WO2018174093A1 - Friction transmission belt and method for producing same - Google Patents

Friction transmission belt and method for producing same Download PDF

Info

Publication number
WO2018174093A1
WO2018174093A1 PCT/JP2018/011189 JP2018011189W WO2018174093A1 WO 2018174093 A1 WO2018174093 A1 WO 2018174093A1 JP 2018011189 W JP2018011189 W JP 2018011189W WO 2018174093 A1 WO2018174093 A1 WO 2018174093A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
layer
heat
resin
resistant
Prior art date
Application number
PCT/JP2018/011189
Other languages
French (fr)
Japanese (ja)
Inventor
田村 貴史
博樹 武市
長谷川 新
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018041186A external-priority patent/JP6748133B2/en
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to EP18770304.6A priority Critical patent/EP3604855B1/en
Priority to US16/496,314 priority patent/US11654645B2/en
Priority to CN201880019040.7A priority patent/CN110446880B/en
Publication of WO2018174093A1 publication Critical patent/WO2018174093A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a friction transmission belt used for driving an automobile engine auxiliary machine and a method for manufacturing the same, and more particularly to a V-ribbed belt in which abnormal noise is suppressed even when wet and a method for manufacturing the same.
  • an ethylene- ⁇ -olefin elastomer-based elastomer tooth is covered with a barrier layer made of a thermoplastic material, and the barrier layer is covered with an outer cover formed of a woven fabric or a nonwoven fabric, and A transmission belt is disclosed in which the outer cover at least on the flank of the elastomeric teeth is partially included within a portion of the thickness of the barrier layer.
  • the barrier layer suppresses the passage of dental rubber (the raw material constituting the elastomer tooth) during belt molding to the outer cover, and the outer cover (fiber or It is described that the generation of noise can be avoided by partially embedding the yarn) to improve the crack resistance of the barrier layer and projecting (exposing) the remaining portion not embedded to the pulley side.
  • the barrier layer and the outer cover are integrated in advance by calendering and rolling, and the non-woven fiber constituting the outer cover penetrates only partially into the film constituting the barrier layer and is in a raw state It is described that it is possible to never penetrate into the dental rubber that progresses to the vulcanized state.
  • a woven fabric or nonwoven fabric based on polyethylene is particularly suitable as the woven fabric or nonwoven fabric forming the outer cover.
  • the outer cover is only partially embedded within a portion of the thickness of the barrier layer, and as wear progresses as the belt travels, the outer cover eventually becomes Since only the non-existing barrier layer is exposed, there is a possibility that the crack resistance and wear resistance of the barrier layer may be lowered. In such a state, since the barrier layer is not reinforced by the outer cover, the barrier layer may be peeled off from the surface of the elastomer tooth due to shear from the pulley, or the inside of the barrier layer may be broken. There is also sex.
  • this drive belt uses a peroxide to cure dental rubber or other chemicals with curing ability to promote the bonding between the teeth and the barrier layer, but only chemical action. However, it is not sufficient to suppress the peeling of the barrier layer, and has no effect on the destruction of the barrier layer.
  • Patent Document 2 as a friction transmission belt capable of improving sound resistance and wear resistance, a stretch layer that forms the back surface of the belt, and one surface of the stretch layer are formed on the side surface.
  • a friction transmission belt comprising: a compression rubber layer that is in frictional engagement with a pulley; and a core wire that is embedded along the longitudinal direction of the belt between the extension layer and the compression rubber layer, the compression rubber At least a part of the surface in contact with the pulley of the layer is coated with a fiber resin mixed layer in which a resin component and a heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature are mixed, and the heat-resistant fiber is the fiber
  • a friction transmission belt including fibers embedded from a resin mixed layer to the compressed rubber layer is disclosed.
  • an object of the present invention is to provide a friction transmission belt capable of improving sound resistance when wet and a manufacturing method thereof.
  • Another object of the present invention is to provide a friction transmission belt capable of improving sound resistance and wear resistance over a long period of time and a method for manufacturing the same.
  • the present inventors have coated at least a part of the surface of the friction transmission belt that is in contact with the pulley of the compression rubber layer with a fiber layer through a fiber resin mixed layer, and the fibers
  • the resin mixed layer is configured to include a resin component and a heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature of the rubber forming the compressed rubber layer, and the fiber layer has a softening point exceeding the vulcanization temperature or
  • the present invention has been completed by finding that the composition can be improved by including a hydrophilic heat-resistant fiber having a melting point and a fiber layer that does not contain a resin component, so that the sound-proofing property when wet can be improved.
  • the friction transmission belt of the present invention includes a stretch layer that forms the back surface of the belt, a compression rubber layer that is formed on one surface of the stretch layer and frictionally engages with the pulley, the stretch layer, and the compression layer.
  • the fiber resin mixed layer is covered with a fiber layer through a mixed layer, and the fiber resin mixed layer includes a resin component and a heat-resistant fiber having a softening point or a melting point exceeding a vulcanization temperature of rubber forming the compressed rubber layer,
  • the fiber layer contains hydrophilic heat-resistant fibers having a softening point or melting point exceeding the vulcanization temperature, and does not contain a resin component.
  • the heat-resistant fiber may include a fiber embedded from the fiber resin mixed layer to the compressed rubber layer.
  • the resin component (resin component contained in the fiber resin mixed layer) may be a thermoplastic resin (particularly, a polypropylene resin) that can be melted or softened at the vulcanization temperature.
  • the hydrophilic heat resistant fiber may be a cellulosic fiber.
  • the heat-resistant fiber may be a cellulosic fiber.
  • the friction transmission belt of the present invention may be a V-ribbed belt in which the compressed rubber layer has a plurality of ribs extending in parallel with each other in the belt longitudinal direction.
  • a sheet for forming the stretch layer, the core wire, an unvulcanized rubber sheet for forming the compressed rubber layer, the fiber resin mixed layer, and the fiber A winding step of sequentially winding sheet-like structures for forming layers to obtain a laminated sheet, and a vulcanization molding step of vulcanizing and molding the unvulcanized rubber sheet by pressing the laminated sheet against a mold
  • a method of manufacturing a friction transmission belt is also included, wherein the vulcanization molding step pre-heats the unvulcanized rubber sheet at a temperature lower than the vulcanization temperature and then vulcanizes the unvulcanized rubber sheet.
  • the nonwoven fabric (3) containing the second thermoplastic resin having a point or melting point not higher than the vulcanization temperature and the nonwoven fabric (4) containing the hydrophilic heat-resistant fiber may be wound in this order, or the softening point or
  • a laminated nonwoven fabric of a first nonwoven fabric containing a thermoplastic resin having a melting point equal to or lower than the vulcanization temperature and a second nonwoven fabric containing the hydrophilic heat-resistant fiber may be wound twice with the first nonwoven fabric inside.
  • the basis weight of the sheet-like structure may be about 50 to 150 g / m 2 .
  • the fiber resin mixed layer includes the resin component and the compressed rubber layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of a V-ribbed belt.
  • FIG. 2 is a schematic diagram for explaining an example of a method for producing a friction transmission belt according to the present invention.
  • FIG. 3 is a schematic diagram showing a layout of a friction coefficient measurement test during normal running in the example.
  • FIG. 4 is a schematic diagram illustrating a layout of a friction coefficient measurement test during water injection in the example.
  • FIG. 5 is a schematic diagram showing a layout of a misalignment pronunciation test in the embodiment.
  • FIG. 6 is a schematic diagram showing a layout of a wear test in the example.
  • FIG. 7 is a schematic diagram showing a layout of a durability running test in the example.
  • FIG. 8 is a scanning electron micrograph of the rib cross section of the V-ribbed belt obtained in Example 2.
  • the friction transmission belt of the present invention includes a stretch layer that forms a belt back surface, a compression rubber layer that is formed on one surface of the stretch layer and that frictionally engages with a pulley, the stretch layer, and the compression rubber layer And a core wire embedded along the longitudinal direction of the belt.
  • the compressed rubber layer has a surface in contact with the pulley, and at least a part of the surface is covered with a fiber layer via a fiber resin mixed layer.
  • the fiber-resin mixed layer includes a resin component and a heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature of the rubber forming the compressed rubber layer.
  • the fiber layer contains hydrophilic heat-resistant fibers having a softening point or melting point exceeding the vulcanization temperature, and does not contain a resin component.
  • at least a part of the outermost surface (friction transmission surface) in contact with the pulley of the compressed rubber layer is covered with a fiber layer containing hydrophilic heat-resistant fibers, so that the sound resistance when wet is improved.
  • an adhesive layer may be provided between the compression rubber layer and the extension layer as necessary in order to improve the adhesion between the core wire and the extension layer or the compression rubber layer.
  • the form which embeds a core wire may be sufficient, and the form which embeds a core wire between a compression rubber layer and an adhesive layer or an adhesive layer and an expansion
  • extension layer may be sufficient.
  • Examples of the friction transmission belt include various friction transmission belts such as a V-ribbed belt, a low-edge V belt, and a flat belt. Among these, a V-ribbed belt and a V-belt are preferable, and a V-ribbed belt in which sound generation due to moisture is a problem is particularly preferable.
  • FIG. 1 is a schematic cross-sectional view showing an example of a V-ribbed belt, which is a schematic cross-sectional view cut in the belt width direction.
  • the V-ribbed belt is composed of a compressed rubber layer 2 having a plurality of rib portions 3, an adhesive layer 6, a core wire 1, and a rubber composition in order from the belt lower surface (inner peripheral surface) to the belt upper surface (back surface).
  • the formed stretch layer 5 is laminated, and the compressed rubber layer 2 has a short fiber 4 in a flow state along the shape of the rib portion (in the vicinity of the surface of the rib portion, the short fiber 4 has the rib portion 3). In a state of being aligned along the outer shape.
  • the compressed rubber layer 2 has rib portions 3 (in FIG. 1, the number of ribs is 3) extending in a plurality of rows along the longitudinal direction of the belt on the inner peripheral surface of the belt body.
  • the cross-sectional shape in the direction orthogonal to the longitudinal direction becomes smaller in width from the belt outer peripheral side (the side that does not have a rib portion and does not frictionally engage with the pulley) toward the inner peripheral side (taperes toward the tip).
  • Inverted trapezoidal shape V-shaped cross section).
  • the core wire 1 is embedded in the main body along the longitudinal direction of the belt. A part of the core wire 1 is in contact with the stretch layer 5 and the remaining part is in contact with the adhesive layer 6. Further, the compressed rubber layer 2 is at least partly in contact with the pulley (the friction transmission surface of the rib portion 3) is covered with a fiber resin mixed layer and a fiber layer (not shown).
  • the fiber resin mixed layer may be formed on at least a part of the friction transmission surface in contact with the pulley of the compressed rubber layer, but is usually formed on the entire surface of the compressed rubber layer from the viewpoint of productivity.
  • a resin component and a heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature of the rubber forming the compressed rubber layer (hereinafter sometimes simply referred to as vulcanization temperature) are mixed. ing. Therefore, the friction transmission surface can be reinforced by interposing the fiber resin mixed layer between the compressed rubber layer and the fiber layer.
  • the heat-resistant fibers in the fiber resin mixed layer are embedded from the fiber resin mixed layer to the vicinity of the surface inside the compressed rubber layer (near the interface with the fiber resin mixed layer). It is preferable.
  • the portion embedded in the compressed rubber layer plays the role of an anchor effect, and the interface between the fiber resin mixed layer and the compressed rubber layer surface layer can be more firmly bonded. Further, peeling (peeling) of the fiber resin mixed layer from the compressed rubber layer can be prevented.
  • the wear resistance of the compressed rubber layer (friction transmission surface) can be maintained.
  • the mode of embedding the heat resistant fiber in the compressed rubber layer is the same as the mode of embedding the heat resistant fiber (heat resistant fiber) in the vicinity of the surface of the compressed rubber layer in Patent Document 2, for example.
  • the heat-resistant fibers that are at least partially embedded near the interface inside the compressed rubber layer, at least some of the heat-resistant fibers may be embedded near the interface inside the compressed rubber layer with the resin component attached.
  • the resin component tends to adhere to the surface of the heat-resistant fiber when the heat-resistant fiber is embedded in the vicinity of the interface inside the compressed rubber layer at the time of rib formation.
  • the heat-resistant fiber and a member for example, a rubber composition that forms the compressed rubber layer can be firmly bonded via the resin component.
  • the adhesiveness (adhesiveness) between the two can be improved, it is possible to prevent the heat-resistant fibers from dropping (disconnecting) and more reliably prevent the fiber resin mixed layer from peeling from the surface of the compressed rubber layer. Furthermore, since the heat-resistant fibers are firmly fixed to the compressed rubber layer, even if the fiber resin mixed layer is worn away due to the progress of wear, the heat-resistant fibers are prevented from falling off from the vicinity of the interface inside the compressed rubber layer, so The wear resistance and sound resistance of the rubber layer (friction transmission surface) can be maintained over a longer period.
  • Depth of heat-resistant fibers embedded in the compressed rubber layer is near the interface inside the compressed rubber layer.
  • 5 to 150 ⁇ m preferably 10 to 120 ⁇ m (for example, 30 to 100 ⁇ m), and more preferably 50 to 50 ⁇ m from the viewpoint of preventing the fiber resin mixed layer from peeling off the surface of the compressed rubber layer. It is about 90 ⁇ m (especially 70 to 80 ⁇ m). If the embedment depth of the heat-resistant fiber is too shallow, the heat-resistant fiber is likely to fall off, and there is a possibility that peeling of the fiber resin mixed layer from the surface of the compressed rubber layer may not be sufficiently prevented.
  • the fiber rubber mixed layer is embedded with a substantially uniform thickness in the vicinity of the interface of the compressed rubber layer.
  • the average thickness of the fiber resin mixed layer is, for example, about 10 to 300 ⁇ m, preferably about 30 to 250 ⁇ m, more preferably about 50 to 200 ⁇ m (particularly about 70 to 150 ⁇ m). If the fiber resin mixed layer is too thin, the crack resistance and wear resistance may be reduced. If it is too thick, the flexibility of the fiber resin mixed layer may be reduced.
  • the embedding depth of the fiber and the thickness of the fiber resin mixed layer can be measured based on a scanning electron microscope (SEM) photograph, and are obtained as an average value of any five or more locations. The details can be measured by the method described in Examples described later.
  • the heat-resistant fiber may contain a long fiber or a fiber formed of a long fiber alone, but preferably contains at least a short fiber. Furthermore, the heat resistant fiber may include different types of heat resistant fibers (multiple types of heat resistant fibers).
  • the vulcanization temperature for example, about 150 to 200 ° C., particularly about 170 ° C.
  • the softening point or melting point (or decomposition point) of the heat-resistant fiber may be, for example, T + 10 ° C.
  • the heat resistant fiber has a softening point or melting point higher than the vulcanization temperature, it maintains a fibrous form even after vulcanization of the rubber forming the compressed rubber layer, and has a desired performance (heat resistant fiber on the friction transmission surface). Can be applied).
  • heat-resistant fibers include heat-resistant fibers conventionally used in friction transmission belts, such as natural fibers (cellulosic fibers, wool, silk, etc.); synthetic fibers [aliphatic polyamide fibers (polyamide 6, polyamide 66, polyamide 46 fibers).
  • Polyester fiber (polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate fiber and other poly C 2-4 alkylene C 6-14 arylate fiber), fluorine fiber (polytetrafluoroethylene fiber, etc.), polyacrylic fiber ( Polyacrylonitrile fiber, etc.), polyvinyl alcohol fiber, polyphenylene sulfide (PPS) fiber, poly-p-phenylenebenzobisoxazole (PBO) fiber, aromatic polyamide fiber (p-aramid, m-aramid fiber, etc.)]; inorganic fibers (Carbon fibers, glass fibers, etc.) and the like.
  • PPS polyphenylene sulfide
  • PBO poly-p-phenylenebenzobisoxazole
  • aromatic polyamide fiber p-aramid, m-aramid fiber, etc.
  • the fiber resin mixed layer may have a single layer structure in which different types of heat-resistant fibers are homogeneously mixed, or may have a plurality of laminated structures in which different heat-resistant fibers are laminated. Good.
  • the fiber resin mixed layer is preferably a single layer, and particularly preferably a single layer formed of the same kind of heat-resistant fibers.
  • hydrophilic heat-resistant fibers having a high affinity (water absorption) with water are preferable, and cellulosic fibers are particularly preferable, since the sound-proof property when wet is improved even when the fiber layer is worn. preferable.
  • Cellulosic fibers include cellulose fibers (cellulose fibers derived from plants, animals, bacteria, etc.) and fibers of cellulose derivatives.
  • Cellulose fibers include, for example, wood pulp (coniferous, hardwood pulp, etc.), bamboo fiber, sugarcane fiber, seed hair fiber (cotton fiber (cotton linter), kapok, etc.), gin leather fiber (hemp, kozo, mitsumata, etc.), Examples thereof include cellulose fibers (pulp fibers) derived from natural plants such as leaf fibers (manila hemp, New Zealand hemp, etc.); cellulose fibers derived from animals such as squirt cellulose; bacterial cellulose fibers; Examples of the cellulose derivative fiber include cellulose ester fiber; regenerated cellulose fiber (rayon, cupra, lyocell, etc.) and the like.
  • cellulose fibers are preferable and pulp is particularly preferable because of excellent balance between water absorption and abrasion resistance.
  • the fiber form of the heat-resistant fiber is not particularly limited, and may be any form of monofilament, multifilament, spun yarn (spun yarn), or a combination thereof.
  • the heat resistant fiber may be either a short fiber or a long fiber, but preferably contains at least a short fiber.
  • the average length of the short fibers is, for example, about 1 to 500 mm, preferably about 2 to 300 mm, more preferably about 3 to 200 mm (particularly about 5 to 100 mm). If the fiber length of the short fiber is too short, the reinforcing effect of the friction transmission surface may be lowered, and if it is too long, it may be difficult to make the fiber exist at the interface with the compressed rubber layer.
  • the average length of the long fibers only needs to exceed 500 mm, for example, about 501 mm or more, preferably about 1 to 1500 m, more preferably about 1 to 1000 m (particularly about 1 to 500 m).
  • short fibers and long fibers may be combined in order to adjust the embedding depth of heat resistant fibers in the compressed rubber layer.
  • long fibers it is easy to wrap the nonwoven fabric during belt production, and long fibers can be arranged along the longitudinal direction of the belt from the point of being able to form an appropriate rib shape even for fibers with small elongation.
  • the proportion of long fibers may be 70% by mass or less in the heat-resistant fiber, preferably 50% by mass or less, more preferably 30% by mass or less (for example, about 1 to 10% by mass). If the ratio of long fibers is too large, it may be difficult to cause fibers to exist at the interface with the compressed rubber layer.
  • the average fiber diameter of the heat resistant fiber is, for example, about 5 to 50 ⁇ m, preferably 7 to 40 ⁇ m, and more preferably about 10 to 35 ⁇ m.
  • the form of the heat-resistant fiber in the fiber-resin mixed layer can be appropriately selected according to the length of the fiber, and may be a woven fabric structure or a knitted fabric structure. And has a non-woven structure (non-woven fiber structure).
  • the heat-resistant fiber may be subjected to adhesion treatment at the raw material stage for the purpose of improving the adhesion with the compressed rubber layer.
  • adhesion treatment the heat-resistant fiber is immersed in a resin-based treatment solution in which an epoxy or isocyanate compound is dissolved in an organic solvent (toluene, xylene, methyl ethyl ketone, etc.), or a resorcin-formalin-latex solution (RFL solution).
  • a dipping process may be performed in a processing solution such as.
  • the rubber composition is dissolved in the organic solvent to form a rubber paste, and the rubber paste is heat-resistant.
  • a fiber raw material nonwoven fabric or the like
  • Resin component As a resin component, it melts at a vulcanization temperature to express a role as a binder for the fiber, forms a fiber resin mixed layer, and also on the surface of the fiber embedded in the compressed rubber layer It is preferable that it adheres and the adhesiveness of a fiber resin mixed layer and a compression rubber layer can be improved.
  • a thermoplastic resin that can be melted or softened at the vulcanization temperature is used, but a thermosetting resin that can be melted or softened at the vulcanization temperature may be used.
  • the resin component is not particularly limited as long as the melting point (or softening point) is not higher than the vulcanization temperature (for example, about 150 to 200 ° C., particularly about 170 ° C.), but it retains an appropriate viscosity during vulcanization and has an appropriate thickness.
  • the melting point is, for example, (T-50) ° C. to (T + 10) ° C., preferably (T-30) ° C. to (T + 5) ° C., more preferably, when the vulcanization temperature is T. Is about (T-10) ° C. to T ° C.
  • the resin component melts with an appropriate viscosity when vulcanizing the rubber forming the compressed rubber layer, and after vulcanization, it contains a part of the hydrophilic heat-resistant fiber.
  • a specific melting point is, for example, about 150 to 180 ° C., preferably about 160 to 175 ° C., and more preferably about 165 to 170 ° C. If the melting point is too high, it may be difficult to form a homogeneous fiber-resin mixed layer. Conversely, if it is too low, the viscosity will decrease too much during vulcanization, impregnating the fiber layer surface, There is a risk that it may be difficult to form a fiber layer having an appropriate thickness.
  • the material is not particularly limited, but from the viewpoint of handleability and versatility, an olefin resin such as a polyethylene resin or a polypropylene resin is preferable, and an appropriate amount is obtained during vulcanization.
  • Polypropylene resin is particularly preferable because it retains viscosity and easily forms a fiber layer having an appropriate thickness.
  • polypropylene resin examples include polypropylene, copolymers of monomers copolymerizable with propylene (binary copolymers such as propylene-ethylene copolymer, propylene- (meth) acrylic acid copolymer; propylene- Terpolymers such as ethylene-butene-1). These polypropylene resins can be used alone or in combination of two or more. Of these polypropylene resins, propylene homopolymers such as polypropylene are preferred.
  • polypropylene resins such as polypropylene are particularly preferable because they are easily melted at the vulcanization temperature and have excellent moderate heat resistance.
  • the shape of the resin component is not particularly limited as long as it fills the gap between the fibers and is attached to the surface of the fiber, but as described later, when a fibrous raw resin is used, Even in a thermoplastic resin having a melting point (or softening point) below the vulcanization temperature, a part of the fiber shape may remain.
  • a fibrous resin having a melting point (or softening point) equal to or lower than the vulcanization temperature as a raw material, a component in which the fiber shape partially remains is classified as a resin component, not a heat-resistant fiber.
  • the resin component may be subjected to the same adhesion treatment (or surface treatment) as the heat resistant fiber.
  • the fiber-resin mixed layer may be a conventional additive, for example, a surfactant, an enhancer, a filler, a metal oxide, a plasticizer, a processing agent or a processing aid, and coloring, as necessary.
  • HLB Hydrophilic ⁇
  • HLB Hydrophilic ⁇
  • the ratio of the additive is 0.1 to 50% by mass, preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass (particularly 1.5 to 10% by mass) with respect to the entire fiber resin mixed layer. )
  • the fiber layer covers the outermost surface of the compressed rubber layer, includes hydrophilic heat-resistant fibers having a softening point or melting point exceeding the vulcanization temperature, and does not include a resin component. Therefore, since it is flexible and excellent in water absorption, it is possible to improve sound resistance when wet.
  • the reason why the sound resistance when wet is remarkably improved is that water entering between the belt and the pulley can be quickly absorbed by the presence of the fiber layer located on the outermost surface. By suppressing the generation of the film, it can be estimated that the difference between the friction coefficient during normal running (DRY) and the friction coefficient during water injection running (WET) is reduced.
  • the hydrophilic heat-resistant fibers contained in the fiber layer the hydrophilic heat-resistant fibers exemplified as the heat-resistant fibers contained in the fiber resin mixed layer can be used, and cellulosic fibers can be preferably used.
  • the cellulosic fibers cellulosic fibers contained in the fiber resin mixed layer can be used, and cellulose fibers (particularly pulp) can be preferably used.
  • the fiber form and average length of the heat-resistant fiber are the same as those of the heat-resistant fiber contained in the fiber resin mixed layer.
  • the form of the fiber layer (the structure of the fiber assembly) can be appropriately selected according to the length of the fiber, and may be a woven fabric structure or a knitted fabric structure. Woven fiber structure).
  • the fiber layer is preferably intertwined with and integrated with the fiber resin mixed layer, and in particular, the remainder (unimpregnated) in which a part of a nonwoven fabric having a previously integrated nonwoven fiber structure is impregnated with a resin component. Part) is particularly preferred.
  • the fiber layer does not contain a resin component, it is excellent in flexibility and porosity. If it is a range which does not impair such a characteristic, the other additive illustrated by the fiber resin mixed layer may be included. The ratio of other additives is the same as that of the fiber resin mixed layer.
  • the average thickness of the fiber layer is, for example, about 10 to 300 ⁇ m, preferably about 30 to 250 ⁇ m, more preferably about 50 to 200 ⁇ m (particularly about 70 to 150 ⁇ m).
  • the average thickness of the fiber layer is, for example, about 0.1 to 5 times, preferably about 0.5 to 3 times, and more preferably about 1 to 2 times the average thickness of the fiber resin mixed layer. If the fiber layer is too thin, water absorption and wear resistance may be reduced. If it is too thick, shape defects may occur during belt production.
  • the porosity of the fiber layer is, for example, about 50 to 98%, preferably about 60 to 97%, more preferably about 75 to 95% (particularly about 80 to 90%).
  • Resin component (resin component contained in fiber resin mixed layer) and fiber component (heat resistant fiber contained in fiber resin mixed layer and hydrophilic heat resistant fiber contained in fiber layer) contained in both layers of fiber resin mixed layer and fiber layer
  • the friction transmission belt having the fiber layer on the outermost surface of the compression rubber layer has a small difference between the friction coefficient during normal driving (DRY) and the friction coefficient during water injection (WET). Can prevent stick-slip and improve sound resistance when wet.
  • the difference between the friction coefficient of DRY and the friction coefficient of WET (DRY ⁇ WET) may be 0.3 or less, preferably 0.2 or less, more preferably 0.1 or less.
  • the said friction coefficient is measured by the method as described in the Example mentioned later.
  • the compressed rubber layer can be appropriately selected according to the type of belt, and for example, a rubber composition or a polyurethane resin composition containing a rubber component and a vulcanizing agent or a crosslinking agent is used.
  • rubber components include vulcanizable or crosslinkable rubbers such as diene rubbers (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), and hydrogenated nitrile rubber. , Mixed polymers of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt, etc.), ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, Examples thereof include urethane rubber and fluorine rubber.
  • diene rubbers natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), and hydrogenated nitrile rubber.
  • polyurethane resin composition examples include a cured product of a urethane prepolymer and a curing agent (two-component curable polyurethane).
  • an unvulcanized rubber layer is formed with a rubber composition containing sulfur or an organic peroxide (especially an organic peroxide vulcanized rubber composition), and the unvulcanized rubber layer is vulcanized or crosslinked.
  • a rubber composition containing sulfur or an organic peroxide especially an organic peroxide vulcanized rubber composition
  • the unvulcanized rubber layer is vulcanized or crosslinked.
  • an olefin resin as a resin component, in addition to excellent adhesiveness, it does not contain harmful halogen, has ozone resistance, heat resistance, cold resistance, and is economical.
  • an ethylene- ⁇ -olefin elastomer ethylene- ⁇ -olefin rubber
  • the rubber composition usually contains a vulcanizing agent or a crosslinking agent (particularly an organic peroxide), a vulcanization accelerator, and a co-crosslinking agent (a crosslinking aid or a co-vulcanizing agent).
  • the ratio of the vulcanizing agent or the crosslinking agent is, for example, about 1 to 10 parts by mass (particularly 2 to 5 parts by mass) in terms of solid content with respect to 100 parts by mass of the rubber component.
  • the ratio of the vulcanization accelerator is, for example, about 0.5 to 15 parts by mass (particularly 2 to 5 parts by mass) with respect to 100 parts by mass of the rubber component in terms of solid content.
  • the ratio of the crosslinking aid is, for example, about 0.01 to 10 parts by mass (particularly 0.1 to 5 parts by mass) with respect to 100 parts by mass of the rubber in terms of solid content.
  • the rubber composition may contain short fibers.
  • the short fiber a fiber similar to the fiber exemplified for the heat-resistant fiber can be used. These short fibers can be used alone or in combination of two or more. Among these fibers, cellulose fibers such as cotton and rayon, polyester fibers (PET fibers, etc.), polyamide fibers (aliphatic polyamide fibers such as polyamide 6, aramid fibers, etc.) are widely used.
  • the average fiber length of the short fibers may be, for example, about 1 to 20 mm, preferably 2 to 15 mm, and more preferably about 3 to 10 mm.
  • the average fiber diameter of the short fibers is, for example, about 5 to 50 ⁇ m, preferably 7 to 40 ⁇ m, and more preferably about 10 to 30 ⁇ m.
  • the proportion of the short fibers is, for example, about 1 to 50 parts by mass (particularly 10 to 35 parts by mass) with respect to 100 parts by mass of the rubber component.
  • the rubber composition may contain conventional additives such as vulcanization aids, vulcanization accelerators, vulcanization retarders, enhancers, fillers, metal oxides, softeners, processing agents or processing aids.
  • vulcanization aids such as vulcanization aids, vulcanization accelerators, vulcanization retarders, enhancers, fillers, metal oxides, softeners, processing agents or processing aids.
  • An agent, an antioxidant, a colorant, a tackifier, a plasticizer, a coupling agent, a stabilizer, a lubricant, a flame retardant, an antistatic agent, and the like may be included.
  • the average thickness of the compressed rubber layer can be appropriately selected according to the type of belt, but in the case of a V-ribbed belt, it is, for example, about 2 to 25 mm, preferably about 2.2 to 16 mm, and more preferably about 2.5 to 12 mm.
  • the polyester fiber may be a multifilament yarn.
  • the fineness of the core wire composed of the multifilament yarn may be, for example, about 2000 to 10000 denier (particularly 4000 to 8000 denier).
  • the core wire may be subjected to a conventional adhesion treatment, for example, an adhesion treatment with a resorcin-formalin-latex liquid (RFL liquid), in order to improve adhesion with the rubber component.
  • RTL liquid resorcin-formalin-latex liquid
  • the core wire usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used.
  • the average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2 mm, and more preferably about 0.7 to 1.5 mm.
  • the core wire may be embedded in the longitudinal direction of the belt and arranged in parallel at a predetermined pitch in parallel with the longitudinal direction of the belt.
  • Adhesive layer For the adhesive layer, the same rubber composition as that exemplified for the compressed rubber layer can be used.
  • the rubber composition of the adhesive layer as the rubber component, the same type or type of rubber as the rubber component of the rubber composition of the compressed rubber layer is often used. Further, the ratio of additives such as a vulcanizing agent or a crosslinking agent, a co-crosslinking agent or a crosslinking aid, and a vulcanization accelerator can be selected from the same range as that of the rubber composition of the compressed rubber layer.
  • the rubber composition of the adhesive layer may further contain an adhesion improver (resorcin-formaldehyde cocondensate, amino resin, etc.).
  • the thickness of the adhesive layer can be appropriately selected according to the type of belt, but in the case of a V-ribbed belt, for example, 0.4 to 3.0 mm, preferably 0.6 to 2.2 mm, and more preferably 0.8 to 1. It is about 4 mm.
  • the stretch layer may be formed of the same rubber composition as that exemplified for the compressed rubber layer, or may be formed of a fabric (reinforcing fabric) such as a canvas.
  • the reinforcing cloth examples include cloth materials such as woven cloth, wide-angle canvas, knitted cloth, and non-woven cloth. Of these, preferred are woven fabrics woven in the form of plain weave, twill weave, satin weave, etc., wide-angle canvas or knitted fabric in which the crossing angle between warp and weft is about 90 to 120 °.
  • the fibers constituting the reinforcing cloth the same fibers as exemplified for the short fibers can be used.
  • the reinforcing cloth may be treated with the RFL solution (immersion treatment or the like) and then friction or rubbing (coating) with the rubber composition to form a canvas with rubber.
  • an extension layer formed of a rubber composition is preferable.
  • the rubber component the same system or the same type of rubber as the rubber component of the rubber composition of the compressed rubber layer is often used.
  • the ratio of additives such as a vulcanizing agent or a crosslinking agent, a co-crosslinking agent or a crosslinking aid, and a vulcanization accelerator can also be selected from the same range as that of the rubber composition of the compressed rubber layer.
  • the rubber composition may further contain short fibers similar to those of the compression rubber layer in order to suppress abnormal noise generated due to adhesion of the back rubber when the back surface is driven.
  • the short fibers may be randomly oriented in the rubber composition. Further, the short fiber may be a short fiber partially bent.
  • an uneven pattern may be provided on the surface of the stretched layer (the back surface of the belt) in order to suppress abnormal noise during backside driving.
  • the uneven pattern include a knitted fabric pattern, a woven fabric pattern, a suede woven fabric pattern, and an embossed pattern. Of these patterns, a woven fabric pattern and an embossed pattern are preferable. Furthermore, you may coat
  • the thickness of the stretched layer can be appropriately selected depending on the type of belt, but in the case of a V-ribbed belt, for example, 0.4 to 2 mm, preferably 0.5 to 1.5 mm, more preferably about 0.7 to 1.2 mm. It is.
  • the friction transmission belt of the present invention comprises a cylindrical drum, a sheet for forming a stretch layer (stretch layer sheet), a core wire, and an unvulcanized rubber sheet (compressed rubber layer) for forming a compressed rubber layer.
  • Sheet) and a fiber resin mixed layer and a sheet-like structure for forming the fiber layer are sequentially wound to obtain a laminated sheet, and obtained It is manufactured through a vulcanization molding process in which the laminated sheet is pressed against a mold and the unvulcanized rubber sheet is vulcanized.
  • an unvulcanized stretch layer sheet is wound around an inner mold having a flexible jacket mounted on the outer peripheral surface, and a core wire is spun into a spiral shape, and further unvulcanized.
  • the compressed rubber layer sheet, the fiber resin mixed layer, and the fiber layer sheet-like raw material are sequentially wound to produce a molded body.
  • the fiber resin mixed layer and the fiber layer structure are formed as separate sheet-like structures (for example, resin components for forming the fiber resin mixed layer and the fiber layer, respectively). It may be a combination of a non-woven fabric in which a fibrous resin component and heat-resistant fibers are mixed, and a non-woven fabric made of hydrophilic heat-resistant fibers. A plurality of sheet-like structures including the sheet-like structure for forming the film is preferable. Combining the sheet-like structure (resin component structure) for forming the resin component with the sheet-like structure (hydrophilic heat-resistant fiber structure) for forming the hydrophilic heat-resistant fiber adds the next step.
  • the fiber layer is formed by the non-impregnated portion of the hydrophilic heat-resistant fibers, so that the fibers can be produced by a simple manufacturing method.
  • the layer and the fiber resin mixed layer can be firmly integrated.
  • the plurality of sheet-like structures include a resin component structure for forming a fiber resin mixed layer and a hydrophilic heat resistant fiber structure for forming a fiber resin mixed layer and a fiber layer. However, it may further include a sheet-like structure (heat-resistant fiber structure) for forming heat-resistant fibers for forming the fiber-resin mixed layer.
  • the structure of the resin component structure is not limited as long as it can penetrate between the hydrophilic heat-resistant fibers (and between the heat-resistant fibers) to form a fiber resin mixed layer in the vulcanization molding process.
  • a sheet, a film, a woven fabric, a knitted fabric For example, a sheet, a film, a woven fabric, a knitted fabric
  • a fibrous structure such as a woven fabric, a knitted fabric, or a nonwoven fabric is preferable, and a nonwoven fabric is particularly preferable.
  • a fiber structure such as a non-woven fabric can improve the adhesion to the compressed rubber layer because the fibers are entangled with the hydrophilic heat-resistant fibers (and heat-resistant fibers).
  • the average fiber diameter is, for example, about 5 to 50 ⁇ m, preferably about 7 to 40 ⁇ m, and more preferably about 10 to 35 ⁇ m.
  • the average length is, for example, about 1 to 500 mm, preferably about 3 to 300 mm, and more preferably about 5 to 100 mm.
  • the fiber form of the constituent fibers is not particularly limited, and may be any form of monofilament, multifilament, spun yarn (spun yarn), or a combination thereof.
  • the structure of the hydrophilic heat-resistant fiber structure and the heat-resistant fiber structure may be a woven fabric or a knitted fabric, but is excellent in flexibility and water absorption, and in the fiber resin mixed layer, at the interface with the compressed rubber layer.
  • Nonwoven fabrics are preferred because they can be embedded and firmly integrated with the compressed rubber layer.
  • the plurality of sheet-like structures may be a combination of a single resin component structure and a single hydrophilic heat-resistant fiber structure, but a combination of a plurality of sheet-like structures, for example, Two resin component structures and two heat-resistant fiber structures (two hydrophilic heat-resistant fiber structures or a total of two hydrophilic heat-resistant fiber structures and heat-resistant fiber structures) It may be a combination.
  • it is advantageous to increase the total thickness of the fiber layer and the resin fiber mixed layer in order to improve the wear resistance and sound generation resistance. Therefore, if the basis weight of each sheet-like structure in the plurality of sheet-like structures is increased, shape defects are likely to occur because the flow of rubber during vulcanization is hindered.
  • a non-woven fabric (1) containing a first thermoplastic resin having a softening point or melting point equal to or lower than the vulcanization temperature, a non-woven fabric (2) containing heat-resistant fibers, and a softening point or melting point Is preferably a combination of a nonwoven fabric (3) containing a second thermoplastic resin having a vulcanization temperature or lower and a nonwoven fabric (4) containing a hydrophilic heat-resistant fiber.
  • the nonwoven fabrics (1) and (3) are sheet-like structures for resin components
  • the nonwoven fabric (2) is a sheet-like structure for heat-resistant fibers
  • the nonwoven fabric (4) is a sheet-like structure for hydrophilic heat-resistant fibers.
  • the nonwoven fabrics (1) to (4) are wound around an unvulcanized rubber sheet for forming a compressed rubber layer in this order, and vulcanized in the subsequent vulcanization molding step, whereby the nonwoven fabric (2)
  • the resin component of the melted nonwoven fabric (1) and (3) is impregnated in the entire region and a part of the nonwoven fabric (4) to form a resin fiber mixed layer, and the unimpregnated region of the nonwoven fabric (4) A fiber layer is formed.
  • the first thermoplastic resin and the second thermoplastic resin may be the same or different.
  • the non-woven fabrics (1) to (4) may be wound with independent non-woven fabrics.
  • the non-woven fabric (1) and the non-woven fabric (2) are laminated in advance and then laminated in advance. It is preferable to wind a laminated body of the nonwoven fabric (3) and the nonwoven fabric (4) integrated together. By using a laminated body laminated in advance, in the winding process, it is not necessary to separately wind the nonwoven fabric for forming the resin component and the nonwoven fabric for forming the heat-resistant fiber, and only one winding is required.
  • the ratio of the nonwoven fabric for forming the resin component and the nonwoven fabric for forming the heat-resistant fiber is a method of changing at least one thickness (for example, a method of increasing the number of windings, a method of combining nonwoven fabrics having different thicknesses, etc.) Can be adjusted easily.
  • the resin component structure is disposed on the compressed rubber layer side, and the heat-resistant fiber structure or the hydrophilic heat-resistant fiber structure is disposed on the pulley side, thereby softening or melting the resin during vulcanization. Can be reliably coated on the surface of the compressed rubber layer. Furthermore, by arranging the structure for hydrophilic heat-resistant fibers on the outermost surface on the pulley side, a fiber layer that can reliably reflect the characteristics of hydrophilic heat-resistant fibers (for example, water absorption and wear resistance) on the friction transmission surface is formed. it can. Moreover, it can prevent that most heat resistant fibers are embed
  • a combination in which the heat resistant fiber of the nonwoven fabric (2) is also a hydrophilic heat resistant fiber is preferable from the viewpoint of improving the sound resistance when wet, and the softening point or the thermoplasticity having a melting point equal to or lower than the vulcanization temperature.
  • a combination of laminated nonwoven fabrics of a first nonwoven fabric containing a resin and a second nonwoven fabric containing hydrophilic heat-resistant fibers is particularly preferable.
  • the laminated nonwoven fabric having a two-layer structure is wound around the unvulcanized rubber sheet for forming the compressed rubber layer with the first nonwoven fabric inside (compressed rubber layer side).
  • a laminate having a four-layer structure such as the nonwoven fabrics (1) to (4) can be easily produced.
  • a first nonwoven fabric containing a thermoplastic resin having a softening point or a melting point equal to or lower than the vulcanization temperature On the unvulcanized rubber sheet for forming the compressed rubber layer, a first nonwoven fabric containing a thermoplastic resin having a softening point or a melting point equal to or lower than the vulcanization temperature, and a second nonwoven fabric containing a hydrophilic heat-resistant fiber
  • the laminated nonwoven fabric is wound twice with the first nonwoven fabric inside (compressed rubber layer side)
  • the first nonwoven fabric and the second nonwoven fabric are alternately laminated on the unvulcanized rubber sheet.
  • the first nonwoven fabric 11a, the second nonwoven fabric 12a, and the first nonwoven fabric sheet 13 are sequentially formed on the unvulcanized rubber sheet 13 from the inside.
  • a laminate having a four-layer structure including the nonwoven fabric 11b and the second nonwoven fabric 12b is formed.
  • this laminate is vulcanized, as shown in FIG. 2 (b), the first nonwoven fabrics 11a and 11b are melted and impregnated into the second nonwoven fabrics 12a and 12b by heating and pressurizing during vulcanization.
  • the fiber-resin mixed layer 14 made of hydrophilic heat-resistant fibers and resin components is formed on the compressed rubber layer 16.
  • the second nonwoven fabric 12a is impregnated with the resin component from both layers of the first nonwoven fabric 11a and 11b, and the second nonwoven fabric 12b is impregnated with the resin component only from the first nonwoven fabric 11b.
  • the entire region of the second nonwoven fabric 12a and a partial region (lower region) of the second nonwoven fabric 12b are combined to form the fiber resin mixed layer 14, and the resin component of the second nonwoven fabric 12b is A part of the region that is not impregnated (upper region) forms a fiber layer 15 made of only hydrophilic heat-resistant fibers that do not contain a resin component.
  • the basis weight of the fiber resin mixed layer and the fiber layer structure is, for example, 30 to 180 g / m 2 , preferably 50 to 150 g / m 2 , More preferably, it is about 80 to 120 g / m 2 (particularly 90 to 110 g / m 2 ). If the weight per unit area is too small, the rubber penetrates to the belt surface and the friction coefficient DRY / WET difference increases, resulting in a decrease in sound resistance, or wear of the surface layer due to running, resulting in a decrease in sound resistance. There is a fear.
  • the ratio of the fabric weight of each sheet-like structure is adjusted according to the mass ratio of the above-mentioned resin component and fiber component.
  • a V-ribbed belt a plurality of rib molds are provided on the inner peripheral surface.
  • An inner mold in which a molded body is wound around an engraved outer mold is installed concentrically. At this time, a predetermined gap is provided between the inner peripheral surface of the outer mold and the outer peripheral surface of the molded body.
  • the flexible jacket is expanded (for example, about 1 to 6%) toward the inner peripheral surface (rib type) of the outer mold to form a molded body (for example, a fiber resin mixed layer, a fiber layer, and a compressed rubber layer not yet added).
  • a molded body for example, a fiber resin mixed layer, a fiber layer, and a compressed rubber layer not yet added.
  • sulfur rubber sheet is pressed into the rib mold and vulcanized.
  • the vulcanized rubber sleeve is cut to a predetermined width in the longitudinal direction of the belt using a cutter. Finish in a V-ribbed belt.
  • a predetermined time for example, 60 to 120 ° C., preferably 65 to 110 ° C., more preferably about 70 to 100 ° C.
  • the first step for maintaining 2 to 20 minutes, preferably about 3 to 15 minutes), and then raising the temperature to the vulcanization temperature (for example, 150 to 200 ° C., preferably about 160 to 180 ° C.)
  • the temperature range of 60 to 120 ° C. was set as a low temperature by reducing (or reducing) the fluidity of the unvulcanized rubber sheet and the resin component structure forming the compressed rubber layer (particularly the surface layer). This is because most of the heat-resistant fibers are prevented from being taken in the vicinity of the interface inside the compressed rubber layer.
  • the rib surface is covered with the fiber layer and the fiber resin mixed layer, and the heat resistant fiber contained in the fiber resin mixed layer Can be embedded in the vicinity of the interface inside the compressed rubber layer.
  • the said manufacturing method is an example and is not limited to this manufacturing method, It can change variously according to a material and its characteristic.
  • the vulcanization pattern may include at least a first step and a second step, and another temperature step may be provided between the first step and the second step.
  • the members and their thicknesses may be appropriately combined, and the fluidity of the thermoplastic resin constituting the resin component structure or the rubber composition constituting the unvulcanized rubber sheet of the compressed rubber layer Low materials may be used.
  • a perpendicular line B is drawn toward the straight line A from any five points (boundary between the heat-resistant fiber buried layer and the inner layer not buried) between the rib groove side, the rib tip side, and the perpendicular line B. Find the length of.
  • the friction coefficient measurement test was performed using a drive pulley (Dr.) having a diameter of 121.6 mm, an idler pulley (IDL.1) having a diameter of 76.2 mm, an idler pulley having a diameter of 61.0 mm (IDL.2), and an idler having a diameter of 76.2 mm.
  • the test was performed using a testing machine having a layout shown in FIG. 3 in which a pulley (IDL.3), an idler pulley (IDL.4) having a diameter of 77.0 mm, and a driven pulley (Dn.) Having a diameter of 121.6 mm were sequentially arranged.
  • T1 is the tension on the tension side
  • T2 is the tension on the loose side
  • is the belt winding angle around the driven pulley, which can be obtained by the following equations, respectively.
  • the misalignment sound generation evaluation test (sound generation limit angle) consists of a 90 mm diameter drive pulley (Dr.), a 70 mm diameter idler pulley (IDL.1), a 120 mm diameter misalignment pulley (W / P), and a 80 mm diameter tension pulley. (Ten.), An idler pulley (IDL.2) having a diameter of 70 mm, and an idler pulley (IDL.3) having a diameter of 80 mm are arranged in this order, and the tester shown in FIG.
  • misalignment pulley axial separation (span length) was set to 135 mm, and all the pulleys were adjusted to be positioned on the same plane (misalignment angle 0 °). Then, a V-ribbed belt is hung on each pulley of the testing machine, and tension is applied so that the rotational speed of the driving pulley is 1000 rpm and the belt tension is 300 N / 6 Rib under room temperature conditions.
  • the wear test is shown in FIG. 6 in which a driving pulley (Dr.) with a diameter of 120 mm, an idler pulley (IDL.) With a diameter of 85 mm, a driven pulley (Dn.) With a diameter of 120 mm, and a tension pulley (Ten.) With a diameter of 60 mm are arranged in this order.
  • the test was performed using a testing machine showing the layout.
  • a V-ribbed belt is hung on each pulley of the testing machine, the rotational speed of the drive pulley is 4900 rpm, the belt winding angle around the idler pulley and the tension pulley is 90 °, the driven pulley load is 10.4 kW, and a constant load (91 kg) / 6 Rib) and the belt was run at an ambient temperature of 120 ° C. for 24 hours.
  • test vehicle was a commercial vehicle equipped with a 4-cylinder engine with a displacement of 1.5 liters, and the engine oil temperature before the start of measurement was 40 ° C. or lower.
  • V-ribbed belt is attached to the engine with a predetermined tension, and then 2 cc of water is injected onto the friction transmission surface of the V-ribbed belt.
  • the engine is started five times, and the following evaluation points are evaluated. The lowest evaluation score was taken as the evaluation score for the belt.
  • a V-ribbed belt is hung on each pulley of the testing machine, the rotational speed of the drive pulley is 4900 rpm, the belt winding angle around the idler pulley is 120 °, the belt winding angle around the tension pulley is 90 °, and the driven pulley load was 11.4 kW, a constant load (890 N / 6 Rib) was applied, and the belt was run at an ambient temperature of 120 ° C. for 150 hours. With respect to the V-ribbed belt after running, the friction coefficient and the sound generation limit angle were measured, and an abnormal noise evaluation was performed when the actual vehicle was wet.
  • the belt was cut in a direction parallel to the belt width direction before and after the 150-hour durability running test, and this cut surface was observed with an SEM.
  • the thickness of the surface layer before running (fiber resin mixed layer + hydrophilic heat-resistant fiber layer) and the thickness of the surface layer after running were measured and calculated as the thickness of the surface layer after running / the thickness of the surface layer before running. .
  • Table 1 shows thermoplastic resins that are disposed on the compressed rubber layer side and serve as the resin component of the fiber resin mixed layer in the comparative example.
  • Thermoplastic resin A (“Multitron” manufactured by Tamapoly Co., Ltd.) is in the form of a film made of polyethylene (melting point: 130 ° C.), has a thickness of 0.04 mm, and a basis weight of 38 g / m 2 .
  • thermoplastic resin B1 (“Stratec” manufactured by Idemitsu Unitech Co., Ltd.) is in the form of a nonwoven fabric composed of long fibers made of polyethylene (melting point: 125 ° C.), and has a thickness of 0.20 mm and a basis weight of 30 g / m 2 .
  • Thermoplastic resin B2 (“Stratec” manufactured by Idemitsu Unitech Co., Ltd.) is a nonwoven fabric made of long fibers of polyethylene (melting point 125 ° C.), and 4% by mass of a nonionic surfactant is kneaded into the fibers.
  • the thickness is 0.20 mm, and the basis weight is 30 g / m 2 .
  • Thermoplastic resin C (“Spunbond nonwoven fabric” manufactured by Shinwa Co., Ltd.) is a nonwoven fabric composed of a composite long fiber having a core of polypropylene (melting point 170 ° C.) and a sheath of polyethylene (melting point 125 ° C.), and has a thickness of 0.00.
  • the weight is 20 mm and the basis weight is 30 g / m 2 .
  • Nonwoven fabric used in Examples and Comparative Examples The nonwoven fabrics used in the examples and comparative examples are shown in Table 2.
  • Nonwoven fabrics E to J are nonwoven fabrics arranged on the pulley side with respect to the resin component in the comparative example.
  • Nonwoven fabrics K and L are nonwoven fabrics used in the examples, and nonwoven fabric M is a nonwoven fabric used in the comparative examples.
  • Non-woven fabric E “Cot Ace” manufactured by Unitika Ltd., cotton non-woven fabric, thickness 0.15 mm, fiber length 5-50 mm, basis weight 30 g / m 2
  • Non-woven fabric F “Cot Ace” manufactured by Unitika Co., Ltd., cotton non-woven fabric, thickness 0.23 mm, fiber length 5-50 mm, basis weight 45 g / m 2
  • Non-woven fabric G “Clavion” manufactured by Ohmi Kenshi Co., Ltd., rayon non-woven fabric, thickness 0.20 mm, fiber length 5-50 mm, basis weight 40 g / m 2
  • Nonwoven fabric J “Stramity” manufactured by Idemitsu Unitech Co., Ltd., laminate of non-woven paper (thickness 0.25 mm) of pulp having a fiber length of 2 to 7 mm and nonwoven fabric of PE long fibers (melting point 125 ° C., thickness 0.10 mm) Body, basis weight 30g / m 2 Non-woven fabric K: “Noast Strong” manufactured by Ozu Sangyo Co., Ltd., laminate of non-woven paper of 10 mm fiber length and non-woven fabric of polypropylene (PP) long fiber (melting point 170 ° C.), weight per unit area 80 g / m 2 Nonwoven fabric L: “No Strong” manufactured by Ozu Sangyo Co., Ltd., laminate of non-woven paper of pulp having a fiber length of 10 mm (thickness 0.28
  • EPDM polymer “IP3640” manufactured by DuPont Dowelasmer Japan Co., Ltd. Carbon black HAF: “Seast 3” manufactured by Tokai Carbon Co., Ltd. Anti-aging agent: “Nonflex OD3” manufactured by Seiko Chemical Co., Ltd.
  • Nylon short fiber Nylon 66, fiber length about 0.5mm
  • Organic peroxide “Parkadox 14RP” manufactured by Kayaku Akzo Corporation
  • Core wire A twisted cord obtained by adhering a cord of total denier 6,000, in which 1,000 denier PET fibers are twisted in a 2 ⁇ 3 configuration with an upper twist coefficient of 3.0 and a lower twist coefficient of 3.0.
  • Examples 1-2 and Comparative Examples 1-12 (Formation of compressed rubber layer and stretch layer)
  • the rubber composition shown in Table 3 was kneaded with a Banbury mixer and rolled with a calender roll to produce rubber sheets for forming a compressed rubber layer or an extended layer with a thickness of 2.5 mm or 0.8 mm, respectively. did.
  • An unvulcanized stretch layer sheet is wound around an inner mold having a flexible jacket on the outer peripheral surface, and a core wire is spirally spun onto this (pitch 1.15 mm, tension 5 kgf).
  • a belt was prepared by sequentially winding a sheet for a compressed rubber layer and a structure for a fiber layer and a fiber resin mixed layer.
  • the structure nonwoven fabric K, L, N, or O
  • the structure was wound twice, and in the comparative example, the structure was wound only once.
  • Vulcanization is performed by setting the expansion pressure of the flexible jacket to 1.0 MPa, maintaining the temperature at 80 ° C. for 10 minutes (first step), then increasing the temperature to 170 ° C., and maintaining the temperature for 20 minutes (first step). Two steps). After completion of vulcanization, the product was cooled to near room temperature, the inner mold was removed from the outer mold, and the vulcanized belt sleeve was removed from the outer mold.
  • 16 types of belts shown in Tables 4 and 5 were prepared using the resin components shown in Table 1 and the nonwoven fabric shown in Table 2.
  • PP nonwoven fabrics of nonwoven fabrics K, L, N and O shown in Table 2 were placed on the compressed rubber layer side (pulp nonwoven paper was on the pulley side) and wound twice.
  • Comparative Examples 1 to 7 and 9 the resin component shown in Table 1 was placed on the compressed rubber layer side, the non-woven fabric shown in Table 2 was placed on it (pulley side), and wound once.
  • the PE nonwoven fabric of the nonwoven fabric J in Table 2 was placed on the compressed rubber layer side (pulp nonwoven paper was on the pulley side) and wound once.
  • the nonwoven fabrics K, L, and M of Table 2 were placed on the compressed rubber layer side (pulp nonwoven paper was on the pulley side) and wound once.
  • the manufactured V-ribbed belt was 6 ribs with a belt length of 1100 mm and a rib shape of K-type.
  • Comparative Examples 1 to 9 are excellent in sound resistance at the time of misalignment by covering the friction transmission surface with a fiber resin mixed layer. It was low. This reason is considered to be due to the relatively large difference in friction coefficient between DRY and WET. In Comparative Examples 1 to 9, it is considered that the difference in friction coefficient between DRY and WET was relatively large because the resin component having low hydrophilicity covered most of the friction transmission surface.
  • Examples 1 to 4 have a structure in which the friction transmission surface is covered with a hydrophilic heat-resistant fiber layer.
  • the hydrophilic heat-resistant fiber layer quickly absorbs water that has entered between the belt and the pulley when exposed to water, and no water film is formed between the belt and the pulley so that there is no difference in the coefficient of friction during DRY and WET.
  • high sound resistance of an evaluation score of 5 was shown.
  • Example 4 The belt obtained in Example 4 had a large resin component and a small amount of heat-resistant fiber, so the friction coefficient at the time of WET was slightly lower than that of Examples 1 to 3, but the noise when the actual vehicle was wet There was no difference in evaluation, and there was no problem in practical use.
  • Comparative Example 12 is an example in which the basis weight of the nonwoven fabric is as large as 200 g / m 2 , but the shape was poor because the rubber flow during vulcanization was hindered.
  • Examples 1 and 2 the difference in the friction coefficient between DRY and WET was 0.3 or less even after the durability running test, whereas in Comparative Examples 10 and 11, the difference was considerably large. It was. Further, in the misalignment pronunciation evaluation test, Examples 1 and 2 were at a good level with a pronunciation limit angle of 2 ° or more, whereas in Comparative Examples 10 and 11, the pronunciation limit angle at WET was 1 °. There was a pronounced misalignment that could occur in a real car. In the actual vehicle wet noise evaluation after the endurance running test, Examples 1 and 2 showed an acceptable score of 3 or more, which was a good result, but Comparative Examples 10 and 11 The evaluation points were 1 and 2, which were unacceptable levels.
  • FIG. 8 shows a scanning electron micrograph of the rib cross section of the V-ribbed belt obtained in Example 2.
  • the heat-resistant fiber of the fiber resin mixed layer is embedded inside the vicinity of the surface with the compressed rubber layer, and the fiber resin mixed layer and the fiber are further formed thereon. Layer was formed.
  • the rib cross section of the V-ribbed belt obtained in Comparative Examples 10 and 11 only the fiber resin mixed layer in which the resin component and the heat resistant fiber were integrated was formed, and the fiber layer was not formed.
  • the friction transmission belt of the present invention can be used for various friction transmission belts such as a V-ribbed belt, a low-edge V-belt, and a flat belt, and is particularly useful for a V-ribbed belt and a V-belt used for driving an automobile engine accessory. .

Abstract

The present invention provides a friction transmission belt which is provided with: an extension layer (5) which forms the back surface of the belt; a compressed rubber layer (2) which is formed on one surface of the extension layer and is in contact with pulleys so as to be frictionally engaged with the pulleys; and a core wire (1) which is embedded between the extension layer and the compressed rubber layer in the longitudinal direction of the belt. The compressed rubber layer has a surface that comes into contact with the pulleys; at least a part of the surface is covered with a fiber layer with a fiber resin mixed layer being interposed therebetween; the fiber resin mixed layer contains a resin component and heat-resistant fibers which have a softening point or melting point higher than the vulcanization temperature of a rubber that constitutes the compressed rubber layer; and the fiber layer contains hydrophilic heat-resistant fibers which have a softening point or melting point higher than the above-mentioned vulcanization temperature, but does not contain a resin component.

Description

摩擦伝動ベルト及びその製造方法Friction transmission belt and manufacturing method thereof
 本発明は、自動車エンジン補機駆動に用いられる摩擦伝動ベルト及びその製造方法に関し、詳しくは、被水時にも異音の発生が抑制されたVリブドベルト及びその製造方法に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction transmission belt used for driving an automobile engine auxiliary machine and a method for manufacturing the same, and more particularly to a V-ribbed belt in which abnormal noise is suppressed even when wet and a method for manufacturing the same.
 ゴム工業分野の中でも、自動車用部品においては高機能、高性能化が望まれている。このような自動車部品に用いられるゴム製品の中に伝動ベルトがあり、例えば、自動車のエアコンプレッサやオルタネータ等の補機駆動の動力伝達に広く用いられている。そして、近年、静粛化についての厳しい要求があり、特に自動車の駆動装置においてはエンジン音以外の音は異音とされるため、ベルトの発音対策が要請されている。 Even in the rubber industry field, high performance and high performance are desired for automotive parts. Among such rubber products used for automobile parts, there is a transmission belt, which is widely used for power transmission for driving auxiliary equipment such as an air compressor and an alternator of an automobile. In recent years, there has been a strict demand for quietness. In particular, in a drive device for automobiles, since sounds other than engine noise are abnormal noises, countermeasures against belt sounding are required.
 特許文献1には、エチレン-α-オレフィンエラストマー系のエラストマー歯が熱可塑性材料からなるバリア層で覆われ、さらに前記バリア層が、織布又は不織布で形成された外側のカバーで覆われ、かつ前記エラストマー歯の少なくともフランク上にある前記外側のカバーが前記バリア層の厚みの一部分内に部分的に含まれている伝動ベルトが開示されている。この文献には、バリア層がベルト成型中の歯用ゴム(エラストマー歯を構成する原材料)の外側のカバーへの通過を抑制し、また、バリア層の厚みの一部分内に外側のカバー(ファイバー又はヤーン)を部分的に埋設してバリア層の耐亀裂性を向上させるとともに、埋設されない残りの部分をプーリ側に突出(露出)させることでノイズの発生を回避することができると記載されている。また、バリア層と外側のカバーとはカレンダー加工及び圧延によって予め一体化されており、外側のカバーを構成する不織ファイバーがバリア層を構成するフィルム内に部分的にのみ侵入し、生の状態から加硫状態に進行する歯用ゴム内には決して侵入しないことが可能であると記載されている。さらに、外側のカバーを形成する織布又は不織布としては、ポリエチレンをベースとする織布又は不織布が特に適していると記載されている。 In Patent Document 1, an ethylene-α-olefin elastomer-based elastomer tooth is covered with a barrier layer made of a thermoplastic material, and the barrier layer is covered with an outer cover formed of a woven fabric or a nonwoven fabric, and A transmission belt is disclosed in which the outer cover at least on the flank of the elastomeric teeth is partially included within a portion of the thickness of the barrier layer. In this document, the barrier layer suppresses the passage of dental rubber (the raw material constituting the elastomer tooth) during belt molding to the outer cover, and the outer cover (fiber or It is described that the generation of noise can be avoided by partially embedding the yarn) to improve the crack resistance of the barrier layer and projecting (exposing) the remaining portion not embedded to the pulley side. . In addition, the barrier layer and the outer cover are integrated in advance by calendering and rolling, and the non-woven fiber constituting the outer cover penetrates only partially into the film constituting the barrier layer and is in a raw state It is described that it is possible to never penetrate into the dental rubber that progresses to the vulcanized state. Furthermore, it is described that a woven fabric or nonwoven fabric based on polyethylene is particularly suitable as the woven fabric or nonwoven fabric forming the outer cover.
 しかし、この駆動ベルトでは、外側のカバーはバリア層の厚みの一部分内にのみ部分的に埋設されているだけであり、ベルト走行に伴って摩耗が進行していくと、やがては外側のカバーが存在しないバリア層のみが露出することになるため、バリア層の耐亀裂性や耐摩耗性が低下する虞があった。また、このような状態になると、バリア層は外側のカバーで補強されていないため、プーリからのせん断によりバリア層がエラストマー歯の表面より剥離したり、バリア層の内部で破壊が生じたりする可能性もある。さらに、この駆動ベルトは、歯用ゴムを硬化させるための過酸化物又は硬化能を有するその他の薬剤を用いることで、歯とバリア層との結合を促進させているものの、化学的な作用だけではバリア層の剥離を抑えるのに十分であるとはいえず、また、バリア層内部の破壊に対しては効果がない。 However, with this drive belt, the outer cover is only partially embedded within a portion of the thickness of the barrier layer, and as wear progresses as the belt travels, the outer cover eventually becomes Since only the non-existing barrier layer is exposed, there is a possibility that the crack resistance and wear resistance of the barrier layer may be lowered. In such a state, since the barrier layer is not reinforced by the outer cover, the barrier layer may be peeled off from the surface of the elastomer tooth due to shear from the pulley, or the inside of the barrier layer may be broken. There is also sex. In addition, this drive belt uses a peroxide to cure dental rubber or other chemicals with curing ability to promote the bonding between the teeth and the barrier layer, but only chemical action. However, it is not sufficient to suppress the peeling of the barrier layer, and has no effect on the destruction of the barrier layer.
 これに対して、特許文献2には、耐発音性及び耐摩耗性を向上できる摩擦伝動ベルトとして、ベルト背面を形成する伸張層と、この伸張層の一方の面に形成され、かつその側面でプーリと接して摩擦係合する圧縮ゴム層と、前記伸張層と前記圧縮ゴム層との間にベルト長手方向に沿って埋設される心線とを備えた摩擦伝動ベルトであって、前記圧縮ゴム層のプーリと接する少なくとも一部の表面が、樹脂成分と加硫温度を超える軟化点又は融点を有する耐熱性繊維とが混在した繊維樹脂混合層で被覆され、かつ前記耐熱性繊維が、前記繊維樹脂混合層から前記圧縮ゴム層に亘って埋設された繊維を含む摩擦伝動ベルトが開示されている。 On the other hand, in Patent Document 2, as a friction transmission belt capable of improving sound resistance and wear resistance, a stretch layer that forms the back surface of the belt, and one surface of the stretch layer are formed on the side surface. A friction transmission belt comprising: a compression rubber layer that is in frictional engagement with a pulley; and a core wire that is embedded along the longitudinal direction of the belt between the extension layer and the compression rubber layer, the compression rubber At least a part of the surface in contact with the pulley of the layer is coated with a fiber resin mixed layer in which a resin component and a heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature are mixed, and the heat-resistant fiber is the fiber A friction transmission belt including fibers embedded from a resin mixed layer to the compressed rubber layer is disclosed.
 しかし、この摩擦伝動ベルトでも、使用の態様や使用期間の長さによっては、近年の自動車業界における厳しい静粛化の要求に応えるためには十分ではなく、特に、実車における被水時の耐発音性は十分ではなかった。 However, even with this friction transmission belt, depending on the mode of use and the length of use, it is not sufficient to meet the recent demands for quietness in the automobile industry. Was not enough.
日本国特開2010-101489号公報Japanese Laid-Open Patent Publication No. 2010-101489 日本国特開2014-111981号公報Japanese Unexamined Patent Publication No. 2014-111981
 従って、本発明の目的は、被水時の耐発音性を向上できる摩擦伝動ベルト及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a friction transmission belt capable of improving sound resistance when wet and a manufacturing method thereof.
 本発明の他の目的は、長期間に亘って耐発音性及び耐摩耗性を向上できる摩擦伝動ベルト及びその製造方法を提供することにある。 Another object of the present invention is to provide a friction transmission belt capable of improving sound resistance and wear resistance over a long period of time and a method for manufacturing the same.
 本発明者らは、前記課題を達成するため鋭意検討の結果、摩擦伝動ベルトにおける圧縮ゴム層のプーリと接する少なくとも一部の表面を、繊維樹脂混合層を介して繊維層で被覆し、前記繊維樹脂混合層を、樹脂成分と圧縮ゴム層を形成するゴムの加硫温度を超える軟化点又は融点を有する耐熱繊維とを含むように構成し、かつ前記繊維層を加硫温度を超える軟化点又は融点を有する親水性耐熱繊維を含み、かつ樹脂成分を含まない繊維層を含むように構成することにより、被水時の耐発音性を向上できることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have coated at least a part of the surface of the friction transmission belt that is in contact with the pulley of the compression rubber layer with a fiber layer through a fiber resin mixed layer, and the fibers The resin mixed layer is configured to include a resin component and a heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature of the rubber forming the compressed rubber layer, and the fiber layer has a softening point exceeding the vulcanization temperature or The present invention has been completed by finding that the composition can be improved by including a hydrophilic heat-resistant fiber having a melting point and a fiber layer that does not contain a resin component, so that the sound-proofing property when wet can be improved.
 すなわち、本発明の摩擦伝動ベルトは、ベルト背面を形成する伸張層と、この伸張層の一方の面に形成され、かつプーリと接して摩擦係合する圧縮ゴム層と、前記伸張層と前記圧縮ゴム層との間にベルト長手方向に沿って埋設される心線とを備えた摩擦伝動ベルトであって、前記圧縮ゴム層はプーリと接する表面を有し、該表面の少なくとも一部が繊維樹脂混合層を介して繊維層で被覆されており、前記繊維樹脂混合層は、樹脂成分と、圧縮ゴム層を形成するゴムの加硫温度を超える軟化点又は融点を有する耐熱繊維とを含み、前記繊維層は、前記加硫温度を超える軟化点又は融点を有する親水性耐熱繊維を含み、かつ樹脂成分を含まない。前記耐熱繊維は、前記繊維樹脂混合層から前記圧縮ゴム層に亘って埋設された繊維を含んでいてもよい。前記樹脂成分(前記繊維樹脂混合層に含まれる樹脂成分)は、前記加硫温度で溶融又は軟化可能な熱可塑性樹脂(特に、ポリプロピレン系樹脂)であってもよい。前記親水性耐熱繊維はセルロース系繊維であってもよい。前記耐熱繊維は、セルロース系繊維であってもよい。前記繊維樹脂混合層に含まれる前記樹脂成分(樹脂成分)と、前記繊維樹脂混合層に含まれる前記耐熱繊維及び前記繊維層に含まれる前記親水性耐熱繊維との合計である繊維成分(繊維成分)との質量比は、樹脂成分/繊維成分=50/50~20/80程度であってもよい。本発明の摩擦伝動ベルトは、前記圧縮ゴム層が前記ベルト長手方向に互いに平行して延びる複数のリブを有するVリブドベルトであってもよい。 That is, the friction transmission belt of the present invention includes a stretch layer that forms the back surface of the belt, a compression rubber layer that is formed on one surface of the stretch layer and frictionally engages with the pulley, the stretch layer, and the compression layer. A friction transmission belt having a core wire embedded along the longitudinal direction of the belt between the rubber layer, wherein the compression rubber layer has a surface in contact with the pulley, and at least a part of the surface is a fiber resin. The fiber resin mixed layer is covered with a fiber layer through a mixed layer, and the fiber resin mixed layer includes a resin component and a heat-resistant fiber having a softening point or a melting point exceeding a vulcanization temperature of rubber forming the compressed rubber layer, The fiber layer contains hydrophilic heat-resistant fibers having a softening point or melting point exceeding the vulcanization temperature, and does not contain a resin component. The heat-resistant fiber may include a fiber embedded from the fiber resin mixed layer to the compressed rubber layer. The resin component (resin component contained in the fiber resin mixed layer) may be a thermoplastic resin (particularly, a polypropylene resin) that can be melted or softened at the vulcanization temperature. The hydrophilic heat resistant fiber may be a cellulosic fiber. The heat-resistant fiber may be a cellulosic fiber. A fiber component (fiber component) that is the sum of the resin component (resin component) contained in the fiber resin mixed layer, the heat resistant fiber contained in the fiber resin mixed layer, and the hydrophilic heat resistant fiber contained in the fiber layer. )) May be approximately resin component / fiber component = 50/50 to 20/80. The friction transmission belt of the present invention may be a V-ribbed belt in which the compressed rubber layer has a plurality of ribs extending in parallel with each other in the belt longitudinal direction.
 本発明には、円筒状ドラムに、前記伸張層を形成するためのシートと、前記心線と、前記圧縮ゴム層を形成するための未加硫ゴムシートと、前記繊維樹脂混合層及び前記繊維層を形成するためのシート状構造体とを順次巻き付け、積層シートを得る巻付工程、及び前記積層シートを金型に押し付けて前記未加硫ゴムシートを加硫成形する加硫成形工程を含む摩擦伝動ベルトの製造方法であって、前記加硫成形工程が、前記未加硫ゴムシートを前記加硫温度未満の温度で予備加熱した後、加硫する前記摩擦伝動ベルトの製造方法も含まれる。前記巻付工程において、前記シート状構造体として、軟化点又は融点が前記加硫温度以下の第一の熱可塑性樹脂を含む不織布(1)と、前記耐熱繊維を含む不織布(2)と、軟化点又は融点が前記加硫温度以下の第二の熱可塑性樹脂を含む不織布(3)と、前記親水性耐熱繊維を含む不織布(4)とをこの順序で巻き付けてもよく、或いは、軟化点又は融点が前記加硫温度以下の熱可塑性樹脂を含む第1の不織布と前記親水性耐熱繊維を含む第2の不織布との積層不織布を、第1の不織布を内側にして2重に巻き付けてもよい。前記シート状構造体の目付量は50~150g/m程度であってもよい。 In the present invention, on a cylindrical drum, a sheet for forming the stretch layer, the core wire, an unvulcanized rubber sheet for forming the compressed rubber layer, the fiber resin mixed layer, and the fiber A winding step of sequentially winding sheet-like structures for forming layers to obtain a laminated sheet, and a vulcanization molding step of vulcanizing and molding the unvulcanized rubber sheet by pressing the laminated sheet against a mold A method of manufacturing a friction transmission belt is also included, wherein the vulcanization molding step pre-heats the unvulcanized rubber sheet at a temperature lower than the vulcanization temperature and then vulcanizes the unvulcanized rubber sheet. . In the winding step, as the sheet-like structure, a non-woven fabric (1) containing a first thermoplastic resin having a softening point or melting point equal to or lower than the vulcanization temperature, a non-woven fabric (2) containing the heat-resistant fiber, and softening The nonwoven fabric (3) containing the second thermoplastic resin having a point or melting point not higher than the vulcanization temperature and the nonwoven fabric (4) containing the hydrophilic heat-resistant fiber may be wound in this order, or the softening point or A laminated nonwoven fabric of a first nonwoven fabric containing a thermoplastic resin having a melting point equal to or lower than the vulcanization temperature and a second nonwoven fabric containing the hydrophilic heat-resistant fiber may be wound twice with the first nonwoven fabric inside. . The basis weight of the sheet-like structure may be about 50 to 150 g / m 2 .
 本発明では、摩擦伝動ベルトにおける圧縮ゴム層のプーリと接する少なくとも一部の表面が、繊維樹脂混合層を介して繊維層で被覆されており、前記繊維樹脂混合層が樹脂成分と、圧縮ゴム層を形成するゴムの加硫温度を超える軟化点又は融点を有する耐熱繊維とを含み、前記繊維層が前記加硫温度を超える軟化点又は融点を有する親水性耐熱繊維を含み、かつ樹脂成分を含まないため、被水時の耐発音性を向上できる。また、長期間に亘って耐発音性及び耐摩耗性を向上できる。 In the present invention, at least a part of the surface of the friction transmission belt that is in contact with the pulley of the compressed rubber layer is covered with a fiber layer via a fiber resin mixed layer, and the fiber resin mixed layer includes the resin component and the compressed rubber layer. A heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature of the rubber forming the rubber, the fiber layer includes a hydrophilic heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature, and a resin component Therefore, it is possible to improve sound resistance when wet. In addition, sound resistance and wear resistance can be improved over a long period of time.
図1は、Vリブドベルトの一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a V-ribbed belt. 図2は、本発明の摩擦伝動ベルトの製造方法の一例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining an example of a method for producing a friction transmission belt according to the present invention. 図3は、実施例での通常走行時の摩擦係数測定試験のレイアウトを示す概略図である。FIG. 3 is a schematic diagram showing a layout of a friction coefficient measurement test during normal running in the example. 図4は、実施例での注水走行時の摩擦係数測定試験のレイアウトを示す概略図である。FIG. 4 is a schematic diagram illustrating a layout of a friction coefficient measurement test during water injection in the example. 図5は、実施例でのミスアライメント発音試験のレイアウトを示す概略図である。FIG. 5 is a schematic diagram showing a layout of a misalignment pronunciation test in the embodiment. 図6は、実施例での摩耗試験のレイアウトを示す概略図である。FIG. 6 is a schematic diagram showing a layout of a wear test in the example. 図7は、実施例での耐久走行試験のレイアウトを示す概略図である。FIG. 7 is a schematic diagram showing a layout of a durability running test in the example. 図8は、実施例2で得られたVリブドベルトのリブ断面の走査型電子顕微鏡写真である。FIG. 8 is a scanning electron micrograph of the rib cross section of the V-ribbed belt obtained in Example 2.
 [摩擦伝動ベルト]
 本発明の摩擦伝動ベルトは、ベルト背面を形成する伸張層と、この伸張層の一方の面に形成され、かつプーリと接して摩擦係合する圧縮ゴム層と、前記伸張層と前記圧縮ゴム層との間にベルト長手方向に沿って埋設される心線とを備えた摩擦伝動ベルトである。前記圧縮ゴム層はプーリと接する表面を有し、該表面の少なくとも一部が、繊維樹脂混合層を介して繊維層で被覆されている。前記繊維樹脂混合層は、樹脂成分と、圧縮ゴム層を形成するゴムの加硫温度を超える軟化点又は融点を有する耐熱繊維とを含む。前記繊維層は、前記加硫温度を超える軟化点又は融点を有する親水性耐熱繊維を含み、かつ樹脂成分を含まない。本発明では、圧縮ゴム層のプーリと接する少なくとも一部の最表面(摩擦伝動面)は、親水性耐熱繊維を含む繊維層で被覆されているため、被水時の耐発音性を向上できる。
[Friction transmission belt]
The friction transmission belt of the present invention includes a stretch layer that forms a belt back surface, a compression rubber layer that is formed on one surface of the stretch layer and that frictionally engages with a pulley, the stretch layer, and the compression rubber layer And a core wire embedded along the longitudinal direction of the belt. The compressed rubber layer has a surface in contact with the pulley, and at least a part of the surface is covered with a fiber layer via a fiber resin mixed layer. The fiber-resin mixed layer includes a resin component and a heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature of the rubber forming the compressed rubber layer. The fiber layer contains hydrophilic heat-resistant fibers having a softening point or melting point exceeding the vulcanization temperature, and does not contain a resin component. In the present invention, at least a part of the outermost surface (friction transmission surface) in contact with the pulley of the compressed rubber layer is covered with a fiber layer containing hydrophilic heat-resistant fibers, so that the sound resistance when wet is improved.
 本発明の摩擦伝動ベルトでは、心線と伸張層又は圧縮ゴム層との接着性を向上させるために、必要に応じて圧縮ゴム層と伸張層との間に接着層を設けてもよい。接着層を設ける形態としては、心線を埋設する形態であってもよく、圧縮ゴム層と接着層又は接着層と伸張層との間に心線を埋設する形態であってもよい。 In the friction transmission belt of the present invention, an adhesive layer may be provided between the compression rubber layer and the extension layer as necessary in order to improve the adhesion between the core wire and the extension layer or the compression rubber layer. As a form which provides an adhesive layer, the form which embeds a core wire may be sufficient, and the form which embeds a core wire between a compression rubber layer and an adhesive layer or an adhesive layer and an expansion | extension layer may be sufficient.
 摩擦伝動ベルトとしては、例えば、Vリブドベルト、ローエッジVベルト、平ベルトなどの各種の摩擦伝動ベルトなどが挙げられる。これらのうち、Vリブドベルト、Vベルトが好ましく、被水による発音が問題となるVリブドベルトが特に好ましい。 Examples of the friction transmission belt include various friction transmission belts such as a V-ribbed belt, a low-edge V belt, and a flat belt. Among these, a V-ribbed belt and a V-belt are preferable, and a V-ribbed belt in which sound generation due to moisture is a problem is particularly preferable.
 図1は、Vリブドベルトの一例を示す概略断面図であり、ベルト幅方向に切断した概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a V-ribbed belt, which is a schematic cross-sectional view cut in the belt width direction.
 この例では、Vリブドベルトは、ベルト下面(内周面)からベルト上面(背面)に向かって順に、複数のリブ部3を有する圧縮ゴム層2、接着層6、心線1、ゴム組成物で形成された伸張層5を積層して構成されており、圧縮ゴム層2には短繊維4がリブ部の形状に沿った流動状態(リブ部の表面近傍においては、短繊維4はリブ部3の外形に沿って配向した状態)となるように配向している。前記圧縮ゴム層2は、ベルト本体の内周面に、ベルトの長手方向に沿って複数列で延びるリブ部3(図1では、リブ数は3)を有しており、このリブ部3の長手方向に対して直交する方向における断面形状は、ベルト外周側(リブ部を有さず、プーリと摩擦係合しない側)から内周側に向かって幅が小さくなる(先端に向かって先細る)逆台形状(断面V字形状)である。また、前記心線1は、ベルト長手方向に沿って本体内に埋設されており、その一部が伸張層5に接するとともに、残部が接着層6に接している。さらに、圧縮ゴム層2は、少なくともプーリと接する一部の表面(リブ部3の摩擦伝動面)が繊維樹脂混合層及び繊維層で被覆されている(図示せず)。 In this example, the V-ribbed belt is composed of a compressed rubber layer 2 having a plurality of rib portions 3, an adhesive layer 6, a core wire 1, and a rubber composition in order from the belt lower surface (inner peripheral surface) to the belt upper surface (back surface). The formed stretch layer 5 is laminated, and the compressed rubber layer 2 has a short fiber 4 in a flow state along the shape of the rib portion (in the vicinity of the surface of the rib portion, the short fiber 4 has the rib portion 3). In a state of being aligned along the outer shape. The compressed rubber layer 2 has rib portions 3 (in FIG. 1, the number of ribs is 3) extending in a plurality of rows along the longitudinal direction of the belt on the inner peripheral surface of the belt body. The cross-sectional shape in the direction orthogonal to the longitudinal direction becomes smaller in width from the belt outer peripheral side (the side that does not have a rib portion and does not frictionally engage with the pulley) toward the inner peripheral side (taperes toward the tip). ) Inverted trapezoidal shape (V-shaped cross section). The core wire 1 is embedded in the main body along the longitudinal direction of the belt. A part of the core wire 1 is in contact with the stretch layer 5 and the remaining part is in contact with the adhesive layer 6. Further, the compressed rubber layer 2 is at least partly in contact with the pulley (the friction transmission surface of the rib portion 3) is covered with a fiber resin mixed layer and a fiber layer (not shown).
 (繊維樹脂混合層)
 繊維樹脂混合層は、圧縮ゴム層のプーリと接する摩擦伝動面の少なくとも一部に形成されていればよいが、生産性などの点から、通常、圧縮ゴム層の表面全体に形成される。繊維樹脂混合層には、樹脂成分と、圧縮ゴム層を形成するゴムの加硫温度(以下、単に加硫温度と表記する場合がある)を超える軟化点又は融点を有する耐熱繊維とが混在している。よって、繊維樹脂混合層を圧縮ゴム層と繊維層との間に介在させることにより、摩擦伝動面を補強できる。さらに、繊維樹脂混合層における耐熱繊維のうち、少なくとも一部の繊維は、前記繊維樹脂混合層から前記圧縮ゴム層内部の表面近傍(繊維樹脂混合層との界面近傍)に亘って埋設されていることが好ましい。このような2層を跨いで埋設された耐熱繊維を含むことにより、圧縮ゴム層への埋設部分がアンカー効果の役割を果たして繊維樹脂混合層と圧縮ゴム層表層との界面をより強固に結合でき、繊維樹脂混合層の圧縮ゴム層からの剥がれ(剥離)を防止できる。また、繊維層及び繊維樹脂混合層の摩耗が進行して圧縮ゴム層の表面が露出しても、圧縮ゴム層に埋設した耐熱繊維が摩耗によりその内部から露出するとともに、圧縮ゴム層の界面近傍で層状に存在して圧縮ゴム層を補強する役割を担うため、ベルトを長時間走行させても圧縮ゴム層(摩擦伝動面)の耐摩耗性を維持できる。耐熱繊維を圧縮ゴム層に埋設する態様としては、例えば特許文献2での圧縮ゴム層表面近傍における耐熱繊維(耐熱性繊維)の埋設態様と同様である。
(Fiber resin mixed layer)
The fiber resin mixed layer may be formed on at least a part of the friction transmission surface in contact with the pulley of the compressed rubber layer, but is usually formed on the entire surface of the compressed rubber layer from the viewpoint of productivity. In the fiber-resin mixed layer, a resin component and a heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature of the rubber forming the compressed rubber layer (hereinafter sometimes simply referred to as vulcanization temperature) are mixed. ing. Therefore, the friction transmission surface can be reinforced by interposing the fiber resin mixed layer between the compressed rubber layer and the fiber layer. Furthermore, at least some of the heat-resistant fibers in the fiber resin mixed layer are embedded from the fiber resin mixed layer to the vicinity of the surface inside the compressed rubber layer (near the interface with the fiber resin mixed layer). It is preferable. By including such heat-resistant fibers embedded across two layers, the portion embedded in the compressed rubber layer plays the role of an anchor effect, and the interface between the fiber resin mixed layer and the compressed rubber layer surface layer can be more firmly bonded. Further, peeling (peeling) of the fiber resin mixed layer from the compressed rubber layer can be prevented. In addition, even if the wear of the fiber layer and the fiber resin mixed layer proceeds and the surface of the compressed rubber layer is exposed, the heat-resistant fiber embedded in the compressed rubber layer is exposed from the inside due to wear, and the vicinity of the interface of the compressed rubber layer Therefore, even if the belt is run for a long time, the wear resistance of the compressed rubber layer (friction transmission surface) can be maintained. The mode of embedding the heat resistant fiber in the compressed rubber layer is the same as the mode of embedding the heat resistant fiber (heat resistant fiber) in the vicinity of the surface of the compressed rubber layer in Patent Document 2, for example.
 圧縮ゴム層内部の界面近傍に、少なくとも一部が埋設されている耐熱繊維のうち、少なくとも一部の耐熱繊維は、樹脂成分が付着した状態で圧縮ゴム層内部の界面近傍に埋設されていてもよい。本発明の摩擦伝動フィルムは、後述する製造方法で得られるため、リブ形成時において、耐熱繊維が圧縮ゴム層内部の界面近傍に埋設する際に、樹脂成分が耐熱繊維の表面に付着しやすい。圧縮ゴム層に埋設した耐熱繊維の表面に樹脂成分が付着することにより、この樹脂成分を介して、耐熱繊維と圧縮ゴム層を形成する部材(例えば、ゴム組成物)とを強固に結合できる。すなわち、両者の密着性(接着性)を向上できるため、耐熱繊維の脱落(抜け)を抑制できるとともに、繊維樹脂混合層が圧縮ゴム層の表面から剥離するのをより確実に防止できる。さらに、耐熱繊維が圧縮ゴム層に強固に固定されるため、繊維樹脂混合層が摩耗の進行により摩滅したとしても、圧縮ゴム層内部の界面近傍から耐熱繊維の脱落が抑制されることにより、圧縮ゴム層表層(摩擦伝動面)の耐摩耗性、耐発音性をより長期に亘って維持できる。 Of the heat-resistant fibers that are at least partially embedded near the interface inside the compressed rubber layer, at least some of the heat-resistant fibers may be embedded near the interface inside the compressed rubber layer with the resin component attached. Good. Since the friction transmission film of the present invention is obtained by the production method described later, the resin component tends to adhere to the surface of the heat-resistant fiber when the heat-resistant fiber is embedded in the vicinity of the interface inside the compressed rubber layer at the time of rib formation. When the resin component adheres to the surface of the heat-resistant fiber embedded in the compressed rubber layer, the heat-resistant fiber and a member (for example, a rubber composition) that forms the compressed rubber layer can be firmly bonded via the resin component. That is, since the adhesiveness (adhesiveness) between the two can be improved, it is possible to prevent the heat-resistant fibers from dropping (disconnecting) and more reliably prevent the fiber resin mixed layer from peeling from the surface of the compressed rubber layer. Furthermore, since the heat-resistant fibers are firmly fixed to the compressed rubber layer, even if the fiber resin mixed layer is worn away due to the progress of wear, the heat-resistant fibers are prevented from falling off from the vicinity of the interface inside the compressed rubber layer, so The wear resistance and sound resistance of the rubber layer (friction transmission surface) can be maintained over a longer period.
 圧縮ゴム層に埋設した耐熱繊維の埋設深さ(圧縮ゴム層の界面近傍で耐熱繊維が埋設されて層状に形成された繊維ゴム混合層の厚み)は、耐熱繊維が圧縮ゴム層内部の界面近傍から脱落するのを抑制でき、圧縮ゴム層の表層に対する繊維樹脂混合層の剥離を確実に防止できる点から、例えば5~150μm、好ましくは10~120μm(例えば30~100μm)、さらに好ましくは50~90μm(特に70~80μm)程度である。耐熱繊維の埋設深さが浅すぎると、耐熱繊維が脱落し易くなり、繊維樹脂混合層の圧縮ゴム層表層からの剥がれを十分に防止することができない虞があり、一方、繊維の埋設深さが深すぎると、耐熱繊維が埋設する厚みが大きくなるため、ベルトがプーリより逆曲げを受けてリブが伸張されたとき、リブ表面に亀裂が発生し易くなり、ベルトの寿命が短くなる虞がある。なお、本発明の摩擦伝動ベルトでは、前記繊維ゴム混合層は、圧縮ゴム層の界面近傍において略均一な厚みで埋設されていることが好ましい。 Depth of heat-resistant fibers embedded in the compressed rubber layer (thickness of the fiber rubber mixed layer formed by layering heat-resistant fibers in the vicinity of the interface of the compressed rubber layer) is near the interface inside the compressed rubber layer. For example, 5 to 150 μm, preferably 10 to 120 μm (for example, 30 to 100 μm), and more preferably 50 to 50 μm from the viewpoint of preventing the fiber resin mixed layer from peeling off the surface of the compressed rubber layer. It is about 90 μm (especially 70 to 80 μm). If the embedment depth of the heat-resistant fiber is too shallow, the heat-resistant fiber is likely to fall off, and there is a possibility that peeling of the fiber resin mixed layer from the surface of the compressed rubber layer may not be sufficiently prevented. If the belt is too deep, the thickness of the heat-resistant fibers will be increased, so that when the belt is subjected to reverse bending from the pulley and the rib is stretched, the rib surface is liable to crack and the life of the belt may be shortened. is there. In the friction transmission belt of the present invention, it is preferable that the fiber rubber mixed layer is embedded with a substantially uniform thickness in the vicinity of the interface of the compressed rubber layer.
 繊維樹脂混合層の平均厚みは、例えば10~300μm、好ましくは30~250μm、さらに好ましくは50~200μm(特に70~150μm)程度である。繊維樹脂混合層が薄すぎると、耐亀裂性や耐摩耗性が低下する虞があり、厚すぎると、繊維樹脂混合層の柔軟性が低下する虞がある。 The average thickness of the fiber resin mixed layer is, for example, about 10 to 300 μm, preferably about 30 to 250 μm, more preferably about 50 to 200 μm (particularly about 70 to 150 μm). If the fiber resin mixed layer is too thin, the crack resistance and wear resistance may be reduced. If it is too thick, the flexibility of the fiber resin mixed layer may be reduced.
 なお、本明細書では、繊維の埋設深さ及び繊維樹脂混合層の厚みは、走査型電子顕微鏡(SEM)写真に基づいて測定でき、任意の5箇所以上の平均値として求める。詳細は、後述する実施例に記載の方法で測定できる。 In addition, in this specification, the embedding depth of the fiber and the thickness of the fiber resin mixed layer can be measured based on a scanning electron microscope (SEM) photograph, and are obtained as an average value of any five or more locations. The details can be measured by the method described in Examples described later.
 (1)耐熱繊維
 耐熱繊維は、長繊維を含んでいてもよく、長繊維単独で形成された繊維であってもよいが、少なくとも短繊維を含むのが好ましい。さらに、耐熱繊維は、種類の異なる耐熱繊維(複数種の耐熱繊維)を含んでいてもよい。
(1) Heat-resistant fiber The heat-resistant fiber may contain a long fiber or a fiber formed of a long fiber alone, but preferably contains at least a short fiber. Furthermore, the heat resistant fiber may include different types of heat resistant fibers (multiple types of heat resistant fibers).
 耐熱繊維としては、圧縮ゴム層を形成するゴムの加硫後も繊維形状を付与し、ベルトに諸機能を付与するために、加硫温度(例えば150~200℃、特に170℃程度)を超える軟化点又は融点を有していればよく、各種の合成繊維、無機繊維を利用できる。耐熱繊維の軟化点又は融点(又は分解点)は、加硫温度をTとすると、例えば、T+10℃以上であってもよく、例えば、(T+10)~(T+400)℃、好ましくは(T+20)~(T+370)℃、さらに好ましくは(T+20)~(T+350)℃程度である。耐熱繊維は、加硫温度よりも高い軟化点又は融点を有するため、圧縮ゴム層を形成するゴムの加硫後も繊維状の形態を維持しており、摩擦伝動面に所望の性能(耐熱繊維の特性を反映)を付与できる。 As heat-resistant fibers, a fiber shape is imparted even after vulcanization of the rubber forming the compressed rubber layer, and in order to impart various functions to the belt, the vulcanization temperature (for example, about 150 to 200 ° C., particularly about 170 ° C.) is exceeded. What is necessary is just to have a softening point or melting | fusing point, and various synthetic fiber and inorganic fiber can be utilized. The softening point or melting point (or decomposition point) of the heat-resistant fiber may be, for example, T + 10 ° C. or higher when the vulcanization temperature is T, for example, (T + 10) to (T + 400) ° C., preferably (T + 20) to It is (T + 370) ° C., more preferably about (T + 20) to (T + 350) ° C. Since the heat resistant fiber has a softening point or melting point higher than the vulcanization temperature, it maintains a fibrous form even after vulcanization of the rubber forming the compressed rubber layer, and has a desired performance (heat resistant fiber on the friction transmission surface). Can be applied).
 耐熱繊維としては、摩擦伝動ベルトで慣用的に利用される耐熱繊維、例えば、天然繊維(セルロース系繊維、羊毛、絹など);合成繊維[脂肪族ポリアミド繊維(ポリアミド6、ポリアミド66、ポリアミド46繊維など)、ポリエステル繊維(ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート繊維などのポリC2-4アルキレンC6-14アリレート系繊維など)、フッ素繊維(ポリテトラフルオロエチレン繊維など)、ポリアクリル繊維(ポリアクリロニトリル繊維など)、ポリビニルアルコール繊維、ポリフェニレンサルファイド(PPS)繊維、ポリ-p-フェニレンベンゾビスオキサゾール(PBO)繊維、芳香族ポリアミド繊維(p-アラミド、m-アラミド繊維など)など];無機繊維(カーボン繊維、ガラス繊維など)などが挙げられる。 Examples of heat-resistant fibers include heat-resistant fibers conventionally used in friction transmission belts, such as natural fibers (cellulosic fibers, wool, silk, etc.); synthetic fibers [aliphatic polyamide fibers (polyamide 6, polyamide 66, polyamide 46 fibers). Polyester fiber (polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate fiber and other poly C 2-4 alkylene C 6-14 arylate fiber), fluorine fiber (polytetrafluoroethylene fiber, etc.), polyacrylic fiber ( Polyacrylonitrile fiber, etc.), polyvinyl alcohol fiber, polyphenylene sulfide (PPS) fiber, poly-p-phenylenebenzobisoxazole (PBO) fiber, aromatic polyamide fiber (p-aramid, m-aramid fiber, etc.)]; inorganic fibers (Carbon fibers, glass fibers, etc.) and the like.
 これらの耐熱繊維は、単独で又は二種以上組み合わせて使用できる。繊維樹脂混合層は、二種以上の耐熱繊維を組み合わせる場合、異種の耐熱繊維を均質に混合した単一の層構造であってもよく、異なる耐熱繊維を積層した複数の積層構造であってもよい。これらのうち、生産性などの点から、繊維樹脂混合層は、単一の層が好ましく、同種の耐熱繊維で形成された単一の層が特に好ましい。 These heat resistant fibers can be used alone or in combination of two or more. When combining two or more types of heat-resistant fibers, the fiber resin mixed layer may have a single layer structure in which different types of heat-resistant fibers are homogeneously mixed, or may have a plurality of laminated structures in which different heat-resistant fibers are laminated. Good. Among these, from the viewpoint of productivity and the like, the fiber resin mixed layer is preferably a single layer, and particularly preferably a single layer formed of the same kind of heat-resistant fibers.
 これらの耐熱繊維のうち、繊維層が摩耗しても被水時の耐発音性を向上できる点から、水との親和性(吸水性)の高い親水性耐熱繊維が好ましく、セルロース系繊維が特に好ましい。 Of these heat-resistant fibers, hydrophilic heat-resistant fibers having a high affinity (water absorption) with water are preferable, and cellulosic fibers are particularly preferable, since the sound-proof property when wet is improved even when the fiber layer is worn. preferable.
 セルロース系繊維には、セルロース繊維(植物、動物又はバクテリアなどに由来するセルロース繊維)、セルロース誘導体の繊維が含まれる。セルロース繊維としては、例えば、木材パルプ(針葉樹、広葉樹パルプなど)、竹繊維、サトウキビ繊維、種子毛繊維(綿繊維(コットンリンター)、カポックなど)、ジン皮繊維(麻、コウゾ、ミツマタなど)、葉繊維(マニラ麻、ニュージーランド麻など)などの天然植物由来のセルロース繊維(パルプ繊維);ホヤセルロースなどの動物由来のセルロース繊維;バクテリアセルロース繊維;藻類のセルロースなどが例示できる。セルロース誘導体の繊維としては、例えば、セルロースエステル繊維;再生セルロース繊維(レーヨン、キュプラ、リヨセルなど)などが挙げられる。これらのセルロース系繊維のうち、吸水性と耐摩耗性とのバランスに優れる点から、セルロース繊維が好ましく、パルプが特に好ましい。 Cellulosic fibers include cellulose fibers (cellulose fibers derived from plants, animals, bacteria, etc.) and fibers of cellulose derivatives. Cellulose fibers include, for example, wood pulp (coniferous, hardwood pulp, etc.), bamboo fiber, sugarcane fiber, seed hair fiber (cotton fiber (cotton linter), kapok, etc.), gin leather fiber (hemp, kozo, mitsumata, etc.), Examples thereof include cellulose fibers (pulp fibers) derived from natural plants such as leaf fibers (manila hemp, New Zealand hemp, etc.); cellulose fibers derived from animals such as squirt cellulose; bacterial cellulose fibers; Examples of the cellulose derivative fiber include cellulose ester fiber; regenerated cellulose fiber (rayon, cupra, lyocell, etc.) and the like. Among these cellulosic fibers, cellulose fibers are preferable and pulp is particularly preferable because of excellent balance between water absorption and abrasion resistance.
 耐熱繊維の繊維形態は、特に限定されず、モノフィラメント、マルチフィラメント、紡績糸(スパン糸)のいずれの形態であってもよく、これらの組み合わせであってもよい。 The fiber form of the heat-resistant fiber is not particularly limited, and may be any form of monofilament, multifilament, spun yarn (spun yarn), or a combination thereof.
 耐熱繊維は、短繊維、長繊維のいずれでもよいが、少なくとも短繊維を含むのが好ましい。短繊維の平均長さは、例えば1~500mm、好ましくは2~300mm、さらに好ましくは3~200mm(特に5~100mm)程度である。短繊維の繊維長が短すぎると、摩擦伝動面の補強効果が低下する虞があり、長すぎると、圧縮ゴム層との界面に繊維を存在させるのが困難となる虞がある。一方、長繊維の平均長さは500mmを超えていればよく、例えば501mm以上、好ましくは1~1500m、さらに好ましくは1~1000m(特に1~500m)程度である。 The heat resistant fiber may be either a short fiber or a long fiber, but preferably contains at least a short fiber. The average length of the short fibers is, for example, about 1 to 500 mm, preferably about 2 to 300 mm, more preferably about 3 to 200 mm (particularly about 5 to 100 mm). If the fiber length of the short fiber is too short, the reinforcing effect of the friction transmission surface may be lowered, and if it is too long, it may be difficult to make the fiber exist at the interface with the compressed rubber layer. On the other hand, the average length of the long fibers only needs to exceed 500 mm, for example, about 501 mm or more, preferably about 1 to 1500 m, more preferably about 1 to 1000 m (particularly about 1 to 500 m).
 さらに、耐熱繊維の圧縮ゴム層への埋設深さを調整するために、短繊維と長繊維とを組み合わせてもよい。長繊維を配合する場合、ベルト製造時の不織布の巻き付けが容易となり、伸びが小さい繊維であっても適正なリブ形状を形成できる点から、長繊維はベルト長手方向に沿って配設するのが好ましい。長繊維の割合は、耐熱繊維中70質量%以下であってもよく、好ましくは50質量%以下、さらに好ましくは30質量%以下(例えば1~10質量%程度)であってもよい。長繊維の割合が多すぎると、圧縮ゴム層との界面に繊維を存在させるのが困難となる虞がある。 Furthermore, short fibers and long fibers may be combined in order to adjust the embedding depth of heat resistant fibers in the compressed rubber layer. When blending long fibers, it is easy to wrap the nonwoven fabric during belt production, and long fibers can be arranged along the longitudinal direction of the belt from the point of being able to form an appropriate rib shape even for fibers with small elongation. preferable. The proportion of long fibers may be 70% by mass or less in the heat-resistant fiber, preferably 50% by mass or less, more preferably 30% by mass or less (for example, about 1 to 10% by mass). If the ratio of long fibers is too large, it may be difficult to cause fibers to exist at the interface with the compressed rubber layer.
 耐熱繊維の平均繊維径は、例えば5~50μm、好ましくは7~40μm、さらに好ましくは10~35μm程度である。 The average fiber diameter of the heat resistant fiber is, for example, about 5 to 50 μm, preferably 7 to 40 μm, and more preferably about 10 to 35 μm.
 繊維樹脂混合層における耐熱繊維の形態(繊維集合体の形態)は、繊維の長さに応じて適宜選択でき、織布構造や編布構造であってもよいが、短繊維を含む場合、通常、不織布構造(不織繊維構造)を有している。 The form of the heat-resistant fiber in the fiber-resin mixed layer (form of the fiber assembly) can be appropriately selected according to the length of the fiber, and may be a woven fabric structure or a knitted fabric structure. And has a non-woven structure (non-woven fiber structure).
 耐熱繊維には圧縮ゴム層との接着性を向上させる目的で、原料段階で接着処理を施してもよい。このような接着処理としては、耐熱繊維をエポキシ又はイソシアネート化合物を有機溶媒(トルエン、キシレン、メチルエチルケトンなど)に溶解させた樹脂系処理液に浸漬処理したり、レゾルシン-ホルマリン-ラテックス液(RFL液)などの処理液に浸漬処理してもよい。また、耐熱繊維と圧縮ゴム層を形成する部材との接着性及び/又は摩擦伝動面の性能付与を目的として、例えば、ゴム組成物を前記有機溶媒に溶かしてゴム糊とし、このゴム糊に耐熱繊維原料(不織布など)を浸漬処理して耐熱繊維にゴム組成物を含浸、付着させてもよい。これらの処理は単独又は組み合わせて行うことができ、処理回数や処理順序は特に限定されず適宜変更して行うことができる。 The heat-resistant fiber may be subjected to adhesion treatment at the raw material stage for the purpose of improving the adhesion with the compressed rubber layer. As such an adhesion treatment, the heat-resistant fiber is immersed in a resin-based treatment solution in which an epoxy or isocyanate compound is dissolved in an organic solvent (toluene, xylene, methyl ethyl ketone, etc.), or a resorcin-formalin-latex solution (RFL solution). A dipping process may be performed in a processing solution such as. Also, for the purpose of providing adhesion between the heat-resistant fiber and the member forming the compressed rubber layer and / or imparting the performance of the friction transmission surface, for example, the rubber composition is dissolved in the organic solvent to form a rubber paste, and the rubber paste is heat-resistant. A fiber raw material (nonwoven fabric or the like) may be dipped to impregnate and adhere the rubber composition to the heat resistant fiber. These processes can be performed alone or in combination, and the number of processes and the order of processes are not particularly limited, and can be performed as appropriate.
 (2)樹脂成分
 樹脂成分としては、加硫温度で溶融して前記繊維に対してバインダー的な役割を発現し、繊維樹脂混合層を形成するとともに、圧縮ゴム層に埋設する繊維の表面にも付着して繊維樹脂混合層と圧縮ゴム層との密着性を向上できることが好ましい。通常、加硫温度で溶融又は軟化可能な熱可塑性樹脂が使用されるが、加硫温度で溶融又は軟化可能な熱硬化性樹脂であってもよい。
(2) Resin component As a resin component, it melts at a vulcanization temperature to express a role as a binder for the fiber, forms a fiber resin mixed layer, and also on the surface of the fiber embedded in the compressed rubber layer It is preferable that it adheres and the adhesiveness of a fiber resin mixed layer and a compression rubber layer can be improved. Usually, a thermoplastic resin that can be melted or softened at the vulcanization temperature is used, but a thermosetting resin that can be melted or softened at the vulcanization temperature may be used.
 樹脂成分は、融点(又は軟化点)が加硫温度(例えば150~200℃、特に170℃程度)近傍以下であれば、特に限定されないが、加硫時に適度な粘度を保持し、適度な厚みの繊維層を形成し易い点から、融点は、加硫温度をTとすると、例えば(T-50)℃~(T+10)℃、好ましくは(T-30)℃~(T+5)℃、さらに好ましくは(T-10)℃~T℃程度である。融点が加硫温度の近傍にあると、圧縮ゴム層を形成するゴムの加硫時に樹脂成分が適度な粘度を有して融解し、加硫後は親水性耐熱繊維の一部含有する形態で凝固できる。具体的な融点は、例えば150~180℃、好ましくは160~175℃、さらに好ましくは165~170℃程度である。融点が高すぎると、均質な繊維樹脂混合層を形成するのが困難となる虞があり、逆に低すぎると、加硫時に粘度が低下し過ぎて、繊維層の表面まで含浸して、適度な厚みの繊維層を形成するのが困難となる虞がある。 The resin component is not particularly limited as long as the melting point (or softening point) is not higher than the vulcanization temperature (for example, about 150 to 200 ° C., particularly about 170 ° C.), but it retains an appropriate viscosity during vulcanization and has an appropriate thickness. The melting point is, for example, (T-50) ° C. to (T + 10) ° C., preferably (T-30) ° C. to (T + 5) ° C., more preferably, when the vulcanization temperature is T. Is about (T-10) ° C. to T ° C. When the melting point is in the vicinity of the vulcanization temperature, the resin component melts with an appropriate viscosity when vulcanizing the rubber forming the compressed rubber layer, and after vulcanization, it contains a part of the hydrophilic heat-resistant fiber. Can solidify. A specific melting point is, for example, about 150 to 180 ° C., preferably about 160 to 175 ° C., and more preferably about 165 to 170 ° C. If the melting point is too high, it may be difficult to form a homogeneous fiber-resin mixed layer. Conversely, if it is too low, the viscosity will decrease too much during vulcanization, impregnating the fiber layer surface, There is a risk that it may be difficult to form a fiber layer having an appropriate thickness.
 樹脂成分は、前記融点を有していれば、特に材質は限定されないが、取り扱い性や汎用性などの点から、ポリエチレン系樹脂やポリプロピレン系樹脂などのオレフィン系樹脂が好ましく、加硫時に適度な粘度を保持し、適度な厚みの繊維層を形成し易い点から、ポリプロピレン系樹脂が特に好ましい。 As long as the resin component has the melting point, the material is not particularly limited, but from the viewpoint of handleability and versatility, an olefin resin such as a polyethylene resin or a polypropylene resin is preferable, and an appropriate amount is obtained during vulcanization. Polypropylene resin is particularly preferable because it retains viscosity and easily forms a fiber layer having an appropriate thickness.
 ポリプロピレン系樹脂としては、例えば、ポリプロピレン、プロピレンと共重合可能なモノマーとの共重合体(プロピレン-エチレン共重合体、プロピレン-(メタ)アクリル酸共重合体などの二元共重合体;プロピレン-エチレン-ブテン-1などの三元共重合体)などが含まれる。これらのポリプロピレン系樹脂は、単独で又は二種以上組み合わせて使用できる。これらのポリプロピレン系樹脂のうち、ポリプロピレンなどのプロピレンの単独重合体などが好ましい。 Examples of the polypropylene resin include polypropylene, copolymers of monomers copolymerizable with propylene (binary copolymers such as propylene-ethylene copolymer, propylene- (meth) acrylic acid copolymer; propylene- Terpolymers such as ethylene-butene-1). These polypropylene resins can be used alone or in combination of two or more. Of these polypropylene resins, propylene homopolymers such as polypropylene are preferred.
 これらのうち、加硫温度で容易に融解し、かつ適度な耐熱性にも優れる点などから、ポリプロピレンなどのポリプロピレン系樹脂が特に好ましい。 Of these, polypropylene resins such as polypropylene are particularly preferable because they are easily melted at the vulcanization temperature and have excellent moderate heat resistance.
 なお、樹脂成分の形状は、前記繊維同士の間隙を充填し、繊維の表面に付着されていればよく、特に限定されないが、後述するように、繊維状の原料樹脂を用いた場合には、加硫温度以下の融点(又は軟化点)を有する熱可塑性樹脂であっても、繊維形状が一部残存する場合がある。本発明では、原料として融点(又は軟化点)が加硫温度以下の繊維状の樹脂を用いて、部分的に繊維形状が残存している成分は、耐熱繊維ではなく、樹脂成分に分類する。 The shape of the resin component is not particularly limited as long as it fills the gap between the fibers and is attached to the surface of the fiber, but as described later, when a fibrous raw resin is used, Even in a thermoplastic resin having a melting point (or softening point) below the vulcanization temperature, a part of the fiber shape may remain. In the present invention, using a fibrous resin having a melting point (or softening point) equal to or lower than the vulcanization temperature as a raw material, a component in which the fiber shape partially remains is classified as a resin component, not a heat-resistant fiber.
 樹脂成分にも、耐熱繊維と同様の接着処理(又は表面処理)を施してもよい。 The resin component may be subjected to the same adhesion treatment (or surface treatment) as the heat resistant fiber.
 樹脂成分と耐熱繊維との割合(質量比)は、例えば、樹脂成分/耐熱繊維=99/1~1/99程度の範囲から選択でき、例えば95/5~5/95、好ましくは85/15~15/85、さらに好ましくは75/25~25/75(特に70/30~30/70)程度である。このような割合で樹脂成分と耐熱繊維とを組み合わせることにより、圧縮ゴム層表面を繊維樹脂混合層で被覆するとともに、耐熱繊維の少なくとも一部を繊維樹脂混合層から圧縮ゴム層表面の近傍内部に亘って埋設できる。 The ratio (mass ratio) between the resin component and the heat-resistant fiber can be selected, for example, from the range of resin component / heat-resistant fiber = 99/1 to 1/99, for example, 95/5 to 5/95, preferably 85/15. It is about 15/85, more preferably about 75/25 to 25/75 (especially 70/30 to 30/70). By combining the resin component and the heat-resistant fiber at such a ratio, the surface of the compressed rubber layer is covered with the fiber-resin mixed layer, and at least a part of the heat-resistant fiber is placed in the vicinity of the surface of the compressed rubber layer from the fiber-resin mixed layer. Can be buried.
 (3)他の添加剤
 繊維樹脂混合層は、必要に応じて、慣用の添加剤、例えば、界面活性剤、増強剤、充填剤、金属酸化物、可塑剤、加工剤又は加工助剤、着色剤、カップリング剤、安定剤(紫外線吸収剤、酸化防止剤、オゾン劣化防止剤、熱安定剤など)、潤滑剤、難燃剤、帯電防止剤などを含んでいてもよい。これらのうち、ブリードアウトして繊維層における水との濡れ性が向上することにより、親水性耐熱繊維による水の掃きだし及びリブ表面の吸水性(親水性)を向上できる点から、HLB(親水-疎水バランス)5~15(特に7~15)程度の界面活性剤を含んでいてもよい。添加剤の割合は、繊維樹脂混合層全体に対して、0.1~50質量%、好ましくは0.5~30質量%、さらに好ましくは1~20質量%(特に1.5~10質量%)程度である。
(3) Other additives The fiber-resin mixed layer may be a conventional additive, for example, a surfactant, an enhancer, a filler, a metal oxide, a plasticizer, a processing agent or a processing aid, and coloring, as necessary. Agents, coupling agents, stabilizers (ultraviolet absorbers, antioxidants, ozone degradation inhibitors, heat stabilizers, etc.), lubricants, flame retardants, antistatic agents, and the like. Of these, HLB (Hydrophilic−) is improved in that the wettability with water in the fiber layer is improved by bleeding out, thereby improving the water sweeping by the hydrophilic heat-resistant fiber and the water absorption (hydrophilicity) of the rib surface. It may contain a surfactant having a hydrophobic balance of 5 to 15 (especially 7 to 15). The ratio of the additive is 0.1 to 50% by mass, preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass (particularly 1.5 to 10% by mass) with respect to the entire fiber resin mixed layer. )
 (繊維層)
 繊維層は、圧縮ゴム層の最表面を被覆しており、加硫温度を超える軟化点又は融点を有する親水性耐熱繊維を含み、かつ樹脂成分を含まない。そのため、柔軟であり、かつ吸水性に優れるため、被水時の耐発音性を向上できる。本発明において、被水時の耐発音性が顕著に向上する理由は、最表面に位置する繊維層の存在によって、ベルトとプーリ間に侵入した水を素早く吸収できるため、ベルトとプーリ間における水膜の発生を抑制することにより、通常走行時(DRY)の摩擦係数と注水走行時(WET)の摩擦係数との差が小さくなるためであると推定できる。
(Fiber layer)
The fiber layer covers the outermost surface of the compressed rubber layer, includes hydrophilic heat-resistant fibers having a softening point or melting point exceeding the vulcanization temperature, and does not include a resin component. Therefore, since it is flexible and excellent in water absorption, it is possible to improve sound resistance when wet. In the present invention, the reason why the sound resistance when wet is remarkably improved is that water entering between the belt and the pulley can be quickly absorbed by the presence of the fiber layer located on the outermost surface. By suppressing the generation of the film, it can be estimated that the difference between the friction coefficient during normal running (DRY) and the friction coefficient during water injection running (WET) is reduced.
 繊維層に含まれる親水性耐熱繊維としては、繊維樹脂混合層に含まれる耐熱繊維として例示された親水性耐熱繊維を利用でき、セルロース系繊維を好ましく利用できる。セルロース系繊維としても、繊維樹脂混合層に含まれるセルロース系繊維を利用でき、セルロース繊維(特にパルプ)を好ましく利用できる。耐熱繊維の繊維形態及び平均長さについても、繊維樹脂混合層に含まれる耐熱繊維と同様である。 As the hydrophilic heat-resistant fibers contained in the fiber layer, the hydrophilic heat-resistant fibers exemplified as the heat-resistant fibers contained in the fiber resin mixed layer can be used, and cellulosic fibers can be preferably used. As the cellulosic fibers, cellulosic fibers contained in the fiber resin mixed layer can be used, and cellulose fibers (particularly pulp) can be preferably used. The fiber form and average length of the heat-resistant fiber are the same as those of the heat-resistant fiber contained in the fiber resin mixed layer.
 繊維層の形態(繊維集合体の構造)は、繊維の長さに応じて適宜選択でき、織布構造や編布構造であってもよいが、短繊維を含む場合、通常、不織布構造(不織繊維構造)を有している。 The form of the fiber layer (the structure of the fiber assembly) can be appropriately selected according to the length of the fiber, and may be a woven fabric structure or a knitted fabric structure. Woven fiber structure).
 繊維層は、前記繊維樹脂混合層と絡合して一体化しているのが好ましく、特に、予め一体化された不織繊維構造を有する不織布の一部に樹脂成分を含浸させた残部(未含浸部分)であるのが特に好ましい。 The fiber layer is preferably intertwined with and integrated with the fiber resin mixed layer, and in particular, the remainder (unimpregnated) in which a part of a nonwoven fabric having a previously integrated nonwoven fiber structure is impregnated with a resin component. Part) is particularly preferred.
 繊維層は、樹脂成分を含んでいないため、柔軟性及び空隙性に優れている。このような特性を損なわない範囲であれば、繊維樹脂混合層で例示した他の添加剤を含んでいてもよい。他の添加剤の割合も繊維樹脂混合層と同様である。 Since the fiber layer does not contain a resin component, it is excellent in flexibility and porosity. If it is a range which does not impair such a characteristic, the other additive illustrated by the fiber resin mixed layer may be included. The ratio of other additives is the same as that of the fiber resin mixed layer.
 繊維層の平均厚みは、例えば10~300μm、好ましくは30~250μm、さらに好ましくは50~200μm(特に70~150μm)程度である。繊維層の平均厚みは、繊維樹脂混合層の平均厚みに対して、例えば0.1~5倍、好ましくは0.5~3倍、さらに好ましくは1~2倍程度である。繊維層が薄すぎると、吸水性や耐摩耗性が低下する虞があり、厚すぎると、ベルト製造時に形状不良が発生する虞がある。 The average thickness of the fiber layer is, for example, about 10 to 300 μm, preferably about 30 to 250 μm, more preferably about 50 to 200 μm (particularly about 70 to 150 μm). The average thickness of the fiber layer is, for example, about 0.1 to 5 times, preferably about 0.5 to 3 times, and more preferably about 1 to 2 times the average thickness of the fiber resin mixed layer. If the fiber layer is too thin, water absorption and wear resistance may be reduced. If it is too thick, shape defects may occur during belt production.
 繊維層の空隙率は、例えば50~98%、好ましくは60~97%、さらに好ましくは75~95%(特に80~90%)程度である。 The porosity of the fiber layer is, for example, about 50 to 98%, preferably about 60 to 97%, more preferably about 75 to 95% (particularly about 80 to 90%).
 繊維樹脂混合層及び繊維層の両層に含まれる樹脂成分(繊維樹脂混合層に含まれる樹脂成分)と繊維成分(繊維樹脂混合層に含まれる耐熱繊維及び繊維層に含まれる親水性耐熱繊維との合計)との質量比は、樹脂成分/繊維成分=70/30~10/90、好ましくは50/50~20/80、さらに好ましくは40/60~25/75(特に35/65~25/75)程度である。さらに、被水時の高度な耐発音性が要求される用途では、樹脂成分/繊維成分=40/60~10/90、好ましくは35/65~15/85、さらに好ましくは30/70~20/80程度であってもよい。樹脂成分の割合が少なすぎると、耐熱繊維の固着が不十分となり、耐熱繊維が早期に飛散する虞がある。逆に多すぎると、吸水性が低下して、耐発音性が低下する虞がある。 Resin component (resin component contained in fiber resin mixed layer) and fiber component (heat resistant fiber contained in fiber resin mixed layer and hydrophilic heat resistant fiber contained in fiber layer) contained in both layers of fiber resin mixed layer and fiber layer The resin component / fiber component = 70/30 to 10/90, preferably 50/50 to 20/80, more preferably 40/60 to 25/75 (particularly 35/65 to 25). / 75) grade. Further, in applications that require high sound resistance when wet, resin component / fiber component = 40/60 to 10/90, preferably 35/65 to 15/85, more preferably 30/70 to 20 / 80 may be sufficient. When the ratio of the resin component is too small, the heat-resistant fibers are not sufficiently fixed, and the heat-resistant fibers may be scattered early. On the other hand, if the amount is too large, the water absorption is lowered, and the sound resistance may be lowered.
 圧縮ゴム層の最表面に繊維層を有する摩擦伝動ベルトは、前述のように、通常走行時(DRY)の摩擦係数と、注水走行時(WET)の摩擦係数との差が小さいため、発音原因となるスティックスリップを防止でき、被水時の耐発音性を向上できる。DRYの摩擦係数とWETの摩擦係数との差(DRY-WET)は0.3以下であってもよく、好ましくは0.2以下、さらに好ましくは0.1以下である。なお、本明細書及び特許請求の範囲において、前記摩擦係数は、後述する実施例に記載の方法で測定する。 As described above, the friction transmission belt having the fiber layer on the outermost surface of the compression rubber layer has a small difference between the friction coefficient during normal driving (DRY) and the friction coefficient during water injection (WET). Can prevent stick-slip and improve sound resistance when wet. The difference between the friction coefficient of DRY and the friction coefficient of WET (DRY−WET) may be 0.3 or less, preferably 0.2 or less, more preferably 0.1 or less. In addition, in this specification and a claim, the said friction coefficient is measured by the method as described in the Example mentioned later.
 (圧縮ゴム層)
 圧縮ゴム層は、ベルトの種類に応じて、適宜選択でき、例えば、ゴム成分と加硫剤又は架橋剤とを含むゴム組成物やポリウレタン樹脂組成物などが利用される。
(Compressed rubber layer)
The compressed rubber layer can be appropriately selected according to the type of belt, and for example, a rubber composition or a polyurethane resin composition containing a rubber component and a vulcanizing agent or a crosslinking agent is used.
 ゴム成分としては、加硫又は架橋可能なゴム、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴム、水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマーなど)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが例示できる。 Examples of rubber components include vulcanizable or crosslinkable rubbers such as diene rubbers (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), and hydrogenated nitrile rubber. , Mixed polymers of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt, etc.), ethylene-α-olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, Examples thereof include urethane rubber and fluorine rubber.
 ポリウレタン樹脂組成物としては、例えば、ウレタンプレポリマーと硬化剤との硬化物(二液硬化型ポリウレタン)などが例示できる。 Examples of the polyurethane resin composition include a cured product of a urethane prepolymer and a curing agent (two-component curable polyurethane).
 これらのうち、硫黄や有機過酸化物を含むゴム組成物(特に有機過酸化物加硫型ゴム組成物)で未加硫ゴム層を形成し、未加硫ゴム層を加硫又は架橋するのが好ましく、特に、樹脂成分としてオレフィン系樹脂を使用する場合に接着性に優れることに加えて、有害なハロゲンを含まず、耐オゾン性、耐熱性、耐寒性を有し、経済性にも優れる点から、エチレン-α-オレフィンエラストマー(エチレン-α-オレフィン系ゴム)が好ましい。 Among these, an unvulcanized rubber layer is formed with a rubber composition containing sulfur or an organic peroxide (especially an organic peroxide vulcanized rubber composition), and the unvulcanized rubber layer is vulcanized or crosslinked. In particular, in the case of using an olefin resin as a resin component, in addition to excellent adhesiveness, it does not contain harmful halogen, has ozone resistance, heat resistance, cold resistance, and is economical. From the viewpoint, an ethylene-α-olefin elastomer (ethylene-α-olefin rubber) is preferable.
 ゴム組成物は、通常、加硫剤又は架橋剤(特に有機過酸化物)、加硫促進剤、共架橋剤(架橋助剤、又は共加硫剤)を含んでいる。加硫剤又は架橋剤の割合は、ゴム成分100質量部に対して、固形分換算で、例えば1~10質量部(特に2~5質量部)程度である。加硫促進剤の割合は、固形分換算で、ゴム成分100質量部に対して、例えば0.5~15質量部(特に2~5質量部)程度である。架橋助剤の割合は、固形分換算で、ゴム100質量部に対して、例えば0.01~10質量部(特に0.1~5質量部)程度である。 The rubber composition usually contains a vulcanizing agent or a crosslinking agent (particularly an organic peroxide), a vulcanization accelerator, and a co-crosslinking agent (a crosslinking aid or a co-vulcanizing agent). The ratio of the vulcanizing agent or the crosslinking agent is, for example, about 1 to 10 parts by mass (particularly 2 to 5 parts by mass) in terms of solid content with respect to 100 parts by mass of the rubber component. The ratio of the vulcanization accelerator is, for example, about 0.5 to 15 parts by mass (particularly 2 to 5 parts by mass) with respect to 100 parts by mass of the rubber component in terms of solid content. The ratio of the crosslinking aid is, for example, about 0.01 to 10 parts by mass (particularly 0.1 to 5 parts by mass) with respect to 100 parts by mass of the rubber in terms of solid content.
 ゴム組成物は短繊維を含んでいてもよい。短繊維としては、前記耐熱繊維で例示した繊維と同様の繊維を使用できる。これらの短繊維は、単独で又は二種以上組み合わせて使用できる。これらの繊維のうち、綿やレーヨンなどのセルロース系繊維、ポリエステル系繊維(PET繊維など)、ポリアミド繊維(ポリアミド6などの脂肪族ポリアミド繊維、アラミド繊維など)などが汎用される。 The rubber composition may contain short fibers. As the short fiber, a fiber similar to the fiber exemplified for the heat-resistant fiber can be used. These short fibers can be used alone or in combination of two or more. Among these fibers, cellulose fibers such as cotton and rayon, polyester fibers (PET fibers, etc.), polyamide fibers (aliphatic polyamide fibers such as polyamide 6, aramid fibers, etc.) are widely used.
 短繊維の平均繊維長は、例えば1~20mm、好ましくは2~15mm、さらに好ましくは3~10mm程度であってもよい。短繊維の平均繊維径は、例えば5~50μm、好ましくは7~40μm、さらに好ましくは10~30μm程度である。短繊維の割合は、ゴム成分100質量部に対して、例えば1~50質量部(特に10~35質量部)程度である。 The average fiber length of the short fibers may be, for example, about 1 to 20 mm, preferably 2 to 15 mm, and more preferably about 3 to 10 mm. The average fiber diameter of the short fibers is, for example, about 5 to 50 μm, preferably 7 to 40 μm, and more preferably about 10 to 30 μm. The proportion of the short fibers is, for example, about 1 to 50 parts by mass (particularly 10 to 35 parts by mass) with respect to 100 parts by mass of the rubber component.
 ゴム組成物は、必要に応じて、慣用の添加剤、例えば、加硫助剤、加硫促進剤、加硫遅延剤、増強剤、充填剤、金属酸化物、軟化剤、加工剤又は加工助剤、老化防止剤、着色剤、粘着付与剤、可塑剤、カップリング剤、安定剤、潤滑剤、難燃剤、帯電防止剤などを含んでいてもよい。 If necessary, the rubber composition may contain conventional additives such as vulcanization aids, vulcanization accelerators, vulcanization retarders, enhancers, fillers, metal oxides, softeners, processing agents or processing aids. An agent, an antioxidant, a colorant, a tackifier, a plasticizer, a coupling agent, a stabilizer, a lubricant, a flame retardant, an antistatic agent, and the like may be included.
 圧縮ゴム層の平均厚みは、ベルトの種類に応じて適宜選択できるが、Vリブドベルトの場合、例えば2~25mm、好ましくは2.2~16mm、さらに好ましくは2.5~12mm程度である。 The average thickness of the compressed rubber layer can be appropriately selected according to the type of belt, but in the case of a V-ribbed belt, it is, for example, about 2 to 25 mm, preferably about 2.2 to 16 mm, and more preferably about 2.5 to 12 mm.
 (心線)
 心線を構成する繊維としては、例えば、前記耐熱繊維で例示した繊維と同様の繊維が例示できる。これらのうち、高モジュラスの点から、ポリエステル繊維、アラミド繊維などの合成繊維、ガラス繊維、炭素繊維などの無機繊維などが汎用され、ベルトスリップ率を低下できる点から、ポリエステル繊維、アラミド繊維が特に好ましい。ポリエステル繊維はマルチフィラメント糸であってもよい。マルチフィラメント糸で構成される心線の繊度は、例えば2000~10000デニール(特に4000~8000デニール)程度であってもよい。心線は、ゴム成分との接着性を改善するため、慣用の接着処理、例えば、レゾルシン-ホルマリン-ラテックス液(RFL液)による接着処理を施してもよい。
(Core)
As a fiber which comprises a core wire, the fiber similar to the fiber illustrated by the said heat resistant fiber can be illustrated, for example. Among these, from the viewpoint of high modulus, synthetic fibers such as polyester fibers and aramid fibers, inorganic fibers such as glass fibers and carbon fibers, etc. are widely used, and polyester fibers and aramid fibers are particularly preferable from the viewpoint that the belt slip rate can be reduced. preferable. The polyester fiber may be a multifilament yarn. The fineness of the core wire composed of the multifilament yarn may be, for example, about 2000 to 10000 denier (particularly 4000 to 8000 denier). The core wire may be subjected to a conventional adhesion treatment, for example, an adhesion treatment with a resorcin-formalin-latex liquid (RFL liquid), in order to improve adhesion with the rubber component.
 心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば0.5~3mm、好ましくは0.6~2mm、さらに好ましくは0.7~1.5mm程度であってもよい。心線はベルトの長手方向に埋設され、ベルトの長手方向に平行に所定のピッチで並列的に配設してもよい。 As the core wire, usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used. The average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2 mm, and more preferably about 0.7 to 1.5 mm. The core wire may be embedded in the longitudinal direction of the belt and arranged in parallel at a predetermined pitch in parallel with the longitudinal direction of the belt.
 (接着層)
 接着層にも前記圧縮ゴム層で例示したものと同様のゴム組成物などが使用できる。接着層のゴム組成物において、ゴム成分としては、前記圧縮ゴム層のゴム組成物のゴム成分と同系統又は同種のゴムを使用する場合が多い。また、加硫剤又は架橋剤、共架橋剤又は架橋助剤、加硫促進剤などの添加剤の割合も、それぞれ、前記圧縮ゴム層のゴム組成物と同様の範囲から選択できる。接着層のゴム組成物は、さらに接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、アミノ樹脂など)を含んでいてもよい。
(Adhesive layer)
For the adhesive layer, the same rubber composition as that exemplified for the compressed rubber layer can be used. In the rubber composition of the adhesive layer, as the rubber component, the same type or type of rubber as the rubber component of the rubber composition of the compressed rubber layer is often used. Further, the ratio of additives such as a vulcanizing agent or a crosslinking agent, a co-crosslinking agent or a crosslinking aid, and a vulcanization accelerator can be selected from the same range as that of the rubber composition of the compressed rubber layer. The rubber composition of the adhesive layer may further contain an adhesion improver (resorcin-formaldehyde cocondensate, amino resin, etc.).
 接着層の厚みは、ベルトの種類に応じて適宜選択できるが、Vリブドベルトの場合、例えば0.4~3.0mm、好ましくは0.6~2.2mm、さらに好ましくは0.8~1.4mm程度である。 The thickness of the adhesive layer can be appropriately selected according to the type of belt, but in the case of a V-ribbed belt, for example, 0.4 to 3.0 mm, preferably 0.6 to 2.2 mm, and more preferably 0.8 to 1. It is about 4 mm.
 (伸張層)
 伸張層は、前記圧縮ゴム層で例示したものと同様のゴム組成物で形成してもよく、帆布などの布帛(補強布)で形成してもよい。
(Stretch layer)
The stretch layer may be formed of the same rubber composition as that exemplified for the compressed rubber layer, or may be formed of a fabric (reinforcing fabric) such as a canvas.
 補強布としては、例えば、織布、広角度帆布、編布、不織布などの布材などが挙げられる。これらのうち、平織、綾織、朱子織などの形態で製織した織布や、経糸と緯糸との交差角が90~120°程度の広角度帆布や編布などが好ましい。補強布を構成する繊維としては、前記短繊維で例示したものと同様の繊維を利用できる。補強布は、前記RFL液で処理(浸漬処理など)した後、ゴム組成物を擦り込むフリクション又は積層(コーティング)してゴム付帆布を形成してもよい。 Examples of the reinforcing cloth include cloth materials such as woven cloth, wide-angle canvas, knitted cloth, and non-woven cloth. Of these, preferred are woven fabrics woven in the form of plain weave, twill weave, satin weave, etc., wide-angle canvas or knitted fabric in which the crossing angle between warp and weft is about 90 to 120 °. As the fibers constituting the reinforcing cloth, the same fibers as exemplified for the short fibers can be used. The reinforcing cloth may be treated with the RFL solution (immersion treatment or the like) and then friction or rubbing (coating) with the rubber composition to form a canvas with rubber.
 これらのうち、ゴム組成物で形成された伸張層が好ましい。伸張層のゴム組成物において、ゴム成分としては、前記圧縮ゴム層のゴム組成物のゴム成分と同系統又は同種のゴムを使用する場合が多い。また、加硫剤又は架橋剤、共架橋剤又は架橋助剤、加硫促進剤などの添加剤の割合も、それぞれ、前記圧縮ゴム層のゴム組成物と同様の範囲から選択できる。 Of these, an extension layer formed of a rubber composition is preferable. In the rubber composition of the stretch layer, as the rubber component, the same system or the same type of rubber as the rubber component of the rubber composition of the compressed rubber layer is often used. The ratio of additives such as a vulcanizing agent or a crosslinking agent, a co-crosslinking agent or a crosslinking aid, and a vulcanization accelerator can also be selected from the same range as that of the rubber composition of the compressed rubber layer.
 ゴム組成物には、背面駆動時に背面ゴムの粘着により発生する異音を抑制するために、さらに圧縮ゴム層と同様の短繊維が含まれていてもよい。短繊維は、ゴム組成物中でランダムに配向させてもよい。さらに、短繊維は一部が屈曲した短繊維であってもよい。 The rubber composition may further contain short fibers similar to those of the compression rubber layer in order to suppress abnormal noise generated due to adhesion of the back rubber when the back surface is driven. The short fibers may be randomly oriented in the rubber composition. Further, the short fiber may be a short fiber partially bent.
 さらに、背面駆動時の異音を抑制するために、伸張層の表面(ベルトの背表面)に凹凸パターンを設けてもよい。凹凸パターンとしては、編布パターン、織布パターン、スダレ織布パターン、エンボスパターンなどが挙げられる。これらのパターンのうち、織布パターン、エンボスパターンが好ましい。さらに、前記繊維樹脂混合層で伸張層の背面の少なくとも一部を被覆してもよい。 Furthermore, an uneven pattern may be provided on the surface of the stretched layer (the back surface of the belt) in order to suppress abnormal noise during backside driving. Examples of the uneven pattern include a knitted fabric pattern, a woven fabric pattern, a suede woven fabric pattern, and an embossed pattern. Of these patterns, a woven fabric pattern and an embossed pattern are preferable. Furthermore, you may coat | cover at least one part of the back surface of an extending | stretching layer with the said fiber resin mixed layer.
 伸長層の厚みは、ベルトの種類に応じて適宜選択できるが、Vリブドベルトの場合、例えば0.4~2mm、好ましくは0.5~1.5mm、さらに好ましくは0.7~1.2mm程度である。 The thickness of the stretched layer can be appropriately selected depending on the type of belt, but in the case of a V-ribbed belt, for example, 0.4 to 2 mm, preferably 0.5 to 1.5 mm, more preferably about 0.7 to 1.2 mm. It is.
 [摩擦伝動ベルトの製造方法]
 本発明の摩擦伝動ベルトは、円筒状ドラムに、伸張層を形成するためのシート(伸張層用シート)と、心線と、圧縮ゴム層を形成するための未加硫ゴムシート(圧縮ゴム層用シート)と、繊維樹脂混合層及び繊維層を形成するためのシート状構造体(繊維樹脂混合層及び繊維層用構造体)とを順次巻き付け、積層シートを得る巻付工程、及び得られた積層シートを金型に押し付けて、前記未加硫ゴムシートを加硫成形する加硫成形工程を経て製造される。
[Method of manufacturing friction transmission belt]
The friction transmission belt of the present invention comprises a cylindrical drum, a sheet for forming a stretch layer (stretch layer sheet), a core wire, and an unvulcanized rubber sheet (compressed rubber layer) for forming a compressed rubber layer. Sheet) and a fiber resin mixed layer and a sheet-like structure for forming the fiber layer (fiber resin mixed layer and fiber layer structure) are sequentially wound to obtain a laminated sheet, and obtained It is manufactured through a vulcanization molding process in which the laminated sheet is pressed against a mold and the unvulcanized rubber sheet is vulcanized.
 詳しくは、巻付工程では、まず、外周面に可撓性ジャケットを装着した内型に未加硫の伸張層用シートを巻き付け、この上に心線を螺旋状にスピニングし、更に未加硫の圧縮ゴム層用シートと、繊維樹脂混合層及び繊維層用シート状原料を順次巻き付けて成形体を作製する。 Specifically, in the winding process, first, an unvulcanized stretch layer sheet is wound around an inner mold having a flexible jacket mounted on the outer peripheral surface, and a core wire is spun into a spiral shape, and further unvulcanized. The compressed rubber layer sheet, the fiber resin mixed layer, and the fiber layer sheet-like raw material are sequentially wound to produce a molded body.
 この工程において、繊維樹脂混合層及び繊維層用構造体は、繊維樹脂混合層と繊維層とを、それぞれ独立して形成するための別個のシート状構造体(例えば、樹脂成分を形成するための繊維状樹脂成分と耐熱繊維とを混繊した不織布と、親水性耐熱繊維からなる不織布との組み合わせなど)であってもよいが、樹脂成分を形成するためのシート状構造体と親水性耐熱繊維を形成するためのシート状構造体とを含む複数のシート状構造体が好ましい。樹脂成分を形成するためのシート状構造体(樹脂成分用構造体)と親水性耐熱繊維を形成するためのシート状構造体(親水性耐熱繊維用構造体)とを組み合わせると、次工程の加硫成形工程における加熱及び加圧によって、樹脂成分は溶融して親水性耐熱繊維間に含浸するため、親水性耐熱繊維の未含浸部分で繊維層を形成することにより、簡便な製造方法で、繊維層と繊維樹脂混合層とを強固に一体化できる。 In this step, the fiber resin mixed layer and the fiber layer structure are formed as separate sheet-like structures (for example, resin components for forming the fiber resin mixed layer and the fiber layer, respectively). It may be a combination of a non-woven fabric in which a fibrous resin component and heat-resistant fibers are mixed, and a non-woven fabric made of hydrophilic heat-resistant fibers. A plurality of sheet-like structures including the sheet-like structure for forming the film is preferable. Combining the sheet-like structure (resin component structure) for forming the resin component with the sheet-like structure (hydrophilic heat-resistant fiber structure) for forming the hydrophilic heat-resistant fiber adds the next step. Since the resin component is melted and impregnated between the hydrophilic heat-resistant fibers by heating and pressurizing in the sulfur molding step, the fiber layer is formed by the non-impregnated portion of the hydrophilic heat-resistant fibers, so that the fibers can be produced by a simple manufacturing method. The layer and the fiber resin mixed layer can be firmly integrated.
 前記複数のシート状構造体は、繊維樹脂混合層を形成するための樹脂成分用構造体と、繊維樹脂混合層及び繊維層を形成するための親水性耐熱繊維用構造体とを含んでいればよいが、繊維樹脂混合層を形成するための耐熱繊維を形成するためのシート状構造体(耐熱繊維用構造体)をさらに含んでいてもよい。 The plurality of sheet-like structures include a resin component structure for forming a fiber resin mixed layer and a hydrophilic heat resistant fiber structure for forming a fiber resin mixed layer and a fiber layer. However, it may further include a sheet-like structure (heat-resistant fiber structure) for forming heat-resistant fibers for forming the fiber-resin mixed layer.
 樹脂成分用構造体の形態は、加硫成形工程において、親水性耐熱繊維間(及び耐熱繊維間)に侵入して繊維樹脂混合層を形成できればよく、例えば、シート、フィルム、織布、編布、不織布などであってもよいが、織布、編布、不織布などの繊維構造体が好ましく、不織布が特に好ましい。不織布などの繊維構造体は、親水性耐熱繊維(及び耐熱繊維)に対して繊維同士が絡み合うためか、圧縮ゴム層との密着性を向上できる。繊維構造体である場合、平均繊維径は、例えば5~50μm、好ましくは7~40μm、さらに好ましくは10~35μm程度である。短繊維の場合、平均長さは、例えば1~500mm、好ましくは3~300mm、さらに好ましくは5~100mm程度である。構成繊維の繊維形態は、特に限定されず、モノフィラメント、マルチフィラメント、紡績糸(スパン糸)のいずれの形態であってもよく、これらの組み合わせであってもよい。 The structure of the resin component structure is not limited as long as it can penetrate between the hydrophilic heat-resistant fibers (and between the heat-resistant fibers) to form a fiber resin mixed layer in the vulcanization molding process. For example, a sheet, a film, a woven fabric, a knitted fabric However, a fibrous structure such as a woven fabric, a knitted fabric, or a nonwoven fabric is preferable, and a nonwoven fabric is particularly preferable. A fiber structure such as a non-woven fabric can improve the adhesion to the compressed rubber layer because the fibers are entangled with the hydrophilic heat-resistant fibers (and heat-resistant fibers). In the case of a fiber structure, the average fiber diameter is, for example, about 5 to 50 μm, preferably about 7 to 40 μm, and more preferably about 10 to 35 μm. In the case of short fibers, the average length is, for example, about 1 to 500 mm, preferably about 3 to 300 mm, and more preferably about 5 to 100 mm. The fiber form of the constituent fibers is not particularly limited, and may be any form of monofilament, multifilament, spun yarn (spun yarn), or a combination thereof.
 親水性耐熱繊維用構造体及び耐熱繊維用構造体の形態は、織布、編布であってもよいが、柔軟性や吸水性に優れ、繊維樹脂混合層では、圧縮ゴム層との界面で埋設して圧縮ゴム層と強固に一体化できる点から、不織布が好ましい。 The structure of the hydrophilic heat-resistant fiber structure and the heat-resistant fiber structure may be a woven fabric or a knitted fabric, but is excellent in flexibility and water absorption, and in the fiber resin mixed layer, at the interface with the compressed rubber layer. Nonwoven fabrics are preferred because they can be embedded and firmly integrated with the compressed rubber layer.
 前記複数のシート状構造体は、単一の樹脂成分用構造体と単一の親水性耐熱繊維用構造体との組み合わせであってもよいが、複数のシート状構造体同士の組み合わせ、例えば、2枚の樹脂成分用構造体と、2枚の耐熱繊維用構造体(2枚の親水性耐熱繊維用構造体、又は親水性耐熱繊維用構造体と耐熱繊維用構造体との合計2枚)との組み合わせであってもよい。複数のシート状構造体同士の組み合わせでは、耐摩耗性及び耐発音性を向上させるために、繊維層及び樹脂繊維混合層の合計厚みを大きくすることが有利である。そのために複数のシート状構造体における各シート状構造体の目付量を大きくすると、加硫中のゴムの流れが阻害されるためか、形状不良が発生し易くなる。これに対して、より多くのシート状構造体同士を組み合わせると、目付量の比較的小さいシート状構造体を複数重ねて巻き付けることにより、加硫中のゴムが円滑に流れるためか、形状不良の発生を抑制し、前記合計厚みを大きくできる。 The plurality of sheet-like structures may be a combination of a single resin component structure and a single hydrophilic heat-resistant fiber structure, but a combination of a plurality of sheet-like structures, for example, Two resin component structures and two heat-resistant fiber structures (two hydrophilic heat-resistant fiber structures or a total of two hydrophilic heat-resistant fiber structures and heat-resistant fiber structures) It may be a combination. In the combination of a plurality of sheet-like structures, it is advantageous to increase the total thickness of the fiber layer and the resin fiber mixed layer in order to improve the wear resistance and sound generation resistance. Therefore, if the basis weight of each sheet-like structure in the plurality of sheet-like structures is increased, shape defects are likely to occur because the flow of rubber during vulcanization is hindered. On the other hand, when more sheet-like structures are combined, a plurality of sheet-like structures having a relatively small weight per unit area are stacked and wound, so that the rubber during vulcanization flows smoothly or the shape is poor. Generation | occurrence | production can be suppressed and the said total thickness can be enlarged.
 複数のシート状構造体同士の組み合わせとしては、軟化点又は融点が加硫温度以下の第一の熱可塑性樹脂を含む不織布(1)と、耐熱繊維を含む不織布(2)と、軟化点又は融点が加硫温度以下の第二の熱可塑性樹脂を含む不織布(3)と、親水性耐熱繊維を含む不織布(4)との組み合わせが好ましい。この組み合わせでは、不織布(1)及び(3)が樹脂成分用シート状構造体であり、不織布(2)が耐熱繊維用シート状構造体であり、不織布(4)が親水性耐熱繊維用シート状構造体である。不織布(1)~(4)を、この順序で圧縮ゴム層を形成するための未加硫ゴムシートの上に巻き付けて、次工程の加硫成形工程で加硫することにより、不織布(2)の全領域及び不織布(4)の一部の領域に、溶融した不織布(1)及び(3)の樹脂成分が含浸して樹脂繊維混合層を形成するとともに、不織布(4)の未含浸領域が繊維層を形成する。なお、第一の熱可塑性樹脂と第二の熱可塑性樹脂とは同じであっても異なっていてもよい。 As a combination of a plurality of sheet-like structures, a non-woven fabric (1) containing a first thermoplastic resin having a softening point or melting point equal to or lower than the vulcanization temperature, a non-woven fabric (2) containing heat-resistant fibers, and a softening point or melting point Is preferably a combination of a nonwoven fabric (3) containing a second thermoplastic resin having a vulcanization temperature or lower and a nonwoven fabric (4) containing a hydrophilic heat-resistant fiber. In this combination, the nonwoven fabrics (1) and (3) are sheet-like structures for resin components, the nonwoven fabric (2) is a sheet-like structure for heat-resistant fibers, and the nonwoven fabric (4) is a sheet-like structure for hydrophilic heat-resistant fibers. It is a structure. The nonwoven fabrics (1) to (4) are wound around an unvulcanized rubber sheet for forming a compressed rubber layer in this order, and vulcanized in the subsequent vulcanization molding step, whereby the nonwoven fabric (2) The resin component of the melted nonwoven fabric (1) and (3) is impregnated in the entire region and a part of the nonwoven fabric (4) to form a resin fiber mixed layer, and the unimpregnated region of the nonwoven fabric (4) A fiber layer is formed. The first thermoplastic resin and the second thermoplastic resin may be the same or different.
 不織布(1)~(4)は、それぞれ独立した不織布を巻き付けてもよいが、予め積層して一体化された不織布(1)と不織布(2)との積層体を巻き付けた後、予め積層されて一体化された不織布(3)と不織布(4)との積層体を巻き付けるのが好ましい。予め積層された積層体を用いることにより、巻付工程において、樹脂成分を形成するための不織布と耐熱繊維を形成するための不織布とをそれぞれ別個に巻き付ける必要がなく、一回の巻き付けで済み、作業性及び生産性に優れる上に、別個の巻き付けによる界面への影響(隙間の発生など)も抑制でき、繊維樹脂混合層の均一性を向上できるためか、ベルトの耐発音性及び耐摩耗性も向上できる。なお、樹脂成分を形成するための不織布と耐熱繊維を形成するための不織布との割合は、少なくとも一方の厚みを変更する方法(例えば、巻き付け回数を増やす方法、厚みの異なる不織布を組み合わせる方法など)で容易に調整できる。 The non-woven fabrics (1) to (4) may be wound with independent non-woven fabrics. However, the non-woven fabric (1) and the non-woven fabric (2) are laminated in advance and then laminated in advance. It is preferable to wind a laminated body of the nonwoven fabric (3) and the nonwoven fabric (4) integrated together. By using a laminated body laminated in advance, in the winding process, it is not necessary to separately wind the nonwoven fabric for forming the resin component and the nonwoven fabric for forming the heat-resistant fiber, and only one winding is required. In addition to being excellent in workability and productivity, it is also possible to suppress the influence on the interface (such as generation of gaps) due to separate winding, and to improve the uniformity of the fiber-resin mixed layer, so the sound resistance and wear resistance of the belt Can also be improved. In addition, the ratio of the nonwoven fabric for forming the resin component and the nonwoven fabric for forming the heat-resistant fiber is a method of changing at least one thickness (for example, a method of increasing the number of windings, a method of combining nonwoven fabrics having different thicknesses, etc.) Can be adjusted easily.
 本発明では、樹脂成分用構造体を圧縮ゴム層側に配設し、耐熱繊維用構造体又は親水性耐熱繊維用構造体をプーリ側に配設することで、加硫時に軟化又は融解した樹脂を確実に圧縮ゴム層表面に被覆できる。さらに、親水性耐熱繊維用構造体をプーリ側の最表面に配置することで、摩擦伝動面に親水性耐熱繊維の特性(例えば、吸水性、耐摩耗性)を確実に反映できる繊維層を形成できる。また、このような積層形態とすることで、耐熱繊維の多くが圧縮ゴム層内部の界面近傍に埋設されるのを防止できる。すなわち、樹脂成分が耐熱繊維の圧縮ゴム層内部の界面近傍への侵入程度(埋設深さ)を制御するバリアの役割を果たす。 In the present invention, the resin component structure is disposed on the compressed rubber layer side, and the heat-resistant fiber structure or the hydrophilic heat-resistant fiber structure is disposed on the pulley side, thereby softening or melting the resin during vulcanization. Can be reliably coated on the surface of the compressed rubber layer. Furthermore, by arranging the structure for hydrophilic heat-resistant fibers on the outermost surface on the pulley side, a fiber layer that can reliably reflect the characteristics of hydrophilic heat-resistant fibers (for example, water absorption and wear resistance) on the friction transmission surface is formed. it can. Moreover, it can prevent that most heat resistant fibers are embed | buried under the interface inside a compression rubber layer by setting it as such a laminated form. That is, the resin component serves as a barrier that controls the degree of penetration (embedding depth) of the heat-resistant fibers into the vicinity of the interface inside the compressed rubber layer.
 さらに、前記組み合わせのうち、被水時の耐発音性を向上できる点から、不織布(2)の耐熱繊維も親水性耐熱繊維である組み合わせが好ましく、軟化点又は融点が加硫温度以下の熱可塑性樹脂を含む第1の不織布と親水性耐熱繊維を含む第2の不織布との積層不織布同士の組み合わせ(すなわち、同一の積層不織布の組み合わせ)が特に好ましい。同一の積層不織布を用いると、2層構造の積層不織布を第1の不織布を内側(圧縮ゴム層側)にして、圧縮ゴム層を形成するための未加硫ゴムシートの上に2重に巻き付けることにより、不織布(1)~(4)のような4層構造の積層体を容易に製造できる。 Furthermore, among the above combinations, a combination in which the heat resistant fiber of the nonwoven fabric (2) is also a hydrophilic heat resistant fiber is preferable from the viewpoint of improving the sound resistance when wet, and the softening point or the thermoplasticity having a melting point equal to or lower than the vulcanization temperature. A combination of laminated nonwoven fabrics of a first nonwoven fabric containing a resin and a second nonwoven fabric containing hydrophilic heat-resistant fibers (that is, a combination of the same laminated nonwoven fabrics) is particularly preferable. When the same laminated nonwoven fabric is used, the laminated nonwoven fabric having a two-layer structure is wound around the unvulcanized rubber sheet for forming the compressed rubber layer with the first nonwoven fabric inside (compressed rubber layer side). Thus, a laminate having a four-layer structure such as the nonwoven fabrics (1) to (4) can be easily produced.
 軟化点又は融点が加硫温度以下の熱可塑性樹脂を含む第1の不織布と親水性耐熱繊維を含む第2の不織布との積層不織布を用いて、繊維層及び繊維樹脂混合層を製造するための模式図を図2に示す。圧縮ゴム層を形成するための未加硫ゴムシートの上に、軟化点又は融点が加硫温度以下の熱可塑性樹脂を含む第1の不織布と、親水性耐熱繊維を含む第2の不織布との積層不織布を、前記第1の不織布を内側(圧縮ゴム層側)にして2重に巻き付けると、未加硫ゴムシートの上に、第1の不織布と第2の不織布とが交互に積層される。その結果、加硫前には、図2の(a)に示されるように、未加硫ゴムシート13の上に、内側から順に、第1の不織布11a、第2の不織布12a、第1の不織布11b及び第2の不織布12bからなる4層構造の積層体が形成される。この積層体を加硫すると、図2の(b)に示されるように、加硫中の加熱及び加圧により、第1の不織布11a及び11bは溶融して第2の不織布12a及び12bに含浸し、圧縮ゴム層16の上で、親水性耐熱繊維及び樹脂成分からなる繊維樹脂混合層14を形成する。詳しくは、第2の不織布12aには、第1の不織布11a及び11bの両方の層から樹脂成分が含浸し、第2の不織布12bには、第1の不織布11bのみから樹脂成分が含浸する。そのため、第2の不織布12aの全領域と、第2不織布12bの一部の領域(下部の領域)とが合わさって繊維樹脂混合層14を形成し、第2の不織布12bのうち、樹脂成分が含浸しない一部の領域(上部の領域)が、樹脂成分を含まない親水性耐熱繊維のみからなる繊維層15を形成する。 For producing a fiber layer and a fiber resin mixed layer by using a laminated nonwoven fabric of a first nonwoven fabric containing a thermoplastic resin having a softening point or a melting point equal to or lower than a vulcanization temperature and a second nonwoven fabric containing a hydrophilic heat-resistant fiber A schematic diagram is shown in FIG. On the unvulcanized rubber sheet for forming the compressed rubber layer, a first nonwoven fabric containing a thermoplastic resin having a softening point or a melting point equal to or lower than the vulcanization temperature, and a second nonwoven fabric containing a hydrophilic heat-resistant fiber When the laminated nonwoven fabric is wound twice with the first nonwoven fabric inside (compressed rubber layer side), the first nonwoven fabric and the second nonwoven fabric are alternately laminated on the unvulcanized rubber sheet. . As a result, before vulcanization, as shown in FIG. 2A, the first nonwoven fabric 11a, the second nonwoven fabric 12a, and the first nonwoven fabric sheet 13 are sequentially formed on the unvulcanized rubber sheet 13 from the inside. A laminate having a four-layer structure including the nonwoven fabric 11b and the second nonwoven fabric 12b is formed. When this laminate is vulcanized, as shown in FIG. 2 (b), the first nonwoven fabrics 11a and 11b are melted and impregnated into the second nonwoven fabrics 12a and 12b by heating and pressurizing during vulcanization. Then, the fiber-resin mixed layer 14 made of hydrophilic heat-resistant fibers and resin components is formed on the compressed rubber layer 16. Specifically, the second nonwoven fabric 12a is impregnated with the resin component from both layers of the first nonwoven fabric 11a and 11b, and the second nonwoven fabric 12b is impregnated with the resin component only from the first nonwoven fabric 11b. Therefore, the entire region of the second nonwoven fabric 12a and a partial region (lower region) of the second nonwoven fabric 12b are combined to form the fiber resin mixed layer 14, and the resin component of the second nonwoven fabric 12b is A part of the region that is not impregnated (upper region) forms a fiber layer 15 made of only hydrophilic heat-resistant fibers that do not contain a resin component.
 繊維樹脂混合層及び繊維層用構造体(特に、前記第1の不織布と第2の不織布との積層不織布)の目付量は、例えば30~180g/m、好ましくは50~150g/m、さらに好ましくは80~120g/m(特に90~110g/m)程度である。目付量が小さすぎると、ゴムがベルト表面まで透過してしまい摩擦係数のDRY/WETの差が大きくなり、耐発音性が低下したり、走行により表面層が摩耗して耐発音性が低下する虞がある。一方、目付量が大きすぎると、加硫時のゴムの流れが阻害され、形状不良となる虞がある。なお、各シート状構造体の目付量の比率は、前述の樹脂成分と繊維成分との質量比に応じて調整される。 The basis weight of the fiber resin mixed layer and the fiber layer structure (particularly, the laminated nonwoven fabric of the first nonwoven fabric and the second nonwoven fabric) is, for example, 30 to 180 g / m 2 , preferably 50 to 150 g / m 2 , More preferably, it is about 80 to 120 g / m 2 (particularly 90 to 110 g / m 2 ). If the weight per unit area is too small, the rubber penetrates to the belt surface and the friction coefficient DRY / WET difference increases, resulting in a decrease in sound resistance, or wear of the surface layer due to running, resulting in a decrease in sound resistance. There is a fear. On the other hand, if the basis weight is too large, the flow of rubber during vulcanization may be hindered, resulting in a shape defect. In addition, the ratio of the fabric weight of each sheet-like structure is adjusted according to the mass ratio of the above-mentioned resin component and fiber component.
 加硫成形工程では、巻き付けられた積層シートを金型に押し付けて少なくとも圧縮ゴム層の未加硫ゴムシートを加硫成形できればよいが、例えば、Vリブドベルトでは、内周面に複数のリブ型を刻設した外型に成形体を巻き付けた内型を同心的に設置する。このとき、外型の内周面と成形体の外周面との間には所定の間隙が設けられている。その後、可撓性ジャケットを外型の内周面(リブ型)に向かって膨張(例えば1~6%程度)させて成形体(例えば、繊維樹脂混合層及び繊維層、圧縮ゴム層の未加硫ゴムシート)をリブ型に圧入し、加硫を行う。最後に、内型を外型より抜き取り、複数のリブを有する加硫ゴムスリーブを外型より脱型した後、カッターを用いてこの加硫ゴムスリーブをベルト長手方向に所定の幅にカットしてVリブドベルトに仕上げる。 In the vulcanization molding process, it is only necessary to vulcanize and mold at least the unvulcanized rubber sheet of the compressed rubber layer by pressing the wound laminated sheet against the mold. For example, in a V-ribbed belt, a plurality of rib molds are provided on the inner peripheral surface. An inner mold in which a molded body is wound around an engraved outer mold is installed concentrically. At this time, a predetermined gap is provided between the inner peripheral surface of the outer mold and the outer peripheral surface of the molded body. Thereafter, the flexible jacket is expanded (for example, about 1 to 6%) toward the inner peripheral surface (rib type) of the outer mold to form a molded body (for example, a fiber resin mixed layer, a fiber layer, and a compressed rubber layer not yet added). (Sulfur rubber sheet) is pressed into the rib mold and vulcanized. Finally, after removing the inner mold from the outer mold and removing the vulcanized rubber sleeve having a plurality of ribs from the outer mold, the vulcanized rubber sleeve is cut to a predetermined width in the longitudinal direction of the belt using a cutter. Finish in a V-ribbed belt.
 本発明では、前記加硫成形工程において、加硫温度未満の温度で予備加熱した後、加硫するのが好ましい。すなわち、可撓性ジャケットを膨張させた後の加硫パターンとしては、低温(例えば60~120℃、好ましくは65~110℃、さらに好ましくは70~100℃程度)の状態で所定の時間(例えば2~20分、好ましくは3~15分程度)を維持する第一ステップ(予備加熱処理)と、その後、加硫温度(例えば150~200℃、好ましくは160~180℃程度)まで温度を上昇させ、この状態で所定の時間(例えば10~40分、好ましくは15~30分)を維持する第二ステップとで構成するのが好ましい。ここで、低温として60~120℃の温度範囲に設定したのは、圧縮ゴム層(特に表層)を形成する未加硫ゴムシート及び樹脂成分用構造体の流動性を小さく(又は少なく)して、耐熱繊維の大部分が圧縮ゴム層内部の界面近傍に取り込まれるのを防止するためである。 In the present invention, in the vulcanization molding step, it is preferable to perform vulcanization after preheating at a temperature lower than the vulcanization temperature. That is, as a vulcanization pattern after expanding the flexible jacket, a predetermined time (for example, 60 to 120 ° C., preferably 65 to 110 ° C., more preferably about 70 to 100 ° C.) at a low temperature is used. The first step (preheating treatment) for maintaining 2 to 20 minutes, preferably about 3 to 15 minutes), and then raising the temperature to the vulcanization temperature (for example, 150 to 200 ° C., preferably about 160 to 180 ° C.) In this state, it is preferable to constitute a second step for maintaining a predetermined time (for example, 10 to 40 minutes, preferably 15 to 30 minutes). Here, the temperature range of 60 to 120 ° C. was set as a low temperature by reducing (or reducing) the fluidity of the unvulcanized rubber sheet and the resin component structure forming the compressed rubber layer (particularly the surface layer). This is because most of the heat-resistant fibers are prevented from being taken in the vicinity of the interface inside the compressed rubber layer.
 このように第一ステップ(低温)と第二ステップ(高温)の二つの温度ステップを設けることで、リブ表面を繊維層及び繊維樹脂混合層で被覆するとともに、繊維樹脂混合層に含まれる耐熱繊維の一部を圧縮ゴム層内部の界面近傍に埋設できる。 Thus, by providing the two temperature steps of the first step (low temperature) and the second step (high temperature), the rib surface is covered with the fiber layer and the fiber resin mixed layer, and the heat resistant fiber contained in the fiber resin mixed layer Can be embedded in the vicinity of the interface inside the compressed rubber layer.
 なお、前記製造方法は一例であり、この製造方法に限定されるものではなく、材質やその特性に応じて様々に変更できる。例えば、加硫パターンは少なくとも第一ステップと第二ステップとを備えておればよく、第一ステップと第二ステップとの間に他の温度ステップを設けてもよい。 In addition, the said manufacturing method is an example and is not limited to this manufacturing method, It can change variously according to a material and its characteristic. For example, the vulcanization pattern may include at least a first step and a second step, and another temperature step may be provided between the first step and the second step.
 製造方法以外では、部材やその厚みなどを適宜組み合わせて行ってもよく、樹脂成分用構造体を構成する熱可塑性樹脂や圧縮ゴム層の未加硫ゴムシートを構成するゴム組成物として流動性の低い材料を用いてもよい。 Other than the manufacturing method, the members and their thicknesses may be appropriately combined, and the fluidity of the thermoplastic resin constituting the resin component structure or the rubber composition constituting the unvulcanized rubber sheet of the compressed rubber layer Low materials may be used.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。以下の例において、各物性における測定方法又は評価方法、実施例に用いた原料を以下に示す。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In the following examples, measurement methods or evaluation methods for each physical property, and raw materials used in the examples are shown below.
 [埋設深さ]
 Vリブドベルトをベルト幅方向と平行方向に切断し、この切断面(特に、リブ側部)を走査型電子顕微鏡(日本電子(株)製「JSM5900LV」)を用いて、拡大観察(倍率は50倍)して、圧縮ゴム層内部における繊維樹脂混合層との界面近傍に埋設した耐熱性繊維の埋設深さを、以下のようにして測定した。
[Beding depth]
A V-ribbed belt is cut in a direction parallel to the belt width direction, and this cut surface (particularly, the rib side) is magnified using a scanning electron microscope (“JSM5900LV” manufactured by JEOL Ltd.) (magnification is 50 ×). Then, the embedding depth of the heat resistant fiber embedded in the vicinity of the interface with the fiber resin mixed layer inside the compressed rubber layer was measured as follows.
 1)リブ側面は略直線であるため、繊維樹脂混合層と圧縮層の表層(耐熱繊維埋設層)との境界に沿って直線Aを引く。 1) Since the rib side surface is substantially straight, a straight line A is drawn along the boundary between the fiber resin mixed layer and the surface layer of the compression layer (heat-resistant fiber buried layer).
 2)リブ溝側、リブ先端側、それらの間における任意の5点(耐熱繊維埋設層と、その内側の埋設していない層との境界)から直線Aに向かって垂線Bを引き、垂線Bの長さを求める。 2) A perpendicular line B is drawn toward the straight line A from any five points (boundary between the heat-resistant fiber buried layer and the inner layer not buried) between the rib groove side, the rib tip side, and the perpendicular line B. Find the length of.
 3)2)で求めた5点の垂線Bの長さを平均して、耐熱繊維の埋設深さとする。 3) The lengths of the five perpendicular lines B obtained in 2) are averaged to obtain the embedment depth of the heat-resistant fiber.
 [摩擦係数]
 摩擦係数測定試験は、直径121.6mmの駆動プーリ(Dr.)、直径76.2mmのアイドラープーリ(IDL.1)、直径61.0mmのアイドラープーリ(IDL.2)、直径76.2mmのアイドラープーリ(IDL.3)、直径77.0mmのアイドラープーリ(IDL.4)、直径121.6mmの従動プーリ(Dn.)を順に配置した図3にレイアウトを示す試験機を用いて行った。そして、試験機の各プーリにVリブドベルトを掛架し、通常走行時(DRY)においては室温条件下(25℃)で、駆動プーリの回転数を400rpm、従動プーリへのベルト巻き付け角度を20°とし、一定荷重(180N/6Rib)を付与してベルトを走行させ、従動プーリのトルクを0~最大20Nmまで上げていき、従動プーリに対するベルトの滑り速度が最大(100%スリップ)となったときの従動プーリのトルク値より、以下の式を用いて摩擦係数μを求めた。
[Coefficient of friction]
The friction coefficient measurement test was performed using a drive pulley (Dr.) having a diameter of 121.6 mm, an idler pulley (IDL.1) having a diameter of 76.2 mm, an idler pulley having a diameter of 61.0 mm (IDL.2), and an idler having a diameter of 76.2 mm. The test was performed using a testing machine having a layout shown in FIG. 3 in which a pulley (IDL.3), an idler pulley (IDL.4) having a diameter of 77.0 mm, and a driven pulley (Dn.) Having a diameter of 121.6 mm were sequentially arranged. Then, a V-ribbed belt is hung on each pulley of the test machine, and during normal driving (DRY), the rotational speed of the driving pulley is 400 rpm and the belt winding angle around the driven pulley is 20 ° under room temperature conditions (25 ° C.). When a belt is run with a constant load (180 N / 6 Rib) applied, the torque of the driven pulley is increased from 0 to a maximum of 20 Nm, and the belt sliding speed with respect to the driven pulley reaches the maximum (100% slip). From the torque value of the driven pulley, the friction coefficient μ was obtained using the following equation.
 μ=ln(T1/T2)/α Μ = ln (T1 / T2) / α
 ここで、T1は張り側張力、T2は緩み側張力、αは従動プーリへのベルト巻き付け角度であり、それぞれ以下の式で求めることができる。 Here, T1 is the tension on the tension side, T2 is the tension on the loose side, and α is the belt winding angle around the driven pulley, which can be obtained by the following equations, respectively.
 T1=T2+Dn.トルク(kgf・m)/(121.6/2000)
 T2=180(N/6Rib)
 α=π/9(rad)(式中、radはラジアンを意味する)。
T1 = T2 + Dn. Torque (kgf · m) / (121.6 / 2000)
T2 = 180 (N / 6 Rib)
α = π / 9 (rad) (where rad means radians).
 注水走行時(WET)は、図4にレイアウトを示すように、駆動プーリの回転数を800rpm、従動プーリへのベルト巻き付け角度を45°(α=π/4)、従動プーリの入口付近に1分間で300mlの水を注水し続ける以外は通常走行時と同じであり、摩擦係数μも上記式を用いて同様に求めた。 During water injection (WET), as shown in the layout of FIG. 4, the rotational speed of the drive pulley is 800 rpm, the belt winding angle around the driven pulley is 45 ° (α = π / 4), and 1 near the inlet of the driven pulley. Except for continuing to pour 300 ml of water per minute, it was the same as in normal running, and the friction coefficient μ was similarly determined using the above equation.
 [発音限界角度]
 ミスアライメント発音評価試験(発音限界角度)は、直径90mmの駆動プーリ(Dr.)、直径70mmのアイドラープーリ(IDL.1)、直径120mmのミスアライメントプーリ(W/P)、直径80mmのテンションプーリ(Ten.)、直径70mmのアイドラープーリ(IDL.2)、直径80mmのアイドラープーリ(IDL.3)を順に配置した図5にレイアウトを示す試験機を用いて行い、アイドラープーリ(IDL.1)とミスアライメントプーリの軸離(スパン長)を135mmに設定し、全てのプーリが同一平面上(ミスアライメントの角度0°)に位置するように調整した。そして、試験機の各プーリにVリブドベルトを掛架し、室温条件下で、駆動プーリの回転数が1000rpm、ベルト張力が300N/6Ribとなるように張力を付与し、駆動プーリの出口付近においてVリブドベルトの摩擦伝動面に定期的(約30秒間隔)に5ccの水を注水して、ミスアライメント(ミスアライメントプーリを各プーリに対し手前側にずらす)でベルトを走行させた時の発音(ミスアライメントプーリの入口付近)が発生するときの角度(発音限界角度)を求めた。また、通常走行時(注水しない以外は注水走行時と同じレイアウト、走行条件)においても同様に発音限界角度を求めた。発音限界角度の数値が大きいほど耐発音性に優れていることを示し、被水時及び通常走行時の発音限界角度が2.0°以上であれば、耐発音性は良好と判断した。
[Sounding limit angle]
The misalignment sound generation evaluation test (sound generation limit angle) consists of a 90 mm diameter drive pulley (Dr.), a 70 mm diameter idler pulley (IDL.1), a 120 mm diameter misalignment pulley (W / P), and a 80 mm diameter tension pulley. (Ten.), An idler pulley (IDL.2) having a diameter of 70 mm, and an idler pulley (IDL.3) having a diameter of 80 mm are arranged in this order, and the tester shown in FIG. And the misalignment pulley axial separation (span length) was set to 135 mm, and all the pulleys were adjusted to be positioned on the same plane (misalignment angle 0 °). Then, a V-ribbed belt is hung on each pulley of the testing machine, and tension is applied so that the rotational speed of the driving pulley is 1000 rpm and the belt tension is 300 N / 6 Rib under room temperature conditions. When 5 cc of water is periodically poured into the friction transmission surface of the ribbed belt (at intervals of about 30 seconds) and the belt is driven by misalignment (the misalignment pulley is shifted to the front side of each pulley) The angle (pronunciation limit angle) when the vicinity of the inlet of the alignment pulley occurs was obtained. In addition, the sounding limit angle was obtained in the same way during normal driving (same layout and driving conditions as during water injection except that water is not injected). The larger the numerical value of the sounding limit angle, the better the sounding resistance, and the sounding resistance was judged to be good when the sounding limit angle during flooding and normal running was 2.0 ° or more.
 [摩耗率]
 摩耗試験は、直径120mmの駆動プーリ(Dr.)、直径85mmのアイドラープーリ(IDL.)、直径120mmの従動プーリ(Dn.)、直径60mmのテンションプーリ(Ten.)を順に配置した図6にレイアウトを示す試験機を用いて行った。そして、試験機の各プーリにVリブドベルトを掛架し、駆動プーリの回転数を4900rpm、アイドラープーリ及びテンションプーリへのベルト巻き付け角度を90°、従動プーリ負荷を10.4kWとし、一定荷重(91kg/6Rib)を付与してベルトを雰囲気温度120℃で24時間走行させた。摩耗率は、摩耗量(=走行前のベルト質量-走行後のベルト質量)を走行前のベルト質量で除して求めた。摩耗率の数値が低いほど耐摩耗性に優れており、この数値が1.4%以下であれば、耐摩耗性は良好と判断した。
[Abrasion rate]
The wear test is shown in FIG. 6 in which a driving pulley (Dr.) with a diameter of 120 mm, an idler pulley (IDL.) With a diameter of 85 mm, a driven pulley (Dn.) With a diameter of 120 mm, and a tension pulley (Ten.) With a diameter of 60 mm are arranged in this order. The test was performed using a testing machine showing the layout. A V-ribbed belt is hung on each pulley of the testing machine, the rotational speed of the drive pulley is 4900 rpm, the belt winding angle around the idler pulley and the tension pulley is 90 °, the driven pulley load is 10.4 kW, and a constant load (91 kg) / 6 Rib) and the belt was run at an ambient temperature of 120 ° C. for 24 hours. The wear rate was determined by dividing the amount of wear (= belt mass before running−belt mass after running) by the belt mass before running. The lower the value of the wear rate, the better the wear resistance. If this value was 1.4% or less, it was judged that the wear resistance was good.
 [実車被水時異音評価]
 試験車両は、排気量1.5リットルの4気筒エンジンを搭載した市販の車両であり、計測開始前のエンジン油温は40℃以下とした。まず、Vリブドベルトを所定の張力でエンジンに取り付け、次に、Vリブドベルトの摩擦伝動面に2cc注水し、最後に、エンジン始動を5回行い、下記の評価点で評価を行い、始動5回のうち最低の評価点をそのベルトの評価点とした。
[Evaluation of abnormal noise when wet with actual vehicle]
The test vehicle was a commercial vehicle equipped with a 4-cylinder engine with a displacement of 1.5 liters, and the engine oil temperature before the start of measurement was 40 ° C. or lower. First, the V-ribbed belt is attached to the engine with a predetermined tension, and then 2 cc of water is injected onto the friction transmission surface of the V-ribbed belt. Finally, the engine is started five times, and the following evaluation points are evaluated. The lowest evaluation score was taken as the evaluation score for the belt.
 (評価点)
  5…発音なし、許容可
  4…発音微小、許容可(ボンネットを閉じると車両横でも異音が聞こえない)
  3…発音小、許容可(窓開放状態でも運転席で異音が聞こえない)
  2…発音中、許容不可(窓開放状態で、運転席で異音が聞こえる)
  1…発音大、許容不可(うるさい)。
(Evaluation points)
5 ... No sound, permissible 4 ... Slight sound, permissible (no audible noise on the side of the vehicle when the hood is closed)
3 ... Small pronunciation, acceptable (no abnormal noise in the driver's seat even when the window is open)
2 ... Unacceptable during sound generation (noise is heard in the driver's seat with the window open)
1 ... Large pronunciation, unacceptable (noisy).
 [耐久走行試験]
 耐久走行試験は、直径120mmの駆動プーリ(Dr.)、直径70mmのアイドラープーリ(IDL.)、直径120mmの従動プーリ(Dn.)、直径61mmのテンションプーリ(Ten.)を順に配置した図7にレイアウトを示す試験機を用いて行った。そして、試験機の各プーリにVリブドベルトを掛架し、駆動プーリの回転数を4900rpm、アイドラープーリへのベルトの巻き付け角度を120°、テンションプーリへのベルトの巻き付け角度を90°、従動プーリ負荷を11.4kWとし、一定荷重(890N/6Rib)を付与してベルトを雰囲気温度120℃で150時間走行させた。走行後のVリブドベルトについて、摩擦係数及び発音限界角度を測定し、実車被水時異音評価を行った。
[Durability test]
In the durability running test, a driving pulley (Dr.) having a diameter of 120 mm, an idler pulley (IDL.) Having a diameter of 70 mm, a driven pulley (Dn.) Having a diameter of 120 mm, and a tension pulley (Ten.) Having a diameter of 61 mm are sequentially arranged. The test was performed using a testing machine showing the layout. A V-ribbed belt is hung on each pulley of the testing machine, the rotational speed of the drive pulley is 4900 rpm, the belt winding angle around the idler pulley is 120 °, the belt winding angle around the tension pulley is 90 °, and the driven pulley load Was 11.4 kW, a constant load (890 N / 6 Rib) was applied, and the belt was run at an ambient temperature of 120 ° C. for 150 hours. With respect to the V-ribbed belt after running, the friction coefficient and the sound generation limit angle were measured, and an abnormal noise evaluation was performed when the actual vehicle was wet.
 [150時間走行後表面層残り]
 150時間耐久走行試験前後でベルト幅方向と平行方向にベルトを切断し、この切断面をSEM観察した。走行前の表面層(繊維樹脂混合層+親水性耐熱繊維層)の厚みと、走行後の表面層の厚みを測定し、走行後の表面層の厚み/走行前の表面層の厚みとして算出した。
[Remaining surface layer after running for 150 hours]
The belt was cut in a direction parallel to the belt width direction before and after the 150-hour durability running test, and this cut surface was observed with an SEM. The thickness of the surface layer before running (fiber resin mixed layer + hydrophilic heat-resistant fiber layer) and the thickness of the surface layer after running were measured and calculated as the thickness of the surface layer after running / the thickness of the surface layer before running. .
 [比較例で使用される樹脂成分]
 比較例において、圧縮ゴム層側に配置され、繊維樹脂混合層の樹脂成分となる熱可塑性樹脂を表1に示す。
[Resin components used in comparative examples]
Table 1 shows thermoplastic resins that are disposed on the compressed rubber layer side and serve as the resin component of the fiber resin mixed layer in the comparative example.
 熱可塑性樹脂A(タマポリ社製「マルチトロン」)は、材質がポリエチレン(融点130℃)のフィルム形態であり、厚みが0.04mm、目付量が38g/mである。 Thermoplastic resin A (“Multitron” manufactured by Tamapoly Co., Ltd.) is in the form of a film made of polyethylene (melting point: 130 ° C.), has a thickness of 0.04 mm, and a basis weight of 38 g / m 2 .
 熱可塑性樹脂B1(出光ユニテック社製「ストラテック」)は、材質がポリエチレン(融点125℃)の長繊維からなる不織布形態であり、厚みが0.20mm、目付量が30g/mである。 The thermoplastic resin B1 (“Stratec” manufactured by Idemitsu Unitech Co., Ltd.) is in the form of a nonwoven fabric composed of long fibers made of polyethylene (melting point: 125 ° C.), and has a thickness of 0.20 mm and a basis weight of 30 g / m 2 .
 熱可塑性樹脂B2(出光ユニテック社製「ストラテック」)は、材質がポリエチレン(融点125℃)の長繊維からなる不織布形態であり、繊維中に4質量%の非イオン系界面活性剤が練り込まれており、厚みが0.20mm、目付量が30g/mである。 Thermoplastic resin B2 (“Stratec” manufactured by Idemitsu Unitech Co., Ltd.) is a nonwoven fabric made of long fibers of polyethylene (melting point 125 ° C.), and 4% by mass of a nonionic surfactant is kneaded into the fibers. The thickness is 0.20 mm, and the basis weight is 30 g / m 2 .
 熱可塑性樹脂C(シンワ社製「スパンボンド不織布」)は、材質は芯がポリプロピレン(融点170℃)、鞘がポリエチレン(融点125℃)の複合長繊維からなる不織布形態であり、厚みが0.20mm、目付量が30g/mである。 Thermoplastic resin C (“Spunbond nonwoven fabric” manufactured by Shinwa Co., Ltd.) is a nonwoven fabric composed of a composite long fiber having a core of polypropylene (melting point 170 ° C.) and a sheath of polyethylene (melting point 125 ° C.), and has a thickness of 0.00. The weight is 20 mm and the basis weight is 30 g / m 2 .
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 [実施例及び比較例で使用される不織布]
 実施例及び比較例で使用される不織布を表2に示す。不織布E~Jは、比較例において、前記樹脂成分に対してプーリ側に配置される不織布である。不織布K及びLは、実施例で使用される不織布であり、不織布Mは、比較例で使用される不織布である。
[Nonwoven fabric used in Examples and Comparative Examples]
The nonwoven fabrics used in the examples and comparative examples are shown in Table 2. Nonwoven fabrics E to J are nonwoven fabrics arranged on the pulley side with respect to the resin component in the comparative example. Nonwoven fabrics K and L are nonwoven fabrics used in the examples, and nonwoven fabric M is a nonwoven fabric used in the comparative examples.
 各不織布の詳細は、以下の通りであり、各不織布の特性を表2にまとめて示す。 Details of each nonwoven fabric are as follows, and the characteristics of each nonwoven fabric are summarized in Table 2.
 不織布E:ユニチカ(株)製「コットエース」、綿不織布、厚み0.15mm、繊維長5~50mm、目付量30g/m
 不織布F:ユニチカ(株)製「コットエース」、綿不織布形態、厚み0.23mm、繊維長5~50mm、目付量45g/m
 不織布G:オーミケンシ(株)製「クラビオン」、レーヨン不織布、厚み0.20mm、繊維長5~50mm、目付量40g/m
 不織布H:オーミケンシ(株)製「クラビオン」、繊維長約50mmのレーヨン短繊維とポリエチレンテレフタレート(PET)長繊維とがランダムに混綿した不織布、レーヨン短繊維/PET長繊維=70/30(質量比)、厚み0.21mm、目付量40g/m
 不織布I:オーミケンシ(株)製「クラビオン」、繊維長約50mmのレーヨン短繊維とPET長繊維と融点125℃のポリエチレン(PE)長繊維とがランダムに混綿した不織布、レーヨン短繊維/PET長繊維/PE長繊維=70/15/15(質量比)、厚み0.21mm、目付量40g/m
 不織布J:出光ユニテック(株)製「ストラマイティ」、繊維長2~7mmのパルプの不織紙(厚み0.25mm)とPE長繊維(融点125℃、厚み0.10mm)の不織布との積層体、目付量30g/m
 不織布K:小津産業(株)製「ノアストロング」、繊維長10mmのパルプの不織紙とポリプロピレン(PP)長繊維(融点170℃)の不織布との積層体、目付量80g/m
 不織布L:小津産業(株)製「ノアストロング」、繊維長10mmのパルプの不織紙(厚み0.28mm)とPP長繊維(融点170℃、厚み0.10mm)の不織布との積層体、目付量100g/m
 不織布M:小津産業(株)製「ノアストロング」、繊維長10mmのパルプの不織紙(厚み0.32mm)とPP長繊維(融点170℃、厚み0.10mm)の不織布との積層体、目付量200g/m
 不織布N:小津産業(株)製「ノアストロング」、繊維長10mmのパルプの不織紙(厚み0.31mm)とPP長繊維(融点170℃、厚み0.07mm)の不織布との積層体、目付量100g/m
 不織布O:小津産業(株)製「ノアストロング」、繊維長10mmのパルプの不織紙(厚み0.20mm)とPP長繊維(融点170℃、厚み0.17mm)の不織布との積層体、目付量100g/m
 
Non-woven fabric E: “Cot Ace” manufactured by Unitika Ltd., cotton non-woven fabric, thickness 0.15 mm, fiber length 5-50 mm, basis weight 30 g / m 2
Non-woven fabric F: “Cot Ace” manufactured by Unitika Co., Ltd., cotton non-woven fabric, thickness 0.23 mm, fiber length 5-50 mm, basis weight 45 g / m 2
Non-woven fabric G: “Clavion” manufactured by Ohmi Kenshi Co., Ltd., rayon non-woven fabric, thickness 0.20 mm, fiber length 5-50 mm, basis weight 40 g / m 2
Non-woven fabric H: “Clavion” manufactured by Omikenshi Co., Ltd., a non-woven fabric in which rayon short fibers having a fiber length of about 50 mm and polyethylene terephthalate (PET) long fibers are mixed randomly, rayon short fibers / PET long fibers = 70/30 (mass ratio) ), Thickness 0.21 mm, basis weight 40 g / m 2
Non-woven fabric I: “Clavion” manufactured by Ohmi Kenshi Co., Ltd., a non-woven fabric in which rayon staple fibers having a fiber length of about 50 mm, PET filament fibers, and polyethylene (PE) filaments having a melting point of 125 ° C. are randomly blended, rayon staple fibers / PET filaments / PE long fiber = 70/15/15 (mass ratio), thickness 0.21 mm, basis weight 40 g / m 2
Nonwoven fabric J: “Stramity” manufactured by Idemitsu Unitech Co., Ltd., laminate of non-woven paper (thickness 0.25 mm) of pulp having a fiber length of 2 to 7 mm and nonwoven fabric of PE long fibers (melting point 125 ° C., thickness 0.10 mm) Body, basis weight 30g / m 2
Non-woven fabric K: “Noast Strong” manufactured by Ozu Sangyo Co., Ltd., laminate of non-woven paper of 10 mm fiber length and non-woven fabric of polypropylene (PP) long fiber (melting point 170 ° C.), weight per unit area 80 g / m 2
Nonwoven fabric L: “No Strong” manufactured by Ozu Sangyo Co., Ltd., laminate of non-woven paper of pulp having a fiber length of 10 mm (thickness 0.28 mm) and nonwoven fabric of PP long fibers (melting point 170 ° C., thickness 0.10 mm), Weight per unit area 100 g / m 2
Nonwoven fabric M: “Noast Strong” manufactured by Ozu Sangyo Co., Ltd., laminate of non-woven paper (thickness 0.32 mm) of pulp having a fiber length of 10 mm and nonwoven fabric of PP long fibers (melting point 170 ° C., thickness 0.10 mm), Weight per unit area 200 g / m 2
Non-woven fabric N: “Noast Strong” manufactured by Ozu Sangyo Co., Ltd., laminate of non-woven paper of pulp having a fiber length of 10 mm (thickness 0.31 mm) and nonwoven fabric of PP long fibers (melting point 170 ° C., thickness 0.07 mm), Weight per unit area 100 g / m 2
Nonwoven fabric O: “Noast Strong” manufactured by Ozu Sangyo Co., Ltd., laminate of non-woven paper of pulp having a fiber length of 10 mm (thickness 0.20 mm) and nonwoven fabric of PP long fibers (melting point 170 ° C., thickness 0.17 mm), The basis weight is 100 g / m 2 .
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 [圧縮ゴム層、伸張層、心線の原料]
 EPDMポリマー:デュポン・ダウエラスマージャパン(株)製「IP3640」
 カーボンブラックHAF:東海カーボン(株)製「シースト3」
 老化防止剤:精工化学(株)製「ノンフレックスOD3」
 ナイロン短繊維:ナイロン66、繊維長約0.5mm
 有機過酸化物:化薬アクゾ(株)製「パーカドックス14RP」
 心線:1,000デニールのPET繊維を2×3の撚り構成で、上撚り係数3.0、下撚り係数3.0で諸撚りしたトータルデニール6,000のコードを接着処理した撚りコード。
[Compressed rubber layer, stretch layer, core wire raw material]
EPDM polymer: “IP3640” manufactured by DuPont Dowelasmer Japan Co., Ltd.
Carbon black HAF: “Seast 3” manufactured by Tokai Carbon Co., Ltd.
Anti-aging agent: “Nonflex OD3” manufactured by Seiko Chemical Co., Ltd.
Nylon short fiber: Nylon 66, fiber length about 0.5mm
Organic peroxide: “Parkadox 14RP” manufactured by Kayaku Akzo Corporation
Core wire: A twisted cord obtained by adhering a cord of total denier 6,000, in which 1,000 denier PET fibers are twisted in a 2 × 3 configuration with an upper twist coefficient of 3.0 and a lower twist coefficient of 3.0.
 実施例1~2及び比較例1~12
 (圧縮ゴム層及び伸張層の形成)
 表3に示すゴム組成物をバンバリーミキサーで混練し、カレンダーロールによって圧延することによって、圧縮ゴム層又は伸張層を形成するためのゴムシートを、それぞれ、2.5mm又は0.8mmの厚みで作製した。
Examples 1-2 and Comparative Examples 1-12
(Formation of compressed rubber layer and stretch layer)
The rubber composition shown in Table 3 was kneaded with a Banbury mixer and rolled with a calender roll to produce rubber sheets for forming a compressed rubber layer or an extended layer with a thickness of 2.5 mm or 0.8 mm, respectively. did.
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
 (ベルトの製造)
 外周面に可撓性ジャケットを装着した内型に未加硫の伸張層用シートを巻き付け、この上に心線を螺旋状にスピニング(ピッチ1.15mm、テンション5kgf)し、更に未加硫の圧縮ゴム層用シートと、繊維層及び繊維樹脂混合層用構造体を順次巻き付けてベルトを作製した。なお、実施例1~4では、前記構造体(不織布K、L、N又はO)を2周巻き付け、比較例では、前記構造体を1周だけ巻き付けた。加硫は、可撓性ジャケットの膨張圧を1.0MPaとし、温度80℃、時間10分で維持(第一ステップ)した後、温度を170℃まで上昇させ、その温度を20分維持(第二ステップ)して行った。加硫完了後は室温付近まで冷却し、外型から内型を抜き取った後、加硫ベルトスリーブを外型より脱型した。
(Manufacture of belts)
An unvulcanized stretch layer sheet is wound around an inner mold having a flexible jacket on the outer peripheral surface, and a core wire is spirally spun onto this (pitch 1.15 mm, tension 5 kgf). A belt was prepared by sequentially winding a sheet for a compressed rubber layer and a structure for a fiber layer and a fiber resin mixed layer. In Examples 1 to 4, the structure (nonwoven fabric K, L, N, or O) was wound twice, and in the comparative example, the structure was wound only once. Vulcanization is performed by setting the expansion pressure of the flexible jacket to 1.0 MPa, maintaining the temperature at 80 ° C. for 10 minutes (first step), then increasing the temperature to 170 ° C., and maintaining the temperature for 20 minutes (first step). Two steps). After completion of vulcanization, the product was cooled to near room temperature, the inner mold was removed from the outer mold, and the vulcanized belt sleeve was removed from the outer mold.
 繊維層及び繊維樹脂混合層用構造体としては、表1の樹脂成分と表2の不織布とを用いて、表4及び5に示す16種類のベルトを作製した。実施例1~4では、表2の不織布K、L、N及びOのPP不織布を圧縮ゴム層側(パルプ不織紙はプーリ側)に配置し、2周巻き付けた。比較例1~7及び9は、表1の樹脂成分を圧縮ゴム層側に配置し、その上(プーリ側)に表2の不織布を配置し、1周巻き付けた。比較例8は、表2の不織布JのPE不織布を圧縮ゴム層側(パルプ不織紙はプーリ側)に配置し、1周巻き付けた。比較例10~12では、表2の不織布K、L及びMのPP不織布を圧縮ゴム層側(パルプ不織紙はプーリ側)に配置し、1周巻き付けた。作製したVリブドベルトは、ベルト長さが1100mm、リブ形状がK型の6リブであった。 As the structure for the fiber layer and the fiber resin mixed layer, 16 types of belts shown in Tables 4 and 5 were prepared using the resin components shown in Table 1 and the nonwoven fabric shown in Table 2. In Examples 1 to 4, PP nonwoven fabrics of nonwoven fabrics K, L, N and O shown in Table 2 were placed on the compressed rubber layer side (pulp nonwoven paper was on the pulley side) and wound twice. In Comparative Examples 1 to 7 and 9, the resin component shown in Table 1 was placed on the compressed rubber layer side, the non-woven fabric shown in Table 2 was placed on it (pulley side), and wound once. In Comparative Example 8, the PE nonwoven fabric of the nonwoven fabric J in Table 2 was placed on the compressed rubber layer side (pulp nonwoven paper was on the pulley side) and wound once. In Comparative Examples 10 to 12, the nonwoven fabrics K, L, and M of Table 2 were placed on the compressed rubber layer side (pulp nonwoven paper was on the pulley side) and wound once. The manufactured V-ribbed belt was 6 ribs with a belt length of 1100 mm and a rib shape of K-type.
 得られたVリブドベルトについて、繊維層及び繊維樹脂混合層の材質を比較した結果として、実施例1~4及び比較例1~9で得られたベルトの評価結果を表4に示し、実施例1~2及び比較例10~12で得られたベルトについて、繊維層及び繊維樹脂混合層の構造を比較した結果を表5に示す。
 
As a result of comparing the materials of the fiber layer and the fiber resin mixed layer with respect to the obtained V-ribbed belt, the evaluation results of the belts obtained in Examples 1 to 4 and Comparative Examples 1 to 9 are shown in Table 4. Table 5 shows the results of comparing the structures of the fiber layer and the fiber resin mixed layer for the belts obtained in 2-2 and Comparative Examples 10-12.
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
 表4の結果から、比較例1~9は摩擦伝動面を繊維樹脂混合層で被覆することによりミスアライメント時の耐発音性に優れているが、実車被水異音評価では評価点2~3と低かった。この理由は、DRYとWET時の摩擦係数の差が比較的大きいことに起因すると考えられる。比較例1~9では、親水性の低い樹脂成分が摩擦伝動面の大部分を覆っているためにDRYとWET時の摩擦係数の差が比較的大きくなったと考えられる。 From the results shown in Table 4, Comparative Examples 1 to 9 are excellent in sound resistance at the time of misalignment by covering the friction transmission surface with a fiber resin mixed layer. It was low. This reason is considered to be due to the relatively large difference in friction coefficient between DRY and WET. In Comparative Examples 1 to 9, it is considered that the difference in friction coefficient between DRY and WET was relatively large because the resin component having low hydrophilicity covered most of the friction transmission surface.
 一方、実施例1~4は摩擦伝動面が親水性耐熱繊維層によって覆われた構造となっている。この構造により、被水時には親水性耐熱繊維層がベルトとプーリ間に侵入した水を素早く吸収し、ベルトとプーリ間に水膜を形成させないことでDRYとWET時の摩擦係数に差がなくなり、実車被水異音評価において評価点5という高い耐発音性を示した。このように、繊維樹脂混合層の上に繊維層を設けることで、DRYとWET時の摩擦係数の差がなくなり、耐発音性が格段に上昇することが確認された。なお、実施例4で得られたベルトは、樹脂成分が多く、耐熱性繊維が少ないためか、実施例1~3と比べるとWET時の摩擦係数が若干低下したが、実車被水時異音評価では差がなく、実用上問題のないレベルであった。 On the other hand, Examples 1 to 4 have a structure in which the friction transmission surface is covered with a hydrophilic heat-resistant fiber layer. With this structure, the hydrophilic heat-resistant fiber layer quickly absorbs water that has entered between the belt and the pulley when exposed to water, and no water film is formed between the belt and the pulley so that there is no difference in the coefficient of friction during DRY and WET. In the actual vehicle wet noise evaluation, high sound resistance of an evaluation score of 5 was shown. Thus, it was confirmed that by providing the fiber layer on the fiber resin mixed layer, there is no difference in the friction coefficient between DRY and WET, and the sound resistance is remarkably increased. The belt obtained in Example 4 had a large resin component and a small amount of heat-resistant fiber, so the friction coefficient at the time of WET was slightly lower than that of Examples 1 to 3, but the noise when the actual vehicle was wet There was no difference in evaluation, and there was no problem in practical use.
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000005

 
 表5の結果から明らかなように、比較例12は不織布の目付量が200g/mと大きい例であるが、加硫時のゴムの流れが阻害されるためか、形状不良となった。 As is apparent from the results in Table 5, Comparative Example 12 is an example in which the basis weight of the nonwoven fabric is as large as 200 g / m 2 , but the shape was poor because the rubber flow during vulcanization was hindered.
 実施例1、2及び比較例10、11ともに新品時(耐久走行前)はミスアライメント発音評価試験においてリブズレまで発音せずに、実車被水異音評価においても評価点5と良好な結果を示した。しかし、耐久走行試験後の耐発音性は実施例と比較例で差がみられた。 When Examples 1 and 2 and Comparative Examples 10 and 11 were new (before endurance running), the misalignment pronunciation evaluation test did not produce sound until rib misalignment, and the actual vehicle wet noise evaluation showed an evaluation score of 5 and good results. It was. However, the sound resistance after the endurance running test was different between the example and the comparative example.
 実施例1及び2では耐久走行試験後もDRYとWET時の摩擦係数の差が0.3以下と比較的小さな差を保っていたのに対して、比較例10及び11ではその差がかなり大きくなっていた。さらに、ミスアライメント発音評価試験においては、実施例1及び2が発音限界角度2°以上の良好なレベルであったのに対して、比較例10及び11ではWET時の発音限界角度が1°と実車で発生し得るミスアライメント量での発音がみられた。そして、耐久走行試験後の実車被水異音評価においては、実施例1及び2では許容されるレベルの評価点である3以上を示しており良好な結果であったが、比較例10及び11では評価点1及び2となり、許容されないレベルであった。 In Examples 1 and 2, the difference in the friction coefficient between DRY and WET was 0.3 or less even after the durability running test, whereas in Comparative Examples 10 and 11, the difference was considerably large. It was. Further, in the misalignment pronunciation evaluation test, Examples 1 and 2 were at a good level with a pronunciation limit angle of 2 ° or more, whereas in Comparative Examples 10 and 11, the pronunciation limit angle at WET was 1 °. There was a pronounced misalignment that could occur in a real car. In the actual vehicle wet noise evaluation after the endurance running test, Examples 1 and 2 showed an acceptable score of 3 or more, which was a good result, but Comparative Examples 10 and 11 The evaluation points were 1 and 2, which were unacceptable levels.
 実施例2で得られたVリブドベルトのリブ断面の走査型電子顕微鏡写真を図8に示す。図8から明らかなように、実施例2のベルトのリブ断面では、圧縮ゴム層との表面近傍内部には、繊維樹脂混合層の耐熱繊維が埋設され、その上に、繊維樹脂混合層と繊維層とが形成されていた。一方、比較例10及び11で得られたVリブドベルトのリブ断面では、樹脂成分と耐熱繊維とが一体化した繊維樹脂混合層のみ形成され、繊維層は形成されていなかった。 FIG. 8 shows a scanning electron micrograph of the rib cross section of the V-ribbed belt obtained in Example 2. As is clear from FIG. 8, in the rib cross section of the belt of Example 2, the heat-resistant fiber of the fiber resin mixed layer is embedded inside the vicinity of the surface with the compressed rubber layer, and the fiber resin mixed layer and the fiber are further formed thereon. Layer was formed. On the other hand, in the rib cross section of the V-ribbed belt obtained in Comparative Examples 10 and 11, only the fiber resin mixed layer in which the resin component and the heat resistant fiber were integrated was formed, and the fiber layer was not formed.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2017年3月21日出願の日本特許出願2017-054859および2018年3月7日出願の日本特許出願2018-041186に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2017-054859 filed on March 21, 2017 and Japanese Patent Application No. 2018-041186 filed on March 7, 2018, the contents of which are incorporated herein by reference.
 本発明の摩擦伝動ベルトは、例えば、Vリブドベルト、ローエッジVベルト、平ベルトなどの各種の摩擦伝動ベルトに利用でき、特に、自動車エンジン補機駆動に用いられるVリブドベルト、Vベルトなどに有用である。 The friction transmission belt of the present invention can be used for various friction transmission belts such as a V-ribbed belt, a low-edge V-belt, and a flat belt, and is particularly useful for a V-ribbed belt and a V-belt used for driving an automobile engine accessory. .
 1…心線
 2…圧縮ゴム層
 3…リブ部
 4…短繊維
 5…伸張層
 6…接着層
DESCRIPTION OF SYMBOLS 1 ... Core wire 2 ... Compression rubber layer 3 ... Rib part 4 ... Short fiber 5 ... Stretch layer 6 ... Adhesive layer

Claims (12)

  1.  ベルト背面を形成する伸張層と、この伸張層の一方の面に形成され、かつプーリと接して摩擦係合する圧縮ゴム層と、前記伸張層と前記圧縮ゴム層との間にベルト長手方向に沿って埋設される心線とを備えた摩擦伝動ベルトであって、
     前記圧縮ゴム層はプーリと接する表面を有し、
     該表面の少なくとも一部が、繊維樹脂混合層を介して繊維層で被覆されており、
     前記繊維樹脂混合層は、樹脂成分と、圧縮ゴム層を形成するゴムの加硫温度を超える軟化点又は融点を有する耐熱繊維とを含み、
     前記繊維層は、前記加硫温度を超える軟化点又は融点を有する親水性耐熱繊維を含み、かつ樹脂成分を含まない、摩擦伝動ベルト。
    A stretch layer that forms the back surface of the belt, a compression rubber layer that is formed on one surface of the stretch layer and that frictionally engages with the pulley, and a longitudinal direction of the belt between the stretch layer and the compression rubber layer A friction transmission belt with a core wire embedded along the
    The compressed rubber layer has a surface in contact with the pulley;
    At least a part of the surface is covered with a fiber layer via a fiber resin mixed layer,
    The fiber resin mixed layer includes a resin component and a heat-resistant fiber having a softening point or a melting point exceeding the vulcanization temperature of the rubber forming the compressed rubber layer,
    The said fiber layer is a friction transmission belt containing the hydrophilic heat-resistant fiber which has a softening point or melting | fusing point exceeding the said vulcanization temperature, and does not contain a resin component.
  2.  前記耐熱繊維が、前記繊維樹脂混合層から前記圧縮ゴム層に亘って埋設された繊維を含む請求項1記載の摩擦伝動ベルト。 The friction transmission belt according to claim 1, wherein the heat resistant fiber includes a fiber embedded from the fiber resin mixed layer to the compressed rubber layer.
  3.  前記樹脂成分が、前記加硫温度で溶融又は軟化可能な熱可塑性樹脂である請求項1又は2記載の摩擦伝動ベルト。 The friction transmission belt according to claim 1 or 2, wherein the resin component is a thermoplastic resin that can be melted or softened at the vulcanization temperature.
  4.  前記樹脂成分がポリプロピレン系樹脂である請求項1~3のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 3, wherein the resin component is a polypropylene resin.
  5.  前記親水性耐熱繊維がセルロース系繊維である請求項1~4のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 4, wherein the hydrophilic heat-resistant fiber is a cellulosic fiber.
  6.  前記耐熱繊維が、セルロース系繊維である請求項1~5のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 5, wherein the heat resistant fiber is a cellulosic fiber.
  7.  前記繊維樹脂混合層に含まれる前記樹脂成分(樹脂成分)と、前記繊維樹脂混合層に含まれる前記耐熱繊維及び前記繊維層に含まれる前記親水性耐熱繊維との合計である繊維成分(繊維成分)との質量比が、(樹脂成分)/(繊維成分)=50/50~20/80である請求項1~6のいずれか一項に記載の摩擦伝動ベルト。 A fiber component (fiber component) that is the sum of the resin component (resin component) contained in the fiber resin mixed layer, the heat resistant fiber contained in the fiber resin mixed layer, and the hydrophilic heat resistant fiber contained in the fiber layer. 7. The friction transmission belt according to any one of claims 1 to 6, wherein a mass ratio with respect to (A) is (resin component) / (fiber component) = 50/50 to 20/80.
  8.  前記圧縮ゴム層が前記ベルト長手方向に互いに平行して延びる複数のリブを有するVリブドベルトである請求項1~7のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 7, wherein the compressed rubber layer is a V-ribbed belt having a plurality of ribs extending in parallel to each other in the belt longitudinal direction.
  9.  円筒状ドラムに、前記伸張層を形成するためのシートと、前記心線と、前記圧縮ゴム層を形成するための未加硫ゴムシートと、前記繊維樹脂混合層及び前記繊維層を形成するためのシート状構造体とを順次巻き付け、積層シートを得る巻付工程、及び
     前記積層シートを金型に押し付けて前記未加硫ゴムシートを加硫成形する加硫成形工程を含む摩擦伝動ベルトの製造方法であって、
     前記加硫成形工程が、前記未加硫ゴムシートを前記加硫温度未満の温度で予備加熱した後、加硫する請求項1~8のいずれか一項に記載の摩擦伝動ベルトの製造方法。
    To form a sheet for forming the stretched layer, the core wire, an unvulcanized rubber sheet for forming the compressed rubber layer, the fiber resin mixed layer and the fiber layer on a cylindrical drum And a vulcanization molding step of vulcanizing and molding the unvulcanized rubber sheet by pressing the laminated sheet against a mold. A method,
    The method for producing a friction transmission belt according to any one of claims 1 to 8, wherein in the vulcanization molding step, the unvulcanized rubber sheet is preheated at a temperature lower than the vulcanization temperature and then vulcanized.
  10.  前記巻付工程において、前記シート状構造体として、軟化点又は融点が前記加硫温度以下の第一の熱可塑性樹脂を含む不織布(1)と、前記耐熱繊維を含む不織布(2)と、軟化点又は融点が前記加硫温度以下の第二の熱可塑性樹脂を含む不織布(3)と、前記親水性耐熱繊維を含む不織布(4)とをこの順序で巻き付ける請求項9記載の製造方法。 In the winding step, as the sheet-like structure, a non-woven fabric (1) containing a first thermoplastic resin having a softening point or melting point equal to or lower than the vulcanization temperature, a non-woven fabric (2) containing the heat-resistant fiber, and softening The manufacturing method of Claim 9 which winds the nonwoven fabric (3) containing the 2nd thermoplastic resin whose point or melting | fusing point is below the said vulcanization temperature, and the nonwoven fabric (4) containing the said hydrophilic heat-resistant fiber in this order.
  11.  前記巻付工程において、前記シート状構造体として、軟化点又は融点が前記加硫温度以下の熱可塑性樹脂を含む第1の不織布と前記親水性耐熱繊維を含む第2の不織布との積層不織布を、第1の不織布を内側にして2重に巻き付ける請求項9記載の製造方法。 In the winding step, a laminated nonwoven fabric of a first nonwoven fabric containing a thermoplastic resin having a softening point or a melting point equal to or lower than the vulcanization temperature and a second nonwoven fabric containing the hydrophilic heat-resistant fibers as the sheet-like structure. The manufacturing method according to claim 9, wherein the first nonwoven fabric is wound inside in a double manner.
  12.  前記シート状構造体の目付量が50~150g/mである請求項9~11のいずれか一項に記載の製造方法。
     
    The production method according to any one of claims 9 to 11, wherein the basis weight of the sheet-like structure is 50 to 150 g / m 2 .
PCT/JP2018/011189 2017-03-21 2018-03-20 Friction transmission belt and method for producing same WO2018174093A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18770304.6A EP3604855B1 (en) 2017-03-21 2018-03-20 Method for producing a friction transmission belt
US16/496,314 US11654645B2 (en) 2017-03-21 2018-03-20 Friction transmission belt and method for producing same
CN201880019040.7A CN110446880B (en) 2017-03-21 2018-03-20 Friction transmission belt and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017054859 2017-03-21
JP2017-054859 2017-03-21
JP2018-041186 2018-03-07
JP2018041186A JP6748133B2 (en) 2017-03-21 2018-03-07 Friction transmission belt and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018174093A1 true WO2018174093A1 (en) 2018-09-27

Family

ID=63584641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011189 WO2018174093A1 (en) 2017-03-21 2018-03-20 Friction transmission belt and method for producing same

Country Status (1)

Country Link
WO (1) WO2018174093A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101489A (en) 2008-09-23 2010-05-06 Hutchinson Sa Transmission belt
JP2014111981A (en) 2012-10-31 2014-06-19 Mitsuboshi Belting Ltd Friction transmission belt
JP2017054859A (en) 2015-09-07 2017-03-16 株式会社東芝 Semiconductor light emitting device
JP2018041186A (en) 2016-09-06 2018-03-15 株式会社Kmc Metal mold design support method and metal mold design support system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101489A (en) 2008-09-23 2010-05-06 Hutchinson Sa Transmission belt
JP2014111981A (en) 2012-10-31 2014-06-19 Mitsuboshi Belting Ltd Friction transmission belt
JP2017054859A (en) 2015-09-07 2017-03-16 株式会社東芝 Semiconductor light emitting device
JP2018041186A (en) 2016-09-06 2018-03-15 株式会社Kmc Metal mold design support method and metal mold design support system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604855A4 *

Similar Documents

Publication Publication Date Title
JP6059111B2 (en) Friction transmission belt
WO2015080157A1 (en) Power-transmitting friction belt and method for manufacturing same
JP6717877B2 (en) V-ribbed belt and manufacturing method thereof
JP6909174B2 (en) V-ribbed belt and its manufacturing method
JP6748002B2 (en) Friction transmission belt and manufacturing method thereof
JP6748133B2 (en) Friction transmission belt and manufacturing method thereof
JP5730645B2 (en) Aramid core wire and power transmission belt
JP6748152B2 (en) V-ribbed belt
WO2018216738A1 (en) V-ribbed belt and manufacturing method for same
JP2020033686A (en) Core wire for friction transmission belt, friction transmission belt, and method of manufacturing these
WO2018174093A1 (en) Friction transmission belt and method for producing same
JP4757041B2 (en) V-ribbed belt
JP2004176904A (en) Power transmission belt
JP2007298162A (en) Friction transmission belt
JP2006124484A (en) Method for producing bonded product of ethylene/alpha-olefin rubber composition and fiber and power transmission belt
JP2006064015A (en) Friction transmission belt, and method for manufacturing friction transmission belt
US20220243785A1 (en) Twisted Cord for Core Wire of Transmission Belt, Manufacturing Method and Use of Same, and Transmission Belt
JP2003254390A (en) Belt for power transmission
JP2006153152A (en) Transmission belt
JP4624753B2 (en) V-ribbed belt
JP2007231977A (en) Toothed belt and tooth portion reinforcing member to be used for the same
WO2016047781A1 (en) Power-transmitting friction belt and method for manufacturing same
JP2005240925A (en) Power transmission belt
JP2004232743A (en) Motive power transmission belt
JP2003247604A (en) V ribbed belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018770304

Country of ref document: EP

Effective date: 20191021