WO2016004725A1 - 触摸式三维光栅及显示装置 - Google Patents

触摸式三维光栅及显示装置 Download PDF

Info

Publication number
WO2016004725A1
WO2016004725A1 PCT/CN2014/092907 CN2014092907W WO2016004725A1 WO 2016004725 A1 WO2016004725 A1 WO 2016004725A1 CN 2014092907 W CN2014092907 W CN 2014092907W WO 2016004725 A1 WO2016004725 A1 WO 2016004725A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
strip
touch
electrode
electrodes
Prior art date
Application number
PCT/CN2014/092907
Other languages
English (en)
French (fr)
Inventor
杨盛际
董学
王海生
陈振
裴扬
李伟
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/763,377 priority Critical patent/US9690409B2/en
Publication of WO2016004725A1 publication Critical patent/WO2016004725A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • Embodiments of the present invention relate to a touch type three-dimensional grating and display device.
  • the most basic principle of the three-dimensional display technology is that the left and right eyes of the person respectively receive different pictures, and then the image information is superimposed and regenerated by the brain, thereby generating a stereoscopic effect.
  • the three-dimensional display technology is divided into a naked eye type and a glasses type, and the common naked eye type three-dimensional display device has a structure in which a three-dimensional grating is added on the display screen, and the three-dimensional grating is generally divided into a cylindrical lens grating and a slit grating according to an implementation manner (barrier barrier) ), both can be realized by using a liquid crystal grating.
  • the liquid crystal grating shown in FIG. 1 generally includes an upper polarizer 1, a lower polarizer 2, an upper substrate 3, a lower substrate 4, and a liquid crystal layer 5 between the two substrates, wherein the lower substrate 4 and the upper substrate A plate electrode 7 and a strip electrode 6 are formed on each of three.
  • the working principle of the liquid crystal grating as a barrier fence is as follows:
  • the direction of vibration is changed.
  • the direction of the polarized light is equal to the transmission axis of the upper polarizer 1 when the upper polarizer 1 is reached, the light passes therethrough, thereby forming a light-transmitting region in a region not corresponding to the strip electrode.
  • the bright stripes form a slit grating with light and dark stripes, thereby realizing a raster three-dimensional display mode.
  • the slit grating causes the light emitted by the left-eye pixel to enter only the left eye, and the light emitted by the right-eye pixel enters only the right eye, and the three-dimensional display effect is achieved by separating the left and right eye images.
  • Embodiments of the present invention provide a touch type three-dimensional grating and a display device, which has a simple structure and can simultaneously implement a touch function and a three-dimensional display function, and the display device having the touch type three-dimensional grating has a simple
  • the module structure and the production process are simple, and the manufacturing cost is reduced and the module thickness is reduced.
  • a touch type three-dimensional grating provided by the embodiment of the present invention includes: an upper substrate and a lower substrate opposite to each other; and a plurality of first strip electrodes disposed on the lower substrate facing the upper substrate a plurality of second strip electrodes intersecting with the plurality of first strip electrodes on a side of the upper substrate facing the lower substrate, wherein during the touch time period, the two are separated by one
  • the plurality of the first strip electrodes of the first strip electrode serve as a touch driving electrode
  • the plurality of the second strip electrodes separated by one of the second strip electrodes are used as touch a sensing electrode; in the three-dimensional display period, a plurality of the first strip electrodes spaced apart from each other by the first strip electrode as a first three-dimensional driving electrode, and the plurality of second strip electrodes The whole is used as another three-dimensional driving electrode; or, a plurality of the second strip electrodes separated by one of the second strip electrodes are used as a second three-dimensional driving electrode, and the plurality of first strips
  • an embodiment of the present invention provides a display device including: a display panel; and a touch type three-dimensional grating as described above disposed on a light exiting side of the display panel.
  • FIG. 1 is a cross-sectional structural view of a conventional liquid crystal grating
  • FIG. 2 is a schematic structural diagram of a touch type three-dimensional grating according to an embodiment of the present invention
  • FIG. 3 is a schematic plan view of a first strip electrode on a lower substrate in a touch type three-dimensional grating according to an embodiment of the present invention
  • FIG. 4 is a schematic plan view of a second strip electrode on an upper substrate in a touch type three-dimensional grating according to an embodiment of the present invention
  • FIG. 5 and FIG. 6 are schematic diagrams showing a three-dimensional display time period of a touch type three-dimensional grating according to an embodiment of the present invention
  • FIG. 7 is a plan view of a working electrode of a touch type three-dimensional grating during a touch time period according to an embodiment of the present invention.
  • FIG. 8 is a timing chart of operation of a touch type three-dimensional grating according to an embodiment of the present invention.
  • each layer of the film in the drawings does not reflect the true proportion of the touch three-dimensional grating, and the purpose is only to illustrate the contents of the embodiments of the present invention.
  • the touch type three-dimensional grating provided by the embodiment of the present invention, as shown in FIG. 2, includes: an upper substrate 01 and a lower substrate 02 opposite to each other, and a plurality of first strip electrodes 03 on a side of the lower substrate 02 facing the upper substrate 01
  • the plurality of second strip electrodes 04 are disposed on the side of the upper substrate 01 facing the lower substrate 02 and intersecting the first strip electrodes 03.
  • a plurality of first strip electrodes separated by a first strip electrode are used as the touch driving electrodes 031, and the two are separated by a A plurality of second strip electrodes of the two strip electrodes serve as the touch sensing electrodes 041.
  • a plurality of first strip electrodes separated by a first strip electrode between the two are used as the first three-dimensional driving electrode 032, and a plurality of second strips are formed.
  • the entirety of the electrode 04 serves as another three-dimensional driving electrode, and the entirety of the plurality of second strip electrodes 04 is regarded as a planar electrode; or a plurality of second electrodes 04 separated by a second strip electrode between the two are used as
  • the second three-dimensional driving electrode 042 uses the entirety of the plurality of first strip electrodes as another three-dimensional driving electrode.
  • the entirety of the plurality of first strip electrodes is regarded as a planar electrode.
  • the touch-type three-dimensional grating converts the plate-shaped electrodes disposed on the lower substrate into strip electrodes, and the opposite sides of the upper substrate and the lower substrate respectively have the first strip electrodes 03 and The second strip electrode 04.
  • a plurality of first strip electrodes 03 spaced apart from each other by a first strip electrode are used as the touch driving electrodes 031, and a plurality of second strip electrodes are spaced apart from each other.
  • the two strip electrodes 04 are used as the touch sensing electrodes 041 to implement the touch function; in the three-dimensional display period, the plurality of first strip electrodes 03 separated by a first strip electrode between the two are used as the first three-dimensional driving
  • the electrode 032 has a whole of the plurality of second strip electrodes 04 as a planar electrode; or a plurality of second strip electrodes 04 spaced apart from each other by a second strip electrode as the second three-dimensional driving electrode 042,
  • the whole of the plurality of first strip electrodes 03 is used as a planar electrode; the first three-dimensional driving electrode 032 or the second three-dimensional driving electrode 042 can form a three-dimensional grating structure with the planar electrode, that is, can be in the same with the first three-dimensional driving electrode 032
  • the extending direction is perpendicular to the direction or a direction perpendicular to the extending direction of the second three-dimensional driving electrode 042 forms a three-dimensional grating structure, thereby realizing a two-dimensional three
  • the touch-type three-dimensional grating provided by the embodiment of the invention only changes the electrode structure of the lower substrate, and can realize the touch function and the dual-direction three-dimensional display function in a time-sharing manner.
  • the module structure and the production process are simplified, the manufacturing cost of the module as a whole is reduced, and the thickness of the display device is reduced.
  • the plurality of first strip electrodes separated by a first strip electrode between the two as the touch driving electrodes may also serve as the first three-dimensional driving in the three-dimensional display period.
  • the electrode, the plurality of second strip electrodes separated by a second strip electrode between the two as the touch sensing electrodes may also serve as the second three-dimensional driving electrode in the three-dimensional display period, and correspondingly, the plurality of second strips
  • the entirety of the electrode or the plurality of first strip electrodes serves as another three-dimensional driving electrode.
  • the plurality of first strip electrodes serving as the touch driving electrodes during the touch period and the plurality of first strip electrodes serving as the first three-dimensional driving electrodes in the three-dimensional display period are different strip electrodes, and the combination thereof The whole is a plurality of first strip electrodes; a plurality of second strip electrodes serving as touch sensing electrodes during the touch period and a plurality of second strip electrodes serving as the second three-dimensional driving electrodes in the three-dimensional display period It is a different strip electrode, and the combination of the two is the entirety of a plurality of second strip electrodes.
  • Embodiments of the invention are not limited thereto.
  • the second strip electrode 04 disposed on the upper substrate 01 and the first strip electrode 03 disposed on the lower substrate 02 in the touch three-dimensional grating provided by the embodiment of the present invention generally adopt mutual
  • the first strip electrode 03 and the second strip electrode 04 are perpendicular to each other as an example
  • the first strip electrode 03 shown in FIG. 3 is a lateral electrode
  • the second strip electrode 04 shown in FIG. 4 is a longitudinal electrode as an example.
  • the first strip electrode 03 located on the lower substrate 02 is driven in a time division manner, and in the touch time period, a first strip is selected between the two.
  • a plurality of first strip electrodes 03 of the electrode are used as the touch driving electrodes 031, that is, a first strip electrode 03 is selected as a touch driving electrode 031 via a first strip electrode 03 to load the touch during the touch period.
  • Driving signals, and the other first strip electrodes 03 serve as floating electrodes to shield the mutual interference of signals between the touch driving electrodes 031; in the three-dimensional display period, a first strip electrode may be selected between the two strips.
  • the plurality of first strip electrodes 03 serve as the first three-dimensional driving electrodes 032, and the entirety of the plurality of second strip electrodes 04 serves as the other three-dimensional driving electrodes.
  • the entirety of the plurality of second strip electrodes 04 may be regarded as a planar shape.
  • the electrode generates an electric field by loading a three-dimensional driving signal to the first three-dimensional driving electrode 032 and the planar electrode in a three-dimensional display period, thereby forming a shading dark stripe at a region corresponding to the first three-dimensional driving electrode 032, A light-transmissive bright stripe is formed at other regions; or, in a three-dimensional display period, a driving signal is generated by applying a driving signal to the planar electrode composed of the first three-dimensional driving electrode 032 and the plurality of second strip electrodes 04.
  • An electric field forms a lenticular lens structure.
  • all of the plurality of first strip electrodes 03 may be regarded as planar electrodes, and correspondingly, a plurality of second strip electrodes separated by a second strip electrode between the two may be As a second three-dimensional drive electrode.
  • the touch driving electrode 031 and the first three-dimensional driving electrode 032 can be the same first strip electrode 03, thus being the same
  • the first strip electrode 03 loads the touch driving signal during the touch time period, loads the same three-dimensional driving signal in the three-dimensional display period to realize the dark stripe in the parallax barrier, or loads different three-dimensional driving signals to realize the lenticular lens Structure, or both grounded.
  • the touch driving electrode 031 and the first three-dimensional driving electrode 032 can be alternately arranged with each other, as shown in FIG. 3, so that the touch driving electrode 031 is loaded with the touch driving signal during the touch time period.
  • the first three-dimensional driving electrode 032 is used as a floating electrode, and the first three-dimensional driving electrode 032 is loaded with the same three-dimensional driving signal in a three-dimensional display period to realize dark stripes in the parallax barrier, or different three-dimensional driving signals are loaded to realize the columnar shape.
  • the lens structure, or ground, while the touch drive electrode 031 is also grounded.
  • the electrode density of the touch structure is usually on the order of millimeters, and the electrode density of the three-dimensional grating is usually on the order of micrometers.
  • the electrode density of the three-dimensional grating is much larger than that of the touch structure, and therefore, the adjacent touches can be
  • the control driving electrode 031 is used as a touch driving total electrode, that is, as shown in FIG. 3, each adjacent at least two touch driving electrodes 031 are connected to each other through a wire 033 at the other end, and then the metal trace 034 can be connected to pass
  • the metal trace 034 loads different signals in different time periods. For example, the touch driving signal can be loaded to each touch driving total electrode during the touch time period.
  • the touch driving electrode 031 is used as the first three-dimensional driving.
  • the electrode 032 can load the same three-dimensional driving signal to each touch driving total electrode to form a black shading stripe. If the first strip electrode 03 between the adjacent touch driving electrodes 031 is used as the first three-dimensional driving electrode 032 Alternatively, the first strip electrode 03 including the touch driving electrode 031 may be used as a planar electrode, and each touch driving total electrode may be grounded.
  • the metal traces 034 may be of the same material as the wires 033 and the first strip electrodes 03.
  • each of the first strip electrodes 03 except the touch driving electrode 031 is in a touch time period or a three-dimensional display.
  • the functions performed are the same.
  • the first strip electrodes 03 except the touch driving electrodes 031 do not load signals as floating electrodes, and the touch driving electrodes are included in the three-dimensional display period.
  • Each of the first strip electrodes 03 other than 031 is loaded with the same three-dimensional driving signal as the first three-dimensional driving electrode 032 to realize dark shading of the shading, and if not used as a three-dimensional driving electrode, grounding to achieve light-transmissive bright stripes .
  • the first strip electrode 03 other than the touch driving electrode 031 it may be connected to each other through the wire 033 at the other end;
  • the other end refers to the other end opposite to the end where the touch driving electrode 031 is connected to the metal trace 034.
  • the second strip electrode 04 located on the upper substrate 01 is driven in a time division manner, and in the touch time period, a spacing between the two is selected.
  • a plurality of second strip electrodes 04 of the two strip electrodes are used as the touch sensing electrodes 041, that is, a second strip electrode 04 is selected as a touch sensing electrode 041 via a second strip electrode 04 to couple in the touch time period.
  • the touch driving signal is outputted, and the other second strip electrodes 04 serve as floating electrodes to shield the mutual interference of the signals between the touch sensing electrodes 041; in the three-dimensional display period, a second interval may be selected between the two.
  • the plurality of second strip electrodes 04 of the strip electrodes serve as the second three-dimensional driving electrodes 042, and the three-dimensional driving signals and the plurality of first strip electrodes 03 are loaded during the three-dimensional display period.
  • the planar electrode formed by the body generates an electric field with a distinct phase fringe; or the second three-dimensional driving electrode 042 generates a electric field by applying a three-dimensional driving signal to the planar electrode of the plurality of first strip electrodes 03 in a three-dimensional display period.
  • a cylindrical lens structure is formed.
  • the entirety of the plurality of second strip electrodes 04 may be regarded as a planar electrode, and the planar electrode is exemplarily grounded.
  • the touch sensing electrodes 041 and the second three-dimensional driving electrodes 042 can be the same second strip electrodes 04, thus being the same
  • the second strip electrode 04 couples the touch driving signal and outputs during the touch period, loads the same three-dimensional driving signal in the three-dimensional display period to implement the slit grating, or loads different three-dimensional driving signals to realize the lenticular lens structure. Or both grounded.
  • the touch sensing electrode 041 and the second three-dimensional driving electrode 042 may be different second strip electrodes 04, as shown in FIG. 4, such that the touch sensing electrode 041 is coupled to the touch driving signal and output during the touch time period.
  • the second three-dimensional driving electrode 042 functions as a floating electrode, and applies the same three-dimensional driving signal to the second three-dimensional driving electrode 042 during the three-dimensional display period to implement the slit grating, or loads different three-dimensional driving signals to realize the lenticular lens structure, or Grounding, while the touch drive electrode 031 is grounded.
  • the electrode density of the touch structure is usually on the order of millimeters, and the electrode density of the three-dimensional grating is usually on the order of micrometers.
  • the electrode density of the three-dimensional grating is much larger than the electrode density of the touch structure, and thus, by way of example, adjacent
  • the plurality of touch sensing electrodes 041 are used as a touch sensing total electrode. As shown in FIG. 4, each adjacent at least two touch sensing electrodes 041 are connected to each other through a wire 043 at the other end, and then the metal wires can be connected.
  • the touch sensing total electrode can be coupled to the touch driving signal and output during the touch time period; in the three-dimensional display stage, if the touch sensing electrode 041 is used When the second three-dimensional driving electrode 042 is used, the same three-dimensional driving signal can be applied to each touch sensing total electrode to form a black stripe shading, and the second strip electrode 04 between adjacent touch sensing electrodes 041 is used as the first When the two-dimensional driving electrode 042 or the second strip electrode 04 including the touch sensing electrode 041 is used as the planar electrode, each touch sensing total power can be used. Ground.
  • the metal traces 044 may be of the same material as the wires 043 and the second strip electrodes 04.
  • the second strip electrodes 04 except the touch sensing electrodes 041 are in the touch time period or the three-dimensional display.
  • the functions performed are the same.
  • the second strip electrodes 04 except the touch sensing electrodes 041 do not load signals as floating electrodes, and during the three-dimensional display period,
  • the second strip electrodes 04 other than the touch sensing electrodes 041 are loaded with the same three-dimensional driving signal as the second three-dimensional driving electrodes 042 to realize dark stripes of shading, and vice versa, to achieve light-transmitting bright stripes. .
  • the second strip electrode 04 other than the touch sensing electrode 041 may be connected to each other through the wire 043 at the other end; it should be noted that the other One end refers to the other end opposite to the end where the touch sensing electrode 041 is connected to the metal trace 044.
  • the touch three-dimensional grating in the three-dimensional display mode, can realize a lenticular lens grating and a slit grating (barrier barrier).
  • the slit grating when the slit grating is implemented, it may be realized by providing a liquid crystal layer or an electrochromic material layer between the upper substrate 01 and the lower substrate 02.
  • the same three-dimensional driving signal is applied to each of the first three-dimensional driving electrodes 032, and each of the second strip electrodes 04 is grounded to correspond to the first three-dimensional driving electrodes 032 in the liquid crystal layer or the electrochromic material layer.
  • the area forms a lateral light-shielding area as shown in FIG.
  • the same three-dimensional driving signal is applied to the second three-dimensional driving electrode 042, and each of the first strip electrodes 03 is grounded to make a liquid crystal layer or an electrochromic material layer
  • the region corresponding to the second three-dimensional driving electrode 042 forms a longitudinal light blocking region as shown in FIG.
  • the touch three-dimensional grating provided by the embodiment of the present invention is in the three-dimensional display mode.
  • the slit grating is implemented, in the three-dimensional display period, in order to realize the bright stripe of light transmission, as shown in FIG. 5, except for the first
  • the first strip electrode 03 other than the three-dimensional driving electrode 032 is grounded; or, as shown in FIG. 6, the second strip electrode 04 other than the second three-dimensional driving electrode 042 is grounded.
  • FIG. 5 and FIG. 6 are the first strip electrodes 03 alternately disposed with the touch driving electrodes 031 and the first three-dimensional driving electrodes 032, and the touch sensing electrodes 041 and the second three-dimensional driving electrodes 042 are alternately arranged in a strip shape.
  • the electrode 04 is described as an example. Based on this, in the touch time period, the first three-dimensional driving electrode 032 and the second three-dimensional driving electrode 042 are both disposed as floating electrodes, and therefore, a plan view of the working electrode in the touch time period is as shown in FIG. 7 .
  • the three-dimensional grating adopts a time-division driving method, and the touch driving driving signals Tx1...Txn are loaded with the touch driving signals during the touch time period (Touch).
  • the touch sensing electrodes Rx1 . . . Rxn are coupled to the touch driving signal and output, and the first three-dimensional driving electrode 032 and the second three-dimensional driving electrode 042 do not input signals as floating electrodes; in the three-dimensional display period (3D display), the touch driving The electrodes Tx1 . . . Txn and the touch sensing electrodes Rx1 . . . Rxn are grounded (GND), and the first three-dimensional driving electrode 032 loads the three-dimensional driving signal DC-Vcom, The second three-dimensional driving electrode 042 is grounded (GND).
  • the touch three-dimensional grating provided by the embodiment of the present invention may be implemented by disposing a liquid crystal layer between the upper substrate 01 and the lower substrate 02 when implementing the lenticular lens grating.
  • different three-dimensional display signals are applied to the adjacent first three-dimensional driving electrodes 032, and the second strip electrodes 04 are grounded to deflect the liquid crystal molecules in the liquid crystal layer to form a plurality of lateral lenticular lenses.
  • a different three-dimensional display signal is applied to the adjacent second three-dimensional driving electrodes 042, and each of the first strip electrodes 03 is grounded to deflect the liquid crystal molecules in the liquid crystal layer to form a plurality of longitudinal lenticular lens structures.
  • an embodiment of the present invention further provides a display device, including a display panel, and a touch-type three-dimensional grating disposed on a light-emitting side of the display panel, the touch-type three-dimensional grating being the touch three-dimensional provided by the embodiment of the present invention.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display panel in the display device may be a liquid crystal (LCD) display panel, an organic electroluminescence (OLED) display panel, a plasma (PDP) display panel, or a cathode ray (CRT) display.
  • LCD liquid crystal
  • OLED organic electroluminescence
  • PDP plasma
  • CRT cathode ray
  • the plate-shaped electrode disposed on the lower substrate is changed into a strip electrode, and the opposite sides of the upper substrate and the lower substrate respectively have intersecting first strip electrodes
  • a second strip electrode in the touch period, a plurality of first strip electrodes separated by a first strip electrode between the two as a touch driving electrode, and a second strip is separated between the two strips a plurality of second strip electrodes of the electrode are used as touch sensing electrodes to implement a touch function; and in the three-dimensional display period, a plurality of first strip electrodes separated by a first strip electrode are used as the first a three-dimensional driving electrode, the entirety of the plurality of second strip electrodes is used as another three-dimensional driving electrode, wherein the entirety of the plurality of second strip electrodes is regarded as a planar electrode; or a second strip is separated between the two strips a plurality of second strip electrodes of the electrodes are used as the second three-dimensional driving electrodes
  • the touch-type three-dimensional grating provided by the embodiment of the invention only changes the electrode structure of the lower substrate, and can realize the touch function and the dual-direction three-dimensional display function in a time-sharing manner. It simplifies the module structure and production process, reduces the overall manufacturing cost of the module and reduces the thickness of the display.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)

Abstract

一种触摸式三维光栅及显示装置被提供。该触摸式三维光栅,包括:相对而置的上基板(01)和下基板(02);多个第一条状电极(03),设置于所述下基板(02)面向所述上基板(01)的一侧;多个第二条状电极(04),与所述多个第一条状电极(03)交叉设置于所述上基板(01)面向所述下基板(02)的一侧,其中在触控时间段,将两两之间间隔一个所述第一条状电极(03)的多个所述第一条状电极(03)作为触控驱动电极(031),将两两之间间隔一个所述第二条状电极(04)的多个所述第二条状电极(04)作为触控感应电极(041);在三维显示时间段,将两两之间间隔一个所述第一条状电极(03)的多个所述第一条状电极(03)作为第一三维驱动电极(032),将所述多个第二条状电极(04)的全体作为另一三维驱动电极;或,将两两之间间隔一个所述第二条状电极(04)的多个所述第二条状电极(04)作为第二三维驱动电极(042),将所述多个第一条状电极(03)的全体作为另一三维驱动电极。具有上述结构的显示装置能够分时实现触控和双向三维显示功能,且简化了模组结构以及生产工艺,降低了制作成本以及模组厚度。

Description

触摸式三维光栅及显示装置 技术领域
本发明的实施例涉及一种触摸式三维光栅及显示装置。
背景技术
三维显示技术的最基本的原理是使人的左右眼分别接收不同的画面,然后经过大脑对图像信息进行叠加重生,从而产生立体效果。
三维显示技术分为裸眼式和眼镜式,而常见的裸眼式三维显示装置的结构是在显示屏上增加一层三维光栅,三维光栅按照实现方式一般分为柱状透镜光栅和狭缝光栅(屏障栅栏),两者都可利用液晶光栅实现。例如,如图1所示的液晶光栅一般包括:上偏光片1、下偏光片2、上基板3、下基板4、以及在两个基板之间的液晶层5,其中下基板4和上基板3上分别形成有板状电极7和条状电极6。
示例性地,该液晶光栅作为屏障栅栏时的工作原理如下:
当条状电极6与板状电极7之间存在电位差而产生电场时,与条状电极6对应的液晶分子发生旋转,其他液晶分子保持原来取向,不发生旋转。此时,光线从下偏光片2进入,与下偏光片2的透过轴平行的偏振光进入到液晶层5,偏振光通过发生旋转的液晶分子时会逐步改变振动方向,到达上偏光片1时偏振光的振动方向与上偏光片1的透过轴不一致,则光线不通过,由此,在与条状电极6对应的区域形成了遮光的暗条纹;而偏振光通过未发生旋转的液晶分子时不会改变振动方向,到达上偏光片1时偏振光的振动方向和上偏光片1的透过轴一致,则光线通过,由此在不与条状电极对应的区域形成了透光的明条纹,这样形成了具有明暗相间条纹的狭缝光栅,从而实现了光栅式三维显示模式。在三维显示模式下,狭缝光栅使得左眼像素发出的光只射入左眼,右眼像素发出的光只进入右眼,通过将左右眼图像分开,实现了三维显示效果。
目前,随着触控技术的发展,出现了集成有触摸功能和三维显示功能的3D显示装置,这需要在三维光栅上增加一层触控板,这种结构及其生产工艺 相对复杂,贴合对位精度要求高,会增加模组整体的制作成本,同时由于需要额外增加一层触控板会大大增加显示装置的厚度。
发明内容
本发明的实施例提供了一种触摸式三维光栅及显示装置,该触摸式三维光栅的结构简单且能同时实现触控功能与三维显示功能,且具有该触摸式三维光栅的显示装置具有简单的模组结构且生产工艺简单,且制作成本被降低以及模组厚度被减小。
一方面,本发明的实施例提供的一种触摸式三维光栅,包括:相对而置的上基板和下基板;多个第一条状电极,设置于所述下基板面向所述上基板的一侧;多个第二条状电极,与所述多个第一条状电极交叉设置于所述上基板面向所述下基板的一侧,其中在触控时间段,将两两之间间隔一个所述第一条状电极的多个所述第一条状电极作为触控驱动电极,将两两之间间隔一个所述第二条状电极的多个所述第二条状电极作为触控感应电极;在三维显示时间段,将两两之间间隔一个所述第一条状电极的多个所述第一条状电极作为第一三维驱动电极,将所述多个第二条状电极的全体作为另一三维驱动电极;或,将两两之间间隔一个所述第二条状电极的多个所述第二条状电极作为第二三维驱动电极,将所述多个第一条状电极的全体作为另一三维驱动电极。
另一方面,本发明的实施例提供了一种显示装置,包括:显示面板;以及如上所述的触摸式三维光栅,设置在所述显示面板出光侧。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为现有液晶光栅的截面结构图;
图2为本发明实施例提供的触摸式三维光栅的结构示意图;
图3为本发明实施例提供的触摸式三维光栅中下基板上的第一条状电极的平面示意图;
图4为本发明实施例提供的触摸式三维光栅中上基板上的第二条状电极的平面示意图;
图5和图6分别为本发明实施例提供的触摸式三维光栅在三维显示时间段的示意图;
图7为本发明实施例提供的触摸式三维光栅在触控时间段的工作电极的平面图;以及
图8为本发明实施例提供的触摸式三维光栅的工作时序图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明实施例提供的触摸式三维光栅及显示装置进行详细说明。
附图中各层薄膜厚度和大小形状不反映触摸式三维光栅的真实比例,目的只是示意说明本发明实施例的内容。
本发明实施例提供的触摸式三维光栅,如图2所示,包括:相对而置的上基板01和下基板02,位于下基板02面向上基板01一侧的多个第一条状电极03,位于上基板01面向下基板02一侧且与第一条状电极03交叉而置的多个第二条状电极04。
如图3和图4所示,在触控时间段,将两两之间间隔一个第一条状电极的多个第一条状电极作为触控驱动电极031,将两两之间间隔一个第二条状电极的多个第二条状电极作为触控感应电极041。
如图3和图4所示,在三维显示时间段,将两两之间间隔一个第一条状电极的多个第一条状电极作为第一三维驱动电极032,将多个第二条状电极04的全体作为另一三维驱动电极,这里多个第二条状电极04的全体视作为面状电极;或,将两两之间间隔一个第二条状电极的多个第二电极04作为第二三维驱动电极042,将多个第一条状电极的全体作为另一三维驱动电极, 这里多个第一条状电极的全体视作为面状电极。
本发明实施例提供的一种触摸式三维光栅,将设置于下基板的板状电极变换为条状电极,使上基板和下基板相对的一面分别具有交叉而置的第一条状电极03和第二条状电极04。在触控时间段,将两两之间间隔一个第一条状电极的多个第一条状电极03作为触控驱动电极031,将两两之间间隔一个第二条状电极的多个第二条状电极04作为触控感应电极041,以实现触控功能;在三维显示时间段,将两两之间间隔一个第一条状电极的多个第一条状电极03作为第一三维驱动电极032,将多个第二条状电极04的全体作为面状电极;或,将两两之间间隔一个第二条状电极的多个第二条状电极04作为第二三维驱动电极042,将多个第一条状电极03的全体作为面状电极;第一三维驱动电极032或第二三维驱动电极042都能与面状电极形成三维光栅结构,即能够在与第一三维驱动电极032的延伸方向垂直的方向或在与第二三维驱动电极042的延伸方向垂直的方向形成三维光栅结构,从而实现双方向的三维显示模式。相对于在三维光栅上增加一层触控板的结构,本发明实施例提供的触控式三维光栅仅改变了下基板的电极结构,便可分时实现触控功能和双方向三维显示功能,从而简化了模组结构以及生产工艺,降低了模组整体的制作成本同时降低了显示装置的厚度。
应该注意的是,在本发明的实施例中,作为触控驱动电极的两两之间间隔一个第一条状电极的多个第一条状电极在三维显示时间段也可以作为第一三维驱动电极,作为触控感应电极的两两之间间隔一个第二条状电极的多个第二条状电极在三维显示时间段也可以作为第二三维驱动电极,对应地,将多个第二条状电极或多个第一条状电极的全体作为另一三维驱动电极。或者,在触控时间段作为触控驱动电极的多个第一条状电极和在三维显示时间段作为第一三维驱动电极的多个第一条状电极是不同的条状电极,二者组合起来是多个第一条状电极的全体;在触控时间段作为触控感应电极的多个第二条状电极和在三维显示时间段作为第二三维驱动电极的多个第二条状电极是不同的条状电极,二者组合起来是多个第二条状电极的全体。本发明的实施例并不对此进行限定。
示例性地,本发明实施例提供的上述触摸式三维光栅中在上基板01上设置的第二条状电极04和在下基板02上设置的第一条状电极03一般采用相互 异面垂直的关系,在以下对本发明实施例提供的触摸式三维光栅的说明中,都是以第一条状电极03和第二条状电极04相互异面垂直为例进行说明,并以图3所示的第一条状电极03为横向电极,对应地,以图4所示的第二条状电极04为纵向电极为例进行说明。
示例性地,在本发明实施例提供的上述触摸式三维光栅中,位于下基板02的第一条状电极03分时驱动,在触控时间段,选取两两之间间隔一个第一条状电极的多个第一条状电极03作为触控驱动电极031,即,隔一条第一条状电极03选取一条第一条状电极03作为触控驱动电极031以在触控时间段加载触控驱动信号,而其他第一条状电极03则作为浮空电极以屏蔽触控驱动电极031之间信号的相互干扰;在三维显示时间段,可以选取两两之间间隔一个第一条状电极的多个第一条状电极03作为第一三维驱动电极032,多个第二条状电极04的全体作为另一三维驱动电极,这里,多个第二条状电极04的全体可以视为面状电极,在三维显示时间段通过向第一三维驱动电极032和面状电极加载三维驱动信号而产生电场,从而在对应于第一三维驱动电极032的区域处形成遮光的暗条纹,而在其他区域处则形成透光的明条纹;或者,在三维显示时间段内,通过向第一三维驱动电极032和多个第二条状电极04的全体构成的面状电极加载驱动信号而产生电场,从而形成柱状透镜结构。当然,在三维显示时间段,也可以将多个第一条状电极03的全部当成面状电极,而对应地,两两之间间隔一个第二条状电极的多个第二条状电极可以作为第二三维驱动电极。
可以看出在两个时间段内各第一条状电极03的工作互不干扰,因此,触控驱动电极031和第一三维驱动电极032可以为相同的第一条状电极03,这样,相同的第一条状电极03在触控时间段加载触控驱动信号,在三维显示时间段加载相同的三维驱动信号以实现视差挡板中的暗条纹,或加载不同的三维驱动信号以实现柱状透镜结构,或均接地。或者,触控驱动电极031和第一三维驱动电极032可以彼此交替设置的第一条状电极03,如图3所示,这样,在触控时间段触控驱动电极031被加载触控驱动信号,第一三维驱动电极032作为浮空电极,在三维显示时间段对第一三维驱动电极032加载相同的三维驱动信号以实现视差挡板中的暗条纹,或加载不同的三维驱动信号以实现柱状透镜结构,或接地,同时触控驱动电极031也接地。
示例性地,触摸结构的电极密度通常在毫米级,而三维光栅的电极密度通常在微米级,显然三维光栅的电极密度远大于触控结构的电极密度,因此,可以将相邻的几个触控驱动电极031作为一个触控驱动总电极,即如图3所示,将每相邻的至少两个触控驱动电极031在另一端通过导线033相互连接,之后可以连接金属走线034以便通过金属走线034在不同时间段加载不同的信号,例如在触控时间段可以向各触控驱动总电极加载触控驱动信号;在三维显示阶段,若采用触控驱动电极031作为第一三维驱动电极032,可以向各触控驱动总电极加载相同的三维驱动信号,以便形成遮光的暗条纹,若采用相邻触控驱动电极031之间的第一条状电极03作为第一三维驱动电极032,或采用包括触控驱动电极031的第一条状电极03作为面状电极,可以将各触控驱动总电极接地。示例性地,金属走线034可以和导线033以及第一条状电极03同层同材质。
进一步地,从上述实现视差挡板式三维显示和触控功能的过程中,可以看出,除触控驱动电极031之外的各第一条状电极03,不论是触控时间段还是三维显示时间段,执行的功能相同,例如在触控时间段,除触控驱动电极031之外的各第一条状电极03作为浮空电极不加载信号,在三维显示时间段,除触控驱动电极031之外的各第一条状电极03若作为第一三维驱动电极032则加载相同的三维驱动信号,以实现遮光的暗条纹,如果不作为三维驱动电极则接地,以实现透光的明条纹。因此,为了方便向除触控驱动电极031之外的第一条状电极03加载对应的信号,如图3所示,可以将其在另一端通过导线033相互连接;指的注意的是,该另一端是指与触控驱动电极031与金属走线034连接的一端相反的另一端。
同理,示例性地,在本发明实施例提供的上述触摸式三维光栅中,位于上基板01的第二条状电极04分时驱动,在触控时间段,选取两两之间间隔一个第二条状电极的多个第二条状电极04作为触控感应电极041,即隔一条第二条状电极04选取一条第二条状电极04作为触控感应电极041以在触控时间段耦合触控驱动信号并输出,而其他第二条状电极04则作为浮空电极以屏蔽触控感应电极041之间信号的相互干扰;在三维显示时间段,可以选取两两之间间隔一个第二条状电极的多个第二条状电极04作为第二三维驱动电极042,在三维显示时间段加载三维驱动信号与多个第一条状电极03的全 体构成的面状电极产生电场,以明显相间的条纹;或者,第二三维驱动电极042在三维显示时间段加载三维驱动信号与多个第一条状电极03的全体构成的面状电极产生电场,而形成柱状透镜结构。当然也可以将多个第二条状电极04的全体当成面状电极,示例性地,面状电极接地。
可以看出在两个时间段内各第二条状电极04的工作互不干扰,因此,触控感应电极041和第二三维驱动电极042可以为相同的第二条状电极04,这样,相同的第二条状电极04在触控时间段耦合触控驱动信号并输出,在三维显示时间段加载相同的三维驱动信号以实现狭缝光栅,或加载不同的三维驱动信号以实现柱状透镜结构,或均接地。或者,触控感应电极041和第二三维驱动电极042可以为不同的第二条状电极04,如图4所示,这样,在触控时间段触控感应电极041耦合触控驱动信号并输出,第二三维驱动电极042作为浮空电极,在三维显示时间段对第二三维驱动电极042加载相同的三维驱动信号以实现狭缝光栅,或加载不同的三维驱动信号以实现柱状透镜结构,或接地,同时触控驱动电极031接地。
示例性地,触摸结构的电极密度通常在毫米级,而三维光栅的电极密度通常在微米级,显然三维光栅的电极密度远大于触控结构的电极密度,因此,示例性地,可以将相邻的几个触控感应电极041作为一个触控感应总电极,如图4所示,将每相邻的至少两个触控感应电极041在另一端通过导线043相互连接,之后可以连接金属走线044以便通过金属走线044在不同时间段加载不同的信号,例如在触控时间段可以各触控感应总电极耦合触控驱动信号并输出;在三维显示阶段,若采用触控感应电极041作为第二三维驱动电极042时,可以向各触控感应总电极加载相同的三维驱动信号,以便形成遮光的暗条纹,若采用相邻触控感应电极041之间的第二条状电极04作为第二三维驱动电极042,或采用包括触控感应电极041的第二条状电极04作为面状电极时,可以将各触控感应总电极接地。示例性地,金属走线044可以和导线043以及第二条状电极04同层同材质。
进一步地,从上述实现视差挡板式三维显示和触控功能的过程中,可以看出,除触控感应电极041之外的各第二条状电极04,不论是触控时间段还是三维显示时间段,执行的功能相同,例如在触控时间段,除触控感应电极041之外的各第二条状电极04作为浮空电极不加载信号,在三维显示时间段, 除触控感应电极041之外的各第二条状电极04若作为第二三维驱动电极042则加载相同的三维驱动信号,以实现遮光的暗条纹,反之则接地,以实现透光的明条纹。因此,为了方便向除触控感应电极041之外的第二条状电极04加载对应的信号,如图4所示,可以将其在另一端通过导线043相互连接;应该注意的是,该另一端是指与触控感应电极041与金属走线044连接的一端相反的另一端。
示例性地,本发明实施例提供的上述触摸式三维光栅在三维显示模式,可以实现柱状透镜光栅和狭缝光栅(屏障栅栏)。示例性地,在实现狭缝光栅时,可以采用在上基板01和下基板02之间设置液晶层或电致变色材料层实现。例如,在三维显示时间段,对各第一三维驱动电极032施加相同的三维驱动信号,各第二条状电极04接地,使液晶层或电致变色材料层中与第一三维驱动电极032对应的区域形成如图5所示的横向的遮光区域;或,对第二三维驱动电极042施加相同的三维驱动信号,各第一条状电极03接地,使液晶层或电致变色材料层中与第二三维驱动电极042对应的区域形成如图6所示的纵向的遮光区域。
示例性地,本发明实施例提供的上述触摸式三维光栅在三维显示模式,在实现狭缝光栅时,在三维显示时间段,为了实现透光的明条纹,如图5所示,除第一三维驱动电极032以外的第一条状电极03接地;或,如图6所示,除第二三维驱动电极042以外的第二条状电极04接地。
图5和图6是以触控驱动电极031和第一三维驱动电极032为交替设置的第一条状电极03,触控感应电极041和第二三维驱动电极042为交替设置的第二条状电极04为例进行说明的。基于此,在触控时间段,第一三维驱动电极032和第二三维驱动电极042均设置为浮空电极,因此,在触控时间段工作电极的平面图如图7所示。
图8示出了图6所示结构的三维光栅的电路时序图,三维光栅采用分时驱动的方式,在触控时间段(Touch),触控驱动电极Tx1……Txn加载触控驱动信号,触控感应电极Rx1……Rxn耦合触控驱动信号并输出,第一三维驱动电极032和第二三维驱动电极042作为浮空电极不输入信号;在三维显示时间段(3D display),触控驱动电极Tx1……Txn和触控感应电极Rx1……Rxn接地(GND),第一三维驱动电极032加载三维驱动信号DC-Vcom, 第二三维驱动电极042接地(GND)。
示例性地,本发明实施例提供的上述触摸式三维光栅在实现柱状透镜光栅时,可以采用在上基板01和下基板02之间设置液晶层实现。例如,在三维显示时间段,对相邻的第一三维驱动电极032施加不同的三维显示信号,各第二条状电极04接地,使液晶层中的液晶分子发生偏转形成多个横向的柱状透镜结构;或,对相邻的第二三维驱动电极042施加不同的三维显示信号,各第一条状电极03接地,使液晶层中的液晶分子发生偏转形成多个纵向的柱状透镜结构。
基于同一发明构思,本发明实施例还提供了一种显示装置,包括显示面板,以及设置于显示面板出光侧的触摸式三维光栅,该触摸式三维光栅为本发明实施例提供的上述触摸式三维光栅。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述触摸式三维光栅的实施例,重复之处不再赘述。
示例性地,该显示装置中的显示面板可以为显示面板为液晶(LCD)显示面板、有机电致发光(OLED)显示面板、等离子体(PDP)显示面板、或阴极射线(CRT)显示器等,在此不做限定。
本发明实施例提供的上述触摸式三维光栅及显示装置,将设置于下基板的板状电极改变为条状电极,使上基板和下基板相对的一面分别具有交叉而置的第一条状电极和第二条状电极,在触控时间段,将两两之间间隔一个第一条状电极的多个第一条状电极作为触控驱动电极,将两两之间间隔一个第二条状电极的多个第二条状电极作为触控感应电极,以实现触控功能;在三维显示时间段,将两两之间间隔一个第一条状电极的多个第一条状电极作为第一三维驱动电极,将多个第二条状电极的全体作为另一三维驱动电极,这里多个第二条状电极的全体视作为面状电极;或,将两两之间间隔一个第二条状电极的多个第二条状电极作为第二三维驱动电极,将多个第一条状电极的全体作为另一三维驱动电极,这里多个第一条状电极的全体视作为面状电极;第一三维驱动电极或第二三维驱动电极都能与面状电极形成三维光栅结构,即能够在与第一三维驱动电极的延伸方向垂直的方向或在与第二三维驱动电极的延伸方向垂直的方向形成三维光栅结构,从而实现双方向的三维显 示模式。相对于在三维光栅上增加一层触控板的结构,本发明实施例提供的触控式三维光栅仅改变了下基板的电极结构,便可分时实现触控功能和双方向三维显示功能,简化了模组结构以及生产工艺,降低了模组整体的制作成本同时降低了显示屏的厚度。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
本申请要求于2014年7月8日递交的中国专利申请第201410323376.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (14)

  1. 一种触摸式三维光栅,包括:
    相对而置的上基板和下基板;
    多个第一条状电极,设置于所述下基板面向所述上基板的一侧;
    多个第二条状电极,与所述多个第一条状电极交叉设置于所述上基板面向所述下基板的一侧,
    其中在触控时间段,将两两之间间隔一个所述第一条状电极的多个所述第一条状电极作为触控驱动电极,将两两之间间隔一个所述第二条状电极的多个所述第二条状电极作为触控感应电极;
    在三维显示时间段,将两两之间间隔一个所述第一条状电极的多个所述第一条状电极作为第一三维驱动电极,将所述多个第二条状电极的全体作为另一三维驱动电极;或,将两两之间间隔一个所述第二条状电极的多个所述第二条状电极作为第二三维驱动电极,将所述多个第一条状电极的全体作为另一三维驱动电极。
  2. 如权利要求1所述的触摸式三维光栅,其中所述触控驱动电极和所述第一三维驱动电极为相同的所述第一条状电极。
  3. 如权利要求1所述的触摸式三维光栅,其中所述触控驱动电极和所述第一三维驱动电极彼此交替设置。
  4. 如权利要求2或3所述的触摸式三维光栅,其中所述触控感应电极和所述第二三维驱动电极为相同的所述第二条状电极。
  5. 如权利要求2或3所述的触摸式三维光栅,其中所述触控感应电极和所述第二三维驱动电极彼此交替设置。
  6. 如权利要求3所述的触摸式三维光栅,其中除所述触控驱动电极之外的所述第一条状电极的一端通过导线相互连接,每至少两个相邻的所述触控驱动电极的另一端通过导线相互连接。
  7. 如权利要求5所述的触摸式三维光栅,其中除所述触控感应电极之外的所述第二条状电极的一端通过导线相互连接,每至少两个相邻的所述感应驱动电极的另一端通过导线相互连接。
  8. 如权利要求1-7中任一项所述的触摸式三维光栅,还包括:位于所述 上基板和所述下基板之间的液晶层或电致变色材料层。
  9. 如权利要求8所述的触摸式三维光栅,其中在三维显示时间段,对所述第一三维驱动电极的每个施加相同的三维显示信号,所述多个第二条状电极接地,从而形成明暗相间的条纹;或,对所述第二三维驱动电极的每个施加相同的三维显示信号,所述多个第一条状电极接地,从而形成明暗相间的条纹。
  10. 如权利要求9所述的触摸式三维光栅,其中在所述三维显示时间段,除所述第一三维驱动电极以外的所述第一条状电极接地;或,除所述第二三维驱动电极以外的所述第二条状电极接地。
  11. 如权利要求1-5中任一项所述的触摸式三维光栅,还包括:位于所述上基板和所述下基板之间的液晶层。
  12. 如权利要求8所述的触摸式三维光栅,其中在三维显示时间段,相邻的所述第一三维驱动电极施加不同的三维显示信号,所述多个第二条状电极接地,使所述液晶层中的液晶分子发生偏转而形成柱状透镜结构;或,相邻的所述第二三维驱动电极施加不同的三维显示信号,所述多个第一条状电极接地,使所述液晶层中的液晶分子发生偏转而形成柱状透镜结构。
  13. 一种显示装置,包括:
    显示面板;以及
    触摸式三维光栅,设置在所述显示面板出光侧且所述触摸式三维光栅为如权利要求1-12中任一项所述的触摸式三维光栅。
  14. 如权利要求13所述的显示装置,其中所述显示面板为液晶显示面板、有机电致发光显示面板、等离子体显示面板或阴极射线显示器。
PCT/CN2014/092907 2014-07-08 2014-12-03 触摸式三维光栅及显示装置 WO2016004725A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/763,377 US9690409B2 (en) 2014-07-08 2014-12-03 Touch three-dimensional grating and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410323376.6A CN104123038B (zh) 2014-07-08 2014-07-08 一种触摸式三维光栅及显示装置
CN201410323376.6 2014-07-08

Publications (1)

Publication Number Publication Date
WO2016004725A1 true WO2016004725A1 (zh) 2016-01-14

Family

ID=51768470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092907 WO2016004725A1 (zh) 2014-07-08 2014-12-03 触摸式三维光栅及显示装置

Country Status (3)

Country Link
US (1) US9690409B2 (zh)
CN (1) CN104123038B (zh)
WO (1) WO2016004725A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104123038B (zh) * 2014-07-08 2017-03-01 京东方科技集团股份有限公司 一种触摸式三维光栅及显示装置
CN104317134B (zh) 2014-11-14 2017-01-11 京东方科技集团股份有限公司 触摸光栅盒和触摸立体显示装置
CN104503166B (zh) * 2014-12-30 2017-08-18 深圳市华星光电技术有限公司 裸眼三维触控显示装置的透镜层及其电极结构
CN104820319B (zh) * 2015-02-15 2018-02-06 京东方科技集团股份有限公司 液晶光栅、显示装置及其驱动方法
CN104699360B (zh) 2015-03-30 2018-04-27 京东方科技集团股份有限公司 一种电磁触控式三维光栅及显示装置
CN104730719B (zh) 2015-04-09 2017-03-15 京东方科技集团股份有限公司 触控裸眼光栅3d显示装置及其制备和控制方法
CN104834103B (zh) * 2015-05-25 2017-04-12 京东方科技集团股份有限公司 3d光栅、彩膜基板、显示装置及其控制方法
CN104898334B (zh) * 2015-06-26 2018-06-15 京东方科技集团股份有限公司 一种液晶光栅及其控制方法、3d触控显示面板
CN105467604B (zh) * 2016-02-16 2018-01-12 京东方科技集团股份有限公司 一种3d显示装置及其驱动方法
CN105549211A (zh) * 2016-02-22 2016-05-04 京东方科技集团股份有限公司 3d触控显示模组及其控制方法和3d触控显示装置
JP2017181736A (ja) * 2016-03-30 2017-10-05 株式会社ジャパンディスプレイ 液晶表示装置
CN107357077B (zh) * 2017-08-21 2020-03-13 京东方科技集团股份有限公司 光栅组件、显示装置及控制方法、存储介质
CN109582162B (zh) * 2017-09-28 2024-06-04 京东方科技集团股份有限公司 触控显示模组及其制作方法、触控显示装置
CN207882478U (zh) * 2018-02-27 2018-09-18 京东方科技集团股份有限公司 光栅结构及显示装置
KR20210076232A (ko) * 2019-12-13 2021-06-24 삼성디스플레이 주식회사 터치 센서, 표시 장치, 및 터치 센서의 구동 방법
CN114076576B (zh) * 2020-08-21 2023-11-21 深圳市万普拉斯科技有限公司 光发射器、摄像模组、电子设备及图像三维信息采集方法
CN112083836B (zh) * 2020-09-09 2024-03-12 京东方科技集团股份有限公司 一种触控面板及其驱动方法、触控显示装置
CN112462970B (zh) * 2020-11-19 2023-02-17 深圳英伦科技股份有限公司 显示屏和显示设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231032A (zh) * 2011-05-20 2011-11-02 深圳超多维光电子有限公司 触摸式液晶透镜及其驱动方法、立体显示装置以及计算机系统
CN103116233A (zh) * 2013-01-23 2013-05-22 北京京东方光电科技有限公司 一种触摸液晶光栅结构及3d触摸显示装置
CN104123038A (zh) * 2014-07-08 2014-10-29 京东方科技集团股份有限公司 一种触摸式三维光栅及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493427A (en) * 1993-05-25 1996-02-20 Sharp Kabushiki Kaisha Three-dimensional display unit with a variable lens
CN102707515B (zh) * 2012-05-03 2013-10-09 北京京东方光电科技有限公司 液晶光栅、其制备方法、3d显示器件及3d显示装置
CN203070262U (zh) * 2012-11-07 2013-07-17 上海立体数码科技发展有限公司 集成3d光栅和电容触摸屏的装置及包括其的显示装置
JP2014186535A (ja) * 2013-03-22 2014-10-02 Japan Display Inc タッチセンサ装置、表示装置、及び電子機器
US20140375570A1 (en) * 2013-06-19 2014-12-25 Ronald Steven Cok Multi-resolution micro-wire touch-sensing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231032A (zh) * 2011-05-20 2011-11-02 深圳超多维光电子有限公司 触摸式液晶透镜及其驱动方法、立体显示装置以及计算机系统
CN103116233A (zh) * 2013-01-23 2013-05-22 北京京东方光电科技有限公司 一种触摸液晶光栅结构及3d触摸显示装置
CN104123038A (zh) * 2014-07-08 2014-10-29 京东方科技集团股份有限公司 一种触摸式三维光栅及显示装置

Also Published As

Publication number Publication date
CN104123038A (zh) 2014-10-29
CN104123038B (zh) 2017-03-01
US20160253013A1 (en) 2016-09-01
US9690409B2 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2016004725A1 (zh) 触摸式三维光栅及显示装置
US9261993B2 (en) Touch liquid crystal grating, manufacturing method thereof and touch 3D display device
US8040371B2 (en) Three-dimensional display device and driving method thereof
US20150109666A1 (en) Array substrate and manufacturing method thereof, 3d display device
CN105425403B (zh) 显示装置
CN102279484B (zh) 立体图像显示装置及其制造方法
US20130208195A1 (en) Three-dimensional image display
US9122107B2 (en) Liquid crystal display device
US10001853B2 (en) Touch grating cell and touch stereoscopic display device
US10795177B2 (en) Prism sheet for auto-stereoscopic 3D display and display device including same
CN103149767A (zh) 一种液晶透镜及包含该液晶透镜的裸眼立体显示装置
KR102120172B1 (ko) 표시장치 및 그 구동방법
CN102955322A (zh) 三维显示装置
CN104656337A (zh) 一种液晶透镜及显示装置
US10652524B2 (en) Parallax barrier, display device and manufacturing method thereof
KR102061234B1 (ko) 표시 장치 및 이를 위한 액정 렌즈 패널
JP2014038327A (ja) 視差バリア及び表示装置
CN106200204B (zh) 裸眼三维显示面板及其制造方法、裸眼三维显示装置
JP2016053705A (ja) 表示装置
US9983445B2 (en) Liquid crystal lens panel and display device including liquid crystal lens panel
CN104280889A (zh) 一种3d显示器件及3d显示装置
WO2015035713A1 (zh) 立体显示装置
US9996200B2 (en) Touch screen, display device and manufacturing method thereof usable for realizing 3D display
CA2860677A1 (en) Lenticular means for an autostereoscopic display apparatus having an electro -optic and an orientation layer and method of manufacturing the same
KR101958288B1 (ko) 3차원 영상 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14763377

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/17)

122 Ep: pct application non-entry in european phase

Ref document number: 14896977

Country of ref document: EP

Kind code of ref document: A1