WO2019193659A1 - リニアモータ - Google Patents
リニアモータ Download PDFInfo
- Publication number
- WO2019193659A1 WO2019193659A1 PCT/JP2018/014327 JP2018014327W WO2019193659A1 WO 2019193659 A1 WO2019193659 A1 WO 2019193659A1 JP 2018014327 W JP2018014327 W JP 2018014327W WO 2019193659 A1 WO2019193659 A1 WO 2019193659A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- linear motor
- mover
- sides
- plate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
Definitions
- This specification discloses a technique related to a linear motor in which the structure of the air gap between the stator and the mover is improved.
- linear motors there are various types of linear motors, such as flat type, center magnet type, and shaft type (cylindrical type). Generally, when you want to increase thrust, flat type or center magnet type linear motors are used. It is done.
- the flat linear motor is configured such that the stator and the mover face each other in parallel, and the air gap between the stator and the mover. Is configured to extend in the horizontal direction or the vertical direction (the direction of gravity).
- a stator extending in the moving direction of the mover is disposed at the center of the linear motor, and Field magnets are arranged on both sides of the stator in the moving direction of the mover.
- a groove is formed on the mover to fit the stator, and both sides of the groove of the mover are formed.
- the magnets on both sides of the stator and coils facing each other in the horizontal direction via an air gap are provided.
- the flat type linear motor of Patent Document 1 has a configuration in which a mover is disposed above a stator, but a driving object connected to the mover hangs down like a mounting head of a component mounting machine.
- the linear motor 11 may be installed horizontally and the stator and the mover may be arranged to face each other in the horizontal direction.
- two guide rails extending in parallel along the upper and lower sides of the stator are provided, and the mover is attached to the inner side of the slide member slidably supported across the two guide rails.
- a driving object such as a mounting head is attached to the outside of the slide member.
- a linearly extending stator two guide rails extending in parallel along both sides of the stator, and a slidable support across the two guide rails are supported.
- the linear motor comprising a sliding member and a movable element supported by the sliding member and facing the stator, an air gap between the stator and the movable element is relative to an installation surface of the linear motor. It is comprised so that it may extend in the direction to incline.
- FIG. 1 is a side view illustrating the configuration of the linear motor according to the first embodiment.
- FIG. 2 is a plan view showing the configuration of the stator side of the linear motor according to the first embodiment.
- FIG. 3 is a diagram illustrating the force acting on the stator of the linear motor according to the first embodiment.
- FIG. 4 is a side view illustrating the configuration of the linear motor according to the second embodiment.
- FIG. 5 is a diagram illustrating the force acting on the mover of the linear motor according to the second embodiment.
- the stator 12 and the mover 13 are arranged in the vertical direction (vertical direction), and the mover 13 is positioned above the stator 12.
- the stator 12 has two yokes 14 extending along the moving direction of the mover 13, and two N-pole and S-pole magnetic fields are alternately formed on the upper surface side of the yoke 14 along the moving direction of the mover 13. It consists of a number of magnets 15 (see FIG. 2) arranged in rows.
- the yoke 14 of the stator 12 is fixed on a stator plate 16 constituting an outer shell on the installation surface side of the linear motor 11 by fixing means such as screwing, caulking, and welding.
- the yoke 14 of the stator 12 is formed so as to have a substantially isosceles triangle (mountain) cross-sectional shape when viewed from the moving direction of the mover 13, and the moving direction of the mover 13 is respectively formed on two inclined surfaces thereof.
- a large number of magnets 15 are arranged so as to alternately form N-pole and S-pole magnetic fields.
- Two guide rails 21 extending in parallel along both sides of the stator 12 extending along the moving direction of the movable element 13 are fixed to the upper surface of the stator plate 16 by fixing means such as screwing, caulking, and welding.
- a mover plate 22 that is a slide member straddling the two guide rails 21 is supported horizontally through support frames 23 on both sides. Thereby, the mover plate 22 is arranged in parallel with the stator plate 16, and the mover 13 is attached to the lower surface side of the mover plate 22.
- the mover 13 is mounted on the lower surface of the mover plate 22 by screwing, caulking, welding, or other fixing means, and on the lower surface side of the yoke 24 so as to face the magnet 15 of the stator 12. And a plurality of coils 25.
- the yoke 24 of the mover 13 is formed to have a valley-shaped (V-groove) cross-sectional shape corresponding to the mountain-shaped cross-sectional shape of the yoke 14 of the stator 12.
- the air gap 26 between the magnet 15 of the stator 12 and the coil 25 of the mover 13 extends in a direction inclined with respect to the installation surface of the linear motor 11 (the lower surface of the stator plate 16).
- the air gap 26 is configured to have a cross-sectional shape (inverted V shape) along two sides of the triangle when viewed from the moving direction of the movable element 13.
- the linear motor 11 of the first embodiment configured as described above can be used as a linear drive device of various industrial machines such as a linear drive device that moves the mounting head of the component mounting machine in the X direction or the Y direction. Yes, a movable object such as a mounting head is supported by the mover plate 22.
- the air gap 26 between the stator 12 and the movable element 13 has a cross-sectional shape along two sides of the triangle as viewed from the moving direction of the movable element 13. Therefore, as shown in FIG. 3, the acting direction of the magnetic attractive force acting between the stator 12 and the mover 13 is different from the center of the linear motor 11. The direction of the magnetic attraction force deviates from the opposite direction by 180 °, not by the opposite direction by 180 °, but by the inclination angle of the air gap 26.
- the air gap 26 between the stator 12 and the movable element 13 has a cross-sectional shape (inverted V shape) along two sides of the triangle as viewed from the moving direction of the movable element 13.
- the air gap between the stator and the mover may be configured to have a cross-sectional shape (V shape) along two sides of the inverted triangle when viewed from the moving direction of the mover. Even with this configuration, the same effect as in the first embodiment can be obtained.
- the installation surface of the linear motor 11 (the lower surface of the stator plate 16) is a horizontal plane, and the stator 12 is located below and the mover 13 is located above.
- the stator 12 is located on the upper side and the mover 13 is located on the lower side.
- the installation surface of the linear motor 11 is not limited to a horizontal surface or a vertical surface, and may be a surface of any other angle.
- Example 2 will be described with reference to FIGS. However, description of parts substantially the same as those in the first embodiment will be omitted or simplified, and different parts will be mainly described.
- a stator 32 and a mover 33 are arranged in the horizontal direction.
- the stator 32 is arranged so that a yoke 34 extending along the moving direction of the mover 33 and an N-pole and S-pole magnetic field are alternately formed inside the yoke 34 along the moving direction of the mover 33. It is composed of a large number of magnets 35.
- the yoke 34 of the stator 32 is fixed to the inner side of the stator plate 36 constituting the outer shell on the installation surface side of the linear motor 31 by fixing means such as screwing, caulking, and welding.
- the yoke 34 of the stator 32 is formed so that the inner surface is inclined with respect to the vertical surface when viewed from the moving direction of the mover 33, and N poles are formed on the inclined surface along the moving direction of the mover 13.
- a large number of magnets 35 are arranged so as to alternately form magnetic fields of S and S poles.
- a mover plate 42 which is a slide member, straddles the two guide rails 41 and is slidably supported via support frames 43 on both sides. Accordingly, the mover plate 42 is arranged in parallel with the stator plate 36, and the mover 33 is attached to the inside of the mover plate 42.
- the mover 33 is mounted on the inner side of the mover plate 42 by a fixing means such as screwing, caulking, or welding, and on the inner side of the yoke 44 so as to face the magnet 35 of the stator 32. And a coil 45.
- the yoke 44 of the mover 33 is formed so that the inner surface is inclined with respect to the vertical surface corresponding to the shape of the inner surface of the yoke 34 of the stator 32.
- the air gap 46 between the magnet 35 of the stator 32 and the coil 45 of the mover 33 extends in a direction inclined with respect to the installation surface of the linear motor 31 (the outer surface of the stator plate 36), and
- the magnetic attractive force acting between the stator 32 and the mover 33 is configured so that the acting direction is obliquely upward.
- the linear motor 31 of the second embodiment configured as described above can be used as a linear drive device of various industrial machines such as a linear drive device that moves the mounting head of the component mounting machine in the X direction or the Y direction. Yes, a movable object such as a mounting head is supported by the mover plate 42.
- the air gap 46 between the stator 32 and the mover 33 is inclined with respect to the installation surface of the linear motor 31 (the outer surface of the stator plate 36). 5 and the magnetic attractive force acting on the mover 33 is configured so that the acting direction of the magnetic attractive force is obliquely upward, as shown in FIG. It has an upward component, and its magnetic attraction force plays a role of assisting a force that supports the load of the driving object attached to the movable element plate 42.
- the design standard of the mechanical strength of the part (movable element plate 42, the support frame 43, the guide rail 41, the stator plate 36) which supports a drive target object can be eased, and the linear motor 31 correspondingly. Can be reduced in size and weight, contributing to space saving and improved positioning accuracy.
- the magnetic attracting force acting on the mover 33 is configured so that the acting direction of the magnetic attraction is obliquely upward.
- the mover depends on the acting direction of the load acting on the mover plate 42 from the driven object. You may comprise so that the action direction of the magnetic attraction force which acts on may become diagonally downward.
- the installation surface of the linear motor 31 (the outer surface of the stator plate 36) is a vertical surface, and the stator 32 and the mover 33 are arranged in the horizontal direction.
- the installation surface of the motor 31 (the outer surface of the stator plate 36) may be a horizontal plane, and the stator 32 and the mover 33 may be arranged in the vertical direction.
- the installation surface of the linear motor 31 is not limited to a horizontal surface or a vertical surface, and may be a surface of any other angle.
- the magnets 15 and 35 are provided on the stators 12 and 32, and the coils 25 and 45 are provided on the movers 13 and 33. On the contrary, the coils are provided on the stator and movable. It is good also as a structure which provided the magnet in the child.
- the present invention is not limited to the above-described embodiments.
- the shapes of the yokes 24 and 44 may be changed, or the inclination angles of the air gaps 26 and 46 may be changed as appropriate according to the driven object.
- various modifications can be made without departing from the scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Linear Motors (AREA)
Abstract
リニアモータ(11)は、直線状に延びる固定子(12)と、この固定子(12)の両側に沿って平行に延びる2本のガイドレール(21)と、2本のガイドレール(21)に跨がってスライド可能に支持されたスライド部材である可動子プレート(22)と、この可動子プレート(22)に支持されて固定子(12)と対向する可動子(13)とを備える。固定子(12)と可動子(13)との間のエアギャップ(26)がリニアモータ(11)の設置面に対して傾斜する方向に延在するように構成されている。
Description
本明細書は、固定子と可動子との間のエアギャップの構造を改良したリニアモータに関する技術を開示したものである。
リニアモータには、フラット型、センターマグネット型、シャフト型(円筒型)等の様々なタイプのリニアモータがあるが、一般に、推力を大きくしたい場合は、フラット型やセンターマグネット型のリニアモータが用いられる。
フラット型のリニアモータは、特許文献1(国際公開WO2015/145550号公報)に記載されているように、固定子と可動子とが平行に対向し、固定子と可動子との間のエアギャップが水平方向又は鉛直方向(重力の方向)に延在するように構成されている。
一方、センターマグネット型のリニアモータは、特許文献2(特開2017-34817号公報)に記載されているように、リニアモータの中央に、可動子の移動方向に延びる固定子を配置すると共に、その固定子の両側面にそれぞれ界磁用の磁石を可動子の移動方向に配列し、一方、可動子に、固定子を嵌める凹条溝を形成して、その可動子の凹条溝の両側面に、固定子の両側面の磁石とそれぞれエアギャップを介して水平方向に対向するコイルを設けた構成となっている。
上記特許文献1のフラット型のリニアモータは、固定子の上方に可動子を配置した構成となっているが、可動子に連結する駆動対象物が部品実装機の実装ヘッドのように下方に垂れ下がる物体である場合には、リニアモータ11を横向きに設置して、固定子と可動子とを水平方向に対向させるように配置した構成とする場合がある。この場合は、固定子の上下両側に沿って平行に延びる2本のガイドレールを設け、これら2本のガイドレールに跨がってスライド可能に支持されたスライド部材の内側に可動子を取り付け、そのスライド部材の外側に実装ヘッド等の駆動対象物を取り付けるようにしている。
この構成では、駆動対象物の荷重は、スライド部材を介して2本のガイドレールで支持されるため、ガイドレールやスライド部材を機械的に強固に構成しなければならず、その分、リニアモータが大型化したり、重量が増加する欠点がある。
また、部品実装機のようにリニアモータを天井側に吊して設置する場合は、大型化したリニアモータを設置するスペースを確保しにくくなったり、重量が増加したリニアモータの加減速・停止の繰り返しにより部品実装機の本体フレームの振動が増大して実装ヘッドの位置決め精度が悪化するという問題も発生する。
一方、特許文献2のセンターマグネット型のリニアモータは、可動子の凹条溝の中心と固定子の中心との位置関係がずれると、固定子の両側面と可動子の凹条溝の両側面との間のエアギャップの大きさがアンバランスとなるため、固定子の両側面に作用する磁気吸引力がアンバランスとなって、その磁気吸引力の差が固定子に大きな倒れ込み力として作用する。つまり、固定子の両側面に作用する磁気吸引力の向きが180°反対方向であるため、固定子の両側面に作用する磁気吸引力がアンバランスとなると、その磁気吸引力の差がそのまま固定子の倒れ込み力となる。この対策として、固定子が倒れないようにするために、固定子を支持する構造を機械的に強固に構成しなければならず、その分、リニアモータが大型化したり、重量が増加する欠点がある。リニアモータの大型化や重量増加は、上述したように省スペース化や位置決め精度向上を阻害する要因となる。
上記課題を解決するために、直線状に延びる固定子と、前記固定子の両側に沿って平行に延びる2本のガイドレールと、前記2本のガイドレールに跨がってスライド可能に支持されたスライド部材と、前記スライド部材に支持されて前記固定子と対向する可動子とを備えたリニアモータにおいて、前記固定子と前記可動子との間のエアギャップがリニアモータの設置面に対して傾斜する方向に延在するように構成されている。
このように、固定子と可動子との間のエアギャップがリニアモータの設置面に対して傾斜する方向に延在するように構成すれば、固定子や駆動対象物を支持する部分に作用する外力を軽減することができる。
以下、2つの実施例1,2を説明する。
図1乃至図3を参照して実施例1を説明する。
本実施例1のリニアモータ11は、固定子12と可動子13とが鉛直方向(上下方向)に配置され、固定子12の上方に可動子13が位置する構成となっている。固定子12は、可動子13の移動方向に沿って延びるヨーク14と、このヨーク14の上面側に可動子13の移動方向に沿ってN極とS極の磁界を交互に形成するように2列に配列した多数の磁石15(図2参照)とから構成されている。
本実施例1のリニアモータ11は、固定子12と可動子13とが鉛直方向(上下方向)に配置され、固定子12の上方に可動子13が位置する構成となっている。固定子12は、可動子13の移動方向に沿って延びるヨーク14と、このヨーク14の上面側に可動子13の移動方向に沿ってN極とS極の磁界を交互に形成するように2列に配列した多数の磁石15(図2参照)とから構成されている。
固定子12のヨーク14は、リニアモータ11の設置面側の外殻を構成する固定子プレート16上にねじ止め、かしめ付け、溶着等の固定手段により固定されている。固定子12のヨーク14は、可動子13の移動方向から見て略二等辺三角形(山型)の断面形状となるように形成され、その傾斜する2つの面に、それぞれ可動子13の移動方向に沿ってN極とS極の磁界を交互に形成するように多数の磁石15が配列されている。
固定子プレート16の上面には、可動子13の移動方向に沿って延びる固定子12の両側に沿って平行に延びる2本のガイドレール21がねじ止め、かしめ付け、溶着等の固定手段により固定されている。2本のガイドレール21に跨がってスライド部材である可動子プレート22が両側の支持枠23を介してスライド可能に水平に支持されている。これにより、可動子プレート22が固定子プレート16と平行に配置され、該可動子プレート22の下面側に可動子13が取り付けられている。
可動子13は、可動子プレート22の下面にねじ止め、かしめ付け、溶着等の固定手段により固定されたヨーク24と、このヨーク24の下面側に固定子12の磁石15と対向するように装着された複数のコイル25とから構成されている。可動子13のヨーク24は、固定子12のヨーク14の山型の断面形状に対応して谷型(V溝状)の断面形状となるように形成されている。これにより、固定子12の磁石15と可動子13のコイル25との間のエアギャップ26がリニアモータ11の設置面(固定子プレート16の下面)に対して傾斜する方向に延在するように構成され、且つ、エアギャップ26が可動子13の移動方向から見て三角形の2辺に沿った断面形状(逆V字状)となるように構成されている。
以上のように構成した本実施例1のリニアモータ11は、例えば、部品実装機の実装ヘッドをX方向又はY方向に移動させるリニア駆動装置等、各種の産業機械のリニア駆動装置として使用可能であり、実装ヘッド等の駆動対象物を可動子プレート22に支持させるようになっている。
以上のように構成した本実施例1のリニアモータ11は、固定子12と可動子13との間のエアギャップ26が可動子13の移動方向から見て三角形の2辺に沿った断面形状となるように構成されているため、図3に示すように、固定子12と可動子13との間に作用する磁気吸引力の作用方向がリニアモータ11の中心を境にして異なる方向となるが、180°反対方向ではなく、エアギャップ26の傾斜角度分だけ磁気吸引力の作用方向が180°反対方向からずれる。このため、たとえ、可動子13の中心と固定子12の中心との位置関係がずれて、固定子12の両側のエアギャップ26の大きさがアンバランスとなって、固定子12の両側に作用する磁気吸引力がアンバランスとなった場合でも、両側の磁気吸引力の差がそのまま固定子12の倒れ込み力とはならず、両側の磁気吸引力の水平方向成分の差が固定子12の倒れ込み力となるだけである。これにより、固定子12の倒れ込み力を軽減でき、固定子12や駆動対象物を支持する部分(可動子プレート22、支持枠23、ガイドレール21、固定子プレート16)の機械的強度の設計基準を緩和することができて、その分、リニアモータ11の小型化や軽量化を実現できて、省スペース化や位置決め精度向上に貢献できる。
尚、本実施例1では、固定子12と可動子13との間のエアギャップ26が可動子13の移動方向から見て三角形の2辺に沿った断面形状(逆V字状)となるように構成したが、固定子と可動子との間のエアギャップが可動子の移動方向から見て逆三角形の2辺に沿った断面形状(V字状)となるように構成しても良い。この構成でも、本実施例1と同様の効果を得ることができる。
また、本実施例1では、リニアモータ11の設置面(固定子プレート16の下面)を水平面として、固定子12が下、可動子13が上に位置する構成となっているが、これとは反対に、固定子12が上、可動子13が下に位置する構成としても良い。
或は、リニアモータ11の設置面を鉛直面として、固定子12と可動子13とを水平方向に配置した構成としても良い。その他、リニアモータ11の設置面は、水平面や鉛直面に限定されず、それ以外の角度の面としても良いことは言うまでもない。
次に、図4及び図5を用いて実施例2を説明する。但し、上記実施例1と実質的に同じ部分については説明を省略又は簡略化して、主として異なる部分について説明する。
本実施例2のリニアモータ31は、固定子32と可動子33とが水平方向に配置されている。固定子32は、可動子33の移動方向に沿って延びるヨーク34と、このヨーク34の内側に可動子33の移動方向に沿ってN極とS極の磁界を交互に形成するように配列した多数の磁石35とから構成されている。
固定子32のヨーク34は、リニアモータ31の設置面側の外殻を構成する固定子プレート36の内側にねじ止め、かしめ付け、溶着等の固定手段により固定されている。固定子32のヨーク34は、可動子33の移動方向から見て内側面が鉛直面に対して傾斜面となるように形成され、その傾斜面に、可動子13の移動方向に沿ってN極とS極の磁界を交互に形成するように多数の磁石35が配列されている。
固定子プレート36の内面には、可動子33の移動方向に沿って延びる固定子32の両側に沿って平行に延びる2本のガイドレール41がねじ止め、かしめ付け、溶着等の固定手段により固定されている。2本のガイドレール41に跨がってスライド部材である可動子プレート42が両側の支持枠43を介してスライド可能に支持されている。これにより、可動子プレート42が固定子プレート36と平行に配置され、該可動子プレート42の内側に可動子33が取り付けられている。
可動子33は、可動子プレート42の内側にねじ止め、かしめ付け、溶着等の固定手段により固定されたヨーク44と、このヨーク44の内側に固定子32の磁石35と対向するように装着されたコイル45とから構成されている。可動子33のヨーク44は、固定子32のヨーク34の内側面の形状に対応して内側面が鉛直面に対して傾斜面となるように形成されている。これにより、固定子32の磁石35と可動子33のコイル45との間のエアギャップ46がリニアモータ31の設置面(固定子プレート36の外面)に対して傾斜する方向に延在し、且つ、固定子32と可動子33との間に作用する磁気吸引力の作用方向が斜め上向きとなるように構成されている。
以上のように構成した本実施例2のリニアモータ31は、例えば、部品実装機の実装ヘッドをX方向又はY方向に移動させるリニア駆動装置等、各種の産業機械のリニア駆動装置として使用可能であり、実装ヘッド等の駆動対象物を可動子プレート42に支持させるようになっている。
以上のように構成した本実施例2のリニアモータ31は、固定子32と可動子33との間のエアギャップ46がリニアモータ31の設置面(固定子プレート36の外面)に対して傾斜する方向に延在し、且つ、可動子33に作用する磁気吸引力の作用方向が斜め上向きとなるように構成されているため、図5に示すように、可動子13に作用する磁気吸引力が上向きの成分を持ち、その磁気吸引力が可動子プレート42に取り付けた駆動対象物の荷重を支持する力を補助する役割を果たすようになる。これにより、駆動対象物を支持する部分(可動子プレート42、支持枠43、ガイドレール41、固定子プレート36)の機械的強度の設計基準を緩和することができて、その分、リニアモータ31の小型化や軽量化を実現できて、省スペース化や位置決め精度向上に貢献できる。
尚、本実施例2では、可動子33に作用する磁気吸引力の作用方向が斜め上向きとなるように構成したが、駆動対象物から可動子プレート42に作用する荷重の作用方向によっては可動子に作用する磁気吸引力の作用方向が斜め下向きとなるように構成しても良い。
また、本実施例2では、リニアモータ31の設置面(固定子プレート36の外面)を鉛直面として、固定子32と可動子33とが水平方向に配置された構成となっているが、リニアモータ31の設置面(固定子プレート36の外面)を水平面として、固定子32と可動子33とが上下方向に配置された構成としても良い。その他、リニアモータ31の設置面は、水平面や鉛直面に限定されず、それ以外の角度の面としても良いことは言うまでもない。
[その他の実施例]
上記実施例1,2では、固定子12,32に磁石15,35を設け、可動子13,33にコイル25,45を設けたが、これとは反対に、固定子にコイルを設け、可動子に磁石を設けた構成としても良い。
上記実施例1,2では、固定子12,32に磁石15,35を設け、可動子13,33にコイル25,45を設けたが、これとは反対に、固定子にコイルを設け、可動子に磁石を設けた構成としても良い。
その他、本発明は、上記各実施例に限定されず、例えば、ヨーク24,44の形状を変更したり、駆動対象物に応じてエアギャップ26,46の傾斜角度を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。
11…リニアモータ、12…固定子、13…可動子、14…ヨーク、15…磁石、16…固定子プレート、21…ガイドレール、22…可動子プレート(スライド部材)、33…支持枠、24…ヨーク、25…コイル、26…エアギャップ、31…リニアモータ、32…固定子、33…可動子、34…ヨーク、35…磁石、36…固定子プレート、41…ガイドレール、42…可動子プレート(スライド部材)、43…支持枠、44…ヨーク、45…コイル、46…エアギャップ
Claims (5)
- 直線状に延びる固定子と、
前記固定子の両側に沿って平行に延びる2本のガイドレールと、
前記2本のガイドレールに跨がってスライド可能に支持されたスライド部材と、
前記スライド部材に支持されて前記固定子と対向する可動子と
を備えたリニアモータにおいて、
前記固定子と前記可動子との間のエアギャップがリニアモータの設置面に対して傾斜する方向に延在するように構成されている、リニアモータ。 - 前記エアギャップは、前記可動子の移動方向から見て三角形又は逆三角形の2辺に沿った断面形状となるように構成されている、請求項1に記載のリニアモータ。
- 前記リニアモータの設置面は水平面であり、前記固定子と前記可動子とが鉛直方向に配置されている、請求項1又は2に記載のリニアモータ。
- 前記リニアモータの設置面は鉛直面であり、前記固定子と前記可動子とが水平方向に配置されている、請求項1又は2に記載のリニアモータ。
- 前記スライド部材に部品実装機の実装ヘッドが支持されている、請求項1乃至4のいずれかに記載のリニアモータ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020512137A JP7170376B2 (ja) | 2018-04-03 | 2018-04-03 | リニアモータ |
PCT/JP2018/014327 WO2019193659A1 (ja) | 2018-04-03 | 2018-04-03 | リニアモータ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/014327 WO2019193659A1 (ja) | 2018-04-03 | 2018-04-03 | リニアモータ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019193659A1 true WO2019193659A1 (ja) | 2019-10-10 |
Family
ID=68100249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014327 WO2019193659A1 (ja) | 2018-04-03 | 2018-04-03 | リニアモータ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7170376B2 (ja) |
WO (1) | WO2019193659A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111267875A (zh) * | 2020-02-19 | 2020-06-12 | 深圳市博智达机器人有限公司 | 一种磁浮电机承载车系统 |
CN112260512A (zh) * | 2020-09-15 | 2021-01-22 | 雅科贝思精密机电(上海)有限公司 | 一种环形线结构 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08192327A (ja) * | 1995-01-11 | 1996-07-30 | Toshiba Mach Co Ltd | 工作機械の送り装置 |
JP2006159404A (ja) * | 2004-12-08 | 2006-06-22 | Fritz Studer Ag | 位置決めデバイス |
JP2007514295A (ja) * | 2004-09-01 | 2007-05-31 | シーメンス アクチエンゲゼルシヤフト | 位置決め装置 |
CN102126138A (zh) * | 2010-12-29 | 2011-07-20 | 中捷机床有限公司 | 一种应用直线电机驱动的正l形滑板 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62296761A (ja) * | 1986-06-13 | 1987-12-24 | Asahi Chem Ind Co Ltd | リニアモ−タ用磁気軸受 |
-
2018
- 2018-04-03 WO PCT/JP2018/014327 patent/WO2019193659A1/ja active Application Filing
- 2018-04-03 JP JP2020512137A patent/JP7170376B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08192327A (ja) * | 1995-01-11 | 1996-07-30 | Toshiba Mach Co Ltd | 工作機械の送り装置 |
JP2007514295A (ja) * | 2004-09-01 | 2007-05-31 | シーメンス アクチエンゲゼルシヤフト | 位置決め装置 |
JP2006159404A (ja) * | 2004-12-08 | 2006-06-22 | Fritz Studer Ag | 位置決めデバイス |
CN102126138A (zh) * | 2010-12-29 | 2011-07-20 | 中捷机床有限公司 | 一种应用直线电机驱动的正l形滑板 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111267875A (zh) * | 2020-02-19 | 2020-06-12 | 深圳市博智达机器人有限公司 | 一种磁浮电机承载车系统 |
CN112260512A (zh) * | 2020-09-15 | 2021-01-22 | 雅科贝思精密机电(上海)有限公司 | 一种环形线结构 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019193659A1 (ja) | 2020-10-22 |
JP7170376B2 (ja) | 2022-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2013236987B2 (en) | Brushless DC motor | |
JP5276299B2 (ja) | シャフト形リニアモータを内蔵した実装ヘッド | |
US8044541B2 (en) | Multi-degree-of-freedom actuator and stage device | |
KR100775423B1 (ko) | 도어시스템 | |
US11374476B2 (en) | Sounding device | |
JP2010213374A (ja) | リニアモータ | |
US6787945B2 (en) | Linear motor | |
WO2019193659A1 (ja) | リニアモータ | |
JP2008125322A (ja) | リニアモータおよび一軸アクチュエータ | |
JP4679902B2 (ja) | 振動運動を生成するための駆動機構を備えた小型電気器具 | |
JP4528974B2 (ja) | 振動抑制装置 | |
JP6655214B2 (ja) | 振動モータ | |
EP3326276B1 (en) | Transverse flux linear motor | |
US20040189104A1 (en) | Drive unit | |
EP2439836B1 (en) | Linear motor and stage device | |
JP2008259330A (ja) | アクチュエータ | |
JPH07265559A (ja) | 往復式電気かみそり | |
CN110036556B (zh) | 线性电动机 | |
KR100543098B1 (ko) | 진동형 리니어 액츄에이터 | |
WO2017025998A1 (ja) | リニアモータ及びリニアモータを備える機器 | |
JP4581313B2 (ja) | エレベータのリニアモータ支持装置 | |
JPH1052022A (ja) | 無ブラシ線型駆動制御システム | |
CN215990534U (zh) | 电磁式执行机构及电磁式振动控制装置 | |
JP6549257B2 (ja) | 可動コイル型リニアモータ | |
CN113556018A (zh) | 电磁式执行机构及电磁式振动控制装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18913337 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020512137 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18913337 Country of ref document: EP Kind code of ref document: A1 |