WO2019192428A1 - 显示系统及其显示控制方法 - Google Patents

显示系统及其显示控制方法 Download PDF

Info

Publication number
WO2019192428A1
WO2019192428A1 PCT/CN2019/080820 CN2019080820W WO2019192428A1 WO 2019192428 A1 WO2019192428 A1 WO 2019192428A1 CN 2019080820 W CN2019080820 W CN 2019080820W WO 2019192428 A1 WO2019192428 A1 WO 2019192428A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display
light
crystal cells
layers
Prior art date
Application number
PCT/CN2019/080820
Other languages
English (en)
French (fr)
Inventor
尤杨
邱云
杨瑞智
王瑞勇
王志东
吕振华
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/607,948 priority Critical patent/US11281033B2/en
Publication of WO2019192428A1 publication Critical patent/WO2019192428A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/32Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers characterised by the geometry of the parallax barriers, e.g. staggered barriers, slanted parallax arrays or parallax arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction

Definitions

  • Some embodiments of the present disclosure are directed to a display system and a display control method thereof.
  • two-dimensional flat display can no longer meet people's needs, people want to be able to truly restore the three-dimensional information presented by the display, so three-dimensional display technology came into being.
  • the user does not want other people to view the information of the display screen, and at this time, the display device needs to have a function of preventing peek.
  • At least one embodiment of the present disclosure provides a display system including a display device, at least two layers of liquid crystal cells located on a light exit side of the display device, and a control device.
  • the display device is configured to display a display screen; the at least two layers of liquid crystal cells are configured to control an exit angle of light of the display screen; and the control device is configured to control each layer of the liquid crystal cells in the at least two layers of liquid crystal cells The position and/or width of the light transmissive area and the light blocking area to control the display mode of the display screen.
  • each layer of the liquid crystal cell includes: two opposite transparent electrode layers and a liquid crystal layer between the two transparent electrode layers.
  • the two opposite transparent electrode layers each include a driving electrode configured to be applied with an electrical signal to control a corresponding liquid crystal layer to switch between a light transmitting state and an opaque state to be in the layers
  • the light transmitting region and the light shielding region are formed on the liquid crystal cell.
  • the driving electrodes are a plurality of strip electrodes extending along the same side.
  • the liquid crystal layer is a polymer liquid crystal layer including a black dye
  • the polymer liquid crystal layer including a black dye is in a light transmitting state in a state where no electric field is applied. In the state of applying an electric field, the opaque state is present.
  • a set spacing exists between the display device and the at least two layers of liquid crystal cells and between the layers of liquid crystal cells.
  • the display device includes a backlight module and a display panel on a light exiting side of the backlight module; the at least two layers of liquid crystal cells are located away from the display panel One side of the backlight module or between the backlight module and the display panel.
  • the display device is an organic light emitting diode display device or a liquid crystal display device.
  • control device is configured to control the at least two layers of liquid crystal cells to be in a light transmitting state such that the display mode is a two-dimensional planar display.
  • control device is configured to control the at least two layers of liquid crystal cells to form the light-transmitting region and the light-shielding region that are spaced apart, and the at least two layers
  • the orthographic projections of the light-transmitting regions of the liquid crystal cell on the display surface of the display device do not completely overlap such that the display mode is a three-dimensional stereoscopic display.
  • the control device is configured to control the width of the light-transmitting region of the liquid crystal cell located in the intermediate layer to be larger than The width of the light-transmitting region of the two liquid crystal cells other than the intermediate layer, the width of the light-shielding region of the liquid crystal cell located in the intermediate layer is larger than the light-shielding region of the two liquid crystal cells except the intermediate layer.
  • the width of the adjacent two layers of the light-transmitting regions of the liquid crystal cell does not completely overlap at the front projection of the display surface of the display device.
  • the control device is configured to control the at least two layers of liquid crystal cells to form the light-transmitting region and the light-shielding region arranged at intervals, and except for the at least two layers
  • Each of the liquid crystal cells other than the liquid crystal cell is in a completely transparent state, and the light-transmitting regions of the at least two liquid crystal cells have an overlapping area on the orthographic projection of the display surface of the display device, so that the display mode is a peep-proof display.
  • the control device is configured to control the liquid crystal cell located in the intermediate layer to be in a completely transparent state, and the two layers of the liquid crystal are located outside the intermediate layer.
  • the cartridges each include the light-transmissive regions and the light-shielding regions arranged at intervals, and the two regions of the liquid crystal cells other than the intermediate layer have exactly overlapped with the orthographic projection of the display surface of the display device.
  • At least one embodiment of the present disclosure further provides a display control method for a display system, including: receiving a switching instruction of a user, determining a display mode that the display system needs to switch to; and applying the control mode according to the determined display mode An electrical signal on each of the drive electrodes of the liquid crystal cell is caused to cause the display system to switch to a display mode indicated by the switching command.
  • the control when the display mode that the display system needs to switch to is a two-dimensional plane display, applies power to each driving electrode of each of the liquid crystal cells.
  • the signal includes: controlling an electrical signal applied to each of the driving electrodes such that each of the liquid crystal cells is in a light transmitting state.
  • the control when the display mode that the display system needs to switch to is a three-dimensional display, applies an electrical signal applied to each driving electrode of each of the liquid crystal cells.
  • the method includes: controlling an electrical signal applied to each of the driving electrodes to form at least two layers of the liquid crystal cell to form a light-transmitting area and a light-shielding area arranged at intervals; and controlling a set frequency of each of the liquid crystal cells that is indistinguishable by a human eye Converting between a left eye mode and a right eye mode; in the left eye mode and the right eye mode, at least two layers of the light transmissive area of the liquid crystal cell are not completely orthographically projected on a display surface of the display device overlapping.
  • the area covered by the outgoing light of the display device in the left-eye mode at least partially overlaps with the visible range of the left eye and the visible range of the right eye. There is no overlap; in the right eye mode, the area covered by the outgoing light of the display device at least partially overlaps with the visible range of the right eye without overlapping with the visible range of the left eye.
  • the control when the display mode that the display system needs to switch to is a privacy display, applies an electrical signal applied to each driving electrode of each of the liquid crystal cells.
  • the method includes: controlling an electrical signal applied to each of the driving electrodes to form the at least two layers of the liquid crystal cell to form the light-transmitting region and the light-shielding region which are arranged at intervals, and except for the at least two layers of liquid crystal cells
  • Each of the liquid crystal cells is in a completely transparent state; and the light-transmitting regions of the at least two liquid crystal cells have overlapping regions on the orthographic projection of the display surface of the display device.
  • the control is applied to each of the liquid crystal cells.
  • the electrical signals on the driving electrodes include: controlling electrical signals applied to the driving electrodes, so that each of the liquid crystal cells is formed with the light-transmitting region and the light-shielding region arranged at intervals;
  • the width of the light-transmitting region of the liquid crystal cell is larger than the width of the light-transmitting region of the two liquid crystal cells except the intermediate layer, so that the width of the light-shielding region of the liquid crystal cell located in the intermediate layer is greater than The width of the light-shielding region of the two liquid crystal cells other than the intermediate layer; the orthogonal projection of the light-transmitting regions of the two adjacent liquid crystal cells on the display surface of the display device does not completely overlap.
  • the control is applied to each of the liquid crystal cells.
  • the electrical signals on the driving electrodes include: controlling electrical signals applied to the driving electrodes, so that the liquid crystal cells located in the intermediate layer are in a completely transparent state, so that the two layers except the intermediate layer are located.
  • the liquid crystal cell is formed with the light-transmissive region and the light-shielding region which are arranged at intervals; in addition to the two layers of the liquid crystal cell outside the intermediate layer, the orthographic projection of the light-transmitting region of the liquid crystal cell on the display surface of the display device is just complete overlapping.
  • FIG. 1 is a schematic structural diagram of a display system according to some embodiments of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of a liquid crystal cell according to some embodiments of the present disclosure
  • 3A is a schematic top plan view of a transparent electrode layer according to some embodiments of the present disclosure.
  • 3B is a schematic top plan view of a grating provided by some embodiments of the present disclosure.
  • FIG. 4A is a schematic diagram showing the operation of a liquid crystal cell according to some embodiments of the present disclosure.
  • FIG. 4B is a schematic diagram showing the operation of a liquid crystal cell according to another embodiment of the present disclosure.
  • FIG. 5A is a schematic structural diagram of a display system according to another embodiment of the present disclosure.
  • FIG. 5B is a schematic structural diagram of a display system according to some embodiments of the present disclosure.
  • FIG. 6 is a flowchart of a display control method according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of a two-dimensional planar display provided by some embodiments of the present disclosure.
  • FIG. 8A is a schematic diagram of a three-dimensional stereoscopic display provided by some embodiments of the present disclosure.
  • FIG. 8B is a schematic diagram of a three-dimensional stereoscopic display provided by other embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of a privacy display according to some embodiments of the present disclosure.
  • FIG. 10A is a schematic diagram of a three-dimensional stereoscopic display according to still another embodiment of the present disclosure.
  • FIG. 10B is a schematic diagram of a three-dimensional stereoscopic display provided by still another embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a privacy display according to other embodiments of the present disclosure.
  • a common display device may only have one of three-dimensional display or anti-spy display, and cannot simultaneously have multiple functions.
  • how to make display devices have multiple functions for a variety of applications has become an urgent problem to be solved.
  • At least one embodiment of the present disclosure provides a display system including a display device, at least two layers of liquid crystal cells located on a light exit side of the display device, and a control device.
  • the display device is configured to display a display screen; at least two layers of the liquid crystal cell are configured to control an exit angle of the light of the display screen; and the control device is configured to control the position and/or width of the light-transmitting region and the light-shielding region of each layer of the liquid crystal cell to control the display The display mode of the screen.
  • At least one embodiment of the present disclosure also provides a display control method corresponding to the above display system.
  • the display system and the display control method thereof provided by the foregoing embodiments of the present disclosure simultaneously have various display modes such as two-dimensional flat display, three-dimensional stereo display, and anti-peep display, and can be between multiple display modes according to actual application scenarios. Switch.
  • a display system provided by some embodiments of the present disclosure includes: a display device 11 , at least two layers of liquid crystal cells 12 on the light emitting side of the display device 11 , and a control device 13 .
  • the display device is configured to display a display screen; at least two layers of the liquid crystal layer 12 are configured to control an exit angle of light of the display screen; and the control device 13 is configured to control the position of the light-transmitting region 22 and the light-shielding region 21 of each layer of the liquid crystal cell 12. / or width to control the display mode of the display screen.
  • the light-transmitting region 22 is represented by a white rectangle
  • the light-shielding region 21 is represented by a black rectangle.
  • the display mode may be a three-dimensional display, a two-dimensional flat display, or a privacy display.
  • the human eye views the display screen through the liquid crystal cell located on the display device 11, so that the display mode of the display screen viewed by the human eye can be controlled by the control device 13 adjusting the light transmission angle of the liquid crystal cell 12, so that the display can be made.
  • the system has multiple display modes for a wide range of applications.
  • the set spacing can be set according to the functions that need to be implemented, and the embodiment of the present disclosure does not limit this.
  • the display device 11 includes, for example, a liquid crystal cell of 2 layers, 3 layers, 4 layers or more, and the specific setting may be determined according to actual conditions, and the embodiment of the present disclosure No restrictions.
  • each layer of the liquid crystal cell 12 includes an opposite transparent electrode layer 121 and a liquid crystal layer 122 between the two transparent electrode layers 121.
  • the material of the transparent electrode layer 121 may be the same or different, and may be a transparent material such as a glass substrate or a resin substrate, or may be a glass substrate and a resin substrate. Any combination of the embodiments of the present disclosure is not limited thereto.
  • the two opposite transparent electrode layers 121 each include a driving electrode 1211.
  • the drive electrode 1211 can be configured to be applied with an electrical signal to control the transition of the corresponding liquid crystal layer between the light transmissive state and the opaque state to form a corresponding light transmissive region and light blocking region on the liquid crystal cell.
  • a region in which the liquid crystal layer is in a light transmitting state corresponds to a light transmitting region of the liquid crystal cell
  • a region in which the liquid crystal layer is in an opaque state corresponds to a light blocking region of the liquid crystal cell.
  • the drive electrodes 1211 are a plurality of strip electrodes extending along the same side; in other examples, for example, the drive electrodes 1211 on one transparent electrode layer may be planar electrodes, and the other transparent electrode
  • the driving electrodes 1211 on the layers may be strip electrodes to form a grating structure as shown in FIG. 3B under the control of the driving electrodes on the respective transparent electrode layers.
  • the grating structure includes spaced-apart light-transmissive regions 22 and light-shielding regions 21.
  • the driving electrode 1211 may also be an electrode of other shapes capable of forming a grating, such as a diamond shape, etc., which is not limited by the embodiment of the present disclosure, and the following is an example in which the driving electrode 1211 is a strip electrode. Description.
  • the strip electrodes 1211 located on the respective transparent electrode layers 121 may be arranged laterally or longitudinally, and the arrangement direction thereof is not limited as long as the overlapping portions are satisfied to form an electric field to control the deflection of the liquid crystal molecules 201 to form a grating.
  • the material of the strip electrode 1211 may be a transparent conductive material.
  • the transparent conductive material may be a material including a transparent metal oxide such as indium tin oxide (ITO) or indium zinc oxide (IZO), which is not limited in the embodiment of the present disclosure.
  • each strip electrode 1211 passes through a port (not shown in FIGS. 1-3) located on the left and right sides of each transparent electrode layer 121, and a wire (not shown) connected to the port, respectively.
  • a port not shown in FIGS. 1-3
  • a wire not shown
  • the display system can be used for two-dimensional planar display, three-dimensional stereoscopic display, and anti-peep display, respectively.
  • each liquid crystal cell can be adjusted according to the state of the liquid crystal cell corresponding to the desired display mode, thereby achieving free switching between different display modes.
  • the light blocking region may include at least one strip electrode.
  • the width and position of the light-shielding region can be controlled by controlling the number and position of the strip electrodes included in the light-shielding region. For example, by applying an electrical signal to any combination of continuously arranged strip electrodes by the control device, light-shielding regions of different positions and widths can be formed, thereby realizing different display modes.
  • the following embodiments are the same as those described herein and will not be described again.
  • the liquid crystal layer 122 described above may employ a polymer liquid crystal layer including a black dye 123 in the polymer liquid crystal layer.
  • the black dye has dichroism, has the same properties as liquid crystal molecules, and can exhibit different arrangements under the action of an electric field.
  • the black dye molecules in the polymer liquid crystal layer including the black dye and the pointing vector (long-axis direction) of the liquid crystal molecules are randomly distributed in a state where no electric field is applied, so the liquid crystal cell is Light transmission state.
  • the black dye molecules and the liquid crystal molecules in the polymer liquid crystal layer including the black dye are included.
  • the pointing vectors are all parallel to the direction of the electric field, and the dye molecules exhibit significant color in the long axis direction and appear black, so the liquid crystal cell is opaque under the action of the electric field.
  • control device 13 may be various devices that can implement control functions, such as a central processing unit (CPU), a data signal processor (DSP), etc., and can also be field-programmable through a semiconductor chip. Gate array (FPGA) and other ways to achieve.
  • CPU central processing unit
  • DSP data signal processor
  • FPGA Gate array
  • the control device 13 can include a processor and a memory (not shown).
  • the processor may be a central processing unit (CPU) or other form of processing unit having data processing capability and/or instruction execution capability, and may be a general purpose processor or a dedicated processor, and may be an X86 or ARM architecture based processor or the like. Wait.
  • the storage device may comprise one or more computer program products, which may comprise various forms of computer readable storage media, such as volatile memory and/or nonvolatile memory.
  • the volatile memory may include, for example, a random access memory (RAM) and/or a cache or the like.
  • the nonvolatile memory may include, for example, a read only memory (ROM), a hard disk, a flash memory, or the like.
  • One or more computer program instructions can be stored on the computer readable storage medium, and the processor can execute the program instructions to implement the functions (implemented by the processor) and/or other of the described embodiments of the present disclosure.
  • the desired function can also be stored in the computer readable storage medium.
  • the display device 11 in the display system provided by some embodiments of the present disclosure may adopt various forms of display devices, which are not limited in the embodiments of the present disclosure.
  • the display device 11 further includes a backlight module 111 and a display panel 112 located on the light exit side of the backlight module 111 .
  • the display device 11 is a display device that provides a light source by the backlight module 111
  • the multi-layer liquid crystal cell 12 can be disposed on a side of the display panel 112 facing away from the backlight module 111 (as shown in FIG. 5A), or can be disposed on the backlight module.
  • the group 111 is between the display panel 112 (as shown in FIG. 5B).
  • the multi-layer liquid crystal cell when the multi-layer liquid crystal cell is disposed in a different position such as that shown in FIG. 5A or FIG. 5B in the display system, since the distance of the multi-layer liquid crystal cell from the display surface of the display panel is different, The spacing between the liquid crystal cells and the position and/or width of the light-transmitting region 22 and the light-shielding region 21 in each liquid crystal cell can be adjusted accordingly according to the needs of the actual application, so that the display system can be in various display modes according to actual conditions. Free switching function.
  • the display device 11 can be a liquid crystal display device.
  • the display panel can be a liquid crystal display panel.
  • the display device may also be a self-illuminating display device.
  • the display device may be an Organic Light-Emitting Diode (OLED) display device, and the implementation of the present disclosure. This example does not limit this.
  • OLED Organic Light-Emitting Diode
  • the display device 11 can also adopt other types of display devices, and the multi-layer liquid crystal cell needs to be disposed on the light-emitting side of the display device 11 or the display panel 112, which realizes the principle of switching between display modes and the above two
  • the display device is similar and will not be described here. Display devices that implement display mode switching using the disclosed concepts are all within the scope of the present disclosure.
  • the display system provided by the above embodiments of the present disclosure can apply electrical signal control to each strip electrode of each liquid crystal cell according to actual needs, thereby controlling the position and width of the light-transmitting region and the light-shielding region formed by each liquid crystal cell, thereby realizing more Switch between display modes.
  • some embodiments of the present disclosure further provide a display control method based on the above display system, which may be implemented at least partially in software, hardware, firmware, or any combination thereof for controlling a display system to implement display in a two-dimensional plane.
  • the function of switching between display modes such as three-dimensional display and anti-spy display.
  • the display control method provided by some embodiments of the present disclosure includes steps S601-S602.
  • the display control method provided by some embodiments of the present disclosure will be described in detail below with reference to FIG.
  • Step S601 Receive a switching instruction of the user, and determine a display mode that the display system needs to switch to;
  • Step S602 Control an electric signal applied to each driving electrode of each liquid crystal cell according to the determined display mode to switch the display system to the display mode indicated by the switching instruction.
  • switching between a plurality of display modes can be realized by controlling strip electrodes of the respective liquid crystal cells.
  • the two-dimensional plane display and the three-dimensional stereoscopic display can be switched between each other, and the mutual switching between the two-dimensional plane display and the anti-spy display can be realized, and the mutual switching between the anti-spy display and the three-dimensional display can also be realized.
  • the anti-spy angle can be adjusted in the anti-spy display mode.
  • the position of the light-transmitting region and the light-shielding region formed by each liquid crystal cell can be adjusted by adjusting electrical signals applied to the strip electrodes of the respective liquid crystal cells. / or width, thereby changing the angle of exit of the light emitted by the display device, thereby achieving a variety of display modes.
  • the switching instruction may include, for example, switching between a two-dimensional plane display and a three-dimensional stereoscopic display, switching between the two-dimensional plane display and the anti-spy display, and mutual interaction between the anti-spy display and the three-dimensional display.
  • the specific instructions may be determined according to actual conditions, and the embodiments of the present disclosure do not limit this.
  • the control device 13 supplies a corresponding electrical signal to the liquid crystal cell according to the display mode to control each liquid crystal cell to form a completely light transmitting structure or a grating structure to realize switching of various display modes.
  • step S602 when the determined display mode to be switched to the display mode is a two-dimensional display, the electrical signals applied to the strip electrodes of the respective liquid crystal cells are controlled, which may specifically include: The electric signals applied to the strip electrodes are controlled so that the liquid crystal cells are in a light transmitting state.
  • each layer of the liquid crystal cell located on the light exit side of the display device includes a polymer liquid crystal layer mixed with a black dye. Since both the dye molecules and the polymer liquid crystal molecules have dichroism, the display along the long axis of the molecule is obvious, so When a voltage is applied, the two molecules are randomly distributed, and the liquid crystal cell is completely transparent. No electric field is applied to each of the liquid crystal cells on the light-emitting side of the display device, so that each of the liquid crystal cells is completely transparent. That is, in this mode, each of the liquid crystal cells includes only the light-transmitting region 22, and does not include the light-shielding region. Thereby, the emitted light of the display image of the display device 11 is completely transmitted through the respective liquid crystal cells 12 as shown in FIG. 7 to realize two-dimensional plane display.
  • controlling the electrical signals applied to the strip electrodes of the respective liquid crystal cells may specifically include: controlling Applying an electric signal on each strip electrode to form at least two layers of liquid crystal cells to form a light-transmitting region 22 and a light-shielding region 21 arranged at intervals; controlling each liquid crystal cell in a left-eye mode and a right eye at a set frequency that is indistinguishable by the human eye Conversion between modes.
  • the orthographic projections of the light transmissive areas of at least two layers of the liquid crystal cell on the display surface of the display device do not completely overlap; in the left eye mode, the area of the display device that covers the emitted light and the left side The visible range of the eye at least partially overlaps with no visible area of the right eye; in the right eye mode, the area covered by the outgoing light of the display device at least partially overlaps with the visible range of the right eye and is visible to the left eye The range has no overlapping areas.
  • the three-dimensional display of the display system utilizes the parallax generated by the human left eye viewing image and the right eye viewing image to fuse the brain into a three-dimensional stereoscopic image.
  • the left eye mode can be targeted for two eyes. Quickly switch between the right eye mode and the right eye mode.
  • the human eye does not perceive the flickering of the picture and merges into a stereoscopic image in the brain.
  • the display image cannot be observed by the right eye
  • the right eye mode the display image cannot be observed by the left eye.
  • FIG. 8A and FIG. 8B FIG.
  • FIG. 8A shows the emission range of the light of the display system in the right eye mode
  • FIG. 8B shows the emission range of the light of the display system in the left eye mode.
  • the arrangement of the light-transmitting region 22 and the light-shielding region 21 of each liquid crystal cell in the two modes is different.
  • By controlling the strip electrodes of the respective liquid crystal cells at least two layers of the liquid crystal cells are arranged at intervals of a set width.
  • the maximum angle between the light emitted from the display device in the direction of the right eye and the display surface of the display device is ⁇ 1
  • the area covered by the emitted light having an angle smaller than ⁇ 1 with the display surface and the right is as shown in FIG.
  • the maximum value of the included angle is ⁇ 1, and the area covered by the portion of the outgoing light that is smaller than ⁇ 1 on the display surface does not overlap with the visible range of the left eye, indicating that the left eye cannot receive the outgoing light of the display device. That is, the display image of the display device cannot be viewed, thereby realizing the display of the right eye mode.
  • the display device When switching from the right eye mode to the left eye mode, it is necessary to adjust the positions of the light transmission area and the light shielding area of each liquid crystal cell.
  • the arrangement of the adjusted liquid crystal cells is shown in FIG. 8B, and the display device is emitted in the direction of the right eye.
  • the maximum value of the angle between the light and the display surface of the display device is ⁇ 2, and when the area covered by the portion of the output light that is smaller than ⁇ 2 on the display surface and the visible range of the right eye does not overlap with each other, the right eye is illustrated.
  • the output light of the display device cannot be received, that is, the right eye cannot view the display image of the display device; and at this time, the maximum value of the angle between the light emitted from the display device and the display surface in the direction of the left eye is ⁇ 2, and the display surface
  • the left eye can receive the outgoing light of the display device, that is, the left eye can view the display of the display device.
  • the image thereby realizing the display of the left eye mode.
  • the left eye mode and the right eye mode are switched at a frequency that is indistinguishable by the human eye, a three-dimensional stereoscopic image can be viewed due to the effect of the residual of the human eye.
  • controlling the electrical signals applied to the strip electrodes of the respective liquid crystal cells may specifically include: controlling The electric signals applied to the strip electrodes form at least two layers of the liquid crystal cell to form the light-transmitting regions 22 and the light-shielding regions 21 which are arranged at intervals, and the other liquid crystal cells are completely transparent. For example, there is an overlapping area in the orthographic projection of the light-transmitting region 22 of each liquid crystal cell on the display surface of the display device.
  • the anti-spy display can be used to view the display image of the display device within a set angle range (for example, ⁇ 30°) when the human eye views the display screen, and cannot display the display image beyond the angle range.
  • the viewing angle will be in the vicinity of the front view angle and the range will not be too large, that is, it is necessary to control the emission of light that deviates from the front view angle.
  • the electric signals applied to the strip electrodes of the respective liquid crystal cells can be controlled such that at least two liquid crystal cells form the light-transmitting regions 22 and the light-shielding regions 21 which are arranged at intervals, and Other liquid crystal cells are in a state of complete light transmission.
  • the at least two layers of the light-transmitting region 22 of the liquid crystal cell having the light-shielding region 21 and the light-transmitting region 22 have an overlapping area on the display surface of the display device, so that the light emitted from the display device can be emitted outward from the overlapping region. So that the viewing angle is within the range of ⁇ shown in FIG.
  • the thickness of the light-shielding region can be increased, thereby effectively controlling the exit of the large-angle light far from the normal line, thereby Achieve large-angle anti-spy display.
  • the display system includes a three-layer liquid crystal cell as an example.
  • the control system for the two-dimensional plane display has the same control method as the above-mentioned control method including at least two layers, and can control the three-layer liquid crystal cell to be completely transparent to realize two-dimensional plane display.
  • the electrical signals applied to the strip electrodes can be controlled such that each of the liquid crystal cells forms a light-transmitting region 22 and a light-shielding region 21 which are arranged at intervals.
  • FIGS. 10A and 10B show the arrangement of the light-transmitting region 22 and the light-shielding region 21 formed by the three-layer liquid crystal cell.
  • FIG. 10A shows the arrangement of the light-transmitting region 22 and the light-shielding region 21 in the three-layer liquid crystal cell in the right-eye mode
  • FIG. 10B shows the light-transmitting region 22 and the light-shielding region 21 in the three-layer liquid crystal cell in the left-eye mode. Arrangement.
  • the arrangement of the light-transmitting region 22 and the light-shielding region 21 in the liquid crystal cell is such that the width of the light-transmitting region 22 of the liquid crystal cell located in the intermediate layer is greater than that of the light-transmitting region 22 of the other two-layer liquid crystal cell.
  • the width of the light-shielding region 21 of the liquid crystal cell located in the middle layer is larger than the width of the light-shielding region 21 of the other two-layer liquid crystal cell; the orthographic projection of the light-transmitting region 22 of the adjacent two-layer liquid crystal cell on the display surface of the display device is incomplete overlapping.
  • the width of the light-shielding region 21 can be determined by the number of strip electrodes it includes.
  • the light-shielding region 21 of the liquid crystal cell located in the intermediate layer includes five consecutive strip electrodes, for example, an electrical signal is applied to the five strip electrodes by the control device 13 to form the light-shielding region.
  • the light-shielding region 21 in the remaining layers of the liquid crystal cell includes three continuous electrodes, so that the width of the light-shielding region 21 of the liquid crystal cell located in the intermediate layer is greater than the width of the light-shielding region 21 of the other two-layer liquid crystal cell.
  • the formation principle of the light shielding area 21 is similar, and will not be described below.
  • the light-transmitting region 22 and the light-shielding region 21 formed by the three liquid crystal cells each constitute a grating structure, and the grating period formed by the liquid crystal cell located in the intermediate layer (the sum of the widths of the adjacent light-shielding regions 21 and the light-transmitting regions 22) is larger than the other two.
  • the grating period formed by the layer liquid crystal cell can roughly adjust the outgoing direction of the outgoing light, and the grating period formed by the liquid crystal cells located on the upper and lower sides can further adjust the outgoing light of the light, thereby making FIG. 10A In the right eye mode shown, only the right eye can view the display image, so that only the left eye can view the display image in the left eye mode as shown in FIG. 10B.
  • the left eye mode and the right eye mode are switched at a frequency that is indistinguishable by the human eye, a stereoscopic image can be observed.
  • the three-dimensional display can be implemented by using other arrangements.
  • the embodiments of the present disclosure are merely illustrative, and other arrangements for realizing the three-dimensional display are not limited.
  • the electrical signals applied to the strip electrodes can be controlled to form the three-layer liquid crystal cell in an arrangement as shown in FIG.
  • the liquid crystal cell located in the middle layer is in a completely transparent state, and the other two liquid crystal cells are formed with the light-transmitting regions 22 and the light-shielding regions 21 arranged at intervals; the light-transmitting regions 22 of the other two-layer liquid crystal cells except the intermediate layer are The orthographic projections of the display surfaces of the display devices just overlap completely.
  • the liquid crystal cell controlling the middle layer is in a completely transparent state, and the liquid crystal cell on the upper and lower sides is controlled to control the outgoing direction of the light, which is equivalent to thickening the overall thickness of the liquid crystal cell, and can more effectively control the exit of the large angle light.
  • the anti-peep angle can be controlled within the angle ⁇ ', and the small range near the front view angle cannot be realized.
  • Anti-seeing control while using the liquid crystal box on the upper and lower sides to control the direction of light emission, the anti-peep angle can be controlled within ⁇ , effectively preventing the speculative light from the large angle.
  • the control of the arrangement of the liquid crystal cells on the upper and lower sides can be controlled to reduce the complexity of the control. In practical applications, the arrangement of the liquid crystal cells can be controlled in other ways, which is not limited herein.
  • the flow of the display control method provided by some embodiments of the present disclosure may include more or less operations, which may be performed sequentially or in parallel.
  • the flow of the display control method described above includes a plurality of operations occurring in a specific order, it should be clearly understood that the order of the plurality of operations is not limited.
  • the display control method described above may be performed once or multiple times according to predetermined conditions.
  • electrical signal control can be applied to each strip electrode of each liquid crystal cell according to actual needs, thereby controlling the position and width of the light-transmitting region and the light-shielding region formed by each liquid crystal cell, thereby realizing Switching between multiple display modes.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示系统及其显示控制方法。该显示系统包括显示装置(11)、位于显示装置(11)出光侧的至少两层液晶盒(12)以及控制装置(13)。显示装置(11)配置为显示显示画面;至少两层液晶盒(12)配置为控制显示画面的光线的出射角度;控制装置(13)配置为控制各层液晶盒(12)的透光区域(22)和遮光区域(21)的位置和/或宽度,以控制显示画面的显示模式。该显示系统可以根据实际需要控制各液晶盒(12)形成的透光区域(22)以及遮光区域(21)的位置及宽度,从而实现在多种显示模式之间的切换。

Description

显示系统及其显示控制方法
本申请要求于2018年4月3日递交的中国专利申请第201810290535.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开一些实施例涉及一种显示系统及其显示控制方法。
背景技术
随着显示技术的不断发展,二维平面显示已不能满足人们的需求,人们更希望能真实地还原显示画面所呈现的三维信息,因此三维显示技术应运而生。除此之外,在观看重要的显示内容时,用户并不希望其它人观看到显示画面的信息,此时则需要显示装置具有防窥的功能。
发明内容
本公开至少一实施例提供一种显示系统,包括显示装置、位于所述显示装置出光侧的至少两层液晶盒以及控制装置。所述显示装置配置为显示显示画面;所述至少两层液晶盒配置为控制所述显示画面的光线的出射角度;以及所述控制装置配置为控制所述至少两层液晶盒中各层液晶盒的透光区域和遮光区域的位置和/或宽度,以控制所述显示画面的显示模式。
例如,在本公开一些实施例提供的显示系统中,所述各层液晶盒包括:相对设置的两个透明电极层以及位于两个所述透明电极层之间的液晶层。相对设置的两个所述透明电极层均包括驱动电极,所述驱动电极配置为被施加电信号以控制对应的液晶层在透光状态和不透光状态之间转换,以在所述各层液晶盒上形成所述透光区域和所述遮光区域。
例如,在本公开一些实施例提供的显示系统中,所述驱动电极为沿同一方延伸的多个条状电极。
例如,在本公开一些实施例提供的显示系统中,所述液晶层为包括黑色 染料的聚合物液晶层,所述包括黑色染料的聚合物液晶层在未施加电场状态下呈所述透光状态,在施加电场状态下呈所述不透光状态。
例如,在本公开一些实施例提供的显示系统中,所述显示装置与所述至少两层液晶盒之间以及在所述各层液晶盒之间均存在设定间距。
例如,在本公开一些实施例提供的显示系统中,所述显示装置包括背光模组以及位于所述背光模组出光侧的显示面板;所述至少两层液晶盒均位于所述显示面板背离所述背光模组的一侧,或者位于所述背光模组与所述显示面板之间。
例如,在本公开一些实施例提供的显示系统中,所述显示装置为有机发光二极管显示装置或液晶显示装置。
例如,在本公开一些实施例提供的显示系统中,所述控制装置配置为控制所述至少两层液晶盒均为透光状态,以使得所述显示模式为二维平面显示。
例如,在本公开一些实施例提供的显示系统中,所述控制装置配置为控制所述至少两层液晶盒均形成间隔排列的所述透光区域和所述遮光区域,且所述至少两层液晶盒的透光区域在所述显示装置的显示面上的正投影不完全重叠,以使得所述显示模式为三维立体显示。
例如,在本公开一些实施例提供的显示系统中,在所述显示系统包括三层液晶盒时,所述控制装置配置为控制位于中间层的所述液晶盒的透光区域的宽度大于位于除所述中间层以外的两层所述液晶盒的透光区域的宽度,位于中间层的所述液晶盒的遮光区域的宽度大于位于除所述中间层以外的两层所述液晶盒的遮光区域的宽度,相邻两层所述液晶盒的透光区域在所述显示装置的显示面的正投影不完全重叠。
例如,在本公开一些实施例提供的显示系统中,所述控制装置配置控制所述至少两层液晶盒均形成间隔排列的所述透光区域和所述遮光区域,且除所述至少两层液晶盒以外的各液晶盒为完全透光状态,所述至少两层液晶盒的透光区域在所述显示装置的显示面的正投影均存在重叠区域,以使得所述显示模式为防窥显示。
例如,在所述显示系统包括三层所述液晶盒时,所述控制装置配置为控制位于中间层的所述液晶盒处于完全透光状态,位于除所述中间层以外的两层所述液晶盒均包括间隔排列的所述透光区域和所述遮光区域,位于除所述 中间层以外的两层所述液晶盒的透光区域在所述显示装置的显示面的正投影恰好完全重叠。
本公开至少一实施例还提供一种显示系统的显示控制方法,包括:接收用户的切换指令,确定所述显示系统需要切换到的显示模式;根据确定出的所述显示模式控制施加在各所述液晶盒的各驱动电极上的电信号,以使所述显示系统切换到所述切换指令所指示的显示模式。
例如,在本公开一些实施例提供的显示控制方法中,在所述显示系统需要切换到的显示模式为二维平面显示时,所述控制施加在各所述液晶盒的各驱动电极上的电信号,包括:控制施加在各所述驱动电极上的电信号,使各所述液晶盒均处于透光状态。
例如,在本公开一些实施例提供的显示控制方法中,在所述显示系统需要切换到的显示模式为三维立体显示时,所述控制施加在各所述液晶盒的各驱动电极上的电信号,包括:控制施加在各所述驱动电极上的电信号,使至少两层所述液晶盒形成间隔排列的透光区域和遮光区域;控制各所述液晶盒以人眼不可分辨的设定频率在左眼模式与右眼模式间转换;在所述左眼模式以及所述右眼模式中,至少两层所述液晶盒的透光区域在所述显示装置的显示面上的正投影不完全重叠。
例如,在本公开一些实施例提供的显示控制方法中,在所述左眼模式下所述显示装置的出射光覆盖的区域与左眼的可视范围至少部分重叠而与右眼的可视范围无重叠;在所述右眼模式下所述显示装置的出射光覆盖的区域与右眼的可视范围至少部分重叠而与左眼的可视范围无重叠。
例如,在本公开一些实施例提供的显示控制方法中,在所述显示系统需要切换到的显示模式为防窥显示时,所述控制施加在各所述液晶盒的各驱动电极上的电信号,包括:控制施加在各所述驱动电极上的电信号,使所述至少两层液晶盒形成间隔排列的所述透光区域和所述遮光区域,且除所述至少两层液晶盒以外的各所述液晶盒为完全透光状态;所述至少两层液晶盒的透光区域在所述显示装置的显示面的正投影均存在重叠区域。
例如,在本公开一些实施例提供的显示控制方法中,在所述显示系统包括三层所述液晶盒且所述显示系统用于三维立体显示时,所述控制施加在各所述液晶盒的各驱动电极上的电信号,包括:控制施加在各所述驱动电极上 的电信号,使各所述液晶盒均形成间隔排列的所述透光区域与所述遮光区域;位于中间层的所述液晶盒的透光区域的宽度大于位于除所述中间层以外的两层所述液晶盒的透光区域的宽度,使位于中间层的所述液晶盒的遮光区域的宽度大于位于除所述中间层以外的两层所述液晶盒的遮光区域的宽度;相邻两层所述液晶盒的透光区域在所述显示装置的显示面的正投影不完全重叠。
例如,在本公开一些实施例提供的显示控制方法中,在所述显示系统包括三层所述液晶盒且所述显示系统用于防窥显示时,所述控制施加在各所述液晶盒的各驱动电极上的电信号,包括:控制施加在各所述驱动电极上的电信号,使位于中间层的所述液晶盒处于完全透光状态,使位于除所述中间层以外的两层所述液晶盒均形成间隔排列的所述透光区域和所述遮光区域;除位于所述中间层以外的两层所述液晶盒的透光区域在所述显示装置的显示面的正投影恰好完全重叠。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一些实施例提供的显示系统的结构示意图;
图2为本公开一些实施例提供的液晶盒的截面结构示意图;
图3A为本公开一些实施例提供的透明电极层的俯视结构示意图;
图3B为本公开一些实施例提供的光栅的俯视结构示意图;
图4A为本公开一些实施例提供的液晶盒的工作原理图;
图4B为本公开另一些实施例提供的液晶盒的工作原理图;
图5A为本公开另一些实施例提供的显示系统的结构示意图;
图5B为本公开又一些实施例提供的显示系统的结构示意图;
图6为本公开一些实施例提供的显示控制方法的流程图;
图7为本公开一些实施例提供的二维平面显示的原理图;
图8A为本公开一些实施例提供的三维立体显示的原理图;
图8B为本公开另一些实施例提供的三维立体显示的原理图;
图9为本公开一些实施例提供的防窥显示的原理图;
图10A为本公开又一些实施例提供的三维立体显示的原理图;
图10B为本公开再一些实施例提供的三维立体显示的原理图;以及
图11为本公开另一些实施例提供的防窥显示的原理图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,常见的显示设备可能仅具备三维显示或防窥显示等功能中一种,并不能同时兼具多种功能。但是,随着显示器件的应用场合的多样化和人们对显示器件的更高要求,如何使得显示设备兼具多种功能以适用多种应用场合成为亟需解决的问题。
本公开至少一实施例提供一种显示系统,包括显示装置、位于所述显示装置出光侧的至少两层液晶盒以及控制装置。显示装置配置为显示显示画面;至少两层液晶盒配置为控制显示画面的光线的出射角度;控制装置配置为控制各层液晶盒的透光区域和遮光区域的位置和/或宽度,以控制显示画面的显示模式。本公开至少一实施例还提供一种对应于上述显示系统的显示控制方 法。
本公开上述实施例提供的显示系统及其显示控制方法,同时具备二维平面显示、三维立体显示以及防窥显示等多种显示模式,可根据实际应用场景的需要在其多种显示模式之间进行切换。
下面结合附图详细介绍本公开一些实施例提供的显示系统及其显示控制方法。
如图1所示,本公开一些实施例提供的显示系统,包括:显示装置11、位于显示装置11出光侧的至少两层液晶盒12以及控制装置13。例如,显示装置配置为显示显示画面;至少两层液晶层12配置为控制显示画面的光线的出射角度;控制装置13配置为控制各层液晶盒12的透光区域22和遮光区域21的位置和/或宽度,以控制所述显示画面的显示模式。例如,透光区域22以白色矩形表示,遮光区域21以黑色矩形表示,以下实施例与此相同,不再赘述。
例如,该显示模式可以是三维立体显示、二维平面显示或防窥显示等。例如,人眼通过位于显示装置11上的液晶盒观看该显示画面,从而可以通过控制装置13调节该液晶盒12的透光角度控制人眼观看到的显示画面的显示模式,从而可以使该显示系统具有多种显示模式以适用于多种应用场合。
例如,显示装置11与液晶盒12之间以及各层液晶盒12之间均存在设定间距。例如,该设定间距可根据需要实现的功能进行设定,本公开的实施例对此不作限制。
需要注意的是,在本公开一些实施例中,显示装置11例如包括2层、3层、4层或更多层的液晶盒,具体设置可视实际情况而定,本公开的实施例对此不作限制。
例如,如图2所示,各层液晶盒12包括:相对而置的透明电极层121以及位于两个透明电极层121之间的液晶层122。例如,在本公开的一些实施例中,相对而置的透明电极层121的材质可以相同也可以不同,可以为玻璃基材、树脂基材等透明材料,还可以为玻璃基材和树脂基材的任意组合,本公开的实施例对此不作限制。
例如,如图3A所示,相对而置的两个透明电极层121均包括驱动电极1211。例如,该驱动电极1211可以配置为被施加电信号以控制对应的液晶层 在透光状态和不透光状态之间转换,从而在液晶盒上形成对应的透光区域和遮光区域。例如,液晶层处于透光状态的区域对应液晶盒的透光区域,液晶层处于不透光状态的区域对应液晶盒的遮光区域。例如,在一些示例中,该驱动电极1211为沿同一方延伸的多个条状电极;在另一些示例中,例如,一个透明电极层上的驱动电极1211可以是面状电极,另一个透明电极层上的驱动电极1211可以是条状电极,以在各透明电极层上的驱动电极的控制下形成如图3B所示的光栅结构。例如,该光栅结构包括间隔排列的透光区域22和遮光区域21。需要注意的是,该驱动电极1211还可以是能够形成光栅的其他形状的电极,例如菱形等,本公开的实施例对此不作限制,且下面以该驱动电极1211均为条状电极为例进行说明。
例如,位于各透明电极层121上的条状电极1211可以横向排列或纵向排列,其排列方向不作限定,只要满足具有重叠的部分以形成电场,以控制液晶分子201的偏转,形成光栅即可。例如,该条状电极1211的材质可以是透明导电材料。例如,该透明导电材料可以是包括铟锡氧化物(ITO)或铟锌氧化物(IZO)等透明金属氧化物的材料,本公开的实施例对此不作限制。
例如,在一些示例中,各个条状电极1211分别通过位于各透明电极层121上左右侧的端口(图1-3中未所示)以及和该端口连接的导线(图中未示出),与控制装置13相连,以向各液晶盒的条状电极1211施加电信号,以在各相对设置的条状电极之间产生电场,以使得各液晶盒呈现相同或不同的排列规则的条形透光区域和条形遮光区域。例如,通过调整各液晶盒之间的间距,以及各液晶盒中透光区域和遮光区域的位置和/或宽度,可以实现显示系统分别用于二维平面显示、三维立体显示以及防窥显示。根据实际需要,可按照与所需要的显示模式相对应的液晶盒状态来调整各液晶盒,从而实现不同显示模式之间的自由切换。
例如,遮光区域可以包括至少一个条状电极。例如,可以通过控制遮光区域包括的条状电极的数量和位置控制该遮光区域的宽度和位置。例如,通过控制装置对连续排列的条状电极的任意组合施加电信号,可以形成不同位置和宽度的遮光区域,从而实现不同的显示模式。以下实施例与此相同,不再赘述。
例如,在一些示例中,如图4A和图4B所示,上述的液晶层122可采用 聚合物液晶层,在聚合物液晶层中包括黑色染料123。例如,该黑色染料具有二向色性,与液晶分子的具有相同的性质,在电场作用下可呈现不同的排列方式。
例如,如图4A所示,在不施加电场的状态下,包括黑色染料的聚合物液晶层中的黑色染料分子以及液晶分子的的指向矢量(长轴方向)是随机分布的,因此液晶盒呈透光状态。如图4B所示,在施加电场(例如,施加阈值电压)的状态下(例如,图4B中的箭头方向为电场方向),包括黑色染料的聚合物液晶层中的黑色染料分子以及液晶分子的指向矢量均平行于电场方向,而染料分子在长轴方向上显色明显,呈现黑色,因此在电场作用下液晶盒呈不透光状态。
例如,在本公开一些实施例中,控制装置13可以是各种可以实现控制功能的装置,例如中央处理单元(CPU)、数据信号处理器(DSP)等,还可以通过半导体芯片、现场可编程门阵列(FPGA)等方式实现。
例如,该控制装置13可以包括处理器和存储器(图中未示出)。该处理器可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,可以为通用处理器或专用处理器,可以是基于X86或ARM架构的处理器等等。存储装置可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器可以运行所述程序指令,以实现所述的本公开实施例中(由处理器实现)的功能以及/或者其它期望的功能。在所述计算机可读存储介质中还可以存储各种应用程序和各种数据。
例如,在实际应用中,本公开一些实施例提供的显示系统中的显示装置11可采用多种形式的显示装置,本公开的实施例对此不作限制。例如,如图5A和图5B所示,显示装置11还可以包括:背光模组111以及位于背光模组111出光侧的显示面板112。当显示装置11为由背光模组111提供光源的显示装置时,多层液晶盒12可设置于显示面板112背离背光模组111的一侧(如图5A所示),也可以设置于背光模组111与显示面板112之间(如图5B 所示)。
需要注意的是,当多层液晶盒在显示系统中设置于例如图5A或图5B中所示的不同的位置时,由于该多层液晶盒距离显示面板的显示面的距离不同,因此,该液晶盒之间的间距以及各液晶盒中透光区域22与遮光区域21的位置和/或宽度可以根据实际应用的需要进行相应调整,以实现该显示系统可根据实际情况在多种显示模式中自由切换的功能。
例如,在一些示例中,该显示装置11可为液晶显示装置。相应地,该显示面板可为液晶显示面板。需要注意的是,在另一些示例中,显示装置还可为自发光的显示装置,例如,这种显示装置可为有机发光二极管(Organic Light-Emitting Diode,简称OLED)显示装置,本公开的实施例对此不作限制。
例如,在一些示例中,显示装置11还可采用其它类型的显示装置,多层液晶盒需要设置在显示装置11或显示面板112的出光一侧,其实现显示模式之间切换的原理与上述两种显示装置类似,在此不再赘述。采用本公开构思实现显示模式切换的显示装置均属于本公开的保护范围。
本公开上述实施例提供的显示系统,可以根据实际需要可对各液晶盒的各条状电极施加电信号控制,从而控制各液晶盒形成的透光区域以及遮光区域的位置及宽度,实现在多种显示模式之间的切换。
例如,本公开一些实施例还提供一种基于上述显示系统的显示控制方法,可以以至少部分以软件、硬件、固件或其任意组合的方式实现,以用于控制显示系统实现在二维平面显示、三维立体显示以及防窥显示等显示模式之间进行切换的功能。例如,如图6所示,本公开一些实施例提供的显示控制方法包括步骤S601-步骤S602。下面参考图6对本公开一些实施例提供的显示控制方法进行详细地介绍。
步骤S601:接收用户的切换指令,确定显示系统需要切换到的显示模式;
步骤S602:根据确定出的显示模式控制施加在各液晶盒的各驱动电极上的电信号,以使显示系统切换到切换指令所指示的显示模式。
本公开一些实施例提供的上述显示控制方法,通过控制各液晶盒的条状电极可以实现多种显示模式之间的切换。例如,可实现二维平面显示与三维立体显示之间相互切换,可实现二维平面显示与防窥显示之间的相互切换, 也可实现防窥显示与三维立体显示之间的相互切换。除此之外,还可在防窥显示模式下调整防窥角度。在采用的液晶盒的数量,各液晶盒的设置位置确定之后,通过调整施加在各液晶盒的条状电极上的电信号,可以调整各液晶盒所形成的透光区域以及遮光区域的位置和/或宽度,从而改变由显示装置出射的光线的出射角度,由此实现多种显示模式。
例如,对于步骤S601,该切换指令例如可以包括二维平面显示与三维立体显示之间相互切换,二维平面显示与防窥显示之间的相互切换,防窥显示与三维立体显示之间的相互切换等,具体指令可根据实际情况确定,本公开的实施例对此不作限制。在确定需要显示的显示模式时,控制装置13根据该显示模式向液晶盒提供相应的电信号以控制各液晶盒形成完全透光结构或光栅结构,以实现各种显示模式的切换。
例如,对于步骤S602,在一些示例中,在确定出的显示系统需要切换到的显示模式为二维平面显示时,控制施加在各液晶盒的各条状电极上的电信号,具体可以包括:控制施加在各条状电极上的电信号,使各液晶盒均处于透光状态。
例如,位于显示装置出光侧的各层液晶盒包括混有黑色染料的聚合物液晶层,由于染料分子与聚合物液晶分子均具有二向色性,沿分子长轴方向显示明显,因此可不对其施加电压,两种分子随机分布,液晶盒呈现完全透光状态。对显示装置出光侧的各液晶盒均不施加电场,使各液晶盒均呈现完全透光状态。即在该模式下,各液晶盒仅包括透光区域22,不包括遮光区域。由此显示装置11的显示图像的出射光如图7所示完全透过各液晶盒12,以实现二维平面显示。
例如,对于步骤S602,在一些示例中,在确定出的显示系统需要切换到的显示模式为三维立体显示时,控制施加在各液晶盒的各条状电极上的电信号,具体可以包括:控制施加在各条状电极上的电信号,使至少两层液晶盒形成间隔排列的透光区域22和遮光区域21;控制各液晶盒以人眼不可分辨的设定频率在左眼模式与右眼模式间转换。
例如,在左眼模式以及右眼模式中,至少两层液晶盒的透光区域在显示装置的显示面上的正投影不完全重叠;在左眼模式下显示装置的出射光覆盖的区域与左眼的可视范围至少部分重叠而与右眼的可视范围无重叠区域;在 右眼模式下显示装置的出射光覆盖的区域与右眼的可视范围至少部分重叠而与左眼的可视范围无重叠区域。
具体来说,显示系统的三维立体显示利用人类左眼观看图像和右眼观看图像所产生的视差以在大脑融合成三维立体图像的原理,在实际操作中,可针对两个眼睛在左眼模式和右眼模式之间快速切换,在以人眼不可分辨的频率切换时,人眼并不会感知到画面的闪烁感而在大脑中融合为立体图像。例如,在左眼模式下,右眼无法观察到显示图像;在右眼模式下,左眼无法观察到显示图像。具体可参见图8A和图8B,图8A示出了右眼模式下显示系统的光线的出射范围,图8B示出了左眼模式下显示系统的光线的出射范围。在两种模式下的各液晶盒的透光区域22和遮光区域21的排列方式有所差异,通过控制各液晶盒的条状电极,使得至少两层的液晶盒形成以设定宽度间隔排列的透光区域22和遮光区域21,施加电信号之后的液晶盒形成光栅结构,用于控制显示装置光线的出射方向。
如图8A所示,显示装置在向右眼方向出射光线与显示装置的显示面的夹角的最大值为α1,与显示面的夹角小于α1的这部出射光线所能够覆盖的区域与右眼的可视范围至少部分重叠时,则说明右眼可以接收到显示装置的出射光线,即右眼可以观看到显示装置的显示图像;而此时显示装置在向左眼方向出射光线与显示面的夹角的最大值为β1,与显示面的夹角小于β1的这部分出射光线所能够覆盖的区域与左眼的可视范围互不重叠,则说明左眼无法接收到显示装置的出射光线,即不能够观看到显示装置的显示图像,由此实现右眼模式的显示。
在由右眼模式切换到左眼模式时,需要对各液晶盒的透光区域和遮光区域的位置进行调整,调整后的各液晶盒的排列方式参见图8B,显示装置在向右眼方向出射光线与显示装置的显示面的夹角的最大值为α2,与显示面的夹角小于α2的这部分出射光线所能够覆盖的区域与右眼的可视范围互不重叠时,则说明右眼不能够接收到显示装置的出射光线,即右眼不能够观看到显示装置的显示图像;而此时显示装置在向左眼方向出射光线与显示面的夹角的最大值为β2,与显示面的夹角小于β2的这部分出射光线所能够覆盖的区域与左眼的可视范围至少部分重叠时,则说明左眼可以接收到显示装置的出射光线,即左眼能够观看到显示装置的显示图像,由此实现左眼模式的显示。 在左眼模式和右眼模式以人眼不可分辨的频率切换时,由于人眼视觉残留的作用可以观看到三维立体图像。
例如,对于步骤S602,在一些示例中,在确定出的显示系统需要切换到的显示模式为防窥显示时,控制施加在各液晶盒的各条状电极上的电信号,具体可以包括:控制施加在各条状电极上的电信号,使至少两层液晶盒形成间隔排列的透光区域22和遮光区域21,且其它各液晶盒为完全透光状态。例如,各液晶盒的透光区域22在显示装置的显示面的正投影均存在重叠区域。
具体来说,防窥显示用于人眼观看显示屏幕时在设定角度范围(例如±30°)内可以观看到显示装置的显示图像,而超出角度范围则无法观看到显示图像。一般情况下,可视角度会在正视角度的附近且范围不会太大,也就是说要控制偏离正视角度较大的光线的出射。在本公开实施例中,如图9所示,可控制施加在各液晶盒的条状电极上的电信号,使得至少两层液晶盒形成间隔排列的透光区域22和遮光区域21,并且使其它液晶盒处于完全透光的状态。而至少两层具有遮光区域21和透光区域22的液晶盒的透光区域22在显示装置的显示面上的正投影需存在重叠区域,使得显示装置出射的光线可以由此重叠区域内向外出射,使得可视角度在图9所示的θ范围内。而采用至少两层液晶盒形成的透光区域22和遮光区域21来控制显示装置的出射光线,则可以增大遮光区域的厚度,从而有效控制偏离法线较远的大角度光线的出射,从而实现大角度防窥显示。
下面以显示系统包括三层液晶盒为例进行举例说明。
显示系统用于二维平面显示的控制方式与上述包括至少两层的控制方式相同,可控制三层液晶盒均处于完全透光状态,实现二维平面显示。
显示系统用于三维立体显示时,可控制施加在各条状电极上的电信号,使各液晶盒均形成间隔排列的透光区域22与遮光区域21。
例如,三层液晶盒所形成的透光区域22和遮光区域21的排列方式如图10A和图10B所示。例如,图10A示出了右眼模式下三层液晶盒中透光区域22和遮光区域21的排列方式,图10B示出了左眼模式下三层液晶盒中透光区域22和遮光区域21的排列方式。具体来说,本公开一些实施例提供的液晶盒中透光区域22和遮光区域21的排列方式,位于中间层的液晶盒的透光 区域22的宽度大于其它两层液晶盒的透光区域22的宽度,位于中间层的液晶盒的遮光区域21的宽度大于其它两层液晶盒的遮光区域21的宽度;相邻两层液晶盒的透光区域22在显示装置的显示面的正投影不完全重叠。例如,该遮光区域21的宽度可以通过其包括的条状电极的数量确定。例如,在一个示例中,位于中间层的液晶盒的遮光区域21包括5个连续的条状电极,例如,通过控制装置13对该5个条状电极施加电信号以形成该遮光区域。例如,其余各层液晶盒中的遮光区域21包括3个连续的电极,从而实现位于中间层的液晶盒的遮光区域21的宽度大于其它两层液晶盒的遮光区域21的宽度。该遮光区域21的形成原理类似,下面不再赘述。
三个液晶盒形成的透光区域22和遮光区域21均构成光栅结构,将位于中间层的液晶盒形成的光栅周期(相邻的遮光区域21与透光区域22的宽度之和)大于其它两层液晶盒形成的光栅周期,可以对出射光线的出射方向进行粗略调整,而通过位于上下两侧的液晶盒形成的光栅周期,可以更进一步地对光线的出射光线进行调整,从而使得如图10A所示的右眼模式下只有右眼可以观看到显示图像,使如图10B所示的左眼模式下只有左眼可以观看到显示图像。在左眼模式和右眼模式以人眼不可分辨的频率切换时,即可观察到立体图像。
在具体应用中,采用三层液晶盒时仍然可以采用其它的排列方式实现三维立体显示,本公开实施例仅作举例说明,并不限定其它实现三维立体显示的排列规则。
显示系统用于防窥显示时,可控制施加在各条状电极上的电信号,使三层液晶盒形成如图11所示的排列方式。例如,位于中间层的液晶盒处于完全透光状态,其它两层液晶盒均形成间隔排列的透光区域22和遮光区域21;除位于中间层以外的其它两层液晶盒的透光区域22在显示装置的显示面的正投影恰好完全重叠。控制中间层的液晶盒处于完全透光状态,而控制上下两侧的液晶盒来控制光线的出射方向,相当于加厚了液晶盒的整体厚度,可以更有效的控制大角度光线的出射。如图11所示,假如只采用距离显示装置最近的一层液晶盒来控制显示装置的出射光角度时,防窥角度可控制在θ’角之内,并不能实现正视角度附近小范围内的防窥控制,而采用上下两侧的液晶盒来控制光线的出射方向时,防窥角度可控制在θ之内,有效地对大角度 的出射光线进行防窥控制。而将上下两侧的液晶盒的排列方式控制一致则可以减小控制复杂程度,在实际应用中,也可以采用其它方式控制液晶盒的排列方式,在此不做限定。
需要说明的是,本公开的一些实施例提供的显示控制方法的流程可以包括更多或更少的操作,这些操作可以顺序执行或并行执行。虽然上文描述的显示控制方法的流程包括特定顺序出现的多个操作,但是应该清楚地了解,多个操作的顺序并不受限制。上文描述的显示控制方法可以执行一次,也可以按照预定条件执行多次。
本公开上述实施例提供的显示控制方法,可以根据实际需要可对各液晶盒的各条状电极施加电信号控制,从而控制各液晶盒形成的透光区域以及遮光区域的位置及宽度,从而实现在多种显示模式之间的切换。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (19)

  1. 一种显示系统,包括:显示装置、位于所述显示装置出光侧的至少两层液晶盒以及控制装置;其中,
    所述显示装置配置为显示显示画面;
    所述至少两层液晶盒配置为控制所述显示画面的光线的出射角度;以及
    所述控制装置配置为控制所述至少两层液晶盒中各层液晶盒的透光区域和遮光区域的位置和/或宽度,以控制所述显示画面的显示模式。
  2. 如权利要求1所述的显示系统,其中,所述各层液晶盒包括:相对设置的两个透明电极层以及位于两个所述透明电极层之间的液晶层;其中,
    相对设置的两个所述透明电极层均包括驱动电极,所述驱动电极配置为被施加电信号以控制对应的液晶层在透光状态和不透光状态之间转换,以在所述各层液晶盒上形成所述透光区域和所述遮光区域。
  3. 如权利要求2所述的显示系统,其中,所述驱动电极为沿同一方延伸的多个条状电极。
  4. 如权利要求2或3所述的显示系统,其中,所述液晶层为包括黑色染料的聚合物液晶层,
    所述包括黑色染料的聚合物液晶层在未施加电场状态下呈所述透光状态,在施加电场状态下呈所述不透光状态。
  5. 如权利要求1-4任一所述的显示系统,其中,所述显示装置与所述至少两层液晶盒之间以及在所述各层液晶盒之间均存在设定间距。
  6. 如权利要求1-5任一所述的显示系统,其中,所述显示装置包括:背光模组以及位于所述背光模组出光侧的显示面板;
    所述至少两层液晶盒均位于所述显示面板背离所述背光模组的一侧,或者位于所述背光模组与所述显示面板之间。
  7. 如权利要求1-5任一所述的显示系统,其中,所述显示装置为有机发光二极管显示装置或液晶显示装置。
  8. 如权利要求1-7任一所述的显示系统,其中,所述控制装置配置为控制所述至少两层液晶盒均为透光状态,以使得所述显示模式为二维平面显示。
  9. 如权利要求1-7任一所述的显示系统,其中,所述控制装置配置为控 制所述至少两层液晶盒均形成间隔排列的所述透光区域和所述遮光区域,且所述至少两层液晶盒的透光区域在所述显示装置的显示面上的正投影不完全重叠,以使得所述显示模式为三维立体显示。
  10. 如权利要求9所述的显示系统,其中,在所述显示系统包括三层液晶盒时,所述控制装置配置为控制位于中间层的所述液晶盒的透光区域的宽度大于位于除所述中间层以外的两层所述液晶盒的透光区域的宽度,位于中间层的所述液晶盒的遮光区域的宽度大于位于除所述中间层以外的两层所述液晶盒的遮光区域的宽度,
    相邻两层所述液晶盒的透光区域在所述显示装置的显示面的正投影不完全重叠。
  11. 如权利要求1-7任一所述的显示系统,其中,所述控制装置配置控制所述至少两层液晶盒均形成间隔排列的所述透光区域和所述遮光区域,且除所述至少两层液晶盒以外的各液晶盒为完全透光状态,所述至少两层液晶盒的透光区域在所述显示装置的显示面的正投影均存在重叠区域,以使得所述显示模式为防窥显示。
  12. 如权利要求11所述的显示系统,其中,在所述显示系统包括三层所述液晶盒时,所述控制装置配置为控制位于中间层的所述液晶盒处于完全透光状态,使位于除所述中间层以外的两层所述液晶盒均包括间隔排列的所述透光区域和所述遮光区域,
    其中,位于除所述中间层以外的两层所述液晶盒的透光区域在所述显示装置的显示面的正投影恰好完全重叠。
  13. 一种如权利要求1-12任一项所述的显示系统的显示控制方法,包括:
    接收用户的切换指令,确定所述显示系统需要切换到的显示模式;
    根据确定出的所述显示模式控制施加在各所述液晶盒的各驱动电极上的电信号,以使所述显示系统切换到所述切换指令所指示的显示模式。
  14. 如权利要求13所述的显示控制方法,其中,在所述显示系统需要切换到的显示模式为二维平面显示时,所述控制施加在各所述液晶盒的各驱动电极上的电信号,包括:
    控制施加在各所述驱动电极上的电信号,使各所述液晶盒均处于透光状态。
  15. 如权利要求13所述的显示控制方法,其中,在所述显示系统需要切换到的显示模式为三维立体显示时,所述控制施加在各所述液晶盒的各驱动电极上的电信号,包括:
    控制施加在各所述驱动电极上的电信号,使所述至少两层液晶盒形成间隔排列的所述透光区域和所述遮光区域;
    控制各所述液晶盒以人眼不可分辨的设定频率在左眼模式与右眼模式间转换;
    其中,在所述左眼模式以及所述右眼模式中,所述至少两层液晶盒的透光区域在所述显示装置的显示面上的正投影不完全重叠。
  16. 如权利要求15所述的显示控制方法,其中,
    在所述左眼模式下,所述显示装置的出射光覆盖的区域与左眼的可视范围至少部分重叠而与右眼的可视范围无重叠;
    在所述右眼模式下,所述显示装置的出射光覆盖的区域与右眼的可视范围至少部分重叠而与左眼的可视范围无重叠。
  17. 如权利要求13所述的显示控制方法,其中,在所述显示系统需要切换到的显示模式为防窥显示时,所述控制施加在各所述液晶盒的各驱动电极上的电信号,包括:
    控制施加在各所述驱动电极上的电信号,使所述至少两层液晶盒形成间隔排列的所述透光区域和所述遮光区域,且除所述至少两层液晶盒以外的各所述液晶盒为完全透光状态;
    其中,所述至少两层液晶盒的透光区域在所述显示装置的显示面的正投影均存在重叠区域。
  18. 如权利要求13所述的显示控制方法,其中,在所述显示系统包括三层所述液晶盒且所述显示系统用于三维立体显示时,所述控制施加在各所述液晶盒的各驱动电极上的电信号,包括:
    控制施加在各所述驱动电极上的电信号,使各所述液晶盒均形成间隔排列的所述透光区域与所述遮光区域;其中,
    位于中间层的所述液晶盒的透光区域的宽度大于位于除所述中间层以外的两层所述液晶盒的透光区域的宽度,位于中间层的所述液晶盒的遮光区域的宽度大于位于除所述中间层以外的两层所述液晶盒的遮光区域的宽度;相 邻两层所述液晶盒的透光区域在所述显示装置的显示面的正投影不完全重叠。
  19. 如权利要求13所述的显示控制方法,其中,在所述显示系统包括三层所述液晶盒且所述显示系统用于防窥显示时,所述控制施加在各所述液晶盒的各驱动电极上的电信号,包括:
    控制施加在各所述驱动电极上的电信号,使位于中间层的所述液晶盒处于完全透光状态,使位于除所述中间层以外的两层所述液晶盒均形成间隔排列的所述透光区域和所述遮光区域;其中,
    位于除所述中间层以外的两层所述液晶盒的透光区域在所述显示装置的显示面的正投影恰好完全重叠。
PCT/CN2019/080820 2018-04-03 2019-04-01 显示系统及其显示控制方法 WO2019192428A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/607,948 US11281033B2 (en) 2018-04-03 2019-04-01 Display system and display control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810290535.5 2018-04-03
CN201810290535.5A CN108490703B (zh) 2018-04-03 2018-04-03 一种显示系统及其显示控制方法

Publications (1)

Publication Number Publication Date
WO2019192428A1 true WO2019192428A1 (zh) 2019-10-10

Family

ID=63318299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080820 WO2019192428A1 (zh) 2018-04-03 2019-04-01 显示系统及其显示控制方法

Country Status (3)

Country Link
US (1) US11281033B2 (zh)
CN (1) CN108490703B (zh)
WO (1) WO2019192428A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490703B (zh) 2018-04-03 2021-10-15 京东方科技集团股份有限公司 一种显示系统及其显示控制方法
CN112394609A (zh) * 2019-08-16 2021-02-23 合肥晶合集成电路股份有限公司 掩模板及曝光方法
KR20210086341A (ko) * 2019-12-31 2021-07-08 엘지디스플레이 주식회사 렌티큘러 렌즈들을 포함하는 입체 영상 표시 장치
CN111564115A (zh) * 2020-05-09 2020-08-21 深圳奇屏科技有限公司 一种间距可调的多层显示屏幕
CN112034640B (zh) * 2020-09-11 2023-03-17 京东方科技集团股份有限公司 防窥面板、制备方法、驱动方法及显示装置
CN114326180A (zh) * 2021-12-31 2022-04-12 联想(北京)有限公司 控制方法及电子设备
CN115327811A (zh) * 2022-08-31 2022-11-11 厦门天马微电子有限公司 显示模组和显示装置
CN115494667B (zh) * 2022-09-05 2024-04-12 武汉华星光电技术有限公司 防窥膜及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152998A1 (en) * 2005-12-29 2007-07-05 Byung Chul Ahn 2-Dimensional and 3-dimensional image display device and method of manufacturing the same
US20070159566A1 (en) * 2005-12-28 2007-07-12 Lg Philips Lcd Co., Ltd. 2-Dimensional and 3-dimensional image display device and method of manufacturing the same
US20080013003A1 (en) * 2006-06-29 2008-01-17 Lg.Philips Lcd Co., Ltd. 3-Dimensional display device using light controlling film
CN103885229A (zh) * 2014-03-07 2014-06-25 京东方科技集团股份有限公司 一种液晶面板及其制作方法、3d显示装置
CN204009309U (zh) * 2014-06-11 2014-12-10 重庆卓美华视光电有限公司 裸眼3d立体显示装置
CN104732168A (zh) * 2015-03-20 2015-06-24 京东方科技集团股份有限公司 一种显示系统、控制方法
CN108490703A (zh) * 2018-04-03 2018-09-04 京东方科技集团股份有限公司 一种显示系统及其显示控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3060656B2 (ja) * 1990-11-26 2000-07-10 セイコーエプソン株式会社 液晶表示素子
JP2005010303A (ja) * 2003-06-17 2005-01-13 Sea Phone Co Ltd 表示装置
CN100449352C (zh) * 2006-01-19 2009-01-07 汕头超声显示器有限公司 一种自动立体显示器
CN201107472Y (zh) * 2007-05-11 2008-08-27 安徽华东光电技术研究所 自由立体显示器
CN101387775A (zh) * 2007-09-14 2009-03-18 奇美电子股份有限公司 显示装置与其驱动方法
TWI365302B (en) * 2007-12-31 2012-06-01 Ind Tech Res Inst Stereo image display with switch function between horizontal display and vertical display
US8964013B2 (en) * 2009-12-31 2015-02-24 Broadcom Corporation Display with elastic light manipulator
WO2011113180A1 (en) * 2010-03-19 2011-09-22 Nokia Corporation Apparatus, methods and computer programs for configuring output of a display
CN103399427B (zh) * 2013-08-21 2016-02-24 福州大学 一种视点数可控的立体显示装置
CN103499898B (zh) * 2013-10-21 2016-05-18 京东方科技集团股份有限公司 一种双视场显示面板及显示装置
CN104020624A (zh) * 2014-06-11 2014-09-03 重庆卓美华视光电有限公司 裸眼3d立体显示装置
US10534208B2 (en) * 2016-02-29 2020-01-14 Japan Display Inc. Display device comprising a separator having a plurality of first and second electrodes respectively forming first and second unit separators at different pitches from each other
CN106353916A (zh) * 2016-11-22 2017-01-25 北京小米移动软件有限公司 显示设备及显示方法
CN106646954B (zh) * 2017-03-02 2019-09-13 京东方科技集团股份有限公司 一种防窥显示器及液晶显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070159566A1 (en) * 2005-12-28 2007-07-12 Lg Philips Lcd Co., Ltd. 2-Dimensional and 3-dimensional image display device and method of manufacturing the same
US20070152998A1 (en) * 2005-12-29 2007-07-05 Byung Chul Ahn 2-Dimensional and 3-dimensional image display device and method of manufacturing the same
US20080013003A1 (en) * 2006-06-29 2008-01-17 Lg.Philips Lcd Co., Ltd. 3-Dimensional display device using light controlling film
CN103885229A (zh) * 2014-03-07 2014-06-25 京东方科技集团股份有限公司 一种液晶面板及其制作方法、3d显示装置
CN204009309U (zh) * 2014-06-11 2014-12-10 重庆卓美华视光电有限公司 裸眼3d立体显示装置
CN104732168A (zh) * 2015-03-20 2015-06-24 京东方科技集团股份有限公司 一种显示系统、控制方法
CN108490703A (zh) * 2018-04-03 2018-09-04 京东方科技集团股份有限公司 一种显示系统及其显示控制方法

Also Published As

Publication number Publication date
CN108490703B (zh) 2021-10-15
CN108490703A (zh) 2018-09-04
US20210109388A1 (en) 2021-04-15
US11281033B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2019192428A1 (zh) 显示系统及其显示控制方法
US9977251B2 (en) Display device and a driving method for the display device
KR101528143B1 (ko) 액정전계렌즈를 이용한 입체표시장치
US10627664B2 (en) Display panel, display device and display method
US10551627B2 (en) 3D display device
TWI576626B (zh) 顯示裝置
KR102230549B1 (ko) 접촉 감지 기능을 가진 광학계 및 이를 포함하는 표시 장치
US20130169694A1 (en) Display apparatus
WO2016004725A1 (zh) 触摸式三维光栅及显示装置
US9190019B2 (en) Image display apparatus
US10234618B2 (en) Display backlight unit with selectively activated light sources
KR20150092424A (ko) 표시 장치
JP2012185307A (ja) 画像表示ユニット、画像表示制御方法および画像表示制御プログラム
US20210225954A1 (en) Display substrate, display apparatus, method of controlling display substrate, and method of fabricating display substrate
US9122107B2 (en) Liquid crystal display device
JP6554549B2 (ja) 表示装置及びその表示状態制御方法
US20170052404A1 (en) Display panel and display apparatus using the same
WO2017118234A1 (zh) 显示装置及控制方法
US10295835B2 (en) Stereoscopic display device comprising at least two active scattering panels arranged in different planes each having a scattering function and a transmission function and stereoscopic display method
TW201539040A (zh) 立體顯示裝置
US10948987B2 (en) Light guiding component and manufacturing method thereof, eyeball tracking module and method, video eyeglass
JP2019133028A (ja) 表示装置
US11042068B2 (en) Display substrate and manufacturing method thereof, display device
KR102417877B1 (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
US11509882B2 (en) Three-dimensional display apparatus and virtual reality device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780919

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19780919

Country of ref document: EP

Kind code of ref document: A1