WO2019192363A1 - 数据通信系统和方法 - Google Patents

数据通信系统和方法 Download PDF

Info

Publication number
WO2019192363A1
WO2019192363A1 PCT/CN2019/079815 CN2019079815W WO2019192363A1 WO 2019192363 A1 WO2019192363 A1 WO 2019192363A1 CN 2019079815 W CN2019079815 W CN 2019079815W WO 2019192363 A1 WO2019192363 A1 WO 2019192363A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching module
chassis
performance switching
module
low performance
Prior art date
Application number
PCT/CN2019/079815
Other languages
English (en)
French (fr)
Inventor
杜安学
王连强
陈冲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2020554079A priority Critical patent/JP7111829B2/ja
Priority to EP19781260.5A priority patent/EP3767903B1/en
Publication of WO2019192363A1 publication Critical patent/WO2019192363A1/zh
Priority to US17/035,455 priority patent/US11265265B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/10Packet switching elements characterised by the switching fabric construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/15Interconnection of switching modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/45Arrangements for providing or supporting expansion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • H04Q1/02Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • H04Q1/02Constructional details
    • H04Q1/035Cooling of active equipments, e.g. air ducts

Definitions

  • the present application relates to communication technologies, and in particular, to a data communication system and method.
  • the multi-chassis cluster data communication device system includes multiple data communication chassis, and connects multiple data communication chassis to realize internal and external data exchange tasks of each data communication chassis.
  • a central switch box When a data communication chassis of a multi-chassis cluster data communication device system is connected, a central switch box needs to be set; each data communication chassis is respectively connected with a central switch box, so that each data communication chassis completes the chassis through the central switch box.
  • the method of deploying the central switch box in the multi-chassis cluster data communication device system requires a large area, and the multi-chassis cluster data communication device system needs to occupy a large room area, which is inconvenient for deploying the multi-chassis cluster data communication device system.
  • hardware devices such as a power supply unit, a heat dissipation unit, and a control unit need to be configured for the central switch box, and these hardware devices consume a large amount of power consumption, thereby increasing the cost.
  • the present application provides a data communication system and method, which solves the problem that a multi-chassis cluster data communication device system using a central switch box has a large footprint, consumes a large amount of power consumption, and has a high cost.
  • a first aspect of the present application is to provide a data communication system, including: a first chassis and a second chassis;
  • the first chassis includes a first high performance switch module and a first low performance switch module
  • the second chassis includes a second high performance switch module and a second low performance switch module
  • the first high performance switching module is connected to the second low performance switching module, and the first low performance switching module is connected to the second high performance switching module;
  • the first high performance switching module is configured to connect to a third low performance switching module to be added to the third chassis of the communication system, where the second high performance switching module is configured to connect the to be added to the communication system.
  • the fourth low performance switch module in the third chassis Therefore, the central switch box is removed, and only the service box of the type A service and the service box of the type B are deployed.
  • the service box of the type A service is a service chassis including a high-performance switch module, and the service type of the type B service box does not include a high-performance switch module.
  • the service chassis of the low-performance switch module reduces the footprint of the data communication system; and because the central switch box is removed, the additional hardware devices are not required, which can reduce power consumption and reduce costs;
  • the structure of the communication system has the characteristics of being able to be smoothly expanded.
  • the data communication system including the first chassis and the second chassis is expanded, the cable and the interface between the first chassis and the second chassis do not need to be changed.
  • the third chassis in the system can be connected to the first chassis and the second chassis respectively, and the capacity expansion is convenient.
  • the back-to-back cluster system can be smoothly expanded from the multi-chassis cluster data communication system.
  • the data communication system further includes a fourth chassis, where the fourth chassis includes a fifth low performance switching module and a sixth low performance switching module;
  • the first high performance switching module is connected to the fifth low performance switching module
  • the second high performance switching module is connected to the sixth low performance switching module. Therefore, when the data communication system including the first chassis, the second chassis, and the fourth chassis is expanded, it is not necessary to change cables and interfaces between the first chassis, the second chassis, and the fourth chassis, to be added to
  • the third chassis in the system can be connected to the first chassis and the second chassis respectively, and the capacity expansion is convenient.
  • the back-to-back cluster system can be smoothly expanded from the multi-chassis cluster data communication system.
  • the data communication system further includes a fifth chassis, where the fifth chassis includes a third high performance switching module, a seventh low performance switching module, and an eighth a low performance switching module, the first chassis further includes a ninth low performance switching module, and the second chassis further includes a tenth low performance switching module;
  • the third high performance switching module is connected to the ninth low performance switching module and the tenth low performance switching module, and the first high performance switching module is connected to the seventh low performance switching module, the second high a performance switching module is connected to the eighth low performance switching module;
  • the third high performance switching module is configured to connect to the eleventh low performance switching module in the third chassis to be joined to the communication system. Therefore, when the data communication system consisting of multiple A-type service chassis is expanded, the cables and interfaces between the A-type service chassis need not be changed, and the B-type service chassis to be added to the system respectively and each A The service business chassis can be connected, which is convenient for expansion and smooth expansion.
  • the data communication system further includes a sixth chassis, where the sixth chassis includes a twelfth low performance switching module, and a tenth Three low-performance switching modules and fourteen low-performance switching modules;
  • a twelfth low performance switching module is connected to the first high performance switching module, the thirteenth low performance switching module is connected to the second high performance switching module, and the fourteenth low performance switching module is connected to the third High performance switch module. Therefore, when the data communication system consisting of multiple Class A service chassis and at least one Class B service chassis is expanded, there is no need to change the cables and interfaces between the Class A service chassis, and there is no need to change the The cables and interfaces between the deployed B-type service chassis and the service-type A-type service chassis are connected to the service-type chassis of the Type-A service chassis. This facilitates capacity expansion and smooth expansion.
  • the first chassis further includes a first service forwarding module and a second service forwarding module, where the first The service forwarding module and the second service forwarding module are configured to communicate with devices outside the data communication system, where the first low performance switching module is configured to:
  • each type A service chassis can complete data exchange between the chassis in the data communication system through the service forwarding module, the low performance switching module of the current class A service chassis, and the high performance switching modules of other class A service chassis.
  • the first chassis further includes a third service forwarding module and a fourth service forwarding module, where the third The service forwarding module and the fourth service forwarding module are configured to communicate with devices outside the data communication system, where the first high performance switching module is configured to:
  • the chassis in the data communication system can pass through the service forwarding module and other data communication systems.
  • the device communicates; and each Class A service chassis can complete data between the chassis in the data communication system through the service forwarding module, the high performance switching module of the current Class A service chassis, and the low performance switching modules of other Class A service chassis. exchange.
  • the first high performance switching module is configured to:
  • the data received from the third low performance switching module is sent to the second low performance switching module;
  • each of the Class A service chassis and one Class B service chassis can pass the low performance switching module of the Class B service chassis. Data is sent and received.
  • Each Class A service chassis can send data of the Class B service chassis to other Class A service chassis.
  • Each Class A service chassis can send data of other Class A service chassis to the Class B service chassis. Data exchange between chassis in a data communication system.
  • the first high performance switching module is configured to:
  • the data received from the second low performance switching module is sent to the fifth low performance switching module. Therefore, when the data communication system includes at least one type A service chassis and at least one type B service chassis, each type A service chassis and one class B service chassis can be exchanged through the low performance of the class B service chassis.
  • the module sends and receives data.
  • Each Class A service chassis can send data of the Class B service chassis to other Class A service chassis.
  • Each Class A service chassis can send data of other Class A service chassis to the Class B service chassis.
  • the data exchange between the chassis in the data communication system is realized; when more B-type service chassis are added to the data communication system, the above data exchange process can still be realized.
  • the first high performance switching module is configured to:
  • the data received from the third low performance switching module is sent to one of the second low performance switching module and the seventh low performance switching module;
  • the third chassis joins the communication system, data received from one of the second low performance switching module and the seventh low performance switching module is sent to the third low performance switching module. Therefore, for a data communication system composed of a plurality of Class A service chassis, when the data communication system formed by the Class A service chassis is expanded, it is not necessary to change the cables and interfaces between the Class A service chassis, and to be added to
  • the B-type service chassis in the data communication system can be connected to each type A service chassis, which is convenient for expansion and smooth expansion.
  • various service chassis and B-type service chassis can pass high-performance switch modules and low-performance switching.
  • the first high performance switching module is used to:
  • Data received from one of the second low performance switching module and the seventh low performance switching module is sent to the twelfth low performance switching module. Therefore, when the data communication system consisting of multiple Class A service chassis and at least one Class B service chassis is expanded, there is no need to change the cables and interfaces between the Class A service chassis, and there is no need to change the deployed Cables and interfaces between the B-type service chassis and the service-type A-type service chassis.
  • the B-type service chassis to be added to the system can be connected to each type A service chassis, which facilitates capacity expansion and smooth expansion.
  • Each type A service chassis and each type B service chassis has a service forwarding module, and the chassis in the data communication system can communicate with other devices outside the data communication system through the service forwarding module; each type A service chassis and each class B service The chassis completes data communication within the data communication system through a high-performance switching module and a low-performance switching module.
  • a second aspect of the present application provides a data communication system including: a first chassis and a second chassis;
  • the first chassis includes a first high performance switching module, a first service forwarding module, and a second service forwarding module, where the first service forwarding module and the second service forwarding module are used outside the data communication system.
  • Device communication includes a first high performance switching module, a first service forwarding module, and a second service forwarding module, where the first service forwarding module and the second service forwarding module are used outside the data communication system.
  • the second chassis includes a first low performance switch module
  • the first high performance switching module is connected to the first low performance switching module
  • the first high performance switching module is configured to: send data received from the first service forwarding module to the first low performance switching module; and send data received from the first low performance switching module to the Said second service forwarding module;
  • the first high performance switching module is further configured to: connect a second low performance switching module to be added to a third chassis of the communication system. Therefore, the central switch box is removed, and a C-type service chassis and at least one D-type service chassis are deployed.
  • the C-type service chassis is a service chassis that includes only one high-performance switch module, and the D-type service chassis includes only one.
  • the service chassis of the low-performance switch module reduces the footprint of the data communication system; and because the central switch box is removed, there is no need to add additional hardware devices, which can reduce power consumption and reduce costs;
  • the structure of the communication system has the characteristics of being able to be smoothly expanded.
  • the data communication system including the first chassis and the second chassis When the data communication system including the first chassis and the second chassis is expanded, the cable and the interface between the first chassis and the second chassis do not need to be changed.
  • the third chassis in the system can be connected to the first chassis, which is convenient for expansion.
  • the back-to-back cluster system can be smoothly expanded from the multi-chassis cluster data communication system.
  • the first high performance switching module is further configured to:
  • the data received from the second low performance switching module is sent to the first low performance switching module, the first service forwarding module, and the second service.
  • the third chassis joins the communication system
  • data received from one of the first low performance switching module, the first service forwarding module, and the second service forwarding module is sent to the The second low performance switching module. Therefore, when more D-type service chassis are to be added to the data communication system provided by the second aspect, the D-type service chassis to be added is also connected to the C-type service chassis, and does not need to be deployed.
  • the services of the C-type service chassis and the inter-chassis connection are changed.
  • the service and inter-chassis connection of the deployed D-type service chassis are not changed, so as to achieve smooth expansion.
  • the C-type service chassis can use the high-performance switch module to receive data sent by the D-type service chassis, and then save the data to the current C-type service chassis, or send the data to other D-type service chassis; the C-type service chassis can also The data is sent to the Class D service chassis to implement data communication between the chassis in the data communication system.
  • a third aspect of the present application is to provide a data communication method applied to a data communication system, the data communication system including a first chassis and a second chassis; the first chassis includes a first high performance switch module and a first low a performance switching module; the second chassis includes a second high performance switching module and a second low performance switching module; the first high performance switching module is connected to the second low performance switching module, the first low performance switching module Connecting the second high performance switch module; the first high performance switch module is configured to connect a third low performance switch module to be added to a third chassis of the communication system, where the second high performance switch module is used Connecting the fourth low performance switching module to be added to the third chassis of the communication system; the method includes:
  • the first high performance switching module sends data received from the third low performance switching module to the second low performance switching module, and the first high performance switching module will slave the second low performance switching module Receiving data is sent to the third low performance switching module;
  • the second high performance switching module sends data received from the fourth low performance switching module to the first low performance switching module, and the second high performance switching module will use the first low performance switching module The received data is sent to the fourth low performance switching module.
  • the data communication system further includes a fourth chassis, where the fourth chassis includes a fifth low performance switching module and a sixth low performance switching module;
  • the first high performance switching module is connected to the fifth low performance switching module, and the second high performance switching module is connected to the sixth low performance switching module.
  • the data communication system further includes a fifth chassis, where the fifth chassis includes a third high performance switching module, a seventh low performance switching module, and an eighth a low performance switching module, the first chassis further includes a ninth low performance switching module, and the second chassis further includes a tenth low performance switching module;
  • the third high performance switching module is connected to the ninth low performance switching module and the tenth low performance switching module, and the first high performance switching module is connected to the seventh low performance switching module, the second high a performance switching module is connected to the eighth low performance switching module;
  • the third high performance switching module is configured to connect the eleventh low performance switching module in the third chassis to be joined to the communication system;
  • the method further includes:
  • the third high performance switching module sends data received from the eleventh low performance switching module to one of the ninth low performance switching module and the tenth low performance switching module, from the first The received data of one of the nine low performance switching modules and the tenth low performance switching module is sent to the eleventh low performance switching module.
  • the data communication system further includes a sixth chassis, where the sixth chassis includes a twelfth low performance switching module, and a tenth Three low-performance switching modules and fourteen low-performance switching modules;
  • a twelfth low performance switching module is connected to the first high performance switching module, the thirteenth low performance switching module is connected to the second high performance switching module, and the fourteenth low performance switching module is connected to the third High performance switch module.
  • the first chassis further includes a first service forwarding module and a second service forwarding module, where the first The service forwarding module and the second service forwarding module are configured to communicate with a device outside the data communication system; the method further includes:
  • the first low performance switching module sends data received by the first service forwarding module to the second high performance switching module
  • the first low performance switching module sends data received from the second high performance switching module to the second service forwarding module.
  • the first chassis further includes a third service forwarding module and a fourth service forwarding module, where the third The service forwarding module and the fourth service forwarding module are configured to communicate with a device outside the data communication system; the method further includes:
  • the first high performance switching module sends data received by the third service forwarding module to the second low performance switching module;
  • the second low performance switching module sends data received by the second high performance switching module to the fourth service forwarding module.
  • the method further includes:
  • the first high performance switching module sends data received from the fifth low performance switching module to the second low performance switching module;
  • the first high performance switching module sends data received from the second low performance switching module to the fifth low performance switching module.
  • the method further includes:
  • the first high performance switching module sends data received by the second low performance switching module to the seventh low performance switching module;
  • the first high performance switching module sends data received from the seventh low performance switching module to the second low performance switching module;
  • the first high performance switching module sends data received from the third low performance switching module to one of the second low performance switching module and the seventh low performance switching module;
  • the first high performance switching module sends data received from one of the second low performance switching module and the seventh low performance switching module to the third low performance switching module.
  • the method further includes:
  • the first high performance switching module sends data received from the twelfth low performance switching module to one of the second low performance switching module and the seventh low performance switching module;
  • the first high performance switching module sends data received from one of the second low performance switching module and the seventh low performance switching module to the twelfth low performance switching module.
  • a fourth aspect of the present application provides a data communication method applied to a data communication system, the data communication system including: a first chassis and a second chassis; the first chassis includes a first high performance switch module, a service forwarding module and a second service forwarding module, the first service forwarding module and the second service forwarding module are configured to communicate with devices outside the data communication system; the second chassis includes a first low performance exchange The first high performance switching module is connected to the first low performance switching module; the first high performance switching module is configured to connect a second low performance switching module to be added to the third chassis of the communication system;
  • the method includes:
  • the first high performance switching module sends data received by the first service forwarding module to the first low performance switching module
  • the first high performance switching module sends data received by the first low performance switching module to the second service forwarding module;
  • the first high performance switching module sends data received by the second low performance switching module to the first low performance switching module, the first service forwarding module, and the second service forwarding module.
  • the first high performance switching module sends data received from one of the first low performance switching module, the first service forwarding module, and the second service forwarding module to the second low performance. Switch module.
  • a data communication system comprising means or means for performing the various steps of any of the methods of the above third aspect.
  • a data communication system in a sixth aspect, includes a processor and a memory, the memory is used to store a computer program, and the processor calls a computer program stored in the memory to perform the third aspect of the above A method.
  • a data communication system comprising at least one processing element or chip for performing any of the methods of the above third aspect.
  • a program for performing any of the methods of the above third aspect when executed by a processor.
  • a computer readable storage medium comprising the program of the eighth aspect is provided.
  • a data communication system comprising means or means for performing the various steps of any of the methods of the above fourth aspect.
  • a data communication system in an eleventh aspect, includes a processor and a memory, the memory is used to store a computer program, and the processor calls a computer program stored in the memory to perform the fourth aspect above. Any method.
  • a data communication system comprising at least one processing element or chip for performing any of the methods of the above fourth aspect.
  • a program for performing any of the methods of the above fourth aspect when executed by a processor.
  • a computer readable storage medium comprising the program of the thirteenth aspect is provided.
  • FIG. 1 is a schematic structural diagram of a large single-chassis data communication device
  • FIG. 2 is a schematic structural view of a back-to-back cluster system
  • FIG. 3 is a schematic structural diagram 1 of a multi-chassis cluster system based on a central switch box;
  • FIG. 4 is a schematic structural diagram 2 of a multi-chassis cluster system based on a central switch box;
  • FIG. 5 is a schematic structural diagram 1 of a mesh network multi-chassis cluster system according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram 2 of a mesh network multi-chassis cluster system according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a data communication system according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another data communication system according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another data communication system according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram 1 of another type A service chassis in a data communication system according to an embodiment of the present disclosure
  • FIG. 11 is a second schematic structural diagram of a type A service chassis in a data communication system according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 1 of another type B service chassis in a data communication system according to an embodiment of the present disclosure
  • FIG. 13 is a second schematic structural diagram of a class B service chassis in a data communication system according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a single-frame system in another data communication system according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a two-frame back-to-back cluster system in another data communication system according to an embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of a three-frame cluster system in another data communication system according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a four-frame cluster system in another data communication system according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a multi-frame cluster system in another data communication system according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of still another data communication system according to an embodiment of the present application.
  • FIG. 20 is a connection diagram of a type A service chassis in another data communication system according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of another data communication system according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram 1 of another data communication system according to an embodiment of the present disclosure.
  • FIG. 23 is a second schematic structural diagram of another data communication system according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram 1 of another data communication system according to another embodiment of the present disclosure.
  • 25 is a schematic structural diagram 1 of a first chassis in another data communication system according to an embodiment of the present disclosure
  • FIG. 26 is a second schematic structural diagram of a first chassis in another data communication system according to an embodiment of the present disclosure.
  • FIG. 27 is a schematic structural diagram 1 of a second chassis in another data communication system according to an embodiment of the present disclosure.
  • FIG. 28 is a second schematic structural diagram of a second chassis in another data communication system according to an embodiment of the present disclosure.
  • FIG. 29 is a second schematic structural diagram of another data communication system according to an embodiment of the present disclosure.
  • FIG. 30 is a schematic structural diagram of a single-frame system in another data communication system according to an embodiment of the present disclosure.
  • FIG. 31 is a schematic structural diagram of a two-frame back-to-back cluster system in another data communication system according to an embodiment of the present disclosure
  • 32 is a schematic structural diagram of a three-frame cluster system in another data communication system according to an embodiment of the present disclosure
  • 33 is a schematic structural diagram of a multi-chassis cluster system in another data communication system according to an embodiment of the present disclosure
  • FIG. 34 is a data communication method applied to a data communication system according to an embodiment of the present application.
  • FIG. 35 is another data communication method applied to a data communication system according to an embodiment of the present application.
  • FIG. 36 is another data communication method applied to a data communication system according to an embodiment of the present application.
  • FIG. 37 is a schematic structural diagram of a multi-frame cluster system in another data communication system according to an embodiment of the present disclosure.
  • FIG. 38 is a schematic structural diagram of another multi-chassis cluster system in a data communication system according to an embodiment of the present disclosure.
  • the embodiment of the present application is applied to long term evolution (LTE), the 4th generation mobile communication technology (4G), and the 5th generation mobile communication technology (5G) communication.
  • LTE long term evolution
  • 4G 4th generation mobile communication technology
  • 5G 5th generation mobile communication technology
  • Large data communication equipment including but not limited to core Ethernet switch equipment, router equipment, and optical transmission equipment.
  • Large data communication devices are generally divided into a data plane responsible for high-speed data forwarding and exchange, a control plane responsible for signaling protocol processing, and a management plane responsible for device operation monitoring.
  • plane refers to modules, units, and the like in a large data communication device.
  • Chassis It is a hardware component in a large data communication device.
  • the chassis can also be called a service chassis or a data communication service chassis.
  • the multi-chassis cluster data communication system includes at least two chassis, and the multi-chassis cluster data communication system can also be called a multi-chassis cluster system, or a multi-chassis cluster data communication system, or more Box cluster system.
  • FIG. 1 is a schematic structural diagram of a large single-chassis data communication device.
  • a large data communication device includes only one chassis, wherein the chassis may be referred to as a subrack, and the chassis may be referred to as a single chassis data communication device. Or a single subrack data communication device.
  • the data plane of the single-chassis data communication device generally includes at least one service forwarding module and at least one data switching module.
  • the service forwarding module herein may also be referred to as a service forwarding board, and the data switching module may also be called A data exchange board; wherein the service forwarding module and the data switching module are uniformly interconnected through a high-speed data channel, and each service forwarding module is connected to at least one external service interface, for example, a large data communication device is included.
  • n service forwarding modules and m data exchange modules, n and m are both positive integers, the data exchange module 1 is connected with each service forwarding module, the data exchange module 2 is connected with each service forwarding module, and so on, data
  • the switching module m is connected to each service forwarding module.
  • the service forwarding module is responsible for transmitting and receiving data through an external service interface, performing high-speed forwarding processing on data packets according to service requirements, and transmitting data to be exchanged to the data exchange module, and from the data exchange module.
  • the data exchange module receives data; the data exchange module is responsible for data exchange between any service forwarding modules; the data exchange module generally adopts load sharing to jointly undertake data exchange tasks of the entire chassis.
  • the data exchange module usually adopts an integrated circuit chip that supports the data exchange function.
  • the multi-chassis cluster data communication device system interconnects multiple chassis through the expansion of the data exchange module to form a multi-chassis cluster system with larger service data forwarding performance, and the service data forwarding performance of the multi-chassis cluster data communication device system.
  • the sum of data forwarding performance of all chassis; the multi-chassis cluster data communication device system is one or a set of devices externally, occupying one network node resource in the network, instead of occupying multiple network node resources.
  • FIG. 2 is a schematic structural diagram of a back-to-back cluster system.
  • the two chassis components are a data communication system, and the chassis 1 and the chassis 2 are provided; each chassis adopts a chassis as shown in FIG.
  • the internal modules and the connection methods of the modules are the same as those in Figure 1.
  • the data exchange modules of the two chassis can expand the inter-frame interconnection interface, and then the data exchange modules of the two chassis through the inter-frame interconnection interface.
  • the inter-chassis interconnect interface of the chassis is a key component in building a multi-chassis cluster data communication equipment system for providing bearer channels for inter-frame exchange of data. As shown in FIG.
  • the data exchange module 1 of the chassis 1 and the data exchange module 1 of the chassis 2 are connected through an inter-chassis interface, and the data exchange module 2 of the chassis 1 and the data exchange module 2 of the chassis 2 are passed through the frame.
  • the interconnect interface is connected, and so on, the data exchange module m of the chassis 1 and the data exchange module m of the chassis 2 are connected through the inter-frame interconnection interface, thereby forming a back-to-back cluster system, and the system capacity of the back-to-back cluster system is The system capacity of the device shown in Figure 1 is twice.
  • the chassis can exchange local data through the data exchange modules in the respective chassis, and can also forward data between the chassis through the data exchange module.
  • the interconnect bandwidth between the chassis is greater than or equal to the maximum service forwarding capability of the chassis, wire-speed switching between the two chassis can be achieved.
  • FIG. 3 is a schematic structural diagram 1 of a multi-chassis cluster system based on a central switch box.
  • the multi-chassis cluster system based on the central switch box includes multiple service chassis and one central switch box, and each service The chassis is connected to the central switch box.
  • Each service chassis adopts the chassis as shown in Figure 1.
  • the modules inside the service chassis and the connection modes of the modules are the same as those in Figure 1. They are deployed in each service chassis.
  • m data exchange modules, m central switching modules are deployed in the central switch box, m is a positive integer; for each service chassis, each data switching module in a service chassis is connected to a central switching module one by one. .
  • the central switch box can be composed of one device or multiple devices.
  • each of the above modules may be composed of one or more physical modules.
  • the service chassis can implement local data exchange through their respective data exchange modules, or remote data exchange through the central switch module of the central switch box; two different The data exchange between the service chassis must be completed through the central switch module of the central switch box; thus, the service chassis completes the data exchange task between the chassis through the data exchange module and the central switch module corresponding to the data exchange module.
  • FIG. 4 is a schematic structural diagram 2 of a multi-chassis cluster system based on a central switch box. As shown in FIG. 4, for each service chassis, each data exchange module in a service chassis is connected to a center one by one. The switch module can form an all-star cross-interconnect plane.
  • the multi-chassis cluster system based on the central switch box constitutes a total of m all-star crosses.
  • the central switch box In the multi-chassis cluster system based on the central switch box shown in Figure 3 and Figure 4, in addition to deploying each service chassis, the central switch box needs to be deployed, which requires a geographical area, and the multi-chassis cluster data communication device system needs to occupy a large space. The area of the equipment room is not convenient for the deployment of the multi-chassis cluster data communication equipment system.
  • the cables interconnected between the service chassis need to be re-split and adjusted.
  • the service chassis cable is separately connected to the center of the central switch box, and the expansion operation is very complicated.
  • FIG. 5 is a schematic structural diagram 1 of a mesh network multi-chassis cluster system according to an embodiment of the present disclosure.
  • the switching network mesh multi-chassis cluster system includes multiple service chassis, and each service The chassis adopts the chassis shown in Figure 1.
  • the modules inside the service chassis and the modules are connected in the same way as in Figure 1.
  • the data exchange modules of each service chassis are connected to one data exchange module of other service chassis.
  • the connection mode is to interconnect the data exchange modules of the service chassis in a full mesh manner.
  • the service chassis can exchange local data through the data exchange module in the chassis. Data exchange is implemented between different service chassis through interconnected data exchange modules.
  • the mesh interconnect bandwidth between any two service chassis needs to be greater than or equal to the maximum service forwarding capability in the service chassis. If the data exchanged between any two service chassis can only be implemented through the directly connected data exchange modules of the two services, the inter-chassis bandwidth of each service chassis needs to be greater than or equal to the maximum service forwarding capability of a single service chassis (x-1). ), where x is the total number of service chassis of the mesh mesh multi-chassis cluster system, and x is greater than or equal to 3.
  • FIG. 6 is a schematic structural diagram 2 of a switching network mesh multi-chassis cluster system according to an embodiment of the present disclosure. As shown in FIG. 6, the data exchange module of each service chassis is connected to a data exchange module of another service chassis.
  • each service chassis are evenly interconnected with each other, thereby forming a mesh cross-connection plane, and obtaining m mesh cross-connection planes; data exchange between service chassis through the m mesh crosses
  • the interconnection plane is completed, and each mesh cross-connection plane is relatively independent, and the data exchange function between the frames is carried in a load sharing manner.
  • the data exchange module 1 of the service chassis 1 uses the p/2 cables and the data exchange module 1 of the service chassis 2, and the data exchange module 1 of the service chassis 1 adopts another
  • the data exchange module 1 of the service chassis 3 is connected, and the data exchange module 1 of the service chassis 4 is connected.
  • the data exchange module 1 of the service chassis 1 uses the p/3 cable and the data exchange module 1 of the service chassis 2.
  • the data exchange module 1 of the service chassis 1 adopts another p/3 cable and the data exchange module 1 of the service chassis 3, and the data exchange module 1 of the service chassis 1 uses the remaining p/3 cables and the service chassis 4 Data exchange module 1. It is known that the cables of the data exchange module 1 of the service chassis 1 need to be re-split and adjusted, and so on. For the expansion of the service chassis, the cables of the data exchange modules of all service chassis need to be performed. Splitting and adjustment make the expansion operation very complicated.
  • the present application provides a data communication system and method to further solve the above problems.
  • the "first category chassis” is simply referred to as “type A service chassis”
  • the “second category chassis” is simply referred to as “type B service chassis”
  • the "high performance switching module” is simply referred to as “ S”
  • “Low Performance Switching Module” is abbreviated as “R”
  • “Service Forwarding Module” is abbreviated as “X”.
  • the Class A service chassis includes S, and may also include R.
  • Class B business chassis includes R, but does not include S.
  • the names “high performance switching module” and “low performance switching module” are used in this application only to distinguish between two types of modules, and do not limit the functions of the modules themselves.
  • the difference between the two categories of modules is that high-performance modules can be connected to one or more low-performance modules, while low-performance modules can be connected to one high-performance module that cannot be connected to multiple high-performance modules.
  • High performance modules in the same chassis have higher performance requirements than low performance modules, such as bandwidth requirements.
  • the bandwidth requirements of the module are, for example, the data bandwidth that the module can handle.
  • high performance modules in different chassis can have higher performance requirements than low performance modules.
  • high performance modules in different chassis can have the same performance requirements, and low performance modules in different chassis can have the same performance requirements.
  • FIG. 7 is a schematic structural diagram of a data communication system according to an embodiment of the present disclosure.
  • a data communication system according to an embodiment of the present disclosure includes: a first chassis and a second chassis;
  • the first chassis includes a first high performance switch module and a first low performance switch module
  • the second chassis includes a second high performance switch module and a second low performance switch module
  • the first high performance switch module is connected to the second low performance switch module, and the first low performance switch module is connected to the second high performance switch module;
  • the first high performance switch module is configured to connect to a third low performance switch module in the third chassis to be joined to the communication system
  • the second high performance switch module is configured to connect the fourth low performance switch in the third chassis to be joined to the communication system. Module.
  • the data communication system is divided into a first category chassis and a second category chassis.
  • the first category chassis includes a first chassis A1 and a second chassis A2, and the first chassis A1 includes a first high performance switching module. S and a first low performance switching module R1, the second chassis A2 includes a second high performance switching module S and a second low performance switching module R1.
  • the third chassis B1 When the data communication system consisting of A1 and A2 is expanded into the second category chassis, when a third chassis B1 is added, the third chassis B1 is provided with a third low performance switching module R1 and a fourth low. Performance switching module R2. At this time, the data communication system already has two Class A service chassis, which are respectively A1 and A2, and the chassis to be added to the data communication system is the Class B service chassis B1.
  • the data communication system provided by the foregoing embodiment provides a data communication system consisting of A1, A2, and B1, and removes the central switch box, and only needs to deploy each type A service chassis and class B service chassis, thereby reducing the data communication system. Coverage; and because the central switch box is removed, and no additional hardware equipment is needed, power consumption can be reduced and cost can be reduced; when the data communication system composed of A1 and A2 is expanded, there is no need to change A1 and A2. For the cable between the B1 and the A1 and A2, the B1 is connected to the A1 and A2, and the expansion is convenient.
  • the back-to-back cluster system can be smoothly expanded from the multi-chassis cluster data communication system.
  • FIG. 8 is a schematic structural diagram of another data communication system according to an embodiment of the present disclosure.
  • the first chassis further includes a first service forwarding module and a second service forwarding module, where the first service forwarding module and the second service forwarding module are configured to communicate with devices outside the data communication system.
  • the first low performance switch module is used to:
  • the data received from the second high performance switching module is sent to the second service forwarding module.
  • the first chassis further includes a third service forwarding module and a fourth service forwarding module, where the third service forwarding module and the fourth service forwarding module are configured to communicate with devices outside the data communication system, where A high performance switching module is configured to: send data received from the third service forwarding module to the second low performance switching module; and send data received from the second low performance switching module to the fourth service forwarding module.
  • the third service forwarding module and the fourth service forwarding module may be the same module.
  • the first high performance switching module is configured to: after the third chassis joins the communication system, send data received from the third low performance switching module to the second low performance switching module; After the three chassis join the communication system, the data received from the second low performance switching module is sent to the third low performance switching module.
  • the first chassis A1 further includes n service forwarding modules X, where n is a positive integer.
  • A1 further includes a first service forwarding module X1, a second service forwarding module X2, and a third.
  • the second chassis A2 further includes n service forwarding modules X.
  • A2 further includes a fifth service forwarding module X1, a sixth service forwarding module X2, a seventh service forwarding module X3, and an eighth service. Forward module X4.
  • the number of the service forwarding modules of the A1 and the number of the A2 service forwarding modules may be the same or different.
  • Each X of A1 is connected to R1 of S1 and A1 of A1, that is, X1 of A1 is connected to R1 of S1 and A1 of A1, respectively, and X2 of A1 is connected with R1 of S1 and A1 of A1, respectively, and X3 of A1 is respectively A1's S, A1's R1 connection, A1's X4 are connected to A1's S, A1's R1, and so on; each X of A2 is connected to A1's S, A2's R1, that is, A2's X1 and A2 respectively R1 of S and A2, X2 of A2 is connected to R1 of S2 and A2 of A2, X3 of A2 is connected with R1 of S2 and A2 of A2, and X4 of A2 is connected with R1 of S2 and A2 of A2, respectively. And so on.
  • X1 of A1, X2 of A1, X3 of A1, and X4 of A1 can communicate with other devices outside the data communication system, and further transmit and receive data with other devices outside the data communication system; similarly, X1 and A2 of A2 X2 of X2, A2, and X4 of A2 can communicate with other devices outside the data communication system, and then transmit and receive data to and from other devices outside the data communication system.
  • R1 of A1 can receive the data sent by X1 of A1 or X2 of A1 through the intra-frame interconnection interface; then R1 of A1 determines whether the destination of the data is A1 or other chassis; if the destination of R1 of A1 determines that the destination of the data is A1, then R1 of A1 sends data to X1 of A1 or X2 of A1 through the inter-frame interconnection interface; if R1 of A1 determines that the destination of data is other chassis, R1 of A1 does not need to identify who the specific purpose chassis is, and R1 of A1 passes.
  • the inter-frame interconnect interface sends data to S2 of A2.
  • R1 of A1 can also receive the data sent by S2 of A2 through the inter-frame interconnection interface; then R1 of A1 determines whether the destination of the data is A1 or other chassis; if the destination of R1 of A1 determines that the data is A1, then R1 of A1 The data is sent to X1 of A1 or X2 of A1 through the intra-frame interconnection interface; if R1 of A1 determines that the destination of the data is another chassis, R1 of A1 is regarded as receiving illegal data and directly discarding the data.
  • the S of A1 can receive the data sent by X1 of A1 or X2 of A1 or X3 of A1 or X4 of A1 through the intra-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if S1 of A1 is judged The destination of the data is A1, then the S of A1 sends the data to X1 of A1 or X2 of A1 or X3 of A1 or X4 of A1 through the intra-frame interconnection interface; if the destination of A1 determines that the destination of the data is another chassis, The S of A1 can identify who the specific purpose chassis is. The S of A1 sends data to the destination chassis through the inter-frame interconnection interface.
  • the destination of A1 determines that the data is A2, and the S of A1 is interconnected by inter-frame.
  • the interface sends the data to R1 of A2.
  • A1's S can also receive the data sent by A2's R1 through the inter-frame interconnection interface; then A1's S determines whether the data destination is A1 or other chassis; if A1's S determines that the data destination is A1, then A1's S Send data to X1 of A1 or X2 of A1 or X3 of A1 or X4 of A1 through the intra-frame interconnection interface; if the destination of A1's S judgment data is other chassis, S of A1 can identify that the specific purpose chassis is Whoever, S1 of A1 sends data to the destination chassis through the inter-frame interconnection interface. For example, S1 of A1 determines that the destination of the data is A2, and S of A1 sends data to R1 of A2 through the inter-frame interconnection interface.
  • the B1 further includes at least one seventh service forwarding module X.
  • R1 of B1 is respectively connected with each X of B1, and R2 of B1 is respectively connected with each X of B1.
  • t X is set in B1. X1, X2, ..., Xt, respectively, t is a positive integer greater than or equal to 1.
  • the S of A1 can receive the data sent by X1 of A1 or X2 of A1 or X3 of A1 or X4 of A1 through the intra-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if S1 of A1 is judged The destination of the data is A1, then the S of A1 sends the data to X1 of A1 or X2 of A1 or X3 of A1 or X4 of A1 through the intra-frame interconnection interface; if the destination of S1 of A1 is B1, A1 The S sends data to the R1 of B1 through the inter-frame interconnect interface.
  • the S of A1 can also receive the data sent by R1 of B1 through the inter-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if the destination of A1's S judgment data is A1, then S of A1 Send data to X1 of A1 or X2 of A1 or X3 of A1 or X4 of A1 through the intra-frame interconnection interface; if the destination of A1's S judgment data is other chassis, S of A1 can identify that the specific purpose chassis is Who, S1 of A1 sends data to the destination chassis through the inter-frame interconnection interface.
  • S1 of A1 determines that the destination of data is A2, and S of A1 sends data to R1 of A2 through the inter-frame interconnection interface.
  • A1's S can also receive the data sent by A2's R1 through the inter-frame interconnection interface; then A1's S determines whether the data destination is A1 or other chassis; if A1's S determines that the data destination is A1, then A1's S Send data to X1 of A1 or X2 of A1 or X3 of A1 or X4 of A1 through the intra-frame interconnection interface; if the destination of A1's S judgment data is other chassis, S of A1 can identify that the specific purpose chassis is Who, S1 of A1 sends data to the destination chassis through the inter-frame interconnection interface. For example, the destination of S1 of A1 is B1, and the S of A1 sends data to R1 of B1 through the inter-frame interconnection interface.
  • R1 of B1 can receive data sent by one X of B1 through the intra-frame interconnection interface; then R1 of B1 determines whether the destination of the data is B1 or other chassis; if the destination of R1 of B1 determines that the data is B1, then B1 R1 sends data to one X of B1 through the inter-frame interconnection interface. If R1 of B1 determines that the destination of the data is another chassis, R1 of B1 does not need to identify who the specific destination chassis is, and R1 of B1 is interconnected by inter-chassis. The interface sends the data to the S of A1.
  • R1 of B1 can also receive the data sent by S1 of A1 through the inter-frame interconnection interface; then R1 of B1 determines whether the destination of the data is B1 or other chassis; if the destination of R1 of B1 determines that the data is B1, then R1 of B1 The data is sent to one X of B1 through the intra-frame interconnection interface; if the R1 of B1 determines that the destination of the data is another chassis, R1 of B1 is regarded as receiving illegal data and directly discarding the data.
  • the data communication system provided by the foregoing embodiment provides a data communication system consisting of A1, A2, and B1, removes the central switch box, and deploys each type A service chassis and a class B service chassis, thereby reducing the data communication system. Coverage; and because the central switch box is removed, and no additional hardware equipment is needed, power consumption can be reduced and cost can be reduced; when the data communication system composed of A1 and A2 is expanded, there is no need to change A1 and A2. For the cable between the B1 and the A1 and A2, the B1 is connected to the A1 and A2, and the capacity is expanded.
  • This embodiment can smoothly expand from the back-to-back cluster system to the multi-chassis cluster data communication system.
  • A1, A2, and B1 have a service forwarding module, and the chassis in the data communication system can communicate with other devices outside the data communication system through the service forwarding module; A1, A2, and B1 can complete data communication through S, R1, and the like. Data communication within the system.
  • FIG. 9 is a schematic structural diagram of still another data communication system according to an embodiment of the present disclosure.
  • the data communication system further includes a fourth chassis, the fourth chassis including a fifth low performance switching module and a sixth low performance switching module;
  • the first high performance switching module is connected to the fifth low performance switching module, and the second high performance switching module is connected to the sixth low performance switching module.
  • the first high performance switching module is configured to: send data received from the fifth low performance switching module to the second low performance switching module; and receive data from the second low performance switching module. Send to the fifth low performance switch module.
  • the first chassis further includes a first service forwarding module and a second service forwarding module, where the first service forwarding module and the second service forwarding module are configured to communicate with devices outside the data communication system;
  • a low performance switching module is configured to: send data received from the first service forwarding module to the second high performance switching module; and send data received from the second high performance switching module to the second service forwarding module.
  • the first chassis further includes a third service forwarding module and a fourth service forwarding module, where the third service forwarding module and the fourth service forwarding module are configured to communicate with devices outside the data communication system, where A high performance switching module is configured to: send data received from the third service forwarding module to the second low performance switching module; and send data received from the second low performance switching module to the fourth service forwarding module.
  • the third service forwarding module and the fourth service forwarding module may be the same module.
  • the first high performance switching module is configured to: after the third chassis joins the communication system, send data received from the third low performance switching module to the second low performance switching module; After the three chassis join the communication system, the data received from the second low performance switching module is sent to the third low performance switching module.
  • the data communication system already has A1 and A2, A1 includes S and R1, A2 includes S and R1, S1 of A1 is connected to R1 of A2 through an inter-frame interconnection interface, and S of A2 passes another An inter-frame interconnect interface is connected to R1 of A1.
  • a fourth chassis B2 is set in the data communication system, and B2 is a class B service chassis; B2 includes a fifth low performance switching module R1 and a sixth low performance switching module R2; The interconnect interface is connected to R1 of B2, and the S of A2 is connected to R2 of B2 through an inter-frame interconnect interface.
  • the data communication system already has two Class A service chassis, respectively A1 and A2, and the data communication system also has a Class B service chassis B2. Then, the chassis to be added to the data communication system is a Class B service chassis B1.
  • the S of A1 can receive the data sent by X of A1 through the intra-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if the destination of the data of A1 is A1, the S of A1 passes The intra-frame interconnect interface sends data to X of A1; if the S of A1 determines that the destination of the data is B2, S of A1 sends the data to R1 of B2 through the inter-frame interconnect interface.
  • the S of A1 can also receive the data sent by R1 of B2 through the inter-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if the destination of A1's S judgment data is A1, then S of A1 The data is sent to the X of the A1 through the intra-frame interconnection interface; if the destination of the A1 S determines that the data is in another chassis, the S of the A1 can identify who the specific destination chassis is, and the S of the A1 passes the inter-chassis interconnection interface. The data is sent to the destination chassis. For example, the S of the A1 determines that the destination of the data is A2.
  • the S of the A1 sends the data to the R1 of the A2 through the inter-frame interconnection interface.
  • A1's S can also receive the data sent by A2's R1 through the inter-frame interconnection interface; then A1's S determines whether the data destination is A1 or other chassis; if A1's S determines that the data destination is A1, then A1's S The data is sent to the X of the A1 through the intra-frame interconnection interface; if the destination of the A1 S determines that the data is in another chassis, the S of the A1 can identify the destination chassis, and then the S of the A1 sends the data to the inter-frame interconnection interface.
  • the destination chassis for example, if the S of A1 determines that the destination of the data is B2, the S of A1 sends the data to R1 of B2 through the inter-frame interconnection interface.
  • B1 When the data communication system composed of A1, A2, and B2 is expanded into the B-type service chassis, for example, when a third chassis B1 is added, B1 is provided to include one R1 and one R2. When B1 is added, S of A1 can be connected to R1 of B1, and S of A2 can be connected to R2 of B1.
  • the data transmission and reception process of other modules in A1, the data transmission and reception process of other modules in A2, and the data transmission and reception process of modules in B1 can be referred to the introduction of the embodiment shown in FIG.
  • FIG. 10 is a schematic structural diagram 1 of another type A service chassis in a data communication system according to an embodiment of the present application.
  • each type A service chassis includes one S and m. -1 R, also including n X, for example, including S, and R1, R2, ..., R m-1 , and X1, X2, ..., Xn; each X is respectively connected through an in-frame interconnection interface S is connected, and each X is connected to each R through an intra-frame interconnection interface; S is connected to an inter-frame interconnection interface to connect with other chassis, and each R is connected with an inter-frame interconnection interface to connect with other chassis.
  • FIG. 11 is a second schematic structural diagram of a type A service chassis in a data communication system according to an embodiment of the present invention. The structure shown in FIG. 11 can be simplified by simplifying the class A service chassis shown in FIG. 10.
  • FIG. 12 is a first schematic structural diagram of a type B service chassis in a data communication system according to an embodiment of the present disclosure. As shown in FIG.
  • each type B service chassis includes m Rs and includes t X, for example, R1, R2, ..., R m , and X1, X2, ..., Xt; each X is connected to each R through an in-frame interconnection interface; each R is connected to an inter-frame interconnection interface To connect with other chassis, each X is connected to a service interface to connect with other devices outside the data communication system; each R in each chassis takes 1/m of the service bandwidth of the chassis.
  • FIG. 13 is a second schematic structural diagram of a class B service chassis in a data communication system according to an embodiment of the present disclosure. The structure shown in FIG. 13 can be simplified by simplifying the class A service chassis shown in FIG.
  • n, m, and t are all positive integers; and m also represents the total number of Class A service chassis; it can be seen that when the number of Class A service chassis is m, the R of each Class A service chassis The number of Rs is m-1, and the number of Rs in each type B service chassis is m; the total number of B-type service chassis and the total number of A-type service chassis may be the same or different.
  • FIG. 14 is a schematic structural diagram of a single-frame system in a data communication system according to an embodiment of the present disclosure. As shown in FIG. 14, only the single-frame system is included in the single-frame system. It includes a Class A service chassis A1, which includes an S and an R1. Then, the first expansion is performed.
  • FIG. 15 is a schematic structural diagram of a two-frame back-to-back cluster system in another data communication system according to an embodiment of the present application. As shown in FIG. 15, the two-frame back-to-back cluster system includes two As. Class business chassis A1 and A2, A1 includes an S and an R1, A2 includes an S and an R1, A1 and A2 are evenly interconnected. When the single-frame system shown in FIG.
  • FIG. 14 is expanded to the two-frame back-to-back cluster system shown in FIG. 15, since there is only one A1 in FIG. 14, and there is no connection relationship between A1 and other chassis, an A2 is added.
  • the new cable is used to interconnect the A1 and the A2.
  • the existing cables are not adjusted.
  • the expansion process does not affect the services deployed in the A1 service chassis A1.
  • the system shown in Figure 15 is expanded to achieve smooth expansion.
  • FIG. 16 is a schematic structural diagram of a three-frame cluster system in another data communication system according to an embodiment of the present application.
  • a B is added to the system shown in FIG. Service-type chassis B1; the new cable is used to connect B1 to A1 and A2 respectively, and the existing cables are not adjusted.
  • the expansion process does not affect the deployed services in the A1 and A2 chassis.
  • the inter-frame connection between the A1 and A2 chassis is not affected. Therefore, when the system shown in Figure 15 is expanded to the system shown in Figure 16, the smooth expansion is achieved.
  • FIG. 17 is a schematic structural diagram of a four-frame cluster system in another data communication system according to an embodiment of the present application. As shown in FIG. 17, another system is added to the system shown in FIG. The B-type service chassis B2; the new cable is used to connect the B2 to the A1 and A2 respectively. The existing cables are not adjusted. The expansion does not affect the deployed A-type service chassis and the B-type service chassis. The upper service and the inter-frame connection, and the system shown in FIG. 16 realizes smooth expansion when expanding to the system shown in FIG.
  • the data communication system provided by the foregoing embodiment provides a data communication system consisting of A1, A2, and B1, removes the central switch box, and deploys each type A service chassis and a class B service chassis, thereby reducing the data communication system. Coverage; and because the central switch box is removed, and no additional hardware equipment is needed, power consumption can be reduced and cost can be reduced; when the data communication system composed of A1 and A2 is expanded, there is no need to change A1 and A2. For the cable between the B1 and the A1 and A2, the B1 is connected to the A1 and A2, and the capacity is expanded.
  • This embodiment can smoothly expand from the back-to-back cluster system to the multi-chassis cluster data communication system.
  • A1, A2, and B1 have a service forwarding module, and the chassis in the data communication system can communicate with other devices outside the data communication system through the service forwarding module; A1, A2, and B1 can complete data communication through S, R1, and the like. Data communication within the system.
  • FIG. 19 is a schematic structural diagram of still another data communication system according to an embodiment of the present application.
  • the fifth chassis includes a third high performance switch module, a seventh low performance switch module, and an eighth low performance switch module.
  • the first chassis further includes a ninth low performance switch module, and the second chassis further includes a tenth low Performance switching module
  • the third high performance switching module is connected to the ninth low performance switching module and the tenth low performance switching module, the first high performance switching module is connected to the seventh low performance switching module, and the second high performance switching module is connected to the eighth low performance switching module;
  • the third high performance switch module is configured to connect to the eleventh low performance switch module in the third chassis to be joined to the communication system.
  • the first high performance switching module is configured to: send data received from the second low performance switching module to the seventh low performance switching module; and receive data from the seventh low performance switching module. Sending to the second low performance switching module; after the third chassis joins the communication system, transmitting data received from the third low performance switching module to one of the second low performance switching module and the seventh low performance switching module; After the three chassis join the communication system, data received from one of the second low performance switching module and the seventh low performance switching module is sent to the third low performance switching module.
  • the data communication system already has A1 and A2, A1 includes S and R1, A2 includes S and R1, S1 of A1 is connected to R1 of A2 through an inter-frame interconnection interface, and S of A2 passes another An inter-frame interconnect interface is connected to R1 of A1.
  • a fifth chassis A3 is set in the data communication system, and A3 is a class A service chassis; A3 includes a third high performance switching module R1, a seventh low performance switching module R2, and an eighth low performance switching module R3.
  • the three Class A service chassis of the data communication system are A1, A2, and A3, and each Class A service chassis has one S and two R respectively; further, A1 also includes a ninth low.
  • the performance switching module R2, A2 also includes a tenth low performance switching module R2.
  • the data communication system includes three Class A service chassis, which are respectively A1, A2, and A3; each of the Class A service chassis has one S and two R; the A1 S passes through an inter-frame interconnection interface.
  • S of A1 is connected to R1 of A3 through an inter-frame interconnection interface
  • S of A2 is connected to R1 of A1 through an inter-frame interconnection interface
  • S of A2 passes through an inter-frame interconnection interface with A3
  • the S of A3 is connected to R2 of A1 through an inter-frame interconnection interface, and the S of A3 is connected to R2 of A2 through an inter-frame interconnection interface.
  • FIG. 20 is a connection diagram of a type A service chassis in another data communication system according to an embodiment of the present disclosure, and the type A service chassis in FIG. 20 adopts the representation manner of FIG. 11, as shown in FIG. m Class A service chassis, m is greater than or equal to 2.
  • each Class A service chassis is evenly connected to the R of other Class A service chassis through the inter-chassis interconnection interface, and the S of a Class A service chassis and other A connected thereto
  • the R of the service-type chassis together constructs a cross-interconnect plane; in turn, a total of m switch interconnect planes are constructed in m-type service chassis; the m cross-interconnect planes are independent of each other, load-sharing, and collectively carry all inter-frame data exchanges.
  • the connection inside each cross-interconnect plane is a star connection mode of multiple R to 1 S, which is completely different from the mesh connection mode of the switch module used in the previous switching network mesh cluster system.
  • Table 2 shows the connection modes of m cross-connect planes of m Class A service chassis. As shown in Table 2, m cross-connections of Class A service chassis are connected according to the scheme shown in Figure 20, and m crossovers are constructed. The interconnection plane, the connection of each cross interconnection plane is shown in Table 2. Each row in Table 2 represents the R or S of each Class A service chassis included in a cross-connected plane; for example, the R1 and A service chassis A3 of the S and Class A service chassis A2 of the Class A service chassis A1. The R1, R1, and R1 of the Class A service chassis Am-1 and the R1 of the Class A service chassis Am form a cross interconnection plane 1.
  • R is only interconnected with S of another type A service chassis. Therefore, as long as the data clear bandwidth of the inter-frame interconnection interface of R is greater than or equal to the data clear bandwidth of the inter-frame interconnection interface of the R, R can work at wire speed.
  • the S of a Class A service chassis is interconnected with one R of each other service chassis. Therefore, the data bandwidth requirement of the inter-chassis interface of the S is related to the total number of chassis in the multi-chassis cluster system; In the system, the net data bandwidth of the inter-chassis interconnection interface of S is several times the net bandwidth of the intra-frame interconnection interface of the S.
  • the bandwidth provided by the inter-chassis interface of each S is m-1 times the bandwidth of the intra-frame interconnection interface of S. .
  • the data communication system includes three Class A service chassis, which are respectively A1, A2, and A3. Then, the chassis to be added to the data communication system is a Class B service chassis B1.
  • the S of A1 can receive the data sent by X of A1 through the intra-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if the destination of the data of A1 is A1, the S of A1 passes The in-frame interconnection interface sends data to X of A1; if the destination of A1's S judgment data is A2, then S1 of A1 sends data to R1 of A2 through the inter-frame interconnection interface, if the S of A1 determines the data The destination is A3, and the S of A1 sends data to R1 of A3 through the inter-frame interconnection interface.
  • A1's S can also receive the data sent by A2's R1 through the inter-frame interconnection interface; then A1's S determines whether the data destination is A1 or other chassis; if A1's S determines that the data destination is A1, then A1's S The data is sent to the X of the A1 through the intra-frame interconnection interface; if the destination of the A1 S determines that the data is in another chassis, the S of the A1 can identify the destination chassis, and then the S of the A1 sends the data to the inter-frame interconnection interface.
  • the destination chassis for example, if the destination of the data of A1 is A3, the S of A1 sends the data to R1 of A3 through the inter-frame interconnection interface.
  • the S of A1 can also receive the data sent by R1 of A3 through the inter-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if the destination of A1's S judgment data is A1, then S of A1 The data is sent to the X of the A1 through the intra-frame interconnection interface; if the destination of the A1 S determines that the data is in another chassis, the S of the A1 can identify the destination chassis, and then the S of the A1 sends the data to the inter-frame interconnection interface.
  • the destination chassis for example, if the S of the A1 determines that the destination of the data is A2, the S of the A1 transmits the data to the R1 of the A2 through the inter-frame interconnection interface.
  • the provided B1 includes a third low-performance switching module R1 and a first Four low-performance switching modules R2 and an eleventh low-performance switching module R3.
  • S of A1 can be connected to R1 of B1
  • S of A2 can be connected to R2 of B1
  • S of A3 can be connected to R3 of B1.
  • the S of A1 can also receive the data sent by R1 of B2 through the inter-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if the destination of A1's S judgment data is A1, then S of A1 The data is sent to the X of the A1 through the intra-frame interconnection interface; if the destination of the A1 S determines that the data is in another chassis, the S of the A1 can identify who the specific destination chassis is, and the S of the A1 passes the inter-chassis interconnection interface. The data is sent to the destination chassis.
  • S1 of A1 determines that the destination of the data is A2
  • S of A1 sends data to R1 of A2 through the inter-frame interconnection interface
  • S of A1 determines that the destination of the data is A3. Then, S of A1 sends data to R1 of A3 through the inter-frame interconnection interface.
  • A1's S can also receive the data sent by A2's R1 through the inter-frame interconnection interface; then A1's S determines whether the data destination is A1 or other chassis; if A1's S determines that the data destination is A1, then A1's S The data is sent to the X of the A1 through the intra-frame interconnection interface; if the destination of the A1 S determines that the data is in another chassis, the S of the A1 can identify who the specific destination chassis is, and the S of the A1 passes the inter-chassis interconnection interface. The data is sent to the destination chassis.
  • S of A1 determines that the destination of the data is B2
  • S of A1 sends data to R1 of B2 through the inter-frame interconnection interface
  • S of A1 determines that the destination of the data is A3. Then, S of A1 sends data to R1 of A3 through the inter-frame interconnection interface.
  • the S of A1 can also receive the data sent by R1 of A3 through the inter-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if the destination of A1's S judgment data is A1, then S of A1 The data is sent to the X of the A1 through the intra-frame interconnection interface; if the destination of the A1 S determines that the data is in another chassis, the S of the A1 can identify who the specific destination chassis is, and the S of the A1 passes the inter-chassis interconnection interface. The data is sent to the destination chassis.
  • S1 of A1 determines that the destination of the data is B2
  • S of A1 sends data to R1 of B2 through the inter-frame interconnection interface
  • S of A1 determines that the destination of the data is A2. Then, S of A1 sends data to R1 of A2 through the inter-frame interconnection interface.
  • the data communication system provided by the foregoing embodiment provides a data communication system consisting of A1, A2, and A3, removes the central switch box, and deploys each type A service chassis and a class B service chassis, thereby reducing the data communication system. Coverage; and because the central switch box is removed, and there is no need to add additional hardware devices, power consumption can be reduced and cost can be reduced.
  • the data communication system composed of the Class A service chassis is expanded, there is no need to change the Class A.
  • the cables between the service chassis and the B1 to be added to the system can be connected to each type A service chassis. This facilitates capacity expansion and smooth expansion.
  • A1, A2, A3, and B1 have a service forwarding module, and the chassis in the data communication system can communicate with other devices outside the data communication system through the service forwarding module; A1, A2, A3, and B1 can pass S, R1. Waiting for data communication within the data communication system.
  • FIG. 21 is a schematic structural diagram of another data communication system according to an embodiment of the present disclosure.
  • the data communication system further includes a sixth chassis, and the sixth chassis includes a twelfth low performance switching module, a thirteenth low performance switching module, and a fourteenth low performance switching module.
  • the twelfth low performance switching module is connected to the first high performance switching module, the thirteenth low performance switching module is connected to the second high performance switching module, and the fourteenth low performance switching module is connected to the third high performance switching module.
  • the first high performance switching module is configured to: send data received from the twelfth low performance switching module to one of the second low performance switching module and the seventh low performance switching module; Data received from one of the second low performance switching module and the seventh low performance switching module is sent to the twelfth low performance switching module.
  • A1, A2, and A3 are already in the data communication system; a sixth chassis B3 is also set in the data communication system, and B3 includes a twelfth low-performance switching module R1 and a thirteenth low performance.
  • the switch module R2 and the fourteenth low-performance switch module R3 can connect S1 of A1 with R1 of B3, connect S of A2 with R2 of B3, and connect S of A3 with R3 of B3.
  • the connection relationship between A1, A2 and A3 is shown in the embodiment shown in FIG.
  • the data communication system already has three Class A service chassis, which are respectively A1 and A2, and the data communication system also has a Class B service chassis B3. Then, the chassis to be added to the data communication system is a Class B service chassis B1.
  • the S of A1 can receive the data sent by X of A1 through the intra-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if the destination of the data of A1 is A1, the S of A1 passes The in-frame interconnection interface sends data to X of A1; if the destination of A1's S judgment data is A2, then S1 of A1 sends data to R1 of A2 through the inter-frame interconnection interface, if the S of A1 determines the data The destination is A3, and the S of A1 sends data to R1 of A3 through the inter-frame interconnection interface.
  • the S of A1 sends the data to B3 through the inter-frame interconnection interface.
  • the S of A1 can also receive the data sent by R1 of B3 through the inter-frame interconnection interface; then the S of A1 determines whether the destination of the data is A1 or other chassis; if the destination of A1's S judgment data is A1, then S of A1 The data is sent to the X of the A1 through the intra-frame interconnection interface; if the destination of the A1 S determines that the data is in another chassis, the S of the A1 can identify the destination chassis, and then the S of the A1 sends the data to the inter-frame interconnection interface.
  • the destination chassis for example, if the destination of the data of A1 is A2, the S of A1 sends the data to R1 of A2 through the inter-frame interconnection interface, or, if the destination of the data of A1 determines that the destination of the data is A3, The S of A1 sends data to R1 of A3 through the inter-frame interconnection interface.
  • A1's S can also receive the data sent by A2's R1 through the inter-frame interconnection interface; then A1's S determines whether the data destination is A1 or other chassis; if A1's S determines that the data destination is A1, then A1's S The data is sent to the X of the A1 through the intra-frame interconnection interface; if the destination of the A1 S determines that the data is in another chassis, the S of the A1 can identify the destination chassis, and then the S of the A1 sends the data to the inter-frame interconnection interface.
  • the destination chassis for example, if the destination of the data of A1 is B3, the S of A1 sends the data to the R1 of B3 through the inter-frame interconnection interface, and if the destination of the data of A1 is A3, the A1 S sends data to R1 of A3 through the inter-frame interconnection interface.
  • the S of A1 can also receive the data sent by R1 of A3 through the inter-frame interconnection interface; then the S of A1 judges whether the destination of the data is A1 or other chassis; if the destination of A1's S judgment data is A1, then S of A1 The data is sent to the X of the A1 through the intra-frame interconnection interface; if the destination of the A1 S determines that the data is in another chassis, the S of the A1 can identify the destination chassis, and then the S of the A1 sends the data to the inter-frame interconnection interface.
  • the destination chassis for example, if the destination of the data of A1 is B3, the S of A1 sends the data to the R1 of B3 through the inter-frame interconnection interface, and if the destination of the data of A1 is A2, the A1 S sends data to R1 of A2 through the inter-frame interconnect interface.
  • the provided B1 includes one R1, one R2, and one R3.
  • S of A1 can be connected to R1 of B1
  • S of A2 can be connected to R2 of B1
  • S of A3 can be connected to R3 of B1.
  • the data transmission and reception process of S1 of A1 and the data transmission and reception process of S of A2 can be referred to the introduction of the embodiment shown in FIG. Moreover, the data transceiving process of other modules in A1, the data transceiving process of other modules in A2, the data transceiving process of other modules in A3, and the data transceiving process of modules in B1 can be referred to the embodiment shown in FIG. Introduction.
  • the data communication system provided by the foregoing embodiment provides a data communication system consisting of A1, A2, A3, and B3, and the central switch box is removed.
  • each type A service chassis and type B service are deployed.
  • the chassis can be used, which reduces the footprint of the data communication system; and because the central switch box is removed, there is no need to add additional hardware devices, which can reduce power consumption and reduce costs;
  • the data communication system consisting of at least one type B service chassis is expanded, there is no need to change the cables and interfaces between the Class A service chassis, and there is no need to change between the deployed Class B service chassis and each Class A service chassis.
  • the cables and interfaces that are added to the system are connected to each type A service chassis, which facilitates expansion and smooth expansion.
  • A1, A2, A3, B3, and B1 have a service forwarding module, and the chassis in the data communication system can communicate with other devices outside the data communication system through the service forwarding module; A1, A2, A3, B3, and B1 can complete data communication within the data communication system through S, R1, and the like.
  • FIG. 22 is a first schematic structural diagram of another data communication system according to an embodiment of the present disclosure
  • FIG. 23 is a second schematic structural diagram of another data communication system according to an embodiment of the present application.
  • another data communication system provided by the embodiment of the present application includes m Class A service chassis and v Class B service chassis, and each type A service chassis includes One S and m-1 R, each of the B-type service chassis includes m R, m, and v are positive integers.
  • each type B service chassis includes m Rs, each of which carries 1/m internal data exchange tasks of the B-type service chassis, and each R can send data of the chassis through the inter-frame interconnection interface. Going out, each R can receive data sent by other chassis through the inter-chassis interface.
  • each B-type service chassis are sequentially connected to the S of the M service-type chassis, and the data exchange between the B-type service chassis is completed on the S of the A-type service chassis.
  • the Class A service chassis After the Class A service chassis is deployed, you can connect the Class B service chassis to the Class A service chassis. You do not need to deploy the Class A service.
  • the service between the chassis and the inter-chassis connection are changed.
  • the services and inter-chassis connections of the deployed B-type service chassis are not changed, so as to achieve smooth expansion.
  • the (m+v) frame cluster system of m Class A service chassis and v Class B service chassis still maintains m cross-connection planes; each of the m cross-interconnect planes
  • Table 3 The composition of the cross interconnection plane is shown in Table 3.
  • each of the cluster systems The core module of a cross-connected plane is the S in the Class A service chassis.
  • S carries the inter-frame data exchange task of all service chassis in the cross-interconnect plane, so that the engineering implementation capability of S directly affects the construction scale of the cluster system.
  • Table 4 shows the performance requirements of the S and R cluster systems of the M-type service chassis and the V-type service chassis components.
  • the single-chassis refers to a chassis
  • the single-chassis service performance refers to the service.
  • the performance of the conversion module is multiplied by the number of business transformation modules.
  • the performance requirements of the cluster system for S and R are related to the service performance and the total chassis capacity of a single chassis.
  • the service forwarding module is provided in the service box of the type A service and the service box of the type B.
  • the chassis in the data communication system can communicate with other devices outside the data communication system through the service forwarding module; the Class A service chassis and the Class B service chassis can complete data communication in the data communication system through S, R1, and the like.
  • the data communication system provided by the foregoing embodiment provides a data communication system consisting of m Class A service chassis and v Class B service chassis, and the central switch box is removed.
  • each Class A is deployed.
  • the service chassis and the B-type service chassis can be used, thereby reducing the footprint of the data communication system; and because the central switch box is removed, and thus the attached hardware devices are not required, the power consumption can be reduced and the cost can be reduced;
  • the B-type service chassis to be added to the B-type service chassis is connected to each type A service chassis.
  • the service between the deployed A-type service chassis is not required.
  • the connection between the interfaces is changed, and the services and inter-frame connections of the deployed B-type service chassis are not changed, so as to achieve smooth expansion.
  • the “third-class chassis” is simply referred to as “C-type service chassis”, and the “fourth-category chassis” is simply referred to as “D-type service chassis”; “high-performance switching module” is simply referred to as “ S”, “Low Performance Switching Module” is abbreviated as “R”, and “Service Forwarding Module” is abbreviated as "X”.
  • Class C business chassis includes S.
  • Class D business chassis includes R.
  • FIG. 24 is a schematic structural diagram of another data communication system according to another embodiment of the present disclosure.
  • another data communication system provided by the embodiment of the present application includes: a first chassis and a second chassis. ;
  • the first chassis includes a first high-performance switching module, a first service forwarding module, and a second service forwarding module, where the first service forwarding module and the second service forwarding module are configured to communicate with devices outside the data communication system;
  • the second chassis includes a first low performance switching module
  • the first high performance switch module is connected to the first low performance switch module
  • the first high performance switching module is configured to: send data received from the first service forwarding module to the first low performance switching module; and send data received from the first low performance switching module to the second service forwarding module;
  • the first high performance switch module is further configured to: connect the second low performance switch module in the third chassis to be joined to the communication system.
  • the first service forwarding module and the second service forwarding module may be the same module.
  • the first high performance switching module is further configured to: after the third chassis joins the communication system, send data received from the second low performance switching module to the first low performance switching module, One of a service forwarding module and a second service forwarding module; after the third chassis joins the communication system, one of the first low performance switching module, the first service forwarding module, and the second service forwarding module The received data is sent to the second low performance switching module.
  • the chassis is divided into a third category chassis and a fourth category chassis, that is, divided into a class C service chassis and a class D service chassis.
  • FIG. 25 is a first schematic structural diagram of a first chassis in another data communication system according to an embodiment of the present disclosure.
  • a first high performance switch module S is included in the first chassis C1;
  • the first chassis C1 further includes n service forwarding modules X, for example, including X1, X2, ..., Xn, where n is a positive integer greater than or equal to 1, for example, the first chassis C1 includes one to the first A service forwarding module X1 and a second service forwarding module X2.
  • n service forwarding modules X for example, including X1, X2, ..., Xn, where n is a positive integer greater than or equal to 1, for example, the first chassis C1 includes one to the first A service forwarding module X1 and a second service forwarding module X2.
  • FIG. 26 is a second schematic structural diagram of a first chassis in another data communication system according to an embodiment of the present disclosure. As shown in FIG. 26, the C1 shown in FIG. 25 can be simplified, and the structure shown in FIG. 26 can be obtained. .
  • FIG. 27 is a first schematic structural diagram of a second chassis in another data communication system according to an embodiment of the present disclosure.
  • a second low performance switching module R is included in the second chassis D1;
  • the first chassis C1 further includes t service forwarding modules X, for example, including X1, X2, ..., Xt, where t is a positive integer greater than or equal to 1.
  • each X of D1 is connected to R of D1, respectively.
  • FIG. 28 is a second schematic structural diagram of a second chassis in another data communication system according to an embodiment of the present disclosure.
  • the D1 shown in FIG. 27 can be simplified, and the structure shown in FIG. 28 can be obtained. .
  • FIG. 29 is a schematic structural diagram of another data communication system according to another embodiment of the present application. According to the structure shown in FIG. 26 and FIG. 28, the structure shown in FIG. 24 can be simplified to obtain the structure shown in FIG. .
  • the data communication system already has a Class C service chassis and a Class D service chassis, which are respectively C1 and D1.
  • the third chassis to be added to the data communication system is the class D service chassis D2.
  • the X of C1 can communicate with other devices outside the data communication system, and then send and receive data with other devices outside the data communication system.
  • the X of D1 can communicate with other devices outside the data communication system, and thus with the data. Other devices outside the communication system transmit and receive data.
  • the S of C1 can receive the data sent by X of C1 through the intra-frame interconnection interface, for example, the data sent by X1 of C1 or the X2 of C1; then the S of C1 judges whether the destination of the data is C1 or other chassis; if S1 of C1 If the destination of the data is C1, the S of C1 sends the data to the X of C1 through the intra-frame interconnection interface; if the destination of the data of C1 is D1, the S of C1 passes the data through the inter-frame interconnection interface. R sent to D1.
  • C1's S can also receive the data sent by D1's R through the inter-frame interconnection interface; then C1's S determines whether the data destination is C1 or other chassis; if C1's S determines that the data destination is C1, then C1's S The data is sent to the X of C1 through the in-frame interconnection interface, for example, X1 of C1 or X2 of C1; if the destination of C1 judges that the data is in another chassis, the S of C1 can identify the destination chassis, and then C1 S sends data to the destination chassis through the inter-frame interconnection interface.
  • the destination of C1 determines that the data destination is D1
  • S1 of C1 sends data to D1 through the inter-frame interconnection interface.
  • the provided D1 includes an R and at least one X, and the structure of D2 is the same as that of D1. .
  • S of C1 can be connected to R of D2.
  • the S of C1 can receive the data sent by X of C1 through the intra-frame interconnection interface, for example, the data sent by X1 of C1 or the X2 of C1; then the S of C1 judges whether the destination of the data is C1 or other chassis; if S1 of C1 If the destination of the data is C1, the S of C1 sends the data to the X of C1 through the intra-frame interconnection interface; if the destination of the C1 S judgment data is another chassis, the S of C1 can identify the destination chassis, and then C1 The S sends the data to the destination chassis through the inter-frame interconnection interface.
  • the S of the C1 sends the data to the R of the D1 through the inter-frame interconnection interface
  • the C1 S judges that the destination of the data is D2
  • the S of C1 sends the data to the R of D2 through the inter-frame interconnection interface.
  • C1's S can also receive the data sent by D1's R through the inter-frame interconnection interface; then C1's S determines whether the data destination is C1 or other chassis; if C1's S determines that the data destination is C1, then C1's S The data is sent to the X of C1 through the in-frame interconnection interface, for example, X1 of C1 or X2 of C1; if the destination of C1 judges that the data is in another chassis, the S of C1 can identify the destination chassis, and then C1 S sends data to the destination chassis through the inter-frame interconnection interface. At this time, a D2 is added.
  • the S of C1 sends the data to the R of D2 through the inter-frame interconnection interface.
  • C1's S can also receive the data sent by D2's R through the inter-frame interconnection interface; then C1's S determines whether the data destination is C1 or other chassis; if C1's S determines that the data destination is C1, then C1's S The data is sent to the X of C1 through the in-frame interconnection interface, for example, X1 of C1 or X2 of C1; if the destination of C1 judges that the data is in another chassis, the S of C1 can identify the destination chassis, and then C1 S sends data to the destination chassis through the inter-frame interconnection interface. For example, if the S of the C1 determines that the destination of the data is D1, the S of the C1 sends the data to the R of the D1 through the inter-frame interconnection interface.
  • FIG. 30 is a schematic structural diagram of a single-frame system in another data communication system according to another embodiment of the present disclosure, and FIG. 30 shows that only the single-frame system in the single-frame system is used in the expansion of the multi-chassis cluster data communication device system. It includes a Class C business chassis C1, which includes an S. Then, the first expansion is performed.
  • FIG. 31 is a schematic structural diagram of a two-frame back-to-back cluster system in another data communication system according to an embodiment of the present application. As shown in FIG. 31, the two-frame back-to-back cluster system includes a C class. Service Chassis C1 and a Class D Service Chassis D1, C1 includes an S, D1 includes an R; C1's S is connected to D1's R.
  • FIG. 32 is a schematic structural diagram of a three-frame cluster system in another data communication system according to an embodiment of the present application.
  • a system is added to the system shown in FIG.
  • the expansion process does not affect the deployed services in the C-type service chassis C1, and does not affect the D-type services.
  • the services deployed in the chassis D1 do not affect the inter-chassis connection between the C1 and the D1. Therefore, when the system shown in Figure 31 is expanded to the system shown in Figure 32, smooth expansion is achieved.
  • FIG. 33 is a schematic structural diagram of a multi-chassis cluster system in another data communication system according to an embodiment of the present application, and is added to the vth D-type service chassis.
  • the new cable connects the R of the Dv to the S of the C1, where v is a positive integer greater than or equal to 1; it can be seen that when a new D-type service chassis is continuously added, a new cable is to be added.
  • the D-type service chassis can be connected to the C1 without adjusting the existing cables. Therefore, each expansion of a D-type service chassis has no impact on the previously deployed service chassis and its inter-chassis interconnection. It does not affect the services on the deployed C-type service chassis and the C-type service chassis, and the inter-chassis connection, so as to achieve smooth expansion.
  • each D-type service chassis is only interconnected with the C-type service chassis, there is no direct connection between the D-type service chassis, so when the C-type service chassis and the C-type service chassis are After the S is deployed, the D-type service chassis can be expanded. This does not affect the services of the deployed C-type service chassis, and does not affect the services of the deployed D-type service chassis. It also does not affect the deployed C-type service chassis. Inter-frame interconnection with the deployed D-type service chassis, so that frame-by-frame smooth expansion can be achieved.
  • the multi-chassis cluster system shown in Figure 33 has a Class C service chassis and v Class D service chassis, and then a Class C service chassis and v Class D service chassis can form a (1+v) frame cluster system.
  • the (1+v) frame cluster system logically has only one cross-interconnect plane, and the composition of the cross-interconnect plane is as shown in Table 5.
  • the (1+v) box cluster system core is still the S of the C-type service chassis; the S carries the inter-frame data exchange tasks of all service chassis, so the engineering implementation capability of S directly affects the construction of the cluster system. scale.
  • Table 6 shows the performance requirements of the (1+v) box cluster system for S and R, as shown in Table 6.
  • the service performance of a single chassis in the above (1+v) frame cluster system is related to the total number of chassis; as the cluster size increases, the performance requirements of the S-type service chassis S are gradually increased.
  • Table 7 shows the performance requirements of S and R for cluster systems with different values (1+v) in v, as shown in Table 7.
  • the single frame refers to a chassis.
  • the data communication system provided by the foregoing embodiment provides a data communication system consisting of a C-type service chassis and v D-type service chassis, and the central switch box is removed.
  • each C-type service is deployed. Chassis and Class D business chassis can be used, which reduces the footprint of the data communication system; and because the central switch box is removed, and no additional hardware equipment is needed, power consumption can be reduced and costs can be reduced;
  • the D-type service chassis to be added is connected to the C-type service chassis.
  • the services between the deployed C-type service chassis and the chassis are not required. The connection is changed, and the service and inter-frame connection of the deployed D-type service chassis are not changed, so as to achieve smooth expansion.
  • FIG. 34 is a data communication method applied to a data communication system according to an embodiment of the present disclosure.
  • the data communication system includes a first chassis and a second chassis; the first chassis includes a first high performance switch module and a first low performance switch module.
  • the second chassis includes a second high performance switch module and a second low performance switch module; the first high performance switch module is connected to the second low performance switch module, and the first low performance switch module is connected to the second high performance switch module;
  • the performance switching module is configured to connect to a third low performance switching module in the third chassis to be joined to the communication system, and the second high performance switching module is configured to connect the fourth low performance switching module in the third chassis to be joined to the communication system;
  • the method provided in this embodiment of the present application includes:
  • Step S341 The first high performance switching module sends the data received from the third low performance switching module to the second low performance switching module, and the first high performance switching module sends the data received from the second low performance switching module to the third. Low performance switch module.
  • Step S342 The second high performance switching module sends the data received from the fourth low performance switching module to the first low performance switching module, and the second high performance switching module sends the data received from the first low performance switching module to the fourth. Low performance switch module.
  • step S341 and step S342 are not limited.
  • the first chassis further includes a first service forwarding module and a second service forwarding module, where the first service forwarding module and the second service forwarding module are configured to communicate with devices outside the data communication system,
  • the method provided by the embodiment further includes the following steps:
  • Step S343 The first low performance switching module sends the data received by the first service forwarding module to the second high performance switching module.
  • Step S344 The first low performance switching module sends the data received from the second high performance switching module to the second service forwarding module.
  • the first chassis further includes a third service forwarding module and a fourth service forwarding module, where the third service forwarding module and the fourth service forwarding module are configured to communicate with devices outside the data communication system, and the method provided in this embodiment further includes the following steps. :
  • Step S345 The first high performance switching module sends the data received by the third service forwarding module to the second low performance switching module.
  • Step S346 The second low performance switching module sends the data received by the second high performance switching module to the fourth service forwarding module.
  • the data communication system includes a first chassis and a second chassis.
  • the first chassis includes a first high performance switch module and a first low performance switch.
  • the second chassis includes a second high performance switch module and a second low performance switch module; the first high performance switch module is connected to the second low performance switch module, and the first low performance switch module is connected to the second high performance switch module;
  • the high performance switch module is configured to connect to the third low performance switch module in the third chassis to be joined to the communication system, and the second high performance switch module is configured to connect the fourth low performance switch module in the third chassis to be joined to the communication system.
  • the data communication system further includes a fourth chassis, the fourth chassis includes a fifth low performance switching module and a sixth low performance switching module; the first high performance switching module is connected to the fifth low performance switching module, and the second high performance switching module is connected to the sixth Low performance switch module.
  • the method provided in this embodiment of the present application includes:
  • Step S351 The first high performance switching module sends the data received from the third low performance switching module to the second low performance switching module, and the first high performance switching module sends the data received from the second low performance switching module to the third. Low performance switch module.
  • Step S352 The second high performance switching module sends the data received from the fourth low performance switching module to the first low performance switching module, and the second high performance switching module sends the data received from the first low performance switching module to the fourth. Low performance switch module.
  • Step S353 The first high performance switching module sends the data received from the fifth low performance switching module to the second low performance switching module.
  • Step S354 The first high performance switching module sends the data received from the second low performance switching module to the fifth low performance switching module.
  • step S351, step S352, step S353, and step S354 is not limited.
  • the data communication system further includes a fifth chassis, where the fifth chassis includes a third high performance switch module, a seventh low performance switch module, and an eighth a low performance switching module, the first chassis further includes a ninth low performance switching module, and the second chassis further includes a tenth low performance switching module;
  • the third high performance switching module is connected to the ninth low performance switching module and the tenth low performance switching module, the first high performance switching module is connected to the seventh low performance switching module, and the second high performance switching module is connected to the eighth low performance switching module;
  • the third high performance switch module is configured to connect to the eleventh low performance switch module in the third chassis to be joined to the communication system.
  • Step S361 The third high performance switching module sends the data received from the eleventh low performance switching module to one of the ninth low performance switching module and the tenth low performance switching module, and the ninth low performance switching module and the One of the ten low performance switching modules receives the data and sends it to the eleventh low performance switching module.
  • Step S362 The first high performance switching module sends the data received from the second low performance switching module to the seventh low performance switching module.
  • Step S363 The first high performance switching module sends the data received from the seventh low performance switching module to the second low performance switching module.
  • Step S364 The first high performance switching module sends the data received from the third low performance switching module to one of the second low performance switching module and the seventh low performance switching module.
  • Step S365 The first high performance switching module sends data received from one of the second low performance switching module and the seventh low performance switching module to the third low performance switching module.
  • the data communication system further includes a sixth chassis, the sixth chassis includes a twelfth low performance switching module, a thirteenth low performance switching module, and a fourteenth low performance switching module; and the twelfth low performance switching module is connected.
  • a high performance switching module, the thirteenth low performance switching module is connected to the second high performance switching module, and the fourteenth low performance switching module is connected to the third high performance switching module.
  • the method provided by the embodiment of the present application further includes:
  • Step S366 The first high performance switching module sends the data received from the twelfth low performance switching module to one of the second low performance switching module and the seventh low performance switching module.
  • Step S367 The first high performance switching module sends data received from one of the second low performance switching module and the seventh low performance switching module to the twelfth low performance switching module.
  • FIG. 36 is a data communication system applied to a data communication system according to an embodiment of the present disclosure.
  • the data communication system includes: a first chassis and a second chassis; and the first chassis includes a first high performance switch module and a first service.
  • the forwarding module and the second service forwarding module, the first service forwarding module and the second service forwarding module are configured to communicate with devices outside the data communication system;
  • the second chassis includes a first low performance switching module; and the first high performance switching module is connected.
  • a low performance switching module; the first high performance switching module is configured to connect to the second low performance switching module in the third chassis to be joined to the communication system.
  • the method provided in this embodiment includes:
  • Step S371 The first high performance switching module sends the data received by the first service forwarding module to the first low performance switching module.
  • Step S372 The first high performance switching module sends the data received by the first low performance switching module to the second service forwarding module.
  • Step S373 The first high performance switching module sends the data received by the second low performance switching module to one of the first low performance switching module, the first service forwarding module, and the second service forwarding module.
  • Step S374 The first high performance switching module sends data received by one of the first low performance switching module, the first service forwarding module, and the second service forwarding module to the second low performance switching module.
  • steps S371 to 374 is not limited.
  • module S the module R, and the module X in the present application are only logical abstract concepts. In engineering implementation, the design requirements of engineering achievability, system reliability, etc. can be combined, and the above modules can be finely Divided, integrated, or cross-fused.
  • one module S can be constructed by one integrated circuit chip or circuit module, or one module S can be jointly constructed by multiple integrated circuit chips or circuit modules, and one module can be constructed by one integrated circuit chip or circuit module.
  • the module R can also construct one module R through a plurality of integrated circuit chips or circuit modules, and can construct one module X through one integrated circuit chip or circuit module, or can be shared by multiple integrated circuit chips or circuit modules. Construct a module X.
  • one or more modules S and/or one or more modules R are integrated in one integrated circuit chip or one circuit module.
  • the module S uses a plurality of switching integrated circuit chips or circuit modules
  • the module R uses one switching integrated circuit chip or circuit module.
  • one or more modules S, one or more modules R and/or one or more modules X are integrated in one integrated circuit chip or one circuit module.
  • the module S or the module R uses a switching integrated circuit chip having a plurality of serializer/deserializer (serdes) data channels, so that any serdes data channel input can be exchanged according to the format requirements. Data cells, based on cell header information, etc., are exchanged to any serdes data channel for output.
  • the exchange destination is determined, for example, according to the cell header.
  • the cell header includes, for example, a destination identifier for uniquely identifying the destination module, and the destination identifier includes, for example, a frame number, a slot number, and a service forwarding module number.
  • the inter-frame interconnection interface and the intra-frame interconnection interface in the present application include, but are not limited to, a printed circuit board (PCB) interface, a cable interface, a cable interface, a wireless interface, and the like.
  • the connection medium used for the inter-frame interconnection interface and the intra-frame interconnection interface includes, but is not limited to, a PCB, a cable, an optical cable, or a direct wireless connection.
  • the S in the first category chassis in the present application reserves the number of interfaces for accessing the R of the second category chassis according to a preset scheme.
  • the preset scheme includes the maximum number of second-class chassis that the communication system can support, and the preset scheme can be set according to the cluster system size, network interconnection requirements, and performance requirements.
  • FIG. 37 is a schematic structural diagram of a multi-chassis cluster system in another data communication system according to an embodiment of the present disclosure.
  • the data communication system provided in this embodiment of the present application may be used to perform Figure 7-8.
  • the actions or steps of the data communication system in the illustrated embodiment may also be used to perform the actions or steps of the data communication system in the embodiment shown in FIGS. 9-18, and may also be used to execute the device in the embodiment shown in FIGS. 19-20.
  • the action or the step of the data communication system can also be used to perform the actions or steps of the data communication system of the device in the embodiment shown in FIG. 21-23.
  • the data communication system provided by the embodiment of the present application includes the first chassis A1. And the second chassis A2, a third chassis B1 to be added to the data communication system is also provided.
  • each of the first chassis specifically includes: a processor 2701a and a memory 2702a.
  • the memory 2702a is for storing a computer program.
  • the processor 2701a is configured to execute a computer program stored in the memory 2702a to implement the actions of the modules of the class A service chassis in the embodiment shown in FIGS. 7-23, or to implement the embodiment in the embodiment shown in FIGS. 34-35.
  • the actions or steps of the service business chassis are not described here.
  • the first chassis may further include a bus 2703a.
  • the processor 2701a and the memory 2702a may be connected to each other through a bus 2703a.
  • the bus 2703a may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the above bus 2703a can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 37, but it does not mean that there is only one bus or one type of bus.
  • each of the second chassis specifically includes a processor 2701b and a memory 2702b.
  • the memory 2702b is for storing a computer program.
  • the processor 2701b is configured to execute the computer program stored in the memory 2702b to implement the actions of the modules of the class B service chassis in the embodiment shown in FIG. 7-23, or to implement the embodiment B shown in FIG. 34-35.
  • the actions or steps of the service business chassis are not described here.
  • the second chassis may further include a bus 2703b.
  • the processor 2701b and the memory 2702b may be connected to each other through a bus 2703b; the bus 2703ba may be a PCI bus or an EISA bus or the like.
  • the above bus 2703b can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 37, but it does not mean that there is only one bus or one type of bus.
  • part or all of the above modules may also be implemented by being embedded in a chip of the SMF entity in the form of an integrated circuit. And they can be implemented separately or integrated. That is, the above modules may be configured to implement one or more integrated circuits of the above method, such as: one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital singnal processor) , DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • microprocessors digital singnal processor
  • FPGAs Field Programmable Gate Arrays
  • FIG. 38 is a schematic structural diagram of a multi-chassis cluster system in a data communication system according to an embodiment of the present disclosure.
  • the data communication system provided in this embodiment of the present application can be used to perform the operations shown in FIG. 24-33.
  • the data communication system provided by the embodiment of the present application includes a first chassis C1 and a second chassis D1, and a third chassis D2 to be added to the data communication system.
  • the first chassis C1 is a class C service chassis
  • the second chassis D1 and the third chassis D2 are all class D service chassis.
  • each Class C service chassis specifically includes: a processor 2801a and a memory 2802a.
  • the memory 2802a is for storing a computer program.
  • the processor 2801a is configured to execute the computer program stored in the memory 2802a to implement the actions of the modules of the class C service chassis in the embodiment shown in FIG. 24-33, or to implement the class C service in the embodiment shown in FIG. The actions or steps of the chassis are not described here.
  • the Class C service chassis may further include a bus 2803a.
  • the processor 2801a and the memory 2802a may be connected to each other through a bus 2803a; the bus 2803a may be a PCI bus or an EISA bus or the like.
  • the above bus 2803a can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 38, but it does not mean that there is only one bus or one type of bus.
  • each of the D-type service chassis specifically includes: a processor 2801b and a memory 2802b.
  • the memory 2802b is for storing a computer program.
  • the processor 2801b is configured to execute the computer program stored in the memory 2802b to implement the actions of the modules of the D-type service chassis in the embodiment shown in FIG. 24-33, or to implement the D-type service in the embodiment shown in FIG. The actions or steps of the chassis are not described here.
  • 24-33 may include a bus 2803b.
  • the processor 2801b and the memory 2802b may be connected to each other through a bus 2803b; the bus 2803ba may be a PCI bus or an EISA bus or the like.
  • the above bus 2803b can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Fig. 38, but it does not mean that there is only one bus or one type of bus.
  • the above modules may also be implemented by being embedded in a chip of the terminal device in the form of an integrated circuit. And they can be implemented separately or integrated. That is, the above modules may be configured to implement one or more integrated circuits of the above methods, such as: one or more ASICs, or one or more DSPs, or one or more FPGAs or the like.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg , coaxial cable, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), and the like.
  • the functions described in the embodiments of the present application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请提供了一种数据通信系统和方法,其中该系统,包括:第一机箱和第二机箱;第一机箱包括第一高性能交换模块和第一低性能交换模块;第二机箱包括第二高性能交换模块和第二低性能交换模块;第一高性能交换模块连接第二低性能交换模块,第一低性能交换模块连接第二高性能交换模块;第一高性能交换模块用于连接待加入通信系统的第三机箱中的第三低性能交换模块,第二高性能交换模块用于连接待加入通信系统的第三机箱中的第四低性能交换模块。去除了中心交换机箱,减少了数据通信系统的占地面积,可以减少功耗、降低成本;在进行扩容的时候,不需要改变已部署的机箱之间的线缆,进而扩容方便,可以实现平滑扩容。

Description

数据通信系统和方法 技术领域
本申请涉及通信技术,尤其涉及一种数据通信系统和方法。
背景技术
随着通信技术的不断发展,多机箱集群数据通信设备系统开始得到应用和发展。多机箱集群数据通信设备系统中包括了多个数据通信机箱,将多个数据通信机箱进行连接,进而实现各数据通信机箱的内部与外部的数据交换任务。
一种多机箱集群数据通信设备系统中各个数据通信机箱进行连接的时候,需要设置中心交换机箱;将各个数据通信机箱分别与中心交换机箱进行连接,从而各个数据通信机箱通过中心交换机箱完成机箱之间的数据交换任务。具体来说,在每一个数据通信机箱中部署了m个数据交换模块,在中心交换机箱中部署了m个中心交换模块,m为正整数;对于每一个数据通信机箱来说,一个数据通信机箱中每一个数据交换模块一一对应连接了一个中心交换模块,从而数据通信机箱通过数据交换模块、以及与数据交换模块对应的中心交换模块完成机箱之间的数据交换任务。
但是在多机箱集群数据通信设备系统中部署中心交换机箱的方式,需要占用地理面积,进而多机箱集群数据通信设备系统需要占用较大的机房面积,不便于进行多机箱集群数据通信设备系统的部署;并且,在部署中心交换机箱的时候,需要为中心交换机箱配置供电单元、散热单元、控制单元等硬件设备,这些硬件设备需要消耗大量的功耗,进而增加了成本。
发明内容
本申请提供一种数据通信系统和方法,解决使用中心交换机箱的多机箱集群数据通信设备系统占地面积大、且需要消耗大量的功耗、成本较高的问题。
本申请的第一方面是提供一种数据通信系统,包括:第一机箱和第二机箱;
所述第一机箱包括第一高性能交换模块和第一低性能交换模块;
所述第二机箱包括第二高性能交换模块和第二低性能交换模块;
所述第一高性能交换模块连接所述第二低性能交换模块,所述第一低性能交换模块连接所述第二高性能交换模块;
所述第一高性能交换模块用于连接待加入所述通信系统的第三机箱中的第三低性能交换模块,所述第二高性能交换模块用于连接所述待加入所述通信系统的第三机箱中的第四低性能交换模块。从而,去除了中心交换机箱,只部署各A类业务机箱和B类业务机箱,其中,A类业务机箱为包括高性能交换模块的业务机箱,B类业务机箱为不包括高性能交换模块只包括低性能交换模块的业务机箱,进而减少了数据通信系统的占地面积;并且由于去除了中心交换机箱,进而不需要增加附属的硬件设备,可以减少功耗、降低成本;第一 方面提供的数据通信系统的结构具有可以平滑扩容的特点,在对包括第一机箱和第二机箱的数据通信系统进行扩容的时候,不需要改变第一机箱和第二机箱之间的线缆和接口,待加入到系统中的第三机箱分别与第一机箱和第二机箱进行连接即可,进而扩容方便,本实施例可以从背靠背集群系统向多机箱集群数据通信系统进行平滑扩容。
结合第一方面,在第一方面的第一种实施方式中,所述数据通信系统还包括第四机箱,所述第四机箱包括第五低性能交换模块和第六低性能交换模块;
所述第一高性能交换模块连接所述第五低性能交换模块,所述第二高性能交换模块连接所述第六低性能交换模块。从而,在对包括第一机箱、第二机箱和第四机箱的数据通信系统进行扩容的时候,不需要改变第一机箱、第二机箱以及第四机箱之间的线缆和接口,待加入到系统中的第三机箱分别与第一机箱和第二机箱进行连接即可,进而扩容方便,本实施例可以从背靠背集群系统向多机箱集群数据通信系统进行平滑扩容。
结合第一方面,在第一方面的第二种实施方式中,所述数据通信系统还包括第五机箱,所述第五机箱包括第三高性能交换模块、第七低性能交换模块和第八低性能交换模块,所述第一机箱还包括第九低性能交换模块,所述第二机箱还包括第十低性能交换模块;
所述第三高性能交换模块连接所述第九低性能交换模块和所述第十低性能交换模块,所述第一高性能交换模块连接所述第七低性能交换模块,所述第二高性能交换模块连接所述第八低性能交换模块;
所述第三高性能交换模块用于连接所述待加入所述通信系统的第三机箱中的第十一低性能交换模块。从而,在对由多个A类业务机箱构成的数据通信系统进行扩容的时候,不需要改变A类业务机箱之间的线缆和接口,待加入到系统中的B类业务机箱分别与各个A类业务机箱进行连接即可,进而扩容方便,实现平滑扩容。
结合第一方面的第二种实施方式,在第一方面的第三种实施方式中,所述数据通信系统还包括第六机箱,所述第六机箱包括第十二低性能交换模块、第十三低性能交换模块和第十四低性能交换模块;
第十二低性能交换模块连接所述第一高性能交换模块,所述第十三低性能交换模块连接所述第二高性能交换模块,所述第十四低性能交换模块连接所述第三高性能交换模块。从而,在对由多个A类业务机箱、以及至少一个B类业务机箱构成的数据通信系统进行扩容的时候,不需要改变A类业务机箱之间的线缆和接口,并且也不需要改变已部署的B类业务机箱与各A类业务机箱之间的线缆和接口,待加入到系统中的B类业务机箱分别与各个A类业务机箱进行连接,进而扩容方便,实现平滑扩容。
结合第一方面或第一方面的任一种实施方式,在第一方面的第四种实施方式中,所述第一机箱还包括第一业务转发模块和第二业务转发模块,所述第一业务转发模块和所述第二业务转发模块用于与所述数据通信系统外的设备通信,所述第一低性能交换模块用于:
将从所述第一业务转发模块接收的数据发送给所述第二高性能交换模块;
将从所述第二高性能交换模块接收的数据发送给所述第二业务转发模块。从而,通过在第一机箱中设置业务转发模块,即在每一个A类业务机箱中设置业务转发模块,进而数据通信系统中的机箱可以通过业务转发模块与数据通信系统外的其他设备进行通信;并且,每一个A类业务机箱可以通过业务转发模块、当前A类业务机箱的低性能交换模块以及其他A类业务机箱的高性能交换模块完成数据通信系统中的机箱之间的数据交换。
结合第一方面或第一方面的任一种实施方式,在第一方面的第五种实施方式中,所述第一机箱还包括第三业务转发模块和第四业务转发模块,所述第三业务转发模块和所述第四业务转发模块用于与所述数据通信系统外的设备通信,所述第一高性能交换模块用于:
将从所述第三业务转发模块接收的数据发送给所述第二低性能交换模块;
将从所述第二低性能交换模块接收的数据发送给所述第四业务转发模块。从而,通过在第一机箱中设置多个业务转发模块,即在每一个A类业务机箱中设置多个业务转发模块,进而数据通信系统中的机箱可以通过业务转发模块与数据通信系统外的其他设备进行通信;并且,每一个A类业务机箱可以通过业务转发模块、当前A类业务机箱的高性能交换模块以及其他A类业务机箱的低性能交换模块完成数据通信系统中的机箱之间的数据交换。
结合第一方面,在第一方面的第六种实施方式中,所述第一高性能交换模块用于:
在所述第三机箱加入所述通信系统后,将从所述第三低性能交换模块接收的数据发送给所述第二低性能交换模块;
在所述第三机箱加入所述通信系统后,将从所述第二低性能交换模块接收的数据发送给所述第三低性能交换模块。从而,在数据通信系统中包括了两个A类业务机箱和一个B类业务机箱的时候,每一个A类业务机箱与一个B类业务机箱之间,可以通过B类业务机箱的低性能交换模块进行数据的收发,每一个A类业务机箱可以将B类业务机箱的数据发送给其他A类业务机箱,每一个A类业务机箱可以将其他A类业务机箱的数据发送给B类业务机箱,实现了数据通信系统中的机箱之间的数据交换。
结合第一方面的第一种实施方式,在第一方面的第七种实施方式中,所述第一高性能交换模块用于:
将从所述第五低性能交换模块接收的数据发送给所述第二低性能交换模块;
将从所述第二低性能交换模块接收的数据发送给所述第五低性能交换模块。从而,在数据通信系统中包括了至少一个A类业务机箱以及至少一个B类业务机箱的时候,每一个A类业务机箱与一个B类业务机箱之间,可以通过B类业务机箱的低性能交换模块进行数据的收发,每一个A类业务机箱可以将B类业务机箱的数据发送给其他A类业务机箱,每一个A类业务机箱可以将其他A类业务机箱的数据发送给B类业务机箱,实现了数据通信系统中的机箱之间的数据交换;再有更多的B类业务机箱加入到数据通信系统中的时候,依然可以实现上述数据交换过程。
结合第一方面的第二种实施方式,在第一方面的第八种实施方式中,所述第一高性能交换模块用于:
将从所述第二低性能交换模块接收的数据发送给所述第七低性能交换模块;
将从所述第七低性能交换模块接收的数据发送给所述第二低性能交换模块;
在所述第三机箱加入所述通信系统后,将从所述第三低性能交换模块接收的数据发送给所述第二低性能交换模块和所述第七低性能交换模块中的一个;
在所述第三机箱加入所述通信系统后,将从所述第二低性能交换模块和所述第七低性能交换模块中的一个接收的数据发送给所述第三低性能交换模块。从而,对于由多个A类业务机箱构成的数据通信系统,在对A类业务机箱构成的数据通信系统进行扩容的时候,不需要改变A类业务机箱之间的线缆和接口,待加入到数据通信系统中的B类业务机箱分 别与各个A类业务机箱进行连接即可,进而扩容方便,实现平滑扩容;并且,各类业务机箱和B类业务机箱可以通过高性能交换模块和低性能交换模块,实现数据通信系统内的数据通信。
结合第一方面的第三种实施方式,在第一方面的第九种实施方式中,所述第一高性能交换模块用于:
将从所述第十二低性能交换模块接收的数据发送给所述第二低性能交换模块和所述第七低性能交换模块中的一个;
将从所述第二低性能交换模块和所述第七低性能交换模块中的一个接收的数据发送给所述第十二低性能交换模块。从而,在对由多个A类业务机箱以及至少一个B类业务机箱构成的数据通信系统进行扩容的时候,不需要改变A类业务机箱之间的线缆和接口,也不需要改变已部署的B类业务机箱与各A类业务机箱之间的线缆和接口,待加入到系统中的B类业务机箱分别与各个A类业务机箱进行连接即可,进而扩容方便,实现平滑扩容;并且,各A类业务机箱以及各B类业务机箱中具有业务转发模块,进而数据通信系统中的机箱可以通过业务转发模块与数据通信系统外的其他设备进行通信;各A类业务机箱以及各B类业务机箱通过高性能交换模块、低性能交换模块完成数据通信系统内的数据通信。
本申请的第二方面是提供一种数据通信系统,包括:第一机箱和第二机箱;
所述第一机箱包括第一高性能交换模块、第一业务转发模块和第二业务转发模块,所述第一业务转发模块和所述第二业务转发模块用于与所述数据通信系统外的设备通信;
所述第二机箱包括第一低性能交换模块;
所述第一高性能交换模块连接所述第一低性能交换模块;
所述第一高性能交换模块用于:将从所述第一业务转发模块接收的数据发送给所述第一低性能交换模块;将从所述第一低性能交换模块接收的数据发送给所述第二业务转发模块;
所述第一高性能交换模块还用于:连接待加入所述通信系统的第三机箱中的第二低性能交换模块。从而,去除了中心交换机箱,部署一个C类业务机箱和至少一个D类业务机箱即可,其中,C类业务机箱为只包括一个高性能交换模块的业务机箱,D类业务机箱为只包括一个低性能交换模块的业务机箱,进而减少了数据通信系统的占地面积;并且由于去除了中心交换机箱,进而不需要增加附属的硬件设备,可以减少功耗、降低成本;第二方面提供的数据通信系统的结构具有可以平滑扩容的特点,在对包括第一机箱和第二机箱的数据通信系统进行扩容的时候,不需要改变第一机箱和第二机箱之间的线缆和接口,待加入到系统中的第三机箱分别与第一机箱进行连接即可,进而扩容方便,本实施例可以从背靠背集群系统向多机箱集群数据通信系统进行平滑扩容。
结合第二方面,在第二方面的第一种实施方式中,所述第一高性能交换模块还用于:
在所述第三机箱加入所述通信系统后,将从所述第二低性能交换模块接收的数据发送给所述第一低性能交换模块、所述第一业务转发模块和所述第二业务转发模块三者中的一个;
在所述第三机箱加入所述通信系统后,将从所述第一低性能交换模块、所述第一业务转发模块和所述第二业务转发模块三者中的一个接收的数据发送给所述第二低性能交换模块。从而,再有更多的D类业务机箱将要加入到第二方面提供的数据通信系统的时候,同 样将待加入的D类业务机箱与C类业务机箱连接即可,不需要对已部署好的C类业务机箱之间业务、以及框间连接进行改变,也不需要对已部署的D类业务机箱的业务及框间连接进行改变,进而实现平滑扩容。并且,C类业务机箱可以采用高性能交换模块接收D类业务机箱发送的数据,然后,将数据保存到当前C类业务机箱,或者将数据发送给其他D类业务机箱;C类业务机箱还可以将自身的数据发送给D类业务机箱,从而实现数据通信系统内的各机箱之间的数据通信。
本申请的第三方面是提供一种应用于数据通信系统的数据通信方法,所述数据通信系统包括第一机箱和第二机箱;所述第一机箱包括第一高性能交换模块和第一低性能交换模块;所述第二机箱包括第二高性能交换模块和第二低性能交换模块;所述第一高性能交换模块连接所述第二低性能交换模块,所述第一低性能交换模块连接所述第二高性能交换模块;所述第一高性能交换模块用于连接待加入所述通信系统的第三机箱中的第三低性能交换模块,所述第二高性能交换模块用于连接所述待加入所述通信系统的第三机箱中的第四低性能交换模块;所述方法包括:
所述第一高性能交换模块将从所述第三低性能交换模块接收的数据发送给所述第二低性能交换模块,所述第一高性能交换模块将从所述第二低性能交换模块接收的数据发送给所述第三低性能交换模块;
所述第二高性能交换模块将从所述第四低性能交换模块接收的数据发送给所述第一低性能交换模块,所述第二高性能交换模块将从所述第一低性能交换模块接收的数据发送给所述第四低性能交换模块。
结合第三方面,在第三方面的第一种实施方式中,所述数据通信系统还包括第四机箱,所述第四机箱包括第五低性能交换模块和第六低性能交换模块;
所述第一高性能交换模块连接所述第五低性能交换模块,所述第二高性能交换模块连接所述第六低性能交换模块。
结合第三方面,在第三方面的第二种实施方式中,所述数据通信系统还包括第五机箱,所述第五机箱包括第三高性能交换模块、第七低性能交换模块和第八低性能交换模块,所述第一机箱还包括第九低性能交换模块,所述第二机箱还包括第十低性能交换模块;
所述第三高性能交换模块连接所述第九低性能交换模块和所述第十低性能交换模块,所述第一高性能交换模块连接所述第七低性能交换模块,所述第二高性能交换模块连接所述第八低性能交换模块;
所述第三高性能交换模块用于连接所述待加入所述通信系统的第三机箱中的第十一低性能交换模块;
所述方法,还包括:
所述第三高性能交换模块将从所述第十一低性能交换模块接收的数据发送给所述第九低性能交换模块和所述第十低性能交换模块中的一个,将从所述第九低性能交换模块和所述第十低性能交换模块中的一个接收的数据发送给所述第十一低性能交换模块。
结合第三方面的第二种实施方式,在第三方面的第三种实施方式中,所述数据通信系统还包括第六机箱,所述第六机箱包括第十二低性能交换模块、第十三低性能交换模块和第十四低性能交换模块;
第十二低性能交换模块连接所述第一高性能交换模块,所述第十三低性能交换模块连 接所述第二高性能交换模块,所述第十四低性能交换模块连接所述第三高性能交换模块。
结合第三方面或第三方面的任一种实施方式,在第三方面的第四种实施方式中,所述第一机箱还包括第一业务转发模块和第二业务转发模块,所述第一业务转发模块和所述第二业务转发模块用于与所述数据通信系统外的设备通信;所述方法,还包括:
所述第一低性能交换模块将从所述第一业务转发模块接收的数据发送给所述第二高性能交换模块;
所述第一低性能交换模块将从所述第二高性能交换模块接收的数据发送给所述第二业务转发模块。
结合第三方面或第三方面的任一种实施方式,在第三方面的第五种实施方式中,所述第一机箱还包括第三业务转发模块和第四业务转发模块,所述第三业务转发模块和所述第四业务转发模块用于与所述数据通信系统外的设备通信;所述方法,还包括:
所述第一高性能交换模块将从所述第三业务转发模块接收的数据发送给所述第二低性能交换模块;
所述第二低性能交换模块将从所述第二高性能交换模块接收的数据发送给所述第四业务转发模块。
结合第三方面的第一种实施方式,在第三方面的第六种实施方式中,所述方法,还包括:
所述第一高性能交换模块将从所述第五低性能交换模块接收的数据发送给所述第二低性能交换模块;
所述第一高性能交换模块将从所述第二低性能交换模块接收的数据发送给所述第五低性能交换模块。
结合第三方面的第二种实施方式,在第三方面的第七种实施方式中,所述方法,还包括:
所述第一高性能交换模块将从所述第二低性能交换模块接收的数据发送给所述第七低性能交换模块;
所述第一高性能交换模块将从所述第七低性能交换模块接收的数据发送给所述第二低性能交换模块;
所述第一高性能交换模块将从所述第三低性能交换模块接收的数据发送给所述第二低性能交换模块和所述第七低性能交换模块中的一个;
所述第一高性能交换模块将从所述第二低性能交换模块和所述第七低性能交换模块中的一个接收的数据发送给所述第三低性能交换模块。
结合第三方面的第三种实施方式,在第三方面的第八种实施方式中,所述方法,还包括:
所述第一高性能交换模块将从所述第十二低性能交换模块接收的数据发送给所述第二低性能交换模块和所述第七低性能交换模块中的一个;
所述第一高性能交换模块将从所述第二低性能交换模块和所述第七低性能交换模块中的一个接收的数据发送给所述第十二低性能交换模块。
本申请的第四方面是提供一种应用于数据通信系统的数据通信方法,所述数据通信系统,包括:第一机箱和第二机箱;所述第一机箱包括第一高性能交换模块、第一业务转发 模块和第二业务转发模块,所述第一业务转发模块和所述第二业务转发模块用于与所述数据通信系统外的设备通信;所述第二机箱包括第一低性能交换模块;所述第一高性能交换模块连接所述第一低性能交换模块;所述第一高性能交换模块用于连接待加入所述通信系统的第三机箱中的第二低性能交换模块;所述方法包括:
所述第一高性能交换模块将从所述第一业务转发模块接收的数据发送给所述第一低性能交换模块;
所述第一高性能交换模块将从所述第一低性能交换模块接收的数据发送给所述第二业务转发模块;
所述第一高性能交换模块将从所述第二低性能交换模块接收的数据发送给所述第一低性能交换模块、所述第一业务转发模块和所述第二业务转发模块三者中的一个;
所述第一高性能交换模块将从所述第一低性能交换模块、所述第一业务转发模块和所述第二业务转发模块三者中的一个接收的数据发送给所述第二低性能交换模块。
第五方面,提供了一种数据通信系统,包括用于执行以上第三方面的任一方法各个步骤的单元或者手段(means)。
第六方面,提供了一种数据通信系统,数据通信系统的每一个机箱中包括处理器和存储器,存储器用于存储计算机程序,处理器调用存储器存储的计算机程序,以执行以上第三方面的任一方法。
第七方面,提供了一种数据通信系统,包括用于执行以上第三方面的任一方法的至少一个处理元件或芯片。
第八方面,提供了一种程序,该程序在被处理器执行时用于执行以上第三方面的任一方法。
第九方面,提供了一种计算机可读存储介质,包括第八方面的程序。
第十方面,提供了一种数据通信系统,包括用于执行以上第四方面的任一方法各个步骤的单元或者手段(means)。
第十一方面,提供了一种数据通信系统,数据通信系统的每一个机箱中包括处理器和存储器,存储器用于存储计算机程序,处理器调用存储器存储的计算机程序,以执行以上第四方面的任一方法。
第十二方面,提供了一种数据通信系统,包括用于执行以上第四方面的任一方法的至少一个处理元件或芯片。
第十三方面,提供了一种程序,该程序在被处理器执行时用于执行以上第四方面的任一方法。
第十四方面,提供了一种计算机可读存储介质,包括第十三方面的程序。
附图说明
图1为一种大型单机箱数据通信设备的结构示意图;
图2为一种背靠背集群系统的结构示意图;
图3为一种基于中心交换机箱的多框集群系统的结构示意图一;
图4为一种基于中心交换机箱的多框集群系统的结构示意图二;
图5为本申请实施例提供的一种交换网mesh多框集群系统的结构示意图一;
图6为本申请实施例提供的一种交换网mesh多框集群系统的结构示意图二;
图7为本申请实施例提供的一种数据通信系统的结构示意图;
图8为本申请实施例提供的另一种数据通信系统的结构示意图;
图9为本申请实施例提供的又一种数据通信系统的结构示意图;
图10为本申请实施例提供的又一种数据通信系统中的A类业务机箱的结构示意图一;
图11为本申请实施例提供的又一种数据通信系统中的A类业务机箱的结构示意图二;
图12为本申请实施例提供的又一种数据通信系统中的B类业务机箱的结构示意图一;
图13为本申请实施例提供的又一种数据通信系统中的B类业务机箱的结构示意图二;
图14为本申请实施例提供的又一种数据通信系统中的单框系统的结构示意图;
图15为本申请实施例提供的又一种数据通信系统中的两框背靠背集群系统的结构示意图;
图16为本申请实施例提供的又一种数据通信系统中的三框集群系统的结构示意图;
图17为本申请实施例提供的又一种数据通信系统中的四框集群系统的结构示意图;
图18为本申请实施例提供的又一种数据通信系统中的多框集群系统的结构示意图;
图19为本申请实施例提供的再一种数据通信系统的结构示意图;
图20为本申请实施例提供的再一种数据通信系统中的A类业务机箱的连接关系图;
图21为本申请实施例提供的其它一种数据通信系统的结构示意图;
图22为本申请实施例提供的其它又一种数据通信系统的结构示意图一;
图23为本申请实施例提供的其它又一种数据通信系统的结构示意图二;
图24为本申请实施例提供的其它另一种数据通信系统的结构示意图一;
图25为本申请实施例提供的其它另一种数据通信系统中的第一机箱的结构示意图一;
图26为本申请实施例提供的其它另一种数据通信系统中的第一机箱的结构示意图二;
图27为本申请实施例提供的其它另一种数据通信系统中的第二机箱的结构示意图一;
图28为本申请实施例提供的其它另一种数据通信系统中的第二机箱的结构示意图二;
图29为本申请实施例提供的其它另一种数据通信系统的结构示意图二;
图30为本申请实施例提供的其它另一种数据通信系统中的单框系统的结构示意图;
图31为本申请实施例提供的其它另一种数据通信系统中的两框背靠背集群系统的结构示意图;
图32为本申请实施例提供的其它另一种数据通信系统中的三框集群系统的结构示意图;
图33为本申请实施例提供的其它另一种数据通信系统中的多框集群系统的结构示意图;
图34为本申请实施例提供的一种应用于数据通信系统的数据通信方法;
图35为本申请实施例提供的另一种应用于数据通信系统的数据通信方法;
图36为本申请实施例提供的另一种应用于数据通信系统的数据通信方法;
图37为本申请实施例提供的其它再一种数据通信系统中的多框集群系统的结构示意图;
图38为本申请实施例提供的其它有一种数据通信系统中的多框集群系统的结构示意图。
具体实施方式
本申请实施例应用于长期演进(long term evolution,LTE)、第四代移动通信技术(the 4th generation mobile communication technology,4G)、第五代移动通信技术(the 5th generation mobile communication technology,5G)通信系统或未来可能出现的其他系统,以下对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。需要说明的是,当本申请实施例的方案应用于4G系统、5G系统或未来可能出现的其他系统时,网络设备和终端的名称可能发生变化,但这并不影响本申请实施例方案的实施。
下面将结合附图,对本申请实施例的技术方案进行描述。
首先,对本申请所涉及的技术名词进行解释:
1)、大型数据通信设备:包括但不限于核心以太交换机设备、路由器设备、光传送设备。大型数据通信设备在逻辑架构上一般划分为负责数据高速转发和交换的数据平面、负责信令协议处理的控制平面、以及负责设备运行监控的管理平面。其中,这里的“平面”,指的是大型数据通信设备中的模块、单元等等。
2)、机箱(chassis):是大型数据通信设备中的一个硬件组件,机箱也可以称为业务机箱、或者数据通信业务机箱。
3)、多机箱集群数据通信设备系统:多机箱集群数据通信系统中包括了至少两个机箱,多机箱集群数据通信系统也可以称为多机箱集群系统、或者多机箱集群数据通信系统、或者多框集群系统。
需要指出的是,本申请实施例中涉及的名词或术语可以相互参考,不再赘述。
图1为一种大型单机箱数据通信设备的结构示意图,如图1所示,大型数据通信设备只包括了一个机箱,其中,机箱可以称为子架,可以称机箱为单机箱数据通信设备、或单子架数据通信设备。在单机箱数据通信设备中,单机箱数据通信设备的数据平面一般包括至少一个业务转发模块和至少一个数据交换模块,这里的业务转发模块也可以称为业务转发单板,数据交换模块也可以称为数据交换单板;其中,业务转发模块和数据交换模块之间通过高速数据通道进行均匀互连,并且每一个业务转发模块连接有至少一个对外的业务接口,例如,大型数据通信设备中包括了n个业务转发模块和m个数据交换模块,n和m都是正整数,数据交换模块1与每一个业务转发模块进行连接,数据交换模块2与每一个业务转发模块进行连接,以此类推,数据交换模块m与每一个业务转发模块进行连接。在图1的大型单机箱数据通信设备中,业务转发模块负责通过对外的业务接口进行数据收发、根据业务要求对数据报文进行高速转发处理、将需要交换的数据发送给数据交换模块、以及从数据交换模块接收数据;数据交换模块负责任意业务转发模块之间的数据交换;数据交换模块一般采用负荷分担的方式共同承担整个机箱的数据交换任务。其中,数据交换模块通常采用支持数据交换功能的集成电路芯片。
多机箱集群数据通信设备系统将多个机箱通过数据交换模块的扩展而互连在一起,构成一个业务数据转发性能更大的多机箱集群系统,多机箱集群数据通信设备系统的业务数据总转发性能一般是所有机箱的数据转发性能之和;多机箱集群数据通信设备系统对外呈 现是一台或一套设备,在网络中占用一个网络节点资源,而不是占用多个网络节点资源。
图2为一种背靠背集群系统的结构示意图,如图2所示,将两个机箱组件为一个数据通信系统,提供了机箱1和机箱2;每一个机箱采用如图1所示的机箱,机箱内部的模块、以及模块的连接方式,都与图1中的相同;两个机箱各自的数据交换模块可以扩展出框间互连接口,进而通过框间互连接口将两个机箱的数据交换模块背靠背地互连在一起,机箱的框间互连接口是构建多机箱集群数据通信设备系统的关键部件,用于提供跨框交换数据的承载通道。如图2所示,将机箱1的数据交换模块1与机箱2的数据交换模块1通过框间互连接口进行连接,将机箱1的数据交换模块2与机箱2的数据交换模块2通过框间互连接口进行连接,以此类推,将机箱1的数据交换模块m与机箱2的数据交换模块m通过框间互连接口进行连接,进而组成了一个背靠背集群系统,背靠背集群系统的系统容量是如图1所示设备的系统容量的2倍。在部署背靠背集群系统的时候,可以先部署如1所示的单个机箱,然后再部署第二个机箱,进而可以从而单机箱数据通信设备向背靠背集群系统进行扩容。在背靠背集群系统中,机箱可以通过各自机箱中的数据交换模块实现本地数据交换,也可以通过数据交换模块进行机箱之间的数据转发。在背靠背集群系统中,当机箱之间的互连带宽大于或等于机箱的最大业务转发能力的时候,可以实现两个机箱之间线速交换。
图3为一种基于中心交换机箱的多框集群系统的结构示意图一,如图3所示,基于中心交换机箱的多框集群系统包括了多个业务机箱、以及一个中心交换机箱,每一个业务机箱分别与中心交换机箱进行连接;每一个业务机箱采用如图1所示的机箱,业务机箱内部的模块、以及模块的连接方式,都与图1中的相同;在每一个业务机箱中部署了m个数据交换模块,在中心交换机箱中部署了m个中心交换模块,m为正整数;对于每一个业务机箱来说,一个业务机箱中每一个数据交换模块一一对应连接了一个中心交换模块。其中,中心交换机箱可以由一台设备或多台设备所构成,中心交换机箱中没有业务转发模块,中心交换机箱不提供业务接口。在物理实现上,以上每一个模块可以是一个或多个物理模块组成的。在图3所示的基于中心交换机箱的多框集群系统中,业务机箱可以通过各自的数据交换模块实现本地数据交换,也可以通过中心交换机箱的中心交换模块实现远程数据交换;两个不同的业务机箱之间的数据交换必须通过中心交换机箱的中心交换模块完成;从而业务机箱通过数据交换模块、以及与数据交换模块对应的中心交换模块完成机箱之间的数据交换任务。在理论上,当每个业务机箱面向中心交换机箱的框间互连带宽大于或等于本机箱的最大业务转发能力的时候,可以实现框间线速交换。图3所示的基于中心交换机箱的多框集群系统,可以实现业务机箱相互解耦,扩容新的业务机箱的时候操作比较便捷。图4为一种基于中心交换机箱的多框集群系统的结构示意图二,如图4所示,由于对于每一个业务机箱来说,一个业务机箱中每一个数据交换模块一一对应连接了一个中心交换模块,从而可以构成一个全星型的交叉互连平面,当中心交换机箱的中心交换模块的个数为m的时候,基于中心交换机箱的多框集群系统总共构成m个全星型的交叉互连平面;业务机箱之间的数据交换通过这m个全星型的交叉互连平面而完成;并且,各个全星型的交叉互连平面之间是相对独立,通过负载分担的方式承载全部框间数据交换功能;由于不同的业务机箱通过中心交换机箱的中心交换模块进行数据交换,进而每一个中心交换模块承担1/m的数据交换流量。
图3和图4所示的基于中心交换机箱的多框集群系统中,除了部署各业务机箱,还需要部署中心交换机箱,需要占用地理面积,进而多机箱集群数据通信设备系统需要占用较大的机房面积,不便于进行多机箱集群数据通信设备系统的部署;在部署中心交换机箱的时候,需要为中心交换机箱配置供电单元、散热单元、控制单元等硬件设备,这些硬件设备需要消耗大量的功耗,进而增加了成本;并且,在从背靠背集群系统向基于中心交换机箱的多框集群系统进行扩容的时候,需要将各业务机箱之间进行互连的线缆进行重新拆分和调整,然后将业务机箱线缆分别与中心交换机箱的中心交换连接,进而扩容操作十分复杂。
图5为本申请实施例提供的一种交换网网状(mesh)多框集群系统的结构示意图一,如图5所示,交换网mesh多框集群系统包括了多个业务机箱,每一个业务机箱采用如图1所示的机箱,业务机箱内部的模块、以及模块的连接方式,都与图1中的相同;将每一个业务机箱的数据交换模块与其他业务机箱的一个数据交换模块进行连接,该连接方式是按照全mesh方式将业务机箱的数据交换模块互连起来的。业务机箱可以通过本机箱内的数据交换模块完成本地数据交换,不同的业务机箱之间则通过相互连接的数据交换模块实现数据交换。在交换网mesh多框集群系统中,为了实现框间线速交换,任意两个业务机箱之间的mesh互连带宽需要大于或等于业务机箱内的最大业务转发能力。如果任意两个业务机箱之间的交换数据只能通过两者的直接连接的数据交换模块实现,则每个业务机箱的框间带宽需要大于或等于单个业务机箱最大业务转发能力的(x-1)倍,其中,x为交换网mesh多框集群系统的业务机箱的总数量,x大于等于3。如果任意两个业务机箱之间的交换数据既可以通过两者的直接连接的数据交换模块实现,也可以通过第三者业务机箱的数据交换模块进行中转,可以将每个业务机箱的框间带宽固定设置为单个业务机箱最大业务转发能力的2倍。图6为本申请实施例提供的一种交换网mesh多框集群系统的结构示意图二,如图6所示,由于将每一个业务机箱的数据交换模块与其他业务机箱的一个数据交换模块进行连接,即每个业务机箱的数据交换模块相互均匀交叉互连在一起,进而可以构成一个mesh交叉互连平面,得到m个mesh交叉互连平面;业务机箱之间的数据交换通过这m个mesh交叉互连平面完成,每个mesh交叉互连平面相对独立,通过负载分担的方式承载框间数据交换功能。
但是图5和图6所示的交换网mesh多框集群系统中,当需要扩容新的业务机箱的时候,需要将所有业务机箱之间进行互连的线缆进行调整,进而扩容操作非常复杂。举例来说,m=3的时候,当业务机箱1的数据交换模块1与业务机箱2的数据交换模块1、以及业务机箱3的数据交换模块1进行连接,此时,业务机箱1的数据交换模块1中具有p根线缆,p为正整数,则业务机箱1的数据交换模块1采用p/2根线缆与业务机箱2的数据交换模块1,业务机箱1的数据交换模块1采用另外的p/2根线缆与业务机箱3的数据交换模块1,但是当增加业务机箱的时候,m=4的时候,当业务机箱1的数据交换模块1需要与业务机箱2的数据交换模块1、业务机箱3的数据交换模块1进行连接、以及业务机箱4的数据交换模块1进行连接,进而,业务机箱1的数据交换模块1采用p/3根线缆与业务机箱2的数据交换模块1,业务机箱1的数据交换模块1采用另外的p/3根线缆与业务机箱3的数据交换模块1,业务机箱1的数据交换模块1采用剩余的p/3根线缆与业务机箱4的数据交换模块1,可知,需要对业务机箱1的数据交换模块1的线缆进行重新拆分和调整,以此类推,在进 行扩容业务机箱的时候,需要对所有业务机箱的各个数据交换模块的线缆进行拆分和调整,造成扩容操作十分复杂。
本申请提供数据通信系统和方法,进一步解决以上存在的问题。
首先,在本申请的各实施例中,“第一类别机箱”简称为“A类业务机箱”,“第二类别机箱”简称为“B类业务机箱”;“高性能交换模块”简称为“S”,“低性能交换模块”简称为“R”,“业务转发模块”简称为“X”。A类业务机箱包括S,另外还可以包括R。B类业务机箱包括R,但不包括S。本申请中使用名称“高性能交换模块”与“低性能交换模块”只是为了对两个类别的模块进行区分,并不对模块本身的功能做限定。在连接关系上,两个类别的模块区别在于高性能模块可以连接一个或多个低性能模块,而低性能模块可以连接一个高性能模块不能连接多个高性能模块。在同一机箱中高性能模块相对于低性能模块来说,具有更高的性能要求,性能要求例如是带宽要求。模块的带宽要求例如是模块能够处理的数据带宽。可选地,在不同机箱中的高性能模块相对于低性能模块来说,也可以具有更高的性能要求。可选地,不同机箱中的高性能模块可以具有相同的性能要求,不同机箱中的低性能模块可以具有相同的性能要求。
图7为本申请实施例提供的一种数据通信系统的结构示意图,如图7所示,本申请实施例提供的一种数据通信系统,包括:第一机箱和第二机箱;
第一机箱包括第一高性能交换模块和第一低性能交换模块;
第二机箱包括第二高性能交换模块和第二低性能交换模块;
第一高性能交换模块连接第二低性能交换模块,第一低性能交换模块连接第二高性能交换模块;
第一高性能交换模块用于连接待加入通信系统的第三机箱中的第三低性能交换模块,第二高性能交换模块用于连接待加入通信系统的第三机箱中的第四低性能交换模块。
示例性地,将构成数据通信系统划分为了第一类别机箱和第二类别机箱,第一类别机箱包括了第一机箱A1和第二机箱A2,第一机箱A1包括了一个第一高性能交换模块S和一个第一低性能交换模块R1,第二机箱A2包括了一个第二高性能交换模块S和一个第二低性能交换模块R1。
将A1的S通过一个框间互连接口与A2的R1连接,将A2的S通过另一个框间互连接口与A1的R1连接。
当由A1和A2构成的数据通信系统扩容进来第二类别机箱的时候,当增加一个第三机箱B1的时候,提供的第三机箱B1中包括了一个第三低性能交换模块R1和第四低性能交换模块R2。此时的数据通信系统中已经具有了两个A类业务机箱,分别为A1和A2,待加入到该数据通信系统中的机箱为B类业务机箱B1。
在将B1加入到由A1和A2构成的数据通信系统的时候,则可以将A1的S与B1的R1连接,将A2的S与B1的R2连接。采用上述实施例提供的数据通信系统,提供由A1、A2和B1构成的数据通信系统,去除了中心交换机箱,只需要部署各A类业务机箱和B类业务机箱,进而减少了数据通信系统的占地面积;并且由于去除了中心交换机箱,进而不需要增加附属的硬件设备,可以减少功耗、降低成本;在对A1和A2构成的数据通信系统进行扩容的时候,不需要改变A1和A2之间的线缆,对待加入到系统中的B1分别与A1 和A2进行连接即可,进而扩容方便,本实施例可以从背靠背集群系统向多机箱集群数据通信系统进行平滑扩容。
图8为本申请实施例提供的另一种数据通信系统的结构示意图,在图7所示实施例的基础上,如图8所示,本申请实施例提供的另一种数据通信系统中,第一机箱还包括第一业务转发模块和第二业务转发模块,第一业务转发模块和第二业务转发模块用于与数据通信系统外的设备通信。
第一低性能交换模块用于:
将从第一业务转发模块接收的数据发送给第二高性能交换模块;
将从第二高性能交换模块接收的数据发送给第二业务转发模块。
在可选的一种实施方式中,第一机箱还包括第三业务转发模块和第四业务转发模块,第三业务转发模块和第四业务转发模块用于与数据通信系统外的设备通信,第一高性能交换模块用于:将从第三业务转发模块接收的数据发送给第二低性能交换模块;将从第二低性能交换模块接收的数据发送给第四业务转发模块。可选的,第三业务转发模块和第四业务转发模块可以是同一模块。
在可选的一种实施方式中,第一高性能交换模块用于:在第三机箱加入通信系统后,将从第三低性能交换模块接收的数据发送给第二低性能交换模块;在第三机箱加入通信系统后,将从第二低性能交换模块接收的数据发送给第三低性能交换模块。
示例性地,第一机箱A1中还包括了n个业务转发模块X,n为正整数,例如,A1中还包括了一个第一业务转发模块X1、一个第二业务转发模块X2、一个第三业务转发模块X3、一个第四业务转发模块X4。第二机箱A2中还包括了n个业务转发模块X,例如,A2中还包括了一个第五业务转发模块X1、一个第六业务转发模块X2、一个第七业务转发模块X3、一个第八业务转发模块X4。其中,A1的业务转发模块的个数与A2业务转发模块的个数可以相同或不同。
A1的每一个X分别与A1的S、A1的R1连接,即A1的X1分别与A1的S、A1的R1连接,A1的X2分别与A1的S、A1的R1连接,A1的X3分别与A1的S、A1的R1连接,A1的X4分别与A1的S、A1的R1连接,以此类推;A2的每一个X分别与A2的S、A2的R1连接,即A2的X1分别与A2的S、A2的R1连接,A2的X2分别与A2的S、A2的R1连接,A2的X3分别与A2的S、A2的R1连接,A2的X4分别与A2的S、A2的R1连接,以此类推。
A1的X1、A1的X2、A1的X3、以及A1的X4可以与数据通信系统外的其他设备进行通信,进而与数据通信系统外的其他设备进行数据的收发;同样的,A2的X1、A2的X2、A2的X3、以及A2的X4可以与数据通信系统外的其他设备进行通信,进而与数据通信系统外的其他设备进行数据的收发。
A1的R1可以通过框内互连接口接收A1的X1或A1的X2发送的数据;然后A1的R1判断数据的目的地是A1还是其他机箱;若A1的R1判断数据的目的地是A1,则A1的R1通过框内互连接口将数据发送给A1的X1或A1的X2;若A1的R1判断数据的目的地是其他机箱,A1的R1不需要识别具体目的机箱是谁,A1的R1通过框间互连接口将数据发送给A2的S。A1的R1还可以通过框间互连接口接收A2的S发送的数据;然后A1的 R1判断数据的目的地是A1还是其他机箱;若A1的R1判断数据的目的地是A1,则A1的R1通过框内互连接口将数据发送给A1的X1或A1的X2;若A1的R1判断数据的目的地是其他机箱,则A1的R1视为接收到非法数据并直接丢弃数据。
A1的S可以通过框内互连接口接收A1的X1或A1的X2或A1的X3或A1的X4发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X1或A1的X2或A1的X3或A1的X4;若A1的S判断数据的目的地是其他机箱,A1的S可以识别出具体目的机箱是谁,A1的S通过框间互连接口将数据发送给目的机箱,例如,A1的S确定数据的目的地为A2,则A1的S通过框间互连接口将数据发送给A2的R1。A1的S还可以通过框间互连接口接收A2的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X1或A1的X2或A1的X3或A1的X4;若A1的S判断数据的目的地是其他机箱,则A1的S可以识别出具体目的机箱是谁,A1的S通过框间互连接口将数据发送给目的机箱,例如,A1的S确定数据的目的地为A2,则A1的S通过框间互连接口将数据发送给A2的R1。
A2的R1的数据收发过程,可以参照上述A1的R1的数据收发过程;以及A2的S的数据收发过程,可以参照上述A1的S的数据收发过程。
在本实施例中,当由A1和A2构成的数据通信系统将要扩容进来B1的时候,将A1的S与B1的R1连接,将A2的S与B1的R2连接。其中,B1中还包括了至少一个第七业务转发模块X,B1的R1分别与B1中每一个X连接,B1的R2分别与B1中每一个X连接,例如,B1中设置了t个X,分别为X1、X2、…、Xt,t为大于等于1的正整数。
A1的S可以通过框内互连接口接收A1的X1或A1的X2或A1的X3或A1的X4发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X1或A1的X2或A1的X3或A1的X4;若A1的S判断数据的目的地是B1,A1的S通过框间互连接口将数据发送给B1的R1。A1的S还可以通过框间互连接口接收B1的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X1或A1的X2或A1的X3或A1的X4;若A1的S判断数据的目的地是其他机箱,则A1的S可以识别出具体目的机箱是谁,A1的S通过框间互连接口将数据发送给目的机箱,例如,A1的S确定数据的目的地是A2,则A1的S通过框间互连接口将数据发送给A2的R1。A1的S还可以通过框间互连接口接收A2的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X1或A1的X2或A1的X3或A1的X4;若A1的S判断数据的目的地是其他机箱,则A1的S可以识别出具体目的机箱是谁,A1的S通过框间互连接口将数据发送给目的机箱,例如,A1的S判断数据的目的地是B1,A1的S通过框间互连接口将数据发送给B1的R1。
A2的S的数据收发过程,可以参照上述A1的S的数据收发过程。
B1的R1可以通过框内互连接口接收B1的某一个X发送的数据;然后B1的R1判断数据的目的地是B1还是其他机箱;若B1的R1判断数据的目的地是B1,则B1的R1通过框内互连接口将数据发送给B1的某一个X;若B1的R1判断数据的目的地是其他机箱, B1的R1不需要识别具体目的机箱是谁,B1的R1通过框间互连接口将数据发送给A1的S。B1的R1还可以通过框间互连接口接收A1的S发送的数据;然后B1的R1判断数据的目的地是B1还是其他机箱;若B1的R1判断数据的目的地是B1,则B1的R1通过框内互连接口将数据发送给B1的某一个X;若B1的R1判断数据的目的地是其他机箱,则B1的R1视为接收到非法数据并直接丢弃数据。
B1的R2的数据收发过程,可以参照上述B1的R1的数据收发过程。
采用上述实施例提供的数据通信系统,提供由A1、A2和B1构成的数据通信系统,去除了中心交换机箱,部署各A类业务机箱和B类业务机箱即可,进而减少了数据通信系统的占地面积;并且由于去除了中心交换机箱,进而不需要增加附属的硬件设备,可以减少功耗、降低成本;在对A1和A2构成的数据通信系统进行扩容的时候,不需要改变A1和A2之间的线缆,对待加入到系统中的B1分别与A1和A2进行连接即可,进而扩容方便,本实施例可以从背靠背集群系统向多机箱集群数据通信系统进行平滑扩容。并且,A1、A2以及B1中具有业务转发模块,进而数据通信系统中的机箱可以通过业务转发模块与数据通信系统外的其他设备进行通信;A1、A2以及B1可以通过S、R1等完成数据通信系统内的数据通信。
图9为本申请实施例提供的又一种数据通信系统的结构示意图,在图7所示实施例的基础上,如图9所示,本申请实施例提供的又一种数据通信系统中,数据通信系统还包括第四机箱,第四机箱包括第五低性能交换模块和第六低性能交换模块;
第一高性能交换模块连接第五低性能交换模块,第二高性能交换模块连接第六低性能交换模块。
在可选的一种实施方式中,第一高性能交换模块用于:将从第五低性能交换模块接收的数据发送给第二低性能交换模块;将从第二低性能交换模块接收的数据发送给第五低性能交换模块。
在可选的一种实施方式中,第一机箱还包括第一业务转发模块和第二业务转发模块,第一业务转发模块和第二业务转发模块用于与数据通信系统外的设备通信;第一低性能交换模块用于:将从第一业务转发模块接收的数据发送给第二高性能交换模块;将从第二高性能交换模块接收的数据发送给第二业务转发模块。
在可选的一种实施方式中,第一机箱还包括第三业务转发模块和第四业务转发模块,第三业务转发模块和第四业务转发模块用于与数据通信系统外的设备通信,第一高性能交换模块用于:将从第三业务转发模块接收的数据发送给第二低性能交换模块;将从第二低性能交换模块接收的数据发送给第四业务转发模块。可选的,第三业务转发模块和第四业务转发模块可以是同一模块。
在可选的一种实施方式中,第一高性能交换模块用于:在第三机箱加入通信系统后,将从第三低性能交换模块接收的数据发送给第二低性能交换模块;在第三机箱加入通信系统后,将从第二低性能交换模块接收的数据发送给第三低性能交换模块。
示例性地,数据通信系统中已经具有了A1和A2,A1包括了S和R1,A2包括了S和R1,A1的S通过一个框间互连接口与A2的R1连接,A2的S通过另一个框间互连接口与A1的R1连接。然后,数据通信系统中还设置了一个第四机箱B2,B2是B类业务机箱; B2包括了一个第五低性能交换模块R1和一个第六低性能交换模块R2;A1的S通过一个框间互连接口与B2的R1连接,A2的S通过一个框间互连接口与B2的R2连接。
此时,数据通信系统中已经具有了两个A类业务机箱,分别为A1和A2,并且,数据通信系统中还具有了一个B类业务机箱B2。然后,待加入到该数据通信系统中的机箱为B类业务机箱B1。
A1的S可以通过框内互连接口接收A1的X发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是B2,A1的S通过框间互连接口将数据发送给B2的R1。A1的S还可以通过框间互连接口接收B2的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是其他机箱,则A1的S可以识别出具体目的机箱是谁,A1的S通过框间互连接口将数据发送给目的机箱,例如,A1的S确定数据的目的地是A2,则本实施例中A1的S通过框间互连接口将数据发送给A2的R1。A1的S还可以通过框间互连接口接收A2的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是其他机箱,A1的S可以识别出目的机箱,然后A1的S通过框间互连接口将数据发送给目的机箱,例如,若A1的S确定数据的目的地是B2,则A1的S通过框间互连接口将数据发送给B2的R1。
A2的S的数据收发过程,可以参照上述A1的S的数据收发过程。
当由A1、A2和B2构成的数据通信系统扩容B类业务机箱的时候,例如,当增加一个第三机箱B1的时候,提供的B1中包括了一个R1和一个R2。在增加B1的时候,可以将A1的S与B1的R1连接,将A2的S与B1的R2连接。
其中,A1中的其他模块的数据收发过程,A2中的其他模块的数据收发过程,B1中的模块的数据收发过程,可以参见图8所示实施例的介绍。
通过上述介绍可知,图10为本申请实施例提供的又一种数据通信系统中的A类业务机箱的结构示意图一,如图10所示,每一个A类业务机箱中包括了一个S以及m-1个R,还包括了n个X,例如,包括了S,以及R1、R2、…、R m-1,以及X1、X2、…、Xn;每一个X分别通过框内互连接口与S连接,并且每一个X分别通过框内互连接口与每一个R连接;S连接了一个框间互连接口与其他机箱连接,每一个R分别连接了一个框间互连接口去与其他机箱连接,每一个X分别连接了一个业务接口去与数据通信系统外的其他设备连接;每个机箱中的每一个R承担本机箱的业务带宽的1/m。图11为本申请实施例提供的又一种数据通信系统中的A类业务机箱的结构示意图二,将图10所示的A类业务机箱进行简化,可以得到图11所示的结构。图12为本申请实施例提供的又一种数据通信系统中的B类业务机箱的结构示意图一,如图12所示,每一个B类业务机箱中包括了m个R,还包括了t个X,例如,R1、R2、…、R m,以及X1、X2、…、Xt;每一个X分别通过框内互连接口与每一个R连接;每一个R分别连接了一个框间互连接口去与其他机箱连接,每一个X分别连接了一个业务接口去与数据通信系统外的其他设备连接;每个机箱中的每一个R承担本机箱的业务带宽的1/m。图13为本申请实施例提供的又一种数据通信系统中的B类 业务机箱的结构示意图二,将图12所示的A类业务机箱进行简化,可以得到图13所示的结构。其中,n、m、t都是正整数;且m还代表了A类业务机箱的总个数;可知,当A类业务机箱的个数为m的时候,每一个A类业务机箱中的R的个数为m-1,每一个B类业务机箱中的R的个数为m;B类业务机箱的总个数与A类业务机箱的总个数可以相同或不同。
在对多机箱集群数据通信设备系统进行扩容的时候,图14为本申请实施例提供的又一种数据通信系统中的单框系统的结构示意图,如图14所示,该单框系统中只包括了一个A类业务机箱A1,A1中包括了一个S和一个R1。然后进行第一次扩容,图15为本申请实施例提供的又一种数据通信系统中的两框背靠背集群系统的结构示意图,如图15所示,该两框背靠背集群系统包括了两个A类业务机箱A1和A2,A1中包括了一个S和一个R1,A2中包括了一个S和一个R1,A1和A2之间进行均匀互连。在图14所示的单框系统向图15所示的两框背靠背集群系统进行扩容的时候,由于图14中只具有一个A1,A1与其他机箱之间没有连接关系,在增加了一个A2的时候,是采用了新的线缆将A1与A2互连,不会对已有的线缆进行调整,扩容过程不影响A类业务机箱A1中已部署的业务,进而图14所示的系统向图15所示的系统扩容的时候是实现了平滑扩容的。
然后进行第二次扩容,图16为本申请实施例提供的又一种数据通信系统中的三框集群系统的结构示意图,如图16所示,在图15所示系统的基础上增加一个B类业务机箱B1;采用新的线缆将B1分别与A1、A2连接即可,不会对已有的线缆进行调整,扩容过程不影响A类业务机箱A1和A2中已部署的业务,也不会影响A类业务机箱A1和A2之间已部署的框间连接,进而图15所示的系统向图16所示的系统扩容的时候是实现了平滑扩容的。
然后进行第三次扩容,图17为本申请实施例提供的又一种数据通信系统中的四框集群系统的结构示意图,如图17所示,在图16所示系统的基础上再增加一个B类业务机箱B2;采用新的线缆将B2分别与A1、A2连接即可,不会对已有的线缆进行调整,扩容时不会影响已部署的A类业务机箱和B类业务机箱上的业务、以及框间连接,进而图16所示的系统向图17所示的系统扩容的时候是实现了平滑扩容的。
再继续扩容的时候,以此类推,图18为本申请实施例提供的又一种数据通信系统中的多框集群系统的结构示意图,再增加到第v个B类业务机箱的时候,采用新的线缆将Bv分别与A1、A2连接即可;可知,在不断的增加新的B类业务机箱的时候,采用新的线缆将待加入的B类业务机箱分别与A1、A2连接即可,不会对已有的线缆进行调整,扩容时不会影响已部署的A类业务机箱和B类业务机箱上的业务、以及框间连接,进而实现平滑扩容。其中,表1为构建m=2的(m+v)框集群系统时对S和R的性能要求,v为B类业务机箱数量,如表1所示。
表1 构建m=2的(m+v)框集群系统时对S和R的性能要求
Figure PCTCN2019079815-appb-000001
Figure PCTCN2019079815-appb-000002
根据表1可知,当B类业务机箱的个数逐步增加的时候,对于A类业务机箱中S的性能要求越高,即所支持的集群规模大小取决于A类业务机箱交换模块S的工程实现能力。
采用上述实施例提供的数据通信系统,提供由A1、A2和B1构成的数据通信系统,去除了中心交换机箱,部署各A类业务机箱和B类业务机箱即可,进而减少了数据通信系统的占地面积;并且由于去除了中心交换机箱,进而不需要增加附属的硬件设备,可以减少功耗、降低成本;在对A1和A2构成的数据通信系统进行扩容的时候,不需要改变A1和A2之间的线缆,对待加入到系统中的B1分别与A1和A2进行连接即可,进而扩容方便,本实施例可以从背靠背集群系统向多机箱集群数据通信系统进行平滑扩容。并且,A1、A2以及B1中具有业务转发模块,进而数据通信系统中的机箱可以通过业务转发模块与数据通信系统外的其他设备进行通信;A1、A2以及B1可以通过S、R1等完成数据通信系统内的数据通信。
图19为本申请实施例提供的再一种数据通信系统的结构示意图,在图7所示实施例的基础上,如图19所示,本申请实施例提供的再一种数据通信系统中还包括第五机箱,第五机箱包括第三高性能交换模块、第七低性能交换模块和第八低性能交换模块,第一机箱还包括第九低性能交换模块,第二机箱还包括第十低性能交换模块;
第三高性能交换模块连接第九低性能交换模块和第十低性能交换模块,第一高性能交换模块连接第七低性能交换模块,第二高性能交换模块连接第八低性能交换模块;
第三高性能交换模块用于连接待加入通信系统的第三机箱中的第十一低性能交换模块。
在可选的一种实施方式中,第一高性能交换模块用于:将从第二低性能交换模块接收的数据发送给第七低性能交换模块;将从第七低性能交换模块接收的数据发送给第二低性能交换模块;在第三机箱加入通信系统后,将从第三低性能交换模块接收的数据发送给第二低性能交换模块和第七低性能交换模块中的一个;在第三机箱加入通信系统后,将从第二低性能交换模块和第七低性能交换模块中的一个接收的数据发送给第三低性能交换模块。
示例性地,数据通信系统中已经具有了A1和A2,A1包括了S和R1,A2包括了S和R1,A1的S通过一个框间互连接口与A2的R1连接,A2的S通过另一个框间互连接口与A1的R1连接。然后,数据通信系统中还设置了一个第五机箱A3,A3为A类业务机箱;A3中包括了一个第三高性能交换模块R1、第七低性能交换模块R2和第八低性能交换模块R3;此时,数据通信系统三个A类业务机箱,分别为A1、A2和A3,每一个A类业务机 箱中分别具有一个S、以及2个R;进而可知,A1还包括了一个第九低性能交换模块R2,A2还包括一个第十低性能交换模块R2。
从而,数据通信系统中包括了三个A类业务机箱,分别为A1、A2和A3;每一个A类业务机箱中分别具有一个S、以及2个R;A1的S通过一个框间互连接口与A2的R1连接,A1的S通过一个框间互连接口与A3的R1连接;A2的S通过一个框间互连接口与A1的R1连接,A2的S通过一个框间互连接口与A3的R2连接;A3的S通过一个框间互连接口与A1的R2连接,A3的S通过一个框间互连接口与A2的R2连接。
首先,根据图7所示实施中的由两个A类业务机箱构成的数据通信系统,以及图19中的由三个A类业务机箱构成的数据通信系统可知,每一个A类业务机箱的S均匀连接其它A类业务机箱的R上,每一个A类业务机箱的R均匀连接其它A类业务机箱的S上。图20为本申请实施例提供的再一种数据通信系统中的A类业务机箱的连接关系图,图20中的A类业务机箱采用了图11的表示方式,如图20所示,设置了m个A类业务机箱,m大于等于2,每个A类业务机箱的S通过框间互连接口均匀连接到其它A类业务机箱的R,一个A类业务机箱的S和与其连接的其它A类业务机箱的R一起构建一个交叉互连平面;进而m个A类业务机箱总共构建出m个交换互连平面;这m个交叉互连平面相互独立,负载分担,共同承载全部框间数据交换;同时,每个交叉互连平面内部的连接是多个R到1个S的星型连接方式,和前面的交换网mesh集群系统所采用的交换模块的mesh连接方式完全不同。
表2为m个A类业务机箱组建的m个交叉互连平面的连接方式,如表2所示,m个A类业务机箱按照图20所示的方案交叉连接后,构建出了m个交叉互连平面,每个交叉互连平面的连接情况如表2所示。表2中每一行表示一个交叉互连平面中所包含的每个A类业务机箱的R或S;例如,比如A类业务机箱A1的S、A类业务机箱A2的R1、A类业务机箱A3的R1、…、A类业务机箱Am-1的R1、以及A类业务机箱Am的R1一起构建了交叉互连平面1。
表2 m个A类业务机箱组建的m个交叉互连平面的连接方式
Figure PCTCN2019079815-appb-000003
由图20可以看到,R只跟其它某个A类业务机箱的S互连,因此只要R的框间互连接口的数据净带宽大于等于该R的框内互连接口的数据净带宽,R即可线速工作。然而某个A类业务机箱的S和各个其它业务机箱的一个R互连,因此S的框间互连接口的数据净带宽 要求则和多机箱集群系统内的机箱总量有关;在多机箱集群系统中,S的框间互连接口的数据净带宽会数倍于该S的框内互连接口的净带宽。如图20所示,当多机箱集群系统中只有m个性能一样的A类业务机箱时,每个S的框间互连接口提供的带宽是S的框内互连接口带宽的m-1倍。
如图19所示,数据通信系统中包括了三个A类业务机箱,分别为A1、A2和A3;然后,待加入到该数据通信系统中的机箱为B类业务机箱B1。
A1的S可以通过框内互连接口接收A1的X发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是A2,则A1的S通过框间互连接口将数据发送给A2的R1,若A1的S判断数据的目的地是A3,则A1的S通过框间互连接口将数据发送给A3的R1。A1的S还可以通过框间互连接口接收A2的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是其他机箱,A1的S可以识别出目的机箱,然后A1的S通过框间互连接口将数据发送给目的机箱,例如,若A1的S确定数据的目的地是A3,则A1的S通过框间互连接口将数据发送给A3的R1。A1的S还可以通过框间互连接口接收A3的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是其他机箱,A1的S可以识别出目的机箱,然后A1的S通过框间互连接口将数据发送给目的机箱,例如,若A1的S确定数据的目的地是A2,则A1的S通过框间互连接口将数据发送给A2的R1。
A2的S的数据收发过程,可以参照上述A1的S的数据收发过程。
当由A1、A2和A3构成的数据通信系统扩容进来B类业务机箱的时候,例如,当增加一个第三机箱B1的时候,提供的B1中包括了一个第三低性能交换模块R1、一个第四低性能交换模块R2、以及一个第十一低性能交换模块R3。在增加B1的时候,可以将A1的S与B1的R1连接,将A2的S与B1的R2连接,将A3的S与B1的R3连接。
A1的S还可以通过框间互连接口接收B2的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是其他机箱,则A1的S可以识别出具体目的机箱是谁,A1的S通过框间互连接口将数据发送给目的机箱,例如,A1的S确定数据的目的地是A2,则A1的S通过框间互连接口将数据发送给A2的R1,或者,A1的S确定数据的目的地是A3,则A1的S通过框间互连接口将数据发送给A3的R1。A1的S还可以通过框间互连接口接收A2的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是其他机箱,则A1的S可以识别出具体目的机箱是谁,A1的S通过框间互连接口将数据发送给目的机箱,例如,A1的S确定数据的目的地是B2,则A1的S通过框间互连接口将数据发送给B2的R1,或者,A1的S确定数据的目的地是A3,则A1的S通过框间互连接口将数据发送给A3的R1。A1的S还可以通过框间互连接口接收A3的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据 发送给A1的X;若A1的S判断数据的目的地是其他机箱,则A1的S可以识别出具体目的机箱是谁,A1的S通过框间互连接口将数据发送给目的机箱,例如,A1的S确定数据的目的地是B2,则A1的S通过框间互连接口将数据发送给B2的R1,或者,A1的S确定数据的目的地是A2,则A1的S通过框间互连接口将数据发送给A2的R1。
A2的S的数据收发过程,可以参照上述A1的S的数据收发过程。
并且,A1中的其他模块的数据收发过程,A2中的其他模块的数据收发过程,B1中的模块的数据收发过程,可以参见图8所示实施例的介绍。
采用上述实施例提供的数据通信系统,提供由A1、A2和A3构成的数据通信系统,去除了中心交换机箱,部署各A类业务机箱和B类业务机箱即可,进而减少了数据通信系统的占地面积;并且由于去除了中心交换机箱,进而不需要增加附属的硬件设备,可以减少功耗、降低成本;在对A类业务机箱构成的数据通信系统进行扩容的时候,不需要改变A类业务机箱之间的线缆,对待加入到系统中的B1分别与各个A类业务机箱进行连接即可,进而扩容方便,实现平滑扩容。并且,A1、A2、A3以及B1中具有业务转发模块,进而数据通信系统中的机箱可以通过业务转发模块与数据通信系统外的其他设备进行通信;A1、A2、A3以及B1可以通过S、R1等完成数据通信系统内的数据通信。
图21为本申请实施例提供的其它一种数据通信系统的结构示意图,在图19所示实施例的基础上,如图21所示,本申请实施例提供的其它一种数据通信系统中,数据通信系统还包括第六机箱,第六机箱包括第十二低性能交换模块、第十三低性能交换模块和第十四低性能交换模块。
第十二低性能交换模块连接第一高性能交换模块,第十三低性能交换模块连接第二高性能交换模块,第十四低性能交换模块连接第三高性能交换模块。
在可选的一种实施方式中,第一高性能交换模块用于:将从第十二低性能交换模块接收的数据发送给第二低性能交换模块和第七低性能交换模块中的一个;将从第二低性能交换模块和第七低性能交换模块中的一个接收的数据发送给第十二低性能交换模块。
示例性地,数据通信系统中已经具有了A1、A2和A3;数据通信系统中还设置了一个第六机箱B3,B3中包括了一个第十二低性能交换模块R1、一个第十三低性能交换模块R2和一个第十四低性能交换模块R3,可以将A1的S与B3的R1连接,将A2的S与B3的R2连接,将A3的S与B3的R3连接。A1、A2和A3之间的连接关系参见图19所示的实施例。
此时,数据通信系统中已经具有了三个A类业务机箱,分别为A1、A2,并且,数据通信系统中还具有了一个B类业务机箱B3。然后,待加入到该数据通信系统中的机箱为B类业务机箱B1。
A1的S可以通过框内互连接口接收A1的X发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是A2,则A1的S通过框间互连接口将数据发送给A2的R1,若A1的S判断数据的目的地是A3,则A1的S通过框间互连接口将数据发送给A3的R1,若A1的S判断数据的目的地是B3,则A1的S通过框间互连接口将数据发送给B3的R1。A1的S还可以通过框间互连接口接收B3的R1发送的数 据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是其他机箱,A1的S可以识别出目的机箱,然后A1的S通过框间互连接口将数据发送给目的机箱,例如,若A1的S确定数据的目的地是A2,则A1的S通过框间互连接口将数据发送给A2的R1,或者,若A1的S确定数据的目的地是A3,则A1的S通过框间互连接口将数据发送给A3的R1。A1的S还可以通过框间互连接口接收A2的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是其他机箱,A1的S可以识别出目的机箱,然后A1的S通过框间互连接口将数据发送给目的机箱,例如,若A1的S确定数据的目的地是B3,则A1的S通过框间互连接口将数据发送给B3的R1,若A1的S确定数据的目的地是A3,则A1的S通过框间互连接口将数据发送给A3的R1。A1的S还可以通过框间互连接口接收A3的R1发送的数据;然后A1的S判断数据的目的地是A1还是其他机箱;若A1的S判断数据的目的地是A1,则A1的S通过框内互连接口将数据发送给A1的X;若A1的S判断数据的目的地是其他机箱,A1的S可以识别出目的机箱,然后A1的S通过框间互连接口将数据发送给目的机箱,例如,若A1的S确定数据的目的地是B3,则A1的S通过框间互连接口将数据发送给B3的R1,若A1的S确定数据的目的地是A2,则A1的S通过框间互连接口将数据发送给A2的R1。
A2的S的数据收发过程,可以参照上述A1的S的数据收发过程。
当由A1、A2、A3和B3构成的数据通信系统扩容进来B类业务机箱的时候,例如,当增加一个第三机箱B1的时候,提供的B1中包括了一个R1、一个R2以及一个R3。在增加B1的时候,可以将A1的S与B1的R1连接,将A2的S与B1的R2连接,将A3的S与B1的R3连接。
A1的S的数据收发过程、以及A2的S的数据收发过程,可以参照图19所示实施例的介绍。并且,A1中的其他模块的数据收发过程,A2中的其他模块的数据收发过程,A3中的其他模块的数据收发过程,B1中的模块的数据收发过程,可以参见图8所示实施例的介绍。
采用上述实施例提供的数据通信系统,提供由A1、A2、A3以及B3构成的数据通信系统,去除了中心交换机箱,在增加B类业务机箱的时候,部署各A类业务机箱和B类业务机箱即可,进而减少了数据通信系统的占地面积;并且由于去除了中心交换机箱,进而不需要增加附属的硬件设备,可以减少功耗、降低成本;在对由多个A类业务机箱以及至少一个B类业务机箱构成的数据通信系统进行扩容的时候,不需要改变A类业务机箱之间的线缆和接口,也不需要改变已部署的B类业务机箱与各A类业务机箱之间的线缆和接口,对待加入到系统中的B1分别与各个A类业务机箱进行连接即可,进而扩容方便,实现平滑扩容。并且,A1、A2、A3、B3、以及B1中具有业务转发模块,进而数据通信系统中的机箱可以通过业务转发模块与数据通信系统外的其他设备进行通信;A1、A2、A3、B3、以及B1可以通过S、R1等完成数据通信系统内的数据通信。
图22为本申请实施例提供的其它又一种数据通信系统的结构示意图一,图23为本申请实施例提供的其它又一种数据通信系统的结构示意图二,在图19所示实施例的基础上, 如图22和图23所示,本申请实施例提供的其它又一种数据通信系统,包了m个A类业务机箱以及v个B类业务机箱,每一个A类业务机箱中包括了一个S和m-1个R,每一个B类业务机箱中包括了m个R,m、v都是正整数。
示例性地,根据图19-图21的介绍可知,当数据通信系统中包括了m个A类业务机箱以及v个B类业务机箱的时候,参见图19-图21的连接方式,B类业务机箱的R和A类业务机箱的R之间采用交叉互连方式,即B类业务机箱的R均匀连接到所有A类业务机箱的S上。每个B类业务机箱中包括了m个R,每个R各自承载该B类业务机箱的1/m的内部数据交换任务,且每一个R可以通过框间互连接口将本机箱的数据发送出去,每一个R可以通过框间互连接口接收其他机箱发送的数据。每个B类业务机箱的m个R依次连接到m个A类业务机箱的S上,进而B类业务机箱的框间数据交换在A类业务机箱的S上完成。当部署好A类业务机箱之后,再往系统中扩容B类业务机箱的时候,将待加入的B类业务机箱分别与各个A类业务机箱连接即可,不需要对已部署好的A类业务机箱之间业务、以及框间连接进行改变,也不需要对已部署的B类业务机箱的业务及框间连接进行改变,进而实现平滑扩容。
如图22所示,m个A类业务机箱和v个B类业务机箱组建的(m+v)框集群系统,仍然保持m个交叉互连平面;这m个交叉互连平面中的每个交叉互连平面的组成如表3所示。
表3 m个A类业务机箱和v个B类业务机箱组建m个交叉互连平面的连接方式
Figure PCTCN2019079815-appb-000004
从图21所示实施例中的表2以及上述表3可知,无论是只包括A类业务机箱的集群系统,还是既包括A类业务机箱也包括B类业务机箱的集群系统,集群系统的每一个交叉互连平面的核心模块是A类业务机箱中的S。S承载了交叉互连平面中所有业务机箱的框间数据交换任务,从而S的工程实现能力会直接影响集群系统的构建规模。表4为m个A类业务机箱和v个B类业务机箱组件的集群系统对于S和R的性能要求,如表4所示,单框指的是一个机箱,单框业务性能指的是业务转换模块的性能乘以业务转换模块的数量。
表4 m个A类业务机箱和v个B类业务机箱组建的(m+v)框集群系统对于S和R的性能要求
Figure PCTCN2019079815-appb-000005
根据表4可知,集群系统对于S和R的性能要求,是与单个机箱的业务性能和机箱总量相关的。
并且,A类业务机箱和B类业务机箱中具有业务转发模块,可以参见上述实施例中对于业务转发模块的介绍。进而数据通信系统中的机箱可以通过业务转发模块与数据通信系统外的其他设备进行通信;A类业务机箱和B类业务机箱可以通过S、R1等完成数据通信系统内的数据通信。
采用上述实施例提供的数据通信系统,提供由m个A类业务机箱和v个B类业务机箱构成的数据通信系统,去除了中心交换机箱,在增加B类业务机箱的时候,部署各A类业务机箱和B类业务机箱即可,进而减少了数据通信系统的占地面积;并且由于去除了中心交换机箱,进而不需要增加附属的硬件设备,可以减少功耗、降低成本;当部署好A类业务机箱之后,再往系统中扩容B类业务机箱的时候,将待加入的B类业务机箱分别与各个A类业务机箱连接即可,不需要对已部署好的A类业务机箱之间业务、以及框间连接进行改变,也不需要对已部署的B类业务机箱的业务及框间连接进行改变,进而实现平滑扩容。
首先,在本申请的各实施例中,“第三类别机箱”简称为“C类业务机箱”,“第四类别机箱”简称为“D类业务机箱”;“高性能交换模块”简称为“S”,“低性能交换模块”简称为“R”,“业务转发模块”简称为“X”。C类业务机箱包括S。D类业务机箱包括R。
图24为本申请实施例提供的其它另一种数据通信系统的结构示意图一,如图24所示,本申请实施例提供的其它另一种数据通信系统,包括:第一机箱和第二机箱;
第一机箱包括第一高性能交换模块、第一业务转发模块和第二业务转发模块,第一业务转发模块和第二业务转发模块用于与数据通信系统外的设备通信;
第二机箱包括第一低性能交换模块;
第一高性能交换模块连接第一低性能交换模块;
第一高性能交换模块用于:将从第一业务转发模块接收的数据发送给第一低性能交换模块;将从第一低性能交换模块接收的数据发送给第二业务转发模块;
第一高性能交换模块还用于:连接待加入通信系统的第三机箱中的第二低性能交换模块。可选的,第一业务转发模块和第二业务转发模块可以是同一模块。
在可选的一种实施方式中,第一高性能交换模块还用于:在第三机箱加入通信系统后,将从第二低性能交换模块接收的数据发送给第一低性能交换模块、第一业务转发模块和第二业务转发模块三者中的一个;在第三机箱加入通信系统后,将从第一低性能交换模块、第一业务转发模块和第二业务转发模块三者中的一个接收的数据发送给第二低性能交换模块。
示例性地,将机箱划分为了第三类别机箱和第四类别机箱,即划分为了C类业务机箱和D类业务机箱。
数据通信系统中包括第一机箱C1和第二机箱D1。图25为本申请实施例提供的其它另一种数据通信系统中的第一机箱的结构示意图一,图25所示,第一机箱C1中包括了一个第一高性能交换模块S;可选的,第一机箱C1中还包括了n个业务转发模块X,例如包括了X1、X2、…、Xn,其中,n为大于等于1的正整数,例如,第一机箱C1中包括了至一个第一业务转发模块X1和一个第二业务转发模块X2。如图25所示,C1的每一个X分别与C1的S连接,即C1的X1、C1的X2分别与C1的S连接。图26为本申请实施例提供的其它另一种数据通信系统中的第一机箱的结构示意图二,图26所示,可以将图25所示的C1进行简化,可以得到图26所示的结构。
图27为本申请实施例提供的其它另一种数据通信系统中的第二机箱的结构示意图一,图27所示,第二机箱D1中包括了一个第一低性能交换模块R;可选的,第一机箱C1中还包括了t个业务转发模块X,例如包括了X1、X2、…、Xt,其中,t为大于等于1的正整数。如图27所示,D1的每一个X分别与D1的R连接。图28为本申请实施例提供的其它另一种数据通信系统中的第二机箱的结构示意图二,图28所示,可以将图27所示的D1进行简化,可以得到图28所示的结构。
如图24所示,C1的S通过框间互连接口与D1的R进行连接。图29为本申请实施例提供的其它另一种数据通信系统的结构示意图二,根据图26和图28所示的结构,可以将图24所示的结构进行简化,得到图29所示的结构。
此时,数据通信系统中已经具有了一个C类业务机箱和一个D类业务机箱,分别为C1和D1。然后,待加入到该数据通信系统中的第三机箱为D类业务机箱D2。
C1的X可以与数据通信系统外的其他设备进行通信,进而与数据通信系统外的其他设备进行数据的收发;同样的,D1的X可以与数据通信系统外的其他设备进行通信,进而与数据通信系统外的其他设备进行数据的收发。
C1的S可以通过框内互连接口接收C1的X发送的数据,例如接收C1的X1或C1的X2发送的数据;然后C1的S判断数据的目的地是C1还是其他机箱;若C1的S判断数据的目的地是C1,则C1的S通过框内互连接口将数据发送给C1的X;若C1的S判断数据的目的地是D1,则C1的S通过框间互连接口将数据发送给D1的R。C1的S还可以通过框间互连接口接收D1的R发送的数据;然后C1的S判断数据的目的地是C1还是其他机箱;若C1的S判断数据的目的地是C1,则C1的S通过框内互连接口将数据发送给C1的X,例如发送给C1的X1或C1的X2;若C1的S判断数据的目的地是其他机箱,C1的S可以识别出目的机箱,然后C1的S通过框间互连接口将数据发送给目的机箱,在只具有C1和D1的时候,若C1的S确定数据的目的地是D1,则C1的S通过框间互连接口将数据发送给D1的R。
当由C1和D1构成的数据通信系统扩容进来D类业务机箱的时候,例如,当增加一个第三机箱D2的时候,提供的D1中包括了一个R以及至少一个X,D2的结构与D1相同。在增加D2的时候,可以将C1的S与D2的R连接。
C1的S可以通过框内互连接口接收C1的X发送的数据,例如接收C1的X1或C1的X2发送的数据;然后C1的S判断数据的目的地是C1还是其他机箱;若C1的S判断数据 的目的地是C1,则C1的S通过框内互连接口将数据发送给C1的X;若C1的S判断数据的目的地是其他机箱,C1的S可以识别出目的机箱,然后C1的S通过框间互连接口将数据发送给目的机箱,例如,若C1的S判断数据的目的地是D1,则C1的S通过框间互连接口将数据发送给D1的R,若C1的S判断数据的目的地是D2,则C1的S通过框间互连接口将数据发送给D2的R。C1的S还可以通过框间互连接口接收D1的R发送的数据;然后C1的S判断数据的目的地是C1还是其他机箱;若C1的S判断数据的目的地是C1,则C1的S通过框内互连接口将数据发送给C1的X,例如发送给C1的X1或C1的X2;若C1的S判断数据的目的地是其他机箱,C1的S可以识别出目的机箱,然后C1的S通过框间互连接口将数据发送给目的机箱,此时增加了一个D2,若C1的S确定数据的目的地是D2,则C1的S通过框间互连接口将数据发送给D2的R。C1的S还可以通过框间互连接口接收D2的R发送的数据;然后C1的S判断数据的目的地是C1还是其他机箱;若C1的S判断数据的目的地是C1,则C1的S通过框内互连接口将数据发送给C1的X,例如发送给C1的X1或C1的X2;若C1的S判断数据的目的地是其他机箱,C1的S可以识别出目的机箱,然后C1的S通过框间互连接口将数据发送给目的机箱,例如,若C1的S确定数据的目的地是D1,则C1的S通过框间互连接口将数据发送给D1的R。
在对多机箱集群数据通信设备系统进行扩容的时候,图30为本申请实施例提供的其它另一种数据通信系统中的单框系统的结构示意图,图30所示,该单框系统中只包括了一个C类业务机箱C1,C1中包括了一个S。然后进行第一次扩容,图31为本申请实施例提供的其它另一种数据通信系统中的两框背靠背集群系统的结构示意图,图31所示,该两框背靠背集群系统包括了一个C类业务机箱C1、以及一个D类业务机箱D1,C1中包括了一个S,D1中包括了一个R;C1的S与D1的R连接。在图30所示的单框系统向图31所示的两框背靠背集群系统进行扩容的时候,由于图30中只具有一个C1,C1与其他机箱之间没有连接关系,在增加了一个D1的时候,是采用了新的线缆将C1与D1互连,不会对已有的线缆进行调整,扩容过程不影响C类业务机箱C1中已部署的业务,进而图30所示的系统向图31所示的系统扩容的时候是实现了平滑扩容的。
然后进行第二次扩容,图32为本申请实施例提供的其它另一种数据通信系统中的三框集群系统的结构示意图,如图32所示,在图31所示系统的基础上增加一个D类业务机箱D2;采用新的线缆将C1与D2连接即可,不会对已有的线缆进行调整,扩容过程不影响C类业务机箱C1中已部署的业务,不影响D类业务机箱D1中已部署的业务,也不会影响C1与D1之间已部署的框间连接,进而图31所示的系统向图32所示的系统扩容的时候是实现了平滑扩容的。
再继续扩容的时候,以此类推,图33为本申请实施例提供的其它另一种数据通信系统中的多框集群系统的结构示意图,再增加到第v个D类业务机箱的时候,采用新的线缆将Dv的R与C1的S连接即可,其中,v为大于等于1的正整数;可知,在不断的增加新的D类业务机箱的时候,采用新的线缆将待加入的D类业务机箱与C1连接即可,不会对已有的线缆进行调整;从而,每扩容一个D类业务机箱对之前已部署的业务机箱及其框间互连没有任何影响,扩容时不会影响已部署的C类业务机箱和C类业务机箱上的业务、以及框间连接,进而实现平滑扩容。
可知,通过以上扩容过程,由于每个D类业务机箱只和C类业务机箱之间有互连,各 D类业务机箱之间无直接的连接,所以当C类业务机箱以及C类业务机箱的S部署到位之后,再扩容D类业务机箱,不会影响已部署的C类业务机箱的业务,也不会影响已部署的D类业务机箱的业务,同样不会影响已部署的C类业务机箱与已部署的D类业务机箱的框间互连,进而可以做到逐框平滑扩容。
图33所示的多框集群系统中具有一个C类业务机箱以及v个D类业务机箱,进而一个C类业务机箱以及v个D类业务机箱可以组建一个(1+v)框集群系统,该(1+v)框集群系统在逻辑上只有1个交叉互连平面,该交叉互连平面的组成如表5所示。
表5 (1+v)框集群系统的交叉互连平面连接方式
Figure PCTCN2019079815-appb-000006
从表5中可知,(1+v)框集群系统核心仍然是C类业务机箱的S;S承载了所有业务机箱的框间数据交换任务,因此S的工程实现能力会直接影响集群系统的构建规模。表6为(1+v)框集群系统对S和R的性能要求,如表6所示。
表6 (1+v)框集群系统对S和R的性能要求
Figure PCTCN2019079815-appb-000007
根据表6可知,上述(1+v)框集群系统中单个机箱的业务性能与机箱总量相关;随着集群规模增加,对C类业务机箱的S的性能要求逐渐增加。表7为v在不同取值下(1+v)框集群系统对S和R的性能要求,表7所示。在表6和表7中,单框指的是一个机箱。
表7 v在不同取值下(1+v)框集群系统对S和R的性能要求
Figure PCTCN2019079815-appb-000008
Figure PCTCN2019079815-appb-000009
采用上述实施例提供的数据通信系统,提供由一个C类业务机箱和v个D类业务机箱构成的数据通信系统,去除了中心交换机箱,在增加D类业务机箱的时候,部署各C类业务机箱和D类业务机箱即可,进而减少了数据通信系统的占地面积;并且由于去除了中心交换机箱,进而不需要增加附属的硬件设备,可以减少功耗、降低成本;当部署好C类业务机箱之后,再往系统中扩容D类业务机箱的时候,将待加入的D类业务机箱与C类业务机箱连接即可,不需要对已部署好的C类业务机箱之间业务、以及框间连接进行改变,也不需要对已部署的D类业务机箱的业务及框间连接进行改变,进而实现平滑扩容。
图34为本申请实施例提供的一种应用于数据通信系统的数据通信方法,数据通信系统包括第一机箱和第二机箱;第一机箱包括第一高性能交换模块和第一低性能交换模块;第二机箱包括第二高性能交换模块和第二低性能交换模块;第一高性能交换模块连接第二低性能交换模块,第一低性能交换模块连接第二高性能交换模块;第一高性能交换模块用于连接待加入通信系统的第三机箱中的第三低性能交换模块,第二高性能交换模块用于连接待加入通信系统的第三机箱中的第四低性能交换模块;如图34所示,本申请实施例提供的方法,包括:
步骤S341、第一高性能交换模块将从第三低性能交换模块接收的数据发送给第二低性能交换模块,第一高性能交换模块将从第二低性能交换模块接收的数据发送给第三低性能交换模块。
步骤S342、第二高性能交换模块将从第四低性能交换模块接收的数据发送给第一低性能交换模块,第二高性能交换模块将从第一低性能交换模块接收的数据发送给第四低性能交换模块。
其中,步骤S341与步骤S342的执行次序不做限定。
可选的一种实施方式中,第一机箱还包括第一业务转发模块和第二业务转发模块,第一业务转发模块和第二业务转发模块用于与数据通信系统外的设备通信,则本实施例提供的方法还包括以下步骤:
步骤S343、第一低性能交换模块将从第一业务转发模块接收的数据发送给第二高性能交换模块;
步骤S344、第一低性能交换模块将从第二高性能交换模块接收的数据发送给第二业务转发模块。
第一机箱还包括第三业务转发模块和第四业务转发模块,第三业务转发模块和第四业务转发模块用于与数据通信系统外的设备通信,则本实施例提供的方法还包括以下步骤:
步骤S345、第一高性能交换模块将从第三业务转发模块接收的数据发送给第二低性能交换模块;
步骤S346、第二低性能交换模块将从第二高性能交换模块接收的数据发送给第四业务转发模块。
其中,上述各步骤的执行次序不做限定。
示例性地,本实施例中的各模块的原理、以及本实施例的方法原理可以参见图7和图8 所示实施例的描述。
图35为本申请实施例提供的另一种应用于数据通信系统的数据通信方法,数据通信系统包括第一机箱和第二机箱;第一机箱包括第一高性能交换模块和第一低性能交换模块;第二机箱包括第二高性能交换模块和第二低性能交换模块;第一高性能交换模块连接第二低性能交换模块,第一低性能交换模块连接第二高性能交换模块;第一高性能交换模块用于连接待加入通信系统的第三机箱中的第三低性能交换模块,第二高性能交换模块用于连接待加入通信系统的第三机箱中的第四低性能交换模块。数据通信系统还包括第四机箱,第四机箱包括第五低性能交换模块和第六低性能交换模块;第一高性能交换模块连接第五低性能交换模块,第二高性能交换模块连接第六低性能交换模块。如图35所示,本申请实施例提供的方法,包括:
步骤S351、第一高性能交换模块将从第三低性能交换模块接收的数据发送给第二低性能交换模块,第一高性能交换模块将从第二低性能交换模块接收的数据发送给第三低性能交换模块。
步骤S352、第二高性能交换模块将从第四低性能交换模块接收的数据发送给第一低性能交换模块,第二高性能交换模块将从第一低性能交换模块接收的数据发送给第四低性能交换模块。
步骤S353、第一高性能交换模块将从第五低性能交换模块接收的数据发送给第二低性能交换模块。
步骤S354、第一高性能交换模块将从第二低性能交换模块接收的数据发送给第五低性能交换模块。
其中,步骤S351、步骤S352、步骤S353、以及步骤S354的执行次序不做限定。
示例性地,本实施例中的各模块的原理、以及本实施例的方法原理可以参见图9-图18所示实施例的描述。
在可选的一种实施方式中,在图34所示实施例的基础上,数据通信系统还包括第五机箱,第五机箱包括第三高性能交换模块、第七低性能交换模块和第八低性能交换模块,第一机箱还包括第九低性能交换模块,第二机箱还包括第十低性能交换模块;
第三高性能交换模块连接第九低性能交换模块和第十低性能交换模块,第一高性能交换模块连接第七低性能交换模块,第二高性能交换模块连接第八低性能交换模块;
第三高性能交换模块用于连接待加入通信系统的第三机箱中的第十一低性能交换模块。
本申请实施例提供的方法,还包括:
步骤S361、第三高性能交换模块将从第十一低性能交换模块接收的数据发送给第九低性能交换模块和第十低性能交换模块中的一个,将从第九低性能交换模块和第十低性能交换模块中的一个接收的数据发送给第十一低性能交换模块。
步骤S362、第一高性能交换模块将从第二低性能交换模块接收的数据发送给第七低性能交换模块。
步骤S363、第一高性能交换模块将从第七低性能交换模块接收的数据发送给第二低性 能交换模块。
步骤S364、第一高性能交换模块将从第三低性能交换模块接收的数据发送给第二低性能交换模块和第七低性能交换模块中的一个。
步骤S365、第一高性能交换模块将从第二低性能交换模块和第七低性能交换模块中的一个接收的数据发送给第三低性能交换模块。
其中,上述各步骤的执行次序不做限定。
可选的,数据通信系统还包括第六机箱,第六机箱包括第十二低性能交换模块、第十三低性能交换模块和第十四低性能交换模块;第十二低性能交换模块连接第一高性能交换模块,第十三低性能交换模块连接第二高性能交换模块,第十四低性能交换模块连接第三高性能交换模块。则本申请实施例提供的方法,还包括:
步骤S366、第一高性能交换模块将从第十二低性能交换模块接收的数据发送给第二低性能交换模块和第七低性能交换模块中的一个。
步骤S367、第一高性能交换模块将从第二低性能交换模块和第七低性能交换模块中的一个接收的数据发送给第十二低性能交换模块。
其中,上述任一步骤的执行次序不做限定。
示例性地,本实施例中的各模块的原理、以及本实施例的方法原理可以参见图19-图23所示实施例的描述。
图36为本申请实施例提供的另一种应用于数据通信系统的数据通信方法,数据通信系统,包括:第一机箱和第二机箱;第一机箱包括第一高性能交换模块、第一业务转发模块和第二业务转发模块,第一业务转发模块和第二业务转发模块用于与数据通信系统外的设备通信;第二机箱包括第一低性能交换模块;第一高性能交换模块连接第一低性能交换模块;第一高性能交换模块用于连接待加入通信系统的第三机箱中的第二低性能交换模块。本实施例提供的方法包括:
步骤S371、第一高性能交换模块将从第一业务转发模块接收的数据发送给第一低性能交换模块。
步骤S372、第一高性能交换模块将从第一低性能交换模块接收的数据发送给第二业务转发模块。
步骤S373、第一高性能交换模块将从第二低性能交换模块接收的数据发送给第一低性能交换模块、第一业务转发模块和第二业务转发模块三者中的一个。
步骤S374、第一高性能交换模块将从第一低性能交换模块、第一业务转发模块和第二业务转发模块三者中的一个接收的数据发送给第二低性能交换模块。
其中,步骤S371—步骤374的执行次序不做限定。
示例性地,本实施例中的各模块的原理、以及本实施例的方法原理可以参见图24-图33所示实施例的描述。
需要说明的是,本申请中的模块S、模块R、以及模块X只是逻辑上的抽象概念,在工程实现上,可以结合工程可实现性,系统可靠性等设计要求,可以对上述模块进行细分、整合、或者交叉融合。例如,可以通过一个集成电路芯片或电路模块构建出1个模块S,也 可以通过多个集成电路芯片或电路模块共同构建出1个模块S,可以通过一个集成电路芯片或电路模块构建出1个模块R,也可以通过多个集成电路芯片或电路模块共同构建出1个模块R,可以通过一个集成电路芯片或电路模块构建出1个模块X,也可以通过多个集成电路芯片或电路模块共同构建出1个模块X。例如,将一个或多个模块S和/或一个或多个模块R集成在一个集成电路芯片或一个电路模块里。例如,模块S采用多个交换集成电路芯片或电路模块,模块R采用1个交换集成电路芯片或电路模块。例如将一个或多个模块S、一个或多个模块R和/或一个或多个模块X集成在一个集成电路芯片或一个电路模块里。举例来说,模块S或模块R采用拥有多个串行器/解串器(serializer/deserializer,serdes)数据通道的交换集成电路芯片,从而可以将任意serdes数据通道输入的符合格式要求的待交换数据信元、基于信元头信息等等,交换到任意serdes数据通道进行输出。
本申请中判断交换目的地例如根据信元头来判断,信元头中例如包括包括用于唯一识别目的模块的目的标识,目的标识例如包括框号、槽位号和业务转发模块号等。
本申请中的上述框间互连接口和框内互连接口包括但不限于印制电路板(printed circuit board,PCB)接口、电缆接口、光缆接口、无线接口等。框间互连接口和框内互连接口所采用的连接介质包括但不限于PCB、电缆、光缆或直接采用无线连接等。
本申请中第一类别机箱中的S根据预设方案,预留用于接入第二类别机箱的R的接口的数量。预设方案包括通信系统可以支持接入的第二类别机箱的最高数量,预设方案可以根据集群系统规模、网络互连需求和性能需求等设置。
图37为本申请实施例提供的其它再一种数据通信系统中的多框集群系统的结构示意图,如图37所示,本申请实施例提供的数据通信系统,可以用于执行图7-8所示实施例中数据通信系统的动作或步骤,还可以用于执行图9-18所示实施例中数据通信系统的动作或步骤,还可以用于执行图19-20所示实施例中设备的数据通信系统的的动作或步骤,还可以用于执行图21-23所示实施例中设备的数据通信系统的的动作或步骤,本申请实施例提供的数据通信系统,包括第一机箱A1和第二机箱A2,还提供了待加入到数据通信系统中的第三机箱B1。
对于每一个上述第一机箱,每一个第一机箱具体包括:处理器2701a和存储器2702a。
存储器2702a,用于存储计算机程序。
处理器2701a,用于执行存储器2702a中存储的计算机程序,以实现执行图7-23所示实施例中A类业务机箱的各模块的动作,或实现执行图34-35所示实施例中A类业务机箱的动作或步骤,不再赘述。
可选的,第一机箱还可以包括总线2703a。其中,处理器2701a、以及存储器2702a可以通过总线2703a相互连接;总线2703a可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。上述总线2703a可以分为地址总线、数据总线和控制总线等。为便于表示,图37中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
对于每一个上述第二机箱,每一个第二机箱具体包括:处理器2701b和存储器2702b。
存储器2702b,用于存储计算机程序。
处理器2701b,用于执行存储器2702b中存储的计算机程序,以实现执行图7-23所示实施例中B类业务机箱的各模块的动作,或实现执行图34-35所示实施例中B类业务机箱的动作或步骤,不再赘述。
可选的,第二机箱还可以包括总线2703b。其中,处理器2701b、以及存储器2702b可以通过总线2703b相互连接;总线2703ba可以是PCI总线或EISA总线等。上述总线2703b可以分为地址总线、数据总线和控制总线等。为便于表示,图37中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,上述各实施例之间可以相互参考和借鉴,相同或相似的步骤以及名词均不再一一赘述。
或者,以上各个模块的部分或全部也可以通过集成电路的形式内嵌于该SMF实体的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。即以上这些模块可以被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
图38为本申请实施例提供的其它有一种数据通信系统中的多框集群系统的结构示意图,如图38所示,本申请实施例提供的数据通信系统,可以用于执行图24-33所示实施例中数据通信系统的动作或步骤,本申请实施例提供的数据通信系统,包括第一机箱C1和第二机箱D1,还提供了待加入到数据通信系统中的第三机箱D2。
其中,第一机箱C1为C类业务机箱,第二机箱D1和第三机箱D2都是D类业务机箱。
对于每一个上述C类业务机箱,每一个C类业务机箱具体包括:处理器2801a和存储器2802a。
存储器2802a,用于存储计算机程序。
处理器2801a,用于执行存储器2802a中存储的计算机程序,以实现执行图24-33所示实施例中C类业务机箱的各模块的动作,或实现执行图36所示实施例中C类业务机箱的动作或步骤,不再赘述。
可选的,C类业务机箱还可以包括总线2803a。其中,处理器2801a、以及存储器2802a可以通过总线2803a相互连接;总线2803a可以是PCI总线或EISA总线等。上述总线2803a可以分为地址总线、数据总线和控制总线等。为便于表示,图38中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
对于每一个上述D类业务机箱,每一个D类业务机箱具体包括:处理器2801b和存储器2802b。
存储器2802b,用于存储计算机程序。
处理器2801b,用于执行存储器2802b中存储的计算机程序,以实现执行图24-33所示实施例中D类业务机箱的各模块的动作,或实现执行图36所示实施例中D类业务机箱的动作或步骤,不再赘述。
可选的,24-33可以包括总线2803b。其中,处理器2801b、以及存储器2802b可以通过总线2803b相互连接;总线2803ba可以是PCI总线或EISA总线等。上述总线2803b可以分为地址总线、数据总线和控制总线等。为便于表示,图38中仅用一条粗线表示,但并 不表示仅有一根总线或一种类型的总线。
在本申请实施例中,上述各实施例之间可以相互参考和借鉴,相同或相似的步骤以及名词均不再一一赘述。
或者,以上各个模块的部分或全部也可以通过集成电路的形式内嵌于该终端设备的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。即以上这些模块可以被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如,同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。

Claims (22)

  1. 一种数据通信系统,其特征在于,包括:第一机箱和第二机箱;
    所述第一机箱包括第一高性能交换模块和第一低性能交换模块;
    所述第二机箱包括第二高性能交换模块和第二低性能交换模块;
    所述第一高性能交换模块连接所述第二低性能交换模块,所述第一低性能交换模块连接所述第二高性能交换模块;
    所述第一高性能交换模块用于连接待加入所述通信系统的第三机箱中的第三低性能交换模块,所述第二高性能交换模块用于连接所述待加入所述通信系统的第三机箱中的第四低性能交换模块。
  2. 根据权利要求1所述的数据通信系统,其特征在于,所述数据通信系统还包括第四机箱,所述第四机箱包括第五低性能交换模块和第六低性能交换模块;
    所述第一高性能交换模块连接所述第五低性能交换模块,所述第二高性能交换模块连接所述第六低性能交换模块。
  3. 根据权利要求1所述的数据通信系统,其特征在于,所述数据通信系统还包括第五机箱,所述第五机箱包括第三高性能交换模块、第七低性能交换模块和第八低性能交换模块,所述第一机箱还包括第九低性能交换模块,所述第二机箱还包括第十低性能交换模块;
    所述第三高性能交换模块连接所述第九低性能交换模块和所述第十低性能交换模块,所述第一高性能交换模块连接所述第七低性能交换模块,所述第二高性能交换模块连接所述第八低性能交换模块;
    所述第三高性能交换模块用于连接所述待加入所述通信系统的第三机箱中的第十一低性能交换模块。
  4. 根据权利要求3所述的数据通信系统,其特征在于,所述数据通信系统还包括第六机箱,所述第六机箱包括第十二低性能交换模块、第十三低性能交换模块和第十四低性能交换模块;
    第十二低性能交换模块连接所述第一高性能交换模块,所述第十三低性能交换模块连接所述第二高性能交换模块,所述第十四低性能交换模块连接所述第三高性能交换模块。
  5. 根据权利要求1-4任一项所述的数据通信系统,其特征在于,所述第一机箱还包括第一业务转发模块和第二业务转发模块,所述第一业务转发模块和所述第二业务转发模块用于与所述数据通信系统外的设备通信,所述第一低性能交换模块用于:
    将从所述第一业务转发模块接收的数据发送给所述第二高性能交换模块;
    将从所述第二高性能交换模块接收的数据发送给所述第二业务转发模块。
  6. 根据权利要求1-5任一项所述的数据通信系统,其特征在于,所述第一机箱还包括第三业务转发模块和第四业务转发模块,所述第三业务转发模块和所述第四业务转发模块用于与所述数据通信系统外的设备通信,所述第一高性能交换模块用于:
    将从所述第三业务转发模块接收的数据发送给所述第二低性能交换模块;
    将从所述第二低性能交换模块接收的数据发送给所述第四业务转发模块。
  7. 根据权利要求1所述的数据通信系统,其特征在于,所述第一高性能交换模块用于:
    在所述第三机箱加入所述通信系统后,将从所述第三低性能交换模块接收的数据发送给所述第二低性能交换模块;
    在所述第三机箱加入所述通信系统后,将从所述第二低性能交换模块接收的数据发送给所述第三低性能交换模块。
  8. 根据权利要求2所述的数据通信系统,其特征在于,所述第一高性能交换模块用于:
    将从所述第五低性能交换模块接收的数据发送给所述第二低性能交换模块;
    将从所述第二低性能交换模块接收的数据发送给所述第五低性能交换模块。
  9. 根据权利要求3所述的数据通信系统,其特征在于,所述第一高性能交换模块用于:
    将从所述第二低性能交换模块接收的数据发送给所述第七低性能交换模块;
    将从所述第七低性能交换模块接收的数据发送给所述第二低性能交换模块;
    在所述第三机箱加入所述通信系统后,将从所述第三低性能交换模块接收的数据发送给所述第二低性能交换模块和所述第七低性能交换模块中的一个;
    在所述第三机箱加入所述通信系统后,将从所述第二低性能交换模块和所述第七低性能交换模块中的一个接收的数据发送给所述第三低性能交换模块。
  10. 根据权利要求4所述的数据通信系统,其特征在于,所述第一高性能交换模块用于:
    将从所述第十二低性能交换模块接收的数据发送给所述第二低性能交换模块和所述第七低性能交换模块中的一个;
    将从所述第二低性能交换模块和所述第七低性能交换模块中的一个接收的数据发送给所述第十二低性能交换模块。
  11. 一种数据通信系统,其特征在于,包括:第一机箱和第二机箱;
    所述第一机箱包括第一高性能交换模块、第一业务转发模块和第二业务转发模块,所述第一业务转发模块和所述第二业务转发模块用于与所述数据通信系统外的设备通信;
    所述第二机箱包括第一低性能交换模块;
    所述第一高性能交换模块连接所述第一低性能交换模块;
    所述第一高性能交换模块用于:将从所述第一业务转发模块接收的数据发送给所述第一低性能交换模块;将从所述第一低性能交换模块接收的数据发送给所述第二业务转发模块;
    所述第一高性能交换模块还用于:连接待加入所述通信系统的第三机箱中的第二低性能交换模块。
  12. 根据权利要求11所述的数据通信系统,其特征在于,所述第一高性能交换模块还用于:
    在所述第三机箱加入所述通信系统后,将从所述第二低性能交换模块接收的数据发送给所述第一低性能交换模块、所述第一业务转发模块和所述第二业务转发模块三者中的一个;
    在所述第三机箱加入所述通信系统后,将从所述第一低性能交换模块、所述第一业务转发模块和所述第二业务转发模块三者中的一个接收的数据发送给所述第二低性能交换模块。
  13. 一种应用于数据通信系统的数据通信方法,其特征在于,所述数据通信系统包括第一机箱和第二机箱;所述第一机箱包括第一高性能交换模块和第一低性能交换模块;所述第二机箱包括第二高性能交换模块和第二低性能交换模块;所述第一高性能交换模块连 接所述第二低性能交换模块,所述第一低性能交换模块连接所述第二高性能交换模块;所述第一高性能交换模块用于连接待加入所述通信系统的第三机箱中的第三低性能交换模块,所述第二高性能交换模块用于连接所述待加入所述通信系统的第三机箱中的第四低性能交换模块;所述方法包括:
    所述第一高性能交换模块将从所述第三低性能交换模块接收的数据发送给所述第二低性能交换模块,所述第一高性能交换模块将从所述第二低性能交换模块接收的数据发送给所述第三低性能交换模块;
    所述第二高性能交换模块将从所述第四低性能交换模块接收的数据发送给所述第一低性能交换模块,所述第二高性能交换模块将从所述第一低性能交换模块接收的数据发送给所述第四低性能交换模块。
  14. 根据权利要求13所述的方法,其特征在于,所述数据通信系统还包括第四机箱,所述第四机箱包括第五低性能交换模块和第六低性能交换模块;
    所述第一高性能交换模块连接所述第五低性能交换模块,所述第二高性能交换模块连接所述第六低性能交换模块。
  15. 根据权利要求13所述的方法,其特征在于,所述数据通信系统还包括第五机箱,所述第五机箱包括第三高性能交换模块、第七低性能交换模块和第八低性能交换模块,所述第一机箱还包括第九低性能交换模块,所述第二机箱还包括第十低性能交换模块;
    所述第三高性能交换模块连接所述第九低性能交换模块和所述第十低性能交换模块,所述第一高性能交换模块连接所述第七低性能交换模块,所述第二高性能交换模块连接所述第八低性能交换模块;
    所述第三高性能交换模块用于连接所述待加入所述通信系统的第三机箱中的第十一低性能交换模块;
    所述方法,还包括:
    所述第三高性能交换模块将从所述第十一低性能交换模块接收的数据发送给所述第九低性能交换模块和所述第十低性能交换模块中的一个,将从所述第九低性能交换模块和所述第十低性能交换模块中的一个接收的数据发送给所述第十一低性能交换模块。
  16. 根据权利要求15所述的方法,其特征在于,所述数据通信系统还包括第六机箱,所述第六机箱包括第十二低性能交换模块、第十三低性能交换模块和第十四低性能交换模块;
    第十二低性能交换模块连接所述第一高性能交换模块,所述第十三低性能交换模块连接所述第二高性能交换模块,所述第十四低性能交换模块连接所述第三高性能交换模块。
  17. 根据权利要求13-16中任一所述的方法,其特征在于,所述第一机箱还包括第一业务转发模块和第二业务转发模块,所述第一业务转发模块和所述第二业务转发模块用于与所述数据通信系统外的设备通信;所述方法,还包括:
    所述第一低性能交换模块将从所述第一业务转发模块接收的数据发送给所述第二高性能交换模块;
    所述第一低性能交换模块将从所述第二高性能交换模块接收的数据发送给所述第二业务转发模块。
  18. 根据权利要求13-17中任一所述的方法,其特征在于,所述第一机箱还包括第三业 务转发模块和第四业务转发模块,所述第三业务转发模块和所述第四业务转发模块用于与所述数据通信系统外的设备通信;所述方法,还包括:
    所述第一高性能交换模块将从所述第三业务转发模块接收的数据发送给所述第二低性能交换模块;
    所述第二低性能交换模块将从所述第二高性能交换模块接收的数据发送给所述第四业务转发模块。
  19. 根据权利要求14所述的方法,其特征在于,所述方法,还包括:
    所述第一高性能交换模块将从所述第五低性能交换模块接收的数据发送给所述第二低性能交换模块;
    所述第一高性能交换模块将从所述第二低性能交换模块接收的数据发送给所述第五低性能交换模块。
  20. 根据权利要求15所述的方法,其特征在于,所述方法,还包括:
    所述第一高性能交换模块将从所述第二低性能交换模块接收的数据发送给所述第七低性能交换模块;
    所述第一高性能交换模块将从所述第七低性能交换模块接收的数据发送给所述第二低性能交换模块;
    所述第一高性能交换模块将从所述第三低性能交换模块接收的数据发送给所述第二低性能交换模块和所述第七低性能交换模块中的一个;
    所述第一高性能交换模块将从所述第二低性能交换模块和所述第七低性能交换模块中的一个接收的数据发送给所述第三低性能交换模块。
  21. 根据权利要求16所述的方法,其特征在于,所述方法,还包括:
    所述第一高性能交换模块将从所述第十二低性能交换模块接收的数据发送给所述第二低性能交换模块和所述第七低性能交换模块中的一个;
    所述第一高性能交换模块将从所述第二低性能交换模块和所述第七低性能交换模块中的一个接收的数据发送给所述第十二低性能交换模块。
  22. 一种应用于数据通信系统的数据通信方法,其特征在于,所述数据通信系统,包括:第一机箱和第二机箱;所述第一机箱包括第一高性能交换模块、第一业务转发模块和第二业务转发模块,所述第一业务转发模块和所述第二业务转发模块用于与所述数据通信系统外的设备通信;所述第二机箱包括第一低性能交换模块;所述第一高性能交换模块连接所述第一低性能交换模块;所述第一高性能交换模块用于连接待加入所述通信系统的第三机箱中的第二低性能交换模块;所述方法包括:
    所述第一高性能交换模块将从所述第一业务转发模块接收的数据发送给所述第一低性能交换模块;
    所述第一高性能交换模块将从所述第一低性能交换模块接收的数据发送给所述第二业务转发模块;
    所述第一高性能交换模块将从所述第二低性能交换模块接收的数据发送给所述第一低性能交换模块、所述第一业务转发模块和所述第二业务转发模块三者中的一个;
    所述第一高性能交换模块将从所述第一低性能交换模块、所述第一业务转发模块和所述第二业务转发模块三者中的一个接收的数据发送给所述第二低性能交换模块。
PCT/CN2019/079815 2018-04-03 2019-03-27 数据通信系统和方法 WO2019192363A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020554079A JP7111829B2 (ja) 2018-04-03 2019-03-27 データ通信システム及び方法
EP19781260.5A EP3767903B1 (en) 2018-04-03 2019-03-27 Data communication system and method
US17/035,455 US11265265B2 (en) 2018-04-03 2020-09-28 Data communications system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810291272.X 2018-04-03
CN201810291272.XA CN108768899B (zh) 2018-04-03 2018-04-03 数据通信系统和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/035,455 Continuation US11265265B2 (en) 2018-04-03 2020-09-28 Data communications system and method

Publications (1)

Publication Number Publication Date
WO2019192363A1 true WO2019192363A1 (zh) 2019-10-10

Family

ID=63981086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079815 WO2019192363A1 (zh) 2018-04-03 2019-03-27 数据通信系统和方法

Country Status (5)

Country Link
US (1) US11265265B2 (zh)
EP (1) EP3767903B1 (zh)
JP (1) JP7111829B2 (zh)
CN (2) CN111865837B (zh)
WO (1) WO2019192363A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865837B (zh) 2018-04-03 2024-04-12 华为技术有限公司 数据通信系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1209005A (zh) * 1997-06-18 1999-02-24 株式会社日立制作所 传送装置及其扩展方法
CN102273150A (zh) * 2010-03-29 2011-12-07 华为技术有限公司 集群路由器和集群路由方法
US20160315881A1 (en) * 2013-03-12 2016-10-27 Omega Switching Systems, Llc Indefinitely expandable high-capacity data switch
CN108768899A (zh) * 2018-04-03 2018-11-06 华为技术有限公司 数据通信系统和方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751596A (en) 1995-07-27 1998-05-12 Vlsi Technology, Inc. Automated system and method for identifying critical timing paths in integrated circuit layouts for use with automated circuit layout system
US6826195B1 (en) * 1999-12-28 2004-11-30 Bigband Networks Bas, Inc. System and process for high-availability, direct, flexible and scalable switching of data packets in broadband networks
US20060203820A1 (en) 2004-01-16 2006-09-14 Marc Coluccio Method and system for communicating and isolating packetized data through a plurality of last-mile carriers to form a multi-node intranet
US7872989B1 (en) * 2004-07-12 2011-01-18 Habanero Holdings, Inc. Full mesh optimization for spanning tree protocol
US7873321B2 (en) 2005-03-29 2011-01-18 Qualcomm Incorporated Apparatus and methods for determining network access performance of a wireless device
CN100420217C (zh) * 2005-06-28 2008-09-17 华为技术有限公司 框间互连的通信系统及其数据交换方法
US7552262B1 (en) * 2005-08-31 2009-06-23 Juniper Networks, Inc. Integration of an operative standalone router into a multi-chassis router
US8189575B2 (en) * 2006-03-13 2012-05-29 Rockstar Bidco, L.P. Modular scalable switch architecture
CN101098238B (zh) * 2007-06-29 2010-12-22 华为技术有限公司 一种数据通信系统、交换网板及方法
CN101262355A (zh) * 2008-04-18 2008-09-10 北京锐安科技有限公司 一种数据交换处理板及其相应交换处理系统
CN101442442B (zh) * 2008-12-17 2011-01-19 华为技术有限公司 管理装置、控制装置、管理控制装置及路由器系统
CN101447941A (zh) * 2008-12-25 2009-06-03 华为技术有限公司 一种多机框互连系统及机框连接方法
US9225666B1 (en) * 2009-03-31 2015-12-29 Juniper Networks, Inc. Distributed multi-stage switch fabric
US8495194B1 (en) * 2010-06-29 2013-07-23 Amazon Technologies, Inc. Connecting network deployment units
JP5867366B2 (ja) 2012-11-08 2016-02-24 日立金属株式会社 通信システムおよびネットワーク中継装置
EP2940938B1 (en) * 2013-02-06 2019-11-27 Huawei Technologies Co., Ltd. Method and device for establishing multicast data channel in network virtualization system
EP3008861B1 (en) 2013-06-14 2017-12-06 Microsoft Technology Licensing, LLC Fault tolerant and load balanced routing
US9716669B2 (en) * 2014-12-04 2017-07-25 Juniper Networks, Inc. Multi-chassis switch having a modular center stage chassis
CN105119849B (zh) * 2015-07-21 2018-07-31 浪潮(北京)电子信息产业有限公司 一种交换机架构及应用于交换机架构的数据管理方法
CN106789679B (zh) * 2015-11-24 2020-02-21 新华三技术有限公司 一种线卡框、多框集群路由器、选路及报文处理方法
CN106789753B (zh) * 2015-11-24 2020-06-26 新华三技术有限公司 一种线卡框、多框集群路由器、及报文处理方法
CN105490874B (zh) * 2015-11-26 2019-06-14 福建星网锐捷网络有限公司 刀片交换机系统、机架式网络设备及刀片交换机测试方法
US10581726B2 (en) * 2016-03-15 2020-03-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for supporting bidirectional forwarding (BFD) over multi-chassis link aggregation group (MC-LAG) in internet protocol (IP) multiprotocol label switching (MPLS) networks
CN106656804B (zh) * 2017-02-05 2019-11-19 北京中航通用科技有限公司 低延时的报文转发方法、装置及交换机
US10581688B2 (en) * 2017-06-19 2020-03-03 Quanta Computer Inc. Methods for automatically configuring multiple chassis link aggregation group (MC-LAG)
US20190182202A1 (en) * 2017-12-12 2019-06-13 Nokia Solutions And Networks Oy System and method for route optimization in a multichasiss link aggregation configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1209005A (zh) * 1997-06-18 1999-02-24 株式会社日立制作所 传送装置及其扩展方法
CN102273150A (zh) * 2010-03-29 2011-12-07 华为技术有限公司 集群路由器和集群路由方法
US20160315881A1 (en) * 2013-03-12 2016-10-27 Omega Switching Systems, Llc Indefinitely expandable high-capacity data switch
CN108768899A (zh) * 2018-04-03 2018-11-06 华为技术有限公司 数据通信系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767903A4 *

Also Published As

Publication number Publication date
EP3767903A1 (en) 2021-01-20
US20210029058A1 (en) 2021-01-28
US11265265B2 (en) 2022-03-01
EP3767903B1 (en) 2023-06-21
CN108768899A (zh) 2018-11-06
CN111865836A (zh) 2020-10-30
EP3767903A4 (en) 2021-04-07
CN111865837B (zh) 2024-04-12
CN108768899B (zh) 2020-07-07
CN111865837A (zh) 2020-10-30
JP2021517782A (ja) 2021-07-26
JP7111829B2 (ja) 2022-08-02

Similar Documents

Publication Publication Date Title
CN101052013B (zh) 一种网络设备内部管理通道实现的方法及系统
CN101459536B (zh) 端口配置方法和交换设备
EP3888280B1 (en) Methods, apparatus and computer-readable mediums relating to configuration of redundant paths
WO2011063740A1 (zh) 基站、网络系统及实现方法
US8411701B2 (en) Inter-working of EFM-OAM and CFM-OAM for mobile backhaul networks
WO2010048875A1 (zh) 一种集群系统扩容方法、装置及集群系统
WO2024016825A1 (zh) 一种通信芯片及数据交换装置
WO2019192363A1 (zh) 数据通信系统和方法
CN102710496B (zh) 用于多个服务器间的数据传输系统、数据接口装置及数据传输方法
EP4325800A1 (en) Packet forwarding method and apparatus
CN111865836B (zh) 数据通信系统和方法
WO2018127235A1 (zh) Ue空闲态处理方法、移动性管理mm功能实体及会话管理sm功能实体
WO2008128464A1 (fr) Dispositif et procédé pour réaliser le transfert d'un flux unique par de multiples unités de traitement en réseau
US20140133483A1 (en) Distributed Switch Architecture Using Permutation Switching
WO2016197991A1 (zh) 基站
CN115297065B (zh) 处理设备通信互连方法、装置、计算机设备和存储介质
EP4175253A1 (en) Queue scheduling method, device, and system
US20240176670A1 (en) Virtual distributed antenna system enhanced hyperscale virtualization
WO2023019874A1 (zh) 分布式业务转发方法、装置、系统、存储介质及电子设备
US20240195731A1 (en) Software defined network controller, network device, method and apparatus of determining resources
WO2022170797A1 (zh) 一种通信方法及装置
WO2024098879A1 (zh) 信息传输方法、装置、终端及网络设备
CN102118818B (zh) 天基路由转发平台和天基路由交换系统
WO2023246404A1 (zh) 一种通信方法及装置
EP4170972A1 (en) Message forwarding method, device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554079

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019781260

Country of ref document: EP

Effective date: 20201012