WO2022082686A1 - 波束失败信息的上报方法以及装置 - Google Patents

波束失败信息的上报方法以及装置 Download PDF

Info

Publication number
WO2022082686A1
WO2022082686A1 PCT/CN2020/123018 CN2020123018W WO2022082686A1 WO 2022082686 A1 WO2022082686 A1 WO 2022082686A1 CN 2020123018 W CN2020123018 W CN 2020123018W WO 2022082686 A1 WO2022082686 A1 WO 2022082686A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium access
access control
beam failure
secondary cell
mac
Prior art date
Application number
PCT/CN2020/123018
Other languages
English (en)
French (fr)
Inventor
贾美艺
李国荣
Original Assignee
富士通株式会社
贾美艺
李国荣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 贾美艺, 李国荣 filed Critical 富士通株式会社
Priority to PCT/CN2020/123018 priority Critical patent/WO2022082686A1/zh
Priority to CN202080106081.7A priority patent/CN116368765A/zh
Priority to JP2023522757A priority patent/JP2023545812A/ja
Publication of WO2022082686A1 publication Critical patent/WO2022082686A1/zh
Priority to US18/133,816 priority patent/US20230284052A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the embodiments of the present application relate to the field of communication technologies.
  • the transmission and reception of beams are supported, and the management of multiple beams is supported.
  • the terminal device can perform the beam failure detection process and the beam failure recovery process.
  • the MAC entity of the Media Access Control (MAC, Media Access Control) layer of the terminal device detects the beam by calculating the number of beam failure instance (instance) indications provided to the MAC entity by the lower layer (such as the physical layer). fail.
  • MAC Media Access Control
  • the beam failure detection procedure uses the UE variable BFI_COUNTER, which is the counter indicated by the beam failure instance, which is initially set to 0, one BFI_COUNTER per serving cell.
  • BFI_COUNTER the counter indicated by the beam failure instance, which is initially set to 0, one BFI_COUNTER per serving cell.
  • the MAC entity will perform the following operations:
  • BFI_COUNTER is incremented by 1; in the case that BFI_COUNTER is greater than or equal to the maximum count value of beam failure instances beamFailureInstanceMaxCount: if the serving cell is For the secondary cell, trigger a beam failure recovery (BFR, Beam Failure Recovery) of the serving cell, otherwise, initiate a random access procedure on the special cell.
  • BFR Beam Failure Recovery
  • the radio resource control can be used to configure the beam failure recovery process for the MAC entity.
  • RRC Radio Resource Control
  • SSB Service synchronization signal block
  • CSI-RS channel state information reference signal
  • a new SSB or CSI-RS is indicated to the serving network device (eg gNB).
  • the terminal equipment When a MAC Protocol Data Unit (PDU, Protocol Data Unit) is sent by the terminal device to the network device, and the MAC PDU includes a BFR MAC Control Element (CE) or a truncated (Truncated) BFR MAC that carries the beam failure information of the secondary cell CE, the terminal equipment shall cancel all BFRs triggered by beam failure recovery for the secondary cell before the MAC PDU is assembled.
  • PDU Protocol Data Unit
  • CE BFR MAC Control Element
  • Tx truncated
  • the MAC entity During beam failure recovery, the MAC entity will perform the following operations:
  • the beam failure recovery process determines that at least one BFR has been triggered and the BFR has not been canceled:
  • the uplink resource (UL-SCH resource) is available for a new transmission, and the result of the Logical Channel Prioritization (LCP, Logical Channel Prioritization) is that the uplink resource can accommodate the BFR MAC CE plus its subheader, it indicates that the complex Use (Multiplexing) and assembly (Assembly) process to generate BFR MAC CE;
  • the multiplexing and assembly process is instructed to generate the Truncated BFR MAC CE;
  • SR Scheduling Request
  • the beam failure information of the secondary cell may be carried by the BFR MAC CE or Truncated BFR MAC CE (hereinafter referred to as (Truncated) BFR MAC CE), and sent by the terminal device to the network device.
  • the BFR MAC CE or Truncated BFR MAC CE hereinafter referred to as (Truncated) BFR MAC CE
  • the terminal device may generate (Truncated) BFR MAC CE before the candidate beam detection is completed, but the MAC CE may not include candidate beam information, such as candidate reference signal (RS, Reference Signal) identification (ID) .
  • RS candidate reference signal
  • ID candidate reference signal identification
  • the network device receives the MAC CE without the candidate beam information, it only knows that the secondary cell of the terminal device has a beam failure, but there is no suitable candidate beam information. In this case, the network device may configure an inappropriate beam for the terminal device, resulting in failure to restore the beam.
  • embodiments of the present application provide a method and apparatus for reporting beam failure information.
  • a method for reporting beam failure information including:
  • the terminal device determines that the secondary cell in which the beam failure has occurred has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal;
  • an apparatus for reporting beam failure information including:
  • a detection unit that detects candidate beams
  • a reporting unit which reports the beam failure on the secondary cell that has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal.
  • a method for reporting beam failure information including:
  • the terminal device determines that the secondary cell in which the beam failure has occurred has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal;
  • a medium access control protocol data unit including beam failure information of the secondary cell is reported to the network device.
  • an apparatus for reporting beam failure information including:
  • a detection unit that detects candidate beams
  • a reporting unit which reports a medium access control protocol data unit including beam failure information on a secondary cell that has completed candidate beam detection based on a synchronization signal block or a channel state information reference signal to the network device.
  • a method for reporting beam failure information including:
  • the terminal equipment fails to detect a beam in the secondary cell
  • the secondary cell Before the secondary cell has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal, or before the candidate beam identifier of the secondary cell is received, or before the secondary cell is based on the synchronization signal block or the channel state information.
  • the evaluation period of the candidate beam detection of the reference signal the occurrence of beam failure in the secondary cell is not reported, and/or the multiplexing and assembly process is not instructed to generate a beam failure recovery medium access control element or a truncated beam failure recovery medium Access control elements.
  • an apparatus for reporting beam failure information including:
  • a detection unit which detects a beam failure in the secondary cell
  • a processing unit before the secondary cell has completed the detection of the candidate beam based on the synchronization signal block or the channel state information reference signal, or before the candidate beam identifier of the secondary cell is received, or before the secondary cell is based on the synchronization signal block or during the evaluation period of candidate beam detection of the channel state information reference signal, do not report the occurrence of beam failure in the secondary cell, and/or do not instruct the multiplexing and assembly process to generate beam failure recovery medium access control control elements or truncated Beam failure restores the medium access control control element.
  • One of the beneficial effects of the embodiments of the present application is that: when the secondary cell in which the beam failure occurs has completed the candidate beam detection based on the synchronization signal block (SSB) or the channel state information reference signal (CSI-RS), The network device reports the occurrence of beam failure in the secondary cell, or reports a medium access control (MAC) protocol data unit (PDU) including beam failure information of the secondary cell to the network device.
  • MAC medium access control protocol data unit
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the BFR MAC CE or Truncated BFR MAC CE of the first format
  • Fig. 3 is a schematic diagram of the BFR MAC CE or Truncated BFR MAC CE of the second format
  • FIG. 4 is a schematic diagram of a scenario in which a terminal device reports beam failure information according to an embodiment of the present application
  • FIG. 5 is another schematic diagram of a scenario in which a terminal device reports beam failure information according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a method for reporting beam failure information according to an embodiment of the present application.
  • FIG. 7 is another schematic diagram of a method for reporting beam failure information according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an apparatus for reporting beam failure information according to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of an apparatus for reporting beam failure information according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelation, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having”, etc. refer to the presence of stated features, elements, elements or components, but do not preclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access) and so on.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to communication protocols at any stage, for example, including but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G , New Radio (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network devices may include but are not limited to the following devices: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobility management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include a remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low power node (such as femeto, pico, etc.), IAB (Integrated Access and Backhaul) node or IAB-DU or IAB-donor.
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node such as femeto, pico, etc.
  • IAB Integrated Access and Backhaul node or IAB-DU or IAB-donor.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used. The terms “cell”
  • the term "User Equipment” (UE, User Equipment) or “Terminal Equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • Terminal equipment may be fixed or mobile, and may also be referred to as Mobile Station (MS, Mobile Station), Terminal, Subscriber Station (SS, Subscriber Station), Access Terminal (AT, Access Terminal), IAB-MT, Station (station), etc.
  • the terminal device may include but is not limited to the following devices: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine type communication device
  • laptop computer Cordless phones, smartphones, smart watches, digital cameras, and more.
  • the terminal device may also be a machine or device that performs monitoring or measurement, such as but not limited to: Machine Type Communication (MTC, Machine Type Communication) terminals, In-vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station, and may also include one or more network devices as described above.
  • user side or “terminal side” or “terminal device side” refers to the side of a user or terminal, which may be a certain UE, or may include one or more terminal devices as above.
  • equipment may refer to network equipment or terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application, which schematically illustrates a situation in which a terminal device and a network device are used as an example.
  • a communication system 100 may include a network device 101 and a terminal device 102 .
  • FIG. 1 only takes one terminal device and one network device as an example for description, but the embodiment of the present application is not limited to this, for example, there may be multiple terminal devices.
  • Enhanced Mobile Broadband eMBB, enhanced Mobile Broadband
  • Massive Machine Type Communication mMTC, massive Machine Type Communication
  • Ultra-Reliable and Low Latency Communication URLLC, Ultra-Reliable and Low.
  • -Latency Communication etc.
  • the beam failure information of the secondary cell can be carried by the BFR MAC CE or Truncated BFR MAC CE, and sent by the terminal device to the network device.
  • Figure 2 is a schematic diagram of a BFR MAC CE or Truncated BFR MAC CE in a first format (referred to as format 1).
  • 3 is a schematic diagram of a BFR MAC CE or Truncated BFR MAC CE in a second format (referred to as format 2).
  • a BFR MAC CE if the MAC entity detects that the highest serving cell index ServCellIndex of the secondary cell with beam failure is less than 8, then format 1 of FIG. 2 is used; otherwise, format 2 of FIG. 3 is used.
  • ServCellIndex if the MAC entity detects that the highest serving cell index ServCellIndex of the secondary cell with beam failure is less than 8, or the special cell detects beam failure and this special cell will be included in a Truncated BFR MAC CE, and the LCP result If the UL-SCH resource cannot accommodate the Truncated BFR MAC CE of format 2 of Figure 3 plus its subheader, then format 1 of Figure 2 is used; otherwise, format 2 of Figure 3 is used.
  • format 1 and format 2 are defined as follows:
  • the Ci field indicates the beam failure detection of the secondary cell of ServCellIndex i and there is a byte including the AC field, the AC field indicates whether there is a candidate (Candidate) RS ID field in this byte, and the Candidate RS ID field is set is the index of SSB or CSI-RS.
  • Setting the Ci field to 1 indicates that the secondary cell of ServCellIndex i has detected a beam failure and there are bytes including the AC field.
  • Setting the Ci field to 0 indicates that the secondary cell of ServCellIndex i does not detect beam failure and there are no bytes including the AC field.
  • the bytes including the AC field are present in ascending order based on the ServCellIndex.
  • the Ci field indicates the beam failure detection of the secondary cell of ServCellIndex i
  • the AC field indicates whether there is a candidate (Candidate) RS ID field in this byte
  • the Candidate RS ID field is set to the index of the SSB or CSI-RS .
  • Setting the Ci field to 1 indicates that the secondary cell of ServCellIndex i has detected a beam failure and there may be bytes including the AC field.
  • Setting the Ci field to 0 indicates that the secondary cell of ServCellIndex i does not detect beam failure and there are no bytes including the AC field. If present, the bytes including the AC field appear in ascending order based on the ServCellIndex. The number of bytes including the AC field MAY be 0, up to the size of the available grant.
  • FIG. 4 is a schematic diagram of a scenario in which a terminal device reports beam failure information according to an embodiment of the present application. ) when the uplink grant of the BFR MAC CE.
  • t0 is the time when the BFR is triggered
  • t1 is the time when the MAC CE is generated
  • t2 is the time when the UL grant for transmitting the MAC CE arrives
  • t3 is the time when the lower layer completes the candidate beam detection and/or the lower layer
  • the UL grant in FIG. 4 takes dynamic scheduling as an example, but the embodiment of the present application is not limited to this, and the UL grant may also be a Configuration Grant (CG, Configured Grant).
  • CG Configuration Grant
  • the MAC entity already knows that there are available uplink resources at time t2; in this way, when BFR is triggered, that is, time t0 , the MAC entity can instruct the multiplexing and assembly process to generate (Truncated) a BFR MAC CE; the multiplexing and assembly process can generate this MAC CE and assemble the MAC PDU including this MAC CE at any time during t0 to t2.
  • PDCCH Physical Downlink Control Channel
  • FIG. 5 is another schematic diagram of a scenario in which a terminal device reports beam failure information according to an embodiment of the present application, showing that after the BFR is triggered, the lower layers have not yet completed the evaluation of the candidate beam information (RS ID), and there are already available (Truncated) BFR MAC The situation when the CE is granted uplink authorization.
  • RS ID candidate beam information
  • t0 is the time when the BFR is triggered
  • t1 is the time when the MAC CE is indicated to be generated
  • t2 is the time when the uplink grant (UL grant) for transmitting the MAC CE arrives
  • t3 is the time when the lower layer completes the candidate beam detection and/or The time when the lower layers provide the candidate beam information (RS ID) to the MAC entity.
  • the UL grant in FIG. 5 takes dynamic scheduling as an example, but the embodiment of the present application is not limited to this, and the UL grant may also be a configuration grant (CG, Configured Grant).
  • the MAC entity knows that there is currently no available uplink resource for transmitting (Truncated) BFR MAC CE. According to the existing procedure, if there is no available uplink resource, the MAC entity will trigger the SR to request the uplink resource. In fact, the MAC entity can wait for a period of time before triggering the SR, as long as the triggered SR can be guaranteed to be sent to the network device within the specified time. During the waiting period of the MAC entity, it is possible that the network device will provide an uplink grant, so that the MAC entity does not need to trigger an SR to acquire uplink resources.
  • the MAC entity triggers BFR at time t0, but there is no uplink resource available for transmission (Truncated) BFR MAC CE; the MAC entity waits for a period of time, and passes the DCI of the PDCCH at time t1, the MAC entity knows that it can be used for transmission. (Truncated)
  • the uplink grant of the BFR MAC CE can instruct the multiplexing and encapsulation process to generate the MAC CE; the multiplexing and encapsulation process can generate the MAC CE at any time before time t2, and assemble the MAC PDU including the MAC CE.
  • the time t3 when the lower layer provides the candidate beam information (RS ID) to the MAC entity is later than the time t1 when the MAC entity knows that there is an uplink grant capable of accommodating (Truncated) BFR MAC CE, or later than Time t2 when the uplink grant arrives.
  • the candidate beam information (RS ID) is not included in the generated MAC CE.
  • the network device When the network device receives the MAC CE without the candidate beam information, it only knows that a beam failure has occurred in the secondary cell of the terminal device, but does not receive the candidate beam information sent by the terminal device. In this case, the network device may configure an inappropriate beam for the terminal device, resulting in failure to restore the beam.
  • the embodiments of the present application will be further described below.
  • the embodiments of this application are described from the MAC layer of the terminal device, which is implemented by the MAC entity; wherein the MAC entity includes a beam failure detection process, a beam failure recovery process, and a multiplexing and assembling entity (hereinafter also referred to as a multiplexing and assembling process), etc.
  • the lower layers of the embodiments of the present application are, for example, a physical layer, an antenna unit, a measurement process, and the like.
  • FIG. 6 is a schematic diagram of a method for reporting beam failure information according to an embodiment of the present application. As shown in FIG. 6 , the method includes:
  • the terminal device determines that the secondary cell in which the beam failure occurs has completed the candidate beam detection based on the synchronization signal block (SSB) or the channel state information reference signal (CSI-RS); and
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the terminal device reports the beam failure of the secondary cell to the network device.
  • FIG. 6 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 6 .
  • candidate beams based on SSB or CSI-RS can be detected.
  • the index of the SSB/CSI-RS is included in the MAC Candidate RS ID field of CE; index refers to the index of the entry corresponding to the SSB/CSI-RS in candidateBeamRSSCellList, for example, index 0 corresponds to the first entry in candidateBeamRSSCellList, index 1 corresponds to the second entry in this list....
  • the terminal device in 601 determines that the secondary cell in which the beam failure occurs has completed the candidate beam detection based on synchronization signal block (SSB) or channel state information reference signal (CSI-RS), specifically including: by the terminal The medium access control (MAC) entity of the device determines that candidate beam detection based on synchronization signal blocks or channel state information reference signals has been completed in the secondary cell, and/or, received by the medium access control (MAC) entity of the terminal device to the candidate beam identity of the secondary cell from the lower layer.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the medium access control (MAC) entity of the terminal device does not report that a beam failure has occurred in the secondary cell.
  • the MAC entity of the terminal device does not report that beam failure occurs in the cell.
  • the network device does not know that a beam failure has occurred in the cell, so it will not perform beam management for the cell and configure an inappropriate beam for the cell, but wait for subsequent receipts that carry candidate beam information (RS ID). ) and reconfigure based on that information.
  • RS ID candidate beam information
  • MAC medium access control
  • CE Truncated Medium Access Control
  • the medium access control (MAC) entity does not report the secondary in the medium access control (MAC) control element (CE) or truncated medium access control (MAC) control element (CE) Beam failure occurred in the cell.
  • MAC medium access control
  • CE truncated medium access control
  • the medium access control (MAC) entity includes the indication information corresponding to the secondary cell in the medium access control (MAC) control element (CE) or the truncated medium access control (MAC) control element (CE) (Ci field) is set to 0; and the field (AC field) corresponding to the secondary cell carrying candidate beam information is not included.
  • no failure may be considered to be detected, or, alternatively, failure may not be considered to be detected.
  • Ci field For example, for BFR MAC CE, the meaning of the Ci field can be as shown in Table 1:
  • Ci field For example, for a Truncated BFR MAC CE, the meaning of the Ci field can be as shown in Table 2:
  • Ci field For example, for BFR MAC CE, the meaning of the Ci field can be as shown in Table 3:
  • Ci field For example, for a Truncated BFR MAC CE, the meaning of the Ci field can be as shown in Table 4:
  • the time at which the MAC entity instructs the multiplexing and assembly process to generate the MAC CE may be different from the time at which the multiplexing and assembly process generates and assembles, so the content and size of the MAC CE may change.
  • the multiplexing and assembly process is instructed by the medium access control (MAC) entity to generate a beam failure recovery (BFR) medium access control (MAC) control element (CE) during the multiplexing and assembly process
  • BFR beam failure recovery
  • MAC medium access control
  • CE truncated beam failure recovery
  • CE medium access control
  • the multiplexing and assembly process may generate a BFR MAC CE or a Truncated BFR MAC CE.
  • the multiplexing and assembly process can generate a BFR MAC CE or a Truncated BFR MAC CE depending on the UL grant size. Therefore, it can be appropriately adjusted according to the UL grant, etc., which is beneficial to provide more beam failure and recovery information, or is beneficial to saving signaling overhead.
  • the beam failure recovery process determines that at least one BFR has been triggered and not cancelled, if the UL-SCH resource is available for a new transmission and if the result of LCP is that the UL-SCH resource can To accommodate the BFR MAC CE plus its subheader, the MAC entity will instruct the Multiplexing and Assembly process to generate the BFR MAC CE.
  • the multiplexing and assembly process is instructed by the medium access control (MAC) entity to generate a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) at the multiplexing and A beam fail recovery (BFR) medium access control (MAC) control element (CE) or a truncated beam fail recovery (BFR) medium access control (MAC) control element (CE) is generated during assembly.
  • BFR truncated beam failure recovery
  • CE medium access control
  • CE medium access control element
  • the multiplexing and assembly process may generate a BFR MAC CE or a Truncated BFR MAC CE.
  • the multiplexing and assembly process can generate a BFR MAC CE or a Truncated BFR MAC CE depending on the UL grant size. Therefore, it can be appropriately adjusted according to the UL grant, etc., which is beneficial to provide more beam failure and recovery information, or is beneficial to saving signaling overhead.
  • the beam failure recovery process determines that at least one BFR has been triggered and not cancelled, if the UL-SCH resource is available for a new transmission and if the result of the LCP is that the UL-SCH resource cannot be used.
  • the MAC entity will instruct the Multiplexing and Assembly process to generate the Truncated BFR MAC CE.
  • the result of LCP is The UL-SCH resource is available for a new transmission and if the result of LCP is that this UL-SCH resource can accommodate the BFR MAC CE plus its subheader, the multiplexing and assembly process can generate the BFR MAC CE.
  • the multiplexing and assembly process is instructed by the medium access control (MAC) entity to generate a medium access control (MAC) control element (CE) carrying secondary cell beam failure and recovery information, at the multiplexing and Generate beam failure recovery (BFR) medium access control (MAC) control elements (CE) or truncated beam failure recovery (BFR) medium access control (MAC) control elements (CE) during assembly;
  • MAC medium access control
  • CE medium access control control
  • BFR beam failure recovery
  • CE medium access control
  • CE medium access control
  • the MAC entity instructs the multiplexing and assembly process to generate a MAC CE that carries information on beam failure detection and recovery of the secondary cell, such as BFR MAC CE or Truncated BFR MAC CE; the multiplexing and assembly process decides to generate a BFR MAC CE or Generate Truncated BFR MAC CE.
  • the multiplexing and assembly process decides and generates a BFR MAC CE or a Truncated BFR MAC CE based on the results of the LCP of the UL-SCH resources available for the new transmission.
  • the multiplexing and assembly process determines and generates a BFR MAC CE or a Truncated BFR MAC CE, which is beneficial for increased flexibility.
  • the MAC entity will instruct the multiplexing and assembly process to generate a MAC CE carrying the secondary cell. beam failure and recovery information.
  • the multiplexing and assembly process can determine and generate the BFR MAC CE.
  • the multiplexing and assembly process can determine and generate the Truncated BFR MAC CE.
  • the multiplexing and assembly process is instructed by the medium access control (MAC) entity to generate a beam failure recovery (BFR) medium access control (MAC) control element (CE), the multiplexing and assembly process once received an indication to the medium access control (MAC) entity to generate the beam failure recovery (BFR) medium access control (MAC) control element (CE); or,
  • the multiplexing and assembly process is instructed by the medium access control (MAC) entity to generate a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) upon receipt of the The truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) is generated upon indication of the medium access control (MAC) entity.
  • BFR truncated beam failure recovery
  • CE medium access control
  • the multiplexing and assembly process immediately Generate the (Truncated) BFR MAC CE.
  • the beam failure recovery process determines that at least one BFR has been triggered and not cancelled, if the UL-SCH resource is available for a new transmission and if the result of LCP is that the UL-SCH resource can To accommodate the BFR MAC CE plus its subheader, the MAC entity will instruct the Multiplexing and Assembly process to generate the BFR MAC CE.
  • the multiplexing and assembly process generates the BFR MAC CE.
  • the beam failure recovery process determines that at least one BFR has been triggered and not cancelled, if the UL-SCH resource is available for a new transmission and if the result of the LCP is that the UL-SCH resource cannot be used.
  • the MAC entity will instruct the Multiplexing and Assembly process to generate the Truncated BFR MAC CE.
  • the multiplexing and assembly process generates a Truncated BFR MAC CE.
  • the BFR MAC CE or the Truncated BFR MAC CE has been schematically described above, and the MAC CE of format 1 or format 2 will be described below.
  • the MAC CE of format 1 or format 2 is determined according to the highest serving cell index ServCellIndex of the secondary cell where the MAC entity detects the beam failure.
  • the MAC CE of format 2 includes a 4-byte bitmap. In this embodiment of the present application, for example, even if a secondary cell detects a beam failure, it may not report it to the network device.
  • the MAC CE in format 1 (that is, including a 1-byte bitmap) is sufficient, and the MAC CE in format 1 does not need to be used. (including 4-byte bitmap). Therefore, existing mechanisms increase signaling overhead.
  • the terminal device uses the beam failure recovery (BFR) of the first format when the highest serving cell index ServCellIndex in which the indication information (Ci field) corresponding to the secondary cell in a medium access control (MAC) entity is set to 1 is less than 8 Medium Access Control (MAC) Control Element (CE); in the case that the highest serving cell index ServCellIndex with the indication information (Ci field) set to 1 is greater than or equal to 8, use the beam failure recovery (BFR) medium access control of the second format (MAC) Control Element (CE).
  • BFR beam failure recovery
  • the format 1 shown in Figure 2 is used; otherwise, the format 2 shown in Figure 3 is used.
  • the AC field is set to 1, it means that there is a candidate (Candidate) RS ID field in the byte including the AC field, and the Candidate RS ID field is the index of the SSB or CSI-RS; if the AC field is set to 0, it means that there is no candidate (Candidate) RS ID field in this byte including the AC field, and the remaining bits of this byte are idle bits.
  • the highest serving cell index in which the indication information (Ci field) corresponding to the secondary cell is set to 1 by the terminal device in a medium access control (MAC) entity is less than 8, or the Ci field corresponding to the special cell is set to 1 and the special cell is set to 1.
  • the cell will be included in the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) and the uplink resources cannot accommodate the second format truncated beam failure recovery (BFR) medium access control (MAC)
  • BFR medium access control
  • MAC medium access control
  • CE media access control
  • Truncated BFR MAC CE For example, for a Truncated BFR MAC CE, if the highest serving cell index ServCellIndex whose Ci field corresponding to a secondary cell is set to 1 in an entity is less than 8, or the Ci field corresponding to a special cell is set to 1 and the special cell will be included in a Truncated In the BFR MAC CE and the LCP result is that the UL-SCH resource cannot accommodate the Truncated BFR MAC CE of format 2 in Figure 3 plus its subheader, then use format 1 shown in Figure 2; otherwise, use format 2 shown in Figure 3 . Thereby, signaling overhead can be reduced.
  • the AC field is set to 1, it means that there is a candidate (Candidate) RS ID field in the byte including the AC field, and the Candidate RS ID field is the index of the SSB or CSI-RS; if the AC field is set to 0, it means that there is no candidate (Candidate) RS ID field in this byte including the AC field, and the remaining bits of this byte are idle bits.
  • the terminal device uses the beam failure recovery (BFR) medium access control (MAC) control of the first format Element (CE); when the highest serving cell index ServCellIndex of the secondary cell reporting beam failure in a medium access control (MAC) entity is greater than or equal to 8, use the beam failure recovery (BFR) medium access control (BFR) medium access control (MAC) Control Element (CE).
  • BFR beam failure recovery
  • BFR medium access control
  • CE medium access control
  • the highest serving cell index ServCellIndex that fails to report the secondary cell beam is 2, less than 8, and the format 1 shown in Figure 2 is used, that is, the BFR MAC CE of a 1-byte bitmap.
  • the terminal equipment reports that the highest serving cell index ServCellIndex of the secondary cell of the failed beam is less than 8, or the reporting of the special cell beam fails and the special cell will be included in the truncated beam failure.
  • BFR medium access control
  • CE medium access control
  • the terminal equipment reports that the highest serving cell index ServCellIndex of the secondary cell of the failed beam is less than 8, or the reporting of the special cell beam fails and the special cell will be included in the truncated beam failure.
  • the highest serving cell index ServCellIndex that fails to report the secondary cell beam is 2, less than 8, and the format 1 shown in Figure 2 is used, that is, the Truncated BFR MAC CE of a 1-byte bitmap.
  • the terminal equipment reports in a medium access control (MAC) entity that the highest serving cell index ServCellIndex of the secondary cell with beam failure is less than 8, or the special cell detects the beam failure and the special cell will be included in the truncated beam.
  • MAC medium access control
  • CE medium access control
  • the terminal device detects a beam failure in a medium access control (MAC) entity and the highest serving cell index of the secondary cell that reports the beam failure is less than 8, use the beam failure recovery (BFR) medium access control of the first format (MAC) Control Element (CE); when a medium access control (MAC) entity detects a beam failure and the highest serving cell index of the secondary cell that reports the beam failure is greater than or equal to 8, the beam using the second format fails.
  • BFR Medium Access Control
  • CE Control Element
  • the terminal device detects a beam failure in a medium access control (MAC) entity and the highest serving cell index of the secondary cell that reports the beam failure is less than 8, or the special cell detects the beam failure and reports the beam failure of the special cell.
  • the special cell will be included in the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) and the uplink resources cannot accommodate the truncated beam failure recovery (BFR) medium access of the second format control (MAC) control element (CE), use the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) of the first format; otherwise use the truncated beam failure of the second format Recovery (BFR) Medium Access Control (MAC) Control Element (CE).
  • BFR medium access control
  • CE Medium Access Control
  • the highest serving cell index ServCellIndex 2 and less than 8 when beam failure is detected and reported as secondary cell beam failure, the format 1 shown in Figure 2 is used, that is, the Truncated BFR MAC CE of a 1-byte bitmap.
  • the terminal device detects a beam failure in a medium access control (MAC) entity and the highest serving cell index of the secondary cell that reports the beam failure is less than 8, or a special cell detects a beam failure and the special cell will be included in the Truncated Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) in the Truncated Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) and the uplink resources cannot accommodate the second format Truncated Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) , use the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) in the first format; otherwise use the truncated beam failure recovery (BFR) medium access control (MAC) in the second format ) Control Element (CE).
  • BFR Truncated Beam Failure Recovery
  • CE Medium Access Control
  • CE Medium Access Control
  • format 1 or format 2 is determined according to the highest serving cell index ServCellIndex of the secondary cell in this MAC entity that has detected beam failure and has completed candidate beam detection based on synchronization signal blocks or channel state information reference signals. Thereby, signaling overhead can be reduced.
  • the terminal device detects a beam failure in a medium access control (MAC) entity and the highest serving cell index of the secondary cell that has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal is less than 8, use a beam failure recovery (BFR) medium access control (MAC) control element (CE) in the first format;
  • BFR beam failure recovery
  • MAC medium access control
  • MAC medium access control
  • CE Medium Access Control
  • the terminal device detects a beam failure in a medium access control (MAC) entity and has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal.
  • the highest serving cell index of the secondary cell is less than 8, or the special cell Beam failure detected and candidate beam detection based on synchronization signal block or channel state information reference signal has been completed and the special cell will be included in the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) in the second format, using the first format truncated beam failure recovery (BFR) medium access control (MAC) control element (CE); otherwise a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) of the second format is used.
  • BFR medium access control
  • CE medium access control
  • the terminal device detects a beam failure in a medium access control (MAC) entity and has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal.
  • the highest serving cell index of the secondary cell is less than 8, or the special cell Beam failure is detected and the special cell is to be included in a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) and the uplink resources cannot accommodate the second format of truncated beam failure recovery (
  • BFR medium access control
  • CE use the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) of the first format; otherwise use the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) of the second format Short beam failure recovery (BFR) medium access control (MAC) control element (CE).
  • the terminal device detects a beam failure in a medium access control (MAC) entity and determines the candidate beam identifier or determines that the highest serving cell index of the secondary cell without the candidate beam is less than 8, the beam using the first format fails.
  • BFR Medium Access Control
  • CE Control Element
  • BFR Medium Access Control
  • CE Control Element
  • the format 1 shown in Figure 2 is used, that is, the 1-byte bitmap BFR MAC CE.
  • the terminal device detects a beam failure in a medium access control (MAC) entity and determines a candidate beam identifier or determines that the highest serving cell index of a secondary cell without a candidate beam is less than 8, or a special cell detects a beam failure and determines If the candidate beam is identified or it is determined that there is no candidate beam and the special cell will be included in the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) and the uplink resources cannot accommodate the truncated in the second format
  • BFR beam failure recovery
  • MAC medium access control
  • CE control element
  • the terminal device detects a beam failure recovery (BFR) medium access control (MAC) control element (CE) of the first format; otherwise use A truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) of the second format.
  • the format 1 shown in Figure 2 is used, that is, the 1-byte bitmap Truncated BFR MAC CE.
  • the terminal device detects a beam failure in a medium access control (MAC) entity and determines a candidate beam identifier or determines that the highest serving cell index of a secondary cell without a candidate beam is less than 8, or a special cell detects a beam failure and all
  • the special cell will be included in the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) and the uplink resources cannot accommodate the second format truncated beam failure recovery (BFR) medium access control ( MAC) control element (CE), use the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) of the first format; otherwise use the truncated beam failure recovery ( BFR) Medium Access Control (MAC) Control Element (CE).
  • BFR medium access control
  • CE Medium Access Control
  • whether to use format 1 or format is determined according to the highest serving cell index ServCellIndex of the secondary cell in this MAC entity that detects beam failure and is not during evaluation of candidate beam detection based on synchronization signal blocks or channel state information reference signals 2. Thereby, signaling overhead can be reduced.
  • the terminal device detects a beam failure in a medium access control (MAC) entity and is not in the evaluation period of the candidate beam detection based on the synchronization signal block or the channel state information reference signal, the highest serving cell index of the secondary cell is less than 8
  • BFR Beam Failure Recovery
  • MAC Medium Access Control
  • CE Control Element
  • the highest serving cell index of the secondary cell that detects beam failure in a medium access control (MAC) entity and is not during the evaluation of candidate beam detection based on synchronization signal blocks or channel state information reference signals is greater than or equal to 8
  • BFR Beam Failure Recovery
  • MAC Medium Access Control
  • CE Control Element
  • the highest serving cell index ServCellIndex 2, less than 8, of the secondary cell that detects a beam failure and is not in the evaluation period of the candidate beam detection based on the synchronization signal block or the channel state information reference signal Format 1, the BFR MAC CE of a 1-byte bitmap.
  • the highest serving cell index of the secondary cell for which the terminal device detects a beam failure in a medium access control (MAC) entity and is not in the evaluation period of the candidate beam detection based on the synchronization signal block or the channel state information reference signal is less than 8,
  • a special cell detects a beam failure and is not in the evaluation period for candidate beam detection based on synchronization signal blocks or channel state information reference signals and the special cell will be included in the truncated beam failure recovery (BFR) medium access control (MAC) ) in the control element (CE) and the uplink resource cannot accommodate the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) of the second format, using the truncated beam of the first format fails Recovery (BFR) Medium Access Control (MAC) Control Element (CE); otherwise a truncated beam failure recovery (MAC) Control Element (CE) of the second format is used.
  • BFR medium access control
  • CE Medium Access Control
  • the highest serving cell index ServCellIndex 2, less than 8, of the secondary cell that detects a beam failure and is not in the evaluation period of the candidate beam detection based on the synchronization signal block or the channel state information reference signal Format 1, Truncated BFR MAC CE of a 1-byte bitmap.
  • the highest serving cell index of the secondary cell for which the terminal device detects a beam failure in a medium access control (MAC) entity and is not in the evaluation period of the candidate beam detection based on the synchronization signal block or the channel state information reference signal is less than 8,
  • a special cell detects a beam failure and the special cell will be included in a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) and the uplink resources cannot accommodate the truncated beam in the second format
  • BFR medium access control
  • CE medium access control
  • the terminal device uses the beam failure recovery (BFR) medium access control (MAC) of the first format in the case that the highest serving cell index of the secondary cell that detects the beam failure is less than 8 control element (CE);
  • BFR beam failure recovery
  • CE control element
  • BFR Beam failure recovery
  • MAC medium access control
  • CE medium access control
  • the terminal device considers that the highest serving cell index of the secondary cell that detects the beam failure is less than 8, or that the special cell detects the beam failure and the special cell will be included in the truncation.
  • the beam failure recovery (BFR) medium access control (MAC) control element (CE) in the case where the uplink resources cannot accommodate the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) of the second format , use the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) in the first format; otherwise use the truncated beam failure recovery (BFR) medium access control (MAC) control in the second format Element (CE).
  • the secondary cell does not detect a beam failure.
  • the terminal device considers in a medium access control (MAC) entity that the highest serving cell index of the secondary cell that detects the beam failure is less than 8, or the special cell detects the beam failure and the special cell will be included in the truncated
  • MAC medium access control
  • the beam failure recovery (BFR) medium access control (MAC) control element (CE) and the uplink resources cannot accommodate the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) of the second format
  • BFR medium access control
  • CE medium access control
  • the terminal device when the terminal device sends a medium access control (MAC) protocol data unit (PDU) including the secondary cell beam failure information, it does not cancel the medium access control (MAC) protocol data unit (PDU) previously assembled. The beam that has been triggered on the secondary cell fails to recover.
  • MAC medium access control
  • this PDU when a MAC PDU is sent, and this PDU includes a BFR MAC CE or Truncated BFR MAC CE, where the MAC CE includes beam failure information of a secondary cell, it should cancel the beam failure information of this secondary cell before MAC PDU assembly. Resume triggered BFR(s).
  • the MAC entity may not report the beam failure in the secondary cell; the terminal device is sending a MAC PDU, and the PDU includes a message that includes the secondary cell.
  • the BFR MAC CE or Truncated BFR MAC CE of the beam failure information cancel the BFR(s) that have been triggered on the secondary cell before the MAC PDU is assembled, except that the MAC entity does not report that the beam failure has been triggered on the secondary cell. of BFR(s).
  • the MAC entity of the terminal device has instructed the Multiplexing and Assembly process to generate a MAC PDU and this MAC PDU includes a BFR MAC CE or Truncated BFR MAC CE, then the MAC entity does not report the beam failure in this cell in the BFR MAC CE or Truncated BFR MAC CE in the MAC PDU.
  • the cell before the MAC PDU the cell before the MAC PDU
  • a terminal is configured with secondary cell 1 and secondary cell 2, and both secondary cell 1 and secondary cell 2 trigger BFR(s).
  • the BFR MAC CE includes beam failure information of Scell 1 and Scell 2, cancel all triggered BFR(s) on Scell 1 and Scell 2 ;
  • a terminal is configured with secondary cell 1 and secondary cell 2, and both secondary cell 1 and secondary cell 2 trigger BFR(s).
  • the BFR MAC CE includes the beam failure information of the secondary cell 1 but does not report the beam failure of the secondary cell 2, cancel all triggered BFRs on the secondary cell 1 ( s), but does not cancel the BFR(s) triggered on secondary cell 2.
  • the terminal equipment reports the above to the network equipment when the secondary cell in which the beam failure has occurred has completed the candidate beam detection based on the synchronization signal block (SSB) or the channel state information reference signal (CSI-RS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • This embodiment of the present application provides a method for reporting beam failure information, which is described from a terminal device. The same content as the embodiment of the first aspect will not be repeated.
  • FIG. 7 is a schematic diagram of a method for reporting beam failure information according to an embodiment of the present application. As shown in FIG. 7 , the method includes:
  • the terminal device determines that the secondary cell in which the beam failure occurs has completed the candidate beam detection based on the synchronization signal block (SSB) or the channel state information reference signal (CSI-RS); and
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the terminal device reports a medium access control (MAC) protocol data unit (PDU) including the beam failure information of the secondary cell to the network device.
  • MAC medium access control
  • PDU protocol data unit
  • FIG. 7 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 7 .
  • the terminal device in 701 determines that the secondary cell in which the beam failure has occurred has completed candidate beam detection based on a synchronization signal block (SSB) or a channel state information reference signal (CSI-RS), including: by the terminal device The medium access control (MAC) entity determines that the candidate beam detection based on the synchronization signal block or the channel state information reference signal has been completed in the secondary cell, and/or, received by the medium access control (MAC) entity of the terminal device The candidate beam identifier of the secondary cell from the lower layer.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the medium access control (MAC) entity of the terminal device does not instruct the multiplexing and assembly process to generate a carrying secondary cell MAC CE for beam failure and recovery information.
  • the MAC CE includes a beam failure recovery (BFR) medium access control (MAC) control element (CE) or a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE).
  • a BFR MAC CE or a Truncated MAC CE can use either format 1 (as shown in Figure 2) or format 2 (as shown in Figure 3).
  • format 1 as shown in Figure 2
  • format 2 as shown in Figure 3
  • the network device does not know that a beam failure has occurred in the cell, so it will not perform beam management for the cell and configure an inappropriate beam for the cell, but wait for subsequent receipts that carry candidate beam information (RS ID). ) and reconfigure based on that information.
  • RS ID candidate beam information
  • the medium access control (MAC) entity of the terminal device does not instruct the multiplexing and assembly process to generate beam failure recovery (BFR) medium access control (MAC) control elements (CE) or truncated beam failure recovery (BFR) Medium Access Control (MAC) Control Element (CE), including:
  • the medium access control (MAC) entity determines that the secondary cell has triggered beam failure recovery without cancellation, there are available uplink resources and the uplink resources can accommodate beam failure recovery (BFR) medium access control (MAC) control element (CE) or truncated beam failure recovery (BFR) medium access control (MAC) control element (CE), the medium access control (MAC) entity does not instruct the multiplexing and assembly process to generate the Beam Fail Recovery (BFR) Medium Access Control (MAC) Control Element (CE) or Truncated Beam Fail Recovery (BFR) Medium Access Control (MAC) Control Element (CE).
  • BFR beam failure recovery
  • CE truncated beam failure recovery
  • CE medium access control
  • the medium access control (MAC) entity determines in the beam failure recovery procedure that at least one beam failure recovery has been triggered and not cancelled, and candidate beam detection based on synchronization signal blocks or channel state information reference signals on at least one cell is completed, or received from a lower layer.
  • the medium access control (MAC) entity In the case of candidate beam identifiers of at least one cell, the medium access control (MAC) entity generates a beam failure recovery (BFR) medium access control (MAC) control element (CE) according to the uplink resource indication of the multiplexing and assembly process or Truncated beam failure recovery (BFR) medium access control (MAC) control element (CE), or trigger scheduling request (SR).
  • BFR beam failure recovery
  • CE medium access control element
  • SR trigger scheduling request
  • the medium access control (MAC) entity determines in the beam failure recovery procedure that beam failure recovery on at least one secondary cell has been triggered without cancellation, and candidate beam detection based on synchronization signal blocks or channel state information reference signals is completed on at least one cell, or
  • the medium access control (MAC) entity generates a beam failure recovery (BFR) medium access control (MAC) control element according to the uplink resource instructing the multiplexing and assembly process in the case of receiving a candidate beam identifier from at least one cell of the lower layer (CE) or truncated beam failure recovery (BFR) medium access control (MAC) control element (CE), or trigger scheduling request (SR).
  • BFR beam failure recovery
  • MAC medium access control
  • the terminal device when the terminal device sends a medium access control (MAC) protocol data unit (PDU) including the secondary cell beam failure information, it does not cancel the medium access control (MAC) protocol data unit (PDU) previously assembled. The beam that has been triggered on the secondary cell fails to recover.
  • MAC medium access control
  • the terminal device sends information including all the information to the network device when the secondary cell in which the beam failure occurs has completed the candidate beam detection based on the synchronization signal block (SSB) or the channel state information reference signal (CSI-RS).
  • the medium access control (MAC) protocol data unit (PDU) of the beam failure information of the secondary cell will not configure an inappropriate beam for the terminal device, thereby reducing or avoiding the failure of the beam that cannot be recovered.
  • the embodiments of the third aspect may be implemented in combination with the embodiments of the first and second aspects, or may be implemented independently.
  • the terminal device detects a beam failure in the secondary cell; before determining that the secondary cell has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal, or receives the candidate beam identifier of the secondary cell Before, or it is determined that during the evaluation period of the candidate beam detection based on the synchronization signal block or the channel state information reference signal of the secondary cell, the terminal equipment does not report the occurrence of beam failure in the secondary cell, and/or the terminal equipment The device does not instruct the multiplexing and assembly process to generate a beam failure recovery (BFR) medium access control (MAC) control element (CE) or a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE).
  • BFR beam failure recovery
  • CE medium access control
  • CE truncated beam failure recovery
  • CE medium access control element
  • the MAC entity when only one cell triggers BFR, the MAC entity will not instruct the multiplexing and assembly process to generate (Truncated) BFR MAC CEs until the cell has completed SSB or CSI-RS-based candidate beam detection. Save signaling.
  • embodiments of the first aspect and embodiments of the second aspect may be combined.
  • the terminal device when multiple cells have triggered beam failure recovery and at least one cell has completed candidate beam detection, the terminal device does not report the beam failure in the secondary cell, that is, the implementation of the first aspect can be implemented example;
  • the terminal device does not instruct the multiplexing and assembly process to generate a beam failure recovery (BFR) medium in the case where multiple cells have triggered beam failure recovery and all cells that have triggered beam failure recovery have not completed candidate beam detection
  • BFR beam failure recovery
  • An Access Control (MAC) Control Element (CE) or a Truncated Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) ie, embodiments of the second aspect may be implemented.
  • the terminal device determines that the secondary cell is in the secondary cell based on the candidate beam detection before the synchronization signal block or the channel state information reference signal is completed, or before receiving the candidate beam identifier of the secondary cell.
  • the beam failure of the secondary cell is not reported, and/or the multiplexing and assembly process is not instructed to generate a BFR MAC CE or a truncated BFR MAC CE.
  • the network device will not configure an inappropriate beam for the terminal device, thereby reducing or avoiding the failure of the beam that cannot be recovered.
  • the embodiments of the fourth aspect may be implemented in combination with the embodiments of the first to third aspects, or may be implemented independently.
  • the medium access control (MAC) entity of the terminal device fails to generate a beam for the medium access control (MAC) entity if the secondary cell is configured with the medium access control (MAC) entity Recovery (BFR) Medium Access Control (MAC) Control Element (CE) or Truncated Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE).
  • MAC medium access control
  • BFR Medium Access Control
  • CE Truncated Beam Failure Recovery
  • BFR Medium Access Control
  • CE Medium Access Control
  • CE Medium Access Control
  • the indication information (Ci field) of the Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) is set to 1, indicating that the medium access control (MAC) entity is configured on the medium access control (MAC) entity.
  • the secondary cell of serving cell index i detects a beam failure and includes candidate beam information;
  • the indication information (Ci field) of the Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) is set to 0, indicating that the secondary cell of serving cell index i is not configured in the Medium Access Control (MAC) entity , or the secondary cell does not detect beam failure and does not include candidate beam information.
  • Ci field For example, for BFR MAC CE, the meaning of the Ci field can be as shown in Table 9:
  • the indication information (Ci field) of the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) is set to 1, indicating that the medium access control (MAC) is configured in the medium access control (MAC)
  • the secondary cell of serving cell index i on the entity detects beam failure and includes candidate beam information;
  • the indication information (Ci field) of the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) is set to 0, indicating that the secondary cell of serving cell index i is not configured in the medium access control (MAC) entity, or the secondary cell does not detect beam failure and does not include candidate beam information.
  • Ci field For example, for a Truncated BFR MAC CE, the meaning of the Ci field can be as shown in Table 10:
  • the MAC entity of the terminal device generates a BFR MAC CE or a truncated BFR MAC CE for the MAC entity when the secondary cell is configured in the MAC entity. Therefore, only when a secondary cell is configured in the MAC entity, its Ci field will be set to 1, which can further save the bits of the MAC CE.
  • the embodiment of the present application provides an apparatus for reporting beam failure information.
  • the apparatus may be, for example, a terminal device, or may be one or some components or components configured in the terminal device, and the same contents as those of the embodiments of the first to fifth aspects will not be repeated.
  • FIG. 8 is a schematic diagram of an apparatus for reporting beam failure information according to an embodiment of the present application.
  • an apparatus 800 for reporting beam failure information includes:
  • a detection unit 801 that detects candidate beams
  • a reporting unit 802 which reports the failure of the beam on the secondary cell that has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal.
  • the reporting unit 802 is further configured to: determine by the medium access control entity that the candidate beam detection based on the synchronization signal block or the channel state information reference signal has been completed in the secondary cell, and/or, access the medium by the medium access control entity.
  • the control entity receives the candidate beam identifier of the secondary cell from the lower layer.
  • the reporting unit 802 is further configured to: before the candidate beam detection based on the synchronization signal block or the channel state information reference signal has been completed on the secondary cell, or receive the candidate beam identifier of the secondary cell from the lower layer Before, or during the evaluation period of the candidate beam detection based on the synchronization signal block or the channel state information reference signal on the secondary cell, the medium access control entity does not report the occurrence of beam failure in the secondary cell.
  • the apparatus 800 for reporting beam failure information includes:
  • a generating unit 803 which generates a corresponding medium access control control element or a truncated medium access control control element and assembles a medium access control protocol data unit when the secondary cell has triggered beam failure recovery without cancellation;
  • the medium access control entity does not report the occurrence of beam failure in the secondary cell in the medium access control control element or the truncated medium access control control element.
  • the medium access control entity sets the indication information corresponding to the secondary cell to 0 in the medium access control control element or the truncated medium access control control element; and does not include the secondary cell The corresponding field that carries candidate beam information.
  • the multiplexing and assembly process is instructed by the medium access control entity to generate a beam failure recovery medium access control control element during which a beam failure recovery medium access control control element or truncation is generated
  • the beam failure recovery medium access control control element or,
  • the multiplexing and assembly process is instructed by the media access control entity to generate a truncated beam failure to recover the media access control control element, and the generation of the beam during the multiplexing and assembly process fails to restore the media access control element or the truncated beam failure Restore the media access control control element.
  • the multiplexing and assembly process is instructed by the medium access control entity to generate a medium access control element carrying secondary cell beam failure and recovery information, and the beam failure recovery medium access is generated during the multiplexing and assembly process control control elements or truncated beam failure recovery medium access control control elements;
  • the multiplexing and assembly process is instructed by the medium access control entity to generate the beam failure recovery medium access control control element, the multiplexing and assembly process once instructed by the medium access control entity to generate the all the beam failure recovery medium access control control element; or,
  • a multiplexing and assembly process is instructed by the medium access control entity to generate the truncated beam failure recovery medium access control control element, the multiplexing and assembly process generating the truncated beam upon receiving the instructed by the medium access control entity The beam failure restores the medium access control control element.
  • the medium access control element is recovered using the beam failure of the first format; in the indication information If the highest serving cell index set to 1 is greater than or equal to 8, the medium access control element is recovered using the beam failure of the second format.
  • the highest serving cell index whose indication information corresponding to the secondary cell is set to 1 in a medium access control entity is less than 8, or the special cell detects a beam failure and the special cell will be included in the truncated beam If the truncated beam in the second format fails to recover the medium access control element and the uplink resource cannot accommodate the failure recovery medium access control element, the truncated beam in the first format fails to recover the medium access control element; otherwise The medium access control control element is recovered using the truncated beam failure of the second format.
  • the beam failure recovery that has been triggered on the secondary cell before the medium access control protocol data unit is assembled is not cancelled.
  • the medium access control entity generates a beam failure recovery medium access control control element or a truncated beam failure for the medium access control entity if the secondary cell is configured in the medium access control entity Restore the media access control control element.
  • the indication information of the beam failure recovery medium access control element is set to 1, indicating that the secondary cell of serving cell index i configured on the medium access control entity detects beam failure and includes candidate beam information ;
  • the indication information of the medium access control control element of the beam failure recovery is set to 0, indicating that the secondary cell of the serving cell index i is not configured on the medium access control entity, or the secondary cell does not detect the beam failure and does not include candidate beam information;
  • the indication information of the truncated beam failure recovery medium access control element is set to 1, indicating that the secondary cell of the serving cell index i configured on the medium access control entity detects a beam failure and includes candidate beam information; the The indication information of the truncated beam failure recovery medium access control element is set to 0, indicating that the secondary cell of serving cell index i is not configured on the medium access control entity, or the secondary cell does not detect beam failure and does not include Candidate beam information.
  • the reporting unit 802 reports to the network device a medium access control protocol data unit including beam failure information on the secondary cell that has completed candidate beam detection based on the synchronization signal block or the channel state information reference signal.
  • the reporting unit 802 is further configured to: determine by the medium access control entity that the candidate beam detection based on the synchronization signal block or the channel state information reference signal has been completed in the secondary cell, or receive by the medium access control entity to the candidate beam identity of the secondary cell from the lower layer.
  • the medium access control entity before determining that the candidate beam detection based on the synchronization signal block or the channel state information reference signal has been completed on the secondary cell, or before receiving the candidate beam identity from the secondary cell of the lower layer, or determining that the secondary cell is in During the evaluation period of candidate beam detection based on synchronization signal block or channel state information reference signal on the secondary cell, the medium access control entity does not instruct the multiplexing and assembly process to generate beam failure recovery medium access control element or truncated beam Failed to recover the media access control control element.
  • the medium access control entity determines in the beam failure recovery procedure that at least one beam failure recovery has been triggered and not cancelled, and candidate beam detection based on synchronization signal blocks or channel state information reference signals on at least one cell is completed, or received from a lower layer.
  • the medium access control entity In the case of a candidate beam identifier of at least one cell, the medium access control entity generates a beam failure recovery medium access control control element or a truncated beam failure recovery medium access control control element according to the uplink resource instructing the multiplexing and assembly process, Or trigger a scheduling request.
  • the medium access control entity In the case of receiving a candidate beam identifier from at least one cell of the lower layer, the medium access control entity generates a beam failure recovery medium access control control element or a truncated beam failure recovery medium access according to the uplink resource instructing the multiplexing and assembly process Controls a control element, or triggers a dispatch request.
  • FIG. 9 is another schematic diagram of an apparatus for reporting beam failure information according to an embodiment of the present application.
  • an apparatus 900 for reporting beam failure information includes:
  • a detection unit 901 which detects a beam failure in the secondary cell
  • the processing unit 902 before the secondary cell has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal, or before receiving the candidate beam identifier of the secondary cell, or in the secondary cell based on the synchronization signal During the evaluation period of candidate beam detection of block or channel state information reference signal, do not report the occurrence of beam failure in the secondary cell, or do not instruct the multiplexing and assembly process to generate beam failure recovery medium access control element or truncated beam failure Restore the media access control control element.
  • the processing unit 902 does not report that beam failure has occurred in the secondary cell when multiple cells have triggered beam failure recovery and at least one cell has completed candidate beam detection;
  • the processing unit 902 does not instruct the multiplexing and assembly process to generate beam failure recovery medium access control elements Or the truncated beam fails to restore the medium access control control element.
  • the apparatuses 800 and 900 for reporting beam failure information may further include other components or modules.
  • the specific content of these components or modules reference may be made to the related art.
  • Figures 8 and 9 only exemplarily show the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the terminal equipment reports the above to the network equipment when the secondary cell in which the beam failure has occurred has completed the candidate beam detection based on the synchronization signal block (SSB) or the channel state information reference signal (CSI-RS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • a beam failure occurs in the secondary cell, or a medium access control (MAC) protocol data unit (PDU) including beam failure information of the secondary cell is sent to the network device.
  • MAC medium access control protocol data unit
  • the network device will not configure an inappropriate beam for the terminal device, thereby reducing or avoiding the failure of the beam that cannot be recovered.
  • An embodiment of the present application further provides a communication system, and reference may be made to FIG. 1 , and the same content as the embodiments of the first aspect to the fifth aspect will not be repeated.
  • the communication system may include:
  • the terminal device 102 determines that the secondary cell in which the beam failure has occurred has completed candidate beam detection based on a synchronization signal block (SSB) or a channel state information reference signal (CSI-RS); and reports that the secondary cell has a beam failure or reports including the Medium Access Control (MAC) Protocol Data Units (PDUs) for beam failure information of the secondary cell;
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • MAC Medium Access Control
  • PDUs Protocol Data Units
  • a network device 101 which receives the report information of the beam failure of the secondary cell or the medium access control (MAC) protocol data unit (PDU) including the beam failure information of the secondary cell.
  • MAC medium access control
  • the embodiment of the present application also provides a network device, which may be, for example, a base station, but the present application is not limited to this, and may also be other network devices.
  • a network device which may be, for example, a base station, but the present application is not limited to this, and may also be other network devices.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device 1000 may include: a processor 1000 (eg, a central processing unit CPU) and a memory 1020 ; the memory 1020 is coupled to the processor 1010 .
  • the memory 1020 can store various data; in addition, a program 1030 for information processing is also stored, and the program 1030 is executed under the control of the processor 1010 .
  • the network device 1000 may further include: a transceiver 1040, an antenna 1050, etc.; wherein, the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the network device 1000 does not necessarily include all the components shown in FIG. 10 ; in addition, the network device 1000 may also include components not shown in FIG. 10 , and reference may be made to the prior art.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this, and may also be other devices.
  • FIG. 11 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1100 may include a processor 1110 and a memory 1120 ; the memory 1120 stores data and programs, and is coupled to the processor 1110 .
  • this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the processor 1110 may be configured to execute a program to implement the method for reporting beam failure information according to the embodiment of the first aspect.
  • the processor 1110 may be configured to perform the following controls: determine that the secondary cell in which the beam failure occurs has completed the detection of candidate beams based on synchronization signal blocks (SSB) or channel state information reference signals (CSI-RS); and report to the network device A beam failure occurs in the secondary cell.
  • SSB synchronization signal blocks
  • CSI-RS channel state information reference signals
  • the processor 1110 may be configured to execute a program to implement the method for reporting beam failure information according to the embodiment of the second aspect.
  • the processor 1110 may be configured to perform the following controls: determine that the secondary cell in which the beam failure occurs has completed the detection of candidate beams based on synchronization signal blocks (SSB) or channel state information reference signals (CSI-RS); and report to the network device A medium access control (MAC) protocol data unit (PDU) including beam failure information for the secondary cell.
  • SSB synchronization signal blocks
  • CSI-RS channel state information reference signals
  • PDU protocol data unit
  • the processor 1110 may be configured to execute a program to implement the method for reporting beam failure information according to the embodiment of the third aspect.
  • the processor 1110 may be configured to perform the following controls: detecting the occurrence of beam failure in the secondary cell; before the secondary cell has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal, or receiving the secondary cell Before the identification of the candidate beam of the secondary cell, or during the evaluation period of the candidate beam detection based on the synchronization signal block or the channel state information reference signal of the secondary cell, the beam failure of the secondary cell is not reported, and/or the multiplexing is not indicated. And the assembly process generates a beam failure recovery (BFR) medium access control (MAC) control element (CE) or a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE).
  • BFR beam failure recovery
  • CE medium access control
  • MAC medium access control
  • the processor 1110 may be configured to execute a program to implement the method for reporting beam failure information according to the embodiment of the fourth aspect.
  • the processor 1110 may be configured to perform the following controls: detect the occurrence of beam failure in the secondary cell; and in the case that the secondary cell is configured in a medium access control (MAC) entity, report the medium access control (MAC) entity
  • the terminal device 1100 may further include: a communication module 1130 , an input unit 1140 , a display 1150 , and a power supply 1160 .
  • the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the terminal device 1100 does not necessarily include all the components shown in FIG. 11 , and the above components are not required; in addition, the terminal device 1100 may also include components not shown in FIG. 11 . There is technology.
  • An embodiment of the present application further provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the method for reporting beam failure information according to the embodiments of the first to fourth aspects.
  • Embodiments of the present application further provide a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the method for reporting beam failure information according to the embodiments of the first to fourth aspects.
  • the apparatuses and methods above in the present application may be implemented by hardware, or may be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by logic components, enables the logic components to implement the above-described apparatus or constituent components, or causes the logic components to implement the above-described various methods or steps.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • the method/apparatus described in conjunction with the embodiments of this application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in the figures and/or one or more combinations of the functional block diagrams may correspond to either software modules or hardware modules of the computer program flow.
  • These software modules may respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by, for example, solidifying these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor, such that the processor can read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks and/or one or more combinations of the functional blocks described in the figures can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described with respect to the figures can also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a method for reporting beam failure information comprising:
  • the terminal device determines that the secondary cell in which the beam failure has occurred has completed candidate beam detection based on a synchronization signal block (SSB) or a channel state information reference signal (CSI-RS); and
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • Supplement 2 The method according to Supplement 1, wherein the terminal device determines that the secondary cell in which the beam failure occurs has completed the candidate beam detection based on synchronization signal block (SSB) or channel state information reference signal (CSI-RS) ,include:
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the medium access control (MAC) entity of the terminal device It is determined by the medium access control (MAC) entity of the terminal device that the candidate beam detection based on the synchronization signal block or the channel state information reference signal has been completed in the secondary cell, and/or, by the medium access control (MAC) entity of the terminal device ( MAC) entity receives the candidate beam identity of the secondary cell from the lower layer.
  • MAC medium access control
  • the medium access control (MAC) entity of the terminal device does not report that a beam failure has occurred in the secondary cell.
  • Supplement 4 The method according to Supplement 3, wherein the method further comprises:
  • MAC medium access control
  • CE medium access control
  • MAC truncated medium access control
  • Supplement 5 The method according to Supplement 4, wherein the medium access control (MAC) entity is in the medium access control (MAC) control element (CE) or a truncated medium access control (MAC) control element In (CE), the beam failure of the secondary cell is not reported.
  • MAC medium access control
  • CE medium access control control element
  • CE MAC control element In
  • Supplement 6 The method according to Supplement 5, wherein the medium access control (MAC) entity is in the medium access control (MAC) control element (CE) or a truncated medium access control (MAC) control element In (CE), the indication information (Ci field) corresponding to the secondary cell is set to 0; and the field (AC field) corresponding to the secondary cell carrying candidate beam information is not included.
  • Supplement 7 The method according to Supplement 5 or 6, wherein a multiplexing and assembly process is instructed by the medium access control (MAC) entity to generate a beam failure recovery (BFR) medium access control (MAC) control element (CE) ) to generate a beam failure recovery (BFR) medium access control (MAC) control element (CE) or a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) during the multiplexing and assembly process ;or,
  • a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) is instructed by the medium access control (MAC) entity to generate a truncated beam during a multiplexing and assembly process during which a beam fails to be generated Recovery (BFR) Medium Access Control (MAC) Control Element (CE) or Truncated Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE).
  • Supplement 8 The method according to Supplement 5 or 6, wherein the medium access control (MAC) control carrying the secondary cell beam failure and recovery information is generated by the medium access control (MAC) entity instructing the multiplexing and assembly process Element (CE) that generates a beam failure recovery (BFR) medium access control (MAC) control element (CE) or a truncated beam failure recovery (BFR) medium access control (MAC) control element during the multiplexing and assembly process (CE).
  • BFR beam failure recovery
  • CE MAC
  • BFR truncated beam failure recovery
  • MAC medium access control
  • Supplement 9 The method of Supplement 8, wherein whether the beam failure recovery (BFR) medium access control (MAC) control element (CE) or the truncation is generated is determined by the multiplexing and assembly process
  • BFR Beam Failure Recovery
  • MAC Medium Access Control
  • CE Control Element
  • Supplement 10 The method according to Supplement 5 or 6, wherein a multiplexing and assembly process is instructed by the medium access control (MAC) entity to generate a beam failure recovery (BFR) medium access control (MAC) control element (CE) ), the multiplexing and assembly process generates the beam failure recovery (BFR) medium access control (MAC) control element (CE) upon receiving an indication from the medium access control (MAC) entity; or,
  • the multiplexing and assembly process is instructed by the medium access control (MAC) entity to generate a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) upon receipt of the The truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) is generated upon indication of the medium access control (MAC) entity.
  • BFR truncated beam failure recovery
  • CE medium access control
  • the terminal device uses the beam failure recovery (BFR) medium of the first format when the highest serving cell index in which the indication information (Ci field) corresponding to the secondary cell in a medium access control (MAC) entity is set to 1 is less than 8 Access Control (MAC) Control Element (CE); in the case that the highest serving cell index with the indication information (Ci field) set to 1 is greater than or equal to 8, use the beam failure recovery (BFR) medium access control (MAC) of the second format ) Control Element (CE).
  • BFR beam failure recovery
  • CE Medium access control
  • the highest serving cell index in which the indication information (Ci field) corresponding to the secondary cell in a medium access control (MAC) entity of the terminal device is set to 1 is less than 8, or the special cell detects a beam failure and the special cell will be included
  • the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) in the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) and the uplink resources cannot accommodate the second format of the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) ), use the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) of the first format; otherwise use the truncated beam failure recovery (BFR) medium access control (BFR) medium access control ( MAC) Control Element (CE).
  • a method for reporting beam failure information comprising:
  • the terminal device determines that the secondary cell in which the beam failure has occurred has completed candidate beam detection based on a synchronization signal block (SSB) or a channel state information reference signal (CSI-RS); and
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • a medium access control (MAC) protocol data unit (PDU) including beam failure information of the secondary cell is reported to the network device.
  • MAC medium access control
  • PDU protocol data unit
  • Supplement 14 The method according to Supplement 13, wherein the terminal device determines that the secondary cell in which the beam failure occurs has completed the candidate beam detection based on synchronization signal block (SSB) or channel state information reference signal (CSI-RS) ,include:
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the candidate beam identifier of the secondary cell from the lower layer is received.
  • Supplement 15 The method according to Supplement 13 or 14, wherein the method further comprises:
  • the medium access control (MAC) entity of the terminal device does not instruct the multiplexing and assembly process to generate a beam failure recovery (BFR) medium access control (MAC) control element (CE) or truncated beam failure recovery (BFR) medium access control (MAC) control element (CE).
  • BFR beam failure recovery
  • MAC medium access control
  • CE truncated beam failure recovery
  • CE medium access control
  • Supplement 16 The method of Supplement 15, wherein the medium access control (MAC) entity of the terminal device does not instruct the multiplexing and assembly process to generate a beam failure recovery (BFR) medium access control (MAC) control element ( CE) or a truncated beam failure recovery (BFR) medium access control (MAC) control element (CE), including:
  • Supplement 17 The method according to Supplement 15, wherein the method further comprises:
  • the medium access control (MAC) entity In the case that at least one beam failure recovery has been triggered without cancellation, and the candidate beam detection based on the synchronization signal block or the channel state information reference signal on at least one cell is completed, or the candidate beam identification from at least one cell of the lower layer is received,
  • the medium access control (MAC) entity generates a beam failure recovery (BFR) medium access control (MAC) control element (CE) or a truncated beam failure recovery (BFR) medium access according to the uplink resource indication of the multiplexing and assembly process Control (MAC) Control Element (CE), or trigger a Scheduling Request (SR).
  • BFR beam failure recovery
  • CE medium access control element
  • BFR truncated beam failure recovery
  • SR Scheduling Request
  • the medium access control (MAC) entity generates a beam failure recovery (BFR) medium access control (MAC) control element (CE) or a truncated beam failure recovery ( BFR) medium access control (MAC) control element (CE), or trigger scheduling request (SR).
  • BFR beam failure recovery
  • CE medium access control
  • SR trigger scheduling request
  • Supplementary Note 19 The method according to any one of Supplementary Notes 3 to 18, wherein the method further comprises:
  • the terminal device When the terminal device sends a medium access control (MAC) protocol data unit (PDU) including the beam failure information of the secondary cell, it does not cancel the information on the secondary cell before the medium access control (MAC) protocol data unit (PDU) is assembled. Beam that has been triggered fails to recover.
  • MAC medium access control
  • Supplementary Note 20 The method according to any one of Supplementary Notes 1 to 19, wherein the method further comprises:
  • the medium access control (MAC) entity of the terminal device generates a beam failure recovery (BFR) for the medium access control (MAC) entity in the case that the secondary cell is configured in the medium access control (MAC) entity Medium Access Control (MAC) Control Element (CE) or Truncated Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE).
  • BFR beam failure recovery
  • Supplement 21 The method according to Supplement 20, wherein the indication information (Ci field) of the Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) is set to 1, indicating that the configuration in the The secondary cell of serving cell index i on the medium access control (MAC) entity detects beam failure and includes candidate beam information;
  • the indication information (Ci field) of the Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) is set to 1, indicating that the configuration in the The secondary cell of serving cell index i on the medium access control (MAC) entity detects beam failure and includes candidate beam information;
  • the indication information (Ci field) of the Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) is set to 0, indicating that the secondary cell of serving cell index i is not configured in the Medium Access Control (MAC) entity , or the secondary cell does not detect beam failure and does not include candidate beam information.
  • Supplement 22 The method according to Supplement 20, wherein the indication information (Ci field) of the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) is set to 1, indicating that the configuration
  • the secondary cell of serving cell index i on the medium access control (MAC) entity detects a beam failure and includes candidate beam information;
  • the indication information (Ci field) of the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) is set to 0, indicating that the secondary cell of serving cell index i is not configured in the medium access control (MAC) entity, or the secondary cell does not detect beam failure and does not include candidate beam information.
  • a method for reporting beam failure information comprising:
  • the terminal equipment fails to detect a beam in the secondary cell
  • the terminal equipment Before the secondary cell has completed the candidate beam detection based on the synchronization signal block or the channel state information reference signal, or before the candidate beam identifier of the secondary cell is received, or before the secondary cell is based on the synchronization signal block or the channel state information.
  • the terminal equipment does not report the occurrence of beam failure in the secondary cell, and/or does not instruct the multiplexing and assembly process to generate a beam failure recovery (BFR) medium access control (MAC) Control Element (CE) or Truncated Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE).
  • BFR beam failure recovery
  • MAC medium access control
  • CE Truncated Beam Failure Recovery
  • CE Medium Access Control
  • Supplement 24 The method according to Supplement 23, wherein the method further comprises:
  • the terminal device When multiple cells trigger beam failure recovery, and at least one cell has completed candidate beam detection, the terminal device does not report that beam failure has occurred in the secondary cell;
  • the terminal device does not instruct the multiplexing and assembly process to generate a beam failure recovery (BFR) medium in the case where multiple cells have triggered beam failure recovery and all cells that have triggered beam failure recovery have not completed candidate beam detection Access Control (MAC) Control Element (CE) or Truncated Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE).
  • BFR beam failure recovery
  • a method for reporting beam failure information comprising:
  • the terminal equipment fails to detect the occurrence of beams in the secondary cell
  • the secondary cell is configured in a medium access control (MAC) entity, reporting a beam failure recovery (BFR) medium access control (MAC) control element (CE) or truncation for the medium access control (MAC) entity
  • BFR beam failure recovery
  • CE Medium Access Control
  • CE Medium Access Control
  • Supplement 26 The method according to Supplement 25, wherein the indication information (Ci field) of the Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) is set to 1, indicating that the configuration in the The secondary cell of serving cell index i on the medium access control (MAC) entity detects beam failure and includes candidate beam information;
  • the indication information (Ci field) of the Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) is set to 1, indicating that the configuration in the The secondary cell of serving cell index i on the medium access control (MAC) entity detects beam failure and includes candidate beam information;
  • the indication information (Ci field) of the Beam Failure Recovery (BFR) Medium Access Control (MAC) Control Element (CE) is set to 0, indicating that the secondary cell of serving cell index i is not configured in the Medium Access Control (MAC) entity , or the secondary cell does not detect beam failure and does not include candidate beam information.
  • Supplement 27 The method according to Supplement 25, wherein the indication information (Ci field) of the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) is set to 1, indicating that the configuration
  • the secondary cell of serving cell index i on the medium access control (MAC) entity detects a beam failure and includes candidate beam information;
  • the indication information (Ci field) of the truncated beam failure recovery (BFR) medium access control (MAC) control element (CE) is set to 0, indicating that the secondary cell of serving cell index i is not configured in the medium access control (MAC) entity, or the secondary cell does not detect beam failure and does not include candidate beam information.
  • a terminal device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the beam according to any one of Supplementary Notes 1 to 27 Method for reporting failure information.
  • a communication system comprising:
  • the terminal equipment determines that the secondary cell in which the beam failure has occurred has completed candidate beam detection based on a synchronization signal block (SSB) or a channel state information reference signal (CSI-RS); and reports that the secondary cell has a beam failure or reports that the secondary cell includes the secondary cell.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • MAC Medium Access Control
  • PDUs Protocol Data Units
  • a network device which receives the report information that the beam failure occurs in the secondary cell or the medium access control (MAC) protocol data unit (PDU) including the beam failure information of the secondary cell.
  • MAC medium access control

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种波束失败信息的上报方法以及装置。所述方法包括:终端设备确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测;以及向网络设备上报所述辅小区发生波束失败。

Description

波束失败信息的上报方法以及装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
在新无线(NR,New Radio)系统里,支持波束(Beam)的发送和接收,并且支持多个波束的管理。终端设备可以进行波束失败检测过程和波束失败恢复过程。在波束失败检测过程中,终端设备的介质访问控制(MAC,Media Access Control)层的MAC实体通过计算低层(例如物理层)提供给MAC实体的波束失败实例(instance)指示的数量,来检测波束失败。
例如,波束失败检测过程使用UE变量BFI_COUNTER,该变量是波束失败实例指示的计数器,其初始设置为0,每个服务小区有一个BFI_COUNTER。对于每个配置了波束失败检测的服务小区,MAC实体将会执行如下操作:
如果从低层收到了波束失败实例指示:则启动或重启波束失败检测定时器beam FailureDetectionTimer;并且终端设备变量BFI_COUNTER加1;在BFI_COUNTER大于或等于波束失败实例最大计数值beamFailureInstanceMaxCount的情况下:如果服务小区是辅小区,触发该服务小区的一个波束失败恢复(BFR,Beam Failure Recovery),否则,在特殊小区上发起随机接入过程。如果beamFailureDetectionTimer超时,或如果高层重配置了这个服务小区的beamFailureDetectionTimer、beamFailureInstanceMaxCount或用于波束失败检测的任何参考信号,则设置BFI_COUNTER为0。
对于每个服务小区,可以使用无线资源控制(RRC,Radio Resource Control)为MAC实体配置波束失败恢复过程,当在服务同步信号块(SSB,Synchronization Signal Block)/信道状态信息参考信号(CSI-RS,Channel State Information Reference Signal)上检测到波束失败时,向服务网络设备(例如gNB)指示新的SSB或CSI-RS。
当一个MAC协议数据单元(PDU,Protocol Data Unit)被终端设备向网络设备发送,且这个MAC PDU包括承载辅小区的波束失败信息的BFR MAC控制元素(CE)或截短的(Truncated)BFR MAC CE,则该终端设备应该取消该MAC PDU组装之前、该辅小区所有为波束失败恢复触发的BFRs。
在波束失败恢复过程中,MAC实体将会执行如下操作:
在波束失败恢复过程确定已经触发了至少一个BFR,且该BFR没有被取消的情况下:
如果上行资源(UL-SCH资源)可用于一个新的传输、且逻辑信道优先级过程(LCP,Logical Channel Prioritization)的结果是该上行资源能容纳BFR MAC CE加上它的子头,则指示复用(Multiplexing)和组装(Assembly)过程生成BFR MAC CE;
如果该上行资源可用于一个新的传输且LCP的结果是该上行资源能容纳Truncated BFR MAC CE加上它的子头,则指示复用(Multiplexing)和组装(Assembly)过程生成Truncated BFR MAC CE;
否则,为每个触发了BFR且没有取消BFR的辅小区触发调度请求(SR,Scheduling Request)。
因此,辅小区的波束失败信息可以由BFR MAC CE或Truncated BFR MAC CE(以下可简称为(Truncated)BFR MAC CE)携带,由终端设备发送给网络设备。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是,发明人发现:终端设备可能在候选波束检测完成之前,生成(Truncated)BFR MAC CE,但该MAC CE里可能不包括候选波束信息,例如候选参考信号(RS,Reference Signal)标识(ID)。当网络设备接收到没有候选波束信息的MAC CE时,仅知道终端设备的辅小区发生了波束失败,但没有合适的候选波束信息。这种情况下,网络设备可能会为终端设备配置不合适的波束,导致无法恢复波束失败。
针对上述问题的至少之一,本申请实施例提供一种波束失败信息的上报方法以及装置。
根据本申请实施例的一个方面,提供一种波束失败信息的上报方法,包括:
终端设备确定发生波束失败的辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测;以及
向网络设备上报所述辅小区发生波束失败。
根据本申请实施例的另一个方面,提供一种波束失败信息的上报装置,包括:
检测单元,其检测候选波束;以及
上报单元,其上报已经完成基于同步信号块或信道状态信息参考信号的候选波束检 测的辅小区上的波束失败。
根据本申请实施例的另一个方面,提供一种波束失败信息的上报方法,包括:
终端设备确定发生波束失败的辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测;以及
向网络设备上报包括所述辅小区的波束失败信息的介质访问控制协议数据单元。
根据本申请实施例的另一个方面,提供一种波束失败信息的上报装置,包括:
检测单元,其检测候选波束;以及
上报单元,其向网络设备上报包括已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区上的波束失败信息的介质访问控制协议数据单元。
根据本申请实施例的另一个方面,提供一种波束失败信息的上报方法,包括:
终端设备检测辅小区发生波束失败;
在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收到所述辅小区的候选波束标识之前,或者处于所述辅小区基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,不上报所述辅小区发生了波束失败,和/或,不指示复用和组装过程生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
根据本申请实施例的另一个方面,提供一种波束失败信息的上报装置,包括:
检测单元,其检测辅小区发生波束失败;
处理单元,其在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收到所述辅小区的候选波束标识之前,或者处于所述辅小区基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,不上报所述辅小区发生了波束失败,和/或,不指示复用和组装过程生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
本申请实施例的有益效果之一在于:终端设备在发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测的情况下,再向网络设备上报所述辅小区发生波束失败,或者向网络设备上报包括所述辅小区的波束失败信息的介质访问控制(MAC)协议数据单元(PDU)。由此,网络设备不会为终端设备配置不合适的波束,从而减少或避免无法恢复波束失败的情况。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附 权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信系统的示意图;
图2是第一格式的BFR MAC CE或Truncated BFR MAC CE的一示意图;
图3是第二格式的BFR MAC CE或Truncated BFR MAC CE的一示意图;
图4是本申请实施例的终端设备上报波束失败信息的场景的一示意图;
图5是本申请实施例的终端设备上报波束失败信息的场景的另一示意图;
图6是本申请实施例的波束失败信息的上报方法的一示意图;
图7是本申请实施例的波束失败信息的上报方法的另一示意图;
图8是本申请实施例的波束失败信息的上报装置的一示意图;
图9是本申请实施例的波束失败信息的上报装置的另一示意图;
图10是本申请实施例的网络设备的示意图;
图11是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、 “具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)、IAB(Integrated Access and Backhaul)节点或IAB-DU或IAB-donor。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。在不引起混淆的情况下,术语“小区”和“基站”可以互换。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、 IAB-MT、站(station),等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102。为简单起见,图1仅以一个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此,例如可以有多个终端设备。
在本申请实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
在波束失败恢复过程中,辅小区的波束失败信息可以由BFR MAC CE或Truncated BFR MAC CE携带,由终端设备发送给网络设备。
图2是第一格式(称为格式1)的BFR MAC CE或Truncated BFR MAC CE的一示意图。图3是第二格式(称为格式2)的BFR MAC CE或Truncated BFR MAC CE的一示意图。
具体地,例如,对于BFR MAC CE,如果MAC实体检测到波束失败的辅小区的最高服务小区索引ServCellIndex小于8,那么使用图2的格式1;否则使用图3的格式2。对于Truncated BFR MAC CE,如果MAC实体检测到波束失败的辅小区的最高服务小区索引ServCellIndex小于8,或者特殊小区检测到波束失败且这个特殊小区将被包括在一 个Truncated BFR MAC CE里、且LCP结果是UL-SCH资源无法容纳图3的格式2的Truncated BFR MAC CE加上它的子头,那么使用图2的格式1;否则使用图3的格式2。
例如,关于格式1和格式2的域定义如下:
对于BFR MAC CE,Ci域指示ServCellIndex i的辅小区的波束失败检测以及存在包括AC域的一个字节,AC域指示在这个字节里是否存在候选(Candidate)RS ID域,Candidate RS ID域置为SSB或CSI-RS的索引。
Ci域置为1表示ServCellIndex i的辅小区检测到波束失败且存在包括AC域的字节。Ci域置为0表示ServCellIndex i的辅小区未检测到波束失败且不存在包括AC域的字节。包括AC域的字节是基于ServCellIndex的升序而存在。
对于Truncated BFR MAC CE,Ci域指示ServCellIndex i的辅小区的波束失败检测,AC域指示在这个字节里是否存在候选(Candidate)RS ID域,Candidate RS ID域置为SSB或CSI-RS的索引。
Ci域置为1表示ServCellIndex i的辅小区检测到波束失败且可能存在包括AC域的字节。Ci域置为0表示ServCellIndex i的辅小区未检测到波束失败且不存在包括AC域的字节。如果存在,包括AC域的字节是基于ServCellIndex的升序而出现的。包括AC域的字节的数量可以是0,不超过可用的授权的大小。
以上对于(Truncated)BFR MAC CE进行了示意性说明,以下再对本申请实施例的相关场景进行说明。
图4是本申请实施例的终端设备上报波束失败信息的场景的一示意图,示出了BFR触发后、尚未取消时,低层尚未完成候选波束信息(RS ID)的评估,已经有能够容纳(Truncated)BFR MAC CE的上行授权时的情况。
如图4所示,例如,t0是BFR触发的时间,t1是生成MAC CE的时间,t2是传输MAC CE的上行授权(UL grant)到达的时间,t3是低层完成候选波束检测和/或低层向MAC实体提供候选波束信息(RS ID)的时间。图4里的UL grant以动态调度为例,但本申请实施例不限于此,该UL grant也可以是配置授权(CG,Configured Grant)。
如图4所示,例如,在触发BFR前通过物理下行控制信道(PDCCH,Physical Downlink Control Channel)的DCI,MAC实体已经知道t2时刻有可用的上行资源;这样当触发了BFR时,即t0时刻,MAC实体可以指示复用与组装过程生成(Truncated)BFR MAC CE;复用与组装过程可以在t0到t2期间的任何时刻生成这个MAC CE并组装包括这个MAC CE的MAC PDU。
图5是本申请实施例的终端设备上报波束失败信息的场景的另一示意图,示出了BFR触发后,低层尚未完成候选波束信息(RS ID)的评估,已经有能够容纳(Truncated)BFR MAC CE的上行授权时的情况。
如图5所示,例如,t0是BFR触发的时间,t1是指示生成MAC CE的时间,t2是传输MAC CE的上行授权(UL grant)到达的时间,t3是低层完成候选波束检测和/或低层向MAC实体提供候选波束信息(RS ID)的时间。图5里的UL grant以动态调度为例,但本申请实施例不限于此,该UL grant也可以是配置授权(CG,Configured Grant)。
如图5所示,例如,在触发BFR的时刻t0,MAC实体知道当前没有可用的上行资源用于传输(Truncated)BFR MAC CE。按照现有过程,如果没有可用的上行资源,MAC实体将会触发SR来请求上行资源。实际上,MAC实体可以等待一段时间再触发SR,只要能保证触发的SR在规定时间发送给网络设备。在MAC实体的等待期间,有可能网络设备会提供上行授权,这样MAC实体就不必触发SR来获取上行资源。
如图5所示,t0时刻MAC实体触发了BFR,但没有可用于传输(Truncated)BFR MAC CE的上行资源;MAC实体等待一段时间,在t1时刻通过PDCCH的DCI,MAC实体知道了可用于传输(Truncated)BFR MAC CE的上行授权,可以指示复用和封装过程生成该MAC CE;复用和封装过程可以在t2时刻前的任意时刻生成这个MAC CE,并组装包括这个MAC CE的MAC PDU。
但是,如图4和图5所示,低层向MAC实体提供候选波束信息(RS ID)的时刻t3晚于MAC实体知道存在能够容纳(Truncated)BFR MAC CE的上行授权的时刻t1,或者晚于上行授权到达的时刻t2。这种情况下,生成的MAC CE里不包括候选波束信息(RS ID)。
当网络设备收到没有候选波束信息的MAC CE时,仅知道终端设备的辅小区发生了波束失败,但没有收到终端设备发送的候选波束信息。这种情况下,网络设备可能会为终端设备配置不合适的波束,导致无法恢复波束失败。
针对上述问题,以下对本申请实施例进行进一步说明。本申请实施例从终端设备的MAC层进行说明,由MAC实体进行实施;其中MAC实体包括波束失败检测过程、波束失败恢复过程和复用和组装实体(以下也称为复用和组装过程)等,本申请实施例的低层例如为物理层、天线单元、测量过程等。关于各个层和各个实体的具体概念和定义等可以参考相关技术,本申请实施例不再赘述。
第一方面的实施例
本申请实施例提供一种波束失败信息的上报方法,从终端设备进行说明。图6是本申请实施例的波束失败信息的上报方法的一示意图,如图6所示,该方法包括:
601,终端设备确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测;以及
602,终端设备向网络设备上报所述辅小区发生波束失败。
值得注意的是,以上附图6仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图6的记载。
在本申请实施例中,可以对基于SSB或CSI-RS的候选波束进行检测。具体地,例如,如果用于恢复的候选波束的参考信号列表candidateBeamRSSCellList里包括的SSB/CSI-RS的L1-RSRP在评估周期里大于门限值,那么该SSB/CSI-RS的索引包括在MAC CE的Candidate RS ID域;索引是指该SSB/CSI-RS在candidateBeamRSSCellList里对应的条目的索引,例如index 0对应candidateBeamRSSCellList里的第一个条目,index1对应这个列表里的第二个条目……。
在一些实施例中,601中的终端设备确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测,具体包括:由所述终端设备的介质访问控制(MAC)实体确定在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测,和/或,由所述终端设备的介质访问控制(MAC)实体接收到来自低层的所述辅小区的候选波束标识。
在一些实施例中,在所述辅小区上已经完成基于SSB或CSI-RS的候选波束检测之前,或者接收来自低层的所述辅小区的候选波束标识之前,或者处于在所述辅小区上基于SSB或CSI-RS的候选波束检测的评估期间(evaluation period)中,所述终端设备的介质访问控制(MAC)实体不上报所述辅小区发生了波束失败。
例如,在完成一个小区上基于SSB/CSI-RS的候选波束检测之前、或者在收到来自低层的一个小区的候选RS ID之前、或者在一个小区上基于SSB/CSI-RS的候选波束检测的评估期间(evaluation period)里、或者如果低层正在进行一个小区上基于SSB/CSI-RS的候选波束检测、或者如果低层尚未完成一个小区上基于SSB/CSI-RS的候选波束检测、或者在一个小区上基于SSB/CSI-RS的候选波束检测的评估期间结束之前,等等情况下,终端设备的MAC实体不上报该小区发生了波束失败。
由此,网络设备不知道该小区上发生了波束失败,也就不会为该小区进行波束管理并为该小区配置一个不合适的波束,而是等待后续收到携带了候选波束信息(RS ID)的失败指示并基于该信息进行重配置。
在一些实施例中,在所述介质访问控制(MAC)实体确定所述辅小区已经触发了波束失败恢复且没有取消的情况下,指示生成对应的介质访问控制(MAC)控制元素(CE)或者截短的介质访问控制(MAC)控制元素(CE)。
在一些实施例中,所述介质访问控制(MAC)实体在所述介质访问控制(MAC)控制元素(CE)或者截短的介质访问控制(MAC)控制元素(CE)中不上报所述辅小区发生波束失败。
例如,所述介质访问控制(MAC)实体在所述介质访问控制(MAC)控制元素(CE)或者截短的介质访问控制(MAC)控制元素(CE)中将所述辅小区对应的指示信息(Ci域)置为0;并且不包括所述辅小区对应的承载候选波束信息的域(AC域)。
在一些实施例中,可以认为没有检测到失败,或者,不认为检测到失败。
例如,对于BFR MAC CE,Ci域的含义可以如表1:
表1
Figure PCTCN2020123018-appb-000001
例如,对于Truncated BFR MAC CE,Ci域的含义可以如表2:
表2
Figure PCTCN2020123018-appb-000002
在一些实施例中,可以认为不存在包括AC域的字节。
例如,对于BFR MAC CE,Ci域的含义可以如表3:
表3
Figure PCTCN2020123018-appb-000003
例如,对于Truncated BFR MAC CE,Ci域的含义可以如表4:
表4
Figure PCTCN2020123018-appb-000004
在本申请实施例中,MAC实体指示复用和组装过程生成MAC CE的时刻可以不同于复用和组装过程生成和组装的时刻,因此MAC CE的内容和大小可能发生变化。
以下对于使用BFR MAC CE还是Truncated BFR MAC CE进行说明。
在一些实施例中,由所述介质访问控制(MAC)实体指示复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),在所述复用和组装过程中生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,如果MAC实体指示复用和组装过程生成BFR MAC CE,复用和组装过程可以生成BFR MAC CE或Truncated BFR MAC CE。例如,复用和组装过程可以根据UL grant大小生成BFR MAC CE或Truncated BFR MAC CE。由此,可以根据UL grant等适当地进行调整,有利于提供更多的波束失败和恢复的信息,或者,有利于节约信令开销。
以图4为例,在t0时刻,如果波束失败恢复过程确定已经触发了至少一个BFR,且没有取消,如果UL-SCH资源可用于一个新的传输且如果LCP的结果是这个UL-SCH资源能容纳BFR MAC CE加上它的子头,MAC实体将会指示复用(Multiplexing)和组装(Assembly)过程生成BFR MAC CE。
但是在t2时刻,即复用和组装过程中生成MAC CE时,因为例如需要上报波束失败和恢复信息的小区数量增加或者有更高优先级的信息需要生成MAC CE,LCP的结果是这个UL-SCH资源不能容纳BFR MAC CE加上它的子头、但能容纳Truncated BFR MAC CE加上它的子头,那么复用和组装过程可以生成Truncated BFR MAC CE。
在一些实施例中,由所述介质访问控制(MAC)实体指示复用和组装过程生成截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),在所述复用和组装过程中生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,如果MAC实体指示复用和组装过程生成Truncated BFR MAC CE,复用和组装过程可以生成BFR MAC CE或Truncated BFR MAC CE。例如,复用和组装过程可以根据UL grant大小生成BFR MAC CE或Truncated BFR MAC CE。由此,可以根据UL grant等适当地进行调整,有利于提供更多的波束失败和恢复的信息,或者,有利于节约信令开销。
以图4为例,在t0时刻,如果波束失败恢复过程确定已经触发了至少一个BFR,且没有取消,如果UL-SCH资源可用于一个新的传输且如果LCP的结果是这个UL-SCH资源不能容纳BFR MAC CE加上它的子头、但能容纳Truncated BFR MAC CE加上它的子头,MAC实体将会指示复用(Multiplexing)和组装(Assembly)过程生成Truncated BFR MAC CE。
但是在t2时刻,即复用和组装过程中生成MAC CE时,因为例如需要上报波束失败和恢复信息的小区数量减少或者原本要发送的更高优先级的信息不再需要发送,LCP的结果是UL-SCH资源可用于一个新的传输且如果LCP的结果是这个UL-SCH资源能容纳BFR MAC CE加上它的子头,那么复用和组装过程可以生成BFR MAC CE。
在一些实施例中,由所述介质访问控制(MAC)实体指示复用和组装过程生成携带辅小区波束失败和恢复信息的介质访问控制(MAC)控制元素(CE),在所述复用和组装过程中生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);
其中,在所述复用和组装过程中确定生成所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)还是所述截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,MAC实体指示复用和组装过程生成MAC CE,该MAC CE携带辅小区波束失败检测和恢复的信息,例如包括BFR MAC CE或Truncated BFR MAC CE;复用和组装过程决定生成BFR MAC CE或生成Truncated BFR MAC CE。例如,复用和组装过程根据可用于新的传输的UL-SCH资源的LCP的结果,决定并生成BFR MAC CE或Truncated BFR MAC CE。由此,复用和组装过程决定并生成BFR MAC CE或Truncated  BFR MAC CE,有利于增加灵活性。
以图4为例,在t0时刻,如果波束失败恢复过程确定已经触发了至少一个BFR,且没有取消,MAC实体将会指示复用(Multiplexing)和组装(Assembly)过程生成一个MAC CE携带辅小区的波束失败和恢复信息。
在t2时刻,即复用和组装过程中生成这个MAC CE时,如果LCP的结果是这个UL-SCH资源能容纳BFR MAC CE加上它的子头,那么复用和组装过程可以决定并生成BFR MAC CE。
在t2时刻,即复用和组装过程中生成MAC CE时,如果LCP的结果是这个UL-SCH资源不能容纳BFR MAC CE加上它的子头、但能容纳Truncated BFR MAC CE加上它的子头,那么复用和组装过程可以决定并生成Truncated BFR MAC CE。
在一些实施例中,由所述介质访问控制(MAC)实体指示复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),所述复用和组装过程一旦收到所述介质访问控制(MAC)实体的指示就生成所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);或者,
由所述介质访问控制(MAC)实体指示复用和组装过程生成截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),所述复用和组装过程一旦收到所述介质访问控制(MAC)实体的指示就生成所述截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,MAC实体指示复用和组装过程生成MAC CE的时刻与复用和组装过程生成的时刻相同,即MAC实体指示复用和组装过程生成(Truncated)BFR MAC CE,则复用和组装过程立即生成该(Truncated)BFR MAC CE。
以图4为例,在t0时刻,如果波束失败恢复过程确定已经触发了至少一个BFR,且没有取消,如果UL-SCH资源可用于一个新的传输且如果LCP的结果是这个UL-SCH资源能容纳BFR MAC CE加上它的子头,MAC实体将会指示复用(Multiplexing)和组装(Assembly)过程生成BFR MAC CE。在t0时刻,复用和组装过程生成BFR MAC CE。
以图4为例,在t0时刻,如果波束失败恢复过程确定已经触发了至少一个BFR,且没有取消,如果UL-SCH资源可用于一个新的传输且如果LCP的结果是这个UL-SCH资源不能容纳BFR MAC CE加上它的子头、但能容纳Truncated BFR MAC CE加上它的子头,MAC实体将会指示复用(Multiplexing)和组装(Assembly)过程生成Truncated BFR MAC CE。在t0时刻,复用和组装过程生成Truncated BFR MAC CE。
以上对于BFR MAC CE或Truncated BFR MAC CE进行了示意性说明,以下再对格式1或格式2的MAC CE进行说明。
在现有机制中,根据MAC实体检测到波束失败的辅小区的最高服务小区索引ServCellIndex确定使用格式1还是格式2的MAC CE。
例如,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到了波束失败,根据目前的机制,MAC实体检测到波束失败的辅小区的最高服务小区索引ServCellIndex=10,其大于8,则MAC实体确定使用格式2的MAC CE,即包括4字节的位图(bitmap)。在本申请实施例中,例如一个辅小区即便检测到了波束失败,可能也不会上报给网络设备。由此,MAC实体在ServCellIndex=10的辅小区检测到了波束失败但不上报其波束失败的情况下,格式1的MAC CE(即包括1字节bitmap)已经足够,不需要使用格式1的MAC CE(包括4字节bitmap)。因此,现有机制会增加信令开销。
在一些实施例中,根据这个MAC实体里对应的指示信息(Ci域)置为1的辅小区的最高服务小区索引ServCellIndex确定使用格式1还是格式2。由此,能够降低信令开销。
例如,终端设备在一个介质访问控制(MAC)实体里辅小区对应的指示信息(Ci域)置为1的最高服务小区索引ServCellIndex小于8的情况下,使用第一格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);在指示信息(Ci域)置为1的最高服务小区索引ServCellIndex大于或等于8的情况下,使用第二格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于BFR MAC CE,如果一个MAC实体里辅小区对应的Ci域置为1的最高服务小区索引ServCellIndex小于8,则使用图2所示的格式1;否则使用图3所示的格式2。
关于以上的含义可以参考表5:
表5
Figure PCTCN2020123018-appb-000005
此外,例如,如果AC域置为1,则表示在这个包括AC域的字节里还存在候选(Candidate)RS ID域,Candidate RS ID域为SSB或CSI-RS的索引;如果AC域置为 0,则表示在这个包括AC域的字节里不存在候选(Candidate)RS ID域,该字节剩余比特是空闲比特。
例如,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到了波束失败,但在本申请实施例中,不上报ServCellIndex=10的辅小区的波束失败。这种情况下,C2=1,C10=0,辅小区对应的Ci域置为1的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的BFR MAC CE。由此,能够降低信令开销。
再例如,终端设备在一个介质访问控制(MAC)实体里辅小区对应的指示信息(Ci域)置为1的最高服务小区索引小于8、或者特殊小区对应的Ci域置为1且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于Truncated BFR MAC CE,如果一个实体里辅小区对应的Ci域置为1的最高服务小区索引ServCellIndex小于8,或者特殊小区对应的Ci域置为1且该特殊小区将被包括在一个Truncated BFR MAC CE里且LCP结果是UL-SCH资源无法容纳图3的格式2的Truncated BFR MAC CE加上它的子头,那么使用图2所示的格式1;否则使用图3所示的格式2。由此,能够降低信令开销。
关于以上的含义可以参考表6:
表6
Figure PCTCN2020123018-appb-000006
此外,例如,如果AC域置为1,则表示在这个包括AC域的字节里还存在候选(Candidate)RS ID域,Candidate RS ID域为SSB或CSI-RS的索引;如果AC域置为0,则表示在这个包括AC域的字节里不存在候选(Candidate)RS ID域,该字节剩余比 特是空闲比特。
例如,对于Truncated BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到了波束失败,但在本申请实施例中,不上报ServCellIndex=10的辅小区的波束失败。这种情况下,C2=1,C10=0,辅小区对应的Ci域置为1的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的Truncated BFR MAC CE。由此,能够降低信令开销。
在一些实施例中,根据这个MAC实体里上报波束失败的辅小区的最高服务小区索引ServCellIndex确定使用格式1还是格式2。由此,能够降低信令开销。
例如,终端设备在一个介质访问控制(MAC)实体里上报波束失败的辅小区的最高服务小区索引ServCellIndex小于8的情况下,使用第一格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);在一个介质访问控制(MAC)实体里上报波束失败的辅小区的最高服务小区索引ServCellIndex大于或等于8的情况下,使用第二格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到了波束失败,但在本申请实施例中,不上报ServCellIndex=10的辅小区的波束失败。这种情况下,上报辅小区波束失败的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里上报波束失败的辅小区的最高服务小区索引ServCellIndex小于8、或者上报特殊小区波束失败且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于Truncated BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到了波束失败,但在本申请实施例中,不上报ServCellIndex=10的辅小区的波束失败。这种情况下,上报辅小区波束失败的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的Truncated BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里上报波束失败的辅小区的最高服务小区索引ServCellIndex小于8、或者特殊小区检测到波束失败且所述特殊小区将 被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
在一些实施例中,根据这个MAC实体里检测到波束失败且上报波束失败的辅小区的最高服务小区索引ServCellIndex确定使用格式1还是格式2。由此,能够降低信令开销。
例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且上报波束失败的辅小区的最高服务小区索引小于8的情况下,使用第一格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);在一个介质访问控制(MAC)实体里检测到波束失败且上报波束失败的辅小区的最高服务小区索引大于或等于8的情况下,使用第二格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到了波束失败,但在本申请实施例中,不上报ServCellIndex=10的辅小区的波束失败。这种情况下,检测到波束失败且上报辅小区波束失败的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且上报波束失败的辅小区的最高服务小区索引小于8、或者特殊小区检测到波束失败且上报所述特殊小区的波束失败且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于Truncated BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到了波束失败,但在本申请实施例中,不上报ServCellIndex=10的辅小区的波束失败。这种情况下,检测到波束失败且上报辅小区波束失败的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的Truncated BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且上报波束 失败的辅小区的最高服务小区索引小于8、或者特殊小区检测到波束失败且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
在一些实施例中,根据这个MAC实体里检测到波束失败且已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区的最高服务小区索引ServCellIndex确定使用格式1还是格式2。由此,能够降低信令开销。
例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区的最高服务小区索引小于8的情况下,使用第一格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);
在一个介质访问控制(MAC)实体里检测到波束失败且已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区的最高服务小区索引大于或等于8的情况下,使用第二格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到波束失败,但在本申请实施例中,ServCellIndex=10尚未完成基于同步信号块或信道状态信息参考信号的候选波束检测。这种情况下,检测到波束失败且已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区的最高服务小区索引小于8、或者特殊小区检测到波束失败且已经完成基于同步信号块或信道状态信息参考信号的候选波束检测且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于Truncated BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10 的辅小区检测到波束失败,但在本申请实施例中,ServCellIndex=10尚未完成基于同步信号块或信道状态信息参考信号的候选波束检测。这种情况下,检测到波束失败且已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的Truncated BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区的最高服务小区索引小于8、或者特殊小区检测到波束失败且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
在一些实施例中,根据这个MAC实体里检测到波束失败且确定了候选波束标识或确定没有候选波束的辅小区的最高服务小区索引ServCellIndex确定使用格式1还是格式2。由此,能够降低信令开销。
例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且确定了候选波束标识或确定没有候选波束的辅小区的最高服务小区索引小于8的情况下,使用第一格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);
在一个介质访问控制(MAC)实体里检测到波束失败且确定了候选波束标识或确定没有候选波束的辅小区的最高服务小区索引大于或等于8的情况下,使用第二格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到波束失败,但在本申请实施例中,ServCellIndex=10的辅小区尚未确定候选波束标识也尚未确定没有候选波束。这种情况下,检测到波束失败且确定了候选波束标识或确定没有候选波束的辅小区的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且确定了候选波束标识或确定没有候选波束的辅小区的最高服务小区索引小于8、或者特殊小区检测到波束失败且确定了候选波束标识或确定没有候选波束且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无 法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于Truncated BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到波束失败,但在本申请实施例中,ServCellIndex=10的辅小区尚未确定候选波束标识也尚未确定没有候选波束。这种情况下,检测到波束失败且确定了候选波束标识或确定没有候选波束的辅小区的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的Truncated BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且确定了候选波束标识或确定没有候选波束的辅小区的最高服务小区索引小于8、或者特殊小区检测到波束失败且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
在一些实施例中,根据这个MAC实体里检测到波束失败且不处于基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间的辅小区的最高服务小区索引ServCellIndex确定使用格式1还是格式2。由此,能够降低信令开销。
例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且不处于基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间的辅小区的最高服务小区索引小于8的情况下,使用第一格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);
在一个介质访问控制(MAC)实体里检测到波束失败且不处于基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间的辅小区的最高服务小区索引大于或等于8的情况下,使用第二格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到波束失败,但在本申请实施例中,ServCellIndex=10的辅小区处于基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间。这种情况下,检测到波束失败且 不处于基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间的辅小区的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且不处于基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间的辅小区的最高服务小区索引小于8、或者特殊小区检测到波束失败且不处于基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于Truncated BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到波束失败,但在本申请实施例中,ServCellIndex=10的辅小区处于基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间。这种情况下,检测到波束失败且不处于基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间的辅小区的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的Truncated BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里检测到波束失败且不处于基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间的辅小区的最高服务小区索引小于8、或者特殊小区检测到波束失败且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
在一些实施例中,根据这个MAC实体里认为检测到波束失败的辅小区的最高服务小区索引ServCellIndex确定使用格式1还是格式2。由此,能够降低信令开销。
例如,终端设备在一个介质访问控制(MAC)实体里认为检测到波束失败的辅小区的最高服务小区索引小于8的情况下,使用第一格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);
在一个介质访问控制(MAC)实体里认为检测到波束失败的辅小区的最高服务小区 索引大于或等于8的情况下,使用第二格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到波束失败,但在本申请实施例中,不认为ServCellIndex=10的辅小区检测到波束失败或者认为ServCellIndex=10的辅小区未检测到波束失败。这种情况下,检测到波束失败的辅小区的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里认为检测到波束失败的辅小区的最高服务小区索引小于8、或者认为特殊小区检测到波束失败且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,对于Truncated BFR MAC CE,假设ServCellIndex=2和ServCellIndex=10的辅小区检测到波束失败,但在本申请实施例中,不认为ServCellIndex=10的辅小区检测到波束失败或者认为ServCellIndex=10的辅小区未检测到波束失败。这种情况下,认为检测到波束失败的辅小区的最高服务小区索引ServCellIndex=2,小于8,使用图2所示的格式1,即1字节bitmap的Truncated BFR MAC CE。
再例如,终端设备在一个介质访问控制(MAC)实体里认为检测到波束失败的辅小区的最高服务小区索引小于8、或者特殊小区检测到波束失败且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
在一些实施例中,终端设备在发送包括辅小区波束失败信息的介质访问控制(MAC)协议数据单元(PDU)时,不取消所述介质访问控制(MAC)协议数据单元(PDU)组装前所述辅小区上已经触发的波束失败恢复。
例如,当一个MAC PDU发送,且这个PDU包括一个BFR MAC CE或Truncated BFR  MAC CE,其中该MAC CE包括一个辅小区的波束失败信息,则应该取消MAC PDU组装前、这个辅小区所有为波束失败恢复触发的BFR(s)。
再例如,一个辅小区上为波束失败恢复触发了BFR(s),MAC实体可以不上报所述辅小区发生了波束失败;终端设备在发送了一个MAC PDU、且这个PDU包括一个包括这个辅小区波束失败信息的BFR MAC CE或Truncated BFR MAC CE时,取消所述MAC PDU组装前这个辅小区上已经触发的BFR(s),除了MAC实体不上报发生了波束失败的所述辅小区上已经触发的BFR(s)。
例如,在完成一个小区上基于SSB/CSI-RS的候选波束检测之前、或者在收到来自低层的一个小区的候选RS ID之前、或者在一个小区上基于SSB/CSI-RS的候选波束检测的评估期间(evaluation period)里、或者如果低层正在进行一个小区上基于SSB/CSI-RS的候选波束检测、或者如果低层尚未完成一个小区上基于SSB/CSI-RS的候选波束检测、或者在一个小区上基于SSB/CSI-RS的候选波束检测的评估期间结束之前,如果终端设备的MAC实体已经指示复用(Multiplexing)和组装(Assembly)过程生成了一个MAC PDU且这个MAC PDU包括一个BFR MAC CE或Truncated BFR MAC CE,则该MAC实体不在该MAC PDU中的BFR MAC CE或Truncated BFR MAC CE中上报这个小区发生了波束失败,此外当这个MAC PDU发送时,不取消该MAC PDU组装前该小区上已经触发的BFR(s)。
例如,一个终端配置了辅小区1和辅小区2,辅小区1和辅小区2都触发了BFR(s)。当发送了一个MAC PDU、且这个PDU包括一个BFR MAC CE,这个BFR MAC CE包括辅小区1和辅小区2的波束失败信息时,取消辅小区1和辅小区2上所有触发的BFR(s);或者,一个终端配置了辅小区1和辅小区2,辅小区1和辅小区2都触发了BFR(s)。当发送了一个MAC PDU、且这个PDU包括一个BFR MAC CE,这个BFR MAC CE包括辅小区1的波束失败信息但不上报辅小区2发生了波束失败时,取消辅小区1上所有触发的BFR(s),但不取消辅小区2上触发的BFR(s)。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备在发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测的情况下,再向网络设备上报所述辅小区发生波束失败。由此,网络设备不会为终端设备配置不合适的波束,从 而减少或避免无法恢复波束失败的情况。
第二方面的实施例
本申请实施例提供一种波束失败信息的上报方法,从终端设备进行说明。与第一方面的实施例相同的内容不再赘述。
图7是本申请实施例的波束失败信息的上报方法的一示意图,如图7所示,该方法包括:
701,终端设备确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测;以及
702,终端设备向网络设备上报包括所述辅小区的波束失败信息的介质访问控制(MAC)协议数据单元(PDU)。
值得注意的是,以上附图7仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图7的记载。
在一些实施例中,701中的终端设备确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测,包括:由所述终端设备的介质访问控制(MAC)实体确定在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测,和/或,由所述终端设备的介质访问控制(MAC)实体接收到来自低层的所述辅小区的候选波束标识。
在一些实施例中,在终端设备确定在所述辅小区上已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收来自低层的所述辅小区的候选波束标识之前,或者确定处于在所述辅小区上基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,所述终端设备的介质访问控制(MAC)实体不指示复用和组装过程生成携带辅小区的波束失败和恢复信息的MAC CE。所述MAC CE包括波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,BFR MAC CE或Truncated MAC CE可以使用格式1(如图2所示),也可以使用格式2(如图3所示)。关于BFR MAC CE或Truncated MAC CE的具体内容可以参考第一方面的实施例。
由此,网络设备不知道该小区上发生了波束失败,也就不会为该小区进行波束管理并为该小区配置一个不合适的波束,而是等待后续收到携带了候选波束信息(RS ID)的失败指示并基于该信息进行重配置。
在一些实施例中,所述终端设备的介质访问控制(MAC)实体不指示复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),包括:
在所述介质访问控制(MAC)实体确定所述辅小区已经触发了波束失败恢复且没有取消、有可用的上行资源且所述上行资源能够容纳波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,所述介质访问控制(MAC)实体不指示所述复用和组装过程生成所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
在一些实施例中,在波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消、且完成至少一个小区上基于同步信号块或信道状态信息参考信号的候选波束检测,或者接收来自低层的至少一个小区的候选波束标识的情况下,所述介质访问控制(MAC)实体根据上行资源指示所述复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),或者触发调度请求(SR)。
例如,关于如何生成BFR MAC CE可以参考表7:
表7
Figure PCTCN2020123018-appb-000007
在一些实施例中,在波束失败恢复过程确定已经触发了至少一个辅小区上的波束失败恢复且没有取消、且完成至少一个小区上基于同步信号块或信道状态信息参考信号的候选波束检测,或者接收来自低层的至少一个小区的候选波束标识的情况下,所述介质访问控制(MAC)实体根据上行资源指示所述复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),或者触发调度请求(SR)。
例如,关于如何生成BFR MAC CE可以参考表8:
表8
Figure PCTCN2020123018-appb-000008
在一些实施例中,终端设备在发送包括辅小区波束失败信息的介质访问控制(MAC)协议数据单元(PDU)时,不取消所述介质访问控制(MAC)协议数据单元(PDU)组装前所述辅小区上已经触发的波束失败恢复。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备在发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测的情况下,再向网络设备发送包括所述辅小区的波束失败信息的介质访问控制(MAC)协议数据单元(PDU)。由此,网络设备不会为终端设备配置不合适的波束,从而减少或避免无法恢复波束失败的情况。
第三方面的实施例
以下在第一、二方面的实施例的基础上再进行说明,与第一、二方面的实施例相同 的内容不再赘述。此外,第三方面的实施例可以与第一、二方面的实施例结合起来实施,也可以单独地实施。
在一些实施例中,终端设备检测辅小区发生波束失败;在确定所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收到所述辅小区的候选波束标识之前,或者确定处于所述辅小区基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,所述终端设备不上报所述辅小区发生了波束失败,和/或,所述终端设备不指示复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,当只有一个小区触发了BFR,在该小区已经完成基于SSB或CSI-RS的候选波束检测之前,MAC实体将不会指示复用和组装过程生成(Truncated)BFR MAC CE,由此可以进一步节约信令。
在一些实施例中,第一方面的实施例和第二方面的实施例可以结合起来。
例如,在多个小区触发了波束失败恢复、且至少有一个小区的候选波束检测已完成的情况下,所述终端设备不上报所述辅小区发生了波束失败,即可以实施第一方面的实施例;
在多个小区触发了波束失败恢复、且触发了波束失败恢复的所有小区的候选波束检测均未完成的情况下,所述终端设备不指示复用和组装过程去生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),即可以实施第二方面的实施例。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备在辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收到所述辅小区的候选波束标识之前,或者确定处于所述辅小区基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,不上报所述辅小区发生了波束失败,和/或,不指示复用和组装过程生成BFR MAC CE或者截短的BFR MAC CE。由此,网络设备不会为终端设备配置不合适的波束,从而减少或避免无法恢复波束失败的情况。
第四方面的实施例
以下在第一至三方面的实施例的基础上再进行说明,与第一至三方面的实施例相同的内容不再赘述。此外,第四方面的实施例可以与第一至三方面的实施例结合起来实施,也可以单独地实施。
在一些实施例中,终端设备的介质访问控制(MAC)实体在所述辅小区配置在所述介质访问控制(MAC)实体的情况下,生成针对所述介质访问控制(MAC)实体的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
在一些实施例中,所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为1,表示配置在所述介质访问控制(MAC)实体上的服务小区索引i的辅小区检测到波束失败且包括候选波束信息;
所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为0,表示服务小区索引i的辅小区没有配置在所述介质访问控制(MAC)实体上,或者所述辅小区没有检测到波束失败且不包括候选波束信息。
例如,对于BFR MAC CE,Ci域的含义可以如表9:
表9
Figure PCTCN2020123018-appb-000009
在一些实施例中,所述截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为1,表示配置在所述介质访问控制(MAC)实体上的服务小区索引i的辅小区检测到波束失败且包括候选波束信息;
所述截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为0,表示服务小区索引i的辅小区没有配置在所述介质访问控制(MAC)实体上,或者所述辅小区没有检测到波束失败且不包括候选波束信息。
例如,对于Truncated BFR MAC CE,Ci域的含义可以如表10:
表10
Figure PCTCN2020123018-appb-000010
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备的MAC实体在辅小区配置在该MAC实体的情况下,生成针对该MAC实体的BFR MAC CE或者截短的BFR MAC CE。由此,只有当一个辅小区配置在该MAC实体时,其Ci域才会置为1,能够进一步节约MAC CE的比特。
第五方面的实施例
本申请实施例提供一种波束失败信息的上报装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件,与第一至五方面的实施例相同的内容不再赘述。
图8是本申请实施例的波束失败信息的上报装置的一示意图,如图8所示,波束失败信息的上报装置800包括:
检测单元801,其检测候选波束;以及
上报单元802,其上报已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区上的波束失败。
在一些实施例中,上报单元802还用于:由介质访问控制实体确定在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测,和/或,由所述介质访 问控制实体接收到来自低层的所述辅小区的候选波束标识。
在一些实施例中,上报单元802还用于:在所述辅小区上已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收来自低层的所述辅小区的候选波束标识之前,或者处于在所述辅小区上基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,介质访问控制实体不上报所述辅小区发生了波束失败。
在一些实施例中,如图8所示,波束失败信息的上报装置800包括:
生成单元803,其在所述辅小区已经触发了波束失败恢复且没有取消的情况下,生成对应的介质访问控制控制元素或者截短的介质访问控制控制元素并组装介质访问控制协议数据单元;所述介质访问控制实体在所述介质访问控制控制元素或者截短的介质访问控制控制元素中不上报所述辅小区发生波束失败。
在一些实施例中,所述介质访问控制实体在所述介质访问控制控制元素或者截短的介质访问控制控制元素中将所述辅小区对应的指示信息置为0;并且不包括所述辅小区对应的承载候选波束信息的域。
在一些实施例中,由所述介质访问控制实体指示复用和组装过程生成波束失败恢复介质访问控制控制元素,在所述复用和组装过程中生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素;或者,
由所述介质访问控制实体指示复用和组装过程生成截短的波束失败恢复介质访问控制控制元素,在所述复用和组装过程中生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
在一些实施例中,由所述介质访问控制实体指示复用和组装过程生成携带辅小区波束失败和恢复信息的介质访问控制控制元素,在所述复用和组装过程中生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素;
由所述复用和组装过程中确定生成所述波束失败恢复介质访问控制控制元素还是所述截短的波束失败恢复介质访问控制控制元素。
在一些实施例中,由所述介质访问控制实体指示复用和组装过程生成波束失败恢复介质访问控制控制元素,所述复用和组装过程一旦收到所述介质访问控制实体的指示就生成所述波束失败恢复介质访问控制控制元素;或者,
由所述介质访问控制实体指示复用和组装过程生成截短的波束失败恢复介质访问控制控制元素,所述复用和组装过程一旦收到所述介质访问控制实体的指示就生成所述截短的波束失败恢复介质访问控制控制元素。
在一些实施例中,在一个介质访问控制实体里辅小区对应的指示信息置为1的最高服务小区索引小于8的情况下,使用第一格式的波束失败恢复介质访问控制控制元素;在指示信息置为1的最高服务小区索引大于或等于8的情况下,使用第二格式的波束失败恢复介质访问控制控制元素。
在一些实施例中,在一个介质访问控制实体里辅小区对应的指示信息置为1的最高服务小区索引小于8、或者特殊小区检测到波束失败且所述特殊小区将被包括在截短的波束失败恢复介质访问控制控制元素里且上行资源无法容纳第二格式的截短的波束失败恢复介质访问控制控制元素的情况下,使用第一格式的截短的波束失败恢复介质访问控制控制元素;否则使用第二格式的截短的波束失败恢复介质访问控制控制元素。
在一些实施例中,在发送包括辅小区波束失败信息的介质访问控制协议数据单元时,不取消所述介质访问控制协议数据单元组装前所述辅小区上已经触发的波束失败恢复。
在一些实施例中,介质访问控制实体在所述辅小区配置在所述介质访问控制实体的情况下,生成针对所述介质访问控制实体的波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
在一些实施例中,所述波束失败恢复介质访问控制控制元素的指示信息置为1,表示配置在所述介质访问控制实体上的服务小区索引i的辅小区检测到波束失败且包括候选波束信息;所述波束失败恢复介质访问控制控制元素的指示信息置为0,表示服务小区索引i的辅小区没有配置在所述介质访问控制实体上,或者所述辅小区没有检测到波束失败且不包括候选波束信息;
所述截短的波束失败恢复介质访问控制控制元素的指示信息置为1,表示配置在所述介质访问控制实体上的服务小区索引i的辅小区检测到波束失败且包括候选波束信息;所述截短的波束失败恢复介质访问控制控制元素的指示信息置为0,表示服务小区索引i的辅小区没有配置在所述介质访问控制实体上,或者所述辅小区没有检测到波束失败且不包括候选波束信息。
在一些实施例中,上报单元802向网络设备上报包括已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区上的波束失败信息的介质访问控制协议数据单元。
在一些实施例中,上报单元802还用于:由介质访问控制实体确定在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测,或者由所述介质访问控制实体接收到来自低层的所述辅小区的候选波束标识。
在一些实施例中,在确定在所述辅小区上已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收来自低层的所述辅小区的候选波束标识之前,或者确定处于在所述辅小区上基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,介质访问控制实体不指示复用和组装过程生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
在一些实施例中,在波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消、且完成至少一个小区上基于同步信号块或信道状态信息参考信号的候选波束检测,或者接收来自低层的至少一个小区的候选波束标识的情况下,所述介质访问控制实体根据上行资源指示所述复用和组装过程生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素,或者触发调度请求。
在一些实施例中,在波束失败恢复过程确定已经触发了至少一个辅小区上的波束失败恢复且没有取消、且完成至少一个小区上基于同步信号块或信道状态信息参考信号的候选波束检测,或者接收来自低层的至少一个小区的候选波束标识的情况下,所述介质访问控制实体根据上行资源指示所述复用和组装过程生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素,或者触发调度请求。
图9是本申请实施例的波束失败信息的上报装置的另一示意图,如图9所示,波束失败信息的上报装置900包括:
检测单元901,其检测辅小区发生波束失败;
处理单元902,其在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收到所述辅小区的候选波束标识之前,或者处于所述辅小区基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,不上报所述辅小区发生了波束失败,或者不指示复用和组装过程生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
在一些实施例中,在多个小区触发了波束失败恢复、且至少有一个小区的候选波束检测已完成的情况下,处理单元902不上报所述辅小区发生了波束失败;
在多个小区触发了波束失败恢复、且触发了波束失败恢复的所有小区的候选波束检测均未完成的情况下,处理单元902不指示复用和组装过程去生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也 可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。波束失败信息的上报装置800、900还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图8、9中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,终端设备在发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测的情况下,再向网络设备上报所述辅小区发生波束失败,或者向网络设备发送包括所述辅小区的波束失败信息的介质访问控制(MAC)协议数据单元(PDU)。由此,网络设备不会为终端设备配置不合适的波束,从而减少或避免无法恢复波束失败的情况。
第六方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一方面至第五方面的实施例相同的内容不再赘述。
在一些实施例中,该通信系统可以包括:
终端设备102,确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测;以及上报所述辅小区发生波束失败或者上报包括所述辅小区的波束失败信息的介质访问控制(MAC)协议数据单元(PDU);
网络设备101,其接收所述辅小区发生波束失败的上报信息或者包括所述辅小区的波束失败信息的介质访问控制(MAC)协议数据单元(PDU)。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图10是本申请实施例的网络设备的构成示意图。如图10所示,网络设备1000可以包括:处理器1000(例如中央处理器CPU)和存储器1020;存储器1020耦合到处理器1010。其中该存储器1020可存储各种数据;此外还存储信息处理的程序1030,并且在处理器1010的控制下执行该程序1030。
此外,如图10所示,网络设备1000还可以包括:收发机1040和天线1050等;其 中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1000也并不是必须要包括图10中所示的所有部件;此外,网络设备1000还可以包括图10中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图11是本申请实施例的终端设备的示意图。如图11所示,该终端设备1100可以包括处理器1110和存储器1120;存储器1120存储有数据和程序,并耦合到处理器1110。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1110可以被配置为执行程序而实现如第一方面的实施例所述的波束失败信息的上报方法。例如处理器1110可以被配置为进行如下的控制:确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测;以及向网络设备上报所述辅小区发生波束失败。
例如,处理器1110可以被配置为执行程序而实现如第二方面的实施例所述的波束失败信息的上报方法。例如处理器1110可以被配置为进行如下的控制:确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测;以及向网络设备上报包括所述辅小区的波束失败信息的介质访问控制(MAC)协议数据单元(PDU)。
例如,处理器1110可以被配置为执行程序而实现如第三方面的实施例所述的波束失败信息的上报方法。例如处理器1110可以被配置为进行如下的控制:检测辅小区发生波束失败;在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收到所述辅小区的候选波束标识之前,或者处于所述辅小区基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,不上报所述辅小区发生了波束失败,和/或,不指示复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
例如,处理器1110可以被配置为执行程序而实现如第四方面的实施例所述的波束失败信息的上报方法。例如处理器1110可以被配置为进行如下的控制:检测辅小区发生波束失败;以及在所述辅小区配置在介质访问控制(MAC)实体的情况下,上报针对所述介质访问控制(MAC)实体的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
如图11所示,该终端设备1100还可以包括:通信模块1130、输入单元1140、显示器1150、电源1160。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1100也并不是必须要包括图11中所示的所有部件,上述部件并不是必需的;此外,终端设备1100还可以包括图11中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一至四方面的实施例所述的波束失败信息的上报方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一至四方面的实施例所述的波束失败信息的上报方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶 体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1.一种波束失败信息的上报方法,包括:
终端设备确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测;以及
向网络设备上报所述辅小区发生波束失败。
附记2.根据附记1所述的方法,其中,所述终端设备确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测,包括:
由所述终端设备的介质访问控制(MAC)实体确定在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测,和/或,由所述终端设备的介质访问控制(MAC)实体接收到来自低层的所述辅小区的候选波束标识。
附记3.根据附记1或2所述的方法,其中,所述方法还包括:
在所述辅小区上已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收来自低层的所述辅小区的候选波束标识之前,或者处于在所述辅小区上基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,所述终端设备的介质访问控制(MAC)实体不上报所述辅小区发生了波束失败。
附记4.根据附记3所述的方法,其中,所述方法还包括:
在所述辅小区已经触发了波束失败恢复且没有取消的情况下,生成对应的介质访问控制(MAC)控制元素(CE)或者截短的介质访问控制(MAC)控制元素(CE)并组装介质访问控制(MAC)协议数据单元(PDU)。
附记5.根据附记4所述的方法,其中,所述介质访问控制(MAC)实体在所述介质访问控制(MAC)控制元素(CE)或者截短的介质访问控制(MAC)控制元素(CE)中不上报所述辅小区发生波束失败。
附记6.根据附记5所述的方法,其中,所述介质访问控制(MAC)实体在所述介质访问控制(MAC)控制元素(CE)或者截短的介质访问控制(MAC)控制元素(CE)中将所述辅小区对应的指示信息(Ci域)置为0;并且不包括所述辅小区对应的承载候选波束信息的域(AC域)。
附记7.根据附记5或6所述的方法,其中,由所述介质访问控制(MAC)实体指示复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),在所述复用和组装过程中生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);或者,
由所述介质访问控制(MAC)实体指示复用和组装过程生成截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),在所述复用和组装过程中生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记8.根据附记5或6所述的方法,其中,由所述介质访问控制(MAC)实体指示复用和组装过程生成携带辅小区波束失败和恢复信息的介质访问控制(MAC)控制元素(CE),在所述复用和组装过程中生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记9.根据附记8所述的方法,其中,由所述复用和组装过程中确定生成所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)还是所述截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记10.根据附记5或6所述的方法,其中,由所述介质访问控制(MAC)实体指示复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),所述复用和组装过程一旦收到所述介质访问控制(MAC)实体的指示就生成所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);或者,
由所述介质访问控制(MAC)实体指示复用和组装过程生成截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),所述复用和组装过程一旦收到所述介质访问控制(MAC)实体的指示就生成所述截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记11.根据附记5至10任一项所述的方法,其中,所述方法还包括:
所述终端设备在一个介质访问控制(MAC)实体里辅小区对应的指示信息(Ci域)置为1的最高服务小区索引小于8的情况下,使用第一格式的波束失败恢复(BFR)介 质访问控制(MAC)控制元素(CE);在指示信息(Ci域)置为1的最高服务小区索引大于或等于8的情况下,使用第二格式的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记12.根据附记5至10任一项所述的方法,其中,所述方法还包括:
所述终端设备在一个介质访问控制(MAC)实体里辅小区对应的指示信息(Ci域)置为1的最高服务小区索引小于8、或者特殊小区检测到波束失败且所述特殊小区将被包括在截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)里且上行资源无法容纳第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,使用第一格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE);否则使用第二格式的截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记13.一种波束失败信息的上报方法,包括:
终端设备确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测;以及
向网络设备上报包括所述辅小区的波束失败信息的介质访问控制(MAC)协议数据单元(PDU)。
附记14.根据附记13所述的方法,其中,所述终端设备确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测,包括:
由所述终端设备的介质访问控制(MAC)实体确定在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测,或者由所述终端设备的介质访问控制(MAC)实体接收到来自低层的所述辅小区的候选波束标识。
附记15.根据附记13或14所述的方法,其中,所述方法还包括:
在所述辅小区上已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收来自低层的所述辅小区的候选波束标识之前,或者处于在所述辅小区上基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,所述终端设备的介质访问控制(MAC)实体不指示复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记16.根据附记15所述的方法,其中,所述终端设备的介质访问控制(MAC) 实体不指示复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),包括:
在所述辅小区已经触发了波束失败恢复且没有取消、有可用的上行资源且所述上行资源能够容纳波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的情况下,所述介质访问控制(MAC)实体不指示所述复用和组装过程生成所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记17.根据附记15所述的方法,其中,所述方法还包括:
在已经触发了至少一个波束失败恢复且没有取消、且完成至少一个小区上基于同步信号块或信道状态信息参考信号的候选波束检测,或者接收来自低层的至少一个小区的候选波束标识的情况下,所述介质访问控制(MAC)实体根据上行资源指示所述复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),或者触发调度请求(SR)。
附记18.根据附记15所述的方法,其中,所述方法还包括:
在已经触发了至少一个辅小区上的波束失败恢复且没有取消、且完成至少一个小区上基于同步信号块或信道状态信息参考信号的候选波束检测,或者接收来自低层的至少一个小区的候选波束标识的情况下,所述介质访问控制(MAC)实体根据上行资源指示所述复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE),或者触发调度请求(SR)。
附记19.根据附记3至18任一项所述的方法,其中,所述方法还包括:
所述终端设备在发送包括辅小区波束失败信息的介质访问控制(MAC)协议数据单元(PDU)时,不取消所述介质访问控制(MAC)协议数据单元(PDU)组装前所述辅小区上已经触发的波束失败恢复。
附记20.根据附记1至19任一项所述的方法,其中,所述方法还包括:
所述终端设备的介质访问控制(MAC)实体在所述辅小区配置在所述介质访问控制(MAC)实体的情况下,生成针对所述介质访问控制(MAC)实体的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记21.根据附记20所述的方法,其中,所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为1,表示配置在所述介质访问控制(MAC)实体上的服务小区索引i的辅小区检测到波束失败且包括候选波束信息;
所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为0,表示服务小区索引i的辅小区没有配置在所述介质访问控制(MAC)实体上,或者所述辅小区没有检测到波束失败且不包括候选波束信息。
附记22.根据附记20所述的方法,其中,所述截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为1,表示配置在所述介质访问控制(MAC)实体上的服务小区索引i的辅小区检测到波束失败且包括候选波束信息;
所述截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为0,表示服务小区索引i的辅小区没有配置在所述介质访问控制(MAC)实体上,或者所述辅小区没有检测到波束失败且不包括候选波束信息。
附记23.一种波束失败信息的上报方法,包括:
终端设备检测辅小区发生波束失败;
在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收到所述辅小区的候选波束标识之前,或者处于所述辅小区基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,所述终端设备不上报所述辅小区发生了波束失败,和/或,不指示复用和组装过程生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记24.根据附记23所述的方法,其中,所述方法还包括:
在多个小区触发了波束失败恢复、且至少有一个小区的候选波束检测已完成的情况下,所述终端设备不上报所述辅小区发生了波束失败;
在多个小区触发了波束失败恢复、且触发了波束失败恢复的所有小区的候选波束检测均未完成的情况下,所述终端设备不指示复用和组装过程去生成波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记25.一种波束失败信息的上报方法,包括:
终端设备检测辅小区发生波束失败;以及
在所述辅小区配置在介质访问控制(MAC)实体的情况下,上报针对所述介质访问控制(MAC)实体的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)或者截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)。
附记26.根据附记25所述的方法,其中,所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为1,表示配置在所述介质访问控制(MAC)实体上的服务小区索引i的辅小区检测到波束失败且包括候选波束信息;
所述波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为0,表示服务小区索引i的辅小区没有配置在所述介质访问控制(MAC)实体上,或者所述辅小区没有检测到波束失败且不包括候选波束信息。
附记27.根据附记25所述的方法,其中,所述截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为1,表示配置在所述介质访问控制(MAC)实体上的服务小区索引i的辅小区检测到波束失败且包括候选波束信息;
所述截短的波束失败恢复(BFR)介质访问控制(MAC)控制元素(CE)的指示信息(Ci域)置为0,表示服务小区索引i的辅小区没有配置在所述介质访问控制(MAC)实体上,或者所述辅小区没有检测到波束失败且不包括候选波束信息。
附记28.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至27任一项所述的波束失败信息的上报方法。
附记29.一种通信系统,包括:
终端设备,确定发生波束失败的辅小区已经完成基于同步信号块(SSB)或信道状态信息参考信号(CSI-RS)的候选波束检测;以及上报所述辅小区发生波束失败或者上报包括所述辅小区的波束失败信息的介质访问控制(MAC)协议数据单元(PDU);
网络设备,其接收所述辅小区发生波束失败的上报信息或者包括所述辅小区的波束失败信息的介质访问控制(MAC)协议数据单元(PDU)。

Claims (20)

  1. 一种波束失败信息的上报装置,包括:
    检测单元,其检测候选波束;以及
    上报单元,其上报已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区上的波束失败。
  2. 根据权利要求1所述的装置,其中,所述上报单元还用于:由介质访问控制实体确定在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测,和/或,由所述介质访问控制实体接收到来自低层的所述辅小区的候选波束标识。
  3. 根据权利要求1所述的装置,其中,所述上报单元还用于:
    在所述辅小区上已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收来自低层的所述辅小区的候选波束标识之前,或者处于在所述辅小区上基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,介质访问控制实体不上报所述辅小区发生了波束失败。
  4. 根据权利要求3所述的装置,其中,所述装置还包括:
    生成单元,其在所述辅小区已经触发了波束失败恢复且没有取消的情况下,生成对应的介质访问控制控制元素或者截短的介质访问控制控制元素并组装介质访问控制协议数据单元;所述介质访问控制实体在所述介质访问控制控制元素或者截短的介质访问控制控制元素中不上报所述辅小区发生波束失败。
  5. 根据权利要求4所述的装置,其中,所述介质访问控制实体在所述介质访问控制控制元素或者截短的介质访问控制控制元素中将所述辅小区对应的指示信息置为0;并且不包括所述辅小区对应的承载候选波束信息的域。
  6. 根据权利要求4所述的装置,其中,由所述介质访问控制实体指示复用和组装过程生成波束失败恢复介质访问控制控制元素,在所述复用和组装过程中生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素;或者,
    由所述介质访问控制实体指示复用和组装过程生成截短的波束失败恢复介质访问控制控制元素,在所述复用和组装过程中生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
  7. 根据权利要求4所述的装置,其中,由所述介质访问控制实体指示复用和组装过程生成携带辅小区波束失败和恢复信息的介质访问控制控制元素,在所述复用和组装 过程中生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素;
    由所述复用和组装过程中确定生成所述波束失败恢复介质访问控制控制元素还是所述截短的波束失败恢复介质访问控制控制元素。
  8. 根据权利要求4所述的装置,其中,由所述介质访问控制实体指示复用和组装过程生成波束失败恢复介质访问控制控制元素,所述复用和组装过程一旦收到所述介质访问控制实体的指示就生成所述波束失败恢复介质访问控制控制元素;或者,
    由所述介质访问控制实体指示复用和组装过程生成截短的波束失败恢复介质访问控制控制元素,所述复用和组装过程一旦收到所述介质访问控制实体的指示就生成所述截短的波束失败恢复介质访问控制控制元素。
  9. 根据权利要求4所述的装置,其中,在一个介质访问控制实体里辅小区对应的指示信息置为1的最高服务小区索引小于8的情况下,使用第一格式的波束失败恢复介质访问控制控制元素;在指示信息置为1的最高服务小区索引大于或等于8的情况下,使用第二格式的波束失败恢复介质访问控制控制元素。
  10. 根据权利要求4所述的装置,其中,在一个介质访问控制实体里辅小区对应的指示信息置为1的最高服务小区索引小于8、或者特殊小区检测到波束失败且所述特殊小区将被包括在截短的波束失败恢复介质访问控制控制元素里且上行资源无法容纳第二格式的截短的波束失败恢复介质访问控制控制元素的情况下,使用第一格式的截短的波束失败恢复介质访问控制控制元素;否则使用第二格式的截短的波束失败恢复介质访问控制控制元素。
  11. 根据权利要求1所述的装置,其中,在发送包括辅小区波束失败信息的介质访问控制协议数据单元时,不取消所述介质访问控制协议数据单元组装前所述辅小区上已经触发的波束失败恢复。
  12. 根据权利要求1所述的装置,其中,介质访问控制实体在所述辅小区配置在所述介质访问控制实体的情况下,生成针对所述介质访问控制实体的波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
  13. 根据权利要求12所述的装置,其中,所述波束失败恢复介质访问控制控制元素的指示信息置为1,表示配置在所述介质访问控制实体上的服务小区索引i的辅小区检测到波束失败且包括候选波束信息;所述波束失败恢复介质访问控制控制元素的指示信息置为0,表示服务小区索引i的辅小区没有配置在所述介质访问控制实体上,或者 所述辅小区没有检测到波束失败且不包括候选波束信息;
    所述截短的波束失败恢复介质访问控制控制元素的指示信息置为1,表示配置在所述介质访问控制实体上的服务小区索引i的辅小区检测到波束失败且包括候选波束信息;所述截短的波束失败恢复介质访问控制控制元素的指示信息置为0,表示服务小区索引i的辅小区没有配置在所述介质访问控制实体上,或者所述辅小区没有检测到波束失败且不包括候选波束信息。
  14. 一种波束失败信息的上报装置,包括:
    检测单元,其检测候选波束;以及
    上报单元,其向网络设备上报包括已经完成基于同步信号块或信道状态信息参考信号的候选波束检测的辅小区上的波束失败信息的介质访问控制协议数据单元。
  15. 根据权利要求14所述的装置,其中,所述上报单元还用于:
    由介质访问控制实体确定在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测,和/或,由所述介质访问控制实体接收到来自低层的所述辅小区的候选波束标识。
  16. 根据权利要求14所述的装置,其中,在所述辅小区上已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收来自低层的所述辅小区的候选波束标识之前,或者处于在所述辅小区上基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,介质访问控制实体不指示复用和组装过程生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
  17. 根据权利要求16所述的装置,其中,在已经触发了至少一个波束失败恢复且没有取消、且完成至少一个小区上基于同步信号块或信道状态信息参考信号的候选波束检测,或者接收来自低层的至少一个小区的候选波束标识的情况下,所述介质访问控制实体根据上行资源指示所述复用和组装过程生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素,或者触发调度请求。
  18. 根据权利要求16所述的装置,其中,在已经触发了至少一个辅小区上的波束失败恢复且没有取消、且完成至少一个小区上基于同步信号块或信道状态信息参考信号的候选波束检测,或者接收来自低层的至少一个小区的候选波束标识的情况下,所述介质访问控制实体根据上行资源指示所述复用和组装过程生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素,或者触发调度请求。
  19. 一种波束失败信息的上报装置,包括:
    检测单元,其检测辅小区发生波束失败;
    处理单元,其在所述辅小区已经完成基于同步信号块或信道状态信息参考信号的候选波束检测之前,或者接收到所述辅小区的候选波束标识之前,或者处于所述辅小区基于同步信号块或信道状态信息参考信号的候选波束检测的评估期间中,不上报所述辅小区发生了波束失败,和/或,不指示复用和组装过程生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
  20. 根据权利要求19所述的装置,其中,在多个小区触发了波束失败恢复、且至少有一个小区的候选波束检测已完成的情况下,所述处理单元不上报所述辅小区发生了波束失败;
    在多个小区触发了波束失败恢复、且触发了波束失败恢复的所有小区的候选波束检测均未完成的情况下,所述处理单元不指示复用和组装过程去生成波束失败恢复介质访问控制控制元素或者截短的波束失败恢复介质访问控制控制元素。
PCT/CN2020/123018 2020-10-22 2020-10-22 波束失败信息的上报方法以及装置 WO2022082686A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/123018 WO2022082686A1 (zh) 2020-10-22 2020-10-22 波束失败信息的上报方法以及装置
CN202080106081.7A CN116368765A (zh) 2020-10-22 2020-10-22 波束失败信息的上报方法以及装置
JP2023522757A JP2023545812A (ja) 2020-10-22 2020-10-22 ビーム障害情報の報告方法及び装置
US18/133,816 US20230284052A1 (en) 2020-10-22 2023-04-12 Method and apparatus for reporting beam failure information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123018 WO2022082686A1 (zh) 2020-10-22 2020-10-22 波束失败信息的上报方法以及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/133,816 Continuation US20230284052A1 (en) 2020-10-22 2023-04-12 Method and apparatus for reporting beam failure information

Publications (1)

Publication Number Publication Date
WO2022082686A1 true WO2022082686A1 (zh) 2022-04-28

Family

ID=81291406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123018 WO2022082686A1 (zh) 2020-10-22 2020-10-22 波束失败信息的上报方法以及装置

Country Status (4)

Country Link
US (1) US20230284052A1 (zh)
JP (1) JP2023545812A (zh)
CN (1) CN116368765A (zh)
WO (1) WO2022082686A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200052769A1 (en) * 2018-08-09 2020-02-13 Comcast Cable Communications, Llc Resource Management for Beam Failure Recovery Procedures
CN110798302A (zh) * 2019-11-14 2020-02-14 展讯通信(上海)有限公司 辅小区波束失败恢复mac ce传输方法及装置、存储介质
US20200267048A1 (en) * 2019-02-15 2020-08-20 FG Innovation Company Limited Method and apparatus for acknowledging scell beam failure recovery request

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200052769A1 (en) * 2018-08-09 2020-02-13 Comcast Cable Communications, Llc Resource Management for Beam Failure Recovery Procedures
US20200267048A1 (en) * 2019-02-15 2020-08-20 FG Innovation Company Limited Method and apparatus for acknowledging scell beam failure recovery request
CN110798302A (zh) * 2019-11-14 2020-02-14 展讯通信(上海)有限公司 辅小区波束失败恢复mac ce传输方法及装置、存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED, SAMSUNG ELECTRONICS: "Correction on BFR MAC CE generation", 3GPP DRAFT; R2-2008219, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200817 - 20200828, 1 September 2020 (2020-09-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051926239 *
ZTE CORPORATION, SANECHIPS: "Correction on 38.321 for BFR MAC CE Design", 3GPP DRAFT; R2-2007525, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20200817 - 20200628, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051912247 *

Also Published As

Publication number Publication date
CN116368765A (zh) 2023-06-30
US20230284052A1 (en) 2023-09-07
JP2023545812A (ja) 2023-10-31

Similar Documents

Publication Publication Date Title
US11303343B2 (en) Method, terminal device, and network device for beam failure management and beam recovery
US11252629B2 (en) Method and apparatus for recovering network connection and communication system
KR102587763B1 (ko) Lbt 모니터링 장애를 위한 처리 방법, 디바이스 및 시스템
US20190364539A1 (en) Data transmission processing method, user equipment, and base station
JP2021510027A (ja) ビーム失敗回復の設定と指示方法、装置及び通信システム
WO2018112871A1 (zh) 数据发送/接收装置、方法以及通信系统
US20160212728A1 (en) Paging method, network device and communication system
US20210251032A1 (en) Communication method, apparatus, and system
KR102594392B1 (ko) 다운링크 신호 모니터링 및 전송 방법, 및 파라미터 구성 방법 및 장치
US20220014901A1 (en) Method and apparatus for identifying user equipment capability in sidelink transmission
WO2018120064A1 (zh) 抑制干扰信息的传输装置、方法以及通信系统
WO2022082518A1 (zh) 信号的接收和发送方法、装置和通信系统
US20220210777A1 (en) Methods and apparatuses for transmitting and receiving uplink signal
JP2021510950A (ja) 媒体アクセス制御層の制御要素の確認方法、装置及び通信システム
WO2022040873A1 (zh) 一种通信方法、设备和装置
US20220248392A1 (en) Corresponding configuration for simultaneous physical uplink control channel pucch and physical uplink shared channel pusch transmission
WO2022151109A1 (zh) 波束失败的检测方法以及装置
WO2022082686A1 (zh) 波束失败信息的上报方法以及装置
WO2022236835A1 (zh) 确定终端设备行为的方法及装置、终端设备、网络设备
WO2023130478A1 (zh) 波束失败恢复信息发送装置、接收装置及通信系统
WO2023205975A1 (zh) 辅小区波束失败恢复的方法和装置
WO2022077321A1 (zh) 无线通信方法、装置和系统
WO2022151110A1 (zh) 波束失败信息的生成和上报方法以及装置
WO2022205408A1 (zh) 上行数据的发送方法、装置和系统
WO2023065109A1 (zh) 信息发送方法、信息接收方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958268

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522757

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958268

Country of ref document: EP

Kind code of ref document: A1