WO2019193695A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2019193695A1
WO2019193695A1 PCT/JP2018/014471 JP2018014471W WO2019193695A1 WO 2019193695 A1 WO2019193695 A1 WO 2019193695A1 JP 2018014471 W JP2018014471 W JP 2018014471W WO 2019193695 A1 WO2019193695 A1 WO 2019193695A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
switching
transmission
csi
channel state
Prior art date
Application number
PCT/JP2018/014471
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
ホイリン リー
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201880094193.8A priority Critical patent/CN112205027A/zh
Priority to JP2020512169A priority patent/JPWO2019193695A1/ja
Priority to PCT/JP2018/014471 priority patent/WO2019193695A1/ja
Priority to EP18913975.1A priority patent/EP3780706A4/en
Priority to AU2018417849A priority patent/AU2018417849A1/en
Priority to US17/044,656 priority patent/US20210099902A1/en
Publication of WO2019193695A1 publication Critical patent/WO2019193695A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
  • a user terminal In an existing LTE system (for example, LTE Rel. 8-13), a user terminal (UE: User Equipment) periodically and / or aperiodically performs channel state information (CSI: Channel State Information) with respect to a base station. ).
  • the UE transmits CSI using an uplink control channel (PUCCH: Physical Uplink Control Channel) and / or an uplink shared channel (PUSCH: Physical Uplink Shared Channel).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • NR future wireless communication systems
  • Partial Band Partial band
  • CC component carrier
  • BWP Bandwidth part
  • one or more frequency bands for example, BWP
  • BWP frequency bands
  • CSI reporting using a configuration different from that of an existing LTE system for example, LTE Rel. 13 or earlier is being studied.
  • a user terminal includes a reception unit that receives a downlink signal in a downlink partial band, a transmission unit that transmits a channel state information report based on the downlink signal in an uplink partial band, the downlink partial band, and the And a controller that controls at least one of switching of at least one partial band of uplink partial bands and transmission of the channel state information report.
  • communication can be appropriately performed even when BWP switching and CSI reporting are used.
  • FIG. 1A to 1C are diagrams illustrating an example of a BWP setting scenario.
  • FIG. 2 is a diagram illustrating an example of BWP activation / deactivation control.
  • FIG. 3 is a diagram illustrating an example of a CSI report triggering or activation method for a possible CSI-RS configuration.
  • 4A and 4B are diagrams illustrating an example of the influence of BWP switching on the CSI report in the paired spectrum.
  • FIG. 5 is a diagram illustrating an example of the timing of the CSI report trigger and the BWP switching trigger.
  • 6A and 6B are diagrams illustrating an example of an operation of CSI reporting and BWP switching according to aspect 1.
  • FIG. 1A to 1C are diagrams illustrating an example of a BWP setting scenario.
  • FIG. 2 is a diagram illustrating an example of BWP activation / deactivation control.
  • FIG. 3 is a diagram illustrating an example of a CSI report triggering or activation method for
  • FIG. 7A and 7B are diagrams illustrating an example of CSI reporting and BWP switching operations according to aspect 2.
  • FIG. 8 is a diagram illustrating another example of the CSI report and BWP switching operation according to aspect 2.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • a carrier for example, NR, 5G or 5G +
  • a carrier component carrier (CC)
  • CC component carrier
  • LTE Long Term Evolution
  • a user terminal also referred to as Wideband (WB) UE, single carrier WB UE, etc.
  • WB Wideband
  • WB UE single carrier WB UE
  • BW Bandwidth
  • Each frequency band (for example, 50 MHz or 200 MHz) in the carrier is called a partial band or a bandwidth part (BWP: Bandwidth part) or the like.
  • FIG. 1 is a diagram illustrating an example of a BWP setting scenario.
  • FIG. 1A shows a scenario (Usage scenario # 1) in which 1 BWP is set as a user terminal within one carrier.
  • 1 BWP is set as a user terminal within one carrier.
  • a 200 MHz BWP is set in an 800 MHz carrier.
  • the activation or deactivation of the BWP may be controlled.
  • the activation of the BWP is a state in which the BWP can be used (or transits to the usable state), and activation of the BWP setting information (configuration) (BWP setting information) or Also called validation.
  • deactivation of BWP means that the BWP cannot be used (or transitions to the unusable state), and is also referred to as deactivation or invalidation of BWP setting information. By scheduling the BWP, the BWP is activated.
  • FIG. 1B shows a scenario (Usage scenario # 2) in which a plurality of BWPs are set in a user terminal within one carrier. As shown in FIG. 1B, at least a part of the plurality of BWPs (for example, BWP # 1 and # 2) may overlap. For example, in FIG. 1B, BWP # 1 is a partial frequency band of BWP # 2.
  • activation or deactivation of at least one of the plurality of BWPs may be controlled.
  • BWP # 1 when data transmission / reception is not performed, BWP # 1 may be activated, and when data transmission / reception is performed, BWP # 2 may be activated.
  • BWP # 1 when data to be transmitted / received occurs, switching from BWP # 1 to BWP # 2 is performed, and when data transmission / reception ends, switching from BWP # 2 to BWP # 1 may be performed. .
  • power consumption can be suppressed.
  • the network may not assume that the user terminal receives and / or transmits outside the active BWP.
  • the network may not assume that the user terminal receives and / or transmits outside the active BWP.
  • it is not suppressed at all that the user terminal that supports the entire carrier receives and / or transmits a signal outside the BWP.
  • FIG. 1C shows a scenario (Usage scenario # 3) in which a plurality of BWPs are set in different bands within one carrier.
  • different pneumatics may be applied to the plurality of BWPs.
  • the neurology is at least 1 such as subcarrier interval, symbol length, slot length, cyclic prefix (CP) length, slot (Transmission Time Interval (TTI)) length, number of symbols per slot, and the like. It may be one.
  • BWPs # 1 and # 2 having different numerologies are set for user terminals having the ability to transmit and receive the entire carrier.
  • at least one BWP configured for the user terminal is activated or deactivated, and one or more BWPs may be active at a certain time.
  • BWP used for DL communication may be referred to as DL BWP (DL frequency band), and BWP used for UL communication may be referred to as UL BWP (UL frequency band).
  • DL BWP and UL BWP may overlap at least part of the frequency band.
  • DL BWP and UL BWP are collectively referred to as BWP when not distinguished from each other.
  • At least one of the DL BWPs set in the user terminal may include a control resource region that is a candidate for DL control channel (DCI) allocation.
  • the control resource area is called a control resource set (CORESET: control resource set), control subband (control subband), search space set, search space resource set, control area, control subband, NR-PDCCH area, etc. Also good.
  • the user terminal monitors one or more search spaces in the control resource set and detects DCI for the user terminal.
  • the search space is a common search space (CSS: Common Search Space) in which a common DCI (for example, group DCI or common DCI) is arranged in one or more user terminals and / or a DCI specific to the user terminal (for example, DL assignment).
  • CCS Common Search Space
  • UE user terminal
  • USS UE-specific Search Space
  • FIG. 2 control of BWP activation and / or deactivation (also called activation / deactivation or switching, determination, etc.) will be described.
  • FIG. 2 it is a figure which shows the example of control in the case of activating one BWP (when switching BWP to activate).
  • FIG. 1B the scenario shown in FIG. 1B is assumed, but BWP activation / deactivation control can be applied as appropriate to the scenario shown in FIGS. 1A and 1C.
  • CORESET # 1 is set in BWP # 1
  • CORESET # 2 is set in BWP # 2.
  • Each of CORESET # 1 and CORESET # 2 is provided with one or more search spaces.
  • the DCI for BWP # 1 and the DCI for BWP # 2 may be arranged in the same search space, or may be arranged in different search spaces.
  • the user terminal when BWP # 1 is in an active state, the user terminal is in CORESET # 1 in a predetermined cycle (for example, every one or more slots, every one or more minislots or every predetermined number of symbols).
  • the search space is monitored (blind decoding) to detect DCI for the user terminal.
  • the DCI may include information (BWP information) indicating which BWP is the DCI.
  • the BWP information is, for example, a BWP index, and may be a predetermined field value in DCI. Further, the BWP index information may be included in DCI for downlink scheduling, may be included in DCI for uplink scheduling, or may be included in DCI of a common search space. Good.
  • the user terminal may determine a BWP on which PDSCH or PUSCH is scheduled by the DCI based on the BWP information in the DCI.
  • the user terminal when detecting the DCI for BWP # 2 in CORESET # 1, the user terminal deactivates (deactivates) BWP # 1 and activates (activates) BWP # 2. Based on the DCI for BWP # 2 detected by CORESET # 1, the user terminal receives the PDSCH scheduled for a predetermined time / frequency resource of DL BWP # 2.
  • DCI for BWP # 1 and DCI for BWP # 2 are detected at different timings in CORESET # 1, but a plurality of DCIs of different BWPs may be detected at the same timing.
  • a plurality of search spaces corresponding to a plurality of BWPs may be provided in CORESET # 1, and a plurality of DCIs of different BWPs may be transmitted in the plurality of search spaces.
  • the user terminal may monitor a plurality of search spaces in CORESET # 1 and detect a plurality of DCIs of different BWPs at the same timing.
  • the user terminal When BWP # 2 is activated, the user terminal monitors the search space in CORESET # 2 in a predetermined cycle (for example, every one or more slots, every one or more minislots or every predetermined number of symbols) (blind). And DCI for BWP # 2 is detected.
  • the user terminal may receive the PDSCH scheduled for a predetermined time / frequency resource of BWP # 2, based on the DCI for BWP # 2 detected by CORESET # 2.
  • FIG. 2 shows the case where a predetermined time is provided for switching between activation and deactivation, the predetermined time may not be provided.
  • BWP # 2 when BWP # 2 is activated with the detection of DCI for BWP # 2 in CORESET # 1, BWP # 2 can be activated without explicit instruction information. It is possible to prevent an increase in overhead associated with the control of conversion.
  • the BWP may be deactivated. For example, in FIG. 2, since the PDSCH is not scheduled for a predetermined period in DL BWP # 2, the user terminal deactivates BWP # 2 and activates BWP # 1.
  • a data channel for example, PDSCH and / or PUSCH
  • the MAC entity may control BWP switching using a timer.
  • a timer may be activated at the time of BWP switching, and the timer may be switched to a predetermined BWP when the timer expires.
  • BWP switching using DCI and BWP switching using a timer may be applied simultaneously.
  • the DL BWP (a pair of DL BWP and UL BWP) may be switched based on the timer.
  • the UE may restart the timer from the initial value when a predetermined condition is satisfied with respect to the timer for switching the active DL BWP and the active UL BWP pair.
  • the predetermined condition may be detecting DCI for PUSCH scheduling for a pair of active DL BWP and active UL BWP.
  • the reference signal for channel state measurement is CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information-Reference Signal), SSB (Synchronization Signal Block, SS / PBCH (Physical Broadcast Channel) block), SS (Synchronization) Signal), DM-RS (Demodulation-Reference Signal), or the like may be used.
  • the UE measures the result of measurement based on the reference signal for channel state measurement as channel state information (CSI), such as a radio base station (for example, BS (Base Station), transmission / reception point (TRP), eNB) (ENodeB), gNB (NR NodeB), network, etc.) may be fed back (reported) at a predetermined timing.
  • CSI channel state information
  • the CSI may include CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), L1-RSRP (Reference Signal Received Power (RSRP) in the physical layer), and the like.
  • the CSI feedback method includes (1) periodic CSI (P-CSI) report, (2) aperiodic CSI (A-CSI) report, and (3) semi-permanent (half Persistent, semi-persistent (CSI) reports (SP-CSI: Semi-Persistent CSI) reports are being studied.
  • P-CSI periodic CSI
  • A-CSI aperiodic CSI
  • SP-CSI Semi-Persistent CSI
  • the P-CSI report resource may be a resource set by higher layer signaling.
  • the SP-CSI report resource may be a resource set by higher layer signaling or a resource specified by an SP-CSI report activation signal (may be referred to as a “trigger signal”). Alternatively, it may be a resource specified by both higher layer signaling and activation signal.
  • the A-CSI report resource may be a resource specified by a trigger signal (DCI), or may be a resource specified by both higher layer signaling and a trigger signal.
  • DCI trigger signal
  • the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE Control Element
  • MAC PDU Protocol Data Unit
  • the broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), and minimum system information (RMSI: Remaining Minimum System Information).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • the information on the CSI report resource may include, for example, information on a report period (ReportPeriodicity) and an offset (ReportSlotOffset), and these may be expressed in slot units, subframe units, and the like.
  • the information of the CSI report resource may include a setting ID (CSI-ReportConfigId), and parameters such as the type of CSI reporting method (P-CSI report, SP-CSI report, etc.) and the reporting cycle are specified by the setting ID. May be.
  • the SP-CSI report resource information may be referred to as SP-CSI report resource setting, SP-CSI report setting, and the like.
  • FIG. 3 is a diagram illustrating an example of a CSI report triggering or activation method for CSI-RS configuration.
  • CSI reports are P-CSI reports, SP-CSI reports on PUCCH (SP-CSI Reporting on PUCCH), SP-CSI reporting on PUSCH (SP-CSI Reporting on PUSCH), and A-CSI reporting.
  • P-CSI-RS When P-CSI-RS is set as CSI-RS setting, P-CSI report, SP-CSI report, and A-CSI report are supported. P-CSI reporting is configured by RRC parameters and the UE does not receive dynamic triggering or activation.
  • the UE receives an activation command for reporting on the PUCCH by the MAC CE, or receives a trigger on DCI for reporting on the PUSCH.
  • the DCI is a cyclic redundancy check (CRC: Radio Network Temporary Identifier, RNTI: SP-CSI-RNTI, SP-CSI Cell-RNTI) for SP-CSI reporting.
  • CRC Radio Network Temporary Identifier
  • RNTI SP-CSI-RNTI
  • SP-CSI Cell-RNTI SP-CSI Cell-RNTI
  • the DCI may be masked (scrambled) with a Cyclic Redundancy Check bit.
  • UE stops SP-CSI-RS measurement and SP-CSI reporting when it receives a predetermined deactivation (release) signal or when a predetermined timer started by an activation command (trigger) expires May be.
  • A-CSI report is triggered by DCI.
  • An activation command may be used for the A-CSI report.
  • SP-CSI-RS When SP-CSI-RS is set as CSI-RS setting, SP-CSI report and A-CSI report are supported.
  • A-CSI reporting is supported when A-CSI-RS is set as the CSI-RS setting.
  • the UE may perform CSI-RS measurement in the active DL BWP and perform CSI reporting in the active UL BWP.
  • a P-CSI report or SP-CSI report that is associated with a DL BWP and scheduled to report in a slot is that the associated DL BWP is the active BWP at the time position of the CSI reference resource for that report. May be reported only if
  • the CSI report setting may be associated with one DL BWP and include DL BWP specific information.
  • the DL BWP specific information may include one CSI report frequency band.
  • the associated DL BWP information may be set for each resource setting.
  • the CSI resource may be set in each DL BWP.
  • the DL BWP information with the same CSI report setting may be shared by adding a CSI resource to the CSI report setting (CSI-ReportConfig).
  • a PUCCH CSI resource (PUCCH-CSI-Resource) indicating UL BWP information may be configured for a P-CSI report or an SP-CSI report.
  • BWP switching occurs when CSI reporting using BWP is set in the UE.
  • the influence of BWP switching when P-CSI report or SP-CSI report on PUCCH is performed using paired spectrum (FDD) BWP (DL BWP and UL BWP) will be described.
  • DL BWP # 1 is associated with UL BWP # 1 and # 2
  • DL BWP # 2 is associated with UL BWP # 2.
  • DL BWP is switched.
  • FIG. 4B when DL BWP is switched from # 1 to # 2 (switch) and UL BWP cannot be switched, DL BWP # 2 and UL BWP # 1 are switched. P-CSI report for DL BWP # 2 is not performed because there is no association between them.
  • the BWP switching mechanism may be based on at least one of RRC reconfiguration, timer, and DCI.
  • a timer may be valid for DL BWP of paired spectrum.
  • FIG. 5 shows that, in slot # 1, the radio base station (gNB) transmits RRC signaling for setting a CSI PUCCH resource for SP-CSI reporting, and in slot # 5, the radio base station sends an SP-CSI report. Indicates the case of sending the activated MAC CE.
  • the UE performs CSI report processing according to this activation, and periodically transmits SP-CSI reports in slots # 8, # 11,.
  • the radio base station transmits a DL BWP switching trigger, it is not determined how the UE performs CSI reporting and BWP switching.
  • the present inventors paid attention to the case where BWP switching can occur during the processing of CSI report, and studied at least one control of CSI reporting and BWP switching in this case, and reached the present invention.
  • DCI format and “DCI” may be interchanged.
  • the UE may assume that BWP switching is not performed during a period (CSI report processing period) from a CSI report instruction (setting, activation, trigger) to CSI report transmission.
  • the radio base station does not switch the BWP during the CSI report processing period.
  • At least one of activation and at least one of trigger) and BWP switching instruction may be controlled.
  • the radio base station may postpone transmission of a BWP switching trigger (for example, DCI) until a predetermined timing.
  • the predetermined timing may be after the transmission of the first CSI report after an instruction (setting, activation, trigger) for starting CSI reports, or after the transmission of a predetermined number of CSI reports.
  • This mode is suitable when the radio base station controls BWP switching based on RRC reconfiguration or DCI.
  • the radio base station in slot # 1, the radio base station (gNB) transmits RRC signaling for setting the CSI PUCCH resource for SP-CSI report, and in slot # 5, the radio base station transmits the SP-CSI report. Indicates the case of sending the activated MAC CE.
  • the UE performs CSI report processing according to this activation, and periodically transmits SP-CSI reports in slots # 8, # 11,.
  • BWP switching may not be performed in slots # 5 to # 8 (CSI report processing period), but may be performed in slots # 1 to # 4 (before activation or trigger of CSI report).
  • this aspect is suitable when the active BWP after switching does not include the active BWP before switching (when the active BWP after switching is not a superset of the active BWP before switching).
  • the active DL BWP # 2 after switching includes the active DL BWP # 1 before switching, even if the DL BWP switching occurs during the CSI report processing period, Similar to the band CSI report, since the CSI measured in DL BWP # 1 can be used for DL BWP # 2, the CSI report process can be continued.
  • the active DL BWP # 2 after switching does not include the active DL BWP # 1 before switching, when the DL BWP switching occurs during the CSI report processing period, the CSI measured in the DL BWP # 1 is converted to the DL BWP. Since it cannot be used for # 2, it is preferable to avoid BWP switching during the CSI report processing period.
  • Aspect 1 can be applied to P-CSI reports, SP-CSI reports, and A-CSI reports.
  • a BWP switching instruction may be performed during a period from the CSI report instruction (setting, activation, trigger) to the CSI report transmission (CSI report processing period).
  • the paired spectrum may be a combination of a DL operation band and a UL operation band, and may be used for FDD (Frequency Division Duplex).
  • At least one DL BWP may be set in the DL operating band of the paired spectrum, and at least one UL BWP may be set in the UL operating band of the paired spectrum.
  • DL BWP and UL BWP in the paired spectrum may be switched separately.
  • the following cases 1 and 2 can be considered for CSI reports using paired spectrum BWP.
  • Operation A When a BWP switching trigger occurs during the CSI report processing period, the BWP switching may be postponed until a predetermined timing.
  • the predetermined timing may be after the transmission of the first CSI report after an instruction (setting, activation, trigger) for starting CSI reports, or after the transmission of a predetermined number of CSI reports.
  • the UE may postpone BWP switching after receiving a BWP switching trigger (eg, DCI).
  • the wireless base station may postpone the start of actual BWP switching after transmitting a BWP switching trigger (eg, DCI).
  • the UE may deactivate (release) the CSI report after transmission of a predetermined CSI report and perform BWP switching.
  • the UE may set a timer corresponding to the postponement of BWP switching, and may deactivate the CSI report when the timer expires.
  • the UE when the UE receives an SP-CSI report trigger in slot # 1 and the UE receives a BWP switching trigger in slot # 2, the UE performs BWP switching for the first time in slot # 3. Postpones to the next slot # 4 of SP-CSI transmission on the current PUSCH.
  • the time from the start to the end of BWP switching is 3 slots, but it may be several symbols to several slots.
  • the radio base station can appropriately perform the operation. .
  • Action B The UE may drop the CSI report.
  • the radio base station may perform BWP switching during the CSI report processing period.
  • Operation C The UE may continue CSI reporting under a predetermined condition.
  • the predetermined condition may be that the active BWP after switching includes the active BWP before switching (the active BWP after switching is a superset of the active BWP before switching).
  • the active DL BWP # 2 after switching includes the active DL BWP before switching, and the UE receives the SP-CSI report trigger in slot # 1 as shown in FIG.
  • the UE receives a BWP switching trigger in # 3 the UE performs BWP switching and performs SP-CSI transmission in slots # 5 and # 8.
  • the active DL BWP # 2 after switching includes the active DL BWP # 1 before switching, even if DL BWP switching occurs during the CSI report processing period, the DL is similar to the subband CSI report. Since the CSI measured in BWP # 1 can be used for DL BWP # 2, the CSI reporting process can be continued.
  • Operation A When a BWP switching trigger occurs during the CSI report processing period, the BWP switching may be postponed until a predetermined timing.
  • the predetermined timing may be after the transmission of the first CSI report after an instruction (setting, activation, trigger) for starting CSI reports, or after the transmission of a predetermined number of CSI reports.
  • the UE may postpone BWP switching after receiving a BWP switching trigger (for example, DCI) (for example, as shown in FIG. 7A).
  • a BWP switching trigger for example, DCI
  • the wireless base station may postpone the start of actual BWP switching after transmitting a BWP switching trigger (eg, DCI).
  • the UE may deactivate (release) the CSI report after transmission of a predetermined CSI report and perform BWP switching.
  • the UE may set a timer corresponding to the postponement of BWP switching, and may deactivate the CSI report when the timer expires.
  • Action B The UE may drop the CSI report (for example, as in FIG. 7B).
  • the radio base station may perform BWP switching during the CSI report processing period.
  • Operation C The UE may continue CSI reporting under a predetermined condition.
  • the predetermined condition may be one or some combination of the following conditions 1 to 5.
  • Condition 1 The UL resource for CSI reporting for the DL BWP associated with the UL BWP has already been set or instructed in the active UL BWP after switching.
  • Processing time is sufficient (processing time is a predetermined time or more)
  • Processing time may be UL BWP switching time or CSI report preparation time.
  • the condition 2 is that a time for preparing (creating) a CSI report after BWP switching can be secured.
  • Condition 3 The state of the CSI request field in the DCI format 0_1 for BWP switching is “no CSI triggering”.
  • the UE transmits the already triggered CSI report.
  • Condition 4 The state of the CSI request field of DCI format 0_1 for BWP switching is “CSI triggering is enabled”, and the timing of CSI reporting triggered by the DCI has already been triggered Must not conflict with CSI reporting timing
  • condition 4 is satisfied in a state where the CSI report has already been triggered, the UE transmits both the already triggered CSI report and the newly triggered CSI report.
  • Condition 5 The state of the CSI request field of the DCI format 0_1 for BWP switching is “CSI triggering is enabled”.
  • the UE does not deal with the already triggered CSI report and transmits a newly triggered CSI report.
  • the UE may deactivate (release) an already triggered CSI report.
  • the UE may control the CSI report based on the value of the CSI request field (for example, whether the value of the CSI request field is a predetermined value).
  • the unpaired spectrum may be an operational band used for both UL and DL, or may be used for TDD (Time Division Duplex).
  • At least one DL BWP and at least one UL BWP may be set for the unpaired spectrum.
  • the center frequency of DL BWP and UL BWP are equal.
  • the bandwidth of DL BWP and UL BWP may be different.
  • DL BWP and UL BWP are switched simultaneously.
  • BWP switching based on RRC reconfiguration, timer, or DCI may be common to DL and UL.
  • the UE switches both DL BWP and UL BWP in the unpaired spectrum based on one RRC reconfiguration, one timer, or one DCI.
  • One of the following operations A, B, and C may be performed for a CSI report that uses an unpaired spectrum BWP.
  • Operation A When a BWP switching trigger occurs during the CSI report processing period, the BWP switching may be postponed until a predetermined timing.
  • the predetermined timing may be after the transmission of the first CSI report after an instruction (setting, activation, trigger) for starting CSI reports, or after the transmission of a predetermined number of CSI reports.
  • the UE may postpone BWP switching after receiving a BWP switching trigger (for example, DCI) (for example, as shown in FIG. 7A).
  • a BWP switching trigger for example, DCI
  • the wireless base station may postpone the start of actual BWP switching after transmitting a BWP switching trigger (eg, DCI).
  • the UE may deactivate (release) the CSI report after transmission of a predetermined CSI report and perform BWP switching.
  • the UE may set a timer corresponding to the postponement of BWP switching, and may deactivate the CSI report when the timer expires.
  • Action B The UE may drop the CSI report (for example, as in FIG. 7B).
  • the radio base station may perform BWP switching during the CSI report processing period.
  • Operation C The UE may continue CSI reporting under a predetermined condition.
  • the predetermined condition may be one or some combination of the following conditions 1 to 5.
  • Condition 1 The UL resource for CSI reporting for the DL BWP associated with the UL BWP has already been set or instructed in the active UL BWP after switching.
  • Processing time is sufficient (processing time is a predetermined time or more)
  • Processing time may be UL BWP switching time or CSI report preparation time.
  • the condition 2 is that a time for preparing (creating) a CSI report after BWP switching can be secured.
  • Condition 3 The state of the CSI request field in the DCI format 0_1 for BWP switching is “no CSI triggering”.
  • the UE transmits the already triggered CSI report.
  • Condition 4 The state of the CSI request field of DCI format 0_1 for BWP switching is “CSI triggering is enabled”, and the timing of CSI reporting triggered by the DCI has already been triggered Must not conflict with CSI reporting timing
  • condition 4 is satisfied in a state where the CSI report has already been triggered, the UE transmits both the already triggered CSI report and the newly triggered CSI report.
  • Condition 5 The state of the CSI request field of the DCI format 0_1 for BWP switching is “CSI triggering is enabled”.
  • the UE does not deal with the already triggered CSI report and transmits a newly triggered CSI report.
  • the UE may deactivate (release) an already triggered CSI report.
  • the UE may control the CSI report based on the value of the CSI request field (for example, whether the value of the CSI request field is a predetermined value).
  • Aspect 2 can be applied to P-CSI reports, SP-CSI reports, and A-CSI reports.
  • the UE and the radio base station can correctly perform at least one of BWP switching and CSI reporting.
  • Both activation or triggering of SP-CSI reporting on PUSCH or A-CSI reporting on PUSCH and BWP switching may be performed by one DCI.
  • Aspect 3-1 One of the following modes 3-1-1 and 3-1-2 may be performed for CSI reporting using paired spectrum BWP.
  • BWP index BWP indicator
  • CSI request field in the same DCI Triggering may be supported.
  • the radio base station and the UE may switch UL BWP and trigger CSI reporting by one DCI.
  • One DCI may support switching DL BWP and triggering CSI reporting.
  • the switching of DL BWP may be accompanied by switching of UL BWP.
  • the radio base station and the UE may switch DL BWP and trigger CSI reporting by one DCI.
  • the radio base station and the UE may switch between DL BWP and UL BWP by one DCI and trigger CSI reporting.
  • the BWP indicator in UL DCI may indicate UL BWP.
  • the X bit in UL DCI may indicate DL BWP.
  • X is, for example, 1 or 2.
  • the X bit may be indicated by any one of the following indication methods 1 and 2.
  • Indication direction 1 UL DCI may include a field of X bit (indicator) that clearly indicates DL BWP (index).
  • the X bit may be indicated by a combination of a plurality of fields (joint field) in UL DCI, or may be indicated by reinterpretation of at least one specific field.
  • the specific field may be a field defined in the specification.
  • each state of the CSI request field may be associated with a specific CSI report setting, and the CSI report setting may include DL BWP.
  • the DL BWP may be different from the current active BWP.
  • At least one specified field may indicate DL BWP (DL BWP BWP index).
  • the radio base station and UE may read at least one specific field in DCI that triggers SP-CSI reporting on PUSCH as a BWP index of DL BWP.
  • Switching between DL BWP and UL BWP and triggering CSI reporting may be supported by one DCI.
  • the radio base station and UE may switch between DL BWP and UL BWP by one DCI and trigger CSI reporting.
  • the following DL DCI or UL DCI may be used as DCI.
  • DL DCI (DCI format for PDSCH scheduling, for example, DCI format 1_0, 1_1) transmitted in DL BWP # 1 is used for scheduling of MAC CE in DL BWP # 2, and the MAC CE is UL BWP # SP-CSI reporting on PUCCH in 2 may be activated.
  • the X bit in DL DCI may indicate the BWP after switching (at least one of DL BWP and UL BWP).
  • X is, for example, 1 or 2.
  • the X bit may be indicated by any one of the following indication methods 1 and 2.
  • the DL DCI may include an X bit (BWP indicator) field that clearly indicates the BWP (index) after switching.
  • BWP indicator X bit
  • the X bit may be indicated by a combination of a plurality of fields (joint field) in DL DCI, or may be indicated by reinterpretation of at least one specific field.
  • the specific field may be a field defined in the specification.
  • redundancy version (Redundancy Version: RV)
  • HARQ process number (HARQ Process Number: HPN)
  • code block group (Code Block Group: At least one field of (CBG, CBG transmission information)
  • BWP index BWP index
  • UL DCI (a DCI format for PUSCH scheduling, eg, DCI format 0_1), which triggers an A-CSI report or triggers an SP-CSI report on PUSCH, is switched to BWP (DL BWP and UL BWP). Or at least one of them.
  • the BWP indicator in UL DCI may indicate the BWP after switching.
  • Aspect 2 can be applied to SP-CSI reports and A-CSI reports.
  • the overhead of the instruction can be suppressed, and the UE and the radio base
  • the control at the station can be simplified.
  • P-CSI reporting is similar to PUSCH transmission using a configured grant type 1.
  • a PUSCH transmission resource (for example, a period) using the set grant type 1 is set by higher layer signaling.
  • a UE that is set to PUSCH transmission using the set grant type 1 periodically performs PUSCH transmission.
  • a PUSCH that uses a set grant may be referred to as a grant-free PUSCH (grant-free PUSCH, PUSCH without grant).
  • the SP-CSI report on PUCCH or the SP-CSI report on PUSCH is similar to PUSCH transmission using configuration grant type 2.
  • a PUSCH transmission resource (for example, a period) using the set grant type 2 is set by higher layer signaling.
  • a UE that is set to PUSCH transmission using the set grant type 2 periodically performs PUSCH transmission according to an activation command or DCI.
  • A-CSI reporting is similar to PUSCH transmission using dynamic grant.
  • the UE performs PUSCH transmission according to the dynamic grant (DCI).
  • DCI dynamic grant
  • the UE or the MAC entity of the UE may initialize (reinitialize) the P-CSI report or SP-CSI report .
  • the UE or the MAC entity of the UE indicates a symbol position previously set by higher layer signaling for P-CSI reporting in the BWP, or for SP-CSI reporting.
  • -P-CSI report or SP-CSI report in the BWP may be started at the set symbol position.
  • the UE or the MAC entity of the UE will send a P-CSI report or SP-CSI report corresponding to the deactivated BWP.
  • the parameters for P-CSI report or SP-CSI report based on higher layer signaling may be suspended while maintaining within a predetermined time. In this case, when the BWP is activated at a subsequent timing, the P-CSI report or the SP-CSI report can be promptly started without notifying the higher layer signaling again.
  • the UE or the MAC entity of the UE stops the P-CSI report or SP-CSI report corresponding to the deactivated BWP within a predetermined time, and performs the P-CSI report based on higher layer signaling.
  • parameters for SP-CSI reporting may be cleared (initialized).
  • the information to be held in the UE memory can be reduced, the chip area can be reduced, and the power consumption can be reduced.
  • the predetermined parameter related to the predetermined BWP is cleared in accordance with the deactivation of the predetermined BWP, when the BWP is activated, the UE does not reset the predetermined parameter unless the predetermined parameter is reset. There is no control based on parameters.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G. 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
  • CC a plurality of cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • a single neurology may be applied, or a plurality of different neurology may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering process performed by the transceiver in the frequency domain, specific windowing process performed by the transceiver in the time domain, and the like.
  • subcarrier interval bandwidth, symbol length, cyclic prefix length, subframe length.
  • TTI length number of symbols per TTI
  • radio frame configuration specific filtering process performed by the transceiver in the frequency domain
  • specific windowing process performed by the transceiver in the time domain and the like.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • scheduling information may be notified by DCI.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information SR
  • scheduling request etc.
  • a random access preamble for establishing connection with the cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 does not have to transmit a switching instruction in a period (for example, a CSI report processing period) from reception of an instruction to transmit a channel state information report to transmission of the channel state information report. 1).
  • the transmission / reception unit 103 may transmit a switching instruction in a period (for example, a CSI report processing period) from reception of an instruction to transmit a channel state information report to transmission of the channel state information report (aspect 2). ).
  • the transmission / reception unit 103 transmits downlink control information (DCI) including a channel state information report transmission instruction (for example, CSI report setting, activation, trigger) and a partial band instruction after switching.
  • DCI downlink control information
  • a channel state information report transmission instruction for example, CSI report setting, activation, trigger
  • a partial band instruction after switching for example, CSI report setting, activation, trigger
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
  • the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control). In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
  • downlink data signals for example, signals transmitted by PDSCH
  • downlink control signals for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.
  • resource Control for example, resource Control
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • synchronization signals for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • downlink reference signals for example, CRS, CSI-RS, DMRS
  • the control unit 301 includes an uplink data signal (for example, a signal transmitted by PUSCH), an uplink control signal (for example, a signal transmitted by PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, by PRACH). (Sending signal), scheduling of uplink reference signals and the like are controlled.
  • an uplink data signal for example, a signal transmitted by PUSCH
  • an uplink control signal for example, a signal transmitted by PUCCH and / or PUSCH, delivery confirmation information, etc.
  • a random access preamble for example, by PRACH.
  • control unit 301 may control at least one of switching of at least one partial band of the downlink partial band and the uplink partial band and reception of the channel state information report.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
  • the DL assignment and UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 301.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 may receive a downlink signal (for example, CSI-RS) in the downlink partial band (DL BWP). Further, the transmission / reception unit 203 may transmit a channel state information (CSI) report (for example, P-CSI report, SP-CSI report, A-CSI report) based on the downlink signal in the uplink partial band (UL BWP).
  • CSI channel state information
  • the transmission / reception unit 203 does not have to receive a switching instruction in a period (for example, a CSI report processing period) from reception of an instruction to transmit a channel state information report to transmission of the channel state information report. 1).
  • the transmission / reception unit 203 may receive a switching instruction in a period (for example, a CSI report processing period) from reception of a channel state information report transmission instruction to transmission of the channel state information report (aspect 2). ).
  • the transmission / reception unit 203 receives downlink control information (DCI) including an instruction to transmit a channel state information report (for example, setting, activation, trigger of CSI report) and an instruction of a partial band after switching. (Aspect 3).
  • DCI downlink control information
  • FIG. 13 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
  • control unit 401 may control at least one of switching of at least one partial band of the downlink partial band and the uplink partial band and transmission of the channel state information report.
  • the control unit 401 transmits the channel state information report. Control of at least one of deferring the switching, stopping the transmission of the channel state information report, performing the switching, and performing the switching and transmitting the channel state information report based on a predetermined condition May be.
  • the predetermined condition is that the downlink partial band after the switching includes the downlink partial band before the switching, the channel state information report resource is set in the uplink partial band after the switching, and the channel There is a processing time of a predetermined time or more for at least one of transmission and switching of the state information report, the channel state information request field in the downlink control information instructing switching is a predetermined value, and after switching The transmission of the channel state information report may not be in conflict with the transmission of the channel state information report before the switching.
  • transmission of the user terminal 20 may be read as “reception of the radio base station 10”, for example.
  • control unit 401 may update parameters used for control based on the information.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can constitute a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
  • a wireless base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Also, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource block (PRB), sub-carrier group (SCG), resource element group (REG), PRB pair, RB pair, etc. May be called.
  • the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • the information, parameters, and the like described in this specification may be expressed using absolute values, may be expressed using relative values from a predetermined value, or other corresponding information may be used. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • names used for parameters and the like are not limited names in any way.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limited in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (master information block (MIB), system information block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell a cell group
  • carrier cell group
  • carrier a base station
  • a base station may also be called in terms such as a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femtocell, and a small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services.
  • a base station subsystem eg, an indoor small base station (RRH: Remote Radio Head)
  • RRH Remote Radio Head
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present disclosure may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the operation performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, may be used in combination, or may be switched according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark) ), A system using another appropriate wireless communication method, and / or a next generation system extended based on these methods.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection is any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain can be considered “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ端末は、下り部分帯域において下り信号を受信する受信部と、上り部分帯域において前記下り信号に基づくチャネル状態情報報告を送信する送信部と、前記下り部分帯域及び前記上り部分帯域の少なくとも1つの部分帯域の切り替えと、前記チャネル状態情報報告の送信と、の少なくとも1つを制御する制御部と、を有する。

Description

ユーザ端末及び無線通信方法
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)においては、ユーザ端末(UE:User Equipment)が基地局に対して、周期的及び/又は非周期的にチャネル状態情報(CSI:Channel State Information)を送信する。UEは、上り制御チャネル(PUCCH:Physical Uplink Control Channel)及び/又は上り共有チャネル(PUSCH:Physical Uplink Shared Channel)を用いて、CSIを送信する。
 将来の無線通信システム(以下、NRと記す)では、キャリア(コンポーネントキャリア(CC:Component Carrier)又はシステム帯域等ともいう)内の一以上の部分的な(partial)周波数帯域(部分帯域(Partial Band)、帯域幅部分(BWP:Bandwidth part)等ともいう)を、DL及び/又はUL通信(DL/UL通信)に用いることが検討されている。
 このように、キャリア内にDL/UL通信に用いられる一以上の周波数帯域(例えば、BWP)を設定可能とする場合、通信に利用するBWPを切り替えて制御することが想定される。また、NRでは、既存のLTEシステム(例えば、LTE Rel.13以前)とは異なる構成を用いたCSI報告が検討されている。
 しかしながら、BWPを切り替えて通信を行う場合に、CSI報告をどのように制御するかについては未だ検討が進んでいない。BWPの切り替えとCSI報告を適用する場合に適切な制御方法を用いなければ柔軟な制御ができず、通信スループット又は通信品質などの劣化が生じるおそれがある。
 本開示では、BWPの切り替えとCSI報告を利用する場合であっても通信を適切に行うことが可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本開示の一態様に係るユーザ端末は、下り部分帯域において下り信号を受信する受信部と、上り部分帯域において前記下り信号に基づくチャネル状態情報報告を送信する送信部と、前記下り部分帯域及び前記上り部分帯域の少なくとも1つの部分帯域の切り替えと、前記チャネル状態情報報告の送信と、の少なくとも1つを制御する制御部と、を有することを特徴とする。
 本発明によれば、BWPの切り替えとCSI報告を利用する場合であっても通信を適切に行うことができる。
図1A-図1Cは、BWPの設定シナリオの一例を示す図である。 図2は、BWPのアクティブ化/非アクティブ化の制御の一例を示す図である。 図3は、可能なCSI-RS設定に対するCSI報告のトリガリング又はアクティベーションの方法の一例を示す図である。 図4A及び図4Bは、ペアードスペクトラムにおけるBWPの切り替えがCSI報告に与える影響の一例を示す図である。 図5は、CSI報告トリガとBWP切り替えトリガのタイミングの一例を示す図である。 図6A及び図6Bは、態様1に係るCSI報告とBWP切り替えの動作の一例を示す図である。 図7A及び図7Bは、態様2に係るCSI報告とBWP切り替えの動作の一例を示す図である。 図8は、態様2に係るCSI報告とBWP切り替えの動作の別の一例を示す図である。 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図10は、一実施形態に係る無線基地局の全体構成の一例を示す図である。 図11は、一実施形態に係る無線基地局の機能構成の一例を示す図である。 図12は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図13は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図14は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システム(例えば、NR、5G又は5G+)では、既存のLTEシステム(例えば、LTE Rel.8-13)より広い帯域幅(例えば、100~800MHz)のキャリア(コンポーネントキャリア(CC:Component Carrier)、セル又はシステム帯域等ともいう)を割り当てることが検討されている。
 一方、当該将来の無線通信システムでは、当該キャリア全体で送信及び/又は受信(送受信)する能力(capability)を有するユーザ端末(Wideband(WB) UE、single carrier WB UE等ともいう)と、当該キャリア全体で送受信する能力を有しないユーザ端末(BW(Bandwidth) reduced UE等ともいう)とが混在することが想定される。
 このように、将来の無線通信システムでは、サポートする帯域幅において複数のユーザ端末が混在すること(various BW UE capabilities)が想定されるため、キャリア内に一以上の部分的な周波数帯域を準静的に設定(configure)することが検討されている。当該キャリア内の各周波数帯域(例えば、50MHz又は200MHzなど)は、部分帯域又は帯域幅部分(BWP:Bandwidth part)等と呼ばれる。
 図1は、BWPの設定シナリオの一例を示す図である。図1Aでは、1キャリア内に1BWPがユーザ端末に設定されるシナリオ(Usage scenario#1)が示される。例えば、図1Aでは、800MHzのキャリア内に200MHzのBWPが設定される。当該BWPのアクティブ化(activation)又は非アクティブ化(deactivation)は制御されてもよい。
 ここで、BWPのアクティブ化とは、当該BWPを利用可能な状態である(又は当該利用可能な状態に遷移する)ことであり、BWPの設定情報(configuration)(BWP設定情報)のアクティブ化又は有効化等とも呼ばれる。また、BWPの非アクティブ化とは、当該BWPを利用不可能な状態である(又は当該利用不可能な状態に遷移する)ことであり、BWP設定情報の非アクティブ化又は無効化等とも呼ばれる。BWPがスケジューリングされることで、このBWPがアクティブ化されることになる。
 図1Bでは、1キャリア内に複数のBWPがユーザ端末に設定されるシナリオ(Usage scenario#2)が示される。図1Bに示すように、当該複数のBWP(例えば、BWP#1及び#2)の少なくとも一部は重複してもよい。例えば、図1Bでは、BWP#1は、BWP#2の一部の周波数帯域である。
 また、当該複数のBWPの少なくとも一つのアクティブ化又は非アクティブ化が制御されてもよい。例えば、図1Bでは、データの送受信が行われない場合、BWP#1がアクティブ化され、データの送受信が行われる場合、BWP#2がアクティブ化されてもよい。具体的には、送受信されるデータが発生すると、BWP#1からBWP#2への切り替えが行われ、データの送受信が終了すると、BWP#2からBWP#1への切り替えが行われてもよい。これにより、ユーザ端末は、BWP#1よりも帯域幅の広いBWP#2を常に監視する必要がないので、消費電力を抑制できる。
 なお、図1A及び1Bにおいて、ネットワーク(例えば、無線基地局)は、ユーザ端末がアクティブ状態のBWP外で受信及び/又は送信することを想定しなくともよい。なお、図1Aにおいて、キャリア全体をサポートするユーザ端末が、当該BWP外で信号を受信及び/又は送信することは何ら抑制されない。
 図1Cでは、1キャリア内の異なる帯域に複数のBWPが設定されるシナリオ(Usage scenario#3)が示される。図1Cに示すように、当該複数のBWPには異なるニューメロロジーが適用されてもよい。ここで、ニューメロロジーは、サブキャリア間隔、シンボル長、スロット長、サイクリックプレフィックス(CP)長、スロット(伝送時間間隔(TTI:Transmission Time Interval))長、スロットあたりのシンボル数などの少なくとも1つであってもよい。
 例えば、図1Cでは、キャリア全体で送受信する能力を有するユーザ端末に対して、ニューメロロジーが異なるBWP#1及び#2が設定される。図1Cでは、ユーザ端末に対して設定される少なくとも一つのBWPのアクティブ化又は非アクティブ化され、ある時間において一以上のBWPがアクティブであってもよい。
 なお、DL通信に利用されるBWPは、DL BWP(DL用周波数帯域)と呼ばれてもよく、UL通信に利用されるBWPは、UL BWP(UL用周波数帯域)と呼ばれてもよい。DL BWP及びUL BWPは、少なくとも一部の周波数帯域が重複してもよい。以下、DL BWP及びUL BWPを区別しない場合は、BWPと総称する。
 ユーザ端末に設定されるDL BWPの少なくとも1つ(例えば、プライマリCCに含まれるDL BWP)は、DL制御チャネル(DCI)の割当て候補となる制御リソース領域を含んでもよい。当該制御リソース領域は、制御リソースセット(CORESET:control resource set)、コントロールサブバンド(control subband)、サーチスペースセット、サーチスペースリソースセット、制御領域、制御サブバンド、NR-PDCCH領域などと呼ばれてもよい。
 ユーザ端末は、制御リソースセット内の一以上のサーチスペースを監視(monitor)して、当該ユーザ端末に対するDCIを検出する。当該サーチスペースは、一以上のユーザ端末に共通のDCI(例えば、グループDCI又は共通DCI)が配置される共通サーチスペース(CSS:Common Search Space)及び/又はユーザ端末固有のDCI(例えば、DLアサインメント及び/又はULグラント)が配置されるユーザ端末(UE)固有サーチスペース(USS:UE-specific Search Space)を含んでもよい。
 図2を参照し、BWPのアクティブ化及び/又は非アクティブ化(アクティブ化/非アクティブ化又は切り替え(switching)、決定等ともいう)の制御について説明する。図2では、1つのBWPをアクティブ化する場合(アクティブ化するBWPを切り替える場合)の制御例を示す図である。なお、図2では、図1Bに示すシナリオを想定するが、BWPのアクティブ化/非アクティブ化の制御は、図1A、1Cに示すシナリオ等にも適宜適用可能である。
 また、図2では、BWP#1内にCORESET#1が設定され、BWP#2内にCORESET#2が設定されるものとする。CORESET#1及びCORESET#2には、それぞれ、一以上のサーチスペースが設けられる。例えば、CORESET#1において、BWP#1用のDCI及びBWP#2用のDCIは、同一のサーチスペース内に配置されてもよいし、又は、それぞれ異なるサーチスペースに配置されてもよい。
 また、図2において、BWP#1がアクティブ状態である場合、ユーザ端末は、所定周期(例えば、一以上のスロット毎、一以上のミニスロット毎又は所定数のシンボル毎)のCORESET#1内のサーチスペースを監視(ブラインド復号)して、当該ユーザ端末に対するDCIを検出する。
 当該DCIは、どのBWPに対するDCIであるかを示す情報(BWP情報)を含んでもよい。当該BWP情報は、例えば、BWPのインデックスであり、DCI内の所定フィールド値であればよい。また、当該BWPインデックス情報は、下りのスケジューリング用のDCIに含まれていてもよいし、上りのスケジューリング用のDCIに含まれていてもよいし、又は共通サーチスペースのDCIに含まれていてもよい。ユーザ端末は、DCI内のBWP情報に基づいて、当該DCIによってPDSCH又はPUSCHがスケジューリングされるBWPを決定してもよい。
 ユーザ端末は、CORESET#1内でBWP#1用のDCIを検出する場合、当該BWP#1用のDCIに基づいて、BWP#1内の所定の時間及び/又は周波数リソース(時間/周波数リソース)にスケジューリングされた(割り当てられた)PDSCHを受信する。
 また、ユーザ端末は、CORESET#1内でBWP#2用のDCIを検出する場合、BWP#1を非アクティブ化(ディアクティベート)して、BWP#2をアクティブ化する(アクティベートする)。ユーザ端末は、CORESET#1で検出された当該BWP#2用のDCIに基づいて、DL BWP#2の所定の時間/周波数リソースにスケジューリングされたPDSCHを受信する。
 なお、図2では、CORESET#1でBWP#1用のDCIとBWP#2用のDCIが異なるタイミングで検出されるが、同一のタイミングで異なるBWPの複数のDCIを検出可能としてもよい。例えば、CORESET#1内に複数のBWPそれぞれに対応する複数のサーチスペースを設け、当該複数のサーチスペースでそれぞれ異なるBWPの複数のDCIを送信してもよい。ユーザ端末は、CORESET#1内の複数のサーチスペースを監視して、同一のタイミングで異なるBWPの複数のDCIを検出してもよい。
 BWP#2がアクティブ化されると、ユーザ端末は、所定周期(例えば、一以上のスロット毎、一以上のミニスロット毎又は所定数のシンボル毎)のCORESET#2内のサーチスペースを監視(ブラインド復号)して、BWP#2用のDCIを検出する。ユーザ端末は、CORESET#2で検出されたBWP#2用のDCIに基づいて、BWP#2の所定の時間/周波数リソースにスケジューリングされたPDSCHを受信してもよい。
 なお、図2では、アクティブ化又は非アクティブ化の切り替え用に所定時間が設けられる場合を示しているが、当該所定時間はなくともよい。
 図2に示すように、CORESET#1内におけるBWP#2用のDCIの検出をトリガとしてBWP#2がアクティブ化される場合、明示的な指示情報なしにBWP#2をアクティブ化できるので、アクティブ化の制御に伴うオーバーヘッドの増加を防止できる。
 また、アクティブ化されたBWPにおいてデータチャネル(例えば、PDSCH及び/又はPUSCH)が所定期間スケジューリングされない場合、当該BWPを非アクティブ化してもよい。例えば、図2では、ユーザ端末は、DL BWP#2においてPDSCHが所定期間スケジューリングされないので、BWP#2を非アクティブ化して、BWP#1をアクティブ化する。
 また、基地局からUEへの通知とは別に、MACエンティティが、タイマを利用してBWPの切り替えを制御してもよい。例えば、BWP切り替えの際にタイマを起動し、タイマが満了した場合に所定のBWPに切り替える構成としてもよい。DCIを利用したBWPの切り替えとタイマを利用したBWPの切り替えを同時に適用してもよい。
 タイマに基づいてDL BWP(DL BWP及びUL BWPのペア)の切り替えが行われてもよい。また、アンペアードスペクトラム(unpaired spectrum)において、アクティブDL BWP及びアクティブUL BWPのペアの切り替えのためのタイマに対し、UEは、所定条件が満たされる場合にタイマを初期値から再開してもよい。所定条件は、アクティブDL BWP及びアクティブUL BWPのペアに対するPUSCHのスケジューリング用のDCIを検出することであってもよい。
 ところで、NRにおいては、下りリンクにおいてチャネル状態を測定する参照信号が検討されている。チャネル状態測定用の参照信号は、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information-Reference Signal)、SSB(Synchronization Signal Block、SS/PBCH(Physical Broadcast Channel)ブロック)、SS(Synchronization Signal)、DM-RS(Demodulation-Reference Signal)などと呼ばれる信号であってもよい。
 UEは、当該チャネル状態測定用の参照信号に基づいて測定した結果を、チャネル状態情報(CSI)として無線基地局(例えば、BS(Base Station)、送受信ポイント(TRP:Transmission/Reception Point)、eNB(eNodeB)、gNB(NR NodeB)、ネットワークなどと呼ばれてもよい)に所定のタイミングでフィードバック(報告)する。CSIは、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、L1-RSRP(物理レイヤにおける参照信号受信電力(RSRP:Reference Signal Received Power))などを含んでもよい。
 CSIのフィードバック方法としては、(1)周期的なCSI(P-CSI:Periodic CSI)報告、(2)非周期的なCSI(A-CSI:Aperiodic CSI)報告、(3)半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI報告(SP-CSI:Semi-Persistent CSI)報告などが検討されている。
 P-CSI報告リソースは、上位レイヤシグナリングによって設定されるリソースであってもよい。
 SP-CSI報告リソースは、上位レイヤシグナリングによって設定されるリソースであってもよいし、SP-CSI報告のアクティベーション信号(「トリガ信号」と呼ばれてもよい)によって指定されるリソースであってもよいし、上位レイヤシグナリングとアクティベーション信号の両方によって指定されるリソースであってもよい。
 A-CSI報告リソースは、トリガ信号(DCI)によって指定されるリソースであってもよいし、上位レイヤシグナリングとトリガ信号の両方によって指定されるリソースであってもよい。
 ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。
 CSI報告リソースの情報は、例えば、報告周期(ReportPeriodicity)及びオフセット(ReportSlotOffset)に関する情報を含んでもよく、これらはスロット単位、サブフレーム単位などで表現されてもよい。CSI報告リソースの情報は、設定ID(CSI-ReportConfigId)を含んでもよく、当該設定IDによってCSI報告方法の種類(P-CSI報告、SP-CSI報告、など)、報告周期などのパラメータが特定されてもよい。SP-CSI報告リソースの情報は、SP-CSI報告リソース設定、SP-CSI報告設定などと呼ばれてもよい。
 CSI-RSの測定のためのCSI-RS設定(configuration)(CSI設定)と、CSI報告のためのCSI報告設定(configuration)が独立にUEへ通知されてもよい。図3は、CSI-RS設定に対するCSI報告のトリガリング又はアクティベーションの方法の一例を示す図である。
 SRS(Sounding Reference Signal)送信が、P-SRS、SP-SRS、A-SRSに分類されるのと同様、CSI報告は、P-CSI報告、PUCCH上のSP-CSI報告(SP-CSI Reporting on PUCCH)、PUSCH上のSP-CSI報告(SP-CSI Reporting on PUSCH)、A-CSI報告に分類されてもよい。
 CSI-RS設定としてP-CSI-RSが設定された場合、P-CSI報告、SP-CSI報告、A-CSI報告がサポートされる。P-CSI報告は、RRCパラメータによって設定され、UEは動的なトリガ(triggering)又はアクティベーション(activation)を受信しない。
 SP-CSI報告に対し、UEは、PUCCH上の報告のためのアクティベーションコマンドをMAC CEによって受信する、又はPUSCH上の報告のためのDCI上のトリガを受信する。当該DCIは、SP-CSI報告用の無線ネットワーク一時識別子(RNTI:Radio Network Temporary Identifier、SP-CSI-RNTI、SP-CSI C-RNTI(SP-CSI Cell-RNTI))によって巡回冗長検査(CRC:Cyclic Redundancy Check)ビットがマスキング(スクランブル)されたDCIであってもよい。UEは、所定のディアクティベーション(リリース)信号を受信した場合、又はアクティベーションコマンド(トリガ)によって開始される所定のタイマが満了した場合、SP-CSI-RSの測定及びSP-CSI報告を停止してもよい。
 A-CSI報告は、DCIによってトリガされる。A-CSI報告は、アクティベーションコマンドを用いてもよい。
 CSI-RS設定としてSP-CSI-RSが設定された場合、SP-CSI報告、A-CSI報告がサポートされる。
 CSI-RS設定としてA-CSI-RSが設定された場合、A-CSI報告がサポートされる。
 また、UEは、アクティブDL BWPにおいてCSI-RS測定を行い、アクティブUL BWPにおいてCSI報告を行ってもよい。
 DL BWPに関連付けられ、或るスロットにおける報告をスケジュールされた、P-CSI報告又はSP-CSI報告は、関連づけられたDL BWPが、当該報告のためのCSI参照リソースの時間位置におけるアクティブBWPであった場合にのみ、報告されてもよい。
 CSI報告設定は、1つのDL BWPに関連づけられ、DL BWP固有情報を含んでもよい。DL BWP固有情報は、1つのCSI報告の周波数帯域を含んでもよい。関連付けられたDL BWP情報は、リソース設定毎に設定されてもよい。
 CSIリソースは各DL BWPに設定されてもよい。CSI報告設定(CSI-ReportConfig)にCSIリソースを追加することによって、CSI報告設定が同じDL BWP情報を共有してもよい。
 各報告設定(reportConfig)の下、P-CSI報告又はSP-CSI報告に対して、UL BWP情報を示すPUCCH CSIリソース(PUCCH-CSI-Resource)が設定されてもよい。
 また、BWPを用いるCSI報告がUEに設定された場合に、BWPの切り替えが発生することが考えられる。ここで、ペアードスペクトラム(FDD)のBWP(DL BWP及びUL BWP)を用いて、P-CSI報告又はPUCCH上のSP-CSI報告が行われる場合の、BWP切り替えの影響について説明する。
 例えば、図4Aに示すように、DL BWP#1がUL BWP#1及び#2に関連付けられ、DL BWP#2がUL BWP#2に関連づけられる。その後、DL BWPの切り替えが行われ、図4Bに示すように、DL BWPが#1から#2に切り替えられ(スイッチ)、且つUL BWPが切り替えられない場合、DL BWP#2とUL BWP#1の間の関連付けがないため、DL BWP#2のためのP-CSI報告は行われない。
 BWP切り替え機構は、RRC再設定(reconfiguration)、タイマ、DCIの少なくとも1つに基づいてもよい。ペアードスペクトラムのDL BWPに対し、タイマが有効であってもよい。
 ここで、BWP切り替え及びCSI報告がUEへ指示される場合のUE動作が決められていない。例えば、図5は、スロット#1において、無線基地局(gNB)がSP-CSI報告用のCSI PUCCHリソースを設定するRRCシグナリングを送信し、スロット#5において、無線基地局がSP-CSI報告をアクティベートするMAC CEを送信する場合を示す。UEは、このアクティベーションに応じてCSI報告処理を行い、スロット#8、#11、…において周期的にSP-CSI報告を送信する。ここで、スロット#12において、無線基地局がDL BWP切り替えトリガを送信する場合、UEがどのように、CSI報告及びBWP切り替えを行うかが決められていない。
 このように、CSI報告とBWP切り替えがUEへ指示される場合、CSI報告及びBWP切り替えをどのように制御するかが問題となる。BWPの切り替えとCSI報告を適用する場合に適切な制御方法を用いなければ柔軟な制御ができず、通信スループット又は通信品質などの劣化が生じるおそれがある。
 そこで、本発明者らは、CSI報告の処理中においてBWP切り替えが起こり得るケースに着目し、当該ケースにおいてCSI報告及びBWP切り替えの少なくとも1つの制御を検討し、本発明に至った。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本明細書において、「DCIフォーマット」及び「DCI」は相互に読み替えられてもよい。
<態様1>
 UEは、CSI報告の指示(設定、アクティベーション、トリガ)からCSI報告の送信までの期間(CSI報告処理期間)に、BWPの切り替えが行われないと想定してもよい。
 言い換えれば、無線基地局(gNB、eNB、ネットワーク(NW)、送受信ポイント(Transmission and Reception Point:TRP))は、CSI報告処理期間中に、BWPを切り替えないように、CSI報告の指示(設定、アクティベーション、トリガの少なくとも1つ)と、BWP切り替えの指示と、の少なくとも1つを制御してもよい。例えば、無線基地局は、BWP切り替えトリガが発生した場合、BWP切り替えトリガ(例えば、DCI)の送信を所定タイミングまで延期してもよい。所定タイミングは、CSI報告の開始の指示(設定、アクティベーション、トリガ)後の1回目のCSI報告の送信後であってもよいし、所定数のCSI報告の送信後であってもよい。
 この態様は、無線基地局が、RRC再設定又はDCIに基づいてBWP切り替えを制御する場合に好適である。例えば、図6Aは、スロット#1において、無線基地局(gNB)がSP-CSI報告用のCSI PUCCHリソースを設定するRRCシグナリングを送信し、スロット#5において、無線基地局がSP-CSI報告をアクティベートするMAC CEを送信する場合を示す。UEは、このアクティベーションに応じてCSI報告処理を行い、スロット#8、#11、…において周期的にSP-CSI報告を送信する。
 この場合、BWP切り替えは、スロット#5~#8(CSI報告処理期間)において行われず、スロット#1~#4(CSI報告のアクティベーション又はトリガよりも前)において行われてもよい。
 また、この態様は、切り替え後のアクティブBWPが切り替え前のアクティブBWPを含まない場合(切り替え後のアクティブBWPが切り替え前のアクティブBWPのスーパーセットでない場合)に好適である。
 例えば、図6Bに示すように、切り替え後のアクティブDL BWP#2が切り替え前のアクティブDL BWP#1を含む場合であれば、CSI報告処理期間中にDL BWPの切り替えが発生しても、サブバンドCSI報告と同様、DL BWP#1において測定されたCSIをDL BWP#2に対して利用できるため、CSI報告処理を継続できる。一方、切り替え後のアクティブDL BWP#2が切り替え前のアクティブDL BWP#1を含まない場合、CSI報告処理期間中にDL BWPの切り替えが発生すると、DL BWP#1において測定されたCSIをDL BWP#2に対して利用できないため、CSI報告処理期間中のBWP切り替えを避けることが好ましい。
 態様1は、P-CSI報告、SP-CSI報告、A-CSI報告に適用できる。
 態様1によれば、BWP切り替えがCSI報告へ影響を与えることを避けることができる。
<態様2>
 CSI報告の指示(設定、アクティベーション、トリガ)からCSI報告の送信までの期間(CSI報告処理期間)に、BWPの切り替えの指示(トリガ)が行われてもよい。
《態様2-1》
 ペアードスペクトラム(paired spectrum)のBWPを用いるCSI報告の動作について説明する。
 ペアードスペクトラムは、DL運用バンド及びUL運用バンドの組み合わせであってもよく、FDD(Frequency Division Duplex)に用いられてもよい。ペアードスペクトラムのDL運用バンドにおいて少なくとも1つのDL BWPが設定されてもよく、ペアードスペクトラムのUL運用バンドにおいて少なくとも1つのUL BWPが設定されてもよい。ペアードスペクトラムにおけるDL BWP及びUL BWPは別々に切り替えられてもよい。
 ペアードスペクトラムのBWPを用いるCSI報告に対し、次のケース1、2が考えられる。
・ケース1
 DL BWPが、タイマ、RRC再設定、又はDCIフォーマット1_1(DL DCI、PDSCHスケジューリング用のDCI)によって、切り替えられる場合、次の動作A、B、Cの1つが行われてもよい。
 動作A:CSI報告処理期間中にBWP切り替えトリガが発生した場合、BWP切り替えは所定タイミングまで延期(postpone)されてもよい。所定タイミングは、CSI報告の開始の指示(設定、アクティベーション、トリガ)後の1回目のCSI報告の送信後であってもよいし、所定数のCSI報告の送信後であってもよい。
 UEは、BWP切り替えトリガ(例えば、DCI)を受信した後、BWP切り替えを延期してもよい。無線基地局は、BWP切り替えトリガ(例えば、DCI)を送信した後、実際のBWP切り替えの開始を延期してもよい。
 UEは、所定のCSI報告の送信後にCSI報告をディアクティベート(リリース)し、BWP切り替えを行ってもよい。UEは、BWP切り替えの延期に対応するタイマを設定し、タイマの満了時にCSI報告をディアクティベートしてもよい。
 例えば、図7Aに示すように、スロット#1においてUEがSP-CSI報告トリガを受信し、スロット#2においてUEがBWP切り替えトリガを受信する場合、UEは、BWP切り替えをスロット#3における1回目のPUSCH上のSP-CSI送信の次のスロット#4へ延期する。ここでは、BWP切り替えの開始から終了までの時間が3スロットであるが、数シンボル~数スロットであってもよい。
 この動作によれば、UEは少なくとも1つのCSI報告を送信でき、無線基地局はCSI報告のアクティベーション又はトリガが受信されたことを確認できるため、無線基地局は動作を適切に行うことができる。
 動作B:UEは、CSI報告をドロップしてもよい。無線基地局は、CSI報告処理期間中にBWP切り替えを行ってもよい。
 例えば、図7Bに示すように、スロット#1においてUEがSP-CSI報告トリガを受信し、スロット#3においてUEがBWP切り替えトリガを受信する場合、UEは、BWP切り替えを行い、スロット#5、#8におけるSP-CSI送信をドロップする(中止する)。
 動作C:UEは、所定条件の下でCSI報告を継続してもよい。所定条件は、切り替え後のアクティブBWPが切り替え前のアクティブBWPを含むこと(切り替え後のアクティブBWPが切り替え前のアクティブBWPのスーパーセットであること)であってもよい。
 例えば、図6Bに示すように、切り替え後のアクティブDL BWP#2が切り替え前のアクティブDL BWPを含み、図8に示すように、スロット#1においてUEがSP-CSI報告トリガを受信し、スロット#3においてUEがBWP切り替えトリガを受信する場合、UEは、BWP切り替えを行い、スロット#5、#8においてSP-CSI送信を行う。
 前述のように、切り替え後のアクティブDL BWP#2が切り替え前のアクティブDL BWP#1を含む場合、CSI報告処理期間中にDL BWPの切り替えが発生しても、サブバンドCSI報告と同様、DL BWP#1において測定されたCSIをDL BWP#2に対して利用できるため、CSI報告処理を継続できる。
・ケース2
 UL BWPが、RRC再設定、又はDCIフォーマット0_1(UL DCI、PUSCHスケジューリング用のDCI)によって、切り替えられる場合、次の動作A、B、Cの1つが行われてもよい。
 動作A:CSI報告処理期間中にBWP切り替えトリガが発生した場合、BWP切り替えは所定タイミングまで延期(postpone)されてもよい。所定タイミングは、CSI報告の開始の指示(設定、アクティベーション、トリガ)後の1回目のCSI報告の送信後であってもよいし、所定数のCSI報告の送信後であってもよい。
 UEは、BWP切り替えトリガ(例えば、DCI)を受信した後、BWP切り替えを延期してもよい(例えば、図7Aのように)。無線基地局は、BWP切り替えトリガ(例えば、DCI)を送信した後、実際のBWP切り替えの開始を延期してもよい。
 UEは、所定のCSI報告の送信後にCSI報告をディアクティベート(リリース)し、BWP切り替えを行ってもよい。UEは、BWP切り替えの延期に対応するタイマを設定し、タイマの満了時にCSI報告をディアクティベートしてもよい。
 動作B:UEは、CSI報告をドロップしてもよい(例えば、図7Bのように)。無線基地局は、CSI報告処理期間中にBWP切り替えを行ってもよい。
 動作C:UEは、所定条件の下でCSI報告を継続してもよい。所定条件は、次の条件1~5の1つ又は幾つかの組み合わせであってもよい。
 条件1:切り替え後のアクティブUL BWPにおいて、当該UL BWPに関連づけられたDL BWPに対するCSI報告用のULリソースが既に設定又は指示されていること
 条件2:処理時間が十分であること(処理時間が所定時間以上であること)
 処理時間は、UL BWPの切り替え時間であってもよいし、CSI報告の準備時間であってもよい。例えば、条件2は、BWP切り替え後にCSI報告を準備(作成)する時間が確保できることである。
 条件3:BWP切り替え用のDCIフォーマット0_1のCSIリクエストフィールドの状態が「CSIトリガなし(no CSI triggering)」であること
 例えば、既にCSI報告がトリガされた状態において、当該DCIによってCSI報告がトリガされない場合、UEは、既にトリガされたCSI報告を送信する。
 条件4:BWP切り替え用のDCIフォーマット0_1のCSIリクエストフィールドの状態が「CSIトリガが有効である(CSI triggering is enabled)」であり、当該DCIによってトリガされたCSI報告のタイミングが、既にトリガされたCSI報告のタイミングと衝突しないこと
 例えば、UEは、既にCSI報告がトリガされた状態において条件4が満たされた場合、既にトリガされたCSI報告と、新たにトリガされたCSI報告と、の両方を送信する。
 条件5:BWP切り替え用のDCIフォーマット0_1のCSIリクエストフィールドの状態が「CSIトリガが有効である(CSI triggering is enabled)」であること
 例えば、UEは、既にCSI報告がトリガされた状態において条件5が満たされた場合、既にトリガされたCSI報告に対処せず、新たにトリガされたCSI報告を送信する。UEは、既にトリガされたCSI報告をディアクティベート(リリース)してもよい。
 言い換えれば、UEは、CSIリクエストフィールドの値(例えば、CSIリクエストフィールドの値が所定値であるか否か)に基づいてCSI報告を制御してもよい。
《態様2-2》
 アンペアードスペクトラム(unpaired spectrum)のBWPを用いるCSI報告の動作について説明する。
 アンペアードスペクトラムは、UL及びDLの両方に用いられる運用バンドであってもよく、TDD(Time Division Duplex)に用いられてもよい。アンペアードスペクトラムに対し、少なくとも1つのDL BWP及び少なくとも1つのUL BWPが設定されてもよい。DL BWP及びUL BWPの中心周波数は等しい。DL BWP及びUL BWPの帯域幅は異なってもよい。DL BWP及びUL BWPは同時に切り替えられる。
 RRC再設定、タイマ、又はDCIに基づくBWP切り替えは、DL及びULに共通であってもよい。言い換えれば、UEは、1つのRRC再設定、1つのタイマ、又は1つのDCIに基づいて、アンペアードスペクトラムにおけるDL BWP及びUL BWPの両方を切り替える。
 アンペアードスペクトラムのBWPを用いるCSI報告に対し、次の動作A、B、Cの1つが行われてもよい。
 動作A:CSI報告処理期間中にBWP切り替えトリガが発生した場合、BWP切り替えは所定タイミングまで延期(postpone)されてもよい。所定タイミングは、CSI報告の開始の指示(設定、アクティベーション、トリガ)後の1回目のCSI報告の送信後であってもよいし、所定数のCSI報告の送信後であってもよい。
 UEは、BWP切り替えトリガ(例えば、DCI)を受信した後、BWP切り替えを延期してもよい(例えば、図7Aのように)。無線基地局は、BWP切り替えトリガ(例えば、DCI)を送信した後、実際のBWP切り替えの開始を延期してもよい。
 UEは、所定のCSI報告の送信後にCSI報告をディアクティベート(リリース)し、BWP切り替えを行ってもよい。UEは、BWP切り替えの延期に対応するタイマを設定し、タイマの満了時にCSI報告をディアクティベートしてもよい。
 動作B:UEは、CSI報告をドロップしてもよい(例えば、図7Bのように)。無線基地局は、CSI報告処理期間中にBWP切り替えを行ってもよい。
 動作C:UEは、所定条件の下でCSI報告を継続してもよい。所定条件は、次の条件1~5の1つ又は幾つかの組み合わせであってもよい。
 条件1:切り替え後のアクティブUL BWPにおいて、当該UL BWPに関連づけられたDL BWPに対するCSI報告用のULリソースが既に設定又は指示されていること
 条件2:処理時間が十分であること(処理時間が所定時間以上であること)
 処理時間は、UL BWPの切り替え時間であってもよいし、CSI報告の準備時間であってもよい。例えば、条件2は、BWP切り替え後にCSI報告を準備(作成)する時間が確保できることである。
 条件3:BWP切り替え用のDCIフォーマット0_1のCSIリクエストフィールドの状態が「CSIトリガなし(no CSI triggering)」であること
 例えば、既にCSI報告がトリガされた状態において、当該DCIによってCSI報告がトリガされない場合、UEは、既にトリガされたCSI報告を送信する。
 条件4:BWP切り替え用のDCIフォーマット0_1のCSIリクエストフィールドの状態が「CSIトリガが有効である(CSI triggering is enabled)」であり、当該DCIによってトリガされたCSI報告のタイミングが、既にトリガされたCSI報告のタイミングと衝突しないこと
 例えば、UEは、既にCSI報告がトリガされた状態において条件4が満たされた場合、既にトリガされたCSI報告と、新たにトリガされたCSI報告と、の両方を送信する。
 条件5:BWP切り替え用のDCIフォーマット0_1のCSIリクエストフィールドの状態が「CSIトリガが有効である(CSI triggering is enabled)」であること
 例えば、UEは、既にCSI報告がトリガされた状態において条件5が満たされた場合、既にトリガされたCSI報告に対処せず、新たにトリガされたCSI報告を送信する。UEは、既にトリガされたCSI報告をディアクティベート(リリース)してもよい。
 言い換えれば、UEは、CSIリクエストフィールドの値(例えば、CSIリクエストフィールドの値が所定値であるか否か)に基づいてCSI報告を制御してもよい。
 態様2は、P-CSI報告、SP-CSI報告、A-CSI報告に適用できる。
 態様2によれば、UE及び無線基地局は、BWP切り替え及びCSI報告の少なくとも1つを正しく行うことができる。
<態様3>
 PUSCH上のSP-CSI報告又はPUSCH上のA-CSI報告のアクティベーション又はトリガと、BWP切り替えと、の両方が、1つのDCIによって行われてもよい。
《態様3-1》
 ペアードスペクトラムのBWPを用いるCSI報告に対し、次の態様3-1-1、3-1-2の1つが行われてもよい。
・態様3-1-1
 1つのDCI(PUSCHスケジューリング用のDCIフォーマット、DCIフォーマット0_1、UL DCI)内のBWPインジケータ(BWPインデックス)フィールドを用いてUL BWPを切り替え、同じDCI内のCSIリクエストフィールドを有効化することによってCSI報告をトリガすること、がサポートされてもよい。言い換えれば、無線基地局及びUEは、1つのDCIによって、UL BWPを切り替え、CSI報告をトリガしてもよい。
・態様3-1-2
 1つのDCI(PUSCHスケジューリング用のDCIフォーマット、DCIフォーマット0_1、UL DCI)によって、DL BWPを切り替え、CSI報告をトリガすること、がサポートされてもよい。DL BWPの切り替えは、UL BWPの切り替えを伴ってもよい。言い換えれば、無線基地局及びUEは、1つのDCIによって、DL BWPを切り替え、CSI報告をトリガしてもよい。また、無線基地局及びUEは、1つのDCIによって、DL BWP及びUL BWPを切り替え、CSI報告をトリガしてもよい。
 UL DCI内のBWPインジケータがUL BWPを示してもよい。
 UL DCI内のXビットがDL BWPを示してもよい。Xは例えば、1又は2である。Xビットは、次の指示方法1、2のいずれかによって指示されてもよい。
 指示方向1:UL DCIが、DL BWP(インデックス)を明示するXビット(インジケータ)のフィールドを含んでもよい。
 指示方向2:Xビットが、UL DCI内の複数のフィールドの組み合わせ(ジョイントフィールド)によって示されてもよいし、少なくとも1つの特定フィールドの再解釈によって示されてもよい。特定フィールドは、仕様に規定されたフィールドであってもよい。
 例えば、CSIリクエストフィールドの各状態が特定のCSI報告設定に関連づけられ、CSI報告設定がDL BWPを含んでもよい。当該DL BWPは、現在のアクティブBWPと異なってもよい。
 また、例えば、PUSCH上のSP-CSI報告をトリガするDCIにおいて、規定された少なくとも1つのフィールド(冗長バージョン(Redundancy Version:RV)、HARQプロセス番号(HARQ Process Number:HPN)、コードブロックグループ(Code Block Group:CBG、CBG送信情報))の少なくとも1つの特定フィールドが、DL BWP(DL BWPのBWPインデックス)を示してもよい。言い換えれば、無線基地局及びUEは、PUSCH上のSP-CSI報告をトリガするDCI内の少なくとも1つの特定フィールドを、DL BWPのBWPインデックスとして読み替えてもよい。
《態様3-2》
 アンペアードスペクトラムのBWPを用いるCSI報告の動作について説明する。
 1つのDCIによって、DL BWP及びUL BWPを切り替え、CSI報告をトリガすること、がサポートされてもよい。言い換えれば、無線基地局及びUEは、1つのDCIによって、DL BWP及びUL BWPを切り替え、CSI報告をトリガしてもよい。DCIとして、次のDL DCI又はUL DCIが用いられてもよい。
・DL DCI
 例えば、DL BWP#1において送信されたDL DCI(PDSCHスケジューリング用のDCIフォーマット、例えば、DCIフォーマット1_0、1_1)が、DL BWP#2におけるMAC CEのスケジューリングに用いられ、当該MAC CEがUL BWP#2内のPUCCH上のSP-CSI報告をアクティベートしてもよい。
 DL DCI内のXビットが、切り替え後のBWP(DL BWP及びUL BWPの少なくとも1つ)を示してもよい。Xは例えば、1又は2である。Xビットは、次の指示方法1、2のいずれかによって指示されてもよい。
 指示方法1:DL DCIが、切り替え後のBWP(インデックス)を明示するXビット(BWPインジケータ)のフィールドを含んでもよい。
 指示方法2:Xビットが、DL DCI内の複数のフィールドの組み合わせ(ジョイントフィールド)によって示されてもよいし、少なくとも1つの特定フィールドの再解釈によって示されてもよい。特定フィールドは、仕様に規定されたフィールドであってもよい。
 例えば、PUCCH上のSP-CSI報告をアクティベートするMAC CEのスケジューリングのためのDCIにおいて、冗長バージョン(Redundancy Version:RV)、HARQプロセス番号(HARQ Process Number:HPN)、コードブロックグループ(Code Block Group:CBG、CBG送信情報)の少なくとも1つのフィールドが、BWP(BWPインデックス)を示してもよい。言い換えれば、無線基地局及びUEは、PUCCH上のSP-CSI報告をアクティベートするMAC CEのスケジューリングのためのDCI内の少なくとも1つの特定フィールドを、BWPインデックスとして読み替えてもよい。
・UL DCI
 例えば、A-CSI報告をトリガする、又はPUSCH上のSP-CSI報告をトリガする、UL DCI(PUSCHスケジューリング用のDCIフォーマット、例えば、DCIフォーマット0_1)が、切り替え後のBWP(DL BWP及びUL BWPの少なくとも1つ)を示してもよい。
 UL DCI内のBWPインジケータが、切り替え後のBWPを示してもよい。
 態様2は、SP-CSI報告、A-CSI報告に適用できる。
 態様3によれば、1つのDCIが、SP-CSI報告又はA-CSI報告のアクティベーション又はトリガと、BWP切り替えと、を指示することによって、指示のオーバーヘッドを抑えることができ、UE及び無線基地局における制御を簡単にできる。
<態様4>
 BWP切り替えに関するUE動作について説明する。
 P-CSI報告は、設定グラント(configured grant)タイプ1を用いるPUSCH送信と類似する。設定グラントタイプ1を用いるPUSCH送信のリソース(例えば、周期)は、上位レイヤシグナリングによって設定される。設定グラントタイプ1を用いるPUSCH送信を設定されたUEは、周期的にPUSCH送信を行う。設定グラントを用いるPUSCHは、グラントフリーPUSCH(grant-free PUSCH、PUSCH without grant)と呼ばれてもよい。
 PUCCH上のSP-CSI報告又はPUSCH上のSP-CSI報告は、設定グラントタイプ2を用いるPUSCH送信と類似する。設定グラントタイプ2を用いるPUSCH送信のリソース(例えば、周期)は、上位レイヤシグナリングによって設定される。設定グラントタイプ2を用いるPUSCH送信を設定されたUEは、アクティベーションコマンド又はDCIに応じて、周期的にPUSCH送信を行う。
 A-CSI報告は、動的グラント(dynamic grant)を用いるPUSCH送信と類似する。UEは、動的グラント(DCI)に応じて、PUSCH送信を行う。
 BWPを設定されアクティブ化された各サービングセルにおけるBWPがアクティブ化された場合、当該UEまたは当該UEのMACエンティティは、P-CSI報告またはSP-CSI報告を初期化(再初期化)してもよい。また、当該UEまたは当該UEのMACエンティティは、所定のBWPがアクティブ化された場合、あらかじめ当該BWPにおけるP-CSI報告向けに上位レイヤシグナリングによって設定されたシンボル位置、またはSP-CSI報告向けに指示・設定されたシンボル位置において、当該BWPにおけるP-CSI報告又はSP-CSI報告を開始してもよい。
 BWPを設定されアクティブ化された各サービングセルにおけるBWPが非アクティブ化された場合、当該UEまたは当該UEのMACエンティティは、当該非アクティブ化されたBWPに対応するP-CSI報告又はSP-CSI報告を、所定時間内に停止する一方で、上位レイヤシグナリングに基づくP-CSI報告またはSP-CSI報告向けのパラメータをサスペンド(保持)するものとしてもよい。この場合、以後のタイミングで当該BWPがアクティブ化された場合に、再度上位レイヤシグナリングを通知することなく、P-CSI報告又はSP-CSI報告を速やかに開始することができる。または、当該UEまたは当該UEのMACエンティティは、当該非アクティブ化されたBWPに対応するP-CSI報告又はSP-CSI報告を、所定時間内に停止しつつ、上位レイヤシグナリングに基づくP-CSI報告又はSP-CSI報告向けのパラメータをクリア(初期化)するものとしてもよい。この場合、UEメモリに保持すべき情報を減らし、チップ面積の縮小並びに電力消費を削減することができる。また、所定BWPの非アクティブ化に伴って前記所定BWPに関する所定のパラメータをクリアする場合、当該BWPがアクティブ化された場合には、前記所定のパラメータを再設定しない限り、当該UEは前記所定のパラメータに基づく制御を行うことはない。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図10は、一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 また、送受信部103は、チャネル状態情報報告の送信の指示の受信から、チャネル状態情報報告の送信までの期間(例えば、CSI報告処理期間)において、切り替えの指示を送信しなくてもよい(態様1)。
 また、送受信部103は、チャネル状態情報報告の送信の指示の受信から、チャネル状態情報報告の送信までの期間(例えば、CSI報告処理期間)において、切り替えの指示を送信してもよい(態様2)。
 また、送受信部103は、チャネル状態情報報告の送信の指示(例えば、CSI報告の設定、アクティベーション、トリガ)と、切り替えの後の部分帯域の指示と、を含む下り制御情報(DCI)を送信してもよい(態様3)。
 図11は、一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
 また、制御部301は、下り部分帯域及び上り部分帯域の少なくとも1つの部分帯域の切り替えと、チャネル状態情報報告の受信と、の少なくとも1つを制御してもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 また、送受信部203は、下り部分帯域(DL BWP)において下り信号(例えば、CSI-RS)を受信してもよい。また、送受信部203は、上り部分帯域(UL BWP)において下り信号に基づくチャネル状態情報(CSI)報告(例えば、P-CSI報告、SP-CSI報告、A-CSI報告)を送信してもよい。
 また、送受信部203は、チャネル状態情報報告の送信の指示の受信から、チャネル状態情報報告の送信までの期間(例えば、CSI報告処理期間)において、切り替えの指示を受信しなくてもよい(態様1)。
 また、送受信部203は、チャネル状態情報報告の送信の指示の受信から、チャネル状態情報報告の送信までの期間(例えば、CSI報告処理期間)において、切り替えの指示を受信してもよい(態様2)。
 また、送受信部203は、チャネル状態情報報告の送信の指示(例えば、CSI報告の設定、アクティベーション、トリガ)と、切り替えの後の部分帯域の指示と、を含む下り制御情報(DCI)を受信してもよい(態様3)。
 図13は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 また、制御部401は、下り部分帯域及び上り部分帯域の少なくとも1つの部分帯域の切り替えと、チャネル状態情報報告の送信と、の少なくとも1つを制御してもよい。
 また、送受信部203が、チャネル状態情報報告の送信の指示の受信から、チャネル状態情報報告の送信までの期間において、切り替えの指示を受信した場合、制御部401は、チャネル状態情報報告の送信を行い、切り替えを延期することと、チャネル状態情報報告の送信を中止し、切り替えを行うことと、切り替えを行い所定条件に基づいてチャネル状態情報報告の送信を行うことと、の少なくとも1つを制御してもよい。
 また、所定条件は、切り替えの後の下り部分帯域が、切り替えの前の下り部分帯域を含むこと、切り替えの後の上り部分帯域において、チャネル状態情報報告用リソースが設定されていることと、チャネル状態情報報告の送信及び切り替えの少なくとも1つに対して所定時間以上の処理時間があることと、切り替えを指示する下り制御情報内のチャネル状態情報要求フィールドが所定値であることと、切り替えの後のチャネル状態情報報告の送信が切り替えの前のチャネル状態情報報告の送信と衝突しないことと、の少なくとも1つであってもよい。
 なお、本明細書において、「ユーザ端末20の送信」は、例えば「無線基地局10の受信」で読み替えられてもよい。
 また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
 例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本明細書中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  下り部分帯域において下り信号を受信する受信部と、
     上り部分帯域において前記下り信号に基づくチャネル状態情報報告を送信する送信部と、
     前記下り部分帯域及び前記上り部分帯域の少なくとも1つの部分帯域の切り替えと、前記チャネル状態情報報告の送信と、の少なくとも1つを制御する制御部と、を有することを特徴とするユーザ端末。
  2.  前記受信部は、前記チャネル状態情報報告の送信の指示の受信から、前記チャネル状態情報報告の送信までの期間において、前記切り替えの指示を受信しないことを特徴とする請求項1に記載のユーザ端末。
  3.  前記受信部は、前記チャネル状態情報報告の送信の指示の受信から、前記チャネル状態情報報告の送信までの期間において、前記切り替えの指示を受信した場合、前記制御部は、前記チャネル状態情報報告の送信を行い、前記切り替えを延期することと、前記チャネル状態情報報告の送信を中止し、前記切り替えを行うことと、前記切り替えを行い所定条件に基づいて前記チャネル状態情報報告の送信を行うことと、の少なくとも1つを制御することを特徴とする請求項1に記載のユーザ端末。
  4.  前記所定条件は、前記切り替えの後の下り部分帯域が、前記切り替えの前の下り部分帯域を含むこと、前記切り替えの後の上り部分帯域において、チャネル状態情報報告のためのリソースが設定されていることと、前記チャネル状態情報報告の送信及び前記切り替えの少なくとも1つに対して所定時間以上の処理時間があることと、前記切り替えを指示する下り制御情報内のチャネル状態情報要求フィールドが所定値であることと、前記切り替えの後のチャネル状態情報報告の送信が前記切り替えの前のチャネル状態情報報告の送信と衝突しないことと、の少なくとも1つであることを特徴とする請求項3に記載のユーザ端末。
  5.  前記受信部は、前記チャネル状態情報報告の送信の指示と、前記切り替えの後の部分帯域の指示と、を含む下り制御情報を受信することを特徴とする請求項1に記載のユーザ端末。
  6.  下り部分帯域において下り信号を受信する工程と、
     上り部分帯域において前記下り信号に基づくチャネル状態情報報告を送信する工程と、
     前記下り部分帯域及び前記上り部分帯域の少なくとも1つの部分帯域の切り替えと、前記チャネル状態情報報告の送信と、の少なくとも1つを制御する工程と、を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2018/014471 2018-04-04 2018-04-04 ユーザ端末及び無線通信方法 WO2019193695A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880094193.8A CN112205027A (zh) 2018-04-04 2018-04-04 用户终端以及无线通信方法
JP2020512169A JPWO2019193695A1 (ja) 2018-04-04 2018-04-04 ユーザ端末及び無線通信方法
PCT/JP2018/014471 WO2019193695A1 (ja) 2018-04-04 2018-04-04 ユーザ端末及び無線通信方法
EP18913975.1A EP3780706A4 (en) 2018-04-04 2018-04-04 USER TERMINAL AND WIRELESS COMMUNICATION PROCESS
AU2018417849A AU2018417849A1 (en) 2018-04-04 2018-04-04 User terminal and wireless communication method
US17/044,656 US20210099902A1 (en) 2018-04-04 2018-04-04 User terminal and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014471 WO2019193695A1 (ja) 2018-04-04 2018-04-04 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2019193695A1 true WO2019193695A1 (ja) 2019-10-10

Family

ID=68100744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014471 WO2019193695A1 (ja) 2018-04-04 2018-04-04 ユーザ端末及び無線通信方法

Country Status (6)

Country Link
US (1) US20210099902A1 (ja)
EP (1) EP3780706A4 (ja)
JP (1) JPWO2019193695A1 (ja)
CN (1) CN112205027A (ja)
AU (1) AU2018417849A1 (ja)
WO (1) WO2019193695A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210022628A (ko) * 2018-06-21 2021-03-03 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 대역폭 부분 처리 방법, 단말 기기 및 네트워크 기기
JP7246874B2 (ja) * 2018-07-31 2023-03-28 シャープ株式会社 基地局装置、端末装置、および、通信方法
AU2018443832A1 (en) * 2018-09-27 2021-04-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource indication method, device, and storage medium
US20210377988A1 (en) * 2018-11-05 2021-12-02 Apple Inc. Mechanisms for bandwidth part (bwp) switching in a new radio (nr) network
US11570646B2 (en) * 2019-02-12 2023-01-31 Qualcomm Incorporated Reduced monitoring state
US11483043B2 (en) * 2019-08-15 2022-10-25 Qualcomm Incorporated Dropping channel state information during discontinuous reception
US11937105B2 (en) * 2020-07-14 2024-03-19 Samsung Electronics Co., Ltd. Method and apparatus for controlling activation of cell group in wireless communication system
CN115022847A (zh) * 2021-03-04 2022-09-06 维沃移动通信有限公司 Sl csi报告的处理方法、装置及设备
US11888786B2 (en) * 2021-10-27 2024-01-30 Qualcomm Incorporated Switching between flexible bandwidth parts

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079440A (zh) * 2014-11-06 2017-08-18 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
CN107211412B (zh) * 2015-01-23 2022-05-31 株式会社Ntt都科摩 终端、基站以及无线通信方法
JP6105672B2 (ja) * 2015-05-14 2017-03-29 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2018043560A1 (ja) * 2016-08-31 2018-03-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
EP3609091B1 (en) * 2017-09-29 2021-12-01 LG Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus therefor
RU2756848C1 (ru) * 2018-02-15 2021-10-06 Телефонактиеболагет Лм Эрикссон (Пабл) Переключение частей полосы частот и совмещение физической конфигурации
WO2019165224A1 (en) * 2018-02-23 2019-08-29 Idac Holdings, Inc. System and method for bandwidth part operation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300 V8.12.0, April 2010 (2010-04-01)
INTERDIGITAL; INC: "Details of BWP switching operation", 3GPP TSG RAN WG1 MEETING AH1801 R1-1800603, 22 January 2018 (2018-01-22), XP051384478 *
NOKIA ET AL.: "On remaining details on BWPs", 3GPP TSG-RAN WG1 MEETING #92 R1-1802539, 26 February 2018 (2018-02-26), XP051397475 *
QUALCOMM INCORPORATED: "Remaining Issues on BWP", 3GPP TSG RAN WG1 MEETING #92 R1-1802844, 26 February 2018 (2018-02-26), XP051398257 *
See also references of EP3780706A4

Also Published As

Publication number Publication date
JPWO2019193695A1 (ja) 2021-04-01
EP3780706A4 (en) 2021-12-01
AU2018417849A1 (en) 2020-11-26
CN112205027A (zh) 2021-01-08
EP3780706A1 (en) 2021-02-17
US20210099902A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP7157513B2 (ja) 端末、無線通信方法及びシステム
JP7227150B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019138499A1 (ja) ユーザ端末及び無線通信方法
JP7121117B2 (ja) 端末、無線通信方法、基地局およびシステム
JP7160835B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019159297A1 (ja) ユーザ端末及び無線通信方法
WO2019193695A1 (ja) ユーザ端末及び無線通信方法
WO2019097643A1 (ja) ユーザ端末及び無線通信方法
JP7366889B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019049282A1 (ja) ユーザ端末及び無線通信方法
WO2019077749A1 (ja) ユーザ端末及び無線通信方法
WO2019186724A1 (ja) ユーザ端末及び基地局
WO2018198343A1 (ja) ユーザ端末及び無線通信方法
WO2019087340A1 (ja) ユーザ端末及び無線通信方法
WO2019171518A1 (ja) ユーザ端末及び無線通信方法
WO2018203398A1 (ja) ユーザ端末及び無線通信方法
WO2019193688A1 (ja) ユーザ端末及び無線通信方法
JP7181670B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019176025A1 (ja) ユーザ端末及び無線通信方法
JP7140782B2 (ja) 端末、無線通信方法及びシステム
JP7100070B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019193735A1 (ja) ユーザ端末及び無線基地局
WO2018207370A1 (ja) ユーザ端末及び無線通信方法
JP7201623B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019159296A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018913975

Country of ref document: EP

Effective date: 20201104

ENP Entry into the national phase

Ref document number: 2018417849

Country of ref document: AU

Date of ref document: 20180404

Kind code of ref document: A