項1又は2に記載のVリブドベルト。 3. The V-ribbed belt according to claim 1, wherein the content of the cellulose-based natural spun yarn is 5 to 60% by mass in the weft knitted multilayer knitted fabric.
  4.  前記緯編多層編布において、前記ポリアミド系の糸とセルロース系天然紡績糸との質量比が、(ポリアミド系の糸:セルロース系天然紡績糸)=5:95~95:5であることを特徴とする請求項1又は2に記載のVリブドベルト。 In the weft knitted multilayer knitted fabric, the mass ratio of the polyamide-based yarn and the cellulose-based natural spun yarn is (polyamide-based yarn: cellulose-based natural spun yarn) = 5: 95 to 95: 5 The V-ribbed belt according to claim 1 or 2.
  5.  前記緯編多層編布に含まれる前記ポリエステル系複合糸は、熱収縮率の異なる2種類以上のポリマーからなる嵩高加工糸であることを特徴とする請求項1~4の何れか一項に記載のVリブドベルト。 The polyester composite yarn contained in the weft knitted multilayer knitted fabric is a bulky processed yarn made of two or more kinds of polymers having different heat shrinkage rates. V-ribbed belt.
  6.  前記緯編多層編布に含まれる前記ポリエステル系複合糸は、ポリエチレンテレフタレート(PET)を含むコンジュゲート糸であることを特徴とする請求項1~5の何れか一項に記載のVリブドベルト。 The V-ribbed belt according to any one of claims 1 to 5, wherein the polyester-based composite yarn included in the weft knitted multilayer knitted fabric is a conjugate yarn containing polyethylene terephthalate (PET).
  7.  前記緯編多層編布に含まれる前記ポリアミド系の糸は、ナイロン、又は、アラミド繊維を含むことを特徴とする請求項1~6の何れか一項に記載のVリブドベルト。 The V-ribbed belt according to any one of claims 1 to 6, wherein the polyamide yarn included in the weft knitted multilayer knitted fabric includes nylon or aramid fiber.
  8.  前記緯編多層編布を構成する糸は、各々フィラメントやファイバを撚り合わせていることを特徴とする請求項1~7の何れか一項に記載のVリブドベルト。 The V-ribbed belt according to any one of claims 1 to 7, wherein the yarns constituting the weft knitted multilayer knitted fabric are each twisted of filaments and fibers.
  9.  前記緯編多層編布は、ポリウレタンを含まないことを特徴とする請求項1~8の何れか一項に記載のVリブドベルト。 The V-ribbed belt according to any one of claims 1 to 8, wherein the weft knitted multilayer knitted fabric does not contain polyurethane.
  10.  前記摩擦伝動面を被覆する前記緯編多層編布の厚みは、0.6mm以上であることを特徴とする請求項1~9の何れか一項に記載のVリブドベルト。 The V-ribbed belt according to any one of claims 1 to 9, wherein a thickness of the weft knitted multilayer knitted fabric covering the friction transmission surface is 0.6 mm or more.
  11.  前記緯編多層編布の摩擦伝動面側の層において、前記セルロース系天然紡績糸とポリアミド系の糸とが一様に分散するように配置されていることを特徴とする請求項1~10の何れか一項に記載のVリブドベルト。 11. The cellulose-based natural spun yarn and the polyamide-based yarn are disposed so as to be uniformly dispersed in a layer on the frictional transmission surface side of the weft knitted multilayer knitted fabric. The V-ribbed belt according to any one of the above.
  12.  前記Vリブドベルトは、ゴムを構成要素として含み、
     当該ゴムの摩擦伝動面側に前記緯編多層編布が被覆されており、
     前記緯編多層編布から摩擦伝動面への前記ゴムの滲み出しが無いことを特徴とする請求項1~11の何れか一項に記載のVリブドベルト。
    The V-ribbed belt includes rubber as a component,
    The weft knitted multilayer knitted fabric is coated on the friction transmission surface side of the rubber,
    The V-ribbed belt according to any one of claims 1 to 11, wherein the rubber does not ooze from the weft knitted multilayer knitted fabric to the friction transmission surface.
  13.  請求項1~12の何れか一項に記載のVリブドベルトの製造方法であって、
     前記緯編多層編布の両端をジョイントした筒状の当該緯編多層編布を未加硫の圧縮層用シートに被せる、又は、未加硫の圧縮層用シートの上で前記緯編多層編布の両端をジョイントする、ことを特徴とするVリブドベルトの製造方法。 
    A method for producing a V-ribbed belt according to any one of claims 1 to 12,
    Cover the weft knitted multilayer knitted fabric with both ends of the weft knitted multilayer knitted fabric on the unvulcanized compressed layer sheet, or on the unvulcanized compressed layer sheet, the weft knitted multilayer knitted fabric A method for producing a V-ribbed belt, wherein both ends of a cloth are jointed.
PCT/JP2018/019874 2017-05-24 2018-05-23 V-ribbed belt and manufacturing method for same WO2018216738A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197034408A KR102239997B1 (en) 2017-05-24 2018-05-23 V-ribbed belt and manufacturing method thereof
US16/615,963 US11913522B2 (en) 2017-05-24 2018-05-23 V-ribbed belt and manufacturing method for same
CN201880033319.0A CN110651137B (en) 2017-05-24 2018-05-23 V-ribbed belt and method for manufacturing same
EP18806498.4A EP3633232B1 (en) 2017-05-24 2018-05-23 V-ribbed belt and manufacturing method for same
CA3064366A CA3064366C (en) 2017-05-24 2018-05-23 V-ribbed belt and manufacturing method for same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017102797 2017-05-24
JP2017-102797 2017-05-24
JP2018097341A JP6717877B2 (en) 2017-05-24 2018-05-21 V-ribbed belt and manufacturing method thereof
JP2018-097341 2018-05-21

Publications (1)

Publication Number Publication Date
WO2018216738A1 true WO2018216738A1 (en) 2018-11-29

Family

ID=64395549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019874 WO2018216738A1 (en) 2017-05-24 2018-05-23 V-ribbed belt and manufacturing method for same

Country Status (3)

Country Link
CN (1) CN110651137B (en)
CA (1) CA3064366C (en)
WO (1) WO2018216738A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3892452A4 (en) * 2018-12-06 2022-10-26 Mitsuboshi Belting Ltd. Power-transmitting friction belt and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021205665A1 (en) * 2021-06-03 2022-12-08 Contitech Antriebssysteme Gmbh V-ribbed belt

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082702A (en) 2002-06-28 2004-03-18 Mitsuboshi Belting Ltd Transmission belt and its manufacturing method
JP2007120507A (en) 2004-12-27 2007-05-17 Mitsuboshi Belting Ltd V-ribbed belt and its manufacturing method
US20080108466A1 (en) * 2006-11-03 2008-05-08 Dayco Products, Llc Power transmission belt
JP2009533609A (en) * 2006-04-07 2009-09-17 ザ ゲイツ コーポレイション Power transmission belt
JP2010053935A (en) * 2008-08-27 2010-03-11 Bando Chem Ind Ltd V-ribbed belt
JP2010242825A (en) * 2009-04-03 2010-10-28 Bando Chem Ind Ltd V-ribbed belt and manufacturing method of the same
JP2014209028A (en) 2013-03-29 2014-11-06 三ツ星ベルト株式会社 V-ribbed belt
US20150087456A1 (en) * 2012-06-25 2015-03-26 Contitech Antriebssysteme Gmbh Article, in particular drive belt, comprising a textile covering
JP2016205625A (en) * 2013-03-29 2016-12-08 三ツ星ベルト株式会社 V-ribbed belt
JP2017102797A (en) 2015-12-03 2017-06-08 テルモ株式会社 Medical data reading device and medical data reading method
JP2018097341A (en) 2016-12-14 2018-06-21 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Optical imaging lens

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964328A (en) * 1973-09-07 1976-06-22 The Gates Rubber Company Elastomer-free fabric surface for power transmission belt tooth facing
JPS599239A (en) * 1982-07-05 1984-01-18 三ツ星ベルト株式会社 Belt fabric
JPH0333536A (en) * 1989-06-27 1991-02-13 Bando Chem Ind Ltd Transmission belt and manufacture thereof
CN1089871C (en) * 1997-04-07 2002-08-28 芦森工业株式会社 Toothed belt
CA2698365C (en) * 2007-09-14 2015-10-06 The Gates Corporation V-ribbed belt and method for manufacturing same
JP6527433B2 (en) * 2014-09-26 2019-06-05 三ツ星ベルト株式会社 Friction transmission belt and method of manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082702A (en) 2002-06-28 2004-03-18 Mitsuboshi Belting Ltd Transmission belt and its manufacturing method
JP2007120507A (en) 2004-12-27 2007-05-17 Mitsuboshi Belting Ltd V-ribbed belt and its manufacturing method
JP2009533609A (en) * 2006-04-07 2009-09-17 ザ ゲイツ コーポレイション Power transmission belt
US20080108466A1 (en) * 2006-11-03 2008-05-08 Dayco Products, Llc Power transmission belt
JP2010053935A (en) * 2008-08-27 2010-03-11 Bando Chem Ind Ltd V-ribbed belt
JP2010242825A (en) * 2009-04-03 2010-10-28 Bando Chem Ind Ltd V-ribbed belt and manufacturing method of the same
US20150087456A1 (en) * 2012-06-25 2015-03-26 Contitech Antriebssysteme Gmbh Article, in particular drive belt, comprising a textile covering
JP2014209028A (en) 2013-03-29 2014-11-06 三ツ星ベルト株式会社 V-ribbed belt
JP2016205625A (en) * 2013-03-29 2016-12-08 三ツ星ベルト株式会社 V-ribbed belt
JP2017102797A (en) 2015-12-03 2017-06-08 テルモ株式会社 Medical data reading device and medical data reading method
JP2018097341A (en) 2016-12-14 2018-06-21 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Optical imaging lens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633232A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3892452A4 (en) * 2018-12-06 2022-10-26 Mitsuboshi Belting Ltd. Power-transmitting friction belt and method for manufacturing same
US11913521B2 (en) 2018-12-06 2024-02-27 Mitsuboshi Belting Ltd. Power-transmitting friction belt and method for manufacturing same

Also Published As

Publication number Publication date
CA3064366A1 (en) 2018-11-29
CN110651137B (en) 2022-01-07
CA3064366C (en) 2022-05-03
CN110651137A (en) 2020-01-03

Similar Documents

Publication Publication Date Title
JP6023736B2 (en) V-ribbed belt
JP6480392B2 (en) V-ribbed belt and manufacturing method thereof
JP5981330B2 (en) V-ribbed belt
JP5956162B2 (en) Friction transmission belt and manufacturing method thereof
JP6198354B2 (en) V-ribbed belt
JP6717877B2 (en) V-ribbed belt and manufacturing method thereof
JP2013113343A (en) Friction transmission belt and method of manufacturing the same
WO2018216738A1 (en) V-ribbed belt and manufacturing method for same
JP6908558B2 (en) V-ribbed belt and its manufacturing method
JP6423321B2 (en) V-ribbed belt and manufacturing method thereof
JP6224886B2 (en) Transmission belt and manufacturing method thereof
JP6748133B2 (en) Friction transmission belt and manufacturing method thereof
JP2022168845A (en) friction transmission belt
WO2017057202A1 (en) V-ribbed belt and method for producing same
JP6690047B1 (en) Friction transmission belt and manufacturing method thereof
JP7182477B2 (en) Friction transmission belt and its manufacturing method
US11933383B2 (en) Twisted cord for core wire of transmission belt, manufacturing method and use of same, and transmission belt
JP6949784B2 (en) V-ribbed belt and its manufacturing method
WO2018174093A1 (en) Friction transmission belt and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3064366

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197034408

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018806498

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018806498

Country of ref document: EP

Effective date: 20200102