WO2019191872A1 - 监听方法、参数配置方法以及装置、通信系统 - Google Patents

监听方法、参数配置方法以及装置、通信系统 Download PDF

Info

Publication number
WO2019191872A1
WO2019191872A1 PCT/CN2018/081626 CN2018081626W WO2019191872A1 WO 2019191872 A1 WO2019191872 A1 WO 2019191872A1 CN 2018081626 W CN2018081626 W CN 2018081626W WO 2019191872 A1 WO2019191872 A1 WO 2019191872A1
Authority
WO
WIPO (PCT)
Prior art keywords
configurations
monitoring result
monitoring
terminal device
radio link
Prior art date
Application number
PCT/CN2018/081626
Other languages
English (en)
French (fr)
Inventor
贾美艺
史玉龙
李国荣
王昕�
Original Assignee
富士通株式会社
贾美艺
史玉龙
李国荣
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 贾美艺, 史玉龙, 李国荣, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2018/081626 priority Critical patent/WO2019191872A1/zh
Publication of WO2019191872A1 publication Critical patent/WO2019191872A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present invention relates to the field of communications, and in particular, to a monitoring method, a parameter configuration method, a device, and a communication system.
  • radio link monitoring can be used to monitor the downlink radio link quality of a special cell through which the terminal device passes.
  • the link quality can be monitored, including cell-level radio link monitoring and beam-level radio link monitoring.
  • the terminal device compares the estimated downlink radio link quality with the out-of- synchronization threshold Q out and the synchronization threshold Q in respectively, when the radio link quality is worse than the out-of-step threshold Q out , Generating an OOS indication to generate an IS indication when the radio link quality is better than the synchronization threshold Q in ; for radio link monitoring at the beam level, when the radio link quality is worse than the beam failure threshold A beam failure instance is generated; and the generated monitoring result is further processed to determine whether a radio link failure (RLF) or a beam failure recovery needs to be initiated. After the RLF occurs, the terminal device initiates cell selection and performs connection reestablishment.
  • RLF radio link failure
  • mMTC enhanced mobile broadband
  • URLLC Ultra-Reliable and Low Latency Communications
  • the target is 0.5ms for uplink and downlink.
  • the reliability requirement for one transmission of a data packet is an error rate of 10 -5 for 32 bytes, and the delay requirement is 1 ms for user plane delay.
  • the configuration includes a threshold for judging the radio link monitoring result, regardless of the threshold value, the wireless chain is triggered whenever a wireless problem occurs.
  • the road fails, which leads to unnecessary cell selection or connection re-establishment, which leads to service interruption.
  • the beam failure recovery process also causes service interruption, in the case where there are many different needs of the service or possible (especially When the URLLC service is included, the above monitoring mechanism cannot guarantee the normal operation of different demand services.
  • the embodiment of the present invention provides a monitoring method, a parameter configuration method, a device, and a communication system, thereby reducing unnecessary cell selection and connection reestablishment, reducing service interruption, and particularly ensuring reliable operation of the URLLC service.
  • a listening method comprising:
  • each of the configurations includes related parameters of radio link monitoring
  • a parameter configuration method includes:
  • the terminal device transmits at least two configurations for radio link snooping, wherein each of the configurations includes relevant parameters for radio link snooping.
  • a monitoring apparatus comprising:
  • a monitoring unit configured to perform radio link monitoring according to at least two configurations, wherein each of the configurations includes a related parameter of radio link monitoring;
  • a generating unit is configured to generate a listening result corresponding to at least two configurations respectively.
  • a parameter configuration apparatus wherein the apparatus comprises:
  • a first sending unit configured to send, to the terminal device, at least two configurations for radio link monitoring, where each of the configurations includes a related parameter of radio link monitoring.
  • a communication system comprising: a terminal device comprising the monitoring device of the third aspect.
  • a communication system comprising: a network device, the network device comprising the parameter configuration device of the fourth aspect.
  • the beneficial effects of the embodiments of the present invention are: performing radio link monitoring according to at least two configurations, and generating a monitoring result corresponding to at least two configurations, thereby reducing unnecessary cell selection and connection reestablishment, and reducing service interruption, especially Guarantee the reliable operation of the URLLC service.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • Embodiment 3 is a schematic diagram of monitoring according to at least two configurations in Embodiment 1 of the present invention.
  • FIG. 6 is a flowchart of a parameter configuration method in Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a monitoring device in Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of an embodiment of a monitoring device according to Embodiment 3 of the present invention.
  • FIGS 9-10 are schematic diagrams of two implementations of the first processing unit 804 in Embodiment 3 of the present invention.
  • FIG. 11 is a schematic diagram of an embodiment of a monitoring device according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic diagram showing the structure of a terminal device according to Embodiment 4 of the present invention.
  • FIG. 13 is a schematic diagram of a parameter configuration apparatus in Embodiment 5 of the present invention.
  • Figure 14 is a block diagram showing the structure of a network device in Embodiment 6 of the present invention.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising,” “comprising,” “having,” or “an” are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the term “communication network” or “wireless communication network” may refer to a network that conforms to any communication standard such as Long Term Evolution (LTE), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and the like.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system may be performed according to any phase of the communication protocol, and may include, for example but not limited to, the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and future. 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • the term "network device” refers to, for example, a device in a communication system that accesses a terminal device to a communication network and provides a service for the terminal device.
  • the network device may include, but is not limited to, a device: a base station (BS, a base station), an access point (AP, an Access Point), a transmission and reception point (TRP), a broadcast transmitter, and a mobility management entity (MME, Mobile). Management Entity), gateway, server, Radio Network Controller (RNC), Base Station Controller (BSC), and so on.
  • BS base station
  • AP access point
  • TRP transmission and reception point
  • MME mobility management entity
  • Management Entity gateway
  • server Radio Network Controller
  • BSC Base Station Controller
  • the base station may include, but is not limited to, a Node B (NodeB or NB), an evolved Node B (eNodeB or eNB), and a 5G base station (gNB), and the like, and may further include a Remote Radio Head (RRH). , Remote Radio Unit (RRU), relay or low power node (eg femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • base station may include some or all of their functions, and each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE) or “Terminal Equipment” (TE) refers to, for example, a device that accesses a communication network through a network device and receives a network service.
  • the terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and the like.
  • the terminal device may include but is not limited to the following devices: a cellular phone (Cellular Phone), a personal digital assistant (PDA, Personal Digital Assistant), a wireless modem, a wireless communication device, a handheld device, a machine type communication device, a laptop computer, Cordless phones, smart phones, smart watches, digital cameras, and more.
  • a cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem Wireless Fidelity
  • a wireless communication device a handheld device
  • a machine type communication device a laptop computer
  • Cordless phones smart phones, smart watches, digital cameras, and more.
  • the terminal device may be a device or device that performs monitoring or measurement, and may include, but is not limited to, a Machine Type Communication (MTC) terminal.
  • MTC Machine Type Communication
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the user equipment and the network device are taken as an example.
  • the communication system 100 may include a network device 101 and a terminal device 102.
  • FIG. 1 is only described by taking one terminal device and one network device as an example, but the embodiment of the present invention is not limited thereto.
  • an existing service or a service that can be implemented in the future can be performed between the network device 101 and the terminal device 102.
  • these services may include, but are not limited to, enhanced mobile broadband (eMBB), massive machine type communication (mMTC), and high reliability low latency communication (URLLC, Ultra-Reliable and Low).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC Ultra-Reliable and Low
  • -Latency Communication etc.
  • FIG. 2 is a flowchart of the monitoring method in the embodiment, which is applied to the terminal device side. As shown in FIG. 2, the method includes:
  • Step 201 Perform radio link monitoring according to at least two configurations, where each configuration includes related parameters of radio link monitoring;
  • Step 202 Generate monitoring results corresponding to at least two configurations respectively.
  • the terminal device performs radio link monitoring according to the at least two configurations to obtain downlink radio link quality in each configuration, where the radio link monitoring includes cell level radio.
  • the radio link monitoring includes cell level radio.
  • cell-level radio link monitoring is equivalent to physical layer problem detection.
  • Beam-level radio link monitoring is equivalent to beam failure detection.
  • the related parameters of the radio link monitoring included in each configuration may include: determining a threshold of a cell level/beam level radio link monitoring result, and/or for a cell level/beam level radio link.
  • the related parameter types in the at least two configurations are the same, but the specific values of the parameters are not completely the same (may be partially different or different), and in step 202, the downlink wireless link acquired according to the radio link monitoring in step 201 is obtained.
  • the quality may generate a monitoring result corresponding to at least two configurations respectively, wherein the monitoring result includes: a cell-level monitoring result: a synchronization indication, an out-of-synchronization indication, or a beam-level monitoring result: a beam failure instance.
  • the relevant parameters of the radio link monitoring included in the configuration are cell level parameters, for example, determining a cell level radio chain.
  • the generated monitoring result is a cell-level monitoring result, such as a synchronization indication or an out-of-synchronization indication; when the wireless link monitoring performed in step 201 is a beam-level wireless link monitoring, the wireless link monitoring included in the configuration is related.
  • the parameters are cell level parameters, such as thresholds for determining beam level radio link snooping results, and/or resources for beam level radio link snooping, and/or periods for judging beam level radio link snooping results, and/or
  • the reporting result of the beam-level monitoring result, etc., the monitoring result generated in step 202 is a beam-level monitoring result: a beam failure instance.
  • the threshold for determining the cell-level radio link monitoring result may be represented by a block error rate (BLER), and the terminal device may obtain a signal to interference and noise ratio (SINR) corresponding to the threshold, and perform wireless link monitoring.
  • the physical layer of the terminal device measures the SINR on the configured resource, and compares the measured SINR with the SINR corresponding to the threshold.
  • the threshold may be a threshold for determining that the monitoring result is a synchronization indication, and may be set to 2% BLER.
  • the threshold may be 10% BLER, and the repetition will not be repeated.
  • the thresholds for determining the radio link monitoring result in different configurations may be the same or different, in one configuration.
  • One or more of the above various types of thresholds may be included, and the above is merely illustrative, and the embodiment is not limited thereto.
  • the resource used for cell-level/beam-level radio link monitoring may be a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), or both.
  • the SSS may be indicated by an index of the SSB
  • the CSI-RS is indicated by an identifier (ID) of the CSI-RS.
  • the number of the resources is related to the monitoring frequency, for example, Supports 2 resources in the listening frequency below 3GHz, supports 4 resources in the monitoring frequency of 3G-6GHz, supports 8 resources in the listening frequency above 6GHz, and is used for wireless link monitoring in different configurations.
  • the resources may be the same, different, or partially identical. The above is only an example, and the embodiment is not limited thereto.
  • the period of determining the cell-level/beam-level radio link monitoring result refers to all measurement results in the period when the monitoring result is generated, for example, the period is T, and the reference T time is required ( t0-T)
  • the measurement result obtained during the current time (t0), the monitoring result at time t0 is generated, and when the next monitoring result needs to be generated (time t1), reference T time before (t1-T) to the current
  • the measurement results obtained during the time period (t1) may be the same or different in the different configurations for determining the radio link monitoring result.
  • the above is only an example, and the embodiment is not limited thereto.
  • the reporting interval of the cell-level/beam-level monitoring result is used to determine how often the monitoring result is reported once.
  • the wireless link is determined at the upper layer of the terminal device. Therefore, the physical The layer needs to report the monitoring result to the upper layer.
  • the reporting interval of the monitoring result is 1.
  • the physical layer reports the monitoring result generated in the reporting interval to the upper layer.
  • each of the configurations may further include: a configuration index, whereby each configuration may be identified according to the configuration index, but the embodiment is not limited thereto.
  • the configuration may include related parameters of the foregoing radio link monitoring, such as determining a threshold of a cell level/beam level radio link monitoring result, and a resource for cell level/beam level radio link monitoring. And determining the period of the cell-level/beam-level radio link monitoring result and the reporting period of the cell-level/beam-level monitoring result, and all the related parameters are placed in the same cell, for example, the existing cell RadioLinkMonitoringConfig IE, CellGroupConfig can be used. IE, it is also possible to newly set a cell. This embodiment is not limited thereto.
  • Each configuration has an optional configuration configuration, and a set of parameters uses an index, thereby saving overhead;
  • the related parameters of the foregoing radio link monitoring may be placed in different cells, and in each cell, an index needs to be configured to determine whether related parameters in different cells belong to one configuration, thereby The configuration method is more flexible.
  • the following describes the configuration of the parameter by using the parameter as a threshold value for determining the radio link monitoring result.
  • the threshold rlmInSyncOutOfSyncThreshold for determining the radio link monitoring result may be configured, and may be configured using an integer of N bits.
  • the number of N is related to the configured number. For example, a 1-bit indication may be used.
  • the present embodiment is not limited thereto.
  • the configuration may save signaling.
  • the correspondence between the bit and the threshold may be pre-configured or predefined, or the BLER value corresponding to the OOS and the BLER value corresponding to the IS may be respectively
  • the configuration is configured using two parameters, rlmOutOfSyncThreshold and rlmInSyncThreshold respectively. Specifically, the configuration can be configured with an integer of M bits. The configuration is more flexible. The configuration is the same as above. You can configure the configuration corresponding to the parameter in the above configuration. Index, no more details here.
  • the threshold is directly configured without a bit indication, such as IS for config1: 2% BLER, OOS for 10% BLER, IS for config2: 1% BLER, 9 OBS of %BLER, ..., configN: IS of 0.5% BLER, OOS of 6% BLER; thus, the terminal device performs radio link monitoring according to config1, config2, ..., configN, and generates config1, config2 respectively.
  • the monitoring result of configN for example, the terminal device generates a monitoring result according to the threshold in config1, generates a monitoring result according to the threshold in config2, ..., and generates a monitoring result according to the threshold in configN.
  • each configuration may include one or more of the above related parameters. Multiple, as for other related parameters, it may be pre-configured/predefined to the terminal device (ie, the default configuration), or the terminal device may be notified through other configuration information, for example, the threshold for determining the wireless link monitoring result may be a default configuration, where each The configuration includes the resources for the radio link monitoring, or other related parameters.
  • the related parameters in one configuration may be configured by using one cell or different cell configurations, which are not exemplified herein.
  • the method further includes (not shown): acquiring the at least two configurations.
  • the at least two configurations may be configured on the network device side, and the terminal device receives the at least two configurations sent by the network device, and performs radio link monitoring according to the at least two configurations.
  • the at least two configurations may be configured on the network device side, and the terminal device receives the at least two configurations sent by the network device, and receives an activation indication sent by the network device, where the activation indication is used to activate the at least two
  • the terminal device performs radio link monitoring according to the at least two configurations of the activation.
  • the network device side may provide other multiple configurations in addition to the at least two configurations, and only activate the At least two configurations, the other multiple configurations are in an unactivated state.
  • the at least two configurations may be carried by radio resource control (RRC) signaling, for example, by using a cell in the RRC, and the configuration for the cell (for example, RadioLinkMonitoringConfig IE, CellGroupConfig IE) may be configured.
  • RRC radio resource control
  • the configuration for the cell for example, RadioLinkMonitoringConfig IE, CellGroupConfig IE
  • the activation indication is carried by the medium access control (MAC) signaling, for example, activated by a MAC control unit (CE), and a new one is introduced in the MAC header.
  • An identifier (LCID) that is used to indicate activation/deactivation of the radio link listening configuration.
  • Figure 3B is a schematic diagram of a MAC CE that represents the corresponding configuration index (C i ) in descending order from high to low.
  • the corresponding value is set to 1, it means that the corresponding configuration is activated, 0 means that the corresponding configuration is not activated, and the reserved bit R illustrated in FIG. 3B is in the low position, but the reserved bit can also be in the high position (ie, the position of C 7 ). This embodiment is not intended to be limiting.
  • the MAC CE is only used to indicate the configuration index of the activated configuration. For example, assuming there are 32 configurations, 5 bits can be used to indicate the configuration index, that is, each index is represented by 5 bits. Among them, the 3, 8 and 19 configurations are activated by the MAC CE, that is, the MAC CE uses 3 ⁇ 5 bits to indicate that the reserved bits can be followed or in the front.
  • the number of activated configurations may be fixed or changed. If it is changed, additional bits may be used to provide information that the number of active configurations is changed and the current length, and the extra bits may be indicated in the prefix. , can also be indicated in the MAC CE, the method can refer to the method in the current protocol, and will not be described here.
  • the radio link monitoring in the above steps 201-202 and the generation of the monitoring result may be performed by the physical layer of the terminal device.
  • the method may further include: (not shown): determining a wireless link condition according to the monitoring result corresponding to the at least two configurations, and separately describing different implementation manners thereof in conjunction with FIG. 4-5. .
  • the monitoring result is reported to the upper layer of the terminal device by the physical layer of the terminal device, and the radio layer is determined by the upper layer of the terminal device according to the monitoring result corresponding to the at least two configurations, as shown in FIG. , the method includes:
  • Step 401 The physical layer of the terminal device reports the monitoring result corresponding to the at least two configurations to the upper layer of the terminal device.
  • the monitoring result may be reported according to the configuration index order of the at least two configurations or a specified order (for example, the first or the last one of the monitoring results corresponding to the default configuration),
  • the configuration corresponding to each monitoring result may be implicitly indicated. For example, when the upper layer of the terminal device receives the monitoring result as a synchronization indication, a synchronization indication, ..., an out-of-synchronization indication, determining that the configuration corresponding to the monitoring result is config1, respectively. Config2,...,configN.
  • the physical layer of the terminal device may also notify the upper layer of the terminal device of the configuration or configuration index corresponding to the monitoring result, thereby displaying a configuration corresponding to each monitoring result.
  • the synchronization indicates that the config index is 2, the out-of-step indication config index is 1, and so on.
  • Step 402 The upper layer of the terminal device processes the interception result corresponding to at least two configurations to determine a radio link condition.
  • step 402 the listening results of different configurations are processed separately, and the condition of the wireless link is determined according to the processing condition of each configured listening result.
  • the timers are respectively counted according to the monitoring results corresponding to each configuration, and/or timers are respectively set to determine whether there is a physical layer problem corresponding to each configuration or whether beam failure recovery needs to be initiated, for example, for config1, config2, ..., the monitoring result of configN sets N counters and/or N timers, each config corresponds to a counter and/or a timer, and the specific implementation of the situation of the wireless link is determined according to the processing condition of the monitoring result of each configuration. For example, for the configN, when the N310 out-of-synchronization indications are continuously reported, the timer T310 is started, and if the timer is started, the timer is continuously reported.
  • the timer is stopped. If the T310 times out to determine that there is a physical layer problem, or for the configN, when the beamFailureInstanceMaxCount beam failure instances are continuously reported by the counter statistics, it is determined that the beam failure recovery needs to be initiated, optionally, You can set the timer beamFailureDetectionTimer to receive When the beam instance is reported by the physical layer, the timer is started, and when the timer expires, the counter is used to count the number of failed instances of the beam; wherein, the specific implementation manners of the N310, T310, and beam failure recovery refer to the prior art, The listening result of other configs is handled in the same way as the listening result of configN, and will not be described here.
  • the wireless link fails, for example, the result of the monitoring result processing for config1, config2, ..., configN is a physical layer problem, triggering the wireless chain.
  • the path fails, and/or the low latency or high reliability service is suspended; otherwise, the upper layer does not have any action when there is no physical layer problem corresponding to at least two configurations or does not need to initiate beam failure recovery, or
  • the upper layer when there is a need to initiate beam failure recovery in at least two configurations, for example, the result of the monitoring result processing for config1, config2, ..., configN needs to initiate beam failure recovery, and initiate beam failure recovery, otherwise
  • the upper layer does not have any action, or,
  • the wireless link fails, and/or suspends low latency or high reliability traffic when there is a physical layer problem for a predetermined number of configurations in at least two configurations.
  • the result of the monitoring result processing N has a predetermined number (A) of physical layer problems, and the remaining NAs do not have physical layer problems, triggering the wireless link failure, or No action is taken, or a low-latency or high-reliability service can be suspended, and the suspended low-latency or high-reliability service is reported to the network device as a new event, so that after the network condition is improved, Quickly restore business, or,
  • beam failure recovery is required when a predetermined number of configurations in at least two configurations are required.
  • the result of the monitoring result processing N has a predetermined number (A) of which need to initiate beam failure recovery, and the remaining NAs do not need to initiate beam failure recovery, then initiate beam failure recovery, or may also Do not take any action.
  • step 402 the monitoring results of the different configurations are jointly processed to determine the condition of the wireless link.
  • the unified monitoring result corresponding to the at least two configurations when determining that the final monitoring result is an out-of-synchronization indication or a synchronization indication, determining whether there is a physical layer problem, or determining that the final monitoring result is a beam Whether to initiate beam failure recovery when recovering a failed instance.
  • a counter and a timer are set, and the monitoring result corresponding to each report is uniformly counted by the timer to determine the final monitoring result, and the final monitoring is determined.
  • the result method may be as follows: when the out-of-step indication corresponding to at least two configurations is determined, the final monitoring result is determined to be an out-of-synchronization indication; when the beam failure instance corresponding to at least two configurations is determined, determining the final The monitoring result is a beam failure instance; or when the number of configurations corresponding to the out-of-synchronization indication is greater than the number of configurations corresponding to the synchronization indication, determining that the final monitoring result is an out-of-synchronization indication; when at least two configurations are synchronized indications, or When the number of configurations corresponding to the out-of-synchronization indication is less than the number of configurations corresponding to the synchronization indication, the final monitoring result is determined to be a synchronization indication. When the number of configurations corresponding to the beam recovery failure instance is greater than a predetermined threshold, the final monitoring result is determined to be a beam recovery failure instance. Where the predetermined threshold can be pre-configured or Registration predefined, the present embodiment is not limited thereto.
  • the timer T310 when the N310 final monitoring results are continuously reported as the out-of-synchronization indication, the timer T310 is started, and if the N311 final monitoring results are continuously reported as the synchronization indication after the timer is started, the timer is stopped. If the T310 timeout determines that there is a physical layer problem, or if the final beaming result of the beamFailureInstanceMaxCount is reported as a beam failure instance, it is determined that the beam failure recovery needs to be initiated, and the specific implementation manners of the N310, T310, and beam failure recovery refer to the existing implementation manner. Technology, no more details here.
  • the monitoring result of the at least two configurations is coordinated by the physical layer of the terminal device to generate a final monitoring result, and the monitoring result is reported to the upper layer of the terminal device, and the terminal device is used by the terminal device.
  • the high layer determines the condition of the wireless link according to the result of the monitoring, as shown in FIG. 5, the method includes:
  • Step 501 The physical layer of the terminal device processes the monitoring result corresponding to at least two configurations to generate a final monitoring result.
  • the specific implementation manner of generating the final monitoring result may refer to the determining method of the final monitoring result in the second implementation manner of step 402, that is, in the case of at least two configurations.
  • the out-of-step indication is performed, determining that the final monitoring result is an out-of-synchronization indication; determining that the final monitoring result is a beam failure instance when the beam failure instance is configured for at least two configurations; or the configuration number ratio corresponding to the out-of-step indication
  • the final monitoring result is determined to be an out-of-synchronization indication; when the synchronization indication is corresponding to at least two configurations, or the number of configurations corresponding to the out-of-synchronization indication is smaller than the configuration number corresponding to the synchronization indication, determining The final monitoring result is a synchronization indication.
  • the final monitoring result is determined to be a beam recovery failure instance, where the predetermined threshold may be pre-configured by the network device or pre-configured in the standard. Definitions, this embodiment is not intended to be limiting.
  • Step 502 reporting the final monitoring result to the upper layer of the terminal device
  • Step 503 The high layer of the terminal device determines a radio link condition according to the interception result. For example, when determining that the final monitoring result is an out-of-synchronization indication or a synchronization indication, determining whether there is a physical layer problem, or determining that the final monitoring result is Whether to initiate beam failure recovery when the beam fails to recover the instance.
  • the step 501 integrates the monitoring results corresponding to the at least two configurations into one final monitoring result.
  • the upper layer may set a counter N310 and a timer T310.
  • the radio link status is determined according to the final monitoring result, or the level beam FailureInstanceMaxCount can be set by the upper layer when the beam level RLM is performed, and the timer beamFailureDetectionTimer can also be set to determine whether the beam failure recovery needs to be initiated according to the final monitoring result.
  • the embodiment is not limited thereto.
  • the upper layer of the terminal device may be an RRC layer or a MAC layer.
  • the upper layer when a cell-level RLM is performed, and the generated interception result is a synchronization indication or a failure indication, the upper layer may be an RRC layer, and the beam is being performed.
  • the level of the RLM, when the generated monitoring result is a beam failure instance, the upper layer may be the MAC layer, which is not limited by this embodiment.
  • the radio link monitoring is performed according to the at least two configurations, and the monitoring result corresponding to at least two configurations is generated, thereby reducing unnecessary cell selection and connection reestablishment, reducing service interruption, and particularly ensuring the URLLC service. Reliable operation.
  • Embodiment 2 of the present invention provides a parameter configuration method, which is applied to a network device side.
  • FIG. 6 is a flowchart of a service receiving or sending method in this embodiment. As shown in FIG. 6, the method includes:
  • Step 601 Send at least two configurations for radio link monitoring to the terminal device, where each configuration includes related parameters of radio link monitoring.
  • the method may further include:
  • Step 602 (optional), sending an activation indication to the terminal device, the activation indication being used to activate at least two configurations.
  • the 601 may send the at least two configurations by using the RRC signaling, and the activation indication may be sent by using the MAC signaling in the step 602.
  • the RRC signaling may be sent by using the MAC signaling in the step 602.
  • the method may further include: (not shown): receiving an event reported by the terminal device, where the event is that the terminal device has a radio link problem and The configuration of the wireless link problem is determined, and/or the low-latency or high-reliability service is suspended for the terminal device.
  • the event is that the terminal device has a radio link problem and The configuration of the wireless link problem is determined, and/or the low-latency or high-reliability service is suspended for the terminal device.
  • the network device sends at least two configurations, so that the terminal device performs radio link monitoring according to the at least two configurations, and generates a monitoring result corresponding to at least two configurations, thereby reducing unnecessary cell selection and Connection re-establishment reduces service interruptions, especially ensuring reliable operation of URLLC services.
  • the embodiment 3 provides a monitoring device.
  • the principle of the device is similar to that of the first embodiment. Therefore, the specific implementation may refer to the implementation of the method in the first embodiment.
  • FIG. 7 is a schematic diagram of a monitoring device according to Embodiment 3 of the present invention. As shown in FIG. 7, the device 700 includes:
  • a monitoring unit 701 configured to perform radio link monitoring according to at least two configurations, where each configuration includes a relevant parameter of radio link monitoring;
  • a generating unit 702 is configured to generate monitoring results corresponding to at least two configurations respectively.
  • the device may further include:
  • a first receiving unit (not shown) for receiving the at least two configurations sent by the network device.
  • the device may further include:
  • a second receiving unit (not shown), configured to receive an activation indication sent by the network device, where the activation indication is used to activate the at least two configurations;
  • the listening unit 701 performs radio link monitoring according to at least two configurations that are activated.
  • the first receiving unit receives the at least two configurations by using radio resource control signaling.
  • the second receiving unit receives the activation indication by using medium access control signaling.
  • the apparatus may further include: a second reporting unit (not shown);
  • the physical layer of the terminal device uses the second reporting unit to notify the upper layer of the terminal device of the configuration or configuration index corresponding to the monitoring result.
  • FIG. 8 is a schematic diagram of a monitoring device according to Embodiment 3 of the present invention. As shown in FIG. 8, the device 800 includes: a monitoring unit 801 and a generating unit 802, which are similar to the monitoring unit 701 and the generating unit 702, and are not described herein again. .
  • the apparatus may further include: a first reporting unit 803 and a first processing unit 804, and the specific implementation may refer to Embodiment 1 steps 401-402;
  • the physical layer of the terminal device uses the first reporting unit 803 to report the monitoring result corresponding to the at least two configurations to the upper layer of the terminal device.
  • the upper layer of the terminal device uses the first processing unit 804 to process the monitoring result corresponding to at least two configurations to determine the wireless link condition.
  • the first reporting unit 803 reports the monitoring result in the order of the configuration indexes of the at least two configurations.
  • FIG. 9 is a schematic diagram of an embodiment of the first processing unit 804. As shown in FIG. 9, the first processing unit includes:
  • a first determining unit 901 configured to separately count according to the monitoring result corresponding to each configuration, and respectively set a timer to determine whether there is a physical layer problem corresponding to each configuration or whether to initiate beam failure recovery;
  • An execution unit 902 configured to trigger a radio link failure when a physical layer problem exists in at least two configurations, and/or suspend a low latency or high reliability service; or in at least two configurations When a predetermined number of configurations have a physical layer problem, triggering a radio link failure, and/or suspending a low-latency or high-reliability service; or initiating beam failure when a corresponding beam failure recovery is required for at least two configurations The recovery process; or a beam failure recovery process is initiated when a predetermined number of configurations in at least two configurations are required to initiate beam failure recovery.
  • FIG. 10 is a schematic diagram of an embodiment of the first processing unit 804. As shown in FIG. 10, the first processing unit includes:
  • the second determining unit 1001 determines, according to the monitoring results corresponding to the at least two configurations, the final monitoring result
  • the third determining unit 1002 determines whether there is a physical layer problem when determining whether the final monitoring result is an out-of-synchronization indication or a synchronization indication, or whether to initiate beam failure recovery when determining that the final monitoring result is a beam recovery failure instance.
  • the second determining unit 1001 determines that the final monitoring result is an out-of-synchronization indication when all of the at least two configurations are out of step indications;
  • the synchronization indication is corresponding to at least two configurations, or when the number of configurations corresponding to the out-of-synchronization indication is less than the number of configurations corresponding to the synchronization indication, determining that the final monitoring result is a synchronization indication;
  • the final monitoring result is determined to be a beam recovery failure instance, or the number of configurations corresponding to the beam recovery failure instance is greater than a predetermined threshold, and the final monitoring result is determined to be beam recovery. Failed instance.
  • FIG. 11 is a schematic diagram of a monitoring device according to Embodiment 3 of the present invention; as shown in FIG. 11, the device 1100 includes: a monitoring unit 1101, a generating unit 1102, and an implementation manner thereof is similar to the monitoring unit 701 and the generating unit 702, and details are not described herein. .
  • the apparatus further includes: a fourth processing unit 1103 and a third reporting unit 1104, and the specific implementation may refer to the steps 1501 to 502 of Embodiment 1;
  • the physical layer of the terminal device uses the fourth processing unit 1103 to process the monitoring result corresponding to the at least two configurations, and generates a final monitoring result, and reports the final monitoring result to the terminal device by using the third reporting unit. High level.
  • the fourth processing unit 1103 includes: a second determining unit (not shown) that determines a final listening result according to a unified counting of the listening results corresponding to the at least two configurations; for example, the second determining unit corresponds to at least two configurations When all are out of step indications, it is determined that the final monitoring result is an out of step indication;
  • the synchronization indication is corresponding to at least two configurations, or when the number of configurations corresponding to the out-of-synchronization indication is less than the number of configurations corresponding to the synchronization indication, determining that the final monitoring result is a synchronization indication;
  • the final monitoring result is determined to be a beam recovery failure instance, or the number of configurations corresponding to the beam recovery failure instance is greater than a predetermined threshold, and the final monitoring result is determined to be beam recovery.
  • the failure example is similar to the second determination unit in FIG. 10, and the repeated description is not repeated.
  • the radio link monitoring is performed according to the at least two configurations, and the monitoring result corresponding to at least two configurations is generated, thereby reducing unnecessary cell selection and connection reestablishment, reducing service interruption, and particularly ensuring the URLLC service. Reliable operation.
  • the fourth embodiment of the present invention further provides a terminal device.
  • the method for solving the problem is similar to the method of the first embodiment. Therefore, the specific implementation may be implemented by referring to the method of the first embodiment.
  • a terminal device (not shown) is further provided, where the terminal device is configured with the monitoring device 700 as described above, for example, the monitoring unit 701, 801, 1101, and the generating unit 702, 802 in the third embodiment.
  • the first reporting unit 803, the second reporting unit, the fourth processing unit 1103, and the third reporting unit 1104 may be disposed at a physical layer of the terminal device, and the first processing unit 804 may be disposed at a higher layer of the terminal device or the like.
  • FIG. 12 is a schematic structural diagram of a terminal device according to Embodiment 4 of the present invention; as shown in FIG. 12, the terminal device 1200 may include: a central processing unit (CPU) 1201 and a memory 1202; and a memory 1202. Coupled to central processor 1201.
  • the memory 1202 can store various data; in addition, a program for data processing is stored, and the program is executed under the control of the central processing unit 1201 for service reception or transmission.
  • the functionality of device 700 can be integrated into central processor 1201.
  • the central processing unit 1201 can be configured to implement the monitoring method described in Embodiment 1.
  • the central processor 1201 can be configured to perform radio link snooping according to at least two configurations, wherein each of the configurations includes relevant parameters for radio link snooping; generating snoop results corresponding to at least two configurations, respectively.
  • the central processor 1201 can be configured to: receive the at least two configurations sent by the network device.
  • the central processing unit 1201 may be configured to: receive an activation indication sent by the network device, where the activation indication is used to activate the at least two configurations;
  • the central processing unit 1201 may be configured to: control the physical layer of the terminal device to report the monitoring result corresponding to the at least two configurations to the upper layer of the terminal device.
  • the physical layer of the control terminal device reports the monitoring result in the order of the configuration indexes of the at least two configurations.
  • the central processing unit 1201 may be configured to: control a physical layer of the terminal device to notify a high level of the configuration or configuration index corresponding to the monitoring result to the terminal device.
  • the central processing unit 1201 may be configured to: control a higher layer of the terminal device to process a monitoring result corresponding to at least two configurations to determine a wireless link condition.
  • the central processing unit 1201 may be configured to: control a higher layer of the terminal device to separately count according to the monitoring result corresponding to each configuration, and respectively set a timer to determine whether there is a physical layer problem corresponding to each configuration or whether a beam failure needs to be initiated. restore;
  • the wireless link fails, and/or the low-latency or high-reliability service is suspended; or the beam failure recovery process is initiated when the beam failure recovery is required for at least two configurations; or A beam failure recovery process is initiated when a predetermined number of configurations in at least two configurations require initiation of beam failure recovery.
  • the central processing unit 1201 may be configured to: control the physical layer of the terminal device to process the monitoring result corresponding to the at least two configurations, generate a final monitoring result, and report the final monitoring result to the terminal device. High level.
  • the central processing unit 1201 may be configured to: control a physical layer of the terminal device to uniformly count the monitoring results corresponding to the at least two configurations to determine a final monitoring result; and determine that the final monitoring result is an out-of-synchronization indication or a synchronization indication. At the time, it is determined whether there is a physical layer problem, or whether it is necessary to initiate beam failure recovery when determining whether the final monitoring result is a beam recovery failure instance.
  • the central processing unit 1201 may be configured to: control the physical layer of the terminal device to determine that the final monitoring result is an out-of-synchronization indication when the at least two configurations are out of step indications;
  • the synchronization indication is corresponding to at least two configurations, or when the number of configurations corresponding to the out-of-synchronization indication is less than the number of configurations corresponding to the synchronization indication, determining that the final monitoring result is a synchronization indication;
  • the final monitoring result is determined to be a beam recovery failure instance, or the number of configurations corresponding to the beam recovery failure instance is greater than a predetermined threshold, and the final monitoring result is determined to be beam recovery. Failed instance.
  • the foregoing apparatus 700 may be configured separately from the central processing unit 1201.
  • the apparatus 700 may be configured as a chip connected to the central processing unit 1201, such as the service obtaining unit shown in FIG.
  • the control of 1201 implements the functionality of device 700.
  • the terminal device 1200 may further include: a communication module 1203, an input unit 1204, a display 1206, an antenna 1207, a power source 12012, and the like.
  • a communication module 1203, an input unit 1204, a display 1206, an antenna 1207, a power source 12012, and the like The functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the terminal device 1200 does not have to include all the components shown in FIG. 12; in addition, the terminal device 1200 may further include components not shown in FIG. 12, and reference may be made to the related art.
  • the radio link monitoring is performed according to the at least two configurations, and the monitoring result corresponding to at least two configurations is generated, thereby reducing unnecessary cell selection and connection reestablishment, reducing service interruption, and particularly ensuring the URLLC service. Reliable operation.
  • the embodiment 5 provides a parameter configuration device.
  • the principle of the device is similar to that of the second embodiment. Therefore, the specific implementation may refer to the implementation of the method in the second embodiment. .
  • FIG. 13 is a schematic diagram of a parameter configuration apparatus according to Embodiment 5 of the present invention. As shown in FIG. 13, the apparatus 1300 includes:
  • the first sending unit 1301 is configured to send at least two configurations for radio link monitoring to the terminal device, where each configuration includes related parameters of radio link monitoring.
  • the device further comprises:
  • the second sending unit 1302 (optional) is configured to send an activation indication to the terminal device, where the activation indication is used to activate at least two configurations.
  • the device further comprises:
  • a third receiving unit 1303 (not shown), configured to receive an event reported by the terminal device, where the terminal device has a wireless link problem and determines a configuration corresponding to the wireless link problem, and/or is the terminal The device suspends low latency or high reliability services.
  • the network device sends at least two configurations, so that the terminal device performs radio link monitoring according to the at least two configurations, and generates a monitoring result corresponding to at least two configurations, thereby reducing unnecessary cell selection and Connection re-establishment reduces service interruptions, especially ensuring reliable operation of URLLC services.
  • the sixth embodiment of the present invention provides a network device.
  • the method for solving the problem is similar to the method of the second embodiment. Therefore, the specific implementation may be implemented by referring to the method in the second embodiment.
  • Also provided in this embodiment is a network device (not shown) configured with parameter configuration means 1300 as previously described.
  • FIG. 14 is a schematic diagram showing the structure of the network device.
  • network device 1400 can include a central processing unit (CPU) 1401 and memory 1402; and memory 1402 is coupled to central processing unit 1401.
  • the memory 1402 can store various data; in addition, a program for data processing is stored, and the program 1430 is executed under the control of the central processing unit 1401 to transmit a service.
  • the functionality of device 1100 can be integrated into central processor 1401.
  • the central processing unit 1401 can be configured to implement the parameter configuration method of Embodiment 2.
  • central processor 1401 can be configured to transmit at least two configurations for radio link snooping to the terminal device, wherein each of the configurations includes relevant parameters for radio link snooping.
  • the central processor 1401 can be configured to send an activation indication to the terminal device for activating at least two configurations.
  • the central processing unit 1401 may be configured to: receive an event reported by the terminal device, the event is that the terminal device has a wireless link problem and determines that a configuration corresponding to the wireless link problem exists, and/or hangs for the terminal device Low latency or high reliability business.
  • Embodiment 2 For details, refer to Embodiment 2 for the specific configuration of the central processing unit 1401, and details are not described herein again.
  • the foregoing apparatus 1300 may be configured separately from the central processing unit 1401.
  • the apparatus 1300 may be configured as a chip connected to the central processing unit 1401, such as the unit shown in FIG. 14, through the central processing unit 1401. Control is implemented to implement the functionality of device 1300.
  • the network device 1400 may further include: a transceiver 1403, an antenna 1404, and the like; wherein the functions of the foregoing components are similar to the prior art, and details are not described herein again. It should be noted that the network device 1400 does not have to include all the components shown in FIG. 14; in addition, the network device 1400 may further include components not shown in FIG. 14, and reference may be made to the prior art.
  • the network device sends at least two configurations, so that the terminal device performs radio link monitoring according to the at least two configurations, and generates a monitoring result corresponding to at least two configurations, thereby reducing unnecessary cell selection and Connection re-establishment reduces service interruptions, especially ensuring reliable operation of URLLC services.
  • the seventh embodiment provides a communication system, which includes the terminal device in the embodiment 4 and/or the network device in the embodiment 6, and the content thereof is merged with the content, and details are not described herein again.
  • the network device sends at least two configurations, so that the terminal device performs radio link monitoring according to the at least two configurations, and generates a monitoring result corresponding to at least two configurations, thereby reducing unnecessary cell selection and Connection re-establishment reduces service interruptions, especially ensuring reliable operation of URLLC services.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the monitoring device or the terminal device to perform the monitoring method described in Embodiment 1 when the program is executed in a monitoring device or a terminal device.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the monitoring device or the terminal device to perform the monitoring method described in Embodiment 1.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a parameter configuration device or a network device, the program causes the parameter configuration device or the network device to perform the parameter configuration described in Embodiment 2 method.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a parameter configuration device or a network device to perform the parameter configuration method described in Embodiment 2.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the monitoring method and the parameter configuration method in the monitoring device, or the parameter configuration device, which are described in connection with the embodiments of the present invention, may be directly embodied as hardware, a software module executed by the processor, or a combination of the two.
  • one or more of the functional blocks shown in Figures 7-14 and/or one or more combinations of functional blocks may correspond to various software modules of a computer program flow, or to individual hardware modules.
  • These software modules can correspond to the various steps shown in Figures 2-6, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described with respect to Figures 7-14 and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to Figures 7-14 and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.
  • Attachment 1 a monitoring method, including:
  • each of the configurations includes a relevant parameter of radio link snooping
  • a monitoring result corresponding to the at least two configurations is generated respectively.
  • the monitoring result comprises: a synchronization indication, an out-of-synchronization indication, or a beam failure instance.
  • the related parameters of the radio link monitoring include: determining a threshold of a cell level/beam level radio link listening result, and/or for a cell level/beam level The resources monitored by the radio link, and/or the period of the cell level/beam level radio link listening result, and/or the reporting interval of the cell level/beam level monitoring result.
  • each of the configurations further comprises: a configuration index.
  • the method further comprises: the physical layer of the terminal device notifying a high level of the configuration or configuration index corresponding to the monitoring result to the terminal device.
  • the method further comprises: the higher layer of the terminal device processes the monitoring result corresponding to the at least two configurations to determine a wireless link condition.
  • the radio link fails to be triggered, and/or the low-latency or high-reliability service is suspended; or the beam failure recovery process is initiated when the at least two configurations are required to initiate beam failure recovery; or A beam failure recovery process is initiated when a predetermined number of configurations of the at least two configurations are required to initiate beam failure recovery.
  • the method further comprises: the physical layer of the terminal device processes the monitoring result corresponding to the at least two configurations to generate a final monitoring result, and The final monitoring result is reported to the upper layer of the terminal device.
  • determining the final monitoring result comprises: the out-of-step indication in the corresponding at least two configurations When the final monitoring result is determined to be an out-of-synchronization indication;
  • the synchronization indication is corresponding to the at least two configurations, or when the number of configurations corresponding to the out-of-synchronization indication is less than the number of configurations corresponding to the synchronization indication, determining that the final monitoring result is a synchronization indication;
  • At least two configurations for radio link snooping are sent to the terminal device, wherein each of the configurations includes relevant parameters for radio link snooping.
  • the activation indication being used to activate at least two configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种监听方法、参数配置方法、装置和通信系统,其中,该监听装置包括:监听单元,其用于根据至少两个配置进行无线链路监听,其中,每个该配置包括无线链路监听的相关参数;生成单元,其用于生成分别对应该至少两个配置的监听结果。由此,可以减少不必要的小区选择以及连接重建,减少业务中断,尤其保证URLLC业务的可靠运行。

Description

监听方法、参数配置方法以及装置、通信系统 技术领域
本发明涉及通信领域,特别涉及一种监听方法、参数配置方法以及装置、通信系统。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准中提到,无线链路监听(Radio link monitoring,RLM)可以用于监听特殊小区的下行无线链路质量,终端设备通过该下行无线链路质量可以得到监听结果,包括小区级别的无线链路监听和波束级别的无线链路监听。例如,对于小区级别的无线链路监听,终端设备将估计的下行无线链路质量分别与失步阈值Q out和同步阈值Q in进行比较,在无线链路质量比失步阈值Q out差时,生成失步指示(OOS indication),在无线链路质量比同步阈值Q in好时,生成同步指示(IS indication);对于波束级别的无线链路监听,在无线链路质量比波束失败阈值差时,生成波束失败实例;对生成的监听结果进行进一步的处理,可以确定是否出现了无线链路失败(radio link failure,RLF)或者是否需要发起波束失败恢复。在发生了RLF后,终端设备会启动小区选择,进行连接重建。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
近年来,基于移动通信网络的各类数据应用和服务快速增长,被移动通信网络服务的终端也从传统的以人为使用主体的智能手机终端扩展到更多的以机器为主体的其它类型终端。为了适应这样的变化趋势,未来移动通信网络需要具备提供更灵活、更多样服务的能力,以满足不同终端设备、不同服务的需求。
为此,在未来无线通信系统,例如5G、新无线(New Radio,NR)系统中,不仅可以支持传统的增强移动宽带(enhanced Mobile Broadband,eMBB)业务,还可以支持海量机器类型通信(Massive Machine Type Communications,mMTC)业务以 及超高可靠-低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)业务,其中,URLLC业务对时延和可靠性的要求非常敏感,例如,用户面时延的目标是上下行0.5ms,对于一个数据包的一次传输的可靠性要求是对32bytes达到10 -5的错误率,同时时延要求是用户面时延1ms。
发明人发现:由于目前终端设备仅支持根据一种配置进行无线链路监听,例如,该配置包括用于判断无线链路监听结果的阈值,不管该阈值的大小,只要发生无线问题都会触发无线链路失败,这会导致不必要的小区选择或连接重建,进而导致业务中断,另外,波束失败恢复过程也会导致业务中断,在存在多种不同需求的业务进行或可能进行的情况下(尤其是包括URLLC业务时),上述监听机制无法保证各不同需求业务的正常运行。
为了解决上述问题,本发明实施例提供一种监听方法、参数配置方法、装置和通信系统,由此可以减少不必要的小区选择以及连接重建,减少业务中断,尤其保证URLLC业务的可靠运行。
根据本实施例的第一方面,提供了一种监听方法,其中,该方法包括:
根据至少两个配置进行无线链路监听,其中,每个该配置包括无线链路监听的相关参数;
生成分别对应该至少两个配置的监听结果
根据本实施例的第二方面,提供了一种参数配置方法,其中,该方法包括:
终端设备发送用于无线链路监听的至少两个配置,其中,每个该配置包括无线链路监听的相关参数。
根据本实施例的第三方面,提供了一种监听装置,其中,该装置包括:
监听单元,其用于根据至少两个配置进行无线链路监听,其中,每个该配置包括无线链路监听的相关参数;
生成单元,其用于生成分别对应该至少两个配置的监听结果。
根据本实施例的第四方面,提供了一种参数配置装置,其中,该装置包括:
第一发送单元,其用于向终端设备发送用于无线链路监听的至少两个配置,其中,每个该配置包括无线链路监听的相关参数。
根据本实施例的第五方面,提供了一种通信系统,其中,包括:终端设备,该终端设备包括第三方面所述的监听装置。
根据本实施例的第六方面,提供了一种通信系统,其中,包括:网络设备,该网络设备包括第四方面所述的参数配置装置。
本发明实施例的有益效果在于,根据至少两个配置进行无线链路监听,生成对应该至少两个配置的监听结果,由此,可以减少不必要的小区选择以及连接重建,减少业务中断,尤其保证URLLC业务的可靠运行。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本发明实施例的通信系统示意图;
图2是本发明实施例1中监听方法流程图;
图3是本发明实施例1中根据至少两个配置监听示意图;
图4-5是本发明实施例1中确定无线链路情况方法流程图;
图6是本发明实施例2中参数配置方法流程图;
图7是本发明实施例3中监听装置示意图;
图8是本发明实施例3中监听装置一种实施方式示意图;
图9-10是本发明实施例3中第一处理单元804两种实施方式示意图;
图11是本发明实施例3中监听装置一种实施方式示意图;
图12是本发明实施例4中终端设备的构成示意图;
图13是本发明实施例5中参数配置装置示意图;
图14是本发明实施例6中网络设备的构成示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。下面结合附图对本发明的各种实施方式进行说明。这些实施方式只是示例性的,不是对本发明的限制。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开 发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
以下通过示例对本发明实施例的场景进行说明,但本发明不限于此。
图1是本发明实施例的通信系统的一示意图,示意性说明了以用户设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102。 为简单起见,图1仅以一个终端设备和一个网络设备为例进行说明,但本发明实施例不限于此。
在本发明实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等,本申请将以对时延可靠性敏感的URLLC业务为例,对本发明实施例进行说明;但本发明不限于此,还可以适用于其他对时延可靠性敏感的业务。
下面结合附图对本发明实施例进行说明。
实施例1
本发明实施例1提供一种监听方法,图2是本实施例中该监听方法流程图,应用于终端设备侧,如图2所示,该方法包括:
步骤201,根据至少两个配置进行无线链路监听,其中,每个该配置包括无线链路监听的相关参数;
步骤202,生成分别对应该至少两个配置的监听结果。
在本实施例中,在步骤201中,终端设备根据该至少两个配置进行无线链路监听,获取在每个配置下的下行无线链路质量,其中,该无线链路监听包括小区级别的无线链路监听或波束级别的无线链路监听,小区级别的无线链路监听相当于物理层问题检测的相关内容,波束级别的无线链路监听相当于波束失败检测的相关过程。
在本实施例中,每个配置中包括的该无线链路监听的相关参数可以包括:判断小区级/波束级无线链路监听结果的阈值,和/或用于小区级/波束级无线链路监听的资源,和/或判断小区级/波束级无线链路监听结果的周期,和/或小区级/波束级监听结果的上报间隔等,其中,对于小区级别或波束级别的无线链路监听,该至少两个配置中的相关参数类型相同,但参数的具体取值不完全相同(可以一部分不同,或者都不同),在步骤202中,根据步骤201中无线链路监听获取的下行无线链路质量,可以生成分别对应该至少两个配置的监听结果,其中,该监听结果包括:小区级的监听结果:同步指示、失步指示,或者波束级的监听结果:波束失败实例。
在本实施例中,在步骤201中进行的无线链路监听是小区级别的无线链路监听 时,该配置中包括的无线链路监听的相关参数是小区级别的参数,例如判断小区级无线链路监听结果的阈值,和/或用于小区级无线链路监听的资源,和/或判断小区级无线链路监听结果的周期,和/或小区级监听结果的上报间隔等,在步骤202中生成的监听结果是小区级别的监听结果,例如同步指示或失步指示;在步骤201中进行的无线链路监听是波束级别的无线链路监听时,该配置中包括的无线链路监听的相关参数是小区级别的参数,例如判断波束级无线链路监听结果的阈值,和/或用于波束级无线链路监听的资源,和/或判断波束级无线链路监听结果的周期,和/或波束级监听结果的上报间隔等,在步骤202中生成的监听结果是波束级别的监听结果:波束失败实例。
在本实施例中,该判断小区级无线链路监听结果的阈值可以用误块率(BLER)表示,终端设备可以得到与该阈值对应的信干噪比(SINR),在进行无线连路监听时,终端设备的物理层在配置的资源上测量SINR,将测量得到的SINR与阈值对应的SINR进行比较,例如该阈值可以是判断监听结果是同步指示的阈值,可以设置为2%BLER,还可以是判断监听结果是失步指示的阈值,可以设置为10%BLER,上述阈值对应的SINR分别为Q in和Q out,在预定资源上测量得到的SINR与Q in和Q out比较,在比Q out差时,生成监听结果为失步指示,在比Q in好时,生成监听结果为同步指示;或者在针对URLLC等对时延可靠性更敏感的业务时,可以将该阈值设置为比2%BLER更低的阈值等,将该阈值设置为比10%BLER更低的阈值等;该判断波束级无线链路监听结果的阈值也可以用BLER表示,其生成监听结果是波束失败实例的方法与失步指示类似,例如,该阈值可以是10%BLER,重复之处不再赘述;不同的配置中判断无线链路监听结果的阈值可以相同,或不同,在一个配置中,可以包括以上各种类型中的一个或多个阈值,以上仅为示例说明,本实施例并不以此作为限制。
在本实施例中,该用于小区级/波束级无线链路监听的资源可以是同步信号块(SSB),也可以是信道状态信息参考信号(CSI-RS),也可以两者兼具,其中,可以通过SSB的索引指示该SSB,通过CSI-RS的标识(ID)指示该CSI-RS,在每个配置中,支持配置一个或多个资源,该资源的数量与监听频率有关,例如在3GHz以下的监听频率,支持配置2个资源,在3G-6GHz的监听频率,支持配置4个资源,在6GHz以上的监听频率,支持配置8个资源,不同的配置中用于无线链路监听的资源可以相同,或不同,或部分相同,以上仅为示例说明,本实施例并不以此作为限制。
在本实施例中,该判断小区级/波束级无线链路监听结果的周期是指在生成监听结果时,需要参考该周期内的所有测量结果,例如该周期为T,需要参考T时间前(t0-T)到当前时刻(t0)这段时间所得到的测量结果,生成t0时刻的监听结果,当需要生成下一个监听结果(t1时刻)时,参考T时间前(t1-T)到当前时刻(t1)这段时间所得到的测量结果,不同的配置中判断无线链路监听结果的周期可以相同,或不同,以上仅为示例说明,本实施例并不以此作为限制。
在本实施例中,该小区级/波束级监听结果的上报间隔用于确定每隔多久上报一次监听结果,由于生成监听结果后,需要在终端设备的高层确定无线链路的情况,因此,物理层需要将该监听结果上报至高层,该监听结果的上报间隔为I,物理层将在该上报间隔内生成的监听结果上报至高层,经过该间隔I后,物理层将下一个监听结果上报至高层,例如,该间隔I=t1-t0;其中,不同的配置中监听结果的上报间隔可以相同,或不同,以上仅为示例说明,本实施例并不以此作为限制。
在本实施例中,每个该配置还可以包括:配置索引,由此,可以根据该配置索引来标识每个配置,但本实施例并不以此作为限制。
以下结合附图3A的示例具体说明上述步骤201-202。
在本实施例中,如图3A所示,共有N个配置。在一个实施方式中,该配置可以包括上述例举的无线链路监听的相关参数,如判断小区级/波束级无线链路监听结果的阈值、用于小区级/波束级无线链路监听的资源、判断小区级/波束级无线链路监听结果的周期以及小区级/波束级监听结果的上报周期,将上述相关参数都放在同一信元下,例如可以使用现有的信元RadioLinkMonitoringConfig IE,CellGroupConfig IE,也可以新设置一个信元,本实施例并不以此作为限制,每一个配置里都可选的配置有一个配置索引,一组参数使用一个索引,由此可以节约开销;在另一个实施方式中,可以将上述无线链路监听的相关参数放在不同信元中,在每个信元中,都需要配置索引,以便确定不同信元中的相关参数是否属于一个配置,由此,配置方式更灵活。
以下以该参数为判断无线链路监听结果的阈值为例对该参数的配置进行说明。
在一个示例中,在一个信元中,配置判断无线链路监听结果的阈值rlmInSyncOutOfSyncThreshold,可以使用N比特(bit)的整数进行配置,N的数量与配置的个数有关,例如,可以使用1bit指示两个配置,即如果指示0,则对应10%BLER的OOS,以及2%BLER的IS,如果指示1,则对应9%BLER的OOS,以及1%BLER 的IS,以上仅以1bit为示例,但本实施例并不以此作为限制,该配置方式可以节约信令,该比特与该阈值的对应关系可以预配置或预定义,或者也可以对OOS对应的BLER值和IS对应的BLER值分别配置,即使用2个参数,rlmOutOfSyncThreshold和rlmInSyncThreshold分别进行配置,具体的,可以分别使用M比特的整数进行配置,该配置方式更加灵活,其具体配置方式同上,以上配置中可以配置该参数对应的配置索引,此处不再赘述。
在一个示例中,在一个信元中,直接配置该阈值,而不通过比特指示的方式,例如分别为config1:2%BLER的IS,10%BLER的OOS,config2:1%BLER的IS,9%BLER的OOS,…,configN:0.5%BLER的IS,6%BLER的OOS;由此,终端设备根据config1,config2,...,configN进行无线链路监听,并生成分别对应config1,config2,...,configN的监听结果,例如终端设备根据config1中的阈值生成一个监听结果,根据config2中的阈值生成一个监听结果,...,根据configN中的阈值生成一个监听结果。
需要说明的是,以上以每个配置包括的相关参数为判断无线链路监听结果的阈值为例进行说明,但本实施例并不以此作为限制,每个配置可以包括以上相关参数的一个或多个,至于其他的相关参数可以预配置/预定义给终端设备(即默认配置),或者通过其他配置信息通知终端设备,例如判断无线链路监听结果的阈值可以为默认配置,在该每个配置中包括用于无线链路监听的资源,或者其他相关参数,在一个配置中的相关参数可以使用一个信元配置,也可以分别使用不同信元配置,此处不再一一举例。
在本实施例中,在步骤201前,该方法还包括(未图示):获取该至少两个配置。
在一个实施方式中,可以在网络设备侧配置该至少两个配置,终端设备接收网络设备发送的该至少两个配置,并根据该至少两个配置进行无线链路监听。
在一个实施方式中,可以在网络设备侧配置该至少两个配置,终端设备接收网络设备发送的该至少两个配置,并接收网络设备发送的激活指示,该激活指示用于激活该至少两个配置;终端设备根据该激活的至少两个配置进行无线链路监听,在该实施方式中,网络设备侧除该至少两个配置外,还可以提供其他多个配置,根据该激活指示仅激活该至少两个配置,其他多个配置处于不被激活的状态。
在本实施例中,可以通过无线资源控制(RRC)信令承载该至少两个配置,例如 通过RRC中的信元来承载该配置,针对该信元(例如RadioLinkMonitoringConfig IE,CellGroupConfig IE)的配置可以请详见前述说明,此处不再赘述;通过媒体接入控制(MAC)信令承载该激活指示,例如通过MAC控制单元(control element,CE)来激活,在MAC字头中引入一个新的标识符(LCID),用来指示无线链路监听配置的激活/去激活。图3B是MAC CE的一种示意图,其从高位到低位以降序表示相应的配置索引(C i)。如果对应的值设为1,则表示对应的配置激活,0表示对应的配置未激活,附图3B示意的保留比特R在低位,但该保留比特也可以在高位(即C 7的位置),本实施例并不以此作为限制。
或者,MAC CE仅用来指示激活的配置的配置索引。例如,假设有32种配置,可以使用5比特表示配置索引,即每个索引用5比特表示。其中,通过MAC CE激活第3,8和19个配置,即MAC CE使用3×5个比特来指示,保留比特可以在后面也可以在前面。其中,激活的配置数可以是固定的,也可以是变化的,如果是变化的,还可以使用额外比特提供激活的配置数是变化的以及当前长度等信息,该额外比特可以在字头里指示,也可以在MAC CE里指示,方法可以参考当前协议里的方法,此处不再赘述。
在本实施例中,可以由终端设备的物理层执行上述步骤201-202中的无线链路监听以及生成监听结果。
在本实施例中,该方法还可以包括(未图示):根据对应该至少两个配置的监听结果,确定无线链路情况,以下结合附图4-5分别对其不同的实施方式进行说明。
在一个实施方式中,由终端设备的物理层将监听结果上报至终端设备的高层,并由终端设备的高层根据该对应该至少两个配置的监听结果确定无线链路情况,如图4所示,该方法包括:
步骤401,终端设备的物理层将对应该至少两个配置的监听结果上报至该终端设备的高层。
在一个实施方式中,在步骤401中,可以按照该至少两个配置的配置索引顺序或规定的顺序(例如,第一个,或最后一个上报默认配置对应的监听结果)上报该监听结果,由此可以隐式的表示每个监听结果对应的配置,例如,终端设备的高层在接收到监听结果是同步指示、同步指示、…、失步指示时,确定上述监听结果对应的配置分别是config1,config2,…,configN。
在一个实施方式中,在步骤401中,该终端设备的物理层也可以将与监听结果对应的配置或配置索引通知给该终端设备的高层,由此可以显示的表示每个监听结果对应的配置,例如同步指示config索引为2,失步指示config索引为1等等。
步骤402,该终端设备的高层对对应该至少两个配置的监听结果进行处理,确定无线链路情况。
在一个实施方式中,在步骤402中,对不同配置的监听结果单独处理,并根据每个配置监听结果的处理情况确定无线链路的情况。
在该实施方式中,根据对应每个配置的监听结果分别计数,和/或分别设置定时器,确定对应每个配置是否存在物理层问题或者是否需要发起波束失败恢复,例如,针对config1,config2,…,configN的监听结果设置N个计数器和/或N个定时器,每个config对应一个计数器和/或一个定时器,根据每个配置的监听结果的处理情况确定无线链路的情况的具体实施方式可以参考现有技术中的针对一个配置的监听结果确定无线链路的情况,例如,针对configN,在连续上报了N310个失步指示时,启动定时器T310,如果启动定时器后,连续上报了N311个同步指示,则定时器停止,一旦T310超时确定有物理层问题,或者针对configN,通过计数器统计在连续上报了beamFailureInstanceMaxCount个波束失败实例时,确定需要发起波束失败恢复,可选的,还可以设置定时器beamFailureDetectionTimer,在收到物理层上报的波束实例指示时,启动该定时器,在该定时器超时时,重新利用计数器对波束失败实例进行计数;其中,N310,T310以及波束失败恢复的具体实施方式参考现有技术,针对其他config的监听结果的处理方式与configN的监听结果处理方式相同,此处不再赘述。
在该实施方式中,在对应该至少两个配置都存在物理层问题时,触发无线链路失败,例如针对config1,config2,…,configN的监听结果处理结果都是存在物理层问题,触发无线链路失败,和/或挂起低时延或高可靠性业务;否则在对应该至少两个配置都不存在物理层问题或者不需要发起波束失败恢复时,高层没有任何动作,或者,
在该实施方式中,在对应该至少两个配置都存在需要发起波束失败恢复时,例如针对config1,config2,…,configN的监听结果处理结果都是需要发起波束失败恢复,发起波束失败恢复,否则在对应该至少两个配置都不存在不需要发起波束失败恢复时,高层没有任何动作,或者,
在该实施方式中,在对应该至少两个配置中的预定数量个配置存在物理层问题时,触发无线链路失败,和/或挂起低时延或高可靠性业务。例如针对config1,config2,…,configN的监听结果处理结果N中有预定数量(A)个都是存在物理层问题,剩下的N-A个不存在物理层问题,触发无线链路失败,或者也可以不采取任何动作,或者也可以挂起低时延或高可靠性业务,将该挂起低时延或高可靠性业务作为一个新事件上报给网络设备,由此可以在网络状况变好后,迅速恢复业务,或者,
在该实施方式中,在对应该至少两个配置中的预定数量个配置需要发起波束失败恢复时。例如针对config1,config2,…,configN的监听结果处理结果N中有预定数量(A)个需要发起波束失败恢复,剩下的N-A个不需要发起波束失败恢复,则发起波束失败恢复,或者也可以不采取任何动作。
在一个实施方式中,在步骤402中,对不同配置的监听结果联合处理,确定无线链路的情况。
在该实施方式中,根据对应该至少两个配置的监听结果统一计数,在确定最终的监听结果为失步指示或同步指示时,确定是否存在物理层问题,或者在确定最终的监听结果为波束恢复失败实例时,是否需要发起波束失败恢复。例如,针对config1,config2,…,configN的监听结果设置1个计数器和1个定时器,每个配置的对应上报的监听结果都通过该计时器进行统一计数,确定最终的监听结果,确定最终监听结果的方法可以采用如下方式:在对应该至少两个配置的都是失步指示时,确定最终的监听结果为失步指示;在对应该至少两个配置的都是波束失败实例时,确定最终的监听结果为波束失败实例;或者失步指示对应的配置数量比同步指示对应的配置数量多时,确定最终的监听结果为失步指示;在对应该至少两个配置的都是同步指示时,或者失步指示对应的配置数量比同步指示对应的配置数量少时,确定最终的监听结果为同步指示,在波束恢复失败实例对应的配置数量多于预定阈值时,确定最终的监听结果为波束恢复失败实例,其中,该预定阈值可以通过网络设备预配置或在标准中预定义,本实施例并不以此作为限制。
在该实施方式中,在连续上报了N310个最终的监听结果为失步指示时,启动定时器T310,如果启动定时器后,连续上报了N311个最终的监听结果为同步指示,则定时器停止,一旦T310超时确定有物理层问题,或者在连续上报了beamFailureInstanceMaxCount个最终的监听结果为波束失败实例时,确定需要发起波 束失败恢复,其中,N310,T310以及波束失败恢复的具体实施方式参考现有技术,此处不再赘述。
在另一个实施方式中,由终端设备的物理层对对应该至少两个配置的监听结果进行协同处理,生成一个最终的监听结果,将该一个监听结果上报至终端设备的高层,并由终端设备的高层根据该一个监听结果确定无线链路的情况,如图5所示,该方法包括:
步骤501,该终端设备的物理层对对应该至少两个配置的监听结果进行处理,生成最终的监听结果;
在该实施方式中,在步骤501中,生成最终的监听结果的具体实现方式可以参考步骤402的第二个实施方式中的最终的监听结果的确定方法,即在对应该至少两个配置的都是失步指示时,确定最终的监听结果为失步指示;在对应该至少两个配置的都是波束失败实例时,确定最终的监听结果为波束失败实例;或者失步指示对应的配置数量比同步指示对应的配置数量多时,确定最终的监听结果为失步指示;在对应该至少两个配置的都是同步指示时,或者失步指示对应的配置数量比同步指示对应的配置数量少时,确定最终的监听结果为同步指示,在波束恢复失败实例对应的配置数量多于预定阈值时,确定最终的监听结果为波束恢复失败实例,其中,该预定阈值可以通过网络设备预配置或在标准中预定义,本实施例并不以此作为限制。
步骤502,将该最终的监听结果上报至该终端设备的高层;
步骤503,该终端设备的高层根据该监听结果确定无线链路情况;例如,在确定最终的监听结果为失步指示或同步指示时,确定是否存在物理层问题,或者在确定最终的监听结果为波束恢复失败实例时,是否需要发起波束失败恢复。
在该实施方式中,由于步骤501物理层将至少两个配置对应的监听结果整合处理为一个最终的监听结果,在进行小区级别的RLM时,该高层可以设置一个计数器N310以及一个定时器T310,根据该最终的监听结果确定无线链路情况,或者在进行波束级别的RLM时,该高层可以设置计数器beamFailureInstanceMaxCount,可选的还可以设置定时器beamFailureDetectionTimer,根据最终的监听结果确定是否需要发起波束失败恢复,具体可以参考现有技术,本实施例并不以此作为限制。
在本实施例中,该终端设备的高层可以是RRC层或MAC层,例如,在进行小 区级别的RLM,生成的监听结果是同步指示或失败指示时,该高层可以是RRC层,在进行波束级别的RLM,生成的监听结果是波束失败实例时,该高层可以是MAC层,本实施例并不以此作为限制。
由上述实施例可知,根据至少两个配置进行无线链路监听,生成对应该至少两个配置的监听结果,由此,可以减少不必要的小区选择以及连接重建,减少业务中断,尤其保证URLLC业务的可靠运行。
实施例2
本发明实施例2提供一种参数配置方法,应用于网络设备侧。
图6是本实施例中业务接收或发送方法流程图,如图6所示,该方法包括:
步骤601,向终端设备发送用于无线链路监听的至少两个配置,其中,每个该配置包括无线链路监听的相关参数。
在本实施例中,该相关参数的说明请详见实施例1,此处不再赘述。
在本实施例中,该方法还可以包括:
步骤602(可选),向该终端设备发送激活指示,该激活指示用于激活至少两个配置。
在本实施例中,步骤601可以通过RRC信令发送该至少两个配置,在步骤602中可以通过MAC信令发送激活指示,其具体实施方式可以参考实施例1,此处不再赘述。
在本实施例中,在终端设备的高层确定了无线链路情况后,该方法还可以包括(未图示):接收该终端设备上报的事件,该事件为该终端设备存在无线链路问题以及确定存在无线链路问题对应的配置,和/或为该终端设备挂起低时延或高可靠性业务,其具体上报方式可以参考实施例1,此处不再赘述。
由上述实施例可知,网络设备发送至少两个配置,以便终端设备根据至少两个配置进行无线链路监听,生成对应该至少两个配置的监听结果,由此,可以减少不必要的小区选择以及连接重建,减少业务中断,尤其保证URLLC业务的可靠运行。
实施例3
本实施例3提供了一种监听装置,由于该装置解决问题的原理与实施例1的方法 类似,因此其具体的实施可以参考实施例1的方法的实施,内容相同之处不再重复说明。
图7是本发明实施例3的监听装置示意图;如图7所示,该装置700包括:
监听单元701,其用于根据至少两个配置进行无线链路监听,其中,每个该配置包括无线链路监听的相关参数;
生成单元702,其用于生成分别对应该至少两个配置的监听结果。
在本实施例中,监听结果以及每个配置包括的无线链路监听的相关参数、配置索引的具体实现方式可以参考实施例1,此处不再赘述。
在本实施例中,该装置还可以包括:
第一接收单元(未图示),其用于接收网络设备发送的该至少两个配置。
在本实施例中,该装置还可以包括:
第二接收单元(未图示),其用于接收网络设备发送的激活指示,该激活指示用于激活该至少两个配置;
并且该监听单元701根据激活的至少两个配置进行无线链路监听。
在本实施例中,该第一接收单元通过无线资源控制信令接收该至少两个配置。
在本实施例中,该第二接收单元通过媒体接入控制信令接收该激活指示。
在本实施例中,该装置还可以包括:第二上报单元(未图示);
该终端设备的物理层利用该第二上报单元将与监听结果对应的配置或配置索引通知给该终端设备的高层。
图8是本发明实施例3的监听装置示意图;如图8所示,该装置800包括:监听单元801、生成单元802,其实施方式与监听单元701以及生成单元702类似,此处不再赘述。
在一个实施方式中,该装置还可以包括:第一上报单元803和第一处理单元804,具体实施方式可以参考实施例1步骤401-402;
终端设备的物理层利用该第一上报单元803将对应该至少两个配置的监听结果上报至该终端设备的高层。
该终端设备的高层利用该第一处理单元804对对应该至少两个配置的监听结果进行处理,确定无线链路情况。
在该实施方式中,该第一上报单元803按照该至少两个配置的配置索引顺序上报 该监听结果。
图9是该第一处理单元804一种实施方式示意图,如图9所示,该第一处理单元包括:
第一确定单元901,其用于根据对应每个配置的监听结果分别计数,并分别设置定时器,确定对应每个配置是否存在物理层问题或者是否需要发起波束失败恢复;
执行单元902,其用于在对应该至少两个配置都存在物理层问题时,触发无线链路失败,和/或挂起低时延或高可靠性业务;或者在对应该至少两个配置中的预定数量个配置存在物理层问题时,触发无线链路失败,和/或挂起低时延或高可靠性业务;或者在对应该至少两个配置都需要发起波束失败恢复时,发起波束失败恢复过程;或者在对应该至少两个配置中的预定数量个配置需要发起波束失败恢复时,发起波束失败恢复过程。
图10是该第一处理单元804一种实施方式示意图,如图10所示,该第一处理单元包括:
第二确定单元1001,根据对应所述至少两个配置的监听结果统一计数,确定最终的监听结果;
第三确定单元1002,在确定最终的监听结果为失步指示或同步指示时,确定是否存在物理层问题,或者在确定最终的监听结果为波束恢复失败实例时,是否需要发起波束失败恢复。
在该实施方式中,第二确定单元1001在对应该至少两个配置的都是失步指示时,确定最终的监听结果为失步指示;
或者失步指示对应的配置数量比同步指示对应的配置数量多时,确定最终的监听结果为失步指示;
在对应该至少两个配置的都是同步指示时,或者失步指示对应的配置数量比同步指示对应的配置数量少时,确定最终的监听结果为同步指示;
在对应该至少两个配置的都是波束恢复失败实例时,确定最终的监听结果为波束恢复失败实例,或者波束恢复失败实例对应的配置数量多于预定阈值时,确定最终的监听结果为波束恢复失败实例。
图11是本发明实施例3的监听装置示意图;如图11所示,该装置1100包括:监听单元1101、生成单元1102,其实施方式与监听单元701以及生成单元702类似, 此处不再赘述。
在该实施方式中,该装置还包括:第四处理单元1103和第三上报单元1104,具体实施方式可以参考实施例1步骤501-502;
该终端设备的物理层利用该第四处理单元1103对对应该至少两个配置的监听结果进行处理,生成最终的监听结果,并利用该第三上报单元将该最终的监听结果上报至该终端设备的高层。
该第四处理单元1103包括:第二确定单元(未图示),根据对应该至少两个配置的监听结果统一计数,确定最终的监听结果;例如该第二确定单元在对应该至少两个配置的都是失步指示时,确定最终的监听结果为失步指示;
或者失步指示对应的配置数量比同步指示对应的配置数量多时,确定最终的监听结果为失步指示;
在对应该至少两个配置的都是同步指示时,或者失步指示对应的配置数量比同步指示对应的配置数量少时,确定最终的监听结果为同步指示;
在对应该至少两个配置的都是波束恢复失败实例时,确定最终的监听结果为波束恢复失败实例,或者波束恢复失败实例对应的配置数量多于预定阈值时,确定最终的监听结果为波束恢复失败实例,其具体实施方式与附图10中的第二确定单元类似,重复之处不再赘述。
由上述实施例可知,根据至少两个配置进行无线链路监听,生成对应该至少两个配置的监听结果,由此,可以减少不必要的小区选择以及连接重建,减少业务中断,尤其保证URLLC业务的可靠运行。
实施例4
本实施例4还提供一种终端设备,由于该设备解决问题的原理于实施例1的方法类似,因此其具体的实施可以参考实施例1的方法实施,内容相同之处不再重复说明。
在本实施例中还提供一种终端设备(未图示),该终端设备配置有如前所述的监听装置700,例如实施例3中的监听单元701,801,1101、生成单元702,802,1102、第一上报单元803、第二上报单元、第四处理单元1103、第三上报单元1104可以设置在终端设备的物理层,第一处理单元804可以设置在终端设备的高层等。
本实施例还提供一种终端设备,图12是本发明实施例4的终端设备的构成示意 图;如图12所示,终端设备1200可以包括:中央处理器(CPU)1201和存储器1202;存储器1202耦合到中央处理器1201。其中该存储器1202可存储各种数据;此外还存储数据处理的程序,并且在中央处理器1201的控制下执行该程序,以进行业务接收或发送。
在一个实施方式中,装置700的功能可以被集成到中央处理器1201中。其中,中央处理器1201可以被配置为实现实施例1所述的监听方法。
例如,中央处理器1201可以被配置为:根据至少两个配置进行无线链路监听,其中,每个该配置包括无线链路监听的相关参数;生成分别对应该至少两个配置的监听结果。
例如,中央处理器1201可以被配置为:第接收网络设备发送的该至少两个配置。
例如,中央处理器1201可以被配置为:接收网络设备发送的激活指示,该激活指示用于激活该至少两个配置;
并且根据激活的至少两个配置进行无线链路监听。
例如,中央处理器1201可以被配置为:控制终端设备的物理层将对应该至少两个配置的监听结果上报至该终端设备的高层。
其中,控制终端设备的物理层按照该至少两个配置的配置索引顺序上报该监听结果。
例如,中央处理器1201可以被配置为:控制该终端设备的物理层将与监听结果对应的配置或配置索引通知给该终端设备的高层。
例如,中央处理器1201可以被配置为:控制该终端设备的高层对对应该至少两个配置的监听结果进行处理,确定无线链路情况。
例如,中央处理器1201可以被配置为:控制该终端设备的高层根据对应每个配置的监听结果分别计数,并分别设置定时器,确定对应每个配置是否存在物理层问题或者是否需要发起波束失败恢复;
在对应该至少两个配置都存在物理层问题时,触发无线链路失败,和/或挂起低时延或高可靠性业务;或者在对应该至少两个配置中的预定数量个配置存在物理层问题时,触发无线链路失败,和/或挂起低时延或高可靠性业务;或者在对应该至少两个配置都需要发起波束失败恢复时,发起波束失败恢复过程;或者在对应该至少两个配置中的预定数量个配置需要发起波束失败恢复时,发起波束失败恢复过程。
例如,中央处理器1201可以被配置为:控制该终端设备的物理层对对应该至少两个配置的监听结果进行处理,生成最终的监听结果,并将该最终的监听结果上报至该终端设备的高层。
例如,中央处理器1201可以被配置为:控制该终端设备的物理层根据对应该至少两个配置的监听结果统一计数,确定最终的监听结果;在确定最终的监听结果为失步指示或同步指示时,确定是否存在物理层问题,或者在确定最终的监听结果为波束恢复失败实例时,是否需要发起波束失败恢复。
例如,中央处理器1201可以被配置为:控制该终端设备的物理层在对应该至少两个配置的都是失步指示时,确定最终的监听结果为失步指示;
或者失步指示对应的配置数量比同步指示对应的配置数量多时,确定最终的监听结果为失步指示;
在对应该至少两个配置的都是同步指示时,或者失步指示对应的配置数量比同步指示对应的配置数量少时,确定最终的监听结果为同步指示;
在对应该至少两个配置的都是波束恢复失败实例时,确定最终的监听结果为波束恢复失败实例,或者波束恢复失败实例对应的配置数量多于预定阈值时,确定最终的监听结果为波束恢复失败实例。
另外,该中央处理器1201的其他配置方式可以参考实施例1,此处不再赘述。
在另一个实施方式中,上述装置700可以与中央处理器1201分开配置,例如,可以将装置700配置为与中央处理器1201连接的芯片,如图12所示的业务获取单元,通过中央处理器1201的控制来实现装置700的功能。
此外,如图12所示,终端设备1200还可以包括:通信模块1203、输入单元1204、显示器1206、天线1207和电源12012等。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1200也并不是必须要包括图12中所示的所有部件;此外,终端设备1200还可以包括图12中没有示出的部件,可以参考现有技术。
由上述实施例可知,根据至少两个配置进行无线链路监听,生成对应该至少两个配置的监听结果,由此,可以减少不必要的小区选择以及连接重建,减少业务中断,尤其保证URLLC业务的可靠运行。
实施例5
本实施例5提供了一种参数配置装置,由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参考实施例2的方法的实施,内容相同之处不再重复说明。
图13是本发明实施例5的参数配置装置示意图;如图13所示,该装置1300包括:
第一发送单元1301,其用于向终端设备发送用于无线链路监听的至少两个配置,其中,每个该配置包括无线链路监听的相关参数。
其中,该装置还包括:
第二发送单元1302(可选),其用于向该终端设备发送激活指示,该激活指示用于激活至少两个配置。
其中,该装置还包括:
第三接收单元1303(未图示),其用于接收该终端设备上报的事件,该事件为该终端设备存在无线链路问题以及确定存在无线链路问题对应的配置,和/或为该终端设备挂起低时延或高可靠性业务。
由上述实施例可知,网络设备发送至少两个配置,以便终端设备根据至少两个配置进行无线链路监听,生成对应该至少两个配置的监听结果,由此,可以减少不必要的小区选择以及连接重建,减少业务中断,尤其保证URLLC业务的可靠运行。
实施例6
本实施例6提供了一种网络设备,由于该设备解决问题的原理于实施例2的方法类似,因此其具体的实施可以参考实施例2的方法实施,内容相同之处不再重复说明。
在本实施例中还提供一种网络设备(未图示),该网络设备配置有如前所述的参数配置装置1300。
本实施例6还提供了一种网络设备,由于该设备解决问题的原理于实施例2的方法类似,因此其具体的实施可以参考实施例2的方法实施,内容相同之处不再重复说明。图14是该网络设备构成示意图。如图14所示,网络设备1400可以包括:中央处理器(CPU)1401和存储器1402;存储器1402耦合到中央处理器1401。其中该存储器1402可存储各种数据;此外还存储数据处理的程序,并且在中央处理器1401 的控制下执行该程序1430,以发送业务。
在一个实施方式中,装置1100的功能可以被集成到中央处理器1401中。其中,中央处理器1401可以被配置为实现实施例2该的参数配置方法。
例如,中央处理器1401可以被配置为:向终端设备发送用于无线链路监听的至少两个配置,其中,每个该配置包括无线链路监听的相关参数。
例如,中央处理器1401可以被配置为:向该终端设备发送激活指示,该激活指示用于激活至少两个配置。
例如,中央处理器1401可以被配置为:接收该终端设备上报的事件,该事件为该终端设备存在无线链路问题以及确定存在无线链路问题对应的配置,和/或为该终端设备挂起低时延或高可靠性业务。
另外,该中央处理器1401的具体配置方式可以参考实施例2,此处不再赘述。
在另一个实施方式中,上述装置1300可以与中央处理器1401分开配置,例如,可以将装置1300配置为与中央处理器1401连接的芯片,如图14所示的单元,通过中央处理器1401的控制来实现装置1300的功能。
此外,如图14所示,网络设备1400还可以包括:收发机1403和天线1404等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1400也并不是必须要包括图14中所示的所有部件;此外,网络设备1400还可以包括图14中没有示出的部件,可以参考现有技术。
由上述实施例可知,网络设备发送至少两个配置,以便终端设备根据至少两个配置进行无线链路监听,生成对应该至少两个配置的监听结果,由此,可以减少不必要的小区选择以及连接重建,减少业务中断,尤其保证URLLC业务的可靠运行。
实施例7
本实施例7提供了一种通信系统,其包括实施例4中的终端设备和/或实施例6中的网络设备,将其内容合并与此,此处不再赘述。
由上述实施例可知,网络设备发送至少两个配置,以便终端设备根据至少两个配置进行无线链路监听,生成对应该至少两个配置的监听结果,由此,可以减少不必要的小区选择以及连接重建,减少业务中断,尤其保证URLLC业务的可靠运行。
本发明实施例还提供一种计算机可读程序,其中当在监听装置或终端设备中执行所述程序时,所述程序使得所述监听装置或终端设备执行实施例1所述的监听方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得监听装置或终端设备执行实施例1所述的监听方法。
本发明实施例还提供一种计算机可读程序,其中当在参数配置装置或网络设备中执行所述程序时,所述程序使得所述参数配置装置或网络设备执行实施例2所述的参数配置方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得参数配置装置或网络设备执行实施例2所述的参数配置方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的在监听装置,或参数配置装置中的监听方法、参数配置方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图7-14中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图2-6所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(例如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对图7-14描述的功能框图中的一个或多个和/或功能框图的一个或多个组合, 可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件、或者其任意适当组合。针对图7-14描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
关于包括以上多个实施例的实施方式,还公开下述的附记。
附记1、一种监听方法,包括:
根据至少两个配置进行无线链路监听,其中,每个所述配置包括无线链路监听的相关参数;
生成分别对应所述至少两个配置的监听结果。
附记2、根据附记1所述的方法,其中,所述监听结果包括:同步指示、失步指示或波束失败实例。
附记3、根据附记1所述的方法,其中,所述无线链路监听的相关参数包括:判断小区级/波束级无线链路监听结果的阈值,和/或用于小区级/波束级无线链路监听的资源,和/或判断小区级/波束级无线链路监听结果的周期,和/或小区级/波束级监听结果的上报间隔。
附记4、根据附记1所述的方法,其中,所述方法还包括:
接收网络设备发送的所述至少两个配置。
附记5、根据附记4所述的方法,其中,所述方法还包括:
接收网络设备发送的激活指示,所述激活指示用于激活所述至少两个配置;
并且根据激活的至少两个配置进行无线链路监听。
附记6、根据附记4所述的方法,其中,通过无线资源控制信令接收所述至少两个配置。
附记7、根据附记5所述的方法,其中,通过媒体接入控制信令接收所述激活指示。
附记8、根据附记1所述的方法,其中,每个所述配置还包括:配置索引。
附记9、根据附记1所述的方法,其中,所述方法还包括:终端设备的物理层将对应所述至少两个配置的监听结果上报至所述终端设备的高层。
附记10、根据附记9所述的方法,其中,按照所述至少两个配置的配置索引顺序上报所述监听结果。
附记11、根据附记9所述的方法,其中,所述方法还包括:所述终端设备的物理层将与监听结果对应的配置或配置索引通知给所述终端设备的高层。
附记12、根据附记9所述的方法,其中,所述方法还包括:所述终端设备的高层对对应所述至少两个配置的监听结果进行处理,确定无线链路情况。
附记13、根据附记12所述的方法,其中,对对应所述至少两个配置的监听结果进行处理,确定无线链路情况包括:
根据对应每个配置的监听结果分别计数,并分别设置定时器,确定对应每个配置是否存在物理层问题或者是否需要发起波束失败恢复;
在对应所述至少两个配置都存在物理层问题时,触发无线链路失败,和/或挂起低时延或高可靠性业务;或者在对应所述至少两个配置中的预定数量个配置存在物理层问题时,触发无线链路失败,和/或挂起低时延或高可靠性业务;或者在对应所述至少两个配置都需要发起波束失败恢复时,发起波束失败恢复过程;或者在对应所述至少两个配置中的预定数量个配置需要发起波束失败恢复时,发起波束失败恢复过程。
附记14、根据附记1所述的方法,其中,所述方法还包括:所述终端设备的物理层对对应所述至少两个配置的监听结果进行处理,生成最终的监听结果,并将所述最终的监听结果上报至所述终端设备的高层。
附记15、根据附记12或14所述的方法,其中,所对对应所述至少两个配置的监听结果进行处理包括:
根据对应所述至少两个配置的监听结果统一计数,确定最终的监听结果。
附记16、根据附记15所述的方法,其中,根据对应所述至少两个配置的监听结果统一计数,确定最终的监听结果包括:在对应所述至少两个配置的都是失步指示时, 确定最终的监听结果为失步指示;
或者失步指示对应的配置数量比同步指示对应的配置数量多时,确定最终的监听结果为失步指示;
在对应所述至少两个配置的都是同步指示时,或者失步指示对应的配置数量比同步指示对应的配置数量少时,确定最终的监听结果为同步指示;
在对应所述至少两个配置的都是波束恢复失败实例时,确定最终的监听结果为波束恢复失败实例,或者波束恢复失败实例对应的配置数量多于预定阈值时,确定最终的监听结果为波束恢复失败实例。
附记17、一种参数配置方法,其中,所述方法包括:
向终端设备发送用于无线链路监听的至少两个配置,其中,每个所述配置包括无线链路监听的相关参数。
附记18、根据附记17所述的方法,其中,所述方法还包括:
向所述终端设备发送激活指示,所述激活指示用于激活至少两个配置。
附记19、根据附记17所述的方法,其中,所述方法还包括:
接收所述终端设备上报的事件,所述事件为所述终端设备存在无线链路问题以及确定存在无线链路问题对应的配置,和/或为所述终端设备挂起低时延或高可靠性业务。

Claims (20)

  1. 一种监听装置,包括:
    监听单元,其用于根据至少两个配置进行无线链路监听,其中,每个所述配置包括无线链路监听的相关参数;
    生成单元,其用于生成分别对应所述至少两个配置的监听结果。
  2. 根据权利要求1所述的装置,其中,所述监听结果包括:同步指示、失步指示或波束失败实例。
  3. 根据权利要求1所述的装置,其中,所述无线链路监听的相关参数包括:判断小区级/波束级无线链路监听结果的阈值,和/或用于小区级/波束级无线链路监听的资源,和/或判断小区级/波束级无线链路监听结果的周期,和/或小区级/波束级监听结果的上报间隔。
  4. 根据权利要求1所述的装置,其中,所述装置还包括:
    第一接收单元,其用于接收网络设备发送的所述至少两个配置。
  5. 根据权利要求4所述的装置,其中,所述装置还包括:
    第二接收单元,其用于接收网络设备发送的激活指示,所述激活指示用于激活所述至少两个配置;
    并且所述监听单元根据激活的至少两个配置进行无线链路监听。
  6. 根据权利要求4所述的装置,其中,所述第一接收单元通过无线资源控制信令接收所述至少两个配置。
  7. 根据权利要求5所述的装置,其中,所述第二接收单元通过媒体接入控制信令接收所述激活指示。
  8. 根据权利要求1所述的装置,其中,每个所述配置还包括:配置索引。
  9. 根据权利要求1所述的装置,其中,所述装置还包括:第一上报单元;
    终端设备的物理层利用所述第一上报单元将对应所述至少两个配置的监听结果上报至所述终端设备的高层。
  10. 根据权利要求9所述的装置,其中,所述第一上报单元按照所述至少两个配置的配置索引顺序上报所述监听结果。
  11. 根据权利要求9所述的装置,其中,所述装置还包括:第二上报单元;
    所述终端设备的物理层利用所述第二上报单元将与监听结果对应的配置或配置索引通知给所述终端设备的高层。
  12. 根据权利要求9所述的装置,其中,所述装置还包括:第一处理单元;
    所述终端设备的高层利用所述第一处理单元对对应所述至少两个配置的监听结果进行处理,确定无线链路情况。
  13. 根据权利要求12所述的装置,其中,所述第一处理单元包括:
    第一确定单元,其用于根据对应每个配置的监听结果分别计数,并分别设置定时器,确定对应每个配置是否存在物理层问题或者是否需要发起波束失败恢复;
    执行单元,其用于在对应所述至少两个配置都存在物理层问题时,触发无线链路失败,和/或挂起低时延或高可靠性业务;或者在对应所述至少两个配置中的预定数量个配置存在物理层问题时,触发无线链路失败,和/或挂起低时延或高可靠性业务;或者在对应所述至少两个配置都需要发起波束失败恢复时,发起波束失败恢复过程;或者在对应所述至少两个配置中的预定数量个配置需要发起波束失败恢复时,发起波束失败恢复过程。
  14. 根据权利要求1所述的装置,其中,所述装置还包括:第四处理单元和第三上报单元;
    所述终端设备的物理层利用所述第四处理单元对对应所述至少两个配置的监听结果进行处理,生成最终的监听结果,并利用所述第三上报单元将所述最终的监听结果上报至所述终端设备的高层。
  15. 根据权利要求12或14所述的装置,其中,所述第一处理单元包括:
    第二确定单元,根据对应所述至少两个配置的监听结果统一计数,确定最终的监听结果;
    第三确定单元,在确定最终的监听结果为失步指示或同步指示时,确定是否存在物理层问题,或者在确定最终的监听结果为波束恢复失败实例时,是否需要发起波束失败恢复;
    所述第四处理单元包括:第二确定单元,根据对应所述至少两个配置的监听结果统一计数,确定最终的监听结果。
  16. 根据权利要求15所述的装置,其中,所述第二确定单元在对应所述至少两 个配置的都是失步指示时,确定最终的监听结果为失步指示;
    或者失步指示对应的配置数量比同步指示对应的配置数量多时,确定最终的监听结果为失步指示;
    在对应所述至少两个配置的都是同步指示时,或者失步指示对应的配置数量比同步指示对应的配置数量少时,确定最终的监听结果为同步指示;
    在对应所述至少两个配置的都是波束恢复失败实例时,确定最终的监听结果为波束恢复失败实例,或者波束恢复失败实例对应的配置数量多于预定阈值时,确定最终的监听结果为波束恢复失败实例。
  17. 一种参数配置装置,其中,所述装置包括:
    第一发送单元,其用于向终端设备发送用于无线链路监听的至少两个配置,其中,每个所述配置包括无线链路监听的相关参数。
  18. 根据权利要求17所述的装置,其中,所述装置还包括:
    第二发送单元,其用于向所述终端设备发送激活指示,所述激活指示用于激活至少两个配置。
  19. 根据权利要求17所述的装置,其中,所述装置还包括:
    第三接收单元,其用于接收所述终端设备上报的事件,所述事件为所述终端设备存在无线链路问题以及确定存在无线链路问题对应的配置,和/或为所述终端设备挂起低时延或高可靠性业务。
  20. 一种通信系统,其中,所述通信系统包括终端设备,所述终端设备包括权利要求1所述的监听装置。
PCT/CN2018/081626 2018-04-02 2018-04-02 监听方法、参数配置方法以及装置、通信系统 WO2019191872A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081626 WO2019191872A1 (zh) 2018-04-02 2018-04-02 监听方法、参数配置方法以及装置、通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081626 WO2019191872A1 (zh) 2018-04-02 2018-04-02 监听方法、参数配置方法以及装置、通信系统

Publications (1)

Publication Number Publication Date
WO2019191872A1 true WO2019191872A1 (zh) 2019-10-10

Family

ID=68099870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081626 WO2019191872A1 (zh) 2018-04-02 2018-04-02 监听方法、参数配置方法以及装置、通信系统

Country Status (1)

Country Link
WO (1) WO2019191872A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934973A (zh) * 2014-01-27 2016-09-07 瑞典爱立信有限公司 用于自适应无线电链路监控的方法、网络节点、用户设备和计算机程序产品
WO2017136666A1 (en) * 2016-02-05 2017-08-10 Qualcomm Incorporated Adaptive radio link monitoring
CN107210826A (zh) * 2015-01-30 2017-09-26 Lg 电子株式会社 无线通信系统中的无线电链路监测方法及其设备
WO2018027904A1 (en) * 2016-08-12 2018-02-15 Mediatek Singapore Pte. Ltd Methods and apparatus for handling of radio link failure detection in hf-nr system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934973A (zh) * 2014-01-27 2016-09-07 瑞典爱立信有限公司 用于自适应无线电链路监控的方法、网络节点、用户设备和计算机程序产品
CN107210826A (zh) * 2015-01-30 2017-09-26 Lg 电子株式会社 无线通信系统中的无线电链路监测方法及其设备
WO2017136666A1 (en) * 2016-02-05 2017-08-10 Qualcomm Incorporated Adaptive radio link monitoring
WO2018027904A1 (en) * 2016-08-12 2018-02-15 Mediatek Singapore Pte. Ltd Methods and apparatus for handling of radio link failure detection in hf-nr system

Similar Documents

Publication Publication Date Title
US11678274B2 (en) Method for modifying parameter values for long range extension and corresponding node
JP7310861B2 (ja) ネットワーク接続の復旧装置
CN109246743B (zh) 一种波束管理方法及终端设备、网络设备
AU2018240244B2 (en) Communication method in wireless network, apparatus, and system
TWI768195B (zh) 處理無線鏈路監控及頻寬部分切換的裝置及方法
JP6808035B2 (ja) 無線リンク監視のための方法およびデバイス
WO2019029365A1 (zh) 无线链路监测方法及终端
JP7327463B2 (ja) 無線リンク検出方法、装置及び通信システム
WO2018112871A1 (zh) 数据发送/接收装置、方法以及通信系统
CN111556517A (zh) 异常链路的处理方法及设备
WO2019028861A1 (zh) 波束失败事件的触发条件的配置方法、装置和通信系统
WO2019140627A1 (zh) 配置信息的接收和发送方法、装置及通信系统
US20230345344A1 (en) Signal transmission and reception method and apparatus and communication system
WO2019191872A1 (zh) 监听方法、参数配置方法以及装置、通信系统
WO2022082495A1 (zh) 路由选择方法、装置和系统
WO2019095211A1 (zh) 部分带宽的切换和配置方法、装置及通信系统
WO2024026894A1 (zh) 配置参数的方法、装置以及通信系统
WO2024031404A1 (zh) 测量放松的方法、装置以及通信系统
WO2022082686A1 (zh) 波束失败信息的上报方法以及装置
WO2024031402A1 (zh) 测量放松的方法、装置以及通信系统
WO2023193266A1 (zh) 下行无线链路质量的评估方法及装置
WO2024026896A1 (zh) 信息处理方法、信息发送方法和装置
US20240064862A1 (en) Methods and apparatuses for detection of session status
WO2022151110A1 (zh) 波束失败信息的生成和上报方法以及装置
WO2021196162A1 (zh) 测量模式转换方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913371

Country of ref document: EP

Kind code of ref document: A1